
Solving Systems of Polynomial Equations

Simon Telen

Thesis voorgedragen tot het behalen
van de graad van Master of Science

in de ingenieurswetenschappen:
wiskundige ingenieurstechnieken

Promotor:
Prof. dr. ir. Marc Van Barel

Assessor:
Prof. dr. ir. Daan Huybrechs

Prof. dr. ir. Lieven De Lathauwer

Begeleider:
Prof. dr. ir. Marc Van Barel

Academiejaar 2015 – 2016



© Copyright KU Leuven

Without written permission of the thesis supervisor and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication
should be addressed to the Departement Computerwetenschappen, Celestijnenlaan
200A bus 2402, B-3001 Heverlee, +32-16-327700 or by email info@cs.kuleuven.be.

A written permission of the thesis supervisor is also required to use the methods,
products, schematics and programs described in this work for industrial or commercial
use, and for submitting this publication in scientific contests.

Zonder voorafgaande schriftelijke toestemming van zowel de promotor als de auteur
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Abstract

Multivariate systems of polynomial equations find their applications in various fields
of science and engineering. Some examples are filter design, parametric system
identification, robotics, computer aided design, chemical engineering, . . . . Solving
such a system is a long studied mathematical problem. An extensive amount of
literature in the field of algebraic geometry shows that the emphasis in the research
has long been mostly on theoretical aspects. An important algorithmic approach
based on symbolic computations is the Buchberger algorithm for constructing a
Groebner basis for the system. Groebner bases are used by the solvers of a. o. Maple
and Mathematica. Important results that connect the problem of solving polynomial
systems to linear algebra date from the late 19th - early 20th century when Sylvester
and Macaulay introduced the concept of resultants. These ideas have been picked up
only recently because of their limiting computational complexity. Methods have been
developed that use different kinds of resultants to find the solutions of a polynomial
system using a linear algebra approach. Resultant methods are used for example
in Chebfun. Another important and successful numerical solving method is that
of homotopy continuation, used by PHCpack and Bertini. In this text, the aim
is to propose a new numerical linear algebra based method for solving bivariate
0-dimensional systems. By “solving” we mean finding all solutions, both real and
complex, and taking multiplicities into account. We start from a two-parameter
eigenvalue approach, similar to the one introduced by Plestenjak and Hochstenbach
in 2015. We use the concept of degree extension, which is also used to construct
Macaulay resultants, to construct a one-parameter square generalized eigenvalue
problem directly from the coefficients of the given polynomials. The degree extension
allows us to eliminate one of the variables. This is a typical aspect of resultant
methods. The coefficients appear directly, without being manipulated in the pencil,
which is constructed in a very intuitive manner. We show that a square generalized
eigenvalue problem can be constructed for any 0-dimensional system and that the
resulting eigenvalues are equal to those of the Sylvester resultant. After obtaining
one of the coordinates in this way, we propose some possible approaches for finding
the other coordinate of the solutions. The strong link with the Sylvester resultant
allows us to give information about the multiplicity of the solutions. Results are
promising. Solutions are obtained with small residuals and the computation time
is competitive with other solvers. We show that the method can be generalized to
other bases than the classical monomial basis and we propose a generalization for
more than two dimensions.
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Chapter 1

Introduction

In this chapter the problem of solving a system of multivariate polynomial equations
is formulated in Section 1.1. It turns out that this problem appears in many fields
of science and engineering. Section 1.2 contains several examples of applications.
An overview of the existing methods for solving multivariate polynomial systems is
given in Section 1.3. Finally, in Section 1.4 and Section 1.5, the goal of this thesis is
stated and the outline of this text is briefly discussed.

1.1 Multivariate polynomial systems
The concept of multivariate polynomial systems is familiar to almost every engineer
or engineering student. The problem can be stated as follows.

Problem 1 (Multivariate Polynomial System). Find all vectors (x1, x2, . . . , xs)> ∈
Cs that satisfy 




p1(x1, x2, . . . , xs) = 0
p2(x1, x2, . . . , xs) = 0

...
ps(x1, x2, . . . , xs) = 0

where pi(x1, x2, . . . , xs), 1 ≤ i ≤ s are polynomials.

Problem 1 pops up in various disciplines, be it in its direct form or implicitly,
e.g. in the form of a polynomial optimization problem. Solving such a polynomial
optimization problem comes down to solving a system of polynomial equations, as
will be illustrated by Example 1.1.1.

Problem 2 (Polynomial Optimization Problem). Find (x∗1, x∗2, . . . , x∗s)> ∈ Cs such
that

(x∗1, x∗2 . . . , x∗s) = argmin
x1,x2...,xs

O(x1, x2, . . . , xs)

subject to pi(x1, . . . , xs) = 0, i = 1, . . . ,m ≤ s.
(1.1)

where O is a polynomial objective function and the {pi}1≤i≤m are polynomial con-
straints.

1



1. Introduction

Example 1.1.1. Suppose we want to calculate the width x∗ and the length y∗ of a
rectangular piece of cardboard with area 1 that minimize the diagonal length. The
problem can be formulated as

(x∗, y∗) = argmin
x,y

x2 + y2

subject to p1(x, y) = xy − 1 = 0.

Using the method of Lagrange multipliers, we find for the Lagrangian L(x, y, z) =
x2 + y2 − z(xy − 1). Equating its first partial derivatives to zero we obtain for the
optimality conditions 




∂L
∂x = 2x− zy = 0
∂L
∂y = 2y − zx = 0
∂L
∂z = xy − 1 = 0

which is an instance of Problem 1 with s = 3 that can be solved analytically. The
real solutions are given by (1, 1, 2) and (−1,−1, 2), of which only the first one has a
physical meaning. The desired width and length are both equal to one.

1.2 Applications
Fields in which polynomial systems are encountered are chemical engineering, civil
engineering, signal processing and filter design, system identification, robotics, . . . .
There are some typical situations in which they appear. Some problems naturally
lead to polynomial relations. In other cases polynomials furnish a natural tool for
modelling phenomena that cannot be adequately described by linear equations. We
give three motivating examples of polynomial system applications.

1.2.1 Equilibrium concentrations in chemical reactions
In a chemical reaction, the concentrations at a state of equilibrium of all different
substances is governed by conservation equations and by reaction equations [24].
Conservation equations state that the total number of atoms of each element in the
reaction must stay constant. They are always linear. For example, consider the
reaction

H2O 2 H + O

for which the conservation equations are

xH + 2xH2O = TH (1.2)
xO + xH2O = TO (1.3)

where xi stands for the (unknown) equilibrium concentration of molecule i and Tj
denotes the (known) constant concentration of atom j. The reaction equation for
this simple system is given by

KxH2O = x2
HxO (1.4)

2



1.2. Applications

where K is the equilibrium constant that depends on external conditions, such as
temperature. Together, (1.2), (1.3) and (1.4) form a polynomial system of three
equations in the unknown equilibrium concentrations xH , xO and xH2O.

1.2.2 Daubechies wavelets
Wavelet decompositions have many applications in signal processing, image com-
pressing, image denoising, . . . . Performing a wavelet decomposition of a signal can
be interpreted as sending the signal through a filter bank [27, 6]. The goal of this
example is to illustrate how the design of the filters of such a filter bank (which
corresponds to the design of the wavelet) can be realized by solving a system of
polynomial equations. Consider the space V0 ⊂ L2 defined as

V0 = span{φ0k(t)}k∈Z

where φnk(t) = 2n2 φ00(2nt− k), n, k ∈ Z and φ00 , φ(t) satisfies a dilation equation

φ(t) =
∑

k∈Z
ckφ(2t− k) (1.5)

for some set of coefficients {ck}k∈Z. V0 is spanned by shifted versions of φ(t). Assume
for simplicity that the {φ0k(t)}k∈Z form an orthonormal basis for V0 (with respect
to the standard inner product in L2). Now, defining analogously

V−1 = span{φ−1k(t)}k∈Z,

one obtains a space spanned by the orthonormal set {φ−1k(t) = 2− 1
2φ( t2 − k)}k∈Z,

which are translates of a ‘stretched out’ version of φ(t). Intuitively, V0 offers more
flexibility for approximating quickly varying functions than V−1. In fact, through
(1.5) it can be seen that every basis function φ−1l(t) of V−1 can be written as a linear
combination of the basis functions {φ0k(t)}k∈Z of V0, which means V−1 ⊂ V0. The
orthogonal complement of V−1 in V0 is denoted by W−1:

V0 = V−1 ⊕W−1.

Suppose an orthonormal basis of W−1 is given by the set {ψ−1k(t)}k∈Z.

Let some continuous time signal f(t) be approximated by the signal f̃(t) which
is contained in the space V0:

f̃(t) =
∑

k∈Z
v0kφ0k(t)

The decomposition

f̃(t) =
∑

k∈Z
v−1kφ−1k(t)

︸ ︷︷ ︸
f̃φ

+
∑

k∈Z
w−1kψ−1k(t)

︸ ︷︷ ︸
f̃ψ

3



1. Introduction

is one step in the orthogonal wavelet decomposition of f̃ . The function f̃φ is the
orthogonal projection of f̃ onto V−1 and contains the “low resolution” or low fre-
quency information from f̃ . f̃ψ can be seen as the error that is made approximating
f̃ by f̃φ and contains high frequency information. It is shown that in this orthogonal
setting the coefficients {v−1k}k∈Z can be found by applying a low pass filter with
transfer function H∗(z) = H(1

z ) to the high resolution coefficients {v0k}k∈Z followed
by a downsampling. More specifically, H(z) can be found as the z-transform of the
scaling coefficients {hk}k∈Z ,

{
ck√

2

}
k∈Z

with {ck}k∈Z the coefficients that define φ(t)
in the dilation equation (1.5).

Not any set {hk}k∈Z defines a scaling function φ(t) that gives rise to an orthonor-
mal basis of V0. For computational reasons, it is interesting to look for such a filter
with compact support, i.e. only a finite number of filter coefficients hk is different
from zero. This is where polynomial relations come into play. Suppose only the 2p
coefficients h0, . . . , h2p−1 are allowed to be different from zero. By requiring

∫ ∞

−∞
φ(t)dt = θ

with θ some constant different from zero, using (1.5) we obtain
2p−1∑

k=0
hk =

√
2. (1.6)

For the system {φ0k}k∈Z to be orthonormal, it is shown that the following property
must be satisfied for all n ∈ Z:

∑

k∈Z
hkhk−2n = δn =

{
1 n = 0
0 n 6= 0

. (1.7)

Property (1.7) is called double shift orthogonality. In case of our compactly supported
filter, (1.7) only gives nontrivial equations for n = 0, . . . , p − 1. Equations (1.6)
and (1.7) furnish p+ 1 polynomial equations in the 2p unknowns. The remaining
p − 1 degrees of freedom can be used to add so called vanishing moments to the
multiresolution analysis. This comes down to making sure that all polynomials up
to degree p− 1 are contained in the space V0. The number of vanishing moments
is referred to as the order of the multiresolution analysis. The higher the order,
the better the convergence properties of the sparse representation of signals in the
wavelet basis. For the filter coefficients, this translates into the equations

∑

k∈Z
(−1)kknhk = 0 n = 1, . . . , p− 1 (1.8)

which completes the polynomial system of 2p equations in 2p unknowns. The real
solutions of this system correspond to the so called maxflat wavelets. The solutions
that generate a filter H(z) with minimal phase were introduced by Ingrid Daubechies
[9] and they are still among the most commonly used wavelets in image compression.

4



1.2. Applications

1.2.3 Prediction error methods
Another field in which polynomial systems occur is that of parametric system iden-
tification [19, 4]. In this example it will be shown that the optimal parameters for
linear time invariant (LTI) systems with a single input u(t) and a single output y(t)
(SISO) found by prediction error methods are in fact the solutions of a multivariate
polynomial system.

It will be assumed that input and output signals are sampled at N discrete time
steps t = 1, . . . , N . The collected dataset is given by Z:

Z =
(
u(1) u(2) · · · u(N)
y(1) y(2) · · · y(N)

)
.

The most general form of a LTI SISO model can be written as

A(q)y(t) = B(q)
F (q)u(t) + C(q)

D(q)e(t) (1.9)

where e(t) is a white noise sequence and A, B, C, D and F are polynomials in the
linear delay operator q:

qx(t) = x(t− 1).
In our example, for ease of notation we will look for a simpler model

y(t) = b1
1 + f1q + f2q2u(t) + e(t) = B(q)

F (q)u(t) + e(t) (1.10)

which is called an output error model where the number of parameters is chosen to
be (only) 3 for simplicity. The parameter set is denoted by θ = {b1, f1, f2}. At time
t, the prediction error ε(t) is defined as the difference between y(t) and a one-step
ahead predictor ŷ(t|θ):

ε(t) = y(t)− ŷ(t|θ).
The predictor ŷ(t|θ) is defined in such a way that if the parameters θ are the exact
parameters of the underlying system, the prediction error is the white noise sequence
e(t). In this case

ε(t) = y(t)− B(q)
F (q)u(t)

or
F (q)y(t)−B(q)u(t)− F (q)ε(t) = 0. (1.11)

Because F (q) is a polynomial of degree 2, (1.11) can be written down for t > 2. The
problem that is solved to find a suitable set of parameters θ∗ is stated as follows.

Find θ∗ such that

θ∗ = argmin
θ

1
N

N∑

k=1

ε(k)2

2

subject to F (q)y(t)−B(q)u(t)− F (q)ε(t) = 0, t = 3, . . . , N.
(1.12)

5



1. Introduction

Problem (1.12) is an instance of (1.1) in the variables b1, f1, f2, ε(1), . . . , ε(N). The
Lagrangian for N = 5 is given by

L(b1, f1, f2,ε(1), ε(2), ε(3), ε(4), ε(5), λ1, λ2, λ3) =
1
10(ε(1)2 + ε(2)2 + ε(3)2 + ε(4)2 + ε(5)2)+

λ1(y(3) + f1y(2) + f2y(1)− b1u(3)− ε(3)− f1ε(2)− f2ε(1))+
λ2(y(4) + f1y(3) + f2y(2)− b1u(4)− ε(4)− f1ε(3)− f2ε(2))+
λ3(y(5) + f1y(4) + f2y(3)− b1u(5)− ε(5)− f1ε(4)− f2ε(3)).

(1.13)

In practice, the value of N is much larger, but the expression for L would become
too long to write out in this text. Note that the variables ε(1), . . . , ε(N) can easily be
eliminated because they appear linearly in the partial derivatives of L with respect
to themselves. For example, the optimality condition

∂L
∂ε(1) = ε(1)

5 − λ1f2 = 0

leads to ε(1) = 5λ1f2.

1.3 State of the art

Polynomial root finding is a long studied discipline with a rich history [21, 11, 33].
It is among the oldest mathematical problems. Greek writings by Diophantus of
Alexandria date from the third century and give numerical solutions of univariate
polynomial equations with rational coefficients. The notation and graph represen-
tation in a cartesian coordinate system for multivariate polynomials as we know
it is mostly due to René Descartes. In his book La Géométrie (1637) [12, 32], he
popularized using superscripts as exponentials, using letters from the beginning
of the alphabet as coefficients and using letters from the end of the alphabet to
denote variables. In La Géométrie, Descartes introduced the description of circles,
lines, parabolas, . . . as bivariate polynomial equations. Doing so he was among the
first to establish the relation between geometrical problems and polynomial algebra.
Contemporary scientists that contributed important results in the field are a.o. Isaac
Newton and Pierre de Fermat. These insights gave rise to the birth of algebraic
geometry, nowadays an important branch of mathematics. From the 18th until the
20th century, names such as Etienne Bézout, Evariste Galois, James Joseph Sylvester,
David Hilbert, . . . were responsible for an extensive amount of new literature in the
field of algebraic geometry. The emphasis in the research of the polynomial root
finding problem was mainly on theoretical results and algorithms based on symbolic
manipulations. An important notion is that of a Groebner basis.

6
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1.3.1 Groebner bases: an algorithmic approach
A symbolic tool that is definitely worth mentioning is the Buchberger algorithm [5]
for transforming a given polynomial system F into a so called Groebner basis G
[8, 26, 29]. Roughly speaking, a Groebner basis has “nice properties” such that F
and G are equivalent in terms of their solution sets and the solutions of G can be
computed easily. We will illustrate the concept of Groebner bases by means of a
bivariate example. As the emphasis in this text is on the bivariate case, we introduce
the notation {

p(x, y) = 0
q(x, y) = 0

(1.14)

for the version of Problem 1 where s = 2, which we will use throughout the text.

Example 1.3.1 (Groebner basis). Consider the system
{
p(x, y) = xy − 2y = 0
q(x, y) = 2y2 − x2 = 0

defined by the basis F = {xy − 2y, 2y2 − x2}. A Groebner basis for F is calculated
by using the Buchberger algorithm (with a lexicographic ordering that ranks y higher
than x). The result is G = {−2x2 + x3, xy − 2y, 2y2 − x2}. Therefore, the solutions
to the system defined by F coincide with the solutions to





g1(x, y) = −2x2 + x3 = 0
g2(x, y) = xy − 2y = 0
g3(x, y) = 2y2 − x2 = 0

which is easy to solve since all possible values for x can be found as the roots of
the univariate polynomial g1. The roots of g1 are 0, 0 and 2. Plugging these values
into g2 and g3, the solution set {(0, 0), (2,−

√
2), (2,

√
2)} is obtained. Figure 1.1

illustrates the equivalence of the two systems.

Groebner bases are still used in computer algebra systems such as Maple and
Mathematica. The complexity of calculating Groebner bases increases exponentially
with the degree of the system. Moreover, when computing in finite precision, the
algorithm suffers from numerical instability, which makes the method useless for
high degree systems. Modern day developments in computer algebra are the main
reason for the interest in approaches that require numeric computations (as opposed
to the classical symbolic approach). A number of such approaches exist and a brief
introduction follows in the next subsections.

1.3.2 Polynomial systems and numerical linear algebra
The close relation between polynomial root finding and numerical linear algebra is
well known for the univariate case [21, 26]. To each univariate polynomial p a so

7
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Figure 1.1: Real picture of the zero level sets of the systems defined by F (left) and
G (right).

called companion matrix C can be associated of which the characteristic polynomial
is equal to p (up to a nonzero constant factor). Assume p is monic and given by

p(x) = xδ − p1x
δ−1 − p2x

δ−2 − · · · − pδ−1x− pδ,

then a possible companion matrix for p is

C =




p1 p2 . . . pδ−1 pδ
1

1
. . .

1 0



.

Several choices for the companion matrix are possible based on straightforward simi-
larity transformations of this one. The assumption that p is monic is not restrictive
since ∀α ∈ C0, αp(x) = 0⇔ p(x) = 0, hence any p can be normalized to be monic.
Other companion-type matrices (comrade, confederate, congenial, . . . ) [1] can be
found by representing p in another basis. The roots of p can be found as the eigen-
values of C. An advantage of this approach is that it is guaranteed that all solutions
are found at once. Other iterative methods like Newton-Raphson iteration converge
(in most cases) quite quickly to one certain root. Which one depends on the choice of
the initial guess but it is a nontrivial problem to guarantee that all solutions are found.

An important notion that can be traced back to Sylvester (1853) and Macaulay
(1902,1916) is that of resultants. Resultants provide a linear algebra approach to
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1.3. State of the art

determine (the existence of) common roots of multivariate polynomials. Because
of their limiting computational complexity, the ideas of Sylvester and Macaulay
came back to play only in the 1980’s, when they were picked up by Lazard and
Stetter. Lazard established the relation between the calculation of a Groebner basis
and the triangularization of a large matrix, similar to the Macaulay matrix [18].
Stetter linked polynomial system solving to an eigenvalue decomposition a few years
later. The method requires some knowledge of algebraic geometry and for a detailed
description we refer to [26]. In this book [26, p. 52], Stetter states “with a grain of
salt”:

The numerical solution of 0-dimensional systems of polynomial equations
is a task of numerical linear algebra.

The work of Stetter and Lazard made the interest in the linear algebra approach to
the problem grow. Some of the recently developed linear algebra solving methods
are presented below.

Resultant methods

Resultant methods for bivariate polynomial system solving [29, 26, 2, 8] typically
select one out of two variables, say x, and consider p(x, y) and q(x, y) as univariate
polynomials in y with coefficients that are univariate polynomials in x. They are
based on the idea that if p(x∗, y∗) = q(x∗, y∗) = 0, then the univariate polynomials
p(x∗, y) and q(x∗, y) must have at least one common zero. One can prove that a
necessary condition for this to happen is that an associated matrix polynomial1
R(x), called a resultant matrix, is singular for x = x∗. This means that all candidate
x-coordinates for the solutions of (1.14) are eigenvalues of this matrix polynomial.
The determinant of such a resultant matrix is a univariate polynomial called a
resultant. In other words, a resultant (with respect to x) is a polynomial resp,q(x)
with a set of roots that contains the set [25]

{x ∈ C | ∃y ∈ C : p(x, y) = q(x, y) = 0}.

A standard way to calculate the eigenvalues of such a matrix polynomial, i.e. solving
the matrix polynomial eigenvalue problem, is called linearization [16, 17]. A linear
pencil A− xB is calculated that satisfies det(A− xB) = α detR(x) with α ∈ C0. By
definition, the eigenvalues of R(x) and A− xB coincide. The eigenvalues of A− xB
can be calculated in a numerically stable way using the QZ-algorithm.

Different resultants can be obtained by representing p and q in different bases.
One resultant, called the Sylvester resultant deserves some special attention because

1By matrix polynomial we mean a polynomial whose coefficients are matrices, for example

R(x) = A0 +A1x+A2x
2 + · · ·+Aδx

δ

is a matrix polynomial where the coefficients {Ai}0≤i≤δ are matrices.

9
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Figure 1.2: Real picture of the zero level curves described by p(x, y) = 0 ( ) and
q(x, y) = 0 ( ) from the system (1.15).

it is closely related to the root finding method that is described in this text. In
section 2.2.2, its construction is discussed and we use it to explain the concept of
resultant methods in more detail.

Recently, several resultant methods were developed for solving (1.14). In [25] the
aim is to calculate all real solutions to (1.14). Resultants are used to project the
solutions onto the real plane associated to the two variables rather than onto the
complex plane associated with one variable. In the latest version of Chebfun2, the
roots command uses a resultant method based on Bézout resultants to calculate all
real solutions of a bivariate nonlinear system in a rectangular compact domain of
R2 (polynomial interpolation is used to approximate the given bivariate functions
within that domain) [20]. An extension of the concept of the resultant for more than
two unknowns (s > 2) is due to Macaulay (early 1900s).

Macaulay matrix

In 2013, Ph. Dreesen, K. Batselier et al. [14, 4] have worked out a linear algebra
approach to Problem 1. It is based on the so called Macaulay matrix. Without
formally introducing the Macaulay matrix and its properties, a bivariate example
is used to give the reader an idea of how the algorithm works. The method can be
generalized to higher dimensional problems. For details, we refer to [14, 4].

Example 1.3.2. Consider the system
{
p(x, y) = 46− 10x− 10y + x2 + y2 = 0
q(x, y) = 241− 10x− 90y + x2 + 9y2 = 0

. (1.15)

10
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The level lines of p and q in the real plane are plotted in Figure 1.2 and the solutions
are2 (3.1629, 4.2094), (3.1629, 5.7906), (6.8371, 4.2094) and (6.8371, 5.7906). The
system (1.15) can be associated to the matrix

M2 =
(

46 −10 −10 1 0 1
241 −10 −90 1 0 9

)

which is called the Macaulay matrix of degree 2. The first row of M2 contains the
coefficients of p(x, y), the second row those of q(x, y). The column partitioning of M2
corresponds to a partitioning of the monomial degrees. E.g. 46 and 241 are the only
coefficients that correspond to the monomial 1 (of degree 0). Every column corresponds
to a fixed monomial. The ordering of the monomials is not straightforward in the
multivariate case. Here, the so called degree negative lexicographic ordering is used:

1 < x < y < x2 < xy < y2 < x3 < x2y < xy2 < y3 < x4 < ... (1.16)

The Macaulay matrix M3 of degree 3 can be constructed by multiplying p and q by x
and y and extending M2 with rows for the new equations xp(x, y) = 0, yp(x, y) = 0,
xq(x, y) = 0 and yq(x, y) = 0 and columns for the third degree monomials x3, x2y,
xy2 and y3. The result is

M3 =




46 −10 −10 1 0 1 0 0 0 0
0 46 0 −10 −10 0 1 0 1 0
0 0 46 0 −10 −10 0 1 0 1

241 −10 −90 1 0 9 0 0 0 0
0 241 0 −10 −90 0 1 0 9 0
0 0 241 0 −10 −90 0 1 0 9




where the first three rows correspond to the ‘shifted’ p-equations and the last three
rows to the shifted q-equations. It is readily checked that the rank of M2 is 2 and
that of M3 is 6. The dimensions of the right null spaces of M2 and M3 are both
equal to 4. We know that the system (1.15) has 4 solutions and it is clear from the
construction of the Macaulay matrices that a couple (x∗, y∗) is a solution to (1.15) if
and only if the vector

(
1 x∗ y∗ x∗2 x∗y∗ y∗2

)>
belongs to the null space of M2.

This implies that the null space of M2 is spanned by four such vectors. Analogously,
any solution (x∗, y∗) corresponds to a vector

(
1 x∗ y∗ x∗2 x∗y∗ y∗2 x∗3 x∗2y∗ x∗y∗2 y∗3

)>
(1.17)

in the null space of M3. A numerical basis Z for the null space of M3 can be calculated
using the null command in Matlab (Z is a matrix containing the basis vectors in its
columns). We know that for every root (x∗, y∗) there is a vector z = Zv in the null
space of M3 that has this multivariate Vandermonde structure (1.17). Any vector z

2Rounded to 4 decimal digits after the decimal point.
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with this structure must satisfy



z1
z2
z3
z4
z5
z6



x∗ =




z2
z4
z5
z7
z8
z9




where we used the notation zi for the i-th element of the vector z. In fact, in [14] it
is shown that it is sufficient to impose




z1
z2
z3
z5


x
∗ =




z2
z4
z5
z8


 . (1.18)

The other equalities are automatically satisfied because of the structure of M3. Letting
S1 denote a row selection matrix that selects the rows 1, 2, 3 and 5 and letting Sx
select the rows 2, 4, 5 and 8, we impose (1.18) on the vector Zv by writing down the
GEP

SxZv = xS1Zv.

The eigenvalues x correspond to the x-coordinates of the four solutions. Using Matlab,
we find the eigenvalues {6.8371, 3.1629, 3.1629, 6.8371}, which are indeed the correct
x-values.

Note that the same thing cannot be done for the matrix M2 because the monomial
xy cannot be shifted by x to a monomial of degree ≤ 2. In general, a degree extension
up to a certain degree d∗ is needed to make the nullity of the Macaulay matrix equal to
the number of solutions and to make the construction of Sx possible. An interesting
aspect of this method is that the shift factor can be chosen to be any polynomial
g(x, y) as long as the degree of the Macaulay matrix is large enough to construct the
selection matrices. For example, for every solution (x∗, y∗) the corresponding null
vector z must satisfy 



z1
z2
z3
z5


 (x∗ + 5y∗) =




z2 + 5z3
z4 + 5z5
z5 + 5z6
z8 + 5z9




which corresponds to the generalized eigenvalue problem



0 1 5 0 0 0 0 0 0 0
0 0 0 1 5 0 0 0 0 0
0 0 0 0 1 5 0 0 0 0
0 0 0 0 0 0 0 1 5 0




︸ ︷︷ ︸
Sg(x,y)

Zv = g(x, y)




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0




︸ ︷︷ ︸
S1

Zv

12
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where the eigenvalues are the shift function g(x, y) = x+ 5y evaluated at the roots
(x∗, y∗). Using Matlab, we find {3.5790e1, 2.4210e1, 2.7884e1, 3.2116e1} as the set of
eigenvalues. This is interesting for example when one is not so much interested in
the minimizers of an optimization problem (1.1), but more in the optimal value of
the objective function. The objective function can simply be plugged in as the shift
polynomial g(x, y). The Macaulay matrices Md form an elegant linear algebra tool
to provide information about the geometric properties of the solution set of a given
system of polynomial equations. For instance, the multiplicity structure of a solution
and solutions at infinity are revealed by their null spaces.

Two-parameter eigenvalue approach

In the univariate case, finding the roots of p(x) can be written as an eigenvalue
problem because there exists a linear matrix polynomial C − xI, where I is the
identity matrix, which satisfies

det(C − xI) = αp(x) with α ∈ C0.

Similarly, in the bivariate case, studies have shown [23] that there are square linear
matrix polynomials in x and y that satisfy

det(Ap − xBp − yCp) = p(x, y) and det(Aq − xBq − yCq) = q(x, y).

Hence the solutions to (1.14) can be found as the eigenvalues of the two-parameter
eigenvalue problem {

(Ap − xBp − yCp)up = 0
(Aq − xBq − yCq)uq = 0

. (1.19)

If a pair (x, y) and a pair of nonzero vectors up and uq are found that satisfy (1.19),
then (x, y) is said to be an eigenvalue of (1.19) with corresponding eigenvector
w = up ⊗ uq (⊗ denotes the Kronecker product). Eigenvalues and eigenvectors can
be calculated as follows. First, calculate the so called operator determinants:

∆0 = Bp ⊗ Cq − Cp ⊗Bq,
∆1 = Cp ⊗Aq −Ap ⊗ Cq,
∆2 = Ap ⊗Bq −Bp ⊗Aq,

and then find the eigenvalues by solving the generalized (one-parameter) eigenvalue
problems

∆1w = x∆0w,

∆2w = y∆0w.

Suppose the total degree of (1.14) is equal to δ. The size of the linear pencils from
(1.19) typically grows like δ2. The operator determinants, since they are calculated by
taking Kronecker products between the coefficient matrices, grow like δ4. Solving a
generalized eigenvalue problem of size n by using the QZ-algorithm has a complexity
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of order O(n3). This makes the overall complexity of this method O(δ12). In [23], a
recent two-parameter eigenvalue approach is compared to Mathematica’s Nsolve,
which uses Groebner bases, and PHCpack [31], which uses homotopy continuation.
Because of the huge complexity, the method is found to be competitive only for
δ < 10.

1.3.3 Other computational methods
The following methods are not based on numerical linear algebra but they are
definitely worth mentioning.

Homotopy continuation methods

The idea of homotopy continuation methods [30, 3] is to start from an easy initial
polynomial system that can be continuously transformed into the given system (1.14).
Denote

P (x) =
(
p(x, y)
q(x, y)

)

and let I(x) represent the initial system of which the solutions can be calculated
easily. Consider the following set of problems

H(x, t) = (1− t)I(x) + tP (x) = 0, t ∈ [0, 1], (1.20)

which is called a homotopy to P (x). Suppose the number of solutions of I(x) = 0 is
equal to the number of solutions of (1.14) (counting multiplicities and solutions at
infinity). In that case, the constructed homotopy using I(x) = 0 as initial system is
called the Total Degree Homotopy. The parameter t parametrizes the solution set of
H(x, t). For t varying from 0 to 1, this solution set consists out of a finite number
of smooth paths that start at the solutions of H(x, 0) = γI(x) = 0 and end at the
solutions of H(x, 1) = P (x) = 0. Homotopy continuation methods track these paths
numerically to obtain the solutions of (1.14). The reasoning can be generalized to
more variables [30, 3]. Software packages that implement these methods to compute
the isolated solutions of a system of s equations in s unknowns are PHCpack and
Bertini [30, 31, 3]. Both packages are among the most competitive solvers today.

Example 1.3.3. Consider the target system

P (x) =
(
p(x, y)
q(x, y)

)
=
(

(x− 5)2 + (y − 5)2 − 4
(x−5)2

9 + (y − 5)2 − 1

)
(1.21)

which is equal to the system (1.15) and consider the initial system of the same degree

I(x) =
(
i1(x, y)
i2(x, y)

)
=
(
x2 − 1
y2 − 1

)

of which the solutions (−1,−1), (−1, 1), (1,−1) and (1, 1) can be obtained analytically.
Constructing the total degree homotopy H as in (1.20), the real part of the solution
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Figure 1.3: The colored lines represent the zero level lines in R2 of the polynomials
that define the initial and the target system: p(x, y) = 0 ( ), q(x, y) = 0 ( ),
i1(x, y) = 0 ( ), i2(x, y) = 0 ( ). The black dots represent a discretization of
the real part of the solution paths. The paths start at the solutions of the initial
system and they converge to the solutions of the target system.

paths is plotted in Figure 1.3. As shown in the figure, the paths converge to the
solutions (3.1629, 4.2094), (3.1629, 5.7906), (6.8371, 4.2094) and (6.8371, 5.7906).

Contouring algorithms

Contouring algorithms generate the real zero level curves of p(x, y) and q(x, y)
numerically, for example by using the marching squares algorithm, and use their
intersections as a starting value for Newton-Raphson iteration. This is what was
done in an older version of Chebfun. Contouring algorithms for root finding have
several drawbacks [20] but for most practical applications it is an adequate approach.
Unlike linear algebra methods and homotopy continuation, contouring algorithms
can only be used to calculate the real roots of (1.14) on a compact domain of R2.

1.4 Goal
The aim in this text is to propose a method for solving the bivariate version of
Problem 1 using a numerical linear algebra approach. More precisely, it is our aim
to calculate all finite solutions to Problem 1 with s = 2, counting multiplicities and
without limiting ourselves to only real solutions or only a compact domain of C2.
We will assume that the problem is well-posed in a particular sense: the solutions
are isolated and finite in number. We will derive the proposed method in a rather
intuitive manner and then show its correctness by proving equivalence with the
Sylvester resultant approach. We will implement this method and its variants in
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Matlab using the results from this text and we will suggest a way to extend the
approach to higher dimensional problems.

1.5 Contents
The structure of this text is as follows. In Chapter 2, after briefly introducing the most
frequently used concepts and notations, a next section elaborates on the theory that
will be needed to obtain our results. This involves not only some useful properties
of the zero sets of multivariate polynomial systems, but also a brief introduction to
Sylvester resultant theory which will greatly support our proposed method. The
emphasis lies on bivariate systems. The second chapter and this introductory chapter
can be considered a brief summary of the literature study that is the foundation of
this text. The next chapters contain a detailed description of our linear algebra based
method. The different steps will be described both formally and through examples.
Numerical issues, efficiency, comparison to existing methods and extension to other
polynomial bases will be the subjects of the remainder of this thesis. The ideas can
be generalized to systems with more variables (s > 2). A rigorous treatment of this
generalization is beyond the scope of this text. An illustrative example is given in
Appendix G.
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Chapter 2

Polynomial Systems

In the first section of this chapter the definition of a polynomial system is given
and the notation that is used throughout the text is introduced. The second section
summarizes some basic properties related to bivariate polynomial systems that will
be needed in the remainder of this thesis.

2.1 Definitions and notations

2.1.1 Multivariate polynomials
The polynomial system of Problem 1 consists of s polynomial equations in s variables.
The essential building blocks of such equations are defined as follows.

Definition 2.1. [26, p. 4] A monomial in the s variables x1, x2, . . . , xs is a power
product of the form xj11 x

j2
2 · · ·xjss where (j1, j2, . . . , js) ∈ Ns. A complex polynomial in

s variables is a finite linear combination of monomials in s variables with coefficients
from C.

The set of all monomials in s variables is denoted by T s. Let deg(·) be the
operator that maps any monomial in T s to its total degree:

deg : T s → N, deg(xj11 x
j2
2 · · ·xjss ) ,

s∑

i=1
ji.

Let Ps denote the ring of all complex polynomials in s variables. By definition, any
polynomial p(x1, x2, . . . , xs) ∈ Ps can be written as

p(x1, x2, . . . , xs) =
N∑

i=1
cimi(x1, x2, . . . , xs)

where N ≥ 1, mi(x1, x2, . . . , xs) ∈ T s and ci ∈ C, 1 ≤ i ≤ N . Clearly, T s ⊂ Ps and
the domain of deg(·) can be extended to Ps by

deg : Ps → N ∪ {−∞}, deg(p) ,
{

maxi∈Supp{deg(mi)}, p 6= 0
−∞, p = 0

17
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where p =
N∑
i=1

cimi, mi ∈ T s, 1 ≤ i ≤ N and Supp = {i | ci 6= 0, 1 ≤ i ≤ N }.
Obviously, the operator deg(·) is defined for any s ∈ N0.

Definition 2.2. A homogeneous polynomial in s variables is a polynomial whose
nonzero terms all have the same degree. In other words, p(x1, x2, . . . , xs) is a
homogeneous polynomial in s variables if

p(x1, x2, . . . , xs) =
N∑

i=1
cimi(x1, x2, . . . , xs)

where deg(m1) = deg(m2) = · · · = deg(mN ) and {ci 6= 0}1≤i≤N . The zero polynomial
is homogeneous by definition. The set of all homogeneous polynomials in s variables
will be denoted by Ps,h.

Definition 2.3. The set Psδ ⊂ Ps of all complex polynomials in s variables of total
degree at most δ is defined as

Psδ , {p ∈ Ps : deg(p) ≤ δ}.

Analogously, the set of all homogeneous polynomials in s variables of total degree δ
is denoted by Ps,hδ .

Example 2.1.1. Consider the polynomial p(x1, x2, x3) = 1 + 5x1x3 + 2x2 + (3 +
2i)x1x2

2. By definition, the following statements hold true: p ∈ P3, deg(p) =
deg(x1x2

2) = 3, p ∈ P3
5 , p ∈ P3

3 .

Example 2.1.2. The polynomial p(x1, x2, x3, x4) = x1x3
2 + x2x3

3 + x2
3x

2
4 has total

degree 4. Therefore p ∈ P4
4 . Moreover, it is homogeneous: p ∈ P4,h

4 . It is clear that
in general Ps,hδ ⊂ Psδ .

2.1.2 Bivariate polynomials
In the major part of this text, P2 is the space of interest. Consider the polynomial
p ∈ P2 that is a finite linear combination of monomials in the variables x and y. Let
deg(p(x, y)) = δ. Throughout this text, we will use several ways of representing a
given polynomial p(x, y):

p(x, y) ,
δ∑

i=0

δ−i∑

j=0
pijx

jyi ,
δ∑

i=0
pxi (x)yi ,

δ∑

i=0
pyi (y)xi (2.1)

where deg(pxi (x)) ≤ δ − i and deg(pyi (y)) ≤ δ − i (in particular: deg(pxδ (x)) = 0 and
deg(pyδ(x)) = 0). Moreover, this relation implies that

pxi (x) =
δ−i∑

j=0
pijx

j
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and

pyi (y) =
δ−i∑

j=0
pjiy

j .

Yet another way of representing p(x, y) is by a matrix P ∈ C(δ+1)×(δ+1) with the
coefficients of p as its entries: Pij , pi−1,j−1, 1 ≤ i ≤ δ+ 1 and pij = 0 for any couple
(i, j) such that i > δ or j > δ. Conversely, any matrix P ∈ Cm×n defines a complex
polynomial p ∈ P2

m+n−2 as p(x, y) ,
m∑
i=1

n∑
j=1

Pijx
j−1yi−1.

Example 2.1.3. Consider the following polynomial in P2:

p(x, y) = −3− 2x+ x2 + xy + y2

= (−3 + y2)x0 + (−2 + y)x1 + 1x2

= (−3− 2x+ x2)y0 + xy1 + 1y2.

Using the notation as explained in this section, it should be clear that

p00 = −3, p01 = −2, p02 = 1, p10 = 0, p11 = 1, p20 = 1,

py0(y) = −3 + y2, py1(y) = −2 + y, py2(y) = 1,

px0(x) = −3− 2x+ x2, px1(x) = x, px2(x) = 1,

and P =



−3 −2 1

0 1 0
1 0 0




are four different ways of representing p.

When dealing with bivariate polynomials, one can consider not only the total
degree but also the degree in the two variables x and y separately.

Definition 2.4. Given any bivariate polynomial p(x, y), its degree in x is defined as

degx(p(x, y)) , max
y∗∈C

deg(p(x, y∗))

where p(x, y∗) ∈ P1, ∀y∗ ∈ C. Similarly, for the degree of p(x, y) in the variable y we
define

degy(p(x, y)) , max
x∗∈C

deg(p(x∗, y)).

Example 2.1.4. Let p(x, y) = 2x9y2 + x2y4 + x10 + xy+ y4, then deg(p(x, y)) = 11,
degx(p(x, y)) = 10 and degy(p(x, y)) = 4.

Corollary 2.1.1. Denoting degx(p(x, y)) = δxp and degy(p(x, y)) = δyp , the most
compact matrix representation of p(x, y) in the classical monomial basis is P ∈
C(δyp+1)×(δxp+1) such that

p(x, y) =
(
1 y y2 . . . yδ

y
p

)
P
(
1 x x2 . . . xδ

x
p

)>
.
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Definition 2.5. Any nonzero bivariate polynomial p(x, y) defines a plane affine
algebraic curve:

Vp , {(x, y) | p(x, y) = 0} ⊂ C2.

The projective completion of this affine curve is defined as the plane projective curve
given by ph(x, y, z) = 0 where

ph(x, y, z) , zdeg(p)p

(
x

z
,
y

z

)

is a homogeneous polynomial in 3 variables: ph ∈ P3,h
deg(p). The projective curve will

be denoted by
ΠVp , {[x, y, z] | ph(x, y, z) = 0}

where the square brackets indicate projective coordinates1. To visualize the algebraic
curve Vp we will plot the elements of Vp ∩ R2 and call it the real picture of Vp.

Clearly, ph(x, y, 1) = 0 is the equation of the affine curve Vp, which consists out
of the points of the projective curve with a third projective coordinate different from
zero. The affine curve can be seen as part of its associated projective curve. The
points that belong to the projective completion but not to the affine part are given
by the projective coordinates

{[x, y, z] | ph(x, y, z) = 0, z = 0}

and they are referred to as the points of Vp at infinity.

Example 2.1.5. Consider the polynomial p(x, y) = y2 − x(x2 − 1). Its zero set
Vp = {(x, y) | y2 − x(x2 − 1) = 0} defines a so called elliptic curve of which the real
picture is given by Figure 2.1. The projective completion ΠVp of Vp is given by the
homogeneous equation y2z−x(x2− z2) = 0. For z = 1 we obtain again the definition
of Vp. Vp has one point at infinity which can be found by setting z = 0. It is given by
the projective coordinates [0, 1, 0].

Definition 2.6 (Bivariate polynomial system). Consider two polynomials p, q ∈ P2

that are finite linear combinations of monomials in the variables x and y and let
them define a polynomial system

{
p(x, y) = 0
q(x, y) = 0

. (2.2)

Such a system is referred to as a bivariate polynomial system of degree δ if
max{deg(p(x, y)),deg(q(x, y))} = δ, i.e. δ , mink{k | p, q ∈ P2

k}.
1The projective plane is defined as the equivalence classes in C3\{0} with respect to the

equivalence relation

(x1, y1, z1) ∼ (x2, y2, z2)⇔ ∃λ ∈ C0 : (x1, y1, z1) = (λx2, λy2, λz2).

The fact that the set ΠVp is well defined can be seen from the fact that if [x, y, z] ∈ ΠVp, then
the same holds for an equivalent set of projective coordinates [λx, λy, λz], since ph(λx, λy, λz) =
λdeg(p)ph(x, y, z) = 0, (λ ∈ C0).

20



2.2. Preliminary theory

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

x

y

Figure 2.1: Real picture of the elliptic curve defined by p(x, y) = y2 − x(x2 − 1).

For the bivariate polynomial system (2.2) the following notations are used:

deg(p(x, y)) , δp, deg(q(x, y)) , δq,

degx(p(x, y)) , δxp , degx(q(x, y)) , δxq ,

degy(p(x, y)) , δyp , degy(q(x, y)) , δyq .

2.2 Preliminary theory

2.2.1 Solution sets
Definition 2.7. The solution set, zero set or set of roots of the system (2.2) is
given by Vp,q , Vp ∩Vq, i.e. the set of points in C2 where the plane curves Vp and Vq
meet. Analogously, the projective solution set is defined as ΠVp,q , ΠVp ∩ΠVq. The
set ΠVp,q contains the projective coordinates corresponding to the elements of Vp,q
together with the so called solutions at infinity, which are the common points of Vp
and Vq at infinity.

Example 2.2.1. Consider the second degree polynomial system
{
p(x, y) = x2 + y2 − 1 = 0
q(x, y) = (x− 2)2 + y2 − 5 = 0

.

The real pictures of the curves Vp and Vq are plotted in Figure 2.2. For this system,
Vp,q = {(0, 1), (0,−1)}. The projective curves are given by:

ΠVp = {[x, y, z] | x2 + y2 − z2 = 0}

ΠVq = {[x, y, z] | x2 − 4xz + 4z2 + y2 − 5z2 = 0}

21



2. Polynomial Systems

−2 −1 0 1 2 3 4 5−3

−2

−1

0

1

2

3

x

y

Vp
Vq

Figure 2.2: Real picture of Vp and Vq as defined in Example 2.2.1
.

and thus ΠVp,q = {[0, 1, 1], [0,−1, 1]︸ ︷︷ ︸
∼Vp,q

, [1, i, 0], [1,−i, 0]︸ ︷︷ ︸
solutions at infinity

}. The result can be interpreted

as follows: the two circles intersect twice in the real plane and twice on the line
at infinity [x, y, 0]. Moreover, it is easily verified that any two non identical circles
intersect at infinity in the projective points [1, i, 0] and [1,−i, 0].

Example 2.2.2. The system
{
p(x, y) = xy = 0
q(x, y) = x(xy + x2 − 1) = 0

has degree δ = 3 and its solution set consists out of infinitely many points:

Vp,q = {(1, 0), (−1, 0)} ∪ {(x, y) | x = 0}

ΠVp,q = {[1, 0, 1], [−1, 0, 1]} ∪ {[x, y, 1] | x = 0} ∪ {[0, 1, 0]}.

In this last example, there are infinitely many solutions to the system because the
curves Vp and Vq have a common component: they are defined by two polynomials p
and q that have a greatest common polynomial divisor of degree > 0. From now on,
it is always assumed that the polynomials p and q are such that they have a constant
greatest common divisor. Such a pair of polynomials is also called coprime. The
corresponding system has finitely many isolated solutions and is called 0-dimensional.
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2.2. Preliminary theory

Multiplicity of a solution

As for the zeros of a polynomial in one variable, the solutions of a bivariate system
can have a multiplicity greater than one. That is, the curves Vp and Vq can intersect
multiple times in the same point. Suppose that the affine curves Vp and Vq intersect
in the closure of an open set S ⊂ C2 in only one point s. Then, suppose the
coefficients of p and q (and thus the associated curves) are slightly perturbed. If the
perturbations are small enough, the resulting curves, say Ṽp and Ṽq will intersect in
n points in S. The number n coincides with the multiplicity of s. The multiplicity
of the intersection s is identified by its intersection number: Ms(Vp,Vq) = n.

Example 2.2.3. The real pictures of the affine plane curves corresponding to the
system {

p(x, y) = x2 + y2 − 1 = 0
q(x, y) = 4x2 + y2 + 6x+ 2 = 0

are plotted in Figure 2.3. From the figure, it is clear that s = (−1, 0) is a solution of
the system. In order to investigate the multiplicity of s one can consider the following
perturbation. Let p̃ be a bivariate second degree polynomial with real coefficients in
the classical monomial basis that are samples from a normal distribution with mean
0 and standard deviation 1. The system is perturbed in the following way:

{
p(x, y) + εp̃(x, y) = 0
q(x, y) = 0

(2.3)

For some small values of ε. The system can be interpreted as a parametrized second
degree system with parameter ε. The multiplicity of s corresponds to the number of
branches of the algebraic function {x(ε), y(ε)} that meet in s for ε = 0. To plot the
results, all solutions are calculated for ε ∈ {0, 10−5, 2× 10−5, 3× 10−5, . . . , 10−3}. All
real solutions are plotted in red. For every complex solution, the imaginary part plus
the real part is plotted, so that the branches start at (−1, 0) and conjugate pairs can
be distinguished. Results are shown for one realization of p̃(x, y) in Figure 2.3. From
the figure, it is clear that Ms(Vp,Vq) = 4.

A more extended discussion on the multiplicity of a solution requires the notion
of polynomial ideals and the associated residue classes. For the interested reader we
refer to Appendix A.

Number of solutions

Theorem 2.2.1 (Bézout’s theorem). Let ΠVp and ΠVq be the projective plane curves
defined by the polynomials p(x, y) and q(x, y) respectively. Let δp and δq represent
the degree of p and q respectively and assume that the greatest common divisor of p
and q is a constant. Then

∑

s∈ΠVp,q
Ms(ΠVp,ΠVq) = δpδq
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Figure 2.3: Left: real picture of the zero level lines of p and q as defined in Example
2.2.3. Right: all solutions of the perturbed system (2.3) for ε ∈ {0, 10−5, 2×10−5, 3×
10−5, . . . , 10−3}, plotted in the coordinates u = <(x) + =(x) and v = <(y) + =(y).
Solutions with =(x) = =(y) = 0 are plotted in red, others in blue.

where Ms(ΠVp,ΠVq) denotes the intersection number of solution s with respect to
the projective curves ΠVp and ΠVq. In other words: the number of intersections of
two projective plane curves, counting multiplicities, is equal to the product of their
degrees.

Corollary 2.2.1. The number of distinct finite solutions of the bivariate polynomial
system (2.2), assuming a constant greatest common divisor, is always less than or
equal to δpδq. Equivalently:

|Vp,q| = |Vp ∩ Vq| ≤ δpδq

where | · | denotes the cardinality of a set. The equality only holds when there are no
solutions at infinity and Ms(Vp,Vq) = 1,∀s ∈ Vp,q.

Example 2.2.4. Consider again the problem in Example 2.2.1. The degrees of p
and q are given by δp = 2 and δq = 2. The projective completions ΠVp and ΠVq,
according to Bézout’s theorem, intersect in exactly four points. All the intersections
have multiplicity one. The affine plane curves Vp and Vq intersect in only two points
in C2, so indeed |Vp,q| = |Vp ∩ Vq| = 2 ≤ δpδq = 4.

A stricter bound on the number of affine roots exists. It takes the sparsity of the
polynomials p and q in the monomial basis into account. The bound is associated
with the names of Bernstein, Khovanski and Kushnirenko and it is referred to as
BKK(p, q):

|Vp ∩ Vq| ≤ BKK(p, q) ≤ δpδq.
A description of BKK(S) for a general system S of coprime polynomials can be found
in Appendix B.
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2.2. Preliminary theory

2.2.2 Sylvester matrix formulation [29, 26, 2, 8]

Common zeros of univariate polynomials.

Given two polynomials f, g ∈ P1, this subsection deals with the question whether
these two polynomials have any zeros (roots) in common. To that end, consider the
following definition.

Definition 2.8 (Sylvester matrix). Given two univariate polynomials f, g ∈ P1:

f(x) = fδfx
δf + fδf−1x

δf−1 + · · ·+ f1x+ f0

g(x) = gδgx
δg + gδg−1x

δg−1 + · · ·+ g1x+ g0

where δf = deg(f) and δg = deg(g), the Sylvester matrix associated to f and g is
given by

Sf,g ,




f0 f1 . . . fδf
f0 f1 . . . fδf

. . . . . . . . .
f0 f1 . . . fδf

f0 f1 . . . fδf
g0 g1 g2 . . . gδg

g0 g1 g2 . . . gδg
. . . . . . . . . . . .

g0 g1 g2 . . . gδg




, (2.4)

where the coefficients of f occur in the first δg rows and those of g in the last δf
rows.

From its definition, it is clear that Sf,g is a square matrix of size δf + δg. Its
significance becomes clear from the following proposition.

Proposition 2.2.1. If the polynomials f and g have a common root, the Sylvester
matrix Sf,g is singular.

Proof. Suppose f and g have a common root for x = α ∈ C. Let

v =
(
1 α α2 . . . αδf+δg−1

)>
.

Now, by construction it holds that Sf,gv = 0. This implies that Sf,g has a non-trivial
kernel.

The proof of Proposition 2.2.1 suggests that the common roots of f and g may
be determined from the right null space of the Sylvester matrix Sf,g. The idea is
illustrated by a simple example.

Example 2.2.5. Consider the polynomials

f(x) = x2 + 1
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g(x) = −3 + x− 3x2 + x3

of which the associated Sylvester matrix is given by

Sf,g =




1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
−3 1 −3 1 0

0 −3 1 −3 1



.

Its singular values are2 5.6028, 3.5996, 1.2854, 0.0000 and 0.0000. Hence it has a
two dimensional right null space. The null space is calculated numerically by using
the SVD, it is spanned by the vectors

(
−0.5608 0.1680 0.5608 −0.1680 −0.5608

)>

and (
−0.1372 −0.6869 0.1372 0.6869 −0.1372

)>
.

Now, remark that f and g can be factored as

f(x) = (x+ i)(x− i),

g(x) = (x+ i)(x− i)(x− 3).

It is clear that f and g have two common roots: x = i and x = −i. The above
mentioned orthogonal basis for the kernel of Sf,g does not reveal these common roots.
However, it is easy to check that



−0.5608 −0.1372
0.1680 −0.6869
0.5608 0.1372
−0.1680 0.6869
−0.5608 −0.1372




(
−1.6825 + 0.3359i −1.6825− 0.3359i
−0.4115− 1.3737i −0.4115 + 1.3737i

)

︸ ︷︷ ︸
T

=




1 1
i −i
i2 (−i)2

i3 (−i)3

i4 (−i)4




with T non-singular. The rightmost matrix furnishes a basis for the kernel of Sf,g
that reveals the common roots perfectly.

In Example 2.2.5, the vectors
(
1 i . . . i4

)>
and

(
1 −i . . . (−i)4

)>
reveal

the common roots of f and g which are equal to the ratio between their subsequent
entries. A vector for which this ratio is constant is called a univariate Vandermonde
vector. All univariate Vandermonde vectors in the null space of Sf,g are of the form

α
(
1 x∗ . . . (x∗)δf+δg−1

)>

2The results are given using 4 decimal digits after the decimal point.
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where α ∈ C0, δf = deg(f), δg = deg(g) and x∗ is a common zero of f and g. Any
vector v that has such a univariate Vandermonde structure must satisfy




−x∗ 1
−x∗ 1

. . .
−x∗ 1



v , (Sx − x∗S1)v = 0.

Suppose the columns of the matrix Z form a basis for null(Sf,g), then any vector in
null(Sf,g) can be written as Zc for some coefficient vector c. We are thus interested
in finding all vectors Zc in null(Sf,g) that satisfy

(Sx − xS1)Zc = 0, (2.5)

for some finite x, which is a rectangular eigenvalue problem in x. The eigenvalues of
(2.5) are the common zeros of f and g.

Proposition 2.2.1 states that every common zero of f and g generates a vector
in null(Sf,g). A stronger result about the kernel of Sf,g is given by the following
proposition [7].

Proposition 2.2.2. Let f, g ∈ P1, then we have dim null(Sf,g) = deg(gcd(f, g)),
where gcd denotes the greatest common polynomial divisor.

Proof. First of all, note that (Sf,g)> can be thought of as the matrix of the linear
map

σ : P1
δg−1 × P1

δf−1 → P1
δf+δg−1

defined as
σ(q1, q2) = q1f + q2g

where q1 ∈ P1
δg−1 and q2 ∈ P1

δf−1 are represented in the monomial bases {1, x, . . . , xδg−1}
and {1, x, . . . , xδf−1} respectively. The image σ(q1, q2) is represented in the basis
{1, x, . . . , xδf+δg−1}. Take for example f(x) = 1 + x, g(x) = −1 + x2, q1(x) = x and
q2(x) = 1. Then

(Sf,g)>



0
1
1


 =




1 0 −1
1 1 0
0 1 1







0
1
1


 =



−1
1
2




and q1f + q2g = x(1 + x)− 1 + x2 = −1 + x+ 2x2. Now, let d(x) , gcd(f, g). It is
readily checked that the kernel of σ is the set of pairs

{
(q1, q2) | q1(x) = r(x)g(x)

d(x) , q2(x) = −r(x)f(x)
d(x) for some r(x) ∈ P1

deg(d)−1

}
,

which has dimension deg(d). Therefore dim null(Sf,g) = dim null((Sf,g)>) = deg(d).
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Sylvester resultant of bivariate systems

A bivariate system of polynomial equations, defined by p(x, y), q(x, y) ∈ P2 can
be thought of as a parametrized set of univariate equations. For every value of
α ∈ C, define f(y|α) , p(α, y) and g(y|α) , q(α, y). It is clear that f(y|α),
g(y|α) ∈ P1,∀α ∈ C. Using the notation (2.1), we get

f(y|α) =
δyp∑

i=0
pxi (α)yi g(y|α) =

δyq∑

i=0
qxi (α)yi,

so the coefficients of f and g are the coefficient polynomials pxi and qxi evaluated at
x = α.3 Suppose (α, β) ∈ C2 is an isolated solution to the system defined by p and
q, then β must be a common zero of the univariate polynomials f(y|α) and g(y|α).

Proposition 2.2.3. The existence of a common root of the polynomials f(y|α) and
g(y|α) is a necessary condition for the existence of a pair (α, β) ∈ C2 that satisfies
p(α, β) = q(α, β) = 0. Moreover, for all such pairs (α, β) the possible values of β are
given by the distinct common roots of f(y|α) and g(y|α).

As explained above, the Sylvester matrix is a tool for checking the existence of
a common root of two univariate polynomials. Since f(y|α) and g(y|α) depend on
the choice of the parameter α (i.e. the value that is assigned to the variable x to
construct f from p and g from q), so does the associated Sylvester matrix:

Sp,q(x) =




px0(x) px1(x) . . . px
δyp

(x)
px0(x) px1(x) . . . pδyp

x(x)
. . . . . . . . .

px0(x) px1(x) . . . px
δyp

(x)
qx0 (x) qx1 (x) . . . qx

δyq
(x)

qx0 (x) qx1 (x) . . . qx
δyq

(x)
. . . . . . . . .

qx0 (x) qx1 (x) . . . qx
δyq

(x)




(2.6)

which is a matrix polynomial of degree max{δxp , δxq }. There are δyq p-rows and δyp
q-rows. From proposition (2.2.1), for some choice of α, a necessary condition for
f(y|α) and g(y|α) to have a common root is that Sp,q(α) is singular.

Definition 2.9 (Sylvester resultant). For two bivariate polynomials p, q ∈ P2, the
Sylvester resultant with respect to the variable y is defined as

resp,q(x) , detSp,q(x)

with Sp,q(x) as defined in (2.6). An analogous definition holds for the resultant with
respect to the variable x.

3Of course, one could follow the same procedure using the variable y as a parameter, obtaining
parametrized univariate polynomials in x. The rest of the reasoning in this section would be
completely analogous. It is chosen to proceed using the value of x as a parameter.
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2.2. Preliminary theory

Theorem 2.2.2. [29, 26, 2, 8] If p and q ∈ P2 do not have a nontrivial greatest
common divisor (p and q are coprime), the distinct roots of resp,q(x) are the x-
coordinates in C of the isolated roots of the bivariate system p(x, y) = q(x, y) = 0
and the common roots of the leading coefficient polynomials px

δyp
(x) and qx

δyq
(x). In

other words

{x ∈ C | resp,q(x) = 0} = V(x)
p,q ∪ {x ∈ C | pxδyp (x) = qxδyq (x) = 0}

where V(x)
p,q , {x ∈ C | ∃y ∈ C : (x, y) ∈ Vp,q}. The multiplicity of a zero x∗ of

resp,q(x) is equal to the sum of the multiplicities of all roots of the form (x∗, y)4.

Theorem 2.2.2 states that the x-values for which resp,q(x) vanishes are the x-
values in C corresponding to the affine solutions of the system (2.2) along with some
spurious values of x in case px

δyp
(x) and qx

δyq
(x) have common zeros.

Example 2.2.6. Consider the system
{
p(x, y) = −1 + (1 + x)y2 = 0
q(x, y) = x+ (x2 − 1)y = 0

which has the finite solutions (2.2470,−0.5550), (0.5550, 0.8019) and (−0.8019,−2.2470).
The real picture of the affine curves Vp and Vq is plotted in Figure 2.4. The associated
Sylvester matrix is given by

Sp,q(x) =



−1 0 1 + x
x x2 − 1

x x2 − 1


 .

The resultant is calculated as the determinant of this matrix: resp,q(x) = −(x2 −
1)2 + (1 + x)x2. From Figure 2.4, it can be seen that the resultant vanishes for
x ∈ {−0.8019, 0.5550, 2.2470}, which are the zeros that correspond to the finite
solutions of the system. It also vanishes for x = −1, which corresponds to the
common root of the leading coefficient polynomials px2(x) = 1 + x and qx1 (x) = x2 − 1.
Note that such a common root corresponds to a solution “at infinity” with a finite
x-coordinate. In this case, p and q intersect at (−1,±∞), as can be seen from Figure
2.4.

4Solutions of the form (x,±∞) have to be taken into account. These solutions correspond to
values of x that are in {x ∈ C | pxδy

p
(x) = qxδy

q
(x) = 0}.
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Figure 2.4: Left: real picture of the zero level sets of p and q as defined in Example
2.2.6. Right: Sylvester resultant of the system. Roots that correspond to affine
solutions of the bivariate system are indicated by a green mark, the spurious root is
marked red.
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Chapter 3

Linearization of Bivariate
Polynomial Systems

In this chapter, the first section shows how solving a bivariate polynomial system
can be interpreted as solving an associated two-parameter eigenvalue problem. The
second section describes what is meant by degree extension and how it is used to
construct an extended eigenvalue problem. The resulting problem will be separable,
which allows for the (otherwise computationally expensive) two-parameter problem
to be solved in an efficient way [23]. The last section describes how the extended
pencil can be reduced in size by deleting redundant columns and rows.

3.1 A two-parameter eigenvalue formulation

3.1.1 The coefficient matrix Φ
Consider a bivariate system of polynomial equations (2.2) of degree δ defined by the
polynomials p, q ∈ P2

δ : {
p(x, y) = 0
q(x, y) = 0

. (3.1)

Equivalently, the system can be written as




δ∑
i=0

δ−i∑
j=0

pijx
jyi = 0

δ∑
i=0

δ−i∑
j=0

qijx
jyi = 0

. (3.2)

A first step in translating the problem into an eigenvalue problem is thinking of p
and q as the result of a left multiplication of a vector v(x, y) of monomials by a
coefficient matrix Φpq. From (3.2), it can be seen that

(
p(x, y)
q(x, y)

)
= Φpqv(x, y)
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3. Linearization of Bivariate Polynomial Systems

where

Φpq ,
(
p00 p01 p02 . . . p0δ p10 p11 . . . p1,δ−1 . . . pδ−1,0 pδ−1,1 pδ0
q00 q01 q02 . . . q0δ q10 q11 . . . q1,δ−1 . . . qδ−1,0 qδ−1,1 qδ0

)

and

v(x, y) ,
(
1 x x2 . . . xδ y xy . . . xδ−1y . . . yδ−1 xyδ−1 yδ

)>
.

The vector v(x, y) represents the classical monomial basis of the space P2
δ (thought

of as a vector space). The fact that the entries of v(x, y) construct a basis of P2
δ

makes sure that any system of degree δ can be written in this way1. The matrix Φpq

is determined by the polynomials p and q: it contains the coefficients of p and q in
the classical monomial basis. From now on, the subscript ·pq is dropped to simplify
the notation. It is chosen to order the bivariate monomials of degree ≤ δ first in
groups of increasing degree in y and then, within each group, by increasing degree
in x. This type of ordering will simplify some of the notation in the next sections
and chapters and it is found to be the most suitable choice for describing our results.
Note that the matrix Φ is partitioned into blocks that correspond to monomials of
increasing degree in y. We are thus interested in finding all pairs (x∗, y∗) ∈ C2 for
which

Φv(x∗, y∗) =
(

0
0

)
. (3.3)

It is clear that every solution (x∗, y∗) generates a vector in the right null space of
the matrix Φ. However, the converse is not true.

Example 3.1.1. Consider the following system of degree 2:
{
x2 + y2 = 1
y = 0

which is known to have the solutions (−1, 0) and (1, 0). The corresponding matrix Φ
is:

Φ =
(
−1 0 1 0 0 1
0 0 0 1 0 0

)

The monomial vector of degree 2 is

v(x, y) =
(
1 x x2 y xy y2

)>

It is easy to check that indeed v(−1, 0) =
(
1 −1 1 0 0 0

)>
and v(1, 0) =

(
1 1 1 0 0 0

)>
are two independent vectors that are contained in the right

null space of Φ. Also, the vector w =
(
1 0 1 0 0 0

)>
satisfies Φw = 0, but

it does not correspond to a solution of the system. Moreover, in this case, the right
null space of Φ has dimension 4 while there are only 2 solutions to the system.

1This choice of basis has been made to introduce the basic concepts of the proposed method to
solve the problem (3.1). One could come to analogous results making use of a different basis. This
issue is discussed later on in this text.
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3.1. A two-parameter eigenvalue formulation

3.1.2 The Vandermonde structure

The question is how to select the “useful” right null vectors of Φ. To that end,
consider the following definition.

Definition 3.1. A vector w ∈ C
(δ+2)(δ+1)

2 is said to have a Vandermonde structure
in the classical monomial basis of P2

δ if ∃(x, y) ∈ C2, c ∈ C0 s.t.

w = c
(
1 x x2 . . . xδ y xy . . . xδ−1y . . . yδ−1 xyδ−1 yδ

)>
.

It is clear that the monomial vector v(x, y) has a Vandermonde structure ∀(x, y) ∈
C2. The null vectors of Φ that are directly related to a solution (x∗, y∗) of (3.1)
are those with a Vandermonde structure. A straightforward thing to do is to add
equations to Φv = 0 that impose the Vandermonde structure on the vector v. For
example, the requirement that the second entry of v is equal to x times the first
entry leads to the equation

(
−x 1 0 . . . 0 0 0 . . . 0 . . . 0 0 0

)
v = 0.

Analogous equations need to be added for the other entries of v. These equations
are not unique. For example, to impose that vδ+1 = xδv1, the equation

(
0 −xδ−1 0 . . . 1 0 0 . . . 0 . . . 0 0 0

)
v = 0

can be added, but also
(
0 0 . . . −x 1 0 0 . . . 0 . . . 0 0 0

)
v = 0

will do (supposing that vδ = xδ−1v1 is guaranteed by one of the other equations).
Also, the following two equations will make sure vδ+3 = xyv1

(
0 −y 0 . . . 0 0 1 . . . 0 . . . 0 0 0

)
v = 0,

(
0 0 0 . . . 0 −x 1 . . . 0 . . . 0 0 0

)
v = 0.

In order to obtain a linear eigenvalue problem, x and y should appear only linearly
in the equations. Also, for reasons that will become clear in the next sections, it is
chosen to avoid using y as much as possible. These choices lead to a unique set of
equations that imposes the Vandermonde structure on a nonzero vector v. Define

Ii ,
(
Ii 0i

)
, Ii ,

(
0i Ii

)
, (3.4)

where Ii stands for the identity matrix of size i× i and 0i stands for a column vector
of length i filled with zeros. Ii and Ii are row truncated identity matrices of size
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3. Linearization of Bivariate Polynomial Systems

i× (i+ 1). Let ei be the first column of Ii and let

Bx =




Iδ
Iδ−1

Iδ−2
. . .

I1 0



,

Cx =




Iδ
Iδ−1

Iδ−2
. . .

I1 0



,

By =




0>δ+1 e>δ
0>δ+1 e>δ−1
0>δ+1 e>δ−2

... . . .
0>δ+1 e>1



,

Cy =




e>δ+1 0
e>δ 0

e>δ−1 0
. . . ...

e>2 0



.

(3.5)

The dimensions of these matrices are given by Bx, Cx ∈ C
δ(δ+1)

2 × (δ+1)(δ+2)
2 and

By, Cy ∈ Cδ×
(δ+1)(δ+2)

2 (blank spaces indicate zero entries). A vector v has the
desired Vandermonde structure if it satisfies the following linear equations:

(
Bx
By

)
v = x

(
Cx
)
v + y

(

Cy

)
v. (3.6)

3.1.3 A two-parameter eigenvalue problem

Adding the equations (3.6) to Φv = 0 we find that the solutions to the problem (3.1)
are all eigenvalues (x∗, y∗) that satisfy




Φ
Bx
By


v = x∗


Cx


v + y∗



Cy


v. (3.7)

The size of the problem is (2 + δ(δ+1)
2 + δ)× ( (δ+1)(δ+2)

2 ), which means the problem
is “nearly square”: there is one more row than there are columns. This means that,
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3.1. A two-parameter eigenvalue formulation

defining Φp as the first row of Φ and Φq as the second row of Φ, the problem








Φp

Bx
By




︸ ︷︷ ︸
Ap

v = x


Cx




︸ ︷︷ ︸
Cx

v + y



Cy




︸ ︷︷ ︸
Cy

v




Φq

Bx
By




︸ ︷︷ ︸
Aq

v = x


Cx


v + y



Cy


v

↔
{

(Ap + xCx + yCy)v = 0
(Aq + xCx + yCy)v = 0

(3.8)

is a square two-parameter eigenvalue problem as introduced in Section 1.3.2. An
important disadvantage of this type of problem is that, in order to solve it, current
algorithms translate it into a classical generalized eigenvalue problem with a dimension
equal to the dimension of the two-parameter problem squared [23]. We will propose
a way to translate the problem to a problem in only x or only y that avoids this
dramatic “blow up” of the dimension.

Example 3.1.2. Let us consider the problem

{
p(x, y) = x2 + y2 − 4
q(x, y) = −3− 2x+ x2 + xy + y2 .

In this case, δ = 2 and we expect, from Bézout’s theorem, δpδq = 4 (projective)
solutions. Now, one can easily verify that for this problem, the matrices Φ,Bx,By, Cx
and Cy are given by

Φ =
(
−4 0 1 0 0 1
−3 −2 1 0 1 1

)
,

Bx =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


 , Cx =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0


 ,

By =
(

0 0 0 1 0 0
0 0 0 0 0 1

)
, Cy =

(
1 0 0 0 0 0
0 0 0 1 0 0

)
.
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3. Linearization of Bivariate Polynomial Systems

The (6× 6) multi-parameter eigenvalue problem (3.8) is given by







−4 0 1 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1




v = x




0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




v + y




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0




v




−3 −2 1 0 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1




v = x




0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




v + y




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0




v

and it is solved using the twopareig function in the MultiParEig toolbox written in
Matlab [22]. All solutions turn out to be finite and they are given by (−0.8722 −
1.3810i, 2.3269− 0.5176i), (−0.8722 + 1.3810i, 2.3269 + 0.5176i), (1.4934, 1.3303) and
(0.2510,−1.9842).

3.1.4 A rectangular linear pencil in x and y.
We have formulated (3.7) as a square two-parameter eigenvalue problem. Alterna-
tively, we can write

L(x, y)v = 0 (3.9)

where L(x, y) is defined as the linear pencil

L(x, y) ,




Φ
Bx − xCx
By − yCy


 ,

(
Πx(x)
Πy(y)

)
∈ C(2+ δ(δ+1)

2 +δ)×( (δ+1)(δ+2)
2 )

in the variables x and y. We denote
{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y)

where C stands for construction of the pencil as explained in the previous subsections.
L(x, y) can be subdivided into a coefficient block row (Φ) and two block rows that
define the monomial basis, one using only x (Bx−xCx) and one using only y (By−yCy).
Constructing L(x, y) in the above mentioned way, the following theorem holds.

Theorem 3.1.1. Let {
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y).
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3.2. Degree extension

A pair (x∗, y∗) ∈ C2 is a solution to problem (3.1) if and only if ∃v 6= 0 s.t.
L(x∗, y∗)v = 0. The solutions to (3.1) are the couples (x∗, y∗) for which L(x, y) loses
full column rank.

Proof. If ∃v 6= 0 that satisfies (3.9), v has a Vandermonde structure because it
satisfies (

Bx − x∗Cx
By − y∗Cy

)
v = 0.

Therefore

Φv =
(
cp(x∗, y∗)
cq(x∗, y∗)

)
= 0

for some c ∈ C0, which proves the if direction. For the only if direction, let v be the
monomial vector v(x, y) of degree δ evaluated at (x, y) = (x∗, y∗), where (x∗, y∗) is a
solution to (3.1).

3.2 Degree extension

Consider Example 3.1.2. The resulting system in the form (3.7) consists out of
seven equations: two equations that originate from the coefficients of p and q in the
classical monomial basis and five equations that somehow “define” the basis. From
these last five equations, only two contain the variable y. Leaving out these two
equations would thus lead to a 5× 6 rectangular generalized eigenvalue problem (see
Appendix E) in one parameter x. Such a “flat” eigenvalue problem has infinitely
many eigenvalues: the matrix

Πx(x) =
(

Φ
Bx − xCx

)
∈ C5×6

of Example 3.1.2 has a non trivial rigt null space for all values of x ∈ C. Let us have
another look at the dimensions of Bx and By (of which the number of rows represents
the number of equations in x and in y respectively):

Bx ∈ C
δ(δ+1)

2 × (δ+1)(δ+2)
2 ,

By ∈ Cδ×
(δ+1)(δ+2)

2 .

The number of equations in x grows like δ2

2 while the number of equations in y only
grows like δ. This is due to the construction of the matrices Bx,By, Cx and Cy, where
the use of y is avoided as much as possible. For degree δ, Bx − xCx provides us with
1
2(δ2 + δ) equations in x. The number of monomials of degree δ (the number of
columns) is equal to 1

2(δ2 + 3δ + 2). This means that in general there is a shortage
of δ + 1 equations in x for Bx − xCx to be square. The block row Φ can only make
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3. Linearization of Bivariate Polynomial Systems

up for two of these missing equations, so in the end we need to add δ − 1 equations
to Πx(x) to obtain a square pencil. Indeed, for δ = 1 we have

{
α1x+ β1y + γ1 = 0
α2x+ β2y + γ2 = 0

−→
C




γ1 α1 β1
γ2 α2 β2
−x 1
−y 1




and Πx(x) is a square pencil. For δ > 1, we use a procedure that will be referred
to as degree extension to add equations to Πx(x). Suppose we want to extend the
degree δ by 1. The monomial basis is extended by all monomials of degree δ + 1 and
the (extended) matrices Φ̂, B̂x, B̂y, Ĉx and Ĉy are constructed as follows. The B̂ and
Ĉ matrices can be defined as in (3.5) replacing δ by δ + 1. For the construction of Φ̂,
p and q can be thought of as polynomials of total degree δ + 1 with zero coefficients
corresponding to monomials of degree δ + 1. To find the missing equations for Πx(x)
we make use of the following property.

Property 3.2.1. The following equivalence holds, for any pair of polynomials
p(x, y), q(x, y) ∈ P2 and for any ∆δp ≥ 0, ∆δq ≥ 0, (x, y) ∈ C2:

{
p(x, y) = 0
q(x, y) = 0

⇔





p(x, y) = 0
q(x, y) = 0
yp(x, y) = 0

...
y∆δpp(x, y) = 0
yq(x, y) = 0

...
y∆δqq(x, y) = 0

. (3.10)

Proof. The ⇐ implication follows from the first two equations from the extended
system. The ⇒ implication is also straightforward: if p and q vanish for some couple
(x, y), so does every left hand side expression from the equations of the extended
system2.

Definition 3.2. The system at the right side of the ‘⇔’ sign in (3.10) will be referred
to as the extended system and its degree will be called the extended degree, which
will be denoted by δ̂ = max(δ̂p, δ̂q) where δ̂p = δp + ∆δp and δ̂q = δq + ∆δq. The
difference between δ and δ̂ will be referred to as the shift degree and it is denoted by
∆δ = δ̂ − δ.

2 This can also be seen by the fact that 〈p(x, y), q(x, y)〉 and 〈p, q, yp, . . . , y∆δpp, yq, . . . , y∆δqq〉
generate the same polynomial ideal. Indeed, we can keep adding polyomial combinations of p and q
to the extended system without altering this ideal and thus the solution set. More information on
polynomial ideals and polynomial combinations can be found in Appendix A.
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3.2. Degree extension

Now, we can add another block row Ψ to Πx(x) containing two rows corresponding
to the coefficients of yp(x, y) and yq(x, y) in the extended monomial basis. Dropping
the y-rows, the resulting equation looks like this:




Φ̂
Ψ

B̂x − xĈx


v = 0. (3.11)

Example 3.2.1. Consider again p and q from Example 3.1.2:

p(x, y) = x2 + y2 − 4

q(x, y) = −3− 2x+ x2 + xy + y2

Increasing the degree by 1 (∆δp = ∆δq = ∆δ = 1) results in an extended degree of
δ̂ = δ + ∆δ = 2 + 1 = 3. The monomial basis vector v(x, y) is

(
1 x x2 x3 y xy x2y y2 xy2 y3

)>

and the matrices from (3.11) can be found as

Φ̂ =
(
−4 0 1 0 0 0 0 1 0 0
−3 −2 1 0 0 1 0 1 0 0

)
,

Ψ =
(

0 0 0 0 −4 0 1 0 0 1
0 0 0 0 −3 −2 1 0 1 1

)
,

B̂x =




0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0



, Ĉx =




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0



.

The dropped y-rows in (3.11) are given by B̂y − yĈy where

B̂y =




0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1


 , Ĉy =




1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0


 .

In general, the dimensions of the matrices involved in the x-pencil for an extended
system of degree δ̂ ≥ δ are given by:

Φ̂ ∈ C2×α, Ψ ∈ C(∆δp+∆δq)×α and (B̂x − xĈx) ∈ C(α−δ̂−1)×α, ∀x ∈ C

where α = (δ̂+1)(δ̂+2)
2 is the number of monomials in 2 variables of degree ≤ δ̂. Φ̂

accounts for the original equations p(x, y) = 0 and q(x, y) = 0, Ψ accounts for
all the shifted equations in the extended system and (B̂x − xĈx) imposes a partial
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Vandermonde structure on the eigenvector v. The left out equations in y are given
by

(B̂y − yĈy)v = 0

where (B̂y − yĈy)v ∈ Cδ̂×α. Together, (B̂x − xĈx) and (B̂y − yĈy) impose a complete
Vandermonde structure of degree δ̂ on v.

Using some shift degrees ∆δp ≥ 0 and ∆δq ≥ 0, we define the resulting extended
pencil L̂(x, y) related to the original pencil L(x, y) used in (3.9) as

L̂(x, y) ,




Φ̂
Ψ

(B̂x − xĈx)
(B̂y − yĈy)


 ,




Π̂x(x)

Π̂y(y)


 . (3.12)

We will use the notation
{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y) −→
E

L̂(x, y)

where E stands for extension. Note from Example 3.2.1 that L̂(x, y) has δ̂ + 1 block
columns consisting of a decreasing number of columns: the first block column has
δ̂ + 1 columns, the last one only 1. In analogy with Theorem (3.1.1), we have the
following more general result.

Theorem 3.2.1. Let
{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y) −→
E

L̂(x, y).

For any ∆δp ≥ 0, any ∆δq ≥ 0 , a pair (x∗, y∗) ∈ C2 is a solution to problem (3.1)
if and only if ∃v 6= 0 s.t. L̂(x∗, y∗)v = 0. The solutions to (3.1) are the couples
(x∗, y∗) for which L̂(x, y) loses full column rank.

Proof. The proof is completely analogous to that of Theorem (3.1.1) using a monomial
vector of degree δ̂ instead of δ and using (3.10).

3.3 Reducing the pencil size

It is not necessary to keep a column in L̂(x, y) for every monomial of degree δ̂ in
case δ̂ > δ. It might happen that neither p and q, nor their shifted versions in the
extended system have a nonzero coefficient corresponding to some monomial xiyj of
degree ≤ δ̂. For example, consider the system

{
p(x, y) = −1 + x2 = 0
q(x, y) = −1 + y2 = 0

−→
C

L(x, y) −→
E

L̂(x, y)
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where we use ∆δp = ∆δq = 1 for the extension step. It can be verified that

L̂(x, y) =




−1 0 1 0 0 0
−1 0 0 0 0 1

−1 0 1 0 0 0
−1 0 0 0 0 1

−x 1
−x 1

−x 1
−x 1

−x 1
−x 1

−y 1
−y 1

−y 1




.

Now, it is clear that the monomial x3 (fourth column) does not belong to the support
of p and q. It does not belong to the support of yp and yq either. Therefore, we
might think of dropping the fourth column of L̂(x, y). However, this would interfere
with our basis definition. Consider the first column block of (B̂x − xĈx), it defines
the recurrence

1 · x = x, x · x = x2, x2 · x = x3.

Leaving out the fourth column of L̂(x, y), we are left with the recursion

1 · x = x, x · x = x2, x2 · x = 0,

which is incorrect. We can, however, leave out the third row of (B̂x − xĈx) as well.
This does not interfere with any of the other recurrence relations and the rows that
remain in (B̂x−xĈx) and (B̂y−yĈy) define the Vandermonde structure of the reduced
monomial basis (that is, leaving out x3) perfectly. The same thing can be done for
the ninth column. Leaving it out of the pencil forces us to drop the last row of
(B̂x − xĈx) along with it. We cannot apply this procedure for every monomial that
does not appear in the extended system. Consider for example the sixth column of
L̂(x, y). Leaving it out would force us to drop both the fourth and the fifth row of
(B̂x − xĈx). Moreover, to restore the recurrence, it would force us to add a quadratic
equation in x:

y · x2 = x2y

which would destroy the linearity of the pencil. In general, the block columns of
(B̂x− xĈx) can be thought of as recurrence chains that we can shorten from the right
to reduce the pencil size if the supports of p and q allow us to. The chains cannot
be shortened from the left, since this would interfere with the recurrences in Π̂y(y),
nor can they be interrupted somewhere in the middle. The y-recurrence chain in
the Π̂y(y) block row can be shortened from the right too if there are entire column
blocks of Φ̂ and Ψ that are filled with zeros. It cannot be shortened from the left if
we assume p and q to be coprime. Indeed, if the leftmost block column of Φ̂ is filled
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with zeros, p and q share the common factor y. An algorithmic approach to perform
the reduction can be summarized as follows.

Algorithm 1 (Pencil reduction). We divide the algorithm in two parts.

1. y-reduction. First, we remove all the block columns corresponding to monomials
of a degree in y that is higher than the maximum degree in y attained by p, q
and their shifted versions. That is, we shorten the y-recurrence chain as much
as possible. Consider the last block column of L̂(x, y).

while Φ̂ and Ψ are completely filled with zeros in the considered block column
do

Remove this block column.
Remove the last row of L̂(x, y) (the last y-equation).
if This is not the last block column then

Remove the last block row of B̂x − xĈx in L̂(x, y).
end if
Consider the next block column (the one to the left of this one).

end while

2. x-reduction. Next, within each block column, we shorten the chain of x-
recurrences as much as possible.

for all remaining block columns of L̂(x, y) do
Start by the rightmost column of this block column.
while Φ̂ and Ψ are completely filled with zeros in this column do

Remove this column.
Remove the row of L̂(x, y) in which this column of B̂x has a nonzero entry.
Consider the column to the left of the deleted column.

end while
end for

We will refer to the reduced pencil as L̂r(x, y) and we will denote

{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y) −→
E

L̂(x, y) −→
R

L̂r(x, y)

where R stands for reduction. For the corresponding block rows, we denote

{
p(x, y) = 0
q(x, y) = 0

−→
C

(
Πx(x)
Πy(y)

)
−→
E




Π̂x(x)

Π̂y(y)


 −→R




Φ̂r

Ψr

B̂x,r − xĈx,r
B̂y,r − yĈy,r


 ,




Π̂x,r(x)

Π̂y,r(y)


 .

For the previous example, we have
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L̂(x, y) −→
R




−1 0 1 0 0 0
−1 0 0 0 0 1

−1 0 1 0 0
−1 0 0 0 1

−x 1
−x 1

−x 1
−x 1

−y 1
−y 1

−y 1




. (3.13)

Theorem 3.3.1. Let
{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y) −→
E

L̂(x, y) −→
R

L̂r(x, y).

For any ∆δp ≥ 0, any ∆δq ≥ 0 , a pair (x∗, y∗) ∈ C2 is a solution of (3.1) if and
only if ∃v 6= 0 s.t. L̂r(x∗, y∗)v = 0. The solutions of (3.1) are the couples (x∗, y∗)
for which L̂r(x, y) loses full column rank.

Proof. The proof is completely analogous to that of Theorem (3.1.1) using the
appropriate reduced monomial vector of degree δ̂ and using (3.10).

Definition 3.3. A nonzero vector v that satisfies
(
B̂x,r − xĈx,r
B̂y,r − yĈy,r

)
v = 0

for some couple (x, y) ∈ C2 is said to have a Vandermonde structure in the reduced
monomial basis. A vector v that satisfies

(B̂x,r − xĈx,r)v = 0

for some x ∈ C is said to have a blockwise Vandermonde structure in the reduced
monomial basis.

Example 3.3.1. For the reduced pencil (3.13), the vector

v1 =
(
1 −1 1 1 −1 1 1 1

)>

has a Vandermonde structure: it is in the right null space of
(
B̂x,r + Ĉx,r
B̂y,r − Ĉy,r

)
. The

vector v2 =
(
1 −1 1 0 0 0 1 0

)>
has a blockwise Vandermonde structure:

(B̂x,r + Ĉx,r)v2 = 0. The reduced monomial basis is given by
(
1 x x2 y xy x2y y2 y3

)>
.
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Chapter 4

A Square One-Parameter GEP

The first aim of this chapter is to show that for appropriate choices of ∆δp and ∆δq in
the extension step (E), a square Π̂x,r(x) can always be obtained. Next, we will show
that the eigenvalues of the square pencil Π̂x,r(x) for the right ∆δp and ∆δq contain
the x-values of the solutions to (3.1). In other words: det Π̂x,r(x) is a resultant. In
fact, it turns out to be equivalent to that of Sylvester [29, 26, 2, 8, 7]. In the last
section, we extend the results to a more general class of tensor product bases.

4.1 The right shift degrees

Theorem 4.1.1. Constructing L̂r(x, y) as explained in Chapter 3, the pencil Π̂x,r(x)
is square if in the extension step the shift degrees ∆δp = degy(q(x, y))− 1 = δyq − 1
and ∆δq = degy(p(x, y))− 1 = δyp − 1 are used.

Proof. In case ∆δp = δyq − 1 and ∆δq = δyp − 1, we have

δ̂ = max(δp + ∆δp, δq + ∆δq)
= max(δp + δyq − 1, δq + δyp − 1).

We will assume (without loss of generality) that δp + δyq − 1 ≥ δq + δyp − 1, so
δ̂ = δp + δyq − 1. Consider the extended (but not reduced) pencil L̂(x, y) first. Denote
the number of rows and columns of Π̂x(x) by m̂ and n̂ respectively and let α be the
number of monomials in two variables of degree ≤ δ̂. We have by construction

n̂ = α =
δ̂+1∑

i=1
i = (δ̂ + 1)(δ̂ + 2)

2 ,

m̂ = 2︸︷︷︸
Φ̂

+ ∆δp + ∆δq︸ ︷︷ ︸
Ψ

+α− (δ̂ + 1)︸ ︷︷ ︸
B̂x−xĈx

.

For ∆δp = δyq − 1 and ∆δq = δyp − 1, using δ̂ = δp + δyq − 1 we find

m̂ = δyp + α− δp.
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During the reduction step some of the rows and columns of Π̂x(x) will be deleted.
We denote

m̂, n̂ −→
R

m̂r, n̂r.

In the y-reduction of Algorithm 1, the rightmost zero block columns of Φ̂ and Ψ are
removed from Π̂x(x) along with the corresponding rows. After the extension using
∆δp = δyq − 1 and ∆δq = δyp − 1, the highest degree in y that is reached by the shifts
of p and q is equal to δyp + δyq − 1. Therefore, the number of block columns that can
be dropped in the y-reduction step is equal to δ̂ − δyp − δyq + 1 = δp − δyp . The total
number of removed columns will be denoted by γn. It is found as

γn =
δp−δyp∑

i=1
i =

(δp − δyp)(δp − δyp + 1)
2 , δp ≥ δyp .

Performing the y-reduction, we only start removing block rows of B̂x − xĈx from the
second deleted block column on. The total number of deleted rows in the y-part of
the pencil reduction is denoted by γm and it is found as

γm =
δp−δyp−1∑

i=1
i =

(δp − δyp − 1)(δp − δyp)
2 = γn − (δp − δyp), δp ≥ δyp .

In case δp = δyp no columns or rows are removed in the first part of the reduction
algorithm and m̂ = n̂ = α. If δp = δyp + 1, we find (m̂ − γm) − (n̂ − γn) =
(α− 1)− (α− 1) = 0. When δp > δyp + 1, we have

(m̂− γm)− (n̂− γn) = (δyp + α− δp − (γn − (δp − δyp)))− (α− γn) = 0

This means that in every possible case, after the first part of Algorithm 1, the number
of rows in the x-pencil is equal to the number of columns. In the x-part of the
algorithm, the x-reduction, each time a column is removed a corresponding row is
removed along with it. Therefore, some number s of columns and rows is removed in
addition to γn and γm and we have

m̂r − n̂r = (m̂− γm − s)− (n̂− γn − s) = 0,

which proves the theorem.

Corollary 4.1.1. The size of the resulting square pencil Π̂x,r(x) is bounded by 2δ2+δ.

Proof. The size of the pencil is given by α− γn − s. For the extended degree δ̂ we
have

δ̂ = max(δp + δyq − 1, δq + δyp − 1) ≤ δp + δq − 1.

Therefore
α ≤ (δp + δq)(δp + δq + 1)

2 .
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Because γn ≥ 0 and s ≥ 0 we find

α− γn − s ≤ α ≤
(δp + δq)(δp + δq + 1)

2 ≤ 2δ2 + δ.

In fact, Corollary 4.1.1 is a very pessimistic bound in many cases. For the
interested reader, a more realistic bound is derived in Appendix C.

Example 4.1.1. In Example 3.2.1, it can be seen that for the considered system of
degree δ = 2, using ∆δp = δyq − 1 = 1 and ∆δq = δyp − 1 = 1 we find that

Π̂x,r(x) =




−4 0 1 0 0 1
−3 −2 1 0 1 1

−4 0 1 0 0 1
−3 −2 1 0 1 1

−x 1
−x 1

−x 1
−x 1

−x 1




is square and of size 9. The upper bound from Corollary 4.1.1 is equal to 10.

4.2 The eigenvalues of Π̂x,r(x)

Theorem 4.2.1. Let Π̂x,r(x) be the x-pencil associated to the system
{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y) −→
E

L̂(x, y) −→
R

L̂r(x, y)

with p, q ∈ P2
δ and where ∆δp = δyq − 1 and ∆δq = δyp − 1 is used in the degree

extension step E, then Π̂x,r(x) is square and

det Π̂x,r(x) = γresp,q(x)

where γ ∈ {−1, 1}.
Proof. We know from Theorem 4.1.1 that Π̂x,r(x) is square. Let mx

ψ be defined as
the vector of univariate x-monomials of increasing degree up to xψ−1:

mx
ψ ,

(
1 x x2 . . . xψ−1

)>
.

Let the matrix M be constructed as follows:

M ,




mx
ψ1

I
>
ψ1−1

mx
ψ2

I
>
ψ2−1

. . . . . .
mx

ψr
I
>
ψr−1




,
(
Mx M1

)
(4.1)
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with r , δyp + δyq , Ii as defined in (3.4) (I0 is an empty matrix) and the numbers ψi
represent the number of columns of the i-th block column of Π̂x,r(x). In words: for
the i-th block column of Π̂x,r(x) we add a column to Mx containing the univariate
monomial vector in the i-th block row and we add a block column to M1 consisting
of ψi − 1 columns of the identity matrix. For instance, for Π̂x,r(x) from Example
4.1.1, M is given by

M =




1 0
x 1
x2 1

1 0
x 1
x2 1

1 0
x 1

1 0




.

Now, consider the matrix product

Π̂x,r(x)M =




(
Φ̂
Ψ

)
Mx

(
Φ̂
Ψ

)
M1

(B̂x,r − xĈx,r)Mx (B̂x,r − xĈx,r)M1


 . (4.2)

Note that every column of Mx has the blockwise Vandermonde structure imposed
by (B̂x,r − xĈx,r), so each column of Mx lies in the null space of (B̂x,r − xĈx,r) for
all values of x and the lower left block of Π̂x,r(x)M is filled with zeros. The matrix
M1 can be thought of as a column selector. It selects columns from Π̂x,r(x)M that
correspond to monomials mi(x, y) with degx(mi(x, y)) > 0 (it skips the first column
of every block column of Π̂x,r(x)). By construction, B̂x,rM1 is the identity matrix
and

Ĉx,rM1 =




∆ψ1−1
∆ψ2−1

. . .
∆ψr−1




where ∆ψ is an ψ × ψ matrix with ones on the first subdiagonal (∆1 = 0 and ∆0 is
the empty matrix). Therefore (B̂x,r − xĈx,r)M1 is a lower triangular square matrix
with a diagonal full of ones ∀x ∈ C, which implies det(B̂x,r − xĈx,r)M1 = 1. As an
illustration, consider again the pencil in Example 4.1.1, where we have

Ĉx,rM1 =




0
1 0

0
1 0

0



, (B̂x,r − xĈx,r)M1 =




1
−x 1

1
−x 1

1



.
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The upper left block of Π̂x,r(x)M is given by

(
Φ̂
Ψ

)
Mx =




px0(x) px1(x) . . . px
δyp

(x)
qx0 (x) qx1 (x) . . . qx

δyp
(x) . . . qx

δyq
(x)

px0(x) px1(x) . . . px
δyp

(x)
px0(x) px1(x) . . . px

δyp
(x)

px0(x) px1(x) . . . px
δyp

(x)
. . . . . .
px0(x) px1(x) . . . px

δyp
(x)

qx0 (x) qx1 (x) . . . qx
δyp

(x) . . . qx
δyq

(x)
. . . . . .

qx0 (x) qx1 (x) . . . qx
δyp

(x) . . . qx
δyq

(x)




where we have assumed (merely for the visualization of the matrix) that δyq > δyp .
Applying the appropriate row permutation Rp we get

Rp

(
Φ̂
Ψ

)
Mx =




px0(x) px1(x) . . . px
δyp

(x)
px0(x) px1(x) . . . px

δyp
(x)

px0(x) px1(x) . . . px
δyp

(x)
px0(x) px1(x) . . . px

δyp
(x)

. . . . . .
px0(x) px1(x) . . . px

δyp
(x)

qx0 (x) qx1 (x) . . . qx
δyp

(x) . . . qx
δyq

(x)
qx0 (x) qx1 (x) . . . qx

δyp
(x) . . . qx

δyq
(x)

. . . . . .
qx0 (x) qx1 (x) . . . qx

δyp
(x) . . . qx

δyq
(x)




.

From these considerations and from (4.2) we have

det Π̂x,r(x)M = det
((

Φ̂
Ψ

)
Mx

)
det((B̂x,r − xĈx,r)M1).

Note that the columns ofM can be permuted, say by Cp, to obtain a lower triangular
matrix with a diagonal full of ones:

detMCp = 1 ∀x ∈ C.

Since detCp can only take on the values 1 and −1, we have that det Π̂x,r(x)M =
det Π̂x,r(x) detM = detCp det Π̂x,r(x), so det Π̂x,r(x)M is equal to det Π̂x,r(x) up
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4. A Square One-Parameter GEP

to a sign. As we have shown, det(B̂x,r − xĈx,r)M1 = 1 and using (2.6) we get

det
((

Φ̂
Ψ

)
Mx

)
= det

(
R−1
p Rp

(
Φ̂
Ψ

)
Mx

)

= detRp det
(
Rp

(
Φ̂
Ψ

)
Mx

)

= detRp detSp,q(x).

Therefore
det Π̂x,r(x) = detRp

detCp
resp,q(x).

Corollary 4.2.1. From Theorem 4.2.1 and Theorem 2.2.2, it follows that if p and
q from (3.1) are coprime, then Π̂x,r(x) is a regular pencil and its finite eigenvalues
contain the x-coordinates of the solutions to (3.1). Moreover, each eigenvalue x∗
appears a number of times equal to the sum of the multiplicities of all roots of (3.1)
that have x∗ as x-component. More specifically:

{x ∈ C | det Π̂x,r(x) = 0} = V(x)
p,q ∪ {x ∈ C | pxδyp (x) = qxδyq (x) = 0}.

4.3 A change of basis
So far we have always used the classical monomial basis to make the construction
process of L̂r(x, y) clear. We have started by constructing the coefficient matrix Φ
that contains the coordinates of p and q in the classical monomial basis. The aim
of this section is to provide a more general framework for obtaining a linear pencil
in which we can choose another basis to represent p and q in. First, we introduce
the concept of a tensor product basis. In the next subsections we show how the
construction, extension and reduction step can be generalized to a general class of
tensor product bases. Finally, we show that the obtained x-pencil is equivalent to
Π̂x,r(x), in the sense that it has the same eigenvalues.

4.3.1 A tensor product basis

Consider the basis Bx , {bx0(x), bx1(x), . . . , bxδ (x)} for P1
δ where deg(bxi (x)) = i,∀i.

We will take bx0(x) = 1. Any such basis satisfies a recurrence relation:

bxk(x) = αxkxb
x
k−1(x) +

k−1∑

i=0
βxk,ib

x
i (x), 1 ≤ k ≤ δ (4.3)

where βxk,i ∈ C, 0 ≤ i ≤ k ≤ δ and αxk ∈ C0, 1 ≤ k ≤ δ. Analogously, we consider
another basis By , {by0(y), by1(y), . . . , byδ(y)}, with deg(byi (y)) = i,∀i and

byk(y) = αykyb
y
k−1(y) +

k−1∑

i=0
βyk,ib

y
i (y), 1 ≤ k ≤ δ (4.4)
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where βyk,i ∈ C, 0 ≤ i ≤ k ≤ δ and αyk ∈ C0, 1 ≤ k ≤ δ. Now, consider the tensor
product basis

B , Bx ⊗By , {bij(x, y)}0≤i,j≤δ

for P2
δ where

bij(x, y) , bxj (x)byi (y).

We will use the notation {·}B to indicate that we are working in a basis B different
from the classical monomial basis.

4.3.2 Coefficient matrix and basis definition

Suppose two polynomials p, q ∈ P2
δ are given with their coordinates in B:

p(x, y) =
δ∑

i=0

δ−i∑

j=0
pijb

x
j (x)byi (y), q(x, y) =

δ∑

i=0

δ−i∑

j=0
qijb

x
j (x)byi (y).

For this basis, we define the Vandermonde vector {v}B(x, y) as

(
b00(x, y) b01(x, y) . . . b0δ(x, y) . . . bδ−1,0(x, y) bδ−1,1(x, y) bδ0(x, y)

)>
.

Again we have for every solution x∗, y∗ of

{
p(x, y) = 0
q(x, y) = 0

that {Φ}B{v}B(x∗, y∗) = 0 with

{Φ}B ,
(
p00 p01 p02 . . . p0δ p10 p11 . . . p1,δ−1 . . . pδ−1,0 pδ−1,1 pδ0
q00 q01 q02 . . . q0δ q10 q11 . . . q1,δ−1 . . . qδ−1,0 qδ−1,1 qδ0

)
.

For the basis definition blocks {Bx − xCx}B and {By − yCy}B we make use of the
recurrence relations (4.3) and (4.4). We denote

{
p(x, y) = 0
q(x, y) = 0

B−→
C
{L(x, y)}B =




{Φ}B
{Bx − xCx}B
{By − yCy}B


 .

Let γxi , αxi x+ βxi,i−1 and γyi , αyi y + βyi,i−1. The matrix

(
{Bx − xCx}B
{By − yCy}B

)
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is given by



−γx1 1
−βx20 −γx2 1

... . . .
−βxδ0 −βxδ1 . . . −γxδ 1

−γx1 1
... . . .

−βxδ−1,0 . . . −γxδ−1 1
. . .

−γx1 1
−γy1 1
−βy20 −γy2

. . .
−βyδ0 −βyδ1 . . . −γyδ 1




.

4.3.3 Degree extension

For the degree extension we extend the bases Bx and By to B̂x and B̂y respectively.
B̂x and B̂y are bases for P1

δ̂
and we assume that they satisfy a recurrence relation

similar to (4.3) and (4.4). we cannot just shift the coefficients in Φ to the next block
row like in the classical monomial basis. Indeed, in general byk(y) 6= by1(y)byk−1(y) for
k 6= 1. We have to calculate the coordinates of every shifted polynomial in the basis
B̂ , B̂x ⊗ B̂y before we can plug the corresponding row into the extended pencil.
To obtain more equations in x, we extend the system in the following way:

{
p(x, y) = 0
q(x, y) = 0

→





p(x, y) = 0
q(x, y) = 0
sp1(y)p(x, y) = 0

...
sp∆δp(y)p(x, y) = 0
sq1(y)q(x, y) = 0

...
sq∆δq(y)q(x, y) = 0

with ∆δp = δyq − 1, ∆δq = δyp − 1 and deg(spi ) = deg(sqi ) = i. The functions spi and
sqi will be referred to as the shift functions. We construct {L̂(x, y)}B̂ by extending
the tensor product basis and adding a block {Ψ}B̂ to {L(x, y)}B, like we did for the
classical monomial basis. The pencil reduction algorithm is completely analogous to
Algorithm 1. We will denote the x-pencil obtained by constructing {L̂r(x, y)}B̂ in
the basis B̂ by {Π̂x,r(x)}B̂.
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4.3.4 The eigenvalues of {Π̂x,r(x)}B̂
In the following we will use the subscript ·r̃ to denote the matrices of the reduced
linear pencil L̂r(x, y) before the x-reduction has been performed. The number of
columns in the k-th block column of {L̂r̃(x, y)}B̂ is equal to δ̂ + 2 − k for any
appropriate basis B̂ and we have that

det{Π̂x,r̃(x)}B̂ = γ det{Π̂x,r(x)}B̂ (4.5)

with γ ∈ {−1, 1}. This can easily be seen by developing det{Π̂x,r̃(x)}B̂ with respect
to any column that is removed during the x-reduction.

Theorem 4.3.1. Let Bx and By be two bases for P1
δ that satisfy (4.3) and (4.4).

Constructing {Π̂x,r(x)}B̂ as explained above, we have that

det{Π̂x,r(x)}B̂ = C det Π̂x,r(x)

where Π̂x,r(x) is the pencil that is obtained by constructing L̂r(x, y) in the classical
monomial basis and C is a nonzero constant.

Proof. Consider the isomorphism π that maps a row vector to the corresponding
polynomial in the reduced monomial basis:

π : C|T
2
δ̂,r̃
| → span(T 2

δ̂,r̃
) ⊂ P2

δ̂

where T 2
δ̂,r̃

represents the set of monomials that is contained in the reduced monomial
vector after the y-reduction step and | · | denotes the cardinality of a set. Analogously,
we define πB̂ as the map of a row vector to the corresponding polynomial in the
basis B̂. For example, consider the reduced monomial basis vector

(
1 x x2 x3 y xy x2y y2 xy2

)

and the basis B̂ = {1, 1 + x, (1 + x)2, (1 + x)3, y, (1 + x)y, (1 + x)2y, y2, (1 + x)y2}.
Then we have for

v =
(
−1 0 1 0 0 1 0 1 0

)

that π(v) = −1 + x2 + xy+ y2 and πB̂(v) = −1 + (1 + x)2 + (1 + x)y+ y2. Then, let
T be the invertible matrix of the linear map that realizes the change of basis from
the classical monomial basis to B̂:

π(vT ) = πB̂(v). (4.6)

We extend the domain of π and πB̂ to matrices by defining the image of a matrix as
the vector of images of the rows of that matrix:

π(M) = π






m>1

...
m>m





 ,



π(m>1 )

...
π(m>m)



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where M ∈ Cm×n and m>i denotes the i-th row of M . It is clear that

πB̂({Φ̂r̃}B̂) =
(
p(x, y)
q(x, y)

)
= π(Φ̂r̃)

and

πB̂

((
{Φ̂r̃}B̂
{Ψr̃}B̂

))
=




p(x, y)
q(x, y)

sp1(y)p(x, y)
...

sp∆δp(y)p(x, y)
sq1(y)q(x, y)

...
sq∆δq(y)q(x, y)




= Lφ,ψ




p(x, y)
q(x, y)
yp(x, y)

...
y∆δpp(x, y)
yq(x, y)

...
y∆δqq(x, y)




= Lφ,ψπ

((
Φ̂r̃

Ψr̃

))

with Lφ,ψ a regular lower triangular matrix. Now, let {rki}B̂ be the i-th row of the
(k+1)-st block row of {Bx,r̃−x∗Cx,r̃}B̂ for some x∗ ∈ C (the block row corresponding
to degree k in y). Then

πB̂({rki}B̂) = byk(y)


−

i−1∑

j=0
βxijb

x
j (x)− αxi x∗bxi−1(x) + bxi (x)




and using (4.3) we find that

πB̂({rki}B̂) = αxi (x− x∗)bxi−1(x)byk(y), 1 ≤ i ≤ δ̂ − k, 0 ≤ k < δyp + δyq .

Therefore

πB̂({rki}B̂) ∈ span({(x− x∗)xjyl}0≤j<i,0≤l≤k), 1 ≤ i ≤ δ̂ − k, 0 ≤ k < δyp + δyq .

Defining rki as the i-th row of the (k + 1)-st block row of B̂x,r̃ − x∗Ĉx,r̃ we have

π(rki) = (x− x∗)xi−1yk, 1 ≤ i ≤ δ̂ − k, 0 ≤ k < δyp + δyq .

We observe that

span({(x− x∗)xjyl}0≤j<i,0≤l≤k) = span({π(rlj)}1≤j≤i,0≤l≤k),

for 1 ≤ i ≤ δ̂ − k, 0 ≤ k < δyp + δyq . This proves that any polynomial in πB̂({Bx,r̃ −
x∗Cx,r̃}B̂) can be written as a linear combination of the corresponding polynomial
in π(Bx,r̃ − x∗Cx,r̃) (the one with the same position in the vector) and the previous
polynomials in π(Bx,r̃ − x∗Cx,r̃). Therefore

πB̂({Bx,r̃ − x∗Cx,r̃}B̂) = Lbπ(Bx,r̃ − x∗Cx,r̃)
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with Lb a regular lower triangular matrix that does not depend on x∗. Combining
the results, we have that

πB̂({Π̂x,r̃(x∗)}B̂) =
(
Lφ,ψ

Lb

)

︸ ︷︷ ︸
L

π(Π̂x,r̃(x∗)),∀x∗ ∈ C

and thus, using (4.6), the linearity of π and applying π−1 to both sides:

{Π̂x,r̃(x∗)}B̂T = LΠ̂x,r̃(x∗),∀x∗ ∈ C.

Finally, this results in

det{Π̂x,r̃(x)}B̂ = C̃ det Π̂x,r̃(x)

where C̃ = detL
detT 6= 0. Together with (4.5) this proves the theorem.

For the interested reader, an example in the Chebyshev tensor product basis is
worked out in Appendix D.
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Chapter 5

Solving Bivariate Polynomial
Systems

So far, we have proposed a way to find the x-coordinates (or y-coordinates) of the
solutions of the bivariate system

{
p(x, y) = 0
q(x, y) = 0

. (5.1)

Namely, they can be found among the roots of det Π̂x,r(x) (see Corollary 4.2.1). In
this chapter, we will discuss the problem of finding the corresponding y-coordinates.
This can be done in several ways. For each approach, we will discuss the theoretical
results as well as the numerical aspects. We will use the following notation throughout
this chapter. X represents the set of x-solutions, counting multiplicities, whereas X
represents the set of distinct x-solutions: X = V(x)

p,q . Their numerical approximations
will be denoted by X̃ and X̃ respectively. We will use a similar notation for the
y-solutions: Y ≈ Ỹ for the y-values counting multiplicities and Y ≈ Ỹ for the distinct
y-values. The solution set of (5.1) counting multiplicities is denoted by S, the set of
distinct solutions is S = Vp,q. The numerically found solutions will be denoted by S̃
and S̃ respectively. Our aim is to find S̃ rather than just S̃.
Suppose that we use the pencil det Π̂x,r(x) as a tool for finding X̃ . We do not
calculate Ỹ explicitly. This leads to a first class of versions of our method where our
goal will be to associate one (and only one) y-value to each value in X̃ so that the
multiplicities of all couples are correct. Some ways to do this are explained in the
first section of this chapter. Another approach is to calculate both X̃ and Ỹ. The
goal is then to find an appropriate coupling between X̃ and Ỹ to construct S̃. In
both cases, each solution in S has a numerical representative in S̃. In the second
section we propose two ways of realizing such a coupling. Finally, in a third section
we propose a variable precision method.

Example 5.0.1. Consider again the problem of Example 2.2.3 where
{
p(x, y) = x2 + y2 − 1 = 0
q(x, y) = 4x2 + y2 + 6x+ 2 = 0
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with a 4-fold zero at (−1, 0). For this problem

X = {−1,−1,−1,−1}, X = {−1}, Y = {0, 0, 0, 0}, Y = {0}.

Calculating the roots of det Π̂x,r(x) using Matlab, we find

X̃ = {−9.999999999999998× 10−1 + 1.484190404154479× 10−8i,

− 9.999999999999998× 10−1 − 1.484190404154479× 10−8i,

− 1.000000000000000× 100 + 0.000000000000000× 100i,

− 1.000000000000000× 100 + 0.000000000000000× 100i}.

A possible (and in this case very good) numerical approximation X̃ for X could be
the mean of all values in X̃ :

X̃ = {−9.999999999999999× 10−1 − 8.271806125530277× 10−25i}.

To evaluate the different versions of our method, we will make use of the residual
of the numerically found solutions. The residual will be defined in the second section.
We will assume that spurious eigenvalues of Π̂x,r(x) due to common zeros of the
highest degree coefficient polynomials can be filtered out easily because they do not
correspond to a finite y-value that generates a small residual for (5.1). We must take
care when these spurious eigenvalues correspond to both finite and infinite solutions.
For such an eigenvalue x∗, the multiplicity is equal to the sum of the multiplicities
of all solutions of the form (x∗, y), including (x∗,∞). We will propose a solution to
this problem at the end of the first section.

5.1 Finding S̃ without solving the GEP in y

Clearly, the set Ỹ can be found as the eigenvalues of the pencil Π̂x,r(x) constructed
for the system {

p̃(x, y) = 0
q̃(x, y) = 0

where p̃(x, y) = p(y, x) and q̃(x, y) = q(y, x). For the approaches in this section we
avoid the construction of a second square GEP. We will find Ỹ by finding the possible
y-values for each value in X̃ . This can be done by making use of the eigenspace of
each x∗ ∈ X̃ , by thinking of p(x∗, y) and q(x∗, y) as two univariate polynomials or by
using the linear pencil L(x∗, y) in y. To discuss the theory behind each approach we
will assume infinite precision: we will show that the correct set Y is found in exact
arithmetic. We will also highlight some of the numerical issues that are encountered
by each approach in practice (finite precision).

5.1.1 The eigenvectors of Π̂x,r(x)

During the construction of Π̂x,r(x) we have imposed a blockwise Vandermonde
structure on its eigenvectors. For an x-value that occurs only once in X , the
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associated eigenspace is one-dimensional. The following proposition is a direct
consequence.

Proposition 5.1.1. Let x∗ ∈ X be such that there is no x ∈ X , apart from x∗

itself, such that x∗ = x. Also, we assume that x∗ is such that ∃y ∈ C such that
p(x∗, y) = q(x∗, y) = 0. Then the corresponding eigenvector w:

Π̂x,r(x∗)w = 0

has the Vandermonde structure in the reduced monomial basis.

Proof. Under these assumptions the eigenvector w and its scalar multiples are the
only vectors u that satisfy

Π̂x,r(x∗)u = 0.
Also, there is only one solution to (5.1), say (x∗, y∗), with x-coordinate x∗. Indeed,
if there were others, x∗ would appear multiple times in X . The Vandermonde vector
corresponding to this solution v(x∗, y∗) must lie in the right null space of L̂r(x∗, y∗)
and thus in that of Π̂x,r(x∗). Therefore w = Cv(x∗, y∗), C ∈ C0.

Corollary 5.1.1. For a simple root of (5.1) that is such that no other root has the
same x-coordinate, we can find the corresponding y-value by dividing the (ψ1 + 1)-st
entry of the corresponding eigenvector w by the first entry:

y∗ = wψ1+1
w1

.

For x∗ ∈ X that does not satisfy the assumptions of Proposition 5.1.1 things are
slightly more complicated. If x∗ appears cx∗ times in X , the null space of Π̂x,r(x∗)
can have a dimension up to cx∗ . Moreover, this null space may contain vectors that
do not have the Vandermonde structure. We illustrate this with an example.

Example 5.1.1. Consider again the system from Example 2.2.3
{
p(x, y) = x2 + y2 − 1 = 0
q(x, y) = 4x2 + y2 + 6x+ 2 = 0

with a 4-fold zero at (−1, 0). We have

{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y) −→
E

L̂(x, y) −→
R




−1 0 1 0 0 0 1
2 6 4 0 0 0 1

−1 0 1 0 1
2 6 4 0 1

−x 1
−x 1

−x 1
−x 1

−y 1
−y 1

−y 1




.
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The reduced monomial vector is

v(x, y) =
(
1 x x2 y xy x2y y2 y3

)>

and the finite eigenvalues of Π̂x,r(x) are X = {−1,−1,−1,−1}. The null space of
Π̂x,r(−1) has dimension 2 and it is spanned by

w1 =
(
1 −1 1 0 0 0 0 0

)>

and
w2 =

(
0 0 0 1 −1 1 0 0

)>
.

Note that w1 has the Vandermonde structure, whereas w2 does not:

L̂r(−1, 0)w2 6= 0.

Of course, both w1 and w2 have a blockwise Vandermonde structure. We can
understand the presence of w2 in null(Π̂x,r(−1)) better by investigating the multiplicity
structure of z = (−1, 0) (see Appendix A). It is easy to check that

∂

∂y

∣∣∣
z




p
q
yp
yq


 =

(
Φ̂r

Ψr

)
∂v(x, y)
∂y

∣∣∣
z

= 0

where
∂v(x, y)
∂y

=
(
0 0 0 1 x x2 2y 3y2

)>

has a blockwise Vandermonde structure. Therefore w2 = ∂v(x,y)
∂y

∣∣∣
z

is contained in the
null space of Π̂x,r(−1).

In general, we can find the possible values of y corresponding to an x-solution x∗
by looking for Vandermonde structured vectors in the right null space of Π̂x,r(x∗),
which is the eigenspace corresponding to the eigenvalue x∗. Suppose the columns of
Vx∗ form a basis for this eigenspace. A null vector of Π̂x,r(x∗) has the Vandermonde
structure if it is in the null space of B̂y,r − yĈy,r for some y ∈ C. Therefore, we are
looking for a vector Vx∗c ∈ null(Π̂x,r(x∗)) that satisfies

(B̂y,r − yĈy,r)Vx∗c = 0. (5.2)

This is a rectangular eigenvalue problem (see Appendix E) of size (δyp + δyq − 1)×
dim null(Π̂x,r(x∗)). The finite eigenvalues are the possible y-coordinates for solutions
of the form (x∗, y). This way we can find S by adding all couples (x∗, y∗) that are
not already contained in S. It is never guaranteed, however, that we can find S.
Suppose we have a 3-fold eigenvalue x∗ that corresponds to the two solutions (x∗, y1)
(multiplicity 1) and (x∗, y2) (multiplicity 2), y1 6= y2. Then we would find for each
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time x∗ appears in X that (x∗, y1) and (x∗, y2) are possible couples. We would end
up with three times (x∗, y1) and three times (x∗, y2) and we loose the multiplicity
information. We can avoid this by applying a “generic” transformation of variables
T : {

p(x, y) = 0
q(x, y) = 0

−→
{
p(T (x, y)) , pt(x, y) = 0
q(T (x, y)) , qt(x, y) = 0

(5.3)

so that we are “almost” sure that for the transformed problem there are no solutions
with the same x-coordinates and different y-coordinates. If we take T to be linear
we can think of it as a matrix and we can find every solution to the original problem
(x∗, y∗) from the solutions to the transformed system (x∗T , y∗T ) as

(
x∗

y∗

)
= T

(
x∗T
y∗T

)
.

Note that this is also a trick for avoiding solutions at infinity with the same x-
coordinate as another finite solution.

In finite precision, this method suffers from some drawbacks. In practice, we
need to start from the set X̃ . The matrix Vx∗ must contain a (numerical) basis
for the eigenspace of x∗. Therefore we must take into account all the numerical
representatives of x∗, which can only be found by accepting two x-values x1 and x2
to be “sufficiently equal” if the difference |x1 − x2| is smaller than some threshold
value. A possible strategy is to sort the eigenvalues in X̃ by their distance to x∗ and
to determine how many of the first eigenvectors there are needed to construct Vx∗ .
This requires a number of heuristics, which is not desirable. Another way to proceed
is to calculate a numerical basis for the right null space of Π̂x,r(x∗) for each x∗ ∈ X̃
and using the basis vectors as Vx∗ . Although this requires more computational effort,
it is numerically more reliable and the method is implemented in this way. Also, a
transformation of variables is, conceptually, an interesting thing to do to perserve
the multiplicity information. However, it turns out to be less interesting from a
numerical point of view. After a linear transformation of variables, the maximal
ratio between the absolute values of the coefficients of a bivariate polynomial p can
increase drastically. This leads to an unbalanced eigenvalue problem of which the
eigenvalues are calculated less accurately.

5.1.2 Common roots of univariate polynomials
All possible y-values that correspond to a solution (x∗, y) must satisfy

{
p(x∗, y) = 0
q(x∗, y) = 0

where p(x∗, y) , f(y) and q(x∗, y) , g(y) are univariate polynomials in y. We have
shown in Chapter 2 that the common roots of f and g can be found as the eigenvalues
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of the rectangular eigenvalue problem

(Sy − yS1)Zv = 0, (5.4)

where the columns of Z form a basis for the null space of Sf,g and

Sy − yS1 =




−y 1
−y 1

. . .
−y 1




is a (deg(f) + deg(g)− 1)× (deg(f) + deg(g)) matrix. This leads to another strategy
for finding the set Y or Y . For each x∗ ∈ X , calculate a basis Z for the null space of
Sf,g and solve the eigenvalue problem (5.4). Then, add all the distinct finite eigenval-
ues to the set Y . In case we want to find Y, we can apply a generic transformation
of variables T as in (5.3) so that every x∗ generates only one distinct eigenvalue
y∗. The size of the eigenvalue problem that has to be solved for every x∗ ∈ X is
(deg(f) + deg(g)− 1)× dim null(Sf,g).

Note that for this approach, no numerical threshold is needed to construct the
rectangular eigenvalue problem. Of course, the eigenvalue problem still has to be
solved numerically (see Appendix E).

5.1.3 The eigenvalues of L(x∗, y)

According to Theorem 3.1.1, all possible y-values corresponding to x∗ ∈ X are the
values of y for which L(x∗, y) loses full column rank. Equivalently, we can say that
all possible y-values corresponding to x∗ ∈ X are the eigenvalues of the rectangular
eigenvalue problem

L(x∗, y)v = 0.

Again, Y and Y can be found as in the previous approaches. The size of the eigen-
value problem can be reduced by applying Algorithm 1 to L(x, y) rather than L̂(x, y).

The eigenvalue problem is constructed without using any numerical threshold
and it is solved as explained in Appendix E.

5.2 Finding S̃ by coupling X̃ and Ỹ

Another way to proceed is to calculate Ỹ by constructing the generalized eigenvalue
problem like we did for X̃ and then find an appropriate coupling between the two
sets. In order to find such a coupling, we need a tool to determine whether a certain
couple is feasible or not.
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Definition 5.1 (residual). For every couple (x∗, y∗) ∈ C2 the residual with respect
to (5.1) is defined as

r(x∗, y∗) = |p(x∗, y∗)|
|p|(|x∗|, |y∗|) + 1 + |q(x∗, y∗)|

|q|(|x∗|, |y∗|) + 1

where |p|(x, y) ,
δ∑
i=0

δ−i∑
j=0
|pij |xjyi and |q|(x, y) ,

δ∑
i=0

δ−i∑
j=0
|qij |xjyi.

Note that in Definition 5.1, the denominators contain a constant term +1 so the
residual is determined based on a mixed (both relative and absolute) criterion. This
way the residual is also defined for |p|(|x∗|, |y∗|) = 0 or |q|(|x∗|, |y∗|) = 0 and it does
not become too pessimistic for small values of |p|(|x∗|, |y∗|) or |q|(|x∗|, |y∗|). Suppose
we have the sets X and Y and we have indexed the elements in some way. Denote
the i-th element in X as x(i). Analogously, for Y we use the notation y(i). For the
numerically obtained sets X̃ and Ỹ we use x̃(i) and ỹ(i) respectively. The residual
matrix for the sets X and Y is defined as

R(X ,Y)ij = r(x(j), y(i)).

The residual matrixR(X ,Y) is square (X and Y contain the same number of elements).
We have experimented with two coupling procedures: applying a “minimax” principle
to the diagonal of the residual matrix and finding an appropriate coupling based on
a so called connection diagram.

A minimax principle

Suppose we have found X̃ and Ỹ and we have calculated the residual matrix R(X̃ , Ỹ).
An intuitive way of finding a coupling between X̃ and Ỹ is to look for a row permu-
tation Rp for R(X̃ , Ỹ) that minimizes the maximal element on its diagonal. After
permuting the elements of Ỹ in the same way, we can propose S̃ = {(x̃(i), ỹ(i))}1≤i≤n
as a numerical solution set where n is the number of elements in X̃ and Ỹ. The
problem can be formulated as follows. Find Rp such that

Rp = argminRp∈Rp max diag(RpR(X̃ , Ỹ))

where Rp is the set of all row permutation matrices. There are algorithms that
provide a suboptimal solution to this optimization problem. One such algorithm that
is based on Jacobi-like sweeps is implemented. Residuals are small but the resulting
multiplicities are not guaranteed to be correct. Also, some solutions might not be
found. Figure 5.1 illustrates the result of a suboptimal permutation to minimize
the diagonal elements. In this case, the permutation results in a correct coupling.
Another possibility is to approach the problem as a minimum weight matching in a
bipartite graph. We do not elaborate on this approach. The coupling in the next
section is found to be more effective.
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Figure 5.1: Residual matrix R(X̃ , Ỹ) before (left) and after (right) applying a
row permutation to minimize the diagonal elements. The color bars represent the
amplitude of the elements in R(X̃ , Ỹ) on a log10-scale.

Connection diagrams

To explain the ideas in this paragraph, we will use the following toy solution set:

S = {(x1, y1), (x1, y2), (x2, y2), (x2, y3), (x3, y1), (x3, y4)} (5.5)

with xi ∈ C, i = 1, . . . , 3, yj ∈ C, j = 1, . . . , 4, xi 6= xj , j 6= i and yi 6= yj , j 6= i. We
will denote the multiplicities by M(xi,yj)(Vp,Vq) = µij and they are given by

µ11 = 3, µ12 = µ23 = 2, µ22 = µ31 = µ34 = 1. (5.6)

We use the following notation to distinguish between exact and numerical results:

X = {x1, x1, x1, x1, x1, x2, x2, x2, x3, x3},
X̃ = {x̃11, x̃12, x̃13, x̃14, x̃15, x̃21, x̃22, x̃23, x̃31, x̃32}

where we assume that X and X̃ are ordered so that x̃(i) is a numerical representative
for x(i): x̃ij = xi+εij with εij some (small) complex number. The set X is ordered by
increasing distance to x1. Note that the number of appearances cxi of xi in X follows
directly from (5.6): cxi = ∑

j µij . We will refer to the number cxi as the projected
multiplicity of xi. Analogously, for the y-coordinates we denote

Y = {y1, y1, y1, y1, y2, y2, y2, y3, y3, y4},
Ỹ = {ỹ11, ỹ12, ỹ13, ỹ14, ỹ21, ỹ22, ỹ23, ỹ31, ỹ32, ỹ41}.

Note that obtaining X and Y by solving the eigenvalue problem described in Chapter
4 we find the projected multiplicities cxi and cyi (in theory) but not the multiplicities
µij

1. Therefore in the following, the projected multiplicties will be considered as
known, whereas the multiplicities of the solutions are the unknowns. Let us first
consider the sets X and Y which are the finite eigenvalues of the associated pencils,
calculated in infinite precision. The question is how we can construct S based on
these two sets.
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0 0 0 0 0 × × × 0 0
0 0 0 0 0 × × × 0 0
0 0 0 0 0 × × × 0 0
0 0 0 0 0 × × × 0 0
0 0 0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 0 × ×
× × × × × 0 0 0 × ×
× × × × × 0 0 0 × ×
× × × × × × × × 0 0







x1 x1 x1 x1 x1 x2 x2 x2 x3 x3

y1

y1

y1
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y4
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x2

(cx3)
x3

(cy1)
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(cy2)
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µ11

µ12

µ22

µ23

µ31

µ34

Figure 5.2: Illustration of the construction of the connection diagram from R(X ,Y).
A little cross (×) represents any positive nonzero number.

First, we calculate the residual matrix R(X ,Y). Its structure is shown in Figure 5.2.
Note that the columns of R(X ,Y) corresponding to the same x-value (for example
the first 5 columns) are identical. The same holds for the rows corresponding to the
same y-value. To check which y-values form a solution with x1, we can simply check
which entries in the first column of the residual matrix are zero. This is true for all
rows corresponding to y1 and y2. Therefore, we know that S contains the solutions
(x1, y1) and (x1, y2). In S, we will find these solutions with a certain multiplicity.
The unknown multiplicities of (x1, y1) and (x1, y2) are µ11 and µ12 respectively. For
the second column, no new solutions are found and no new unknown multiplicities
are introduced. The sixth column is the first one that corresponds to a new x-value,
and we find that also (x2, y2) and (x2, y3) must be added to S and they lead to
two new unknowns µ22 and µ23. Proceeding like this for the remaining columns
we can construct a connection diagram for the sets X and Y. The residual matrix
and connection diagram are presented in Figure 5.2 for our example sets. From the
diagram in Figure 5.2 we can see that for a feasible solution set S, it must hold that
µ11 + µ12 = cx1 = 5. Indeed, the number of solutions with an x-coordinate x1 must
be equal to the multiplicity of the eigenvalue x1 of the pencil Π̂x,r(x), which is equal
to the projected multiplicity of x1. This way we obtain an equation for each node in
the connection diagram. The resulting system is





µ11 + µ12 = cx1
µ22 + µ23 = cx2
µ31 + µ34 = cx3
µ11 + µ31 = cy1
µ12 + µ22 = cy2
µ23 = cy3
µ34 = cy4

→




1 1
1 1

1 1
1 1

1 1
1

1







µ11
µ12
µ22
µ23
µ31
µ34




=




cx1
cx2
cx3
cy1
cy2
cy3
cy4




→Mµ = c (5.7)

1In practice, we can find the projected multiplicities by clustering the numerically found sets X̃
and Ỹ, more about this later.
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5. Solving Bivariate Polynomial Systems

where c is a known vector containing the projected multiplicities of the elements of
X and Y. The unique solution of this system is

µ11 = 3, µ12 = µ23 = 2, µ22 = µ31 = µ34 = 1. (5.8)

These are indeed the multiplicities (5.6) that we were looking for.

We now step away from the assumption of infinite precision. A first numerical
difficulty is determining the projected multiplicities. The projected multiplicity of x1
is equal to the number of numerical representatives of x1 in X̃ . Therefore, we have
to find an appropriate clustering for the values in X̃ . That is, we have to find the
clusters x̃1, x̃2 and x̃3 of numerical approximations for x1, x2 and x3 respectively
(and the same for the y-values). The projected multiplicity of xi is |x̃i| with | · | the
cardinality of a cluster. Another issue in finite precision is that the residuals for the
solutions in S̃ are not exactly zero. In order to construct the connection diagram, we
will choose a threshold value ε > 0 to decide whether we accept a residual as small
enough for the corresponding couple to be considered a solution. We will propose
a way to cluster the values in X̃ and Ỹ using the residual matrix R(X̃ , Ỹ). The
clustering is based on the assumption that x-values of the same cluster generate a
small (≤ ε) residual with the same y-values in Ỹ. Based on that assumption, the
residual matrix looks like this:

0̃ 0̃ 0̃ 0̃ 0̃ × × × 0̃ 0̃
0̃ 0̃ 0̃ 0̃ 0̃ × × × 0̃ 0̃
0̃ 0̃ 0̃ 0̃ 0̃ × × × 0̃ 0̃
0̃ 0̃ 0̃ 0̃ 0̃ × × × 0̃ 0̃
0̃ 0̃ 0̃ 0̃ 0̃ 0̃ 0̃ 0̃ × ×
0̃ 0̃ 0̃ 0̃ 0̃ 0̃ 0̃ 0̃ × ×
0̃ 0̃ 0̃ 0̃ 0̃ 0̃ 0̃ 0̃ × ×
× × × × × 0̃ 0̃ 0̃ × ×
× × × × × 0̃ 0̃ 0̃ × ×
× × × × × × × × 0̃ 0̃







x̃11 x̃12 x̃13 x̃14 x̃15 x̃21 x̃22 x̃23 x̃31 x̃32

ỹ11

ỹ12

ỹ13

ỹ14

ỹ21

ỹ22

ỹ23

ỹ31

ỹ32

ỹ41

R(X̃ , Ỹ) = .

The symbol 0̃ represents any nonnegative number ≤ ε and the symbol × stands
for any positive number > ε. We see that x̃11, x̃12, x̃13, x̃14 and x̃15 generate a
small residual when coupled to the first seven y-values in Ỹ. For the last three y-
values, they do not. We conclude that these five x-values belong to the same cluster:
x̃1 = {x̃11, x̃12, x̃13, x̃14, x̃15}. For the y-values ỹ31 and ỹ32, a coupling generates a
small residual for the same three x-values. Therefore they belong to the same cluster
in Ỹ. The obtained connection diagram and clustering is shown in the left part
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of Figure 5.3. Note that it is a “numerical equivalent” for the connection diagram
of Figure 5.2. The projected multiplicities of the clusters are given by their cardinality.

x̃1

x̃2

x̃3

ỹ1

ỹ2

ỹ3

ỹ4

µ11

µ12

µ22

µ23
µ31

µ34

x̃1

x̃2

x̃3

ỹ1

ỹ2

ỹ3

ỹ4

Figure 5.3: Left: the numerically obtained connection diagram. Every connection
represents a 0̃ element in the residual matrix. Black dots represent the elements of X̃
(left) and Ỹ (right). The red circles indicate the x-clusters, the blue circles represent
the y-clusters. Right: the corresponding clustered connection diagram.

A next step is to cluster all the individual connections in the connection diagram
in the left part of Figure 5.3. Rather than considering connections between elements
of X̃ and Ỹ, we consider connections between clusters. All connections that connect
the same x-cluster with the same y-cluster represent one cluster connection with
an unknown multiplicity. The resulting diagram is called the clustered connection
diagram and it is shown in the right part of Figure 5.3. To determine these multi-
plicities, a system equal to (5.7) is obtained from the clustered connection diagram.
Finally, the solution set S̃ can be constructed by adding µij couples of x-values in
x̃i and y-values in ỹj for each cluster connection. For example, one can choose to
select µij times the combination that generates the smallest residual or µij times the
combination of the mean value of x̃i with the mean value of ỹj .

The clustering procedure for finding the x- and y-clusters has to be completed by
a second clustering step in some special cases. For example, consider the solution set
{(1, 0), (−1, 0)} and the numerically found sets X̃ = {−1+ε1, 1+ε2} and Ỹ = {ε3, ε4}.
It is clear that both x-values will generate a small residual when coupled to both
y-values, yet they should not be in the same cluster. Therefore, each intermediate
cluster after the first clustering step based on the residual matrix might consist
out of several clusters. We can split the clusters for example by detecting groups
within a cluster of which the mean values are more than some threshold distance apart.
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5. Solving Bivariate Polynomial Systems

An advantage of this coupling strategy is that it allows us to find S even if there
are different solutions that have one coordinate in common. Our toy solution set is
an example of this. Therefore, a transformation of variables is only required in case
there are infinite solutions that have one finite coordinate that coincides with that of
a finite solution. If, however, a transformation of variables is performed, there is no
need for the second clustering step.

A drawback of this approach is that the system Mµ = c might be underdeter-
mined. To find the solution we must take into account that all entries of µ should
be positive and integer. This is an integer programming problem, which is NP-hard.
For the dataset that is used to test our method, the system is overdetermined in
more than 90% of the cases. In the cases where it is underdetermined, the smallest
norm least squares solution

µ = M+c

where M+ denotes the Moore-Penrose pseudo-inverse of M , is the desired positive
integer solution. The reason for this is at this point unclear to the author and requires
further research. If the system is underdetermined, the x- and y-values are strongly
interconnected: there are more connections than the total number of elements in X̃
and Ỹ . This interconnection can be avoided by applying a transformation of variables.

5.3 Variable precision

The idea in this section is the following. Denote the machine epsilon in double
precision by εd and in quadruple precision by εq. To solve the problem in double
precision, we manipulate the coefficients of p and q by a generic perturbation of order
εd × 10−2 and perform all calculations in quadruple precision. The perturbation is of
the following particular form. Let P and Q be the matrix representations of p and
q where P ∈ C(δp+1)×(δp+1) and Q ∈ C(δq+1)×(δq+1) (these representations may be
redundant). The perturbed polynomials will have a matrix representation given by

P̃ = P + Pε,

Q̃ = Q+Qε,
(5.9)

where <(Pε), =(Pε), <(Qε) and =(Qε) are matrices with random normally distributed
entries with mean zero and standard deviation εd×10−2 on and above the antidiagonal.
Equivalently, we add a polynomial pε to p with normally distributed coefficients
in the monomial basis for P2

δp
. We do the same for q. This way the solutions

to (5.1) are slightly perturbed and they will (generically) all δpδq be simple and
finite in quadruple precision. Solutions corresponding to infinite solutions of the
original problem are easily detected because they correspond to very large solutions
of the perturbed problem. All multiple precision calculations are done using the
Multiprecision Computing Toolbox for Matlab (http://www.advanpix.com/).
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5.3.1 Another form of the linear pencil
For this version of our method we will need yet another form of the linear pencil.
We start from the extended version L̂(x, y):

{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y) −→
E

L̂(x, y).

Recall that in L̂(x, y) we have used as few as possible equations in y to define
the extended monomial basis. What we will now do is add all of the other linear
y-recurrences to (B̂y − yĈy), so that (B̂y − yĈy) is extended to a matrix of the same
size as (B̂x − xĈx). We will denote this operation by

L̂(x, y) −→
Y

L̂y(x, y) =
(

Π̂x(x)
B̂y,e − yĈy,e

)
.

After that, we apply a y-reduction to L̂y(x, y) so that the x-pencil becomes square.
We remove all rows in (B̂y,e − yĈy,e) that can no longer be used in the reduced
monomial basis. We denote

L̂(x, y) −→
Y

L̂y(x, y) −→
y-red

(
Π̂x,r̃(x)
Π̂y,e,r̃(y)

)
=
(

Π̂x,r̃(x)
B̂y,e,r̃ − yĈy,e,r̃

)

Example 5.3.1. Consider the system
{
p(x, y) = −1 + x2 + y = 0
q(x, y) = −1 + y = 0

−→
C

L(x, y) −→
E

L̂(x, y).

We have that

L̂y(x, y) =




−1 0 1 1 0 0
−1 0 0 1 0 0
−x 1

−x 1
−x 1

−y 1
−y 1

−y 1




−→
y-red




−1 0 1 1 0
−1 0 0 1 0
−x 1

−x 1
−x 1

−y 1
−y 1




=
(

Π̂x,r̃(x)
Π̂y,e,r̃(y)

)

where the green entries indicate the row that is introduced in the −→
Y

step.

It is clear that we still have a one to one relation between the null vectors of
the resulting pencil and the solutions of (5.1). Indeed, every nonzero vector w that
satisfies (

Π̂x,r̃(x)
Π̂y,e,r̃(y)

)
w = 0

has a Vandermonde structure in the reduced monomial basis. Such a vector w is a
scalar multiple of the monomial vector v(x, y) evaluated at a solution of (5.1).
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5.3.2 A blockwise triangularization
Suppose Q1 and Z are the unitary matrices from the generalized Schur decomposition
of Π̂x,r̃(x) so that

Q1Π̂x,r̃(x)Z = U1 − xU2

where U1 and U2 are upper triangular. We assume that the factorization is ordered
so that all finite eigenvalues of Π̂x,r̃(x) are found as the roots of the first n diagonal
elements of U1 − xU2: for the i-th eigenvalue we find

x(i) = (U1)ii
(U2)ii

, 1 ≤ i ≤ n.

We have (
Q1

I

)(
Π̂x,r̃(x)
Π̂y,e,r̃(y)

)
Z =

(
U1 − xU2

(B̂y,e,r̃ − yĈy,e,r̃)Z

)
,

where I is the identity matrix of appropriate size. Next, we take the QR-factorization
of Ĉy,e,r̃Z:

Ĉy,e,r̃Z = Q2R.

This leads to (
I

Q∗2

)(
U1 − xU2

(B̂y,e,r̃ − yĈy,e,r̃)Z

)
=
(

U1 − xU2
Q∗2B̂y,e,r̃Z − yR

)
.

We will use the following proposition to explain the rest of the reasoning.

Proposition 5.3.1. For the generic system defined by (5.9) the number of rows of
(B̂y,e,r̃ − yĈy,e,r̃) is greater than or equal to the number of finite solutions of (5.1).

Proof. The matrix (B̂y,e,r̃ − yĈy,e,r̃) contains all of the possible linear y-recurrences
needed to determine the reduced monomial basis corresponding to the columns of
L̂y(x, y). The total number of y-rows is equal to

ny ,
δ̂∑

i=1
i−

∆δy,max∑

i=1
i

where ∆δy,max , max(δp− δyp , δq − δyq ). The number of finite solutions is equal to the
degree of the x-resultant, which is bounded by the number of rows in B̂x,r − xĈx,r.
This leads, using the results of Chapter 4 and Appendix C, to

n ≤ α− (δ̂ + 1)− γm − s =
δ̂∑

i=1
i−

∆δy,max−1∑

i=1
i−

δy,min−1∑

i=1
i,

where δy,min , min(δyp , δyq ). Therefore, if ∆δy,max −
∑δy,min−1
i=1 i ≤ 0 we have

n ≤
δ̂∑

i=1
i−

∆δy,max−1∑

i=1
i−

δy,min−1∑

i=1
i ≤

δ̂∑

i=1
i−

∆δy,max∑

i=1
i = ny.

The condition ∆δy,max−
∑δy,min−1
i=1 i ≤ 0 is satisfied for a generic system (5.9) because

generically ∆δy,max = 0.
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Proposition 5.3.2. For a generic system defined by (5.9), W , Q∗2B̂y,e,r̃Z is upper
triangular in its first n columns.

Proof. For each x ∈ X, there must exist a value of y ∈ C such that

(
Π̂x,r̃(x)
Π̂y,e,r̃(y)

)

loses full column rank. Note that from the (n+ 1)-st column on, there can be no
linear dependencies. Indeed, for k > n we have (U2)kk = 0 and (U1)kk 6= 0 because
the k-th diagonal element corresponds to an infinite eigenvalue and the pencil is
regular. We will consider only the first n columns and use a Matlab notation (·):,1:n
to indicate this. Let x = x(1), then

(
U1 − x(1)U2
W − yR

)

:,1:n
=

0 × . . . ×
⊗ . . . ×

. . . ...
⊗
0
...
0

(W11 − yR11) × . . . ×

· (W22 − yR22) . . . ×

· · . . . ...

· · · (Wnn − yRnn)

· · · ·
...

...
...

...
· · · ·







where we used the × sign to indicate any complex number, ⊗ to indicate nonzero
complex numbers and · to indicate elements below the diagonal of W . Note that we
used Proposition 5.3.1 for the visualization of the matrix. The diagonal elements
of the upper block, except the first one, are all nonzero because of the assumption
that, generically, there are no multiple eigenvalues. Because of the structure of the
upper block, it is clear that the only possibility for this matrix to loose full column
rank is when the first column is a zero column. This happens when all dots in the
first column of the lower block are zero and y = W11

R11
. Note that Rii 6= 0, 1 ≤ i ≤ n
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because Ĉy,e,r̃ is of full row rank by construction. Now, let x = x(2), we get

(
U1 − x(2)U2
W − yR

)

:,1:n
=

⊗ × . . . ×
0 . . . ×

. . . ...
⊗
0
...
0

(W11 − yR11) × . . . ×

· (W22 − yR22) . . . ×

· · . . . ...

· · · (Wnn − yRnn)

· · · ·
...

...
...

...
· · · ·







.

A necessary condition for this matrix to be column rank deficient is again that all
dots in the second column of the lower block are zero and y = W22

R22
. We can repeat

this reasoning for x = x(i), 1 ≤ i ≤ n, which proves the proposition.

From the proof of Theorem 5.3.2 it is clear that in case Π̂x,r̃(x) has only simple
eigenvalues, the n finite solutions to (5.1) are found as

((U1)ii
(U2)ii

,
Wii

Rii

)
, 1 ≤ i ≤ n.

Applying the perturbation (5.9), the eigenvalues of Π̂x,r̃(x) are generically all simple
(in quadruple precision) and we can apply this result. The method gives small
residuals but it requires more computation time because the calculations for the
eigenvalue problem and the factorizations have to be performed in quadruple precision.
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Chapter 6

Numerical Results

In this chapter we discuss the numerical results that are obtained by the method
that is proposed in this text. We will also compare different versions of our method
with each other and with other existing solvers. We will use performance profiles [13]
to visualize the overall performance of one method with respect to another. Such a
profile is constructed as follows. Suppose we are comparing all solvers in a set S on
a set of problems P . The performance curve for a solver s ∈ S is given by

ρs(τ) = |{p ∈ P | tp,s ≤ 2τ (mins∈S tp,s)}|
|P | (6.1)

where | · | denotes the cardinality of a set and tp,s denotes the time it took for solver
s to “successfully” solve problem p. If solver s did not solve s successfully, tp,s =∞.
What is meant by solving a problem “successfully” will be explained for the different
comparisons. Note that the curve ρs(τ) is nondecreasing. ρs(0) is the percentage
of the problems in P that was solved by solver s the fastest. As τ increases, ρs(τ)
converges to the percentage of problems that was solved successfully by solver s. In
the first section we compare the different versions of our method (Chapter 5). In
the next section we will compare our method to PHClab [31, 30], Bertini [3] and the
PNLA package [4, 14]. These packages are chosen because they also intend to find
all solutions with the correct multiplicities. All methods are tested on a set of 60
lower degree problems that range from simple problems to problems with challenging
multiplicity structures and on a set of random problems of total degree δ = 1, . . . , 40.
By “random” we mean they have normally distributed random coefficients with
mean 0 and standard deviation 1 for all monomials of degree ≤ δ. All numerical
results are reported in the tables in Appendix F. Finally, in a last section, we will
give some interesting numerical examples. All of our software is implemented in
Matlab R2015b. Some examples that illustrate how to use the programs are given in
Appendix H. PNLA is implemented in Matlab but the QR-factorization of sparse
matrices is done by a routine from SuiteSparse [10], which is implemented in C++.
PHCpack is implemented in C and the Matlab interface PHClab is used for the
experiments. Bertini is implemented in C++. All experiments are done on a server
with an Intel Core i7-5500U CPU and 16 GB RAM.
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6. Numerical Results

6.1 Testing the approaches of Chapter 5
The different versions of our method are presented in Chapter 5. To evaluate their
performance, each version is tested on a set of 60 problems of which the essential
information is given in Table F.2 in Appendix F. The reference solution set Sref is
calculated using Bertini with adaptive precision, which is a very reliable solver but,
due to the variable precision, not an efficient one.

For the methods described in 5.1.1 (using the eigenvectors of Π̂x,r(x)), 5.1.2
(using the Sylvester matrix) and 5.1.3 (using L(x, y)) we cannot expect to find the
solutions with the correct multiplicities. Therefore, the criterion for “success” in this
case is chosen to be the following. Let S̃ be the set of numerically found solutions.
Recall that in Definition 5.1, the residual of a solution (x∗, y∗) is defined as

r(x∗, y∗) = |p(x∗, y∗)|
|p|(|x∗|, |y∗|) + 1 + |q(x∗, y∗)|

|q|(|x∗|, |y∗|) + 1

where |p|(x, y) ,
δ∑
i=0

δ−i∑
j=0
|pij |xjyi and |q|(x, y) ,

δ∑
i=0

δ−i∑
j=0
|qij |xjyi. A problem is

successfully solved if all residuals are smaller than 10−6 (backward error) and for
every reference solution s ∈ Sref there is a solution s̃ ∈ S̃ such that

‖s− s̃‖2 ≤ 10−2(1 + ‖s‖2)

(forward error). This criterion leads to the performance curves in Figure 6.1. The
figure shows that the method using the Sylvester matrix ( ) solves more than
50% of the problems in the fastest way. There is, however, one problem that is
not successfully solved by this version. Relaxing the criterion for success to a 2%
allowable forward error, all performance curves reach the value 1. Details can be
found in Table F.3 and Table F.4 in Appendix F. Note that all three methods in
many cases find too many solutions. This is due to the fact that several y-values
might be coupled to the same x-value and the solutions are not clustered or filtered.
The success criterion of 99% forward accuracy is for most problems very mild. In
general, the forward error is much smaller than 1%. The forward accuracy depends
strongly on the multiplicity properties of the problem.

For the versions of our method that intend to find the multiplicities of all solutions,
we must define the notion of “successfully” solving a problem in another way. We will
use the following criterion. A problem is successfully solved, taking multiplicities into
account if the number of solutions is equal to the number of reference solutions and
the solutions pass the following test. There must be a bijective map b : Sref → S̃
such that for each solution s in Sref we have

‖s− s̃‖2 ≤ 10−2(1 + ‖s‖2),

where s̃ , b(s). This test is implemented using the bipartite matching function
from the gaimc Matlab software for graph algorithms [15]. This criterion is used
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6.2. Comparison with other solvers

0 1 2 3 4

0.2

0.4

0.6

0.8

1

τ

Figure 6.1: Performance profile for the comparison of the methods described in 5.1.1
( ), 5.1.2 ( ) and 5.1.3 ( ).

for the coupling method based on connection diagrams (5.2), the variable precision
method (5.3) and the Sylvester matrix method (5.1.2) with a linear transformation of
variables of the following form. Let θ be a random number with a uniform distribution
between 3π/8 and 5π/8. The transformed system is

{
pt(x, y) = p(T11x+ T12y, T21x+ T22y) = 0
qt(x, y) = q(T11x+ T12y, T21x+ T22y) = 0

where
T =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

This transformation is chosen for now because it is the one that gives the best results
among the transformations that are experimented with. As mentioned before, this
transformation of variables has bad numerical consequences. The results are shown on
the left part of Figure 6.2. It can be seen that the transformation of variables causes
the method to fail for about 20% of the problems. Nearly all problems are solved
successfully by the variable precision method, but it requires more computational
effort. The blue performance curve shows that the algorithm based on the connection
diagrams solves all problems accurately and quickly. Details can be found in Table
F.5 and F.6 in Appendix F.

6.2 Comparison with other solvers
In this section we compare the version of our method that finds a coupling between
the x- and y-values based on connection diagrams to the solvers Bertini (in double
precision) [3], PHClab [31, 30] and PNLA [14, 4]. Bertini and PHClab use homotopy
continuation, whereas PNLA is based on Macaulay resultants. The two-parameter
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Figure 6.2: Left: performance profile for the comparison of the methods described
in 5.2 ( ) (connection diagrams), 5.3 ( ) and 5.1.2 with a transformation of
variables ( ). Right: performance profile for the comparison of the coupling
method using connection diagrams 5.2 ( ), PHClab ( ), Bertini ( ) and
PNLA ( ).

eigenvalue approach [23] also intends to find all solutions with their corresponding
multiplicities. We have not used this method for the comparison with other solvers
because, as described in Section 1.3.2, the size of the resulting generalized eigenvalue
problem is too large. In [23], Plestenjak and Hochstenbach propose two determinan-
tal representations of the bivariate rootfinding problem that reduce the resulting
pencil size. Figure 6.3 illustrates that for degrees higher than 4 the two-parameter
eigenvalue approach results in a larger generalized eigenvalue problem than the one
that is solved using our method. The performance profile for our solver, PHClab,
Bertini and PNLA is given on the right part of Figure 6.2. We used standard settings
for all methods, no refinement options or variable precision options are used1. It can
be seen from the figure that the other solvers solve less than 80% of the problems
in the dataset successfully2. Moreover, the coupling method is faster than all other
solvers for more than 90% of the problems. We stress the fact that the results for
the other solvers could be improved by changing the settings. Recent versions of
PHCpack offer the possibility to perform calculations in higher precision. This would
lead to much more accurate results but it would take more computation time. PNLA
offers the possibility to calculate the so called “radical system” associated to a given
problem which is such that the roots remain the same but they all become simple.
This leads to much higher accuracy.

To give an idea about the performance of the solvers for higher degree problems
1For Bertini we used MPTYPE: 0 for double precision, since the default setting (MPTYPE: 1) uses

adaptive precision. For PNLA, the sparf function is used.
2The success criterion is still the one that was used to compare the coupling method to the

variable precision method.
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6.2. Comparison with other solvers

3 4 5 6 7 8 9 100

500

1,000

δ

Figure 6.3: Size of the generalized eigenvalue problem constructed using the first
( ) and the second ( ) linearization proposed in [23] and the (pessimistic) upper
bound 2δ2 + δ for the size of Π̂x,r(x) ( ), with respect to the degree δ.

we have generated a set of “generic” problems of degree δ = 1, . . . , 40 in the following
way. The polynomials p and q that define the generic problem of degree δ have
normally distributed coefficients with mean 0 and standard deviation 1 corresponding
to all monomials of degree ≤ δ. The number of solutions to such a generic problem
is δ2 (from Bézout’s theorem) and all solutions are generically simple and finite.
The criterion for success for these problems is taken to be the following. A generic
problem of degree δ is solved successfully if a number of solutions between 0.99δ2 and
δ2 is found, all with a residual < 10−6. The results are shown in figure 6.4 and details
can be found in Table F.9 and Table F.10 in Appendix F. The performance curve
for PNLA is not plotted because the tests have not been completed for this solver.
It took PNLA about 25 hours to solve the generic problem of degree 25, so the tests
were too time consuming. The method qdsparf from PNLA solves the problems
much faster than sparf but the accuracy deteriorates. Results for qdsparf are not
reported. As can be seen from Figure 6.4, our solver has passed the test for success
for all 40 problems. Bertini has for more than 90% of the problems and PHClab for
70% of them. It must be noted that the higher degree problems are solved faster
by Bertini and PHClab and the obtained residuals are very small. However, the
timing results in Figure 6.4 (right part) show that our solver is competitive at least
up to degree 40. It may take longer, but all δ2 solutions have been found for each
problem (Table F.10). The residual for our coupling method increases with the degree
of the problem. Then again, the obtained solutions are good starting values for
Newton-Raphson refinement, which has not yet been implemented. When it comes
to computation time, PHClab is the absolute winner for higher degree problems. It
finds consistently more than 98%, but not 99% of all solutions.
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Figure 6.4: Left: performance profile for the solver described in this text, based on
a coupling using connection diagrams ( ), PHClab ( ) and Bertini ( ) for
random test problems of degree 1 up to 40. Right: timing results for all four solvers,
the computation time for PNLA is indicated in red ( ).

6.3 Some interesting examples
In this section we will give a few examples of bivariate problems and the solutions
found using the version of our method described in Section 5.2 based on connection
diagrams.

• Consider the system given by
{
p(x, y) = −4 + 5x− 3x2 + x3 + 5y − 2xy − 3y2 + y3 = 0
q(x, y) = −4 + x− 2x2 + 2x3 + 9y + 2xy − 4x2y − 8y2 + 3xy2 + y3 = 0

, (6.2)

which has only real finite solutions, among which (2, 2) is a 3-fold and (1, 1) a
5-fold zero. The real picture of the zero sets of p and q is given in Figure 6.5.
The numerical solutions found by our solver are given in Table 6.1. Note that
even the 5-fold zero is found up to machine precision. Residuals are plotted in
the right part of Figure 6.5.
<(x) =(x) <(y) =(y)

2.00000000000000 · 100 4.59237660016485 · 10−15 2.00000000000002 · 100 6.48002114568442 · 10−15

2.00000000000000 · 100 4.59237660016485 · 10−15 2.00000000000002 · 100 6.48002114568442 · 10−15

2.00000000000000 · 100 4.59237660016485 · 10−15 2.00000000000002 · 100 6.48002114568442 · 10−15

1.57142857142857 · 100 1.20727320460183 · 10−15 −1.42857142857144 · 10−1 −1.52306944438596 · 10−16

1.00000000000000 · 100 −5.98962175057873 · 10−16 1.00000000000000 · 100 9.60530618801872 · 10−16

1.00000000000000 · 100 −5.98962175057873 · 10−16 1.00000000000000 · 100 9.60530618801872 · 10−16

1.00000000000000 · 100 −5.98962175057873 · 10−16 1.00000000000000 · 100 9.60530618801872 · 10−16

1.00000000000000 · 100 −5.98962175057873 · 10−16 1.00000000000000 · 100 9.60530618801872 · 10−16

1.00000000000000 · 100 −5.98962175057873 · 10−16 1.00000000000000 · 100 9.60530618801872 · 10−16

Table 6.1: Numerical solutions to (6.2). Every row represents one solution.

• Figure 6.6 shows the real part of the zero level sets of Problem 7 and Problem
51 from the test problem set. Some information about these problems can be
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Figure 6.5: Left: real zero level lines of p ( ) and q ( ) from (6.2) and the real
part of the numerical solutions ( ). Right: residual for all 9 numerical solutions.

found in Table F.2 in Appendix F. The results3 are shown in Figure 6.7 and in
Figure 6.8. For Problem 7 all residuals are very small, the 18-fold zero is found
up to machine precision. For problem 51, all solutions are simple. Residuals
are small and all reference solutions are retrieved with a forward error of order
10−12 or smaller.
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Figure 6.6: Real picture of the zero level sets of Problem 7 (left) and Problem 51
(right) from the test problem set. Black dots ( ) indicate the numerical solutions.

3For solutions with a very small residual (< 10−20) the value 10−20 is plotted to avoid trouble
with taking the logarithm of zero.
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Figure 6.7: Left: x- and y-coordinates of the reference solutions ( ) and the found
solutions ( ) in the complex plane for Problem 7. Right: the same picture for Problem
51.
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Figure 6.8: Left: residual for all 22 solutions of Problem 7. Right: residual for all 55
solutions of Problem 51.

• Figure 6.9 shows the real part of the zero level sets of two other examples that
are not in the test problem set. The real numerical solutions are indicated
with black dots. For the first problem (left part of Figure 6.9) p has degree 10
and q has degree 9. There are 90 solutions and they are all found with small
residuals. For the second problem p has degree 16 and q has degree 15. All
solutions have a multiplicity > 1 and there are 192 solutions in total (counting
multiplicities). For example, the point (0, 0) is a 16-fold solution. Results are
shown in Figure 6.10 and Figure 6.11. The residuals are higher for the second
problem because of the higher degree and the multiplicity structure of this
problem. For both problems, the numerical solution set S̃ satisfies the success
criterion as formulated for the solvers that intend to find the multiplicities for
the test set of 60 problems.

• Let us now consider a random problem (as specified previously) of degree 20.
The real zero level sets are given in Figure 6.12. All 400 solutions are found
with a residual of order 10−12 or smaller. Doing some timing tests, we conclude
that about 90% of the time that our solver needs for solving this problem is
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Figure 6.9: Real picture of the zero level sets of two example problems. Black dots
( ) indicate the numerical solutions.
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Figure 6.10: Left: x- and y-coordinates of the reference solutions ( ) and the found
solutions ( ) in the complex plane for the problem on the left side of Figure 6.9.
Right: the same picture for the right problem of Figure 6.9.

used for constructing and solving the two generalized eigenvalue problems for
finding all values of x and y. The time that is needed to calculate the residual
matrix is only a third of a percent of the total time. The remaining ±10% of
the time is needed to construct and to solve the system for finding the couples
and their multiplicities. This is a general result: timings for other random
problems confirm this partitioning of the total computation time. The same is
true for problems of other degrees. Of the first ±90% of the time, a negligible
part (about 2% for δ = 20) is spent on constructing the generalized eigenvalue
problems. The majority of the computation time is spent on applying the
QZ-algorithm.
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Figure 6.11: Left: residual for all 90 solutions of the first problem. Right: residual
for all 192 solutions of the second problem.
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Figure 6.12: Real picture of the zero level sets of a generic problem of degree 20.
Black dots ( ) indicate the numerical real solutions.
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Chapter 7

Conclusion and Future Work

In this final chapter, we summarize the most important results and we present some
suggestions for future work.

7.1 Conclusions
In this text, we have presented a numerical linear algebra based solver for 0-
dimensional bivariate systems of polynomial equations. A square generalized eigen-
value problem is constructed in an intuitive way. We have shown that the obtained
eigenvalues coincide with the projections of the solutions onto the complex plane
associated with one out of the two variables (except for some spurious eigenvalues that
are easy to detect). The other coordinates can be found in various ways. Due to the
strong connection between the GEP that is solved in our approach and the Sylvester
resultant, the solver is capable of retrieving the correct multiplicity information
about the solutions. The pencil is such that the coefficients of the given polynomials
can be plugged in directly, without any manipulations. This is advantageous for
the accuracy. From our numerical experiments we learn that the solver manages to
find all solutions with the right multiplicities for moderate degree problems (δ ≤ 20).
Solutions are found fast and with high accuracy, even though no Newton-Raphson
refinement is used. All solutions are found for generic problems of degree at least 40.
For higher degree problems, homotopy continuation based solvers are faster but they
fail to retrieve all solutions for δ > 35 (using standard double precision settings).

7.2 Future work
We will now list some suggestions for future work.

• The pencil Π̂x,r(x) whose eigenvalues are the x-coordinates of the solutions
has many infinite eigenvalues. Numerically, however, these eigenvalues might
be finite but large. If they are very large, such spurious “infinite” eigenvalues
are easy to detect. However, it turns out that even for moderate degrees these
eigenvalues might be of magnitude O(103) or even O(102). Such eigenvalues
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lead to large solutions that still have a small residual. It is therefore needed to
find a way to distinguish such spurious large solutions from actual solutions
that have a large norm. This is essentially a scaling problem.

• It can be seen from Table F.3 that the methods presented in Section 5.1 find
too many solutions in many cases. These solutions could be clustered or filtered
in order to obtain only one good representative for each isolated solution of
the bivariate problem.

• Although the title of this thesis sounds more general, we have mainly focused on
bivariate problems. The ideas can, however, be extended to higher dimensions.
An example in C3 is given in Appendix G. The method is based on the same
principles (multi-parameter eigenvalue problems, degree extension) as our
bivariate solver. Of course, the connection with the Sylvester resultant is lost
and there is no guarantee (yet) of finding a square pencil in one variable. A
detailed description and analysis of the generalization to higher dimensions
needs further research.

• In order to avoid solutions with the same x- or y-coordinates we have suggested
to apply a generic transformation of variables. Out of all transformations
that are experimented with, a generic rotation over an angle between 3π/8
and 5π/8 radians gives the best results. As shown in Chapter 6, the accuracy
deteriorates significantly. Finding a generic transformation that does not have
these unwanted effects could enable us to find the correct multiplicities using
the methods presented in Section 5.1 and it could enhance the results for
systems that have solutions at infinity with one finite coordinate.

• As stated before, for the coupling method based on connection diagrams roughly
90% of the computation time is devoted to solving square generalized eigenvalue
problems. The pencil Π̂x,r(x) is sparse and it is very structured. Efficiency
might be enhanced by further exploiting this structure. Also, if one is only
(or mainly) interested in finding solutions in a certain region of C2, iterative
methods could be used to speed up the calculations.

• In Chapter 4 we have shown that the choice of basis is not restricted to the
classical monomial basis. It is an open question how much improvement can
be made by representing p and q in other product tensor bases. For example,
the Chebyshev basis is expected to give better results for real solutions in the
square [−1, 1]× [−1, 1].

• As mentioned in Section 5.2, the linear system that is solved for finding the
right multiplicities might be underdetermined. It is arguable that, instead of
using the minimal norm least squares solution, the system should be solved as
an integer programming problem in the underdetermined case. Again, this can
be avoided by performing a transformation of variables.
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Appendix A

Polynomial Ideals, their
Quotient Rings and Dual Spaces

In this appendix, we give a brief introduction to polynomial ideals and their sig-
nificance for the understanding of the structure of solution sets of multivariate
polynomial systems [26]. The emphasis will be on notions that are useful to gain
insight in the multiplicity structure of a 0-dimensional solution set.

A.1 Polynomial ideals
Consider a set of n polynomials S = {pi}1≤i≤n in s variables: pi ∈ Ps,∀i. A linear
combination of the elements of S is any polynomial p ∈ Ps that can be written as

p =
n∑

i=1
cipi

for some set of complex coefficients {ci}1≤i≤n. One can extend this notion of a linear
combination to polynomial combinations in the following way.

Definition A.1 (polynomial combination). Any polynomial p that can be written as

p =
n∑

i=1
cipi

for some set {ci}1≤i≤n and ci ∈ Ps,∀i is called a polynomial combination of the
elements of S.

Now, just as a subspace of an s-dimensional Euclidian vectorspace, say Rs, is
defined as a set which is closed under linear combination, we introduce the concept
of a polynomial ideal through the following definition.

Definition A.2 (polynomial ideal). A polynomial ideal in Ps is a subset of Ps
which is closed under polynomial combination. The ideal that contains all polynomial
combinations of the polynomials in S is said to be generated by S and is denoted by

IS = 〈S〉 = 〈p1, p2, . . . , pn〉.
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The polynomials pi in S are called a basis for 〈S〉.

Given this definition of a polynomial ideal, consider a set Z of points in Cs. A
polynomial p ∈ Ps is said to “vanish at Z” if it satisfies p(z) = 0,∀z ∈ Z. One can
verify that the set PsZ of all polynomials in Ps that vanish at Z is an ideal in Ps.
Indeed, any polynomial that is a polynomial combination of elements of PsZ must
vanish at Z, so PsZ is closed under polynomial combinations. Conversely, let us start
from a set S of polynomials. Suppose all polynomials in S vanish at some point
z ∈ Cs, then it must hold by definition that every polynomial in 〈S〉 vanishes at
z. This illustrates the close connection between polynomial ideals and zero sets of
systems of polynomials.

Definition A.3 (zero set of an ideal). Given an ideal I, the zero set of I is the set

Z(I) = {z ∈ Cs | p(z) = 0,∀p ∈ I}

of all points at which all of the polynomials in I vanish.

In particular, suppose S is a set of s polynomials that defines a 0-dimensional
system like (1). All points z ∈ Cs of the solution set of the associated polynomial
system are zeros of the ideal. Also, all zeros of the ideal 〈S〉 are solutions to the
system defined by S. Calculating the solutions to (1) defined by the polynomials
{pi}1≤i≤s in S is equivalent to determining the zeros of 〈S〉.

A.2 The quotient ring of 〈S〉
Let S = {pi}1≤i≤n. For ease of notation, denote 〈S〉 by I and suppose Z(I) is 0-
dimensional. Let z ∈ Z(I) be a point in the zero set of I and consider a polynomial
p that satisfies p(z) = α. From the previous discussion it is clear that if α 6= 0, p /∈ I.
We can write p as the sum of a polynomial in I and some remainder term r:

p =
n∑

i=1
cipi + r

where the first term represents a polynomial combination of the polynomials in S. It
follows directly from p(z) = α that (independent from the choice of the coefficients
ci), r(z) = α. More generally, the remainder term r of any polynomial p takes on
the same values {α1, α2, . . . , αm} in the respective points Z(I) = {z1, z2, . . . ,zm} as
p. If p ∈ I, it vanishes at Z(I) and so does r. The converse is not necessarily true.

Example A.2.1. Consider the set S = {x2 + y2 − 1, x2 + 4y2 − 1} and the corre-
sponding ideal in P2: I = 〈x2 + y2 − 1, x2 + 4y2 − 1〉. The zero set of this ideal is
given by

Z(I) = {(−1, 0), (1, 0)}.
The polynomial p = y ∈ P2 vanishes at Z(I), yet it is not a member of I. Indeed,
there is no polynomial combination of the members of S that results into p.
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However, one can show that if p vanishes at Z(I) and all of the points in Z(I)
are simple (have multiplicity 1), then p ∈ I. In other words, in the case of an ideal
with all simple isolated zeros, the question whether a polynomial p is a member of I
can be answered by simply evaluating p at Z(I) and checking whether it vanishes or
not. The ideal is completely characterized by the evaluations at Z(I). In this case
we could subdivide Ps into equivalence classes that contain polynomials that take
on the same values at Z(I). One such equivalence class, the one that vanishes at
Z(I), coincides with I.

Definition A.4. Given two polynomials p and q in Ps. We say that p and q are
equivalent with respect to ∼I if the difference between p and q is in I. We write

p ∼I q ⇔ p− q ∈ I.
Note that in the simple case (all simple zeros), ∼I realizes exactly the subdivision

of Ps we described earlier. Indeed, in that case

p ∼I q ⇔ p(Z(I)) = q(Z(I)). (A.1)

If not all zeros are simple, it is still a necessary (but not sufficient) condition for the
equivalence:

p ∼I q ⇒ p(Z(I)) = q(Z(I)). (A.2)
Any polynomial p ∈ Ps can be associated to its so called residue class mod I.

Definition A.5. The set

[p]I , {r ∈ PS : p− r ∈ I}
is called the residue class of p mod I. It is the set of all remainders of p modulo
the ideal I.

Note that this notation uses p as a representative for its residue class. That is,
for any q ∈ Ps that satisfies p ∼I q it holds that [p]I = [q]I . In particular, for p ∈ I
we have that [p]I = [0]I = I. The set of all distinct residue classes is denoted by
R[I] and it is called the quotient ring of the polynomial ideal I. In R[I], define the
addition and scalar multiple operations as follows. Let p, q ∈ Ps and α ∈ C, then

α · [p]I , [αp]I
[p]I + [q]I , [p+ q]I

and it can be shown that [αp]I and [p + q]I are independent of the choice of
representatives p and q for the considered residue classes. This means R[I] is a linear
vector space1. When all zeros of I are simple, we have shown that any residue class
is completely defined by the values it takes on the set of zeros Z(I). Therefore, we
have

dim(R[I]) = |Z(I)| = m.
1In fact, R[I] is called a quotient ring because also the multiplication

[p]I · [q]I = [pq]I
is well-defined and commutative. So R[I] is a commutative ring.
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A.3 Dual spaces of polynomial ideals
Consider again the quotient ring R[I] where we assume I to be an ideal with a finite
set of simple zeros Z(I) = {z1, . . . ,zm}. We have shown that R[I] is a vector space
of dimension m. To any vector space, a dual space is associated.

Definition A.6. The dual space V ∗ of a vector space V is the vector space of all
linear functionals l : V → C, where any such linear functionals l, l1, l2 ∈ V ∗ satisfy,
for any v ∈ V , any α ∈ C,

(αl)(v) , αl(v) and (l1 + l2)(v) , l1(v) + l2(v).

It can be shown that for finite dimensional vector spaces, the associated dual
spaces have the same dimension. We will denote

R[I]∗ , D[I]

and we have dim(D[I]) = dim(R[I]) = m.

Definition A.7. For j =
(
j1 j2 . . . js

)>
∈ Ns and for z ∈ Cs, the differential

functional ∂j [z] ∈ (Ps)∗ is defined by

∂j [z](p) , 1
j1!j2! . . . js!

(
∂
∑s

i=1 ji

∂xj11 ∂x
j2
2 . . . ∂xjss

p

)
(z)

By (A.1) we have that for p, q ∈ Ps

p ∼I q ⇒ ∂0[zk]p = ∂0[zk]q

for 1 ≤ k ≤ m. So the functionals {∂0[zk]}1≤k≤m can be interpreted as linear
functionals on R[I]:

∂0[zk] ∈ D[I], 1 ≤ k ≤ m.

Proposition A.3.1. For a polynomial ideal I with zeros Z(I), finite in number
(|Z(I)| = m) and all simple, the set {∂0[zk]}1≤k≤m is a basis for D[I].

Proof. We know that dimD[I] = m and every functional in {∂0[zk]}1≤k≤m is con-
tained in D[I], so it is sufficient to show that the set {∂0[zk]}1≤k≤m is linearly
independent. Suppose that there is a linear combination

l =
m∑

k=1
ck∂0[zk]

such that ci 6= 0 for some i and such that l is equal to the zero functional. Consider
the residue class [p]I that vanishes at Z(I)\{zi} and takes on the value 1 at zi. Then

l[p]I = ci∂0[zi][p]I = ci 6= 0,

which is a contradiction.
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In the simple case where all zeros of I are simple, the zero set of the polynomial
system that generates I are those points at which all polynomials in I vanish and
the number of distinct zeros is equal to the dimension of the dual space D[I]. Let
us now step away from the assumption that all zeros have multiplicity 1. In the
univariate case (s = 1) it is well known that if p(x) ∈ P1 has a zero with multiplicity
2 in x = z1, then p(x) can be written as

p(x) = p̃(x)(x− z1)2, p̃(x) ∈ P1.

The ideal generated by p(x) is given by

I = 〈p(x)〉 = {q ∈ P1 | q(x) = r(x)p(x) for some r(x) ∈ P1}

so that every q ∈ I can be written as

q(x) = q̃(x)(x− z1)2, q̃(x) ∈ P1.

By the previous discussion, it is clear that

∂0[z1]q = q(z1) = 0, ∀q ∈ I

but also

∂1[z1]q = ∂q(x)
∂x

∣∣∣
x=z1

=
(
∂q̃(x)
∂x

(x− z1)2 + 2q̃(x)(x− z1)
) ∣∣∣

x=z1
= 0, ∀q ∈ I.

In this case, for two polynomials q1 and q2 to be in the same equivalence class, the
difference q1 − q2 must be contained in I. Therefore not only the function value of
q1− q2 but also its first derivative must vanish at z1 and therefore ∂1[z1]q1 = ∂1[z1]q2.
Suppose p has m zeros {zi}1≤i≤m of which only z1 has multiplicity 2 and the other
zeros are simple, then the equivalence classes in P1 induced by I are completely
determined by their m function values at the zeros and their first derivative at x = z1.
The dimension of R[I] is equal to m+ 1 and so is dim(D[I]). D[I] is spanned by
the functionals

{∂0[zi]}1≤i≤m ∪ ∂1[z1].

The multiplicity structure of the zeros of p is completely determined by the structure
of the dual space D[I]. This holds for the multivariate case too.

Example A.3.1. Consider again the ideal from Example A.2.1:

I = 〈x2 + y2 − 1, x2 + 4y2 − 1〉 , 〈q1, q2〉.

Let us denote the zeros by z1 = (−1, 0) and z2 = (1, 0). We have shown that the
polynomial p(x, y) = y is not a member of I. That is, it is not in the same residue
class as q1(x, y) = x2 + y2 − 1 although it takes on the same values at the zero set
Z(I). Every polynomial q ∈ I can be written as

q = p1q1 + p2q2
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with p1, p2 ∈ P2. It can be verified that

∂00[z1]q = q(z1) = 0, ∀q ∈ I,

∂01[z1]q = ∂q

∂y

∣∣∣
z1

=
(
∂p1
∂y

q1 + p1
∂q1
∂y

+ ∂p2
∂y

q2 + p2
∂q2
∂y

) ∣∣∣
z1

= 0, ∀q ∈ I

Therefore, for two polynomials to belong to the same residue class modulo I, they
have to take on the same value at z1 and z2 but they also have to have the same
partial derivative with respect to y at z1. Analogously, it can be shown that

∂00[z2]q = q(z2) = 0, ∀q ∈ I,

∂01[z2]q = ∂q

∂y

∣∣∣
z2

= 0, ∀q ∈ I,

so that the equivalence classes with respect to ∼I are defined by the values they take
on at z1 and z2 and the values of their partial derivatives with respect to y at z1 and
z2. This means dim(R[I]) = dim(D[I]) = 4 and

D[I] = span{∂00[z1], ∂01[z1], ∂00[z2], ∂01[z2]}. (A.3)

Before stating the formal definition of a µ-fold zero, we need to introduce the
notion of a closed set of functionals.

Definition A.8 (closed set of functionals). A set of functionals {ci}1≤i≤m ⊂ (Ps)∗
is said to be closed if

ci(p) = 0, ∀i ∈ {1, . . . ,m} for some p ∈ Ps

implies that ci(qp) = 0,∀i ∈ {1, . . . ,m}, ∀q ∈ Ps.

Definition A.9 (µ-fold zero). A zero zi of a 0-dimensional ideal I ⊂ Ps is a
µ-fold zero of I if there exists a closed set of µ linearly independent differentiation
functionals {cik = ∑

j∈Jik αikj∂j [zi]}1≤k≤µ in the dual space D[I] and no such set
exists containing more than µ functionals.

Example A.3.2. The sets {∂00[z1], ∂01[z1]} and {∂00[z2], ∂01[z2]} from (A.3) are
closed sets of functionals. Indeed, if p(z1) = ∂p

∂y

∣∣∣
z1

= 0 then for any q ∈ P1

(pq)(z1) = ∂(pq)
∂y

∣∣∣
z1

=
(
∂p

∂y
q + p

∂q

∂y

) ∣∣∣
z1

= 0.

The zero z1 is a 2-fold zero because it contributes two linearly independent functionals
to this basis of D[I]. Analogously, the zero z2 has multiplicity 2.
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Appendix B

Polynomial Systems and
Newton Polytopes: the
BKK-Bound

Let S denote a set of polynomials {pi}1≤i≤s in Ps that define a 0-dimensional

polynomial system. Let pi be given by pi =
Ni∑
k=1

cikmk, mk ∈ T s, 1 ≤ k ≤ Ni and

Suppi = {k | cik 6= 0, 1 ≤ k ≤ Ni }. Now, define the map φ : T s → Ns as follows.
Let j =

(
j1 j2 . . . js

)>
∈ Ns, then

φ(m) = j ⇔ m = xj11 x
j2
2 . . . xjss .

We will refer to j as the coordinates of the monomial m in Rs. Next, we map all the
monomials in the support of pi to their coordinates in Rs, using the map φ:

Ji , {j ∈ Ns | ∃k ∈ Suppi : φ(mk) = j}, i = 1, . . . , s.

In this appendix, we will refer to Ji as the support of pi. For fixed supports
{Ji}1≤i≤s it can be shown that for almost all possible sets of complex coefficients
{cik}1≤i≤s,1≤k≤Ni , the system defined by S has the same number of affine roots
(counting multiplicities). This number is defined as BKK(S) [28, 26].

B.1 Newton polytopes
The convex hull of some finite set of points J ⊂ Rs is a convex polytope. To any
nonzero polynomial p ∈ Ps, such a convex polytope is associated.

Definition B.1 (Newton polytope). Given a nonzero polynomial p ∈ Ps with support
J , the associated Newton polytope is given by

New(p) , conv(J )

where conv(·) is the convex hull of a set of points in Rs.
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1 2 3 40
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Figure B.1: New(p) (in blue) and J ( ) in R2 from Example B.1.1.

We will switch to the case where s = 2 for simplicity, but all of the results can
be readily extended to the general case. A polytope in two dimensions is called a
polygon.

Example B.1.1. Consider the polynomial p(x, y) = −1 + x3 + xy + y2 + xy2. The
set J is given by

J = {(0, 0), (3, 0), (1, 1), (0, 2), (1, 2)}

and the polygon New(p) is shown in Figure B.1.

B.2 Minkowski sum and mixed area

Definition B.2 (Minkowski sum). Let P1 and P2 be two polygons in R2, their
Minkowski sum [P1 + P2] is defined as

[P1 + P2] = {p1 + p2 ∈ R2 | p1 ∈ P1, p2 ∈ P2}.

Property B.2.1. For every q1, q2 ∈ P2, it holds that New(q1q2) = [New(q1) +
New(q2)]. More generally, the Minkowski sum of two convex polytopes in R2 is again
a convex polytope in R2.

Example B.2.1. consider the polynomial

p(x, y) = 1 + x+ y + xy + x2y + xy2 + x3y + 2x2y2 + xy3 + x3y2 + x2y3

= (1 + x+ y + xy)︸ ︷︷ ︸
q1

(1 + x2y + xy2)︸ ︷︷ ︸
q2

with support J . Figure B.2 illustrates Property B.2.1.

We need one more definition in order to state the central theorem of this appendix.
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Figure B.2: Left: Newton polytopes for q1 (blue) and q2 (red) from example B.2.1.
Right: Minkowski sum [New(q1) + New(q2)] (green) and the support of p ( ) as
defined in Example B.2.1.

Definition B.3 (mixed area). Given two polygons P1 and P2 in R2. Their mixed
area is defined as

M(P1, P2) , A([P1 + P2])−A(P1)−A(P2)

where A(·) maps a polygon to its area.

B.3 The BKK-bound

Theorem B.3.1. Let p and q be two bivariate polynomials and let (C0)2 be the
two-dimensional agebraic torus:

(C0)2 = {(x, y) ∈ C2 | x 6= 0 and y 6= 0}.

The number of solutions to p(x, y) = q(x, y) = 0 in (C0)2, counting multiplicities is
bounded by the mixed area M(New(p),New(q)) , BKK(p, q).

Theorem B.3.1 provides us with a stricter bound than that of Bézout and the
result is even stronger than it may seem from the formulation of the theorem. For
almost all systems with the same set of supports {Jp,Jq}, BKK(p, q) gives exactly
the number of zeros in (C0)2 rather than just an upper bound. Deviations from this
property are discussed in the next section.

Example B.3.1. Consider the system defined by q1 and q2 from Example B.2.1. The
Bézout number for this system is δq1δq2 = 6. The mixed area M(New(q1),New(q2))
equals 4. Although Bézout’s theorem predicts 6 solutions, by the BKK-bound we know
that at least two of those solutions must lie at infinity. Indeed, the problem has four
affine solutions, all real and plotted in Figure B.3.
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q1(x, y) = 0
q2(x, y) = 0

Figure B.3: Real picture of the zero level curves defined by the system q1 = q2 = 0
as defined in Example B.2.1.

As stated in Theorem B.3.1, the result does not account for solutions with
zero components (x = 0 or y = 0). This is due to the fact that the mixed area
M(New(p),New(q)) does not change by multiplying one of the polynomials by some
monomial. Such a manipulation might, however, introduce solutions that are not in
(C0)2. Example B.3.2 illustrates this phenomenon.

Example B.3.2. Consider the system
{
p(x, y) = xy − 1
q(x, y) = x− y + 1

There are two affine solutions that can be calculated analytically and they are given
by (a−1

1 , a1) and (a−1
2 , a2) where

a1 = 1 +
√

5
2 and a2 = 1−

√
5

2 .

Multiplying p by y, we obtain the system
{
p̃(x, y) = xy2 − y
q̃(x, y) = x− y + 1

which has the solutions (a−1
1 , a1), (a−1

2 , a2) and (−1, 0). The Newton polytopes
involved are depicted in Figure B.4. The mixed areas M(New(p̃),New(q̃)) and
M(New(p̃),New(q̃)) are identical and equal to 2. The “new” solution (−1, 0) is not
detected by the BKK-bound.

Fortunately, there is a simple trick for avoiding this deficiency, based on the
continuity of the roots with respect to the coefficients {cik}1≤i≤s,1≤k≤Ni .
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Figure B.4: Left: New(p) (blue), New(q) (red) and [New(p)+New(q)] (green). Right:
New(p̃) (blue), New(q̃) (red) and [New(p̃) + New(q̃)] (green).

Proposition B.3.1. The BKK-bound gives the correct number of zeros in all of C2

when we add the point (0, 0) to the support of both p and q (or the point 0s to the
support of all pi in the general case) for the construction of the Newton polytopes.

Example B.3.3. Applying the trick of Proposition B.3.1 to the system p̃ = q̃ = 0
as defined in Example B.3.2, the BKK-bound becomes equal to 3, which is the right
number of solutions. The polytopes are given in Figure B.5.

B.4 Disappearing roots
As mentioned in the previous section, the BKK-bound almost always gives the exact
amount of affine roots of the system. It might happen that for some set of coefficients
C∗, some of the BKK(p, q) roots lie at infinity. If we let the set of coefficients
‘move’ towards C∗ in a continuous manner, we can see these solutions ‘move’ towards
infinity. Such solutions are called diverging solutions. Since the “disappearance” of
solutions only happens for a lower dimensional manifold in the coefficients space, any
arbitrarily small perturbation that results in a system with the same supports makes
the solutions “reappear” as solutions with a very large norm.

Example B.4.1. Consider the system
{
p(x, y) = (x− a1)(y − b1)− 1
q(x, y) = (x− a2)(y − b2) + 1

.
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Figure B.5: New(p̃) (blue), New(q̃) (red) and [New(p̃)+New(q̃)] (green) after applying
proposition B.3.1.

The Bézout number is 4. The BKK-bound is given by BKK(p, q)=2 and for generic
coefficients {a1, a2, b1, b2} there are two affine zeros. For a2 → a1, one of these zeros
disappears (it diverges to infinity). When b2 → b1, the other one follows and there
are no finite solutions left.
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Appendix C

A Stricter Bound on the Pencil
Size

In Chapter 4 the upper bound 2δ2 + δ was deduced for the size of the square pencil
Π̂x,r(x). We will show in this appendix that this is a very pessimistic bound. We
warn the reader that the derivations are rather technical and they are not essential
for the understanding of the rest of this text. For an illustration, the reader can skip
the calculations and have a look at the examples in this appendix.

C.1 Calculations

The number s represents the number of columns and rows that are removed during
the x-reduction step. Define the numbers φi as

φi ,
{

max(deg(pxi−1(x)), deg(qxi−1(x))) + 1, i ∈ {1, . . . ,max(δyp , δyq ) + 1}
0 i > max(δyp , δyq ) + 1

.

Note that φi represents the number of columns in the i-th nonzero coefficient block
in Φ̂r. Clearly, this number must be bounded by

φi ≤ δ + 2− i = max(δp, δq) + 2− i,∀i ∈ {1, . . . ,max(δyp , δyq ) + 1}.

The number of columns in the i-th block column of
(

Φ̂r

Ψr

)
is denoted by ψi. Since

the block columns of Ψr contain shifted versions of the blocks in Φ̂r, ψi is bounded
by

ψi ≤ max
j
φj ≤ δ + 1,∀i ∈ {1, . . . , δyp + δyq}.

This means that at the right side of the first block column of L̂(x, y), which corre-
sponds to the δ̂ + 1 monomials of degree 0 in y, we are guaranteed to find at least
δ̂+ 1− (δ+ 1) zero columns. In the second block column, there are at least δ̂− (δ+ 1)
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Table C.1: All possible values for δ̂ − δ depending on the values of δp, δq, δyp and δyq .

δ̂ − δ δp > δq δp ≤ δq
δp + δyq > δq + δyp δyq − 1 δp + δyq − δq − 1
δp + δyq ≤ δq + δyp δq + δyp − δp − 1 δyp − 1

zero columns. In general, at the right side of the j-th block column of L̂(x, y) we
find at least δ̂ + 2− j − (δ + 1) zero columns. This statement holds as long as

δ̂ + 2− j − (δ + 1) ≥ 0
j ≤ δ̂ − δ + 1,

which means we are assured to find zero columns in the first δ̂ − δ block columns
if they are not removed during the y-reduction. It is, however, not difficult to see
that these block columns are always left untouched by the first step of Algorithm 1.
Indeed, δ̂ − δ never exceeds max(δyp , δyq ) + 1, which is the number of nonzero block
columns in Φ̂. This is illustrated by Table C.1. The number s is therefore bounded
from below by

s ≥
δ̂−δ∑

i=1
i = (δ̂ − δ)(δ̂ − δ + 1)

2 . (C.1)

One can observe from Table C.1 that δ̂ − δ ≥ min(δyp , δyq ) − 1. For example, in
the case δp + δyq > δq + δyp and δp ≤ δq we have that δyq − δq > δyp − δp and thus
δp + δyq − δq − 1 > δyp − 1. Denoting min(δyp , δyq ) , δy,min, we get

s ≥ (δy,min − 1)δy,min
2 .

For γn we have
γn = ∆δy,max(∆δy,max + 1)

2
where ∆δy,max , max(δp − δyp , δq − δyq ). Using these results we get for the pencil size

α− γn − s ≤
(δp + δq)(δp + δq + 1)

2 − ∆δy,max(∆δy,max + 1)
2 − (δy,min − 1)δy,min

2

≤ 2δ2 + δ − ∆δy,max(∆δy,max + 1)
2 − (δy,min − 1)δy,min

2 . (C.2)

Also, one can observe that

δ̂ = max(δp + δyq − 1, δq + δyp − 1) = δp + δq − 1−∆δy,min

with ∆δy,min , min(δp − δyp , δq − δyq ). This results in the exact value of α:

α = (δp + δq −∆δy,min)(δp + δq −∆δy,min + 1)
2 . (C.3)
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For the exact value of s we need to take into account the degrees of the coefficient
polynomials pxi (x) and qxi (x). This would lead us to far. We conclude this section
by emphasizing the fact that Π̂x,r(x) grows quadratically with δ but the support
structure of the polynomials p and q can influence the pencil size strongly because of
the reduction step (R).

C.2 Examples
We illustrate the ideas with two examples.

Example C.2.1. In Example 3.2.1, it can be seen that for the considered system of
degree δ = 2, using ∆δp = δyq − 1 = 1 and ∆δq = δyp − 1 = 1 we find that

Π̂x,r(x) =




−4 0 1 0 0 1
−3 −2 1 0 1 1

−4 0 1 0 0 1
−3 −2 1 0 1 1

−x 1
−x 1

−x 1
−x 1

−x 1




is square and of size 9. The numbers φi and ψi are given by

φ1 = ψ1 = ψ2 = 3, φ2 = ψ3 = 2, φ3 = ψ4 = 1 and φ4 = 0.

The upper bound from Corollary 4.1.1 is equal to 10. The stricter bound (C.2) gives
an upper bound equal to 9 (δy,min = 2 and ∆δy,max = 0).

Example C.2.2. Consider a bivariate system where p(x, y) and q(x, y) are rep-
resented by two different random matrices of size 8 × 8 of which the entries are
normally distributed with mean 0 and standard deviation 1. For this problem, we
have δp = δq = 14, δyp = δxp = δyq = δxq = 7. The nonzero structures of the associated
pencils Π̂x(x) and Π̂x,r(x) are shown in Figure C.1. The size of Π̂x(x) is 224× 231.
That of Π̂x,r(x) is (only) 112× 112, while 2δ2 + δ = 406. Using (C.3) instead of the
upper bound 2δ2 + δ for α in (C.2) we get α− γn − s ≤ 182.
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Figure C.1: Nonzero structure of Π̂x(x) (left) and Π̂x,r(x) (right) of Example C.2.2.
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Appendix D

An Example in the Chebyshev
Basis

We work out an example in the Chebyshev basis. The Chebyshev polynomials of the
first kind are defined by the 3-term recurrence relation

T0(x) = 1,
T1(x) = x,

Tk(x) = 2xTk−1(x)− Tk−2(x), k > 1.

We will work with the bases

Bx = {T0(x), T1(x), . . . , Tδ(x)} and By = {T0(y), T1(y), . . . , Tδ(y)}

and the corresponding tensor product basis

B , Bx ⊗By = {bij(x, y)}0≤i,j≤δ

where bij(x, y) , Tj(x)Ti(y). Consider the problem
{
p(x, y) = x2 + y2 − 1 = 0
q(x, y) = xy − 1

2 = 0

which has two different finite solutions (
√

2
2 ,
√

2
2 ) and (−

√
2

2 ,−
√

2
2 ). Both solutions

have multiplicity 2. The real zero level lines of p and q are shown in Figure D.1. For
the coordinates of p and q in B we write

p(x, y) = 1
2(2x2 − 1) + 1

2(2y2 − 1)

= 1
2b02(x, y) + 1

2b20(x, y)

q(x, y) = xy − 1
2

= b11(x, y)− 1
2b00(x, y)
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D. An Example in the Chebyshev Basis

−2 −1 0 1 2−2

−1

0

1

2

x

y

Vp
Vq

Figure D.1: Real picture of Vp and Vq for p and q from the considered example.

and we find

{
p(x, y) = 0
q(x, y) = 0

B−→
C

{L(x, y)}B =




0 0 1
2 0 0 1

2
−1

2 0 0 0 1 0
−x 1

1 −2x 1
−x 1

−y 1
1 −2y 1




.

For the degree extension, we use ∆δp = δyq − 1 = 0, ∆δq = δyp − 1 = 1 and sq1(y) = y:

yq(x, y) = xy2 − 1
2y = 1

2b21(x, y) + 1
2b01(x, y)− 1

2b10(x, y).

We get for {L̂(x, y)}B̂:

{L(x, y)}B B−→
E




0 0 1
2 0 0 1

2
−1

2 0 0 0 1 0
1
2 −1

2 0 0 0 1
2 0

−x 1
1 −2x 1
0 1 −2x 1

−x 1
1 −2x 1

−x 1
−y 1

1 −2y 1
1 −2y 1




.
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Applying Algorithm 1 to {L̂(x, y)}B̂ we obtain for {L̂r(x, y)}B̂

{L(x, y)}B B−→
E
{L̂(x, y)}B̂

B−→
R




0 0 1
2 0 0 1

2
−1

2 0 0 0 1 0
1
2 −1

2 0 0 1
2

−x 1
1 −2x 1

−x 1
−x 1

−y 1
1 −2y 1




.

We define {Π̂x,r(x)}B̂ as the rows of {L̂r(x, y)}B̂ that do not contain y. The finite
eigenvalues of {Π̂x,r(x)}B are found using Matlab, they are equal to 0.7071, 0.7071,
−0.7071, −0.7071. The eigenvalues are indeed (numerical approximations for) the
x-coordinates of the solutions of the considered problem, taking their multiplicities
into account. For this example, the matrix T from the proof of Theorem 4.3.1 is
found as




1
x

2x2 − 1
4x3 − 3x

y
xy

2x2y − y
2y2 − 1

2xy2 − x




= T




1
x
x2

x3

y
xy
x2y
y2

xy2




=




1
1

−1 2
−3 4

1
1

−1 2
−1 2

−1 2







1
x
x2

x3

y
xy
x2y
y2

xy2




.

For the matrix L we get

{Π̂x,r̃(x)}B̂T = LΠ̂x,r̃(x), ∀x ∈ C,
L = {Π̂x,r̃(x)}B̂T (Π̂x,r̃(x))−1, ∀x ∈ C.

It is found using Matlab as

L =




1
1

1
1

2
−2 4

1
2

−1 2




=
(
Lφ,ψ

Lb

)
.
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D. An Example in the Chebyshev Basis

−1 −0.5 0 0.5 1

−0.2

−0.1

0

x

Figure D.2: The resultants det{Π̂x,r(x)}B̂ ( ) and det Π̂x,r(x) ( ) for the prob-
lem that is considered in this appendix. The constant C from Theorem 4.3.1 is equal
to 1

2 . The purple resultant ( ) is obtained using the shift function sq1(y) = 1
2y + 1

and the Chebyshev basis, the matrix L changes and C = 1
4 .

It is indeed both regular and lower triangular. The constant C̃ is found as

C̃ = detL
detT = 1

2 .

Figure D.2 illustrates Theorem 4.3.1. Apparently γ = 1 and C = C̃.
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Appendix E

Rectangular Eigenvalue
Problems

In order to find a numerical approximation of the solution set of a bivariate polynomial
system, some versions of the proposed method in this text result in solving several
rectangular eigenvalue problems. The problem also plays an important role in the
generalization to higher dimensions (Appendix G). In this appendix we discuss the
problem and we propose a way to solve it in a numerically reliable way.

E.1 The rectangular eigenvalue problem (REP)
Definition E.1 (REP). The problem of finding all values of x ∈ C such that there
exists a nonzero vector v that satisfies

Av = xBv (E.1)

where A,B ∈ Cm×n and v ∈ Cn is called a rectangular eigenvalue problem. A solution
x and the corresponding vector(s) v are called an eigenvalue and the corresponding
eigenvector(s) respectively.

Definition E.1 can be interpreted as follows. Solving the REP, we are looking for
all finite values of x such that some rectangular linear pencil A− xB is column rank
deficient. It is clear that if m < n, for any value of x ∈ C there exists a vector v
such that (E.1) is satisfied. Such a “flat” REP has infinitely many eigenvalues. We
will assume from now on that m ≥ n. A “tall” pencil A − xB is called singular if
it is column rank deficient for every x ∈ C. A pencil that is not singular is called
regular. Generically, a tall REP has no eigenvalues in C.

E.2 Solving a REP
A necessary condition for (E.1) to hold is that

A1:n,:v = xB1:n,:v (E.2)
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E. Rectangular Eigenvalue Problems

where we used the Matlab notation (·)1:n,: to denote the first n rows and all columns
of A. This is a square GEP that can be solved using the QZ-algorithm for example.
For the resulting eigenvalues x∗ the upper square part of the pencil A − x∗B is
column rank deficient. It is, however, not guaranteed that the entire pencil is too.
Therefore, we must check for each eigenvalue x∗ of (E.2) whether A− x∗B has at
least one singular value = 0. This would work in exact arithmetic. In practice, we
test for every numerically obtained eigenvalue x∗ of (E.2) if σn < ε(σ1 + 1) where ε
is some small threshold value and σi is the i-th singular value of A− x∗B1. From a
numerical point of view, it is more interesting to use a QR-factorization with optimal
column pivoting before splitting the pencil to obtain a GEP. The procedure that is
implemented is given by the following algorithm.

Algorithm 2. Let A,B ∈ Cm×n be given matrices with m > n and let ε > 0 be a
given threshold,

Let M =
(
A B

)
and compute the QR-factorization of M with optimal column

pivoting so that M = QRP ∗ with P some column permutation matrix.
Define RP ∗ =

(
R1 R2

)
with R1, R2 ∈ Cm×n and calculate the eigenvalues of the

GEP
(R1 − xR2)1:n,:v = 0

by using the QZ-algorithm. Denote the set of finite eigenvalues by X̃.
Initialize the set of eigenvalues of the REP as an empty set Xrep.
for every x∗ ∈ X̃ do

Let A− x∗B = UΣV > be the singular value decomposition of A− x∗B.
Let σ be the vector containing the singular values: σ = diag(Σ).
if σn < ε(σ1 + 1) then

Add x∗ to the set Xrep.
end if

end for
Output the set Xrep.

1The singular values are assumed to be ordered from large to small, as they usually are.

108



Appendix F

Detailed Numerical Results

In this appendix we report the numerical results in tables. We will use the notations
in Table F.1. All tests are performed on a set of 60 problems of which some properties
can be found in Table F.2 and on a set of random problems of degree δ = 1, . . . , 40
as specified in Chapter 6.

p Problem index, 1 ≤ p ≤ 60.
# refsol The number of reference solutions.
time (s) Computation time in seconds.
# sol The number of solutions found by a solver.
rmax Maximal residual of all the solutions found by a solver.
εmax Maximal (mixed absolute and relative) forward error.
s Boolean, indicates whether the problem is successfully solved by a solver.

Criteria for success are given in Chapter 6.

Table F.1: Notations.

The maximal residual rmax is calculated as in Definition 5.1. The maximal
forward error εmax is calculated as

εmax , max
s∈Sref

{
mins̃∈S̃‖s− s̃‖2
‖s‖2 + 1

}

where S̃ indicates the set of numerically found solutions. Note that the criterion for
success for solvers that intend to take multiplicities into account is not automatically
satisfied if εmax < 0.01. The criterion is more restrictive. The criterion is described
in Chapter 6. The reference solution set Sref is calculated using Bertini in adaptive
precision, which is a very reliable solver. For the random problems, the value of εmax
is not reported because it is not used in the criterion for success. The tests on the
random problems for PNLA are only executed up to degree 25 because they were
too time consuming.
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p δp δq # refsol µmax p δp δq # refsol µmax
1 8 7 32 13 31 8 7 32 16
2 8 7 32 14 32 4 5 16 4
3 4 3 12 3 33 2 2 4 1
4 2 1 2 1 34 3 3 6 2
5 3 2 4 2 35 4 2 8 4
6 4 3 12 8 36 9 10 90 9
7 6 5 22 18 37 3 4 4 1
8 9 8 72 8 38 3 1 3 1
9 3 2 2 1 39 3 1 2 2

10 3 2 4 2 40 4 2 3 2
11 3 2 6 3 41 3 3 6 2
12 4 3 4 1 42 4 2 8 2
13 3 2 4 2 43 6 3 18 8
14 4 3 8 2 44 6 4 24 6
15 8 6 48 2 45 8 7 49 1
16 8 6 48 2 46 8 6 48 2
17 4 3 10 4 47 5 4 4 1
18 4 3 8 2 48 4 3 10 4
19 6 5 22 2 49 4 3 8 2
20 11 10 55 1 50 6 5 22 2
21 8 6 48 2 51 11 10 55 1
22 8 7 52 12 52 8 7 49 1
23 6 5 30 1 53 8 7 52 12
24 8 1 8 2 54 6 5 30 1
25 9 8 52 1 55 8 7 32 18
26 4 3 12 6 56 9 8 56 6
27 3 2 6 3 57 8 1 8 2
28 7 6 38 10 58 9 8 52 1
29 4 3 11 6 59 4 3 12 6
30 8 7 32 16 60 3 2 6 3

Table F.2: Information about the problem set, µmax denotes the highest multiplicity
of the solutions of the problem. It is determined by the solution vector µ of (5.7).

111



F. Detailed Numerical Results

EV Syl
p # refsol rmax εmax s time (s) # sol rmax εmax s

1 32 5.42 · 10−12 1.02 · 10−4 1 0.21 122 6.38 · 10−11 9.59 · 10−5 1
2 32 4.61 · 10−9 1.03 · 10−3 1 0.23 94 2.57 · 10−7 1.07 · 10−3 1
3 12 2.52 · 10−16 7.89 · 10−14 1 2.23 · 10−2 48 2.52 · 10−16 7.89 · 10−14 1
4 2 1.49 · 10−14 3.33 · 10−14 1 9.87 · 10−3 2 1.35 · 10−15 3.32 · 10−15 1
5 4 5.88 · 10−17 5.65 · 10−14 1 6.41 · 10−3 8 5.88 · 10−17 5.65 · 10−14 1
6 12 1.08 · 10−7 6.04 · 10−9 1 1.68 · 10−2 42 1.37 · 10−16 1.74 · 10−12 1
7 22 1.1 · 10−14 1.03 · 10−3 1 4.04 · 10−2 116 4.44 · 10−15 2.35 · 10−12 1
8 72 4.43 · 10−15 3.27 · 10−12 1 4.14 · 10−2 648 4.43 · 10−15 3.27 · 10−12 1
9 2 8.88 · 10−16 2.01 · 10−15 1 6.31 · 10−3 2 3.1 · 10−16 1.99 · 10−15 1

10 4 1.08 · 10−16 4.89 · 10−9 1 1.05 · 10−2 8 1.05 · 10−16 4.89 · 10−9 1
11 6 3.26 · 10−16 6.04 · 10−6 1 6.8 · 10−3 6 1.35 · 10−15 6.04 · 10−6 1
12 4 2.87 · 10−15 7.02 · 10−16 1 8.63 · 10−3 4 1.35 · 10−15 6.28 · 10−16 1
13 4 5.88 · 10−17 3.08 · 10−15 1 5.76 · 10−3 8 5.88 · 10−17 3.08 · 10−15 1
14 8 7.42 · 10−15 1.63 · 10−8 1 1.77 · 10−2 24 6.91 · 10−15 7.86 · 10−9 1
15 48 1.4 · 10−11 2.38 · 10−6 1 0.17 48 2.58 · 10−12 2.38 · 10−6 1
16 48 1.4 · 10−11 2.38 · 10−6 1 0.17 48 2.58 · 10−12 2.38 · 10−6 1
17 10 1.95 · 10−15 1.29 · 10−12 1 1.11 · 10−2 20 3.27 · 10−15 1.29 · 10−12 1
18 8 1.2 · 10−15 1.35 · 10−13 1 1.17 · 10−2 24 1.51 · 10−15 1.35 · 10−13 1
19 22 6.65 · 10−15 5.53 · 10−15 1 4.49 · 10−2 26 6.27 · 10−15 5.67 · 10−15 1
20 55 3.18 · 10−13 1.03 · 10−13 1 0.17 55 1.99 · 10−12 3.26 · 10−13 1
21 48 1.4 · 10−11 2.38 · 10−6 1 0.18 48 2.58 · 10−12 2.38 · 10−6 1
22 52 3.08 · 10−11 7.92 · 10−5 1 0.21 156 1.67 · 10−10 2.65 · 10−5 1
23 30 2.55 · 10−12 3.62 · 10−8 1 5.36 · 10−2 60 6.44 · 10−13 3.62 · 10−8 1
24 8 5.29 · 10−16 2.81 · 10−14 1 1.59 · 10−2 8 7.18 · 10−16 2.81 · 10−14 1
25 52 5.4 · 10−11 1.02 · 10−10 1 0.15 52 1.79 · 10−13 9.09 · 10−14 1
26 12 4.25 · 10−8 1.08 · 10−8 1 1.08 · 10−2 36 7.43 · 10−16 3.07 · 10−13 1
27 6 8.96 · 10−16 9.89 · 10−9 1 8.77 · 10−3 7 2.71 · 10−12 9.89 · 10−9 1
28 38 5.78 · 10−9 1.23 · 10−7 1 0.11 57 9.22 · 10−9 8.57 · 10−8 1
29 11 2.86 · 10−15 1.91 · 10−11 1 1.49 · 10−2 27 3.05 · 10−15 9.74 · 10−14 1
30 32 3.66 · 10−10 3.23 · 10−6 1 0.17 78 3.68 · 10−10 1.45 · 10−6 1
31 32 9.25 · 10−10 9.16 · 10−4 1 0.18 74 9.33 · 10−10 9.19 · 10−4 1
32 16 2.24 · 10−15 4.86 · 10−5 1 2.19 · 10−2 28 2.16 · 10−15 1.09 · 10−4 1
33 4 1.18 · 10−15 9.35 · 10−15 1 3.77 · 10−3 4 1.9 · 10−15 1.22 · 10−14 1
34 6 2.53 · 10−16 2.64 · 10−9 1 7.55 · 10−3 12 1.48 · 10−16 2.07 · 10−13 1
35 8 8.49 · 10−17 1.07 · 10−8 1 9.09 · 10−3 8 2.66 · 10−16 1.07 · 10−8 1
36 90 4.55 · 10−14 9.7 · 10−3 1 0.6 162 4.43 · 10−14 1.27 · 10−2 0
37 4 7.12 · 10−16 1.35 · 10−15 1 8.81 · 10−3 4 2.09 · 10−16 1.22 · 10−15 1
38 3 1.58 · 10−15 2.37 · 10−15 1 4.58 · 10−3 3 1.57 · 10−15 2 · 10−15 1
39 2 2.03 · 10−16 1.45 · 10−8 1 5.62 · 10−3 2 4.2 · 10−16 1.45 · 10−8 1
40 3 2.87 · 10−16 4.4 · 10−15 1 5.41 · 10−3 6 1.47 · 10−16 4.39 · 10−15 1
41 6 2.53 · 10−16 2.64 · 10−9 1 6.56 · 10−3 12 1.48 · 10−16 1.76 · 10−13 1
42 8 8.4 · 10−13 1.39 · 10−8 1 1.04 · 10−2 10 8.39 · 10−13 1.39 · 10−8 1
43 18 2.42 · 10−15 2.88 · 10−13 1 2.28 · 10−2 36 5.22 · 10−14 2.88 · 10−13 1
44 24 1.08 · 10−12 7.37 · 10−9 1 4.32 · 10−2 96 2.58 · 10−9 5.19 · 10−9 1
45 49 4.32 · 10−7 2.31 · 10−9 1 0.18 50 2.2 · 10−11 9.95 · 10−9 1
46 48 1.35 · 10−11 1.72 · 10−6 1 0.17 48 1.39 · 10−12 1.72 · 10−6 1
47 4 9.95 · 10−16 3.85 · 10−15 1 3.47 · 10−2 4 1.35 · 10−15 3.86 · 10−15 1
48 10 1.32 · 10−15 2.11 · 10−13 1 9.33 · 10−3 20 1.67 · 10−15 2.11 · 10−13 1
49 8 3.29 · 10−16 4.47 · 10−9 1 1.15 · 10−2 24 3.72 · 10−16 5.56 · 10−14 1
50 22 7.76 · 10−15 7.87 · 10−15 1 5.41 · 10−2 22 3.05 · 10−15 4.72 · 10−15 1
51 55 6.6 · 10−13 1.83 · 10−13 1 0.16 55 2.95 · 10−12 4.82 · 10−13 1
52 49 4.32 · 10−7 2.31 · 10−9 1 0.19 50 2.2 · 10−11 9.95 · 10−9 1
53 52 2.91 · 10−11 4.04 · 10−5 1 0.21 156 1.53 · 10−10 4.15 · 10−5 1
54 30 2.58 · 10−12 1.5 · 10−8 1 5.24 · 10−2 60 4.03 · 10−13 1.5 · 10−8 1
55 32 4.69 · 10−14 1.46 · 10−3 1 0.18 184 4.73 · 10−14 4.9 · 10−6 1
56 56 1.03 · 10−7 1.82 · 10−9 1 0.19 60 1.03 · 10−7 1.82 · 10−9 1
57 8 7.96 · 10−16 6.62 · 10−15 1 1.3 · 10−2 8 7.49 · 10−16 6.62 · 10−15 1
58 52 5.09 · 10−11 9.61 · 10−11 1 0.15 52 1.37 · 10−13 5.23 · 10−14 1
59 12 8.09 · 10−9 1.2 · 10−8 1 1.08 · 10−2 36 8.09 · 10−9 1.23 · 10−12 1
60 6 5.07 · 10−16 1.66 · 10−8 1 6.75 · 10−3 7 3.05 · 10−12 1.66 · 10−8 1

Table F.3: Numerical results for the methods described in 5.1.1 (EV), 5.1.2 (Syl)
and 5.1.3 (L(x, y)), part 1.
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Syl L(x, y)
p # refsol time (s) # sol rmax εmax s time (s) # sol
1 32 0.11 122 7.27 · 10−7 6.86 · 10−5 1 0.21 140
2 32 0.11 86 2.72 · 10−8 1.24 · 10−3 1 0.25 100
3 12 1.44 · 10−2 48 2.52 · 10−16 7.89 · 10−14 1 1.83 · 10−2 48
4 2 7.46 · 10−3 2 1.52 · 10−14 3.52 · 10−14 1 9.41 · 10−3 2
5 4 4.6 · 10−3 8 5.88 · 10−17 5.65 · 10−14 1 7.59 · 10−3 8
6 12 2.18 · 10−2 30 4.79 · 10−8 1.74 · 10−12 1 1.42 · 10−2 42
7 22 3.44 · 10−2 116 6.58 · 10−16 2.16 · 10−12 1 3.21 · 10−2 116
8 72 3.34 · 10−2 648 4.43 · 10−15 3.27 · 10−12 1 3.32 · 10−2 648
9 2 6.33 · 10−3 2 2.81 · 10−16 1.91 · 10−15 1 5.58 · 10−3 2

10 4 1.26 · 10−2 8 1.21 · 10−16 7.02 · 10−9 1 6.47 · 10−3 8
11 6 1.21 · 10−2 6 3.95 · 10−15 1.95 · 10−6 1 9.34 · 10−3 6
12 4 9.74 · 10−3 4 3.76 · 10−15 5.41 · 10−16 1 7.56 · 10−3 4
13 4 4.2 · 10−3 8 5.88 · 10−17 3.08 · 10−15 1 4.11 · 10−3 8
14 8 2.43 · 10−2 24 9.39 · 10−15 2.42 · 10−8 1 1.44 · 10−2 24
15 48 9.48 · 10−2 48 3.4 · 10−13 1.88 · 10−6 1 0.22 48
16 48 8.95 · 10−2 48 3.03 · 10−13 1.88 · 10−6 1 0.22 48
17 10 1.57 · 10−2 20 3.43 · 10−15 1.29 · 10−12 1 9.76 · 10−3 20
18 8 1.6 · 10−2 24 6.19 · 10−16 1.35 · 10−13 1 7.88 · 10−3 24
19 22 3.97 · 10−2 26 4.14 · 10−9 1.22 · 10−9 1 4.54 · 10−2 28
20 55 9.48 · 10−2 55 1.97 · 10−10 3.22 · 10−11 1 0.92 55
21 48 8.76 · 10−2 48 3.4 · 10−13 1.88 · 10−6 1 0.26 48
22 52 9.81 · 10−2 144 2.72 · 10−9 5.34 · 10−9 1 0.24 188
23 30 5.04 · 10−2 60 1.4 · 10−7 3.53 · 10−8 1 5.75 · 10−2 68
24 8 1.56 · 10−2 8 9.14 · 10−16 2.81 · 10−14 1 4.05 · 10−2 22
25 52 7.48 · 10−2 52 2.81 · 10−8 5.32 · 10−8 1 0.31 52
26 12 1.56 · 10−2 30 3.2 · 10−8 1.57 · 10−8 1 8.8 · 10−3 36
27 6 1.05 · 10−2 7 1.72 · 10−7 1.37 · 10−8 1 7 · 10−3 10
28 38 7.3 · 10−2 57 4.41 · 10−13 7.15 · 10−8 1 0.12 57
29 11 2.03 · 10−2 27 1.07 · 10−7 6.39 · 10−8 1 8.23 · 10−3 31
30 32 7.43 · 10−2 78 1.25 · 10−7 2.75 · 10−6 1 0.17 98
31 32 9.11 · 10−2 74 1.35 · 10−7 1.35 · 10−3 1 0.17 95
32 16 4.35 · 10−2 28 2.98 · 10−15 3.99 · 10−5 1 2.46 · 10−2 28
33 4 9.78 · 10−3 4 2.48 · 10−14 1.32 · 10−13 1 3.83 · 10−3 4
34 6 1.13 · 10−2 12 2.22 · 10−16 4.86 · 10−9 1 4.24 · 10−3 12
35 8 1.71 · 10−2 8 5.01 · 10−16 8.34 · 10−9 1 7.1 · 10−3 8
36 90 0.21 162 3.07 · 10−14 5.98 · 10−3 1 0.98 162
37 4 2.07 · 10−2 4 1.48 · 10−16 1.24 · 10−15 1 9.35 · 10−3 4
38 3 6.1 · 10−3 3 2.38 · 10−15 2.48 · 10−15 1 3.79 · 10−3 3
39 2 5.35 · 10−3 2 2.05 · 10−16 7.82 · 10−9 1 5.56 · 10−3 2
40 3 4.12 · 10−3 6 1.64 · 10−16 4.48 · 10−15 1 6.26 · 10−3 6
41 6 6.68 · 10−3 12 2.22 · 10−16 4.86 · 10−9 1 4.88 · 10−3 12
42 8 1.73 · 10−2 10 2.54 · 10−13 7.85 · 10−8 1 1 · 10−2 10
43 18 2.95 · 10−2 36 2.88 · 10−14 2.88 · 10−13 1 2.87 · 10−2 36
44 24 4.32 · 10−2 88 1.31 · 10−12 6.26 · 10−9 1 4.89 · 10−2 96
45 49 9.46 · 10−2 49 5.77 · 10−7 1.51 · 10−9 1 0.2 52
46 48 8.71 · 10−2 48 2.01 · 10−13 1.41 · 10−6 1 0.22 48
47 4 2.48 · 10−2 4 9.36 · 10−14 1.89 · 10−14 1 2.94 · 10−2 4
48 10 1.5 · 10−2 20 2.66 · 10−14 2.11 · 10−13 1 9.49 · 10−3 20
49 8 1.57 · 10−2 24 4.31 · 10−16 5.56 · 10−14 1 1 · 10−2 24
50 22 5.02 · 10−2 22 4.3 · 10−14 2.5 · 10−14 1 5.79 · 10−2 22
51 55 8.79 · 10−2 55 1.3 · 10−10 2.13 · 10−11 1 0.86 55
52 49 9.46 · 10−2 49 5.77 · 10−7 1.51 · 10−9 1 0.2 52
53 52 9.76 · 10−2 148 2.75 · 10−9 1.22 · 10−8 1 0.24 188
54 30 5.24 · 10−2 60 1.35 · 10−7 3.07 · 10−8 1 5.91 · 10−2 68
55 32 8.64 · 10−2 184 1.19 · 10−14 4.2 · 10−6 1 0.15 184
56 56 9.77 · 10−2 60 1.03 · 10−7 1.82 · 10−9 1 0.36 60
57 8 1.48 · 10−2 8 7.89 · 10−16 6.62 · 10−15 1 3.8 · 10−2 22
58 52 7.37 · 10−2 52 1.84 · 10−9 3.47 · 10−9 1 0.3 52
59 12 1.35 · 10−2 36 2.69 · 10−9 1.21 · 10−8 1 8.64 · 10−3 36
60 6 9.98 · 10−3 7 1.34 · 10−7 3.95 · 10−9 1 6.45 · 10−3 10

Table F.4: Numerical results for the methods described in 5.1.1 (EV), 5.1.2 (Syl)
and 5.1.3 (L(x, y)), part 2.
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F. Detailed Numerical Results

C VP
p # refsol rmax εmax s time (s) # sol rmax εmax s

1 32 4.22 · 10−14 5.72 · 10−13 1 0.24 32 1.06 · 10−14 2.34 · 10−4 1
2 32 8 · 10−5 1.35 · 10−3 1 8.24 · 10−2 32 1.14 · 10−14 6.93 · 10−4 1
3 12 4.32 · 10−16 7.89 · 10−14 1 0.1 12 1.15 · 10−16 7.27 · 10−7 1
4 2 1.11 · 10−15 6.29 · 10−15 1 4.34 · 10−2 2 3.49 · 10−17 1.29 · 10−15 1
5 4 8.82 · 10−17 5.65 · 10−14 1 4 · 10−2 4 2.31 · 10−16 5.65 · 10−14 1
6 12 4.75 · 10−16 1.74 · 10−12 1 3.62 · 10−2 12 3.25 · 10−17 1.44 · 10−9 1
7 22 4.03 · 10−16 2.35 · 10−12 1 4.21 · 10−2 22 1.18 · 10−16 1.3 · 10−3 1
8 72 1.35 · 10−15 3.27 · 10−12 1 0.11 72 6.03 · 10−16 2.99 · 10−3 1
9 2 3.79 · 10−16 1.89 · 10−15 1 9.46 · 10−2 2 1.02 · 10−16 1.96 · 10−15 1

10 4 6.77 · 10−17 1.66 · 10−13 1 3.19 · 10−2 4 5.72 · 10−17 1.07 · 10−9 1
11 6 1.4 · 10−15 7.08 · 10−14 1 2.19 · 10−2 6 3.55 · 10−17 2.28 · 10−6 1
12 4 2.26 · 10−14 3.98 · 10−15 1 3.84 · 10−2 4 1.2 · 10−16 2.58 · 10−16 1
13 4 8.82 · 10−17 3.08 · 10−15 1 1.16 · 10−2 4 2.51 · 10−17 3.08 · 10−15 1
14 8 2.31 · 10−15 4.56 · 10−13 1 2.28 · 10−2 8 7.16 · 10−15 4.56 · 10−13 1
15 48 4.51 · 10−13 1.91 · 10−7 1 0.14 48 1.2 · 10−16 1.9 · 10−7 1
16 48 8.26 · 10−13 3.94 · 10−10 1 0.13 48 2.25 · 10−16 4.45 · 10−8 1
17 10 4.31 · 10−15 1.29 · 10−12 1 1.43 · 10−2 10 6.45 · 10−16 2.84 · 10−5 1
18 8 5.62 · 10−16 1.35 · 10−13 1 1.5 · 10−2 8 5.01 · 10−16 1.59 · 10−9 1
19 22 2.08 · 10−14 8.42 · 10−15 1 3.2 · 10−2 22 3.87 · 10−16 1.68 · 10−9 1
20 55 2.58 · 10−11 6.15 · 10−12 1 0.32 55 4.95 · 10−4 0.63 0
21 48 4.51 · 10−13 4.69 · 10−11 1 0.13 48 1.63 · 10−16 3.4 · 10−8 1
22 52 1.81 · 10−14 3.4 · 10−12 1 8.34 · 10−2 52 3.13 · 10−14 3.27 · 10−5 1
23 30 7.82 · 10−7 5.04 · 10−5 1 8.87 · 10−2 30 3.65 · 10−15 3.9 · 10−8 1
24 8 1.06 · 10−15 2.81 · 10−14 1 2.06 · 10−2 8 7.7 · 10−17 4.15 · 10−9 1
25 52 2.31 · 10−6 2.83 · 10−6 1 0.15 52 1.76 · 10−13 2.02 · 10−13 1
26 12 1.23 · 10−15 3.07 · 10−13 1 1.41 · 10−2 12 8.63 · 10−17 3.59 · 10−9 1
27 6 6.77 · 10−16 3.45 · 10−13 1 1.03 · 10−2 6 6.4 · 10−17 7.25 · 10−7 1
28 38 1.76 · 10−12 3.82 · 10−8 1 4.42 · 10−2 38 2.03 · 10−7 1.68 · 10−5 1
29 11 1.04 · 10−15 9.76 · 10−14 1 2.95 · 10−2 11 1.16 · 10−16 3.64 · 10−9 1
30 32 1.2 · 10−12 3.07 · 10−13 1 6.57 · 10−2 32 3.46 · 10−14 4.92 · 10−5 1
31 32 5.9 · 10−6 1.35 · 10−3 1 6.04 · 10−2 32 1.29 · 10−8 6.99 · 10−4 1
32 16 6.41 · 10−15 2.61 · 10−12 1 1.88 · 10−2 16 3.72 · 10−16 2.61 · 10−12 1
33 4 3.59 · 10−15 1.34 · 10−14 1 1.07 · 10−2 4 4.88 · 10−17 3.66 · 10−15 1
34 6 1.01 · 10−15 2.07 · 10−13 1 1.17 · 10−2 6 1.5 · 10−16 6.98 · 10−9 1
35 8 1.11 · 10−16 1.16 · 10−12 1 1.28 · 10−2 8 6.92 · 10−17 4.64 · 10−5 1
36 90 3.1 · 10−14 5.93 · 10−12 1 0.14 90 6.83 · 10−16 7.14 · 10−3 1
37 4 2.08 · 10−15 9.51 · 10−16 1 2.07 · 10−2 4 1.53 · 10−16 4.01 · 10−16 1
38 3 1.56 · 10−15 9.71 · 10−16 1 7.26 · 10−3 3 5.51 · 10−17 2.34 · 10−16 1
39 2 1.94 · 10−16 2.51 · 10−12 1 2.55 · 10−2 2 5.68 · 10−18 6.23 · 10−9 1
40 3 3.34 · 10−16 4.12 · 10−15 1 2.84 · 10−2 3 4.07 · 10−17 1.9 · 10−9 1
41 6 1.01 · 10−15 1.76 · 10−13 1 1.19 · 10−2 6 1.36 · 10−16 5.27 · 10−9 1
42 8 6.38 · 10−14 1.18 · 10−13 1 3.66 · 10−2 8 6.41 · 10−17 1.78 · 10−9 1
43 18 1.61 · 10−15 2.88 · 10−13 1 2.46 · 10−2 18 1.9 · 10−16 4.18 · 10−5 1
44 24 3.15 · 10−17 2.83 · 10−13 1 4.07 · 10−2 24 6.35 · 10−7 1.03 · 10−6 1
45 49 4.33 · 10−12 7.75 · 10−10 1 0.66 49 7.75 · 10−17 1.91 · 10−12 1
46 48 3.05 · 10−12 1.55 · 10−9 1 0.13 48 1.33 · 10−16 3.6 · 10−8 1
47 4 1.01 · 10−15 3.85 · 10−15 1 4.96 · 10−2 4 3.78 · 10−15 5.25 · 10−14 1
48 10 3.32 · 10−15 2.11 · 10−13 1 1.16 · 10−2 10 2.54 · 10−16 1.38 · 10−5 1
49 8 4.31 · 10−16 5.56 · 10−14 1 2.85 · 10−2 8 2.55 · 10−16 1.9 · 10−9 1
50 22 3.38 · 10−15 4.72 · 10−15 1 2.79 · 10−2 22 1.45 · 10−16 1.54 · 10−9 1
51 55 2.24 · 10−10 5.16 · 10−11 1 0.31 55 3.29 · 10−4 0.4 0
52 49 4.33 · 10−12 7.75 · 10−10 1 0.64 49 1.3 · 10−16 1.33 · 10−12 1
53 52 9.8 · 10−15 2.83 · 10−12 1 6.91 · 10−2 52 2.1 · 10−14 2.52 · 10−5 1
54 30 4.07 · 10−7 5.04 · 10−5 1 7.22 · 10−2 30 4.05 · 10−15 3.46 · 10−8 1
55 32 3.95 · 10−15 3.03 · 10−12 1 5.06 · 10−2 32 2.56 · 10−13 1.03 · 10−3 1
56 56 5.17 · 10−8 3.69 · 10−12 1 6.74 · 10−2 56 2.02 · 10−12 1.14 · 10−3 1
57 8 1.03 · 10−15 6.62 · 10−15 1 1.32 · 10−2 8 6.42 · 10−17 2.48 · 10−9 1
58 52 1.19 · 10−6 1.53 · 10−6 1 0.15 52 1.34 · 10−12 1.54 · 10−12 1
59 12 3.97 · 10−16 1.23 · 10−12 1 1.17 · 10−2 12 3.32 · 10−17 2.65 · 10−9 1
60 6 1.11 · 10−15 1.33 · 10−13 1 8.87 · 10−3 6 2.8 · 10−17 5.35 · 10−7 1

Table F.5: Numerical results for the methods described in 5.2 (C), 5.3 (VP) and
5.1.2 with transformation of variables (Syl), part 1.
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VP Syl
p # refsol time (s) # sol rmax εmax s time (s) # sol
1 32 5.33 32 1.53 · 10−6 1.36 · 10−7 1 0.41 32
2 32 5.04 32 1.11 · 10−6 9.87 · 10−4 1 0.17 32
3 12 0.18 12 8.9 · 10−14 1.41 · 10−5 1 4.04 · 10−2 12
4 2 2.94 · 10−2 2 3.08 · 10−16 1.27 · 10−15 1 3.25 · 10−2 2
5 4 5.54 · 10−2 4 2.2 · 10−16 5.65 · 10−14 1 1.87 · 10−2 4
6 12 0.15 12 1.24 · 10−15 2.29 · 10−12 1 5.77 · 10−2 12
7 22 1.11 22 1.32 · 10−12 2.36 · 10−12 1 8.7 · 10−2 22
8 72 12.05 72 1.74 · 10−15 5.15 · 10−3 1 0.2 72
9 2 5.18 · 10−2 2 2.6 · 10−14 2.4 · 10−14 1 2 · 10−2 2

10 4 5.8 · 10−2 4 3.2 · 10−15 3.88 · 10−8 1 1.33 · 10−2 4
11 6 5.54 · 10−2 6 1.98 · 10−14 1.14 · 10−5 1 1.58 · 10−2 6
12 4 0.15 4 5.73 · 10−12 5.17 · 10−12 1 2.74 · 10−2 4
13 4 5.28 · 10−2 4 1.06 · 10−15 3.08 · 10−15 1 1.2 · 10−2 4
14 8 0.16 8 2.93 · 10−13 9.24 · 10−8 1 2.59 · 10−2 8
15 48 4.1 48 6.06 · 10−5 4.58 · 10−2 0 0.16 48
16 48 4.1 48 1.5 · 10−10 3.31 · 10−6 1 0.12 48
17 10 0.14 10 4.17 · 10−13 1.29 · 10−12 1 2.65 · 10−2 10
18 8 0.14 8 9.99 · 10−15 1.35 · 10−13 1 2.42 · 10−2 8
19 22 1.09 22 5.15 · 10−15 6.3 · 10−15 1 6.78 · 10−2 22
20 55 36.05 48 1.99 0.59 0 0.33 82
21 48 4.08 48 6.32 · 10−5 4.47 · 10−2 0 0.12 48
22 52 5.38 52 1.14 · 10−6 1.32 · 10−5 1 0.13 52
23 30 1.07 30 6.23 · 10−4 1 0 6.72 · 10−2 10
24 8 0.35 8 6.42 · 10−16 2.81 · 10−14 1 6.32 · 10−2 8
25 52 11.31 52 1.69 · 10−11 0.98 0 0.19 24
26 12 0.14 12 8.37 · 10−15 1.44 · 10−8 1 2.5 · 10−2 12
27 6 5.27 · 10−2 6 7.1 · 10−13 1.44 · 10−5 1 1.59 · 10−2 6
28 38 2.49 38 7.58 · 10−11 3.9 · 10−5 0 9.07 · 10−2 38
29 11 0.14 11 7.75 · 10−5 2 · 10−2 0 2.81 · 10−2 11
30 32 5.11 32 3.74 · 10−8 0.33 0 0.11 28
31 32 4.9 32 2.79 · 10−7 1.35 · 10−3 1 0.12 32
32 16 0.44 16 5 · 10−15 2.4 · 10−5 1 3.57 · 10−2 16
33 4 3.23 · 10−2 4 9.33 · 10−14 2.46 · 10−13 1 1.31 · 10−2 4
34 6 8.41 · 10−2 6 2.12 · 10−15 1.06 · 10−8 1 1.71 · 10−2 6
35 8 9.68 · 10−2 8 1.71 · 10−14 1.6 · 10−8 1 2.06 · 10−2 8
36 90 22.05 90 1.93 · 10−13 9.67 · 10−3 1 0.27 90
37 4 0.15 4 3.85 · 10−12 6.63 · 10−12 1 2.24 · 10−2 4
38 3 3.06 · 10−2 3 8.41 · 10−14 2.48 · 10−14 1 1.11 · 10−2 3
39 2 2.96 · 10−2 2 2.55 · 10−16 1.01 · 10−8 1 9.98 · 10−3 2
40 3 8.12 · 10−2 3 2.55 · 10−13 6.51 · 10−9 1 2.01 · 10−2 3
41 6 8.32 · 10−2 6 5.62 · 10−15 1.24 · 10−8 1 1.48 · 10−2 6
42 8 8.27 · 10−2 8 1.1 · 10−12 1.06 · 10−8 1 2.17 · 10−2 8
43 18 0.44 18 1.02 · 10−11 4.53 · 10−13 1 4.1 · 10−2 18
44 24 0.8 24 1.66 · 10−9 2.22 · 10−8 1 5.5 · 10−2 24
45 49 5.49 49 8.46 · 10−11 6.08 · 10−9 1 0.13 49
46 48 4.1 48 6.44 · 10−5 0.21 0 0.12 46
47 4 0.45 4 3.89 · 10−12 8.37 · 10−12 1 4.16 · 10−2 4
48 10 0.14 10 2.04 · 10−12 1.03 · 10−12 1 2.24 · 10−2 10
49 8 0.14 8 3.48 · 10−15 5.56 · 10−14 1 2.21 · 10−2 8
50 22 1.11 22 4.01 · 10−13 9.45 · 10−13 1 5.73 · 10−2 22
51 55 36.31 41 2 0.8 0 0.38 33
52 49 5.49 49 8.92 · 10−12 6.44 · 10−9 1 0.13 49
53 52 5.39 52 1.45 · 10−6 7.26 · 10−6 1 0.13 52
54 30 1.05 30 2.44 · 10−11 1 0 6.76 · 10−2 14
55 32 5.29 32 8.53 · 10−11 3.23 · 10−5 1 0.13 32
56 56 10.9 56 1.73 0.82 0 0.17 56
57 8 0.35 8 9.21 · 10−16 6.62 · 10−15 1 3.98 · 10−2 8
58 52 11.29 52 3.84 · 10−9 0.98 0 0.18 39
59 12 0.14 12 5.44 · 10−14 1.58 · 10−8 1 2.68 · 10−2 12
60 6 5.09 · 10−2 6 3.86 · 10−14 8.87 · 10−6 1 1.49 · 10−2 6

Table F.6: Numerical results for the methods described in 5.2 (C), 5.3 (VP) and
5.1.2 with transformation of variables (Syl), part 2.
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F. Detailed Numerical Results

PHClab Bertini DP
p # refsol rmax εmax s time (s) # sol rmax εmax s

1 32 5.08 · 10−12 3.43 · 10−4 1 0.52 32 6.85 · 10−13 0.54 0
2 32 3.79 · 10−11 1.08 · 10−3 1 0.5 32 4.72 · 10−13 0.54 0
3 12 8.88 · 10−16 7.91 · 10−14 0 0.16 4 9.65 · 10−13 3.58 · 10−13 1
4 2 1.15 · 10−15 1.66 · 10−14 1 0.15 2 5.93 · 10−16 1.3 · 10−15 1
5 4 3.82 · 10−16 5.65 · 10−14 0 0.15 3 7.65 · 10−14 8.2 · 10−14 1
6 12 1.67 · 10−16 1.74 · 10−12 0 0.16 7 3.13 · 10−15 1.75 · 10−12 0
7 22 6.52 · 10−16 2.35 · 10−12 0 0.17 5 7.25 · 10−16 1.92 · 10−12 1
8 72 1.43 · 10−15 1.41 · 10−11 0 0.22 9 1.27 · 10−11 2.99 · 10−12 1
9 2 1.82 · 10−16 1.96 · 10−15 1 0.15 2 6.37 · 10−17 1.96 · 10−15 1

10 4 8.14 · 10−16 1.66 · 10−13 1 0.16 4 2.98 · 10−14 1.61 · 10−13 1
11 6 6.45 · 10−15 7.08 · 10−14 1 0.17 6 3.11 · 10−16 9.62 · 10−14 0
12 4 5.38 · 10−16 3.75 · 10−16 1 0.15 4 3.36 · 10−16 3.49 · 10−16 1
13 4 3.53 · 10−16 3.08 · 10−15 0 0.15 3 3.3 · 10−15 5.47 · 10−15 1
14 8 2.31 · 10−17 4.56 · 10−13 1 0.17 8 1.04 · 10−13 5.28 · 10−13 1
15 48 1.75 · 10−15 1.91 · 10−7 1 0.4 48 2 · 10−14 0.3 0
16 48 7.45 · 10−16 9.1 · 10−8 1 0.39 48 1.01 · 10−14 1.05 · 10−8 0
17 10 1.3 · 10−15 1.29 · 10−12 0 0.18 7 9.08 · 10−14 1.12 · 10−12 1
18 8 3.75 · 10−16 1.35 · 10−13 0 0.17 7 2.01 · 10−14 1.44 · 10−13 1
19 22 2.87 · 10−15 6.36 · 10−15 0 0.2 21 9 · 10−15 1.05 · 10−14 1
20 55 6.75 · 10−15 7.5 · 10−15 1 0.6 55 5.04 · 10−15 1.44 · 10−14 1
21 48 2.46 · 10−15 9.66 · 10−8 1 0.4 48 2.55 · 10−11 0.48 0
22 52 2.53 · 10−8 3.43 · 10−4 1 0.4 52 3.07 · 10−12 0.56 0
23 30 1.86 · 10−15 5.78 · 10−8 1 0.29 30 1.91 · 10−13 2.09 · 10−6 1
24 8 6.52 · 10−16 2.81 · 10−14 0 0.15 7 9.62 · 10−15 8.16 · 10−14 1
25 52 6.01 · 10−15 3.55 · 10−15 1 0.32 52 7.94 · 10−16 3.32 · 10−15 1
26 12 3.35 · 10−15 3.07 · 10−13 0 0.17 7 2.25 · 10−14 4.12 · 10−13 1
27 6 2 · 10−20 3.45 · 10−13 1 0.17 6 6.35 · 10−15 0.71 0
28 38 2.3 · 10−11 6.86 · 10−5 0 0.42 29 8.81 · 10−15 0.19 0
29 11 2.3 · 10−15 9.75 · 10−14 0 0.16 6 6.1 · 10−16 1.04 · 10−13 1
30 32 9.36 · 10−14 3.08 · 10−13 1 0.48 32 2.14 · 10−14 0.54 0
31 32 2.48 · 10−10 1.11 · 10−3 1 0.51 32 1.17 · 10−14 0.54 0
32 16 5.9 · 10−15 2.61 · 10−12 1 0.21 16 1.39 · 10−15 0.74 0
33 4 1.36 · 10−15 2.52 · 10−14 1 0.16 4 2.17 · 10−16 3.9 · 10−15 1
34 6 1.85 · 10−16 2.07 · 10−13 0 0.16 5 8.63 · 10−16 1.99 · 10−13 1
35 8 5.41 · 10−16 1.16 · 10−12 0 0.17 5 2.05 · 10−13 1.93 · 10−12 1
36 90 3.14 · 10−14 1.23 · 10−3 1 0.44 90 6.45 · 10−15 0.55 0
37 4 6.89 · 10−16 4.99 · 10−15 1 0.18 4 1.74 · 10−15 7.56 · 10−15 1
38 3 2.83 · 10−16 4.91 · 10−16 1 0.15 3 1.86 · 10−16 2.01 · 10−16 1
39 2 2.15 · 10−17 2.51 · 10−12 1 0.15 2 3.33 · 10−16 2.47 · 10−12 1
40 3 2 · 10−20 4.48 · 10−15 1 0.15 3 6.03 · 10−15 1.41 · 10−14 1
41 6 1.85 · 10−16 1.76 · 10−13 0 0.16 5 1.51 · 10−14 1.7 · 10−13 1
42 8 2.39 · 10−16 1.18 · 10−13 1 0.17 8 2.47 · 10−14 7.14 · 10−14 1
43 18 3.64 · 10−15 2.88 · 10−13 0 0.17 11 3.07 · 10−15 8.32 · 10−13 1
44 24 1.19 · 10−13 2.84 · 10−13 1 0.25 24 0 0 0
45 49 1.62 · 10−15 2.23 · 10−12 1 0.4 49 2.93 · 10−16 1.72 · 10−12 1
46 48 2.41 · 10−15 1.08 · 10−7 1 0.42 48 3.19 · 10−15 0.36 0
47 4 2.71 · 10−15 1.96 · 10−14 1 0.15 4 1.34 · 10−16 2.54 · 10−15 1
48 10 3.3 · 10−15 2.11 · 10−13 0 0.18 7 6.01 · 10−14 1.74 · 10−14 1
49 8 2.54 · 10−16 5.56 · 10−14 0 0.15 7 5.06 · 10−15 5.09 · 10−14 1
50 22 4.42 · 10−15 4.72 · 10−15 0 0.21 21 1.77 · 10−15 2.02 · 10−15 1
51 55 6.6 · 10−15 0.5 0 0.58 54 9.25 · 10−15 5.5 · 10−15 1
52 49 1.09 · 10−15 1.54 · 10−12 1 0.39 49 3.02 · 10−16 1.91 · 10−12 1
53 52 1.25 · 10−9 3.29 · 10−4 1 0.39 52 7.12 · 10−14 0.56 0
54 30 1.29 · 10−15 5.7 · 10−8 1 0.3 30 6.08 · 10−11 9.17 · 10−6 1
55 32 9.38 · 10−12 3.03 · 10−12 0 0.28 15 7.13 · 10−14 0.59 0
56 56 2.75 · 10−15 1.82 · 10−9 0 0.27 52 3 · 10−14 1.64 · 10−12 1
57 8 1.03 · 10−15 6.62 · 10−15 0 0.16 7 8.33 · 10−16 1.15 · 10−14 1
58 52 5.25 · 10−15 3.27 · 10−15 1 0.28 52 2.42 · 10−15 2.62 · 10−15 1
59 12 4.13 · 10−15 1.23 · 10−12 0 0.17 7 4.29 · 10−14 1.15 · 10−12 1
60 6 2 · 10−20 1.33 · 10−13 1 0.17 6 7.57 · 10−15 0.71 0

Table F.7: Numerical results for PHClab, Bertini and PNLA, part 1.
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Bertini DP PNLA
p # refsol time (s) # sol rmax εmax s time (s) # sol
1 32 0.51 16 1.78 · 10−2 6.8 · 10−3 0 2.55 32
2 32 0.53 16 1.51 · 10−2 6.41 · 10−2 0 3.27 32
3 12 0.14 12 1.08 · 10−14 6.23 · 10−6 1 0.11 12
4 2 0.12 2 4.44 · 10−16 5.3 · 10−15 1 1.46 · 10−2 2
5 4 0.12 4 9.33 · 10−16 5.65 · 10−14 1 5.3 · 10−2 4
6 12 0.2 11 8.4 · 10−5 5 · 10−5 1 0.13 12
7 22 0.25 22 1.8 0.48 0 0.57 22
8 72 0.57 72 5.33 · 10−15 3.27 · 10−12 1 1.52 72
9 2 0.14 2 1.78 · 10−15 1.94 · 10−15 1 5.02 · 10−2 2

10 4 0.13 4 9.68 · 10−16 4.86 · 10−9 1 4.96 · 10−2 4
11 6 0.18 4 9.35 · 10−15 8.91 · 10−6 1 5.99 · 10−2 6
12 4 0.14 4 1.72 · 10−13 2.44 · 10−14 1 0.24 4
13 4 0.12 4 6.31 · 10−16 3.08 · 10−15 1 4.75 · 10−2 4
14 8 0.15 8 2.35 · 10−11 4.22 · 10−8 1 0.17 8
15 48 1.77 35 6.36 · 10−10 4.17 · 10−6 1 2.13 48
16 48 1.22 46 2.47 · 10−10 3.44 · 10−6 1 2.13 48
17 10 0.2 10 4.88 · 10−13 1.29 · 10−12 1 0.15 10
18 8 0.13 8 8.64 · 10−14 1.35 · 10−13 1 0.14 8
19 22 0.24 22 1.8 · 10−9 1.65 · 10−9 1 1.4 22
20 55 0.63 55 5.14 · 10−5 8.76 · 10−5 1 17.39 55
21 48 1.56 39 2.64 · 10−9 3.48 · 10−6 1 2.14 48
22 52 0.46 27 1.85 1.39 · 10−3 0 2.05 52
23 30 1.11 30 3.62 · 10−3 8.19 · 10−3 1 0.85 30
24 8 0.39 8 1.12 · 10−15 2.81 · 10−14 1 0.12 8
25 52 0.32 52 1.35 0.97 0 70.7 40
26 12 0.2 12 7.56 · 10−4 1.24 · 10−3 1 0.13 12
27 6 0.15 3 4.48 · 10−14 4.13 · 10−6 1 6.48 · 10−2 6
28 38 0.38 25 8.91 · 10−3 1.83 · 10−2 0 2.14 38
29 11 0.18 11 3.64 · 10−3 2.1 · 10−3 1 0.16 11
30 32 0.59 16 1.92 · 10−3 8.31 · 10−3 0 3.03 32
31 32 0.43 14 4.03 · 10−3 0.16 0 3.49 32
32 16 0.17 12 2.86 · 10−11 6.01 · 10−5 1 0.92 16
33 4 0.15 4 2.5 · 10−14 1.57 · 10−13 1 4.03 · 10−2 4
34 6 0.14 6 2.4 · 10−14 6.83 · 10−8 1 8.93 · 10−2 6
35 8 0.13 8 1.9 0.41 0 7.56 · 10−2 8
36 90 0.43 72 9.22 · 10−12 9.57 · 10−3 1 2.79 90
37 4 0.14 4 4.94 · 10−15 3.83 · 10−15 1 0.45 4
38 3 0.12 3 1.17 · 10−14 2.19 · 10−14 1 2.33 · 10−2 3
39 2 0.12 2 2.53 · 10−16 1.83 · 10−8 1 2.36 · 10−2 2
40 3 0.13 3 5.12 · 10−16 7.46 · 10−9 1 7.96 · 10−2 3
41 6 0.13 6 3.66 · 10−15 1.5 · 10−8 1 8.74 · 10−2 6
42 8 0.13 8 1.09 · 10−13 1.12 · 10−8 1 9.74 · 10−2 8
43 18 0.17 18 0.52 1.2 · 10−4 0 0.24 18
44 24 0.48 0 0.26 7.39 · 10−5 0 0.42 24
45 49 0.36 49 1.04 · 10−10 8.57 · 10−9 1 3.07 49
46 48 1.89 42 9.29 · 10−11 4.42 · 10−6 1 2.14 48
47 4 0.18 4 1.39 · 10−11 2.68 · 10−11 1 0.82 4
48 10 0.15 10 6.43 · 10−13 4.28 · 10−13 1 0.15 10
49 8 0.2 8 1.24 · 10−13 5.56 · 10−14 1 0.14 8
50 22 0.2 22 8.18 · 10−14 3.86 · 10−14 1 0.99 22
51 55 0.55 55 1.24 · 10−4 2.09 · 10−4 1 17.3 55
52 49 0.34 49 1.02 · 10−7 2.69 · 10−5 1 3.11 49
53 52 0.55 25 0.24 1.32 · 10−3 0 2.07 52
54 30 1.23 30 3.75 · 10−4 3.1 · 10−4 1 0.88 30
55 32 0.42 25 1.47 0.4 0 1.82 32
56 56 0.34 56 1.99 0.82 0 2.32 56
57 8 0.13 8 7.5 · 10−16 6.62 · 10−15 1 0.13 8
58 52 0.34 52 1.31 0.98 0 70.42 40
59 12 0.14 12 1.51 0.61 0 0.13 12
60 6 0.14 3 1.08 · 10−14 5.24 · 10−6 1 6.71 · 10−2 6

Table F.8: Numerical results for PHClab, Bertini and PNLA, part 2.
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F. Detailed Numerical Results

PHClab Bertini DP
δ δ2 rmax s time (s) # sol rmax s time (s) # sol
1 1 1.24 · 10−15 1 0.15 1 2.03 · 10−16 1 0.22 1
2 4 2.36 · 10−15 1 0.16 4 2.92 · 10−16 1 0.13 4
3 9 6.42 · 10−15 1 0.18 9 5.5 · 10−16 1 0.14 9
4 16 3.69 · 10−15 1 0.21 16 6.14 · 10−16 1 0.16 16
5 25 2.53 · 10−15 1 0.25 25 5.18 · 10−16 1 0.51 25
6 36 3.95 · 10−15 1 0.33 36 1.12 · 10−15 1 0.23 36
7 49 8.3 · 10−15 1 0.39 49 1.41 · 10−15 1 0.26 49
8 64 6.36 · 10−15 1 0.44 64 5.83 · 10−15 1 0.3 64
9 81 8.21 · 10−15 1 0.57 81 5.34 · 10−15 1 0.41 81

10 100 6.11 · 10−15 1 0.68 100 5.29 · 10−15 1 0.5 100
11 121 6.49 · 10−15 1 0.86 121 4.38 · 10−15 1 0.54 121
12 144 1.34 · 10−14 1 1.12 144 9.11 · 10−15 1 0.81 144
13 169 1.04 · 10−14 1 1.38 169 4.98 · 10−15 1 1.23 169
14 196 9.75 · 10−15 1 1.52 196 5.33 · 10−15 1 1.66 196
15 225 1.4 · 10−14 1 2.12 225 6.76 · 10−15 1 2.32 225
16 256 1.07 · 10−14 1 2.41 256 5.78 · 10−15 1 3.08 256
17 289 1.38 · 10−14 1 3.07 288 3.54 · 10−15 1 4.29 289
18 324 9.91 · 10−15 0 3.47 320 7.57 · 10−15 1 6.03 323
19 361 1.21 · 10−14 1 3.96 358 4 · 10−15 1 8.34 361
20 400 1.08 · 10−14 1 5.01 399 5.45 · 10−15 1 10.19 400
21 441 1.19 · 10−14 1 5.34 440 6.54 · 10−15 1 15.45 441
22 484 1.11 · 10−14 1 6.93 484 3.67 · 10−15 1 16.65 484
23 529 8.94 · 10−15 1 9.6 527 4.08 · 10−15 1 24.31 528
24 576 1.39 · 10−14 0 10.63 569 6.07 · 10−15 1 25.62 575
25 625 1.44 · 10−14 1 12.29 621 6.19 · 10−15 1 34.59 625
26 676 9.97 · 10−15 0 12.27 669 4.91 · 10−15 1 42.68 676
27 729 1.35 · 10−14 1 13.6 726 7.49 · 10−15 1 49.14 728
28 784 1.38 · 10−14 0 15.56 769 8.68 · 10−15 1 55.14 782
29 841 1.25 · 10−14 1 17.73 835 7.26 · 10−15 1 72.2 838
30 900 1.25 · 10−14 0 18.84 885 5.57 · 10−15 1 87.74 899
31 961 1.62 · 10−14 1 21.73 959 5.78 · 10−15 1 83.8 959
32 1,024 1.13 · 10−14 0 24.73 1,007 5.18 · 10−15 1 115.09 1,022
33 1,089 1.27 · 10−14 0 27.93 1,078 3.88 · 10−15 1 133.37 1,088
34 1,156 1.24 · 10−14 0 30.56 1,144 1.01 · 10−14 1 151.06 1,150
35 1,225 1.61 · 10−14 0 35.43 1,205 3.62 · 10−15 1 188.87 1,225
36 1,296 1.81 · 10−14 0 37.21 1,279 5.23 · 10−15 0 214.63 1,241
37 1,369 1.2 · 10−14 1 44.46 1,357 6.12 · 10−15 0 226.86 1,325
38 1,444 2.36 · 10−14 0 51.83 1,422 4.94 · 10−15 0 243.93 1,393
39 1,521 1.33 · 10−14 0 51.3 1,494 5.15 · 10−15 1 284.5 1,516
40 1,600 1.22 · 10−14 0 58.67 1,575 4.51 · 10−15 0 297.39 1,471

Table F.9: Numerical results for PHClab, Bertini and PNLA for the random test
problems of degree 1 up to 40, part 1.
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PNLA Our solver
δ δ2 rmax s time (s) # sol rmax s time (s) # sol
1 1 7.88 · 10−17 1 8.19 · 10−2 1 1.02 · 10−16 1 2.42 · 10−2 1
2 4 2.42 · 10−11 1 0.2 4 1.78 · 10−15 1 2.11 · 10−2 4
3 9 2.95 · 10−14 1 0.15 9 2.26 · 10−15 1 1.93 · 10−2 9
4 16 1.18 · 10−10 1 0.38 16 3.88 · 10−15 1 2.56 · 10−2 16
5 25 1.47 · 10−12 1 0.88 25 2.99 · 10−14 1 3.77 · 10−2 25
6 36 1.74 · 10−11 1 1.73 36 7.88 · 10−15 1 5.91 · 10−2 36
7 49 8.94 · 10−2 0 3.17 49 3.2 · 10−14 1 8.76 · 10−2 49
8 64 0.44 0 5.43 64 4.14 · 10−14 1 0.16 64
9 81 0.54 0 8.85 81 1.88 · 10−14 1 0.24 81

10 100 0.65 0 32.38 98 1.84 · 10−12 1 0.4 100
11 121 4.59 · 10−7 1 21.24 121 2.15 · 10−13 1 0.66 121
12 144 5.83 · 10−3 0 31.46 144 6.23 · 10−14 1 1.03 144
13 169 0.83 0 45.84 169 2.14 · 10−13 1 1.93 169
14 196 1.58 0 425.22 184 7.99 · 10−14 1 2.09 196
15 225 2.88 · 10−4 0 92.59 225 8.06 · 10−13 1 3.31 225
16 256 0.37 0 129.37 256 3.25 · 10−13 1 4.46 256
17 289 1.25 0 8,894.44 268 9.62 · 10−12 1 6.42 289
18 324 0.99 0 10,583.7 314 2.72 · 10−12 1 8.76 324
19 361 0.33 0 329.17 361 2.73 · 10−11 1 8.75 361
20 400 1.65 0 24,630.13 387 6.73 · 10−13 1 14.39 400
21 441 1.43 0 28,244.92 420 1.19 · 10−12 1 19.16 441
22 484 1.15 0 19,180.61 455 4.16 · 10−13 1 28.59 484
23 529 1.11 0 26,086.08 463 1.89 · 10−12 1 26 529
24 576 1.31 0 29,557.26 548 1.24 · 10−11 1 32.79 576
25 625 1.3 0 89,050.39 593 1.8 · 10−12 1 48.31 625
26 676 – – – – 1.92 · 10−12 1 59.92 676
27 729 – – – – 3.24 · 10−12 1 69.79 729
28 784 – – – – 2.03 · 10−11 1 86.97 784
29 841 – – – – 6.18 · 10−11 1 119.08 841
30 900 – – – – 1.17 · 10−10 1 133.13 900
31 961 – – – – 5.29 · 10−12 1 157.11 961
32 1,024 – – – – 2.81 · 10−11 1 186.6 1,024
33 1,089 – – – – 3.55 · 10−11 1 249.41 1,089
34 1,156 – – – – 7.56 · 10−12 1 351.18 1,156
35 1,225 – – – – 1.69 · 10−10 1 348.09 1,225
36 1,296 – – – – 4.18 · 10−10 1 417.45 1,296
37 1,369 – – – – 8.82 · 10−12 1 587.35 1,369
38 1,444 – – – – 1.78 · 10−10 1 584.98 1,444
39 1,521 – – – – 5.34 · 10−10 1 664.51 1,521
40 1,600 – – – – 1.37 · 10−8 1 735.08 1,600

Table F.10: Numerical results for PHClab, Bertini and PNLA for the random test
problems of degree 1 up to 40, part 2.
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Appendix G

An Example in C3

In this appendix we will propose a way to generalize the approach presented in this
text for bivariate polynomial systems to the multivariate case with a number of
variables s > 2. A complete analysis of the method is beyond the scope of this text.
We will present an example in C3 to fix the ideas. The example system is given by





p1(x, y, z) = −1 + x2 + y2 + z2 = 0
p2(x, y, z) = x2 + y2 − z = 0
p3(x, y, z) = x+ y − z = 0

(G.1)

and we want to find all points (x, y, z) ∈ C3 that satisfy all three equations. The
system can be solved as a bivariate problem using the substitution z = x+ y and the
four solutions are found using our bivariate solver. They are given in Table G.1.

G.1 A linear pencil in x, y and z

Recall that in the bivariate case the first step of our solution method was to construct
a linear pencil L(x, y) consisting out of a coefficient matrix and a part that defines
the used basis. We had

L(x, y)v(x, y) =




Φp

Φq

Bx − xCx
By − yCy


v(x, y) =




p(x, y)
q(x, y)

0
0


 ,

<(x) =(x) <(y) =(y) <(z) =(z)
−8.090170 · 10−1 −1.209763 · 100 −8.090170 · 10−1 1.209763 · 100 −1.618034 · 100 0.000000 · 100

−8.090170 · 10−1 1.209763 · 100 −8.090170 · 10−1 −1.209763 · 100 −1.618034 · 100 0.000000 · 100

7.711052 · 10−1 0.000000 · 100 −1.530712 · 10−1 0.000000 · 100 6.180340 · 10−1 0.000000 · 100

−1.530712 · 10−1 0.000000 · 100 7.711052 · 10−1 0.000000 · 100 6.180340 · 10−1 0.000000 · 100

Table G.1: Numerical solutions to (G.1) found using our bivariate solver after the
substitution z = x+ y. Every row of the table represents one solution.
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G. An Example in C3

where v(x, y) represents the bivariate monomial vector of the appropriate degree.
Analogously, in the 3-dimensional case we can construct L(x, y, z) such that

L(x, y, z)v(x, y, z) =




Φp1

Φp2

Φp3

Bx − xCx
By − yCy
Bz − zCz



v(x, y, z) =




p1(x, y, z)
p2(x, y, z)
p3(x, y, z)

0
0
0



.

For our example problem (G.1) we have



−1 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 −1 0 0 0
0 1 0 1 0 0 −1 0 0 0
−x 1

−x 1
−x 1

−x 1
−y 1

−y 1
−y 1

−z 1
−z 1







1
x
x2

y
xy
y2

z
xz
yz

z2




=




p1(x, y, z)
p2(x, y, z)
p3(x, y, z)

0
0
0
0
0
0
0
0
0




. (G.2)

Again we used the variable x as much as possible for the linear recurrences in the
basis definition, followed by the variable y and we avoided the variable z. Note that
this can be written as a square 3-parameter eigenvalue problem of size 10× 10 using
only one coefficient row for each equation.

G.2 Degree extension
Equation (G.2) does not provide us with enough equations in x to obtain a tall
rectangular eigenvalue problem by maintaining only the coefficient rows and the
x-rows. We can only hope to find a finite number of eigenvalues if the pencil contains
at least as much rows as columns (Appendix E). We will perform a degree extension
to obtain a tall REP in x. For a total shift degree ∆δ, all shifts of the form

m(y, z)pi(x, y, z) = 0, i = 1, 2, 3

with m(y, z) any bivariate monomial in y and z of degree ≤ ∆δ are added to (G.1)1.
Let us determine the shift degree ∆δ that is needed to obtain a tall pencil in x. The

1Again, we do not use shifts in the variable x. This can be understood intuitively by noting that
(

Φ̂
B̂x − xĈx

)
v = 0⇒ Ψxv = 0

where Ψx contains the coefficients of xpi(x, y, z), i = 1, 2, 3. Therefore, the x-shifts do not contain
any new information.
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G.2. Degree extension

number of monomials in three variables of degree ≤ δ̂ (number of columns of the
extended pencil Π̂x(x)) is given by

M =
δ̂∑

i=0

i+1∑

j=1
j = δ̂(δ̂ + 1)(2δ̂ + 1)

12 + 3δ̂(δ̂ + 1)
4 + δ̂ + 1.

The number of x-recurrences (number of rows of B̂x − xĈx) for an extended degree δ̂
is

Nx =
δ̂∑

i=1

i∑

j=1
j = δ̂(δ̂ + 1)(2δ̂ + 1)

12 + δ̂(δ̂ + 1)
4 .

The number of rows in Φ̂ is Nφ = 3 and the number of shifts of degree ≤ ∆δ and
> 0 is equal to

Nψ = 3
∆δ+1∑

i=2
i = 3

((∆δ + 1)(∆δ + 2)
2 − 1

)
.

In order to obtain a tall pencil, we need

Nφ +Nψ +Nx ≥ M

δ̂(δ̂ + 1)
4 + 3(∆δ + 1)(∆δ + 2)

2 ≥ 3δ̂(δ̂ + 1)
4 + δ̂ + 1

δ2 + 2δ∆δ + 3δ − 2∆δ2 − 6∆δ − 4 ≤ 0

where we used δ = δ + ∆δ. Let

f(δ,∆δ) = M −Nx −Nψ −Nφ = 1
2(δ̂2 + 2δ∆δ + 3δ − 2∆δ2 − 6∆δ − 4).

The function f is plotted in Figure G.1, along with the resulting minimal shift degree
corresponding to δ = 1, . . . , 8. We conclude that for our example of degree δ = 2 we
need ∆δ = 2. The extended system is given by

p1 = p2 = p3 = yp1 = yp2 = yp3 = zp1 = zp2 = zp3 = y2p1 = y2p2 = y2p3 . . .

. . . = yzp1 = yzp2 = yzp3 = z2p1 = z2p2 = z2p3 = 0.

The nonzero structure of the resulting extended x-pencil Π̂x,r(x) is shown in Figure
G.2. Note that the difference between the number of columns and the number of rows
is equal to f(2, 2) = −3. Again it is possible to reduce the pencil size by shortening
the x-recurrence chains from the right side. Applying the reduction algorithm we get

Π̂x(x) −→
R

Π̂x,r(x)

and the nonzero structure of the reduced pencil Π̂x,r(x) is shown in the right part of
Figure G.2. The eigenvalues of the REP

Π̂x,r(x)v = 0

are found as explained in Appendix E. The set of eigenvalues will be denoted by X .
The set X contains the candidate x-values for the isolated solutions of (G.1).
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Figure G.1: Left: illustration of the zero level set of f(δ,∆δ) ( ). Right: resulting
shift degrees (indicated by ) for δ = 1, . . . , 8.
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Figure G.2: Left: nonzero structure of the extended x-pencil Π̂x(x). Red dots ( )
represent the element −x coming from the matrix Ĉx, blue dots ( ) correspond to
nonzero elements of Π̂x(0). Right: same representation of Π̂x,r(x).
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G.3. Obtaining the isolated solutions

G.3 Obtaining the isolated solutions

We now return to the original linear pencil L(x, y, z) from (G.2). Note that L can
be reduced by shortening the recurrence chains from the right:

L(x, y, z) −→
R

Lr(x, y, z) =




−1 0 1 0 1 0 1
0 0 1 0 1 −1 0
0 1 0 1 0 −1 0
−x 1

−x 1
−y 1

−y 1
−z 1

−z 1




We observe that for each x∗ ∈ X , the first three block rows of Lr(x∗, y, z) form a
square linear pencil in y2. The candidate y-values corresponding to each x∗ ∈ X are
found as the eigenvalues of this GEP. If for some x∗ ∈ X no finite y-value is found,
it is discarded. The other couples (x∗, y∗) are collected and for each such couple, we
find the possible z-coordinates as the eigenvalues of the tall REP

Lr(x∗, y∗, z)v = 0.

The procedure for finding the isolated roots of a 0-dimensional polynomial system in
three variables is summarized in Algorithm 3.

Algorithm 3. Let p1, p2, p3 ∈ P3 be given polynomials that define a 0-dimensional
system of equations.

Construct the pencil L(x, y, z).
Determine the appropriate shift degree for this problem and perform the degree
extension L(x, y, z) −→

E
L̂(x, y, z).

Reduce the extended x-pencil Π̂x(x), which is defined as the rows of L̂ that do not
contain y or z: Π̂x(x) −→

R
Π̂x,r(x).

Find the set X as the eigenvalues of Π̂x,r(x).
Perform the appropriate degree extension L(x, y, z) −→

E′
L̂′(x, y, z) such that the

block row of L̂′ that does not contain z is tall.
Reduce L̂′: L̂′(x, y, z) −→

R
L̂′r(x, y, z) and denote the rows that do not contain z by

Π̂′xy(x, y).
for every x∗ ∈ X do

Let Y be the set of eigenvalues of Π̂′xy(x∗, y).
2This is not a general result. For δ > 2 a degree extension is needed to obtain a tall problem

in y. This shift degree will be smaller than the one used for the first extension step −→
E

. We will

denote L(x, y, z) −→
E′

L̂′(x, y, z).
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G. An Example in C3

<(x) =(x) <(y) =(y) <(z) =(z)
−8.090170 · 10−1 1.209763 · 100 −8.090170 · 10−1 −1.209763 · 100 −1.618034 · 100 1.782122 · 10−15

−8.090170 · 10−1 −1.209763 · 100 −8.090170 · 10−1 1.209763 · 100 −1.618034 · 100 −1.782122 · 10−15

7.711052 · 10−1 0.000000 · 100 −1.530712 · 10−1 0.000000 · 100 6.180340 · 10−1 0.000000 · 100

−1.530712 · 10−1 0.000000 · 100 7.711052 · 10−1 0.000000 · 100 6.180340 · 10−1 0.000000 · 100

Table G.2: Numerical solutions to (G.1) found by using Algorithm 3. Every row of
the table represents one solution.

for every y∗ ∈ Y do
Store the couple (x∗, y∗) in the set Sxy.

end for
end for
Perform the reduction L(x, y, z) −→

R
Lr(x, y, z).

for every couple (x∗, y∗) ∈ Sxy do
Let Z be the set of eigenvalues of Lr(x∗, y∗, z).
for every z∗ ∈ Z do

Add (x∗, y∗, z∗) to the solution set S.
end for

end for
Output the set S.

The result for the example problem is found using Matlab and it is given in
Table G.2. The solutions are equal to the ones in Table G.1 up to machine precision.
Figure G.3 shows a graphical representation of the result in R3.
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x

y

z

x

y

z

Figure G.3: Left: real zero level sets of p1 ( ), p2 ( ) and p3 ( ) in R3. Right:
the intersection set of p1 and p2 ( ) and the intersection set of p1 and p3 ( ).
The real numerically found solutions (using Algorithm 3) are represented by black
dots ( ).
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Appendix H

Some Examples in Matlab

In this appendix, we illustrate how to use the Matlab implementations of the concepts
that are introduced in this text. All implementations are done in Matlab R2015b. To
work with bivariate polynomials, their matrix representation is used. Recall that the
matrix representation P of a bivariate polynomial p(x, y) is introduced in Chapter
2 as the matrix that satisfies p(x, y) =

(
1 y . . . yδ

y
p

)
P
(
1 x . . . xδ

x
p

)>
. In

this appendix, we will not make any distinction between p(x, y) and its matrix
representation P . Once the folder containing the software is downloaded, it should
be selected as the “current folder” in Matlab. As a first step, enter

>> addpath(’bivar_systems’)

in order to use the programs. We will briefly discuss how to use the programs to solve
any self-defined bivariate problem, how to generate generic systems, how to solve
one of the example systems, how to perform an affine transformation of variables
and how to evaluate the results. Some of these options are also illustrated by the
demo that is implemented, which can be activated by entering

>> demo_bivar

in the command line.

H.1 Solving a user defined system
Suppose we want to solve the system

{
p(x, y) = −1 + x2 + y2 = 0
q(x, y) = 2 + 6x+ 4x2 + y2 = 0

which is the system given in Example 2.2.3 with a 4-fold zero in (−1, 0). First, define
the polynomials P and Q as follows.

>> P = [-1 0 1 ; 0 0 0 ; 1 0 0] ;
>> Q = [2 6 4 ; 0 0 0 ; 1 0 0] ;
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H. Some Examples in Matlab

Several versions of our method have been implemented. An overview is given in
Table H.1. We can pick any of these versions to solve the system. For example

polyrootsEV Method described in Subsection 5.1.1 using the eigenvectors
of the square pencil.

polyrootsSyl Method described in Subsection 5.1.2 based on the Sylvester
matrix of two univariate polynomials.

polyrootsLxy Method described in Subsection 5.1.3 using the linear pencil
L(x, y).

polyrootsC Method that uses the coupling based on the residual matrix and
connection diagrams.

polyrootsVP Variable precision method, can only be used if the Multiprecision
Computing Toolbox for Matlab is installed:
http://www.advanpix.com/.

Table H.1: Implemented versions of the bivariate system solver proposed in this text.

>> sol = polyrootsSyl(P,Q)

gives as output

sol =

-1.0000 - 0.0000i -0.0001 + 0.0001i
-1.0000 - 0.0000i 0.0001 - 0.0001i
-1.0000 + 0.0000i -0.0001 - 0.0001i
-1.0000 + 0.0000i 0.0001 + 0.0001i
-1.0000 + 0.0000i 0.0000 + 0.0002i
-1.0000 + 0.0000i 0.0000 - 0.0002i
-1.0000 + 0.0000i -0.0002 + 0.0000i
-1.0000 + 0.0000i 0.0002 + 0.0000i

where the fact that there are too many solutions should come as no surprise. Using

>> sol = polyrootsC(P,Q)

we find

sol =

-1.0000 - 0.0000i 0.0000 + 0.0000i
-1.0000 - 0.0000i 0.0000 + 0.0000i
-1.0000 - 0.0000i 0.0000 + 0.0000i
-1.0000 - 0.0000i 0.0000 + 0.0000i

which is the correct number of solutions. One can check that all four solutions are
equal to (−1, 0) up to machine precision.
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H.2. Solving a generic system

H.2 Solving a generic system
A “generic” polynomial of degree d having coefficients that are normally distributed
with mean 0 and standard deviation 1 corresponding to all monomials of degree ≤ d
can be generated by the following command.

>> P = gen(d) ;

Doing the same for Q, we can generate a generic system and solve it like we did in the
previous section. The BKK-bound (which is in this case equal to the Bézout number)
gives the exact number of solutions that should be found (for random systems, see
Appendix B). It can be calculated in the following way.

>> BKK = number_of_solutions(P,Q)

For example, the commands

>> P = randn(4,4); Q = randn(6,6); sol = polyrootsEV(P,Q);
>> BKK = number_of_solutions(P,Q), nsol = size(sol,1)

give the following output.

BKK =

30

nsol =

30

Note that in this example, P and Q are not “generic” as defined previously. For
example, P is of degree 6 but its coefficient corresponding to x6 is zero.

H.3 Solving an example problem
Some example problems are included in the software package. They are found in
the directory example problems. The folder contains the set of 60 problems that is
used to perform the numerical experiments of Chapter 6. Perhaps the easiest way to
load the example problems is the following.

>> lst = dir(’example_problems’) ;
>> files = arrayfun(@(i)lst(i).name,1:length(lst),’UniformOutput’,0);

Then the n-th problem in the example problem set can be loaded into the workspace
using

>> L = length(files) ;
>> load([’example_problems/’ files{n+L-60}]) ; P = p ; Q = q ;

After that, the problem can be solved like we did in the previous sections.
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H. Some Examples in Matlab

H.4 Affine transformations of variables
The function transform can be used to perform an affine transformation of variables.
For example, let

A =
(
A11 A12
A21 A22

)
∈ C2×2

and let b =
(
b1 b2

)>
∈ C2. We want to calculate the matrix representation of

the polynomial pt(x, y) = p(A11x + A12y + b1, A21x + A22y + b2). Note that if pT
vanishes for some couple (x∗T , y∗T ) (pt(x∗T , y∗T ) = 0), then p vanishes for (x∗, y∗):

(
x∗

y∗

)
= A

(
x∗T
y∗T

)
+ b.

It is shown in Chapter 5 that using such a transformation of variables the versions of
our method described in Section 5.1 are also able to find all solutions with the correct
multiplicity. The function polyrootsSyl is equipped with an option to realize this.
Let us reconsider the example from Section H.1. The commands

>> P = [-1 0 1 ; 0 0 0 ; 1 0 0] ; Q = [2 6 4 ; 0 0 0 ; 1 0 0] ;
>> A = randn(2) ; b = zeros(2,1) ;
>> PT = transform(P,A,b) ; QT = transform(Q,A,b) ;
>> sol = polyrootsSyl(PT,QT,1) ;
>> sol = (A*sol.’).’

give the output

sol =

-1.0000 + 0.0000i 0.0004 + 0.0004i
-1.0000 - 0.0000i -0.0004 + 0.0004i
-1.0000 - 0.0000i 0.0004 - 0.0004i
-1.0000 + 0.0000i -0.0004 - 0.0004i

which corresponds to all solutions with correct multiplicities. Note that the extra
argument of polyrootsSyl is needed to ensure that only one y-value is assigned to
each x-value.

H.5 Evaluating the results
After solving a system, the real solutions can be verified by plotting the real zero
level sets of P and Q in a certain region of the real plane. This can be done by the
command plotprob.

>> P = gen(15) ; Q = gen(15) ; sol = polyrootsC(P,Q) ;
>> realsol = [] ; % Extract the real solutions
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H.5. Evaluating the results

zero level sets of p and q
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Figure H.1: Left: Matlab plot of the real zero level sets of two generic polynomials
of degree 15. Real intersections are indicated with black dots. Right: residuals for
all numerical solutions of the same problem.

>> for i = 1:size(sol,1)
if norm(imag(sol(i,:))) < 10ˆ-6
realsol = [realsol ; sol(i,:)] ;
end
end
>> figure ; plotprob(P,Q,-9,2,-7,5) ; hold on ;
>> plot(real(realsol(:,1)), real(realsol(:,2)),’k.’,’markersize’,20) ;

This gives the Matlab plot on the left side of Figure H.1 as a result. An indication
of the quality of all solutions is the residual. This can be calculated by using the
inspectsol function. For example,

>> res = inspectsol(sol.’,P,Q) ;
>> nsol = size(sol,1) ;
>> figure ; semilogy(1:nsol, res, ’k.-’) ;
>> xlabel(’solution index’) ; title(’residual’) ;

gives the result shown on the right side of Figure H.1. It can be seen that there are
exactly 152 = 225 solutions found and all residuals are small.
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Samenvatting

We stellen een nieuwe methode voor om 0-
dimensionale bivariate veeltermstelsels op te lossen
gebruik makend van numerieke lineaire algebratools.
Er wordt een graadsuitbreiding toegepast op een 2-
parameter eigenwaardenprobleem die resulteert in een
resultant equivalent met die van Sylvester. Alle op-
lossingen (reële en complexe) worden berekend met
de juiste multipliciteit. De methode slaagt erin om
zonder Newton-Raphson verfijningen of uitbreidingen
naar hogere precisie nauwkeurige resultaten te beko-
men, ook voor meervoudige nulpunten.

1 Inleiding

Multivariate veeltermsystemen duiken op in vele in-
genieursdisciplines. Ze vinden hun toepassingen ty-
pisch in problemen die een intrinsiek veeltermkarak-
ter hebben of problemen die niet nauwkeurig ge-
noeg beschreven worden door lineaire modellen. Een
aantal voorbeelden van toepassingsgebieden zijn che-
mische ingenieurstechnieken, filterontwerp, compu-
ter aided design, robotica, . . . . Vrij recent zijn er
verschillende algoritmische methodes ontwikkeld om
veeltermsystemen op te lossen. Groebner basisme-
thodes [12, 13, 5], homotopiemethodes [2, 16] en me-
thodes gebaseerd op resultanten [9, 7, 3, 11, 4] zijn
daarvan de belangrijkste klassen. In dit artikel ligt
de focus op het tweedimensionale geval. Noteer de
ring van bivariate veeltermen met P2. Het probleem
wordt als volgt geformuleerd.

Probleem 1. Vind alle paren (x, y) ∈ C2 die voldoen
aan {

p(x, y) = 0
q(x, y) = 0

(1)

met p, q ∈ P2.

We zullen er steeds vanuit gaan dat (1) een eindig
aantal geïsoleerde oplossingen heeft (of ook, de be-
schouwde systemen zijn 0-dimensionaal). Er wordt

in dit artikel een methode gebaseerd op numerieke li-
neaire algebra voorgesteld om (1) op te lossen. We
streven ernaar om niet enkel alle (reële en complexe)
oplossingen van (1) te vinden maar ook om hun mul-
tipliciteit in rekening te brengen. De methode combi-
neert de voorstelling van (1) als een twee-parameter
eigenwaardeprobleem [10] met een graadsuitbreiding
(die ook eigen is aan Macaulay resultant-gebaseerde
methodes [7, 3]) om een lineair vierkant pencil te ver-
krijgen in slechts 1 veranderlijke. Er kan aangetoond
worden dat de eigenwaarden van dit pencil dezelfde
zijn als die van de Sylvesterresultant [13, 12, 5, 1].
Zo kunnen de x-waarden (of y-waarden) gevonden
worden als de eigenwaarden van een veralgemeend
eigenwaardeprobleem (GEP). In dit artikel illustre-
ren we de methode aan de hand van een eenvou-
dig voorbeeld en geven we de belangrijkste resulta-
ten. Daarna worden er enkele numerieke experimen-
ten toegelicht en wordt de snelheid en nauwkeurigheid
ten opzichte van bestaande oplossingsmethodes geïl-
lustreerd. Voor bewijzen, uitbreidingen naar andere
basissen en meer details verwijzen we de lezer naar
[14]. In [14] wordt ook een uitbreiding naar meerdere
variabelen voorgesteld in bijlage.

2 Een Eenvoudig Voorbeeld

Beschouw het probleem
{
p(x, y) = x2 + y2 − 1 = 0
q(x, y) = −x+ y + xy − y2 = 0

(2)

met als oplossingen (
√

2/2,
√

2/2), (−
√

2/2,−
√

2/2),
(0, 1) en (0, 1)1. De reële nulverzamelingen van p en
q zijn afgebeeld in Figuur 1. Een eerste stap van
de oplossingsmethode is de overgang van (2) naar de

1Hier is (0, 1) een oplossing met multipliciteit 2. Voor meer
uitleg over de multipliciteitstructuur van de oplossingen van
multivariate veeltermproblemen verwijzen we naar [12].
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Figuur 1: Reële nulverzamelingen van de veeltermen
p ( ) en q ( ) uit (2).

matrixformulering
(
−1 0 1 0 0 1

0 −1 0 1 1 −1

)

︸ ︷︷ ︸
Φ

v(x, y) =
(
p(x, y)
q(x, y)

)
=
(

0
0

)

(3)
met v(x, y) =

(
1 x x2 y xy y2)> de vector van mo-

nomialen van graad ≤ 2 en Φ de coëfficiëntenmatrix.
Het is duidelijk dat elke oplossing (x∗, y∗) een richting
genereert in de rechtse nulruimte van Φ. Inderdaad,
als p(x∗, y∗) = q(x∗, y∗) = 0 dan is Φv(x∗, y∗) = 0.
Echter, niet elke vector in null(Φ) geeft informatie
over een oplossing van het stelsel. Beschouw bijvoor-
beeld de vector w =

(
1 0 1 0 0 0

)>. Het is duidelijk
dat Φw = 0, maar uit w kunnen we geen informatie
halen over een oplossing van (2). Er bestaat immers
geen complex koppel (x∗, y∗) zodanig dat de vector w
een veelvoud is van v(x∗, y∗). Met andere woorden,
w heeft geen Vandermondestructuur.

Definitie 2.1. Een vector w heeft een (bivariate)
Vandermondestructuur in de monomiaalbasis gege-
ven door de elementen van v(x, y) als er een koppel
(x∗, y∗) ∈ C2 bestaat zodanig dat w = Cv(x∗, y∗) met
C ∈ C0.

Dit leidt tot de volgende stap, waarin we aan (3)
twee nieuwe blokrijen toevoegen die de Vandermonde
structuur opleggen aan de nulvectoren van Φ:



−1 0 1 0 0 1
0 −1 0 1 1 −1
−x 1
−x 1

−x 1
−y 1

−y 1




︸ ︷︷ ︸
L(x,y)




1
x
x2

y
xy
y2




=




p(x, y)
q(x, y)

0
0
0
0
0




=




0
0
0
0
0
0
0




.

(4)

Merk op dat in (4) de kolommen van L(x, y) verdeeld
zijn in blokken die overeenkomen met monomialen
van toenemende graad in y. De rijen zijn verdeeld
in blokrijen als volgt. De bovenste twee rijen worden
gegeven door de coëfficiëntenmatrix Φ. Het volgende
blok bestaat uit drie rijen die de variabele x bevatten.
We gebruiken de notatie Bx − xCx voor deze deelma-
trix. Voor de laatste twee rijen gebruiken we de ana-
loge notatie By−yCy. Elke vector in de nulruimte van
L(x∗, y∗) (verschillend van 0), (x∗, y∗) ∈ C2 heeft een
Vandermonde structuur omwille van de twee onderste
blokrijen. Elk zo’n vector komt overeen met een op-
lossing van (1). Immers, L(x∗, y∗)Cv(x∗, y∗), C ∈ C0
impliceert dat p(x∗, y∗) = q(x∗, y∗) = 0.

Theorema 2.1. De oplossingen van (2) in C2 zijn
de koppels (x∗, y∗) waarvoor L(x∗, y∗) niet van volle
kolomrang is.

De onderste twee blokrijen moeten opgevat worden
als een ‘basisdefinitie’ van de klassieke monomiaalba-
sis. Er zijn verschillende mogelijkheden om zo een
basisdefinitie op te stellen. Er is gekozen om x en y
enkel lineair te laten voorkomen in het resulterende
pencil en om zoveel mogelijk het gebruik van y te
vermijden. We noteren

{
p(x, y) = 0
q(x, y) = 0

−→
C

L(x, y)

waar de C staat voor de constructie van het line-
aire pencil L(x, y). Om de veranderlijken te scheiden
staan er in L(x, y) nog niet genoeg vergelijkingen in
x. De bovenste twee blokrijen zijn immers niet van
volle kolomrang, en dit voor elke mogelijke waarde
van x. Een volgende stap is de graadsuitbreiding.
Hier maken we gebruik van de volgende equivalentie

{
p(x, y) = 0
q(x, y) = 0

⇔





p(x, y) = 0
q(x, y) = 0
yp(x, y) = 0
yq(x, y) = 0

,∀(x, y) ∈ C2.

(5)
De veeltermen yp(x, y) en yq(x, y) geven aanleiding
tot de coëfficiëntenmatrix

Ψ =
(

0 0 0 0 −1 0 1 0 0 1
0 0 0 0 0 −1 0 1 1 −1

)

in de monomiaalbasis
(
1 x x2 x3 y xy x2y y2 xy2 y3)> .

In het uitgebreide pencil L̂(x, y) wordt de eerste blok-
rij gevormd door de coëfficiëntenmatrix Φ̂ van p en q
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in de uitgebreide monomiaalbasis. De tweede blokrij
is Ψ en de volgende twee blokrijen vormen de basis-
definitie, opnieuw opgedeeld in een x- en een y-deel.
Het resultaat is

L̂(x, y) =




−1 0 1 0 0 0 0 1 0 0
0 −1 0 0 1 1 0 −1 0 0
0 0 0 0 −1 0 1 0 0 1
0 0 0 0 0 −1 0 1 1 −1
−x 1
−x 1
−x 1

−x 1
−x 1

−x 1
−y 1

−y 1
−y 1




.

We gebruiken de notatie L(x, y) −→
E

L̂(x, y) waar E
staat voor de uitbreiding (of ‘extensie’) van het pen-
cil. Merk op dat de monomiaal x3 niet voorkomt
in de vergelijkingen van het uitgebreide stelsel (5).
Inderdaad, we hebben de graad uitgebreid door te
vermenigvuldigen met y. De hoogste graad in x is
nog steeds 2. Daarom kunnen we de vierde kolom en
de zevende rij uit L̂(x, y) schrappen. Het resultaat
noemen we L̂r(x, y), we vinden

L̂r(x, y) =




−1 0 1 0 0 0 1 0 0
0 −1 0 1 1 0 −1 0 0
0 0 0 −1 0 1 0 0 1
0 0 0 0 −1 0 1 1 −1
−x 1
−x 1

−x 1
−x 1

−x 1
−y 1

−y 1
−y 1




en we noteren L̂(x, y) −→
R

L̂r(x, y), waar R staat voor
de reductie door het verwijderen van de gepaste rijen
en kolommen.

Theorema 2.2. De oplossingen van (2) in C2 zijn
de koppels (x∗, y∗) waarvoor L̂r(x∗, y∗) niet van volle
kolomrang is.

Noteer de eerste drie blokrijen van L̂r(x, y) met
Π̂x,r(x) (in dit deel van het pencil komt de variabele
y niet voor). Een nodige voorwaarde opdat L̂r(x, y)
niet van volle kolomrang is, is dat Π̂x,r(x) niet van
volle kolomrang is. Het probleem ‘zoek de waarden

van x waarvoor Π̂x,r(x) niet van volle kolomrang is’
is een vierkant veralgemeend eigenwaardeprobleem.
Immers, Π̂x,r(x∗) ∈ C9×9,∀x∗ ∈ C.

Theorema 2.3. Beschouw het probleem (1). Noteer
de graad van p in y als δyp en die van q als δyq . Con-
strueer het pencil L̂r(x, y) waarbij voor de graadsuit-
breiding van L(x, y) alle vergelijkingen {yip(x, y) =
0}1≤i≤δy

q−1 en {yiq(x, y) = 0}1≤i≤δy
p−1 worden toe-

gevoegd aan het stelsel (1). Dan is het resulterende
gereduceerde x-pencil Π̂x,r(x) vierkant en er geldt

det Π̂x,r(x) = γresp,q(x)

met γ ∈ {−1, 1} en resp,q(x) de resultant van Sylves-
ter geassociëerd met (1).

Theorema 2.3 impliceert dat de x-coördinaten van
de oplossingen van het probleem (1) eigenwaarden
zijn van Π̂x,r(x), geconstrueerd zoals voor dit een-
voudige voorbeeld. Meer nog, de multipliciteit van
een eindige eigenwaarde x∗ van Π̂x,r(x) komt over-
een met de som van de multipliciteiten van alle op-
lossingen van (1) van de vorm (x∗, y) (waarbij ook
rekening gehouden dient te worden met oplossingen
van de vorm (x∗,∞)). De numerieke waarden voor
x zijn voor ons voorbeeldprobleem (gebruik makend
van Matlab)

-8.896452425993e-09 + 7.205292475198e-10i
8.896453574757e-09 - 7.205292872444e-10i
-7.071067811865e-01 + 0.000000000000e+00i
7.071067811865e-01 + 1.357635865057e-17i

waarnaar we zullen verwijzen als x̃1, x̃2, x̃3 en x̃4
respectievelijk.

Om de bijhorende y-waarden te vinden zijn er
verschillende benaderingen mogelijk. In dit artikel
illustreren we een methode die alle mogelijke y-
waarden berekent en dan een koppeling vindt tussen
de set x- en y-waarden. De methode slaagt er goed
in om de juiste informatie wat betreft de multipli-
citeiten te achterhalen. De koppeling is gebaseerd
op een groepering van alle gevonden x- en y-waarden.

We willen de numerieke benaderingen van een-
zelfde x- of y-waarde in dezelfde groep onderbrengen.
Dit gebeurt op basis van de veronderstelling dat x-
waarden in dezelfde groep een klein residu2 hebben

2Het residu is gedefiniëerd met een gemengd absoluut en
relatief criterium:

r(x∗, y∗) = |p(x∗, y∗)|
|p|(|x∗|, |y∗|) + 1

+ |q(x∗, y∗)|
|q|(|x∗|, |y∗|) + 1

met |p|(x, y) ,
δ∑
i=0

δ−i∑
j=0
|pij |xjyi en |q|(x, y) ,

δ∑
i=0

δ−i∑
j=0
|qij |xjyi.
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gekoppeld met dezelfde set y-waarden. Voor y vinden
we de numerieke waarden

1.000000000000e+00 + 0.000000000000e+00i
9.999999999999e-01 + 0.000000000000e+00i
-7.071067811865e-01 + 0.000000000000e+00i
7.071067811865e-01 + 0.000000000000e+00i

waarnaar we zullen verwijzen als ỹ1, ỹ2, ỹ3 en ỹ4 res-
pectievelijk. De residumatrix voor dit probleem is

0̃ 0̃ × ×
0̃ 0̃ × ×
× × 0̃ ×
× × × 0̃







x̃1 x̃2 x̃3 x̃4

ỹ1

ỹ2

ỹ3

ỹ4

R(X̃ , Ỹ) = .

Daarbij stelt R(X̃ , Ỹ)ij het residu voor van het kop-
pel (xj , yi). Het symbool 0̃ stelt een positief getal
voor dat kleiner is dan een bepaalde (kleine) drem-
pelwaarde ε (in dit geval geeft ε = 10−15 al de ge-
wenste opdeling). Een ‘×’ staat voor een getal > ε.
Uit de residumatrix besluiten we dat x̃1 en x̃2 tot een-
zelfde groep behoren (ze zorgen voor kleine residu’s
met dezelfde set y-waarden). Hetzelfde geldt voor ỹ1
en ỹ2. Alle andere x- en y-waarden worden apart
gegroepeerd. Uit de residumatrix kunnen we aflei-
den dat er een koppeling moet zijn tussen de groep
{x̃1, x̃2} en de groep {ỹ1, ỹ2} met multipliciteit 2. De
andere koppelingen zijn (x̃3, ỹ3) en (x̃4, ỹ4). Merk op
dat de enkelvoudige oplossingen gevonden zijn tot op
machinenauwkeurigheid. De tweevoudige oplossing
is ‘opgesplitst’ in twee oplossingen die op een afstand
van orde 10−8 van de originele oplossing verwijderd
liggen. Nemen we echter het gemiddelde van beide
groepen {x̃1, x̃2} en {ỹ1, ỹ2} dan vinden we het punt
(0, 1) terug tot op machineprecisie.

3 Numerieke Experimenten

In deze paragraaf bespreken we eerst kort de resul-
taten van de vergelijking van onze methode met een
aantal bestaande oplossingsmethodes. Daarna wor-
den er enkele interessante numerieke voorbeelden ge-
geven.

3.1 Een vergelijking
De voorgestelde methode is getest op een set pro-
blemen en vergeleken met andere solvers. Een tool
die uiterst geschikt is om snel een idee te geven van
de prestatie van een bepaalde solver in vergelijking

met andere solvers is een performantieprofiel [6]. Be-
schouw een set S van kandidaten (solvers) en een set
P van problemen. De performantiecurve voor een
solver s ∈ S is gegeven door

ρs(τ) = |{p ∈ P | tp,s ≤ 2τ (mins∈S tp,s)}|
|P | (6)

met | · | de cardinaliteit van een verzameling en tp,s
de tijd die een solver s nodig had om het probleem
p ‘succesvol’ op te lossen. Met ‘succesvol’ wordt hier
bedoeld dat er evenveel oplossingen zijn gevonden als
het aantal oplossingen in de referentieset3 en dat aan
het volgende voldaan is. Er moet een bijectieve af-
beelding b : Sref → S̃ bestaan zodat voor elke op-
lossing s ∈ Sref geldt dat

‖s− s̃‖2 ≤ 10−2(1 + ‖s‖2),

met s̃ , b(s). Deze test is geïmplementeerd met be-
hulp van bipartite_matching van de gaimc Matlab
toolbox voor graafalgoritmen [8]. Het performantie-
profiel voor de vergelijking van onze methode met
PHClab [16, 15], Bertini [2] en PNLA [7, 3] is te zien
in Figuur 2 (links). Er is voor elke methode gebruik
gemaakt van de standaardinstellingen, zonder vari-
abele precisie of verfijningsopties voor de oplossin-
gen4. Voor een eerste vergelijking is een set van 60
lage graadsproblemen met uitdagende meervoudige
oplossingen gebruikt. Bemerk dat onze methode alle
problemen succesvol oplost, rekening houdend met
de multipliciteiten en dat voor meer dan 90% van de
problemen op de snelste manier doet. De homotopie-
methodes en PNLA lossen minder dan 80% van de
problemen succesvol op. Een tweede vergelijking is
gebeurd op basis van een set random problemen van
graad 1 tot en met 40. Met een ‘random’ probleem
van graad δ bedoelen we een probleem waarbij p en q
normaalverdeelde coëfficiënten met gemiddelde 0 en
standaardafwijking 1 hebben bij alle monomialen van
graad ≤ δ. Alle oplossingen van zo een generiek stel-
sel zijn enkelvoudig en er zijn er δ2 volgens de stelling
van Bézout. Het criterium voor succes is in dit geval
dat er meer dan 99% van alle δ2 oplossingen moet
gevonden zijn met een residu < 10−6. Het perfor-
mantieprofiel is rechts op Figuur 2 weergegeven. De
testen voor PNLA zijn niet volledig voltooid omdat
ze te veel tijd vergen. Voor het probleem van graad
25 waren er ongeveer 25 uren nodig. Wat opvalt is

3De referensieset bestaat uit de oplossingen gevonden door
Bertini in variabele precisie, een zeer betrouwbare solver. Om-
wille van de variabele precisie is deze oplossingsmethode wel
beduidend trager dan de andere (met standaardinstellingen).

4Voor Bertini is MPTYPE: 0 gebruikt, omdat er default
MPTYPE: 1 (adaptive precision) wordt gebruikt. Voor PNLA
gebruiken we de sparf functie.
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<(x) =(x) <(y) =(y)
2 4.592 · 10−15 2 6.480 · 10−15

2 4.592 · 10−15 2 6.480 · 10−15

2 4.592 · 10−15 2 6.480 · 10−15

1.571 · 100 1.207 · 10−15 −1.429 · 10−1 −1.523 · 10−16

1 −5.990 · 10−16 1 9.605 · 10−16

1 −5.990 · 10−16 1 9.605 · 10−16

1 −5.990 · 10−16 1 9.605 · 10−16

1 −5.990 · 10−16 1 9.605 · 10−16

1 −5.990 · 10−16 1 9.605 · 10−16

Tabel 1: Numerieke oplossingen van (7).

dat voor hogere graadsproblemen onze methode het
niet haalt van Bertini of PHClab wat de snelheid be-
treft. Er is echter wel telkens 100% van alle oplos-
singen gevonden met een residu < 10−6 terwijl alle
berekeningen gebeuren in dubbele precisie en er geen
Newton-Raphson verfijning gebruikt is.

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

τ
0 2 4 60

0.2

0.4

0.6

0.8

1

τ

Figuur 2: Links: Performance profiel voor de vergelij-
king van onze methode ( ), PHClab ( ), Bertini
( ) en PNLA ( ) voor de set van 60 testproble-
men. Rechts: analoog voor de random problemen
van graad 1 tot en met 40.

3.2 Enkele voorbeelden
• Beschouw het systeem gegeven door





p(x, y) = −4 + 5x− 3x2 + x3 + 5y − 2xy − 3y2

+y3 = 0
q(x, y) = −4 + x− 2x2 + 2x3 + 9y + 2xy − 4x2y

−8y2 + 3xy2 + y3 = 0
(7)

dat enkel reële oplossingen heeft, waaronder een
drievoudige in het punt (2, 2) en een vijfvoudige
in (1, 1). De reële nulverzamelingen van p en q
zijn weergegeven in Figuur 3. De numerieke op-
lossingen gevonden door onze solver zijn gegeven
in Tabel 1. Bemerk dat zelfs de vijfvoudige op-
lossing tot op machineprecisie is teruggevonden.

• Ter illustratie zijn in Figuur 4 twee voorbeelden
gegeven van reële nulverzamelingen en de gevon-
den numerieke reële oplossingen. Voor het eer-
ste probleem (bovenaan op Figuur 4) is p van

0 1 2 3
−1

0

1

2

3

x

y

2 4 6 810−20

10−17

10−14

oplossingsindex

re
sid

u

Figuur 3: Links: Reële nulverzamelingen van p ( )
en q ( ) uit (7) en het reële deel van de gevonden
numerieke oplossingen ( ). Rechts: residu voor alle 9
numerieke oplossingen.

graad 10 en q van graad 9. Er zijn 90 oplossin-
gen die allemaal worden gevonden met een klein
residu. Voor het tweede probleem heeft p graad
16 en q graad 15. Alle oplossingen zijn meervou-
dig en er zijn er in totaal 192 (meervoudigheden
meegeteld). Het punt (0, 0) is bijvoorbeeld een
16-voudig nulpunt. Resultaten zijn weergegeven
in Figuur 5. De residu’s liggen hoger voor het
tweede probleem ten gevolge van de hogere graad
en de meervoudigheden. Voor beide problemen
voldoet de numerieke oplossingsverzameling aan
het succescriterium dat beschreven werd voor het
opstellen van de performantieprofielen.

4 Besluit

De solver die in dit artikel wordt voorgesteld gebruikt
numerieke lineaire algebratools om de geïsoleerde op-
lossingen van bivariate stelsels veeltermvergelijkingen
te vinden. Er wordt op een intuïtieve manier een al-
goritme opgesteld om een lineair pencil te construe-
ren waarvan de eigenwaarden de x- of y-coördinaten
zijn van de oplossingen. Inderdaad, we hebben aan-
getoond dat de determinant van dit intuïtief beko-
men pencil sterk verbonden is met de Sylvesterresul-
tant. Die link maakt het mogelijk voor onze solver
om ook informatie over de multipliciteit van de op-
lossingen te geven. De coëfficienten van de gegeven
veeltermen komen ongemanipuleerd voor in het ver-
algemeend eigenwaardeprobleem, wat de nauwkeurig-
heid ten goede komt. Uit de numerieke experimenten
blijkt dat de solver er voor lagere graden (≤ 20) in
slaagt om snel nauwkeurige oplossingen te bekomen
met de juiste multipliciteiten. Voor generieke pro-
blemen met een graad tot zeker 40 worden alle op-
lossingen gevonden met een kleine residu en binnen
een aanvaardbare tijd. Het residu groeit echter met

5
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Figuur 4: Reële nulverzamelingen van twee voor-
beeldproblemen. De zwarte punten geven de reële
numerieke oplossingen aan.
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Figuur 5: Bovenaan: residu voor alle 90 oplossingen
van het probleem bovenaan op Figuur 4. Onderaan:
residu voor alle 192 oplossingen van het probleem on-
deraan op Figuur 4.

de graad en homotopiegebaseerde methodes blijken
sneller voor graden > 15. Deze methodes slagen er
echter niet in om alle oplossingen terug te vinden voor
generieke problemen van graad > 35 (bij gebruik van
de standaardinstellingen en dubbele precisie).
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Problem Statement
Find all vectors (x1, x2, . . . , xs)

> ∈ Cs that satisfy



p1(x1, x2, . . . , xs) = 0

p2(x1, x2, . . . , xs) = 0
...

ps(x1, x2, . . . , xs) = 0

where pi(x1, x2, . . . , xs), 1 ≤ i ≤ s are polynomials.
Emphasis on the two-dimensional case: find all vectors (x, y)> ∈ C2 that satisfy{

p(x, y) = 0

q(x, y) = 0
(1)

where p(x, y) and q(x, y) are bivariate polynomials.

−1 1

−1

1

x

y

Figure: Plot of the zero level lines in R2 of two bivariate polynomials p(x, y) ( ) and q(x, y)
( ) of degree 20. The real solutions are indicated by black dots ( ).

Objective
Solve (1) using Numerical Linear Algebra tools.

Find all solutions in C2.

Take multiplicities into account.

Applications
Applications in chemical engineering, civil engineering, signal processing and
filter design, system identification, robotics, mechanical systems design,...

Polynomial optimization. Find the width x∗ and the length y∗ of a
rectangular piece of cardboard with area 1 that minimize the diagonal
length. The problem can be formulated as

(x∗, y∗) = argmin
x,y

x2 + y2

subject to xy − 1 = 0.

L(x, y, z) = x2 + y2 − z(xy − 1)→





∂L
∂x = 2x− zy = 0
∂L
∂y = 2y − zx = 0
∂L
∂z = xy − 1 = 0

Equilibrium concentrations in chemical reactions.

H2O 2H+O



xH + 2xH2O = TH

xO + xH2O = TO

KxH2O = x2
HxO

Existing Methods
Groebner bases: symbolic computation [1].

Resultant based methods: Sylvester, Bézout, Macaulay resultants
[2, 3, 5, 7].

Two-parameter eigenvalue approach [6].

Homotopy Continuation: a hybrid approach, homotopy and numerical
continuation [4].

Contouring algorithms [5].
[1] Hans J. STETTER, Numerical Polynomial Algebra. Society for Industrial and Applied Mathematics, Philadelphia, 2004.

[2] Philippe DREESEN, Back to the Roots. PhD thesis under supervision of prof. Bart DE MOOR. KU Leuven - Faculty of Engineering Science, 2013.

[3] Kim BATSELIER A Numerical Linear Algebra Framework for Solving Problems with Multivariate Polynomials. PhD thesis under supervision of prof.
Bart DE MOOR. KU Leuven - Faculty of Engineering Science, 2013.

[4] Jan VERSCHELDE, Homotopy Continuation Methods for Solving Polynomial Systems, PhD thesis under supervision of prof. A. HAEGEMANS, KU
Leuven - faculty of engineering science, 1996.

[5] Yuji NAKATSUKASA, Vanni NOFERINI, Alex TOWNSEND, Computing the common zeros of two bivariate functions via Bézout resultants.
Springer-Verlag Berlin Heidelberg, 2014.

[6] Bor PLESTENJAK, Michiel E. HOCHSTENBACH, Roots of bivariate polynomial systems via determinantal representations. June 7, 2015.

[7] Laurent SORBER, Marc VAN BAREL, Lieven DE LATHAUWER, Numerical solution of bivariate and polyanalytic polynomial systems. SIAM J.
Num. Anal. 52 (2014) 1551-1572.

A two-parameter eigenvalue approach

{
p(x, y) = x2 + y2 − 4 = 0

q(x, y) = −3− 2x + x2 + xy + y2 = 0
↔




−4 0 1 0 0 1
−3 −2 1 0 1 1
−x 1
−x 1

−x 1
−y 1

−y 1




︸ ︷︷ ︸
L(x,y)




1
x
x2

y
xy
y2




= 0

Solutions are the couples (x, y) for which L(x, y) is column rank deficient.

Finding X . Degree extension: L(x, y)→ L̂(x, y):

L̂(x, y) =




−4 0 1 0 0 1
−3 −2 1 0 1 1

−4 0 1 0 0 1
−3 −2 1 0 1 1

−x 1
−x 1
−x 1

−x 1
−x 1

−x 1
−y 1

−y 1
−y 1




=




Π̂x(x)

Π̂y(y)


 .

X is found as the eigenvalues of Π̂x(x) (a square GEP).

Finding the corresponding y-values (Y).
Construct the generalized eigenvalue problem for y in the same way and connect the
values of X and Y .

by minimizing the maximal residual.

by clustering X and Y values, determining the cardinality of all clusters and make the multiplicity of

the connections between x- and y-clusters feasible.

Without solving the GEP in y
by using the eigenvectors of L̂(x, y).

by looking for the common zeros of p(x∗, y) and q(x∗, y), ∀x ∈ X , by using the Sylvester matrix or

the associated companion matrices.

Results
Every problem (1) leads to a GEP in x or y by degree extension.

The resulting square pencil is a new resultant, equivalent to that of
Sylvester.

Simple well-conditioned roots are calculated efficiently and with high
accuracy. The method is competitive with other root finding methods.

−4 −2 2 4
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Figure: Left: plot of the zero level lines in R2 of two bivariate polynomials p(x, y) ( ) and
q(x, y) ( ) of degree 7, the calculated real solutions are indicated by black dots ( ). Right:
residuals of all 49 (complex) solutions with respect to p(x, y) ( ) and q(x, y) ( ).

Multiplicity of the solutions is taken into account and multiple solutions
are calculated with reasonably small residuals.
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Figure: A problem with intersections of multiplicity > 1. For example, (0, 1) is a 13-fold
zero.
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coefficients of the given polynomials. The degree extension allows us to eliminate
one of the variables, which is a typical aspect of resultant methods. The coefficients
appear directly, without being manipulated in the pencil, which is constructed in a
very intuitive manner. We show that a square generalized eigenvalue problem can
be constructed for any 0-dimensional system and that the resulting eigenvalues are
equal to those of the Sylvester resultant. After obtaining one of the coordinates in
this way, we propose some possible approaches for finding the other coordinate of the
solutions. The strong link with the Sylvester resultant allows us to give information
about the multiplicity of the solutions. Results are promising. Solutions are obtained
with small residuals and the computation time is competitive with other solvers. We
show that the method can be generalized to other bases than the classical monomial
basis and we propose a generalization for more than two dimensions.
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