Het Oplossen van Stelsels Veeltermvergelijkingen

Simon Telen

Het Oplossen van Stelsels Veeltermvergelijkingen

Een pdf-versie van het artikel is toegevoegd als bijlage.


[1] S. Barnett. A Companion Matrix Analogue for Orthogonal Polynomials. Queen’s
University, Kingston - Mathematics Department, 1975.
[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer, 2006.
[3] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Numerically
solving polynomial systems with Bertini, volume 25 of Software, Environments
and Tools. SIAM, 2013.
[4] K. Batselier. A Numerical Linear Algebra Framework for Solving Problems with
Multivariate Polynomials. KU Leuven - Faculty of Engineering Science, 2013.
PhD thesis, promotor: Bart De Moor.
[5] B. Buchberger. Groebner bases: A short introduction for systems theorists.
Computer Aided Systems Theory, 2178:1–19, 2002.
[6] A. Bultheel and D. Huybrechs. Wavelets. CuDi VTK vzw, 2014. Course notes
on Wavelets.
[7] L. Bus´e, H. Khalil, and B. Mourrain. Resultant-Based Methods for Plane Curves
Intersection Problems. Springer-Verlag Berlin Heidelberg, 2016.
[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Springer,
[9] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
[10] T. A. Davis, S. N. Yeralan, and S. Ranka. User’s Guide for SuiteSparseQR, a
multifrontal multithreaded sparse QR factorization package (with optional GPU
acceleration). 2016.
[11] B. De Moor. Back to the Roots: Solving Polynomial Systems with Numerical
Linear Algebra Tools (slides). KU Leuven - Department of Electrical Engineering
ESAT/SCD, 2013.
[12] R. Descartes. La G´eom´etrie. Jean Maire, 1637. Slide show used in Valencia.
[13] E. D. Dolan and J. J. Mor´e. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201–213, 2002.
[14] P. Dreesen. Back to the Roots. KU Leuven - Faculty of Engineering Science,
2013. PhD thesis, promotor: Bart De Moor.
[15] D. Gleich. gaimc: Graph algorithms in matlab code. Matlab
File Exchange, http://www.mathworks.com/matlabcentral/fileexchange/
[16] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. SIAM, 2009.
[17] P. W. Lawrence, M. Van Barel, and P. Van Dooren. Backward error analysis
of polynomial eigenvalue problems solved by linearization. SIAM journal on
Matrix Analysis and Applications, 2005.
[18] D. Lazard. Groebner bases, gaussian elimination and resolution of systems of
algebraic equations. European Computer Algebra Conference London, 162:146–
156, 1983.
[19] L. Ljung. System Identification: Theory for the User. Prentice Hall, 2 edition,
[20] Y. Nakatsukasa, V. Noferini, and A. Townsend. Computing the common zeros of
two bivariate functions via B´ezout resultants. Springer-Verlag Berlin Heidelberg,
[21] V. Y. Pan. Solving a polynomial equation: Some history and recent progress.
Siam Review, 39:187–220, 1997.
[22] B. Plestenjak. Multipareig. Matlab File Exchange, http://www.mathworks.
[23] B. Plestenjak and M. E. Hochstenbach. Roots of bivariate polynomial systems
via determinantal representations. SIAM J. Sci. Comput., 38(2):A765–A788,
[24] A. J. Sommese and C. W. Wampler. The Numerical Solution of Systems of
Polynomials Arising in Engineering Science. World Scientific Publishing Co.
Pte. Ltd., 2005.
[25] L. Sorber, M. Van Barel, and L. De Lathauwer. Numerical solution of bivariate
and polyanalytic polynomial systems. SIAM J. Num. Anal. 52, pages 1551–1572,
[26] H. J. Stetter. Numerical Polynomial Algebra. Society for Industrial and Applied
Mathematics, 2004.
[27] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge
Press, 1997.
[28] B. Sturmfels. Polynomial equations and convex polytopes. The American
Mathematical Monthly, 105:907–922, 1998.
[29] B. Sturmfels. Solving Systems of Polynomial Equations. Number 97 in CBMS
Regional Conferences. Amer. Math. Soc., 2002.
[30] J. Verschelde. Homotopy Continuation Methods for Solving Polynomial Systems.
KU Leuven - Faculty of Engineering Science, 1996. PhD thesis, promotor: Ann
[31] J. Verschelde. Algorithm 795: Phcpack: A general-purpose solver for polynomial
systems by homotopy continuation. ACM Transactions on Mathematical
Software Vol. 25, No. 2, pages 251–276, 1999.
[32] Wikipedia. La g´eom´etrie. https://en.wikipedia.org/wiki/La_G%C3%A9om%
[33] Wikipedia. Polynomial. https://en.wikipedia.org/wiki/Polynomial.

Universiteit of Hogeschool
Master in de Ingenieurswetenschappen, Wiskundige Ingenieurstechnieken
Prof. dr. ir. Marc Van Barel
Share this on: