Can L-leucine counteract the negative role of a PHD1 KO in protein metabolism?

Christel van Beijsterveld & Anneleen van Bulck Anneleen Van Bulck
Persbericht

Can L-leucine counteract the negative role of a PHD1 KO in protein metabolism?

Can science bring sport performance to a higher level?

“Citius, altius, fortius” zo luidt de officiële slogan van de olympische spelen. Maar kunnen onze topsporters nog wel snellere, hogere en sterkere prestaties leveren of loopt de mens tegen zijn eigen biologische limieten aan? Betekenen deze menselijke grenzen het einde voor de topsport of slaagt de wetenschap erin deze steeds weer te verleggen? Kunnen we sport en wetenschap nog verder gaan combineren voor de ultieme sportprestatie?

Back to basic

De laatste jaren werd duidelijk dat talent niet meer de enige bepalende factor is voor het presteren van een atleet. Vandaag de dag zien we binnen de topsport steeds nieuwe ontwikkelingen zoals hoogtestages en speciale diëten die de sportprestaties zouden kunnen verbeteren. Om de effecten hiervan beter te kunnen begrijpen is het noodzakelijk deze processen volledig te doorgronden. Hiervoor moeten we terug naar de basis: de processen op celniveau.

“We are going back to basic, back to the cell”

Zoals al vele jaren is geweten, kost een inspanning in de bergen meer moeite dan op zeeniveau. Dit komt doordat er minder zuurstof beschikbaar is naarmate je hoger gaat. Dit tekort aan zuurstof  -hypoxie- activeert processen in ons lichaam die ons doen overleven op grote hoogte. Aan deze hoogteadaptatie zijn vele fysiologische voordelen verbonden; stijging van het hormoon erytropoiëtine (EPO) dat de aanmaak van rode bloedcellen stimuleert alsook een verbeterd bloedhaarvatennetwerk. Naast deze positieve aanpassingen brengt hypoxie ook enkele negatieve veranderingen met zich mee waaronder het verlies van spiermassa. Verder zien we deze effecten van zuurstoftekort terug bij patiënten die door een long- of bloedaandoening met een chronisch zuurstoftekort kampen.

Voeding is een belangrijke factor in zowel het behoud alsook de opbouw van spiermassa. Net daarom lijkt voeding dé cruciale component om deze reductie in spiermassa ten gevolge van zuurstoftekort tegen te gaan. Vooral eiwitten lijken hiervoor zeer geschikt en zijn vooral terug te vinden in producten zoals kip, noten, rijst, eieren, bonen enz. Deze eiwitten bestaan uit aan elkaar gekoppelde aminozuren. Het aminozuur leucine is goed voor ongeveer 20% van onze eiwitinname en is het belangrijkste aminozuur voor de eiwitsynthese en de daarmee gepaarde spieraanmaak. Vandaar dat dit aminozuur uiterst interessant is voor experimenteel onderzoek. De vraag is dus of leucine de gekende negatieve gevolgen van hypoxie op spiermassa kan verminderen?

Een uniek muismodel

Studenten van de faculteit Bewegings- en Revalidatiewetenschappen aan de Katholieke Universiteit Leuven bestudeerden de fysiologische respons van hoogte én eiwitten in een uniek muismodel. Met behulp van moderne technieken o.a. het manipuleren van een specifiek gen genaamd PHD1 (Prolyl Hydroxylase Domain 1) in muizen, kan er een toestand van chronische hypoxie in de spieren worden nagebootst. Door het meten van verschillende biomarkers in de kuitspieren kunnen de langdurige effecten van hypoxie op het cellulair niveau bestudeerd worden. Beide componenten, chronische hypoxie en leucine, werden samen onderzocht in één muismodel. Op deze manier werden vier groepen muizen gecreëerd die al dan niet in hypoxie verbleven en al dan niet leucine toegediend kregen.

Topsportmuis?

Kan er nu zoiets zijn als een muis die een topprestatie gaat leveren door de proteinesupplementatie in combinatie met zuurstoftekort? Helaas zover zijn we nog niet. Wel kan er besloten worden dat het toedienen van het aminozuur leucine een duidelijke en positieve invloed heeft op de aanmaak van eiwitten. De negatieve effecten van een langdurig zuurstoftekort alsook in combinatie met leucine, zijn echt minder duidelijk. Meer onderzoek hieromtrent is nodig.

“Nulla tenaci invia est via”

Voor de aanhouder is geen weg onbegaanbaar. Dit geldt natuurlijk voor de topsport alsook voor de wetenschap. Andere studies blijken alvast veelbelovend op weg om de verschillende mechanismen omtrent hoogte en voeding in kaart te brengen. Wij geloven dus in een toekomst waarbij deze processen op celniveau dé oplossing zouden kunnen zijn voor het streven naar de biologische én wetenschappelijke perfectie in de topsport. Alsook dat zij een levensbelangrijke rol kunnen spelen bij de therapie van deze patiënten met long- en bloedaandoeningen.

Bibliografie

1.         Li, F., Yin, Y., Tan, B., Kong, X., and Wu, G. (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino acids 41, 1185-1193

2.         Layman, D. K. (2003) The role of leucine in weight loss diets and glucose homeostasis. The Journal of nutrition 133, 261S-267S

3.         Yoshizawa, F., Mochizuki, S., and Sugahara, K. (2013) Differential dose response of mTOR signaling to oral administration of leucine in skeletal muscle and liver of rats. Bioscience, biotechnology, and biochemistry 77, 839-842

4.         Wang, X., and Proud, C. G. (2006) The mTOR pathway in the control of protein synthesis. Physiology 21, 362-369

5.         Laplante, M., and Sabatini, D. M. (2009) mTOR signaling at a glance. Journal of cell science 122, 3589-3594

6.         Cavadas, M. A., Nguyen, L. K., and Cheong, A. (2013) Hypoxia-inducible factor (HIF) network: insights from mathematical models. Cell communication and signaling : CCS 11, 42

7.         D'Hulst, G., Jamart, C., Van Thienen, R., Hespel, P., Francaux, M., and Deldicque, L. (2013) Effect of acute environmental hypoxia on protein metabolism in human skeletal muscle. Acta physiologica 208, 251-264

8.         Fandrey, J., Gorr, T. A., and Gassmann, M. (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovascular research 71, 642-651

9.         Hirota, K., and Semenza, G. L. (2005) Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochemical and biophysical research communications 338, 610-616

10.       Webb, J. D., Coleman, M. L., and Pugh, C. W. (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cellular and molecular life sciences : CMLS 66, 3539-3554

11.       Kaelin, W. G. (2005) Proline hydroxylation and gene expression. Annual review of biochemistry 74, 115-128

12.       Kaluz, S., Kaluzova, M., and Stanbridge, E. J. (2008) Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clinica chimica acta; international journal of clinical chemistry 395, 6-13

13.       Rytkonen, K. T., Williams, T. A., Renshaw, G. M., Primmer, C. R., and Nikinmaa, M. (2011) Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Molecular biology and evolution 28, 1913-1926

14.       Heikkila, M., Pasanen, A., Kivirikko, K. I., and Myllyharju, J. (2011) Roles of the human hypoxia-inducible factor (HIF)-3alpha variants in the hypoxia response. Cellular and molecular life sciences : CMLS 68, 3885-3901

15.       Brahimi-Horn, C., Mazure, N., and Pouyssegur, J. (2005) Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cellular signalling 17, 1-9

16.       Metzen, E., Berchner-Pfannschmidt, U., Stengel, P., Marxsen, J. H., Stolze, I., Klinger, M., Huang, W. Q., Wotzlaw, C., Hellwig-Burgel, T., Jelkmann, W., Acker, H., and Fandrey, J. (2003) Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. Journal of cell science 116, 1319-1326

17.       Marxsen, J. H., Stengel, P., Doege, K., Heikkinen, P., Jokilehto, T., Wagner, T., Jelkmann, W., Jaakkola, P., and Metzen, E. (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. The Biochemical journal 381, 761-767

18.       Siddiq, A., Aminova, L. R., Troy, C. M., Suh, K., Messer, Z., Semenza, G. L., and Ratan, R. R. (2009) Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 8828-8838

19.       Chan, D. A., Sutphin, P. D., Yen, S. E., and Giaccia, A. J. (2005) Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Molecular and cellular biology 25, 6415-6426

20.       Rocha, S. (2007) Gene regulation under low oxygen: holding your breath for transcription. Trends in biochemical sciences 32, 389-397

21.       Chowdhury, R., McDonough, M. A., Mecinovic, J., Loenarz, C., Flashman, E., Hewitson, K. S., Domene, C., and Schofield, C. J. (2009) Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Structure 17, 981-989

22.       Nakayama, K., and Ronai, Z. (2004) Siah: new players in the cellular response to hypoxia. Cell cycle 3, 1345-1347

23.       Manolescu, B., Oprea, E., Busu, C., and Cercasov, C. (2009) Natural compounds and the hypoxia-inducible factor (HIF) signalling pathway. Biochimie 91, 1347-1358

24.       Miyata, T., Takizawa, S., and van Ypersele de Strihou, C. (2011) Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets. American journal of physiology. Cell physiology 300, C226-231

25.       Semenza, G. (2002) Signal transduction to hypoxia-inducible factor 1. Biochemical pharmacology 64, 993-998

26.       Robitaille, A. M. (2012) mTOR. in Encyclopedia of Signaling Molecules (Choi, S. ed.), Springer-Verlag New York. pp

27.       Zoncu, R., Efeyan, A., and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nature reviews. Molecular cell biology 12, 21-35

28.       Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown, M., Fitzgerald, K. J., and Sabatini, D. M. (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Developmental cell 11, 859-871

29.       Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189

30.       Dodd, K. M., and Tee, A. R. (2012) Leucine and mTORC1: a complex relationship. American journal of physiology. Endocrinology and metabolism 302, E1329-1342

31.       Sengupta, S., Peterson, T. R., and Sabatini, D. M. (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular cell 40, 310-322

32.       Dennis, M. D., Baum, J. I., Kimball, S. R., and Jefferson, L. S. (2011) Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids. The Journal of biological chemistry 286, 8287-8296

33.       Neil Kubica, J. B. (2010) mTORC1: A Signaling Integration Node Involved in Cell Growth. in mTOR pathway and mTOR inhibitors in Cancer Therapy (Vitaly A. Polunovsky, P. J. H. ed.), Humana Press. pp pp 1-36

34.       Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K., and Avruch, J. (2005) Rheb binds and regulates the mTOR kinase. Current biology : CB 15, 702-713

35.       Zhang, Y., Gao, X., Saucedo, L. J., Ru, B., Edgar, B. A., and Pan, D. (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature cell biology 5, 578-581

36.       Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C., and Blenis, J. (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Current biology : CB 13, 1259-1268

37.       Inoki, K., Zhu, T., and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590

38.       Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature cell biology 4, 648-657

39.       Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J., and Kim, D. H. (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature cell biology 9, 316-323

40.       Hardie, D. G. (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature reviews. Molecular cell biology 8, 774-785

41.       Moore, F., Weekes, J., and Hardie, D. G. (1991) Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. European journal of biochemistry / FEBS 199, 691-697

42.       Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., and Shaw, R. J. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell 30, 214-226

43.       Brugarolas, J., Lei, K., Hurley, R. L., Manning, B. D., Reiling, J. H., Hafen, E., Witters, L. A., Ellisen, L. W., and Kaelin, W. G., Jr. (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes & development 18, 2893-2904

44.       DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D., and Ellisen, L. W. (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes & development 22, 239-251

45.       Shoshani, T., Faerman, A., Mett, I., Zelin, E., Tenne, T., Gorodin, S., Moshel, Y., Elbaz, S., Budanov, A., Chajut, A., Kalinski, H., Kamer, I., Rozen, A., Mor, O., Keshet, E., Leshkowitz, D., Einat, P., Skaliter, R., and Feinstein, E. (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Molecular and cellular biology 22, 2283-2293

46.       Wouters, B. G., and Koritzinsky, M. (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature reviews. Cancer 8, 851-864

47.       Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C., and Avruch, J. (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. The Journal of biological chemistry 273, 14484-14494

48.       Baird, F. E., Bett, K. J., MacLean, C., Tee, A. R., Hundal, H. S., and Taylor, P. M. (2009) Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in Xenopus oocytes. American journal of physiology. Endocrinology and metabolism 297, E822-829

49.       Poncet, N., Mitchell, F. E., Ibrahim, A. F., McGuire, V. A., English, G., Arthur, J. S., Shi, Y. B., and Taylor, P. M. (2014) The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PloS one 9, e89547

50.       Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., and Sabatini, D. M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501

51.       Duran, R. V., MacKenzie, E. D., Boulahbel, H., Frezza, C., Heiserich, L., Tardito, S., Bussolati, O., Rocha, S., Hall, M. N., and Gottlieb, E. (2013) HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene 32, 4549-4556

52.       Gran, P., and Cameron-Smith, D. (2011) The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes. BMC physiology 11, 10

53.       Findlay, G. M., Yan, L., Procter, J., Mieulet, V., and Lamb, R. F. (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. The Biochemical journal 403, 13-20

54.       Morita, M., Gravel, S. P., Chenard, V., Sikstrom, K., Zheng, L., Alain, T., Gandin, V., Avizonis, D., Arguello, M., Zakaria, C., McLaughlan, S., Nouet, Y., Pause, A., Pollak, M., Gottlieb, E., Larsson, O., St-Pierre, J., Topisirovic, I., and Sonenberg, N. (2013) mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell metabolism 18, 698-711

55.       Anthony, J. C., Anthony, T. G., Kimball, S. R., Vary, T. C., and Jefferson, L. S. (2000) Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. The Journal of nutrition 130, 139-145

56.       Arsham, A. M., Howell, J. J., and Simon, M. C. (2003) A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. The Journal of biological chemistry 278, 29655-29660

57.       Raught, B., Peiretti, F., Gingras, A. C., Livingstone, M., Shahbazian, D., Mayeur, G. L., Polakiewicz, R. D., Sonenberg, N., and Hershey, J. W. (2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. The EMBO journal 23, 1761-1769

58.       Yang, H. S., Jansen, A. P., Komar, A. A., Zheng, X., Merrick, W. C., Costes, S., Lockett, S. J., Sonenberg, N., and Colburn, N. H. (2003) The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Molecular and cellular biology 23, 26-37

59.       Wouters, B. G., van den Beucken, T., Magagnin, M. G., Koritzinsky, M., Fels, D., and Koumenis, C. (2005) Control of the hypoxic response through regulation of mRNA translation. Seminars in cell & developmental biology 16, 487-501

60.       Stipanuk, M. H. (2007) Leucine and protein synthesis: mTOR and beyond. Nutrition reviews 65, 122-129

61.       Proud, C. G. (2007) Amino acids and mTOR signalling in anabolic function. Biochemical Society transactions 35, 1187-1190

62.       Wang, X., Li, W., Williams, M., Terada, N., Alessi, D. R., and Proud, C. G. (2001) Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. The EMBO journal 20, 4370-4379

63.       Anthony, J. C., Yoshizawa, F., Anthony, T. G., Vary, T. C., Jefferson, L. S., and Kimball, S. R. (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. The Journal of nutrition 130, 2413-2419

64.       Crozier, S. J., Kimball, S. R., Emmert, S. W., Anthony, J. C., and Jefferson, L. S. (2005) Oral leucine administration stimulates protein synthesis in rat skeletal muscle. The Journal of nutrition 135, 376-382

65.       Aragones, J., Schneider, M., Van Geyte, K., Fraisl, P., Dresselaers, T., Mazzone, M., Dirkx, R., Zacchigna, S., Lemieux, H., Jeoung, N. H., Lambrechts, D., Bishop, T., Lafuste, P., Diez-Juan, A., Harten, S. K., Van Noten, P., De Bock, K., Willam, C., Tjwa, M., Grosfeld, A., Navet, R., Moons, L., Vandendriessche, T., Deroose, C., Wijeyekoon, B., Nuyts, J., Jordan, B., Silasi-Mansat, R., Lupu, F., Dewerchin, M., Pugh, C., Salmon, P., Mortelmans, L., Gallez, B., Gorus, F., Buyse, J., Sluse, F., Harris, R. A., Gnaiger, E., Hespel, P., Van Hecke, P., Schuit, F., Van Veldhoven, P., Ratcliffe, P., Baes, M., Maxwell, P., and Carmeliet, P. (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nature genetics 40, 170-180

66.       Schwarzer, R., Tondera, D., Arnold, W., Giese, K., Klippel, A., and Kaufmann, J. (2005) REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinositol 3-kinase. Oncogene 24, 1138-1149

67.       Koritzinsky, M., Magagnin, M. G., van den Beucken, T., Seigneuric, R., Savelkouls, K., Dostie, J., Pyronnet, S., Kaufman, R. J., Weppler, S. A., Voncken, J. W., Lambin, P., Koumenis, C., Sonenberg, N., and Wouters, B. G. (2006) Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. The EMBO journal 25, 1114-1125

68.       Ron, D., and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews. Molecular cell biology 8, 519-529

69.       Koumenis, C., Naczki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A., and Wouters, B. G. (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Molecular and cellular biology 22, 7405-7416

70.       Kim, J. W., Tchernyshyov, I., Semenza, G. L., and Dang, C. V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism 3, 177-185

71.       Saha, A. K., Xu, X. J., Lawson, E., Deoliveira, R., Brandon, A. E., Kraegen, E. W., and Ruderman, N. B. (2010) Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes 59, 2426-2434

72.       Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F., and Ido, Y. (2010) AMPK and SIRT1: a long-standing partnership? American journal of physiology. Endocrinology and metabolism 298, E751-760

73.       De Naeyer, H., Lamon, S., Russell, A. P., Everaert, I., De Spaey, A., Jamart, C., Vanheel, B., Taes, Y., and Derave, W. (2014) Effects of tail suspension on serum testosterone and molecular targets regulating muscle mass. Muscle & nerve

74.       Sofer, A., Lei, K., Johannessen, C. M., and Ellisen, L. W. (2005) Regulation of mTOR and cell growth in response to energy stress by REDD1. Molecular and cellular biology 25, 5834-5845

75.       Gingras, A. C., Kennedy, S. G., O'Leary, M. A., Sonenberg, N., and Hay, N. (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes & development 12, 502-513

76.       von Manteuffel, S. R., Dennis, P. B., Pullen, N., Gingras, A. C., Sonenberg, N., and Thomas, G. (1997) The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Molecular and cellular biology 17, 5426-5436

77.       Alessi, D. R., Deak, M., Casamayor, A., Caudwell, F. B., Morrice, N., Norman, D. G., Gaffney, P., Reese, C. B., MacDougall, C. N., Harbison, D., Ashworth, A., and Bownes, M. (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Current biology : CB 7, 776-789

78.       Appelhoff, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W., Ratcliffe, P. J., and Gleadle, J. M. (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. The Journal of biological chemistry 279, 38458-38465

79.       Elorza, A., Soro-Arnaiz, I., Melendez-Rodriguez, F., Rodriguez-Vaello, V., Marsboom, G., de Carcer, G., Acosta-Iborra, B., Albacete-Albacete, L., Ordonez, A., Serrano-Oviedo, L., Gimenez-Bachs, J. M., Vara-Vega, A., Salinas, A., Sanchez-Prieto, R., Martin del Rio, R., Sanchez-Madrid, F., Malumbres, M., Landazuri, M. O., and Aragones, J. (2012) HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5. Molecular cell 48, 681-691

80.       Taniguchi, C. M., Finger, E. C., Krieg, A. J., Wu, C., Diep, A. N., LaGory, E. L., Wei, K., McGinnis, L. M., Yuan, J., Kuo, C. J., and Giaccia, A. J. (2013) Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nature medicine 19, 1325-1330

81.       Kulkarni, R. N., Almind, K., Goren, H. J., Winnay, J. N., Ueki, K., Okada, T., and Kahn, C. R. (2003) Impact of genetic background on development of hyperinsulinemia and diabetes in insulin receptor/insulin receptor substrate-1 double heterozygous mice. Diabetes 52, 1528-1534

Universiteit of Hogeschool
Revalidatiewetenschappen en kinesitherapie
Publicatiejaar
2015
Kernwoorden
Share this on: