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Summary

During this master dissertation, we present a novel, image-based methodology to obtain a spatio-
temporal description of a dynamically changing water surface. The method combines a shape
from refractive distortion approach with prior knowledge about the expected surface shape. To
that end, we derive a parameterized model that for each time instance is fitted to describe the
instantaneous surface shape.

The developed algorithm is validated by means of experimental tests as well as with numerical
simulations. The results prove that we are able to reconstruct the three-dimensional shape of
the water surface with sub-millimeter accuracy. Additionally, we conducted an extensive error
assessment to obtain insight in how the accuracy and robustness of the algorithm can be maxi-
mized.

The method is finally extended with an optical flow method to track distinctive features across
images, which allows highly time-efficient processing of image sequences or videos. A first test
case is presented, consisting of the filling process of a rectangular basin, which shows that the
time-dependent three-dimensional shape of a fluctuating water surface can be reconstructed.
The temporal resolution was however too small to obtain accurate quantitative results. Pro-
vided that the experimental setup is improved, it can be assumed that the developed algorithm
can be used to study numerous hydrodynamic phenomena.
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Abstract

In this paper, an image-based reconstruction
technique is presented in which the refractive
distortion of a known pattern seen through
the water is used. Based on prior knowl-
edge about the expected surface shape, a low
parameter surface model is proposed which
is fitted to the refractive disparities (Morris
(2004)) of a feature pattern located below
the water. The developed algorithm is val-
idated in experimental tests as well as with
numerical simulations. Additionally, an ex-
tensive error assessment with respect to the
most important aspects of the reconstruction
procedure is elaborated based on single im-
ages of still water. The optimal reconstruc-
tion conditions are determined, which allow
robust and highly accurate 3D reconstruc-
tion of the surface shape. In order to re-
construct sequences of dynamically changing
surface shapes, the developed method is ex-
tended with optical flow methods that allow
to track the individual feature points across
multiple images. The global temporal recon-
struction algorithm is finally tested in a first
experiment in which the surface oscillations
during filling of a rectangular basin are re-
constructed.

Keywords: Image-based reconstruction, shape from
refractive distortion, 3D shape acquisition of water,
surface parameterization, feature tracking

1 Introduction

Reconstruction of a three-dimensional dynamically
changing water surface is difficult using traditional
measurement equipment. To obtain an accurate
description of the 3D shape of the water surface,
image-based are therefore preferred. Moreover,
they allow highly accurate results with easily avail-
able imaging equipment. Optical spatio-temporal
reconstruction of water surfaces is however a diffi-

cult task due to the optical properties of water and
its dynamic behavior. From the available meth-
ods in literature, direct rays measurements and
shape from refractive distortion seem the most suit-
able methodologies to extract shape information
in which the refractive properties of water are ex-
ploited. Techniques that only require a single image
to reconstruct the instantaneous surface shape are
preferred due to the rapid evolution of the dynamic
water surface. This proves however difficult due
to the ill-posed nature of the refractive-based geo-
metric problem. Even if the refractive index of the
reconstructed object is known, image assumptions
are required to solve this inherent ambiguity.

Ben-Ezra and Nayar (2003) adopt a general para-
metric form (model) of a static transparent object
with known refractive index to estimate its posi-
tion and shape. They assume that the background
pattern is located far from the refractive transpar-
ent object, which allows to compute the best fitting
shape parameter ¢, rotation matrix R and transla-
tion vector T.

Murase (1992) was the first to apply shape from
distortion to reconstruct water surfaces. Due to the
imaging assumptions made and the limited applica-
bility of this method, other alternatives were sug-
gested which also use the refractive distortion of
a pattern seen through the water. Kutulakos and
Steger (2008) give an extensive overview of possi-
ble solutions for the ambiguity that arises in case
direct ray measurements are combined with refrac-
tion. Most of these solutions seem however inap-
propriate for the temporal reconstruction of an os-
cillating water mass.

Morris (2004) proposed a multi-view stereo
approach which combines refractive reconstruction
approaches with the traditional stereo techniques
that are usually used to extract 3D information
from a scene. This allows to avoid the imaging
assumptions and the related inaccuracies made
in other methods. By adopting a ‘verification
camera’, they are able to solve the depth-normal
ambiguity that arises due to the refraction of light



at the air-water interface. The method has already
successfully been applied to reconstruct water
surface sequences with mm accuracy (Morris and
Kutulakos (2005)).

The reconstruction algorithm presented in this
paper is originally developed as a research tool to
study the self-induced sloshing phenomenon on a
small-scale model of a navigation lock. Self-induced
sloshing occurs when the free surface of a water
mass within a container oscillates periodically due
to an imposed flow without the presence of other
external forces. The surface shape remains in that
case smooth -at least when no ship is present in
the lock chamber- and can be described by a lim-
ited amount of parameters. For this reason, this
work intends to combine the shape from refractive
distortion approach of Morris (2004) with a low pa-
rameter model based on prior knowledge about the
expected surface shape. This finally needs to be in-
corporated in a global, image-based reconstruction
algorithm to obtain a temporal description of the
surface shape.

2 Methodology

The presented methodology is based on refraction
of light rays at the air-water interface, where the
water is assumed to have a known and constant
refractive index for each individual light ray. A
regular feature pattern (f) on a plain surface F
is positioned below the water and the projected,
deformed pattern on the surface is viewed by the
camera. At the intersection of these viewing rays
with the water surface, further denoted as surface
points p, the light rays change in direction (Figure
1). This causes that the viewing rays from the
camera center c intersect the feature plane F at f
instead of points f’ (in case no refraction would
occur). The distance between f and £’ determines
the ‘refractive disparity’ of the feature point, as
defined by Morris (2004).

The refraction of light rays is governed by Snell’s
law. It expresses the relationship between the inci-
dent and refracted angle w.r.t. the surface normal
at the boundary between two refractive media with
a different refraction index r. At the air-water in-
terface, Snell’s law can be formulated as:

(1)

where the refractive index of water 7, typically
equals 1.33. Additionally, it is known that the sur-
face normal, incident and refracted light ray lie in
the same plane. This allows to simplify the 3D re-
construction to a two-dimensional geometric prob-
lem in function of the unknown location of surface

sin(ﬂa”) =Tw sin (gwater)

Surface n(x,y)

Feature plane F

Figure 1: Illustration of derivation of surface normal
71 based on refractive disparity. Based on Morris
(2004).

point p and the direction of the surface normal .
An ambiguity however arises because of this under-
constrained expression in two unknowns (p, ﬁ)

In case the location of the surface point p is as-
sumed to be known, the direction of the incident
and refracted rays at p can however be computed
using the known 3D coordinates of feature point
f, image point q’ and camera center c. As shown
in Figure 1, the incident light rays are defined as
U = cq’ and the refracted light rays as v = 5}
It can be proven that the surface normal 71 which
accounts for the refractive change in direction be-
tween & and U is given by:

(2)
where R(0, X) represents the rotation matrix of an
angle 6 about an (normalized) axis X. Based on
the 2D refraction of the light rays, the rotation axis
in eq. (2) is expressed as the vector perpendicular
to the plane defined by the normalized incident @
and refracted ¥ light rays. The rotation angle is
finally computed by applying Snell’s law and basic
trigonometric identities:

3)

P < rusin(6s) )

rwcos(fs) — 1

where 65 represents the angle between the incident
and refracted ray.

As already mentioned, the novel approach de-
scribed in this paper combines the observed dispar-
ities with a parameterized surface model describing
the surface shape. The theory of Lamb (1932) is
used to derive a general description of the surface
undulations for an oscillating water mass in a rect-



angular tank with dimensions L, and L,:

n(z,y) = ; ; A COS(nZ;x

with m,n=0,1,2,...

>cos<”L—’f’>

(4)

This infinite sum is limited to second order terms
and additionally extended with a linear term in
the x- and y-direction (B7- + C’—L%) to cope with
unevenness of the flat but not perfectly horizontal
plane F. This results in a final, parameterized sur-
face model n(z,y) containing 8 coefficients (param-
eters), which describes the surface height z at every
location (x,y). In case a certain set of hypothesized
coefficients A,,,, B and C is assumed, the surface
points p can be computed as the intersection points
of the incident rays U= (? with the water surface
corresponding to these coefficients. Additionally,
this model can be used to obtain an alternative set
of surface normals 73:

on(z,y) On(z,y)
— e,y mz, y
= (— - 1
in which ny , = w =1
z

After normalization of 13 , this normal set can be
compared with the set of normals n computed with
eq. (2) to obtain the optimal set of coefficients in
eq. 4. To this end, two possible error metrics are
proposed that express the dissimilarity between the
two surface normals corresponding with the same
surface point. The first error metric (M1) is de-
noted as the ‘normal collinearity metric’ E.,;, which
directly compares the direction of ni and n3:

Eeol = cos™ (] - 3)

(6)

A second suggestion (denoted M2) by Morris (2004)
is to use the refractive displacements of the feature
points in case the two normal sets are swapped. In
case 77{ and 77% are not the same, this causes a re-
fractive displacement of the intersection of the re-
fracted ray with plane F. The distance between the
intersection point fz and the corresponding actual
feature location f allows to compute the ‘disparity
difference metric’ Eg;sp, which is also shown in Fig-
ure 2.

Eaisp = |f — [ (7)

One of both metrics is computed for every feature
point by adopting a hypothesized set of coefficients
in eq. (4). These errors are finally combined to
obtain a global error function that needs to be min-

imized:
Bt = Y Ej} (8)
!

The entire surface reconstruction for one particular
time instance is as such transposed to a multi-
variate optimization of the coefficients in eq. (4)

c M1: Epop = Ylcos™ () - )]

M2: E = Zf|f _fz|2
/

Surface n(x,y) Zf f”‘
\"‘,‘""P
\
\
\
\\
\
\
\
Feature plane F \
f f,

Figure 2: Illustration of the two possible error
metrics that measure the dissimilarity between the
refractive-based surface and the parameterized sur-
face model. Based on Morris (2004).

which minimize the global error function. This
optimization is done by applying the Levenberg-
Marquardt optimization algorithm, implemented in
the open-source library ALGLIB (ALGLIB (2016)).

In order to reconstruct the water surface at any
time instance, the pixel locations q’ in the cor-
responding image need to be known. The points
in the first processed image are located with an
OpenCV feature detector (Bradski (2000)), after
which the image points q’ are tracked across the
image sequence using the pyramidal LK optical flow
method (Bouguet (2001)). Although the developed
reconstruction algorithm considers each time frame
separately, tracking of feature points allows much
faster processing than in case no prior knowledge
about their location is used. Each set of image
points q’ allows finally to derive the most suitable
set of coefficients that describe the instantaneous
surface shape.

3 Validation and error assess-
ment

3.1 Experimental setup

Measurements of actual water surfaces were per-
formed in a small-scale test tank, with a cross-
section of 8 cm wide and 10 cm high. Three Basler
ace GigE cameras were positioned above the test
tank. Additionally, two possible lighting setups
were installed: regular light spots for images with
visible light but also a UV light spot in combination
with fluorescent paper was employed. In the lat-
ter case, the illuminated fluorescent feature plane



served as apparent visible light source for the cam-
era. The feature pattern on the bottom of the tank
consisted of dots with a diameter of 0.1 mm with a
spacing of 1 cm.

3.2 Experimental validation based
on still water

Because the presented method is image-based,
a validation with a still and horizontal water
surface is only a small simplification compared to
a dynamic water surface. It allows on the other
hand to ground-truth the obtained water level
differences with measurements using a level gauge.
For this purpose, the error made on the water level
differences over the entire reconstructed area is
computed and subsequently spatially averaged to
obtain an error measure |E,,eqn|. In case strong
and uniform illumination of the feature plane is
realized, the experimental tests show that both
UV and visible light allow to obtain results within
the accuracy range of the level gauge (0.2 mm).
This is demonstrated in Figure 3 for UV light at
different water level differences, with initial and
final (average) water level indicated as h; and hy
respectively.

Secondly, a study on the influence of several im-
portant parameters in the reconstruction was con-
ducted (results are not shown). The variation in
the refractive index of light has a negligible effect
on the surface reconstruction, as well as the distor-
tion model used and the estimation of the camera
position. It must be mentioned that these results
are only valid in the range of combinations of cam-
era pose and surface location that were tested.

An important parameter in the surface recon-
struction is however the inclination of the viewing
rays w.r.t the surface. More specifically, grazing
angles allow more accurate results because the re-
fractive disparities in the image plane then become
larger for the same movement of the surface points
p- Initial knowledge about the expected surface
that is reconstructed proves also important: redun-
dant terms in the surface model make the algorithm
more susceptible to inaccurate feature localization.
When combined with the disparity difference met-
ric, the optimization seems in that case more sen-
sitive. Finally, combining multiple cameras proves
highly effective to improve the accuracy and the ro-
bustness with respect to inaccurate input for the
optimization.

3.3 Numerical validation

Inaccuracy in feature localization was modeled by
adopting a Gaussian N (0,0) distribution for the

localization errors made within the image plane.
Random noise was added to the pixel coordinates
of the correct image points corresponding with
a known surface location and the deviation of
the resulting sets of optimized coefficients was
evaluated.

Firstly, the numerical simulations showed that
very small water depths make it more difficult to ob-
tain accurate results. This is caused by the smaller
movements of the surface points corresponding to
a varying surface shape. Additionally, movement
of points located far from the camera (i.e. at low
water depths) results in smaller movements in the
image plane. For larger water depths, the accuracy
increases in case the amount of adopted coefficients
remains limited. For more parameter-redundant
models, the error of the reconstructed surfaces how-
ever increases again with increasing water depth af-
ter reaching a minimum which is dependent on the
test configuration. The normal collinearity metric
(M1) seems in that case more robust in case the
localization error remains small. In contrast, the
disparity difference metric (M2) proves more robust
to large localization errors. It remains however dif-
ficult to explain this on a theoretical basis. It can
be concluded that prior knowledge about the ex-
pected surface shape can significantly increase the
performance of the algorithm.

4 Reconstruction of a dynami-
cally changing water surface

The developed reconstruction method was finally
tested in a first experiment in which the filling pro-
cess of a navigation lock was simulated. Figure 4
shows that the developed method allows to obtain
a good approximate description of the variability
of the water surface in the tank. The experimental
setup proved however insufficient due to the limited
frame rate compared to the celerity of the recon-
structed surface wave phenomena. This made high
temporal resolution images with sufficient quality
challenging, making it difficult to relate the test re-
sults with the theory of self-induced sloshing. The
results matched however qualitatively with theoret-
ical expectations for shallow water waves.

5 Conclusions

In this paper, a novel methodology is presented to
describe the spatio-temporal variability of the sur-
face of an oscillating water mass. The developed
algorithm combines the refractive distortion of a
known feature pattern with a low parameter sur-
face model that is fitted in a global optimization
algorithm. The proposed technique was validated
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and a surface model with 3 (P3) or 8 (P8) parameters was used.

— framei — framei+1 —— framei+2 —— framei+3 —— frame i+4

4 N
E 5. \\\\;:\\\\:::::;::(:\
£ — -
o =
® 0
L

=2

_4 A\ T T T | | T |

20 40 60 80 100 120 140 160

y (mm)

Figure 4: Reconstructed water surfaces using the normal collinearity metric (M1), averaged over the
width of the tank and relatively to the final still water level. The frame rate (and the corresponding
temporal resolution of the reconstruction) was 6.8 fps or +0.15 s between successive frames.
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List of symbols

Symbol Unit  Explanation

New symbols in Chapter 2

W [m] tank width
D [m] tank depth from the front
B [m] inlet height from the bottom
S [m] outlet location from the left side wall
b [m] inlet width
s [m] outlet width
Uo [™]  jet inlet velocity
H [m]  mean water level
h [m] surface height from inlet center
n [—] mode of sloshing
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Chapter 1

Introduction

1.1 Description of the research topic

The motivation behind this master thesis is experimental research about navigation lock filling
to derive physical models that describe the corresponding fluid motions. This requires accu-
rate and three-dimensional reconstruction of the oscillating water surface. Although sloshing
in rectangular tanks is usually considered as a two-dimensional phenomenon, spatio-temporal
reconstruction of the surface shape could give new insights in the physical mechanism of the
observed flow patterns.

The reconstruction of fluctuating water surfaces has been studied extensively in previous re-
search. The presented methodology is image-based, in which images of the water surface are
used to extract 3D shape information. Several approaches have been developed in the field of
computer vision in which one of the optical properties of water is used to reconstruct the water
surface shape.

Although multiple techniques have focused on the reflection of light at the water surface, their
results proved disappointing. Another approach is to exploit the refraction at the air-water
interface. Most refractive-based approaches however make imaging assumptions to solve the
ill-posed nature of light refraction at the boundary between two different media.

In this thesis, assumptions such as a distant, orthographic camera view are avoided which
increases the accuracy of the developed reconstruction algorithm. For this purpose, prior knowl-
edge about the expected surface shape is used to derive a theoretical surface function. This
parameterized model can then be fitted to the information contained within the images of the
dynamically changing water surface. The presented methodology, which combines a shape from
refractive distortion approach with a parameterization of the surface shape, allows to extract
high accurate 3D information in which the temporal resolution is only dependent on the frame
rate of the image sequence.

1.2 Motivation for the developed technique

Navigation locks are used to connect two adjacent water masses with a different water level. In
practice, three particular situations require the use of navigation locks. Firstly, they allow ships
to overcome a water level difference between two reaches of water, which can be canalized rivers
or man-made canals. Secondly, locks are used to separate salt and fresh water. Fresh water is
precious and contamination by saline water intrusion should therefore be minimized. Navigation



locks in that case form a connection between areas of salt water and inland navigation channels
with fresh water. For this application, ingenious systems have been developed to minimize the
salt water intrusion during locking of vessels. Finally, locks can be used to create a constant
water level inside a sea port and in this way provide docks that are not influenced by the
tidal regime. This makes loading and unloading operations significantly easier. Consequently,
navigation locks are important elements of navigable waterways and tidal ports. As shipping has
become an important industry in today’s global economy, considerable benefit gain be gained
by improving the performance of navigation locks.

The navigation locks are constructed as a short canal, the lock chamber, which is closed off by
an upper and lower lock gate. Within this lock chamber, the water height can be adjusted by
using a filling and emptying system. Water is taken from the upper reach (filling) or discharged
in the lower reach (emptying) in order to respectively elevate or lower the ship in the lock
chamber.

Navigation locks in areas with limited differences in topographic elevations only need to overcome
a small water level difference. For low head locks, leveling through openings in the gates, sealed
by valves, can be relied upon. The lock chamber can subsequently be filled or emptied by lifting
the valves in respectively the upper and lower lock gate as shown in Figure 1.1.
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Figure 1.1: Functioning of a navigation lock. From Wikipedia (2016).

The adjustment of the fluid level in the lock gives rise to several hydrodynamic phenomena,
which result in large hydrodynamic forces on the ship within the lock chamber (Figure 1.2).
These forces can be grouped in three main categories as follows:

1. Forces due to the strong concentrated horizontal jets that enter the lock chamber during
the filling process. These submerged jets cause both a direct stagnation force on the ship
as well as a fluctuation force due to the produced turbulence.

2. Forces created by the slope of the water surface due to the lowering of the water surface
above the horizontal jets. This local drop in water-level is caused by the large momentum
generated by the jet and results in a longitudinal force on the ship by gravity.

3. Forces caused by a translatory wave on the water surface during filling and emptying. The
waves have an oscillatory character which can result in self-induced sloshing. In the latter
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case, the free-surface oscillations are the result of the submerged water jet (no external
forces) and can become very high due to the effect of the submerged jet.
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Figure 1.2: Hydrodynamic forces on a ship during filling or emptying of a navigation lock. From
Kolkman (1973).

This thesis will concentrate on the last phenomenon, namely the self-induced sloshing caused by
the submerged filling jets. A number of models has been developed to describe this phenomenon.
Although in reality a ship will be moored at the side of the lock chamber, they incorporate the
presence of the ship by modeling it as a rectangular object, placed centrally inside the lock
chamber. It has been observed that the existing models are insufficient to accurately describe
the sloshing motion. Secondly, predictions that have been made based on these models do not
always agree well with lab or field experiments. Therefore, more fundamental research about the
mechanism behind self-induced sloshing during the filling of a rectangular tank is needed.

This knowledge can then be used to obtain a more accurate and reliable parameterization of the
forces on the ship. As such, simple numerical models can be developed, applicable during the
(conceptual) design of navigation locks and through-the-gate filling and emptying systems.

1.3 Objectives of this master thesis

The main goal of this master thesis is to develop a methodology to determine the spatio-temporal
variability of a dynamically changing water surface. The obtained reconstruction algorithm
serves as research tool to study the water fluctuations in small scale models for various hydro-
dynamic phenomena. The motivation and first application area of the developed method is the
study of self-induced sloshing in a scale model of a navigation lock. This experimental study
can then be used to obtain physical insight in the occurrence of self-induced sloshing.

A list of requirements for the reconstruction methodology is given below, which are needed to
obtain a technique that is suitable in practical research applications.

1. The technique needs to be sufficiently accurate to capture the small water surface oscil-
lations in the scale model of the navigation lock. In case of self-induced sloshing, typical
observed surface slopes inside navigation locks during the filling and emptying-process are
in the order of 1 %o. Given the dimensions of the experimental setup (discussed in Chapter
6, Section 6.2), this requires a measurement accuracy in the order of 0.1 mm in order to
obtain an accurate reconstruction over the entire surface area.

2. The developed method is preferably modular in order to extend and improve it in later
stages of the development of the methodology. This allows a rapid implementation, possible
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in the time frame of this thesis, whereafter stepwise improvements can easily be imple-
mented to address critical parts in the algorithm. Additionally, the reconstruction method
can be fitted for the specific test case under consideration. By fine-tuning the technique
to the scale of the water surface changes that is expected, a better overall performance of
the algorithm can be obtained.

3. The technique should be compatible with velocity measurements of the fluid motion. For
this purpose, techniques such as Particle Image Velocimetry (PIV) or Particle Tracking
Velocimetry (PTV) are often adopted. These consist of tracking seeding particles in the
water, after which their motion is considered as a good estimate of the water velocity. The
developed technique to reconstruct the 3D water surface shape should therefore not come
into conflict with these measurements.

4. Preferably, the developed method should be able to reconstruct a three-dimensional water
surface. Although in case of self-induced sloshing the water motion is assumed to be
mainly two-dimensional, an accurate spatio-temporal reconstruction of the surfaces allows
to quantify possible three-dimensional effects. These can be used to obtain further insight
in the flow-patterns that occur. Additionally, it offers the possibility to apply the technique
to cases where 3D effects are important.

5. The technique should be scalable to other experimental setups. The developed methodol-
ogy can then be applied to larger scale models of navigation locks or other fluid-dynamic
phenomena.

6. Since this thesis is a first step in the development of the methodology, the adopted tech-
nique should be low-cost but offer the possibility to be improved in later stages of the
research. To that end, image-based techniques have the advantage that higher accuracy
can later be obtained by investing in better imaging equipment. In that regard, this thesis
aims to prove that the chosen method allows to obtain accurate and reliable results.

The developed methodology should then be tested in a small scale model to confirm that it is
possible to study hydrodynamic phenomena on a reduced scale. The case of self-induced sloshing
is for this purpose used as a first application of the reconstruction algorithm.

1.4 Methodology

As mentioned earlier, the main goal of this master thesis is to develop a reconstruction technique
to derive a spatio-temporal description of the water surface in small-scale tests. To that end,
different steps are taken which are briefly outlined below.

1. Literature survey about the existing methods to determine a three-dimensional water
surface. The different requirements that are mentioned in Section 1.3 are then used to
choose the most promising method for further implementation during this thesis.

2. Developing a theoretical framework that allows to reconstruct a three-dimensional and
fluctuating water surface.

3. Developing of a modular processing algorithm, in which the theoretical framework that
was developed in the previous step is implemented in practice. Important aspects are
the ability to improve the algorithm in a later stage of the development and reducing
the computational time to an acceptable level. Additionally, the algorithm should be
user-friendly so it can be applied widely.

4. Physical construction of the test setup. More specifically, this involves the choice of cam-
eras and lighting setup, as well as the area and type of feature pattern that is used.
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5. Validation of the reconstructed water surfaces based on several bench-mark cases. Addi-
tionally, an error assessment w.r.t. the most important parameters in the reconstruction
needs to be done. This allows to determine the ideal circumstances under which the
accuracy is maximized.

6. Application of the developed technique to a dynamically changing water surface. Because
the motivation for the development of the reconstruction algorithm is self-induced sloshing,
this first test case involves the filling process of a scale model of a navigation lock.

1.5 Thesis outline

This thesis consists of 9 chapters. After this introduction, Chapter 2 gives an overview of the
existing literature on self-induced sloshing in rectangular tanks. Based on the most recent stud-
ies, the second part of this chapters comprises a description of the currently assumed excitation
mechanism of self-induced sloshing in rectangular tanks. This gives insight in the magnitude of
the hydrodynamic phenomena that need to be reconstructed. Chapter 3 provides a review of the
existing techniques that are developed to determine the shape of transparent, reflective and re-
fractive objects such as water. Based on this extensive overview, an image-based reconstruction
method is proposed that will be implemented in this thesis.

Chapter 4 explains the theoretical framework of the method that is chosen based on the com-
parative study in Chapter 3. Firstly, the refractive properties of water are elaborated as well as
the influence of refraction on the appearance of a pattern (consisting of so-called feature points)
located below the water surface. A novel methodology is then presented in which a low param-
eter surface model is combined with a shape from refractive distortion approach. This allows to
reduce the surface reconstruction to a multivariate optimization in which the surface model is
fitted to the distortion of the feature pattern. How the individual features are recognized in the
images is presented in Chapter 5. It also gives an overview of the most commonly used corner
and feature detection algorithms.

In Chapter 6, a detailed description of the practical implementation of the developed method is
given. In the first part of this chapter, the experimental test setup is described and some aspects
which are inherent to image-based techniques are elaborated. Next, the practical implementa-
tion of the algorithm is explained in which several modules are combined to obtain an accurate
and robust reconstruction of the water surface. Chapter 7 comprises a validation of the method-
ology by assessing the error made on the reconstruction of still water. Additionally, numerical
simulations are conducted to investigate the influence of inaccurate feature localization on the
reconstruction result. Both types of tests allow to quantify the influence of the most crucial
parameters in the reconstruction on the accuracy and robustness of the methodology.

In Chapter 8, the reconstruction algorithm is extended with feature tracking based on optical
flow. First, a theoretical background of optical flow methods is given, after which the prac-
tical implementation is elaborated. The final part of this chapter concerns a first application
to dynamically changing water surfaces, in which the spatio-temporal variability of the water
surface is reconstructed during the filling process of a rectangular basin. Chapter 9 gives a
general overview of what is accomplished during this thesis, as well as suggestions for further
development of the reconstruction algorithm.



1.6 Contributions of this work to hydraulic research

Firstly, this thesis provides an extensive overview of possible (optical) approaches that can be
used to reconstruct specular reflective, transparent and refractive objects. This review focuses
on techniques that seem suitable to reconstruct a dynamically changing water surface. It serves
as background to obtain more insight in the possibilities of optical techniques and as source of
possible ideas for further research.

Most importantly, a novel methodology is presented in which a shape from refractive distortion
approach is combined with a low parameter surface model to describe the instantaneous surface
shape. Because the refractive ray measurements are combined in a single multivariate opti-
mization procedure, the presented method becomes more robust and time-efficient compared to
other techniques. The algorithm is implemented in a single C++ program, in which each aspect
of the reconstruction is incorporated in a different module of the program. This makes the algo-
rithm user-friendly and allows to adapt it depending on the phenomenon that is reconstructed
to obtain the best possible performance.

Furthermore, the reconstruction algorithm is validated and an extensive error assessment is
conducted based on experimental tests and numerical simulations. The tests show that the
surface shape can be determined with mm accuracy for a large range of water depths. The
algorithm is additionally tested in a first, small-scale experiment of rapidly changing water
surface. The experimental setup proved to be the limiting factor in the performance of the
reconstruction. In case these would be improved, it can be assumed that the method allows an
accurate 3D reconstruction of the temporal variation of a water surface. Based on the findings
in this thesis, the most crucial parameters to obtain accurate and robust results are discerned.
These conclusions can be useful for other researchers in case they would implement the algorithm
in their studies.

Finally, a list of suggestions is provided to enhance the algorithm’s performance in further
development of the reconstruction methodology. The algorithm is implemented in a modular
C++ program, which makes such improvements easy to incorporate.



Chapter 2

Self-induced sloshing

As already mentioned in Chapter 1, the motivation of the developed methodology is the still
lacking fundamental research on the self-induced sloshing phenomenon during lock filling. Ad-
ditionally, this topic serves as a first application area for the developed reconstruction method-

ology.

In case a navigation lock is filled and emptied by openings in the lock gates, this causes submerged
jets that can result in oscillations within the lock chamber. Knowledge about sloshing allows to
obtain insight in the expected surface oscillations that will need to be reconstructed. To that
end, this chapter provides a theoretical background on the excitation mechanism of fluid motion
by a horizontal injected jet.

2.1 Overview of previous research on self-induced sloshing

Sloshing can be defined as the fluid motion within a partially filled container (Park et al. (2014)).
The understanding and prediction of this oscillatory motion is important for many other engi-
neering applications besides lock filling: liquid cargo in vessels or tank trucks, motion of cooling
liquids in systems subjected to earthquakes,. .. Sloshing of a fluid within a container can in gen-
eral be categorized into two types: externally-induced sloshing and self-induced sloshing.

Externally-induced sloshing implies a certain mobility of the liquid container in combination
with an external force acting on the container. The motion of the container induces an os-
cillating motion of the fluid mass inside the container. A navigation lock is in contrast fixed
and normally no external forces act on the tank. In earthquake-prone regions, the earthquake
induced vibrations could be an additional factor in design. This specific aspect will however not
be treated within this thesis.

Self-induced sloshing is excited by flow without any other external force. Okamoto et al. (1991)
discovered that in a rectangular tank the free surface oscillates periodically due to an incoming
horizontally injected jet for certain conditions of flow rate and water level. The frequency of the
free surface sloshing motion equals in that case the eigenvalue of the water mass within the test
tank.

A few numerical simulations have been done to obtain a better understanding of self-induced
sloshing and several numerical growth models have been proposed for a test setup with a down-
ward outflow. Amano and Iwano (1991) concluded that the surface oscillations were excited
by the imbalance of vortices that are formed above and below the incoming jet near the inlet.
Takizawa et al. (1992) also carried out numerical simulation to investigate self-induced sloshing.
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They were able to solve the two-dimensional Navier-Stokes equations with Physical Competent
Boundary Fitted Coordinate (PCBFC) (Takizawa and Kondo (1995)). It was suggested that
the sloshing growth is the result of flow directly under the free surface, which is a secondary flow
due to the potential variation. The oscillation energy supplied by the surface potential was as-
sumed to be transformed into kinetic energy, resulting in a forced vibration due to the nonlinear
secondary flow. This model failed however to describe the sloshing growth quantitatively.

Saeki et al. (1998) used numerical simulation to determine a growth mechanism in which the
sloshing excitation energy is supplied by the nonlinear interaction between the jet fluctuation
and the corresponding sloshing motion. Although this could be used to explain the occurrence of
self-induced sloshing in numerical simulation, this model was difficult to validate by experimental
results as it requires high-resolution velocity distributions. At that time however, the available
experimental measurement techniques only allowed relatively sparse and low accurate velocity
information. This proved insufficient for verification as stated by Okamoto et al. (2000). It must
be mentioned that at the present time, experimental velocity measurements have significantly
improved which solves this issue for further research.

Several experimental studies have been carried out to understand the sloshing behavior and
to develop theoretical models in order to model the sloshing growth imposed by a horizontally
injected water jet (with downward outflow). Okamoto et al. (1991) were the first to experimen-
tally investigate the oscillatory motion of the free water surface. They observed the first sloshing
mode and concluded that the oscillation energy was supplied by the surface potential variations
due to the flow pattern transformations. Based on these results, a theoretical model for this first
mode sloshing was developed by Okamoto et al. (1992). To derive this model, they assumed
that the pressure fluctuations are the result of the circulating flow and sloshing motion.

Okamoto et al. (1996) reported two kinds of sloshing modes and suggested that the self-induced
sloshing was caused by the interaction of the plane jet flow with the free surface elevation.
Saeki et al. (1999) investigated both sloshing modes and discovered two sloshing conditions,
first and second stage sloshing, that are necessary for sloshing to occur. They derived the
modified Strouhal number Stg as governing parameter for sloshing growth, and clarified the
overall physical oscillation mechanism using a closed feedback mechanism between jet fluctuation
and sloshing motion. Hu et al. (1999) observed that for a certain experimental tank geometry,
the water surface can oscillate in its first or second mode but also multi-mode sloshings can
occur.

The results of Saga et al. (2000b), in which PIV was used to study the flow pattern and the
evolution of the vortex structures in a rectangular tank, confirmed the earlier findings of Saeki
et al. (1998) and Saeki et al. (1999). The continuous, instantaneous PIV measurements allowed
to determine both the time- and phase-averaged flow fields. Additionally, the velocity power
spectrum of the flow field was calculated using a FFT transformation. This confirmed that
the characteristic frequencies in the velocity power spectrum are indeed the frequencies of self-
induced sloshing of the free water surface in the test tank. Using the high resolution velocity
information, the oscillating movement component was extracted. This clearly showed the vor-
tical an turbulent structures, as well as the form of the oscillating wave. They concluded that
resonance oscillation occurred due to interaction of the periodic fluctuation of the inlet jet and
the periodically shedding of unsteady vortices.

Okamoto et al. (2000) used experimental results based on PIV measurements in order to obtain
a better understanding on the dependency of the first mode sloshing on inlet velocity, water
level and tank geometry. Additionally, second mode self-induced sloshing and the observation
of two separate sloshing conditions with respect to the inlet velocity was investigated. Due
to the turbulent behavior of the injected jet, fast and accurate velocity measurements seemed
necessary. Although they were able to qualitatively prove the excitation mechanism and sloshing
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conditions for both modes of oscillation, it appeared to be difficult to obtain a high-resolution
time and space data set. The limitation of the available measuring techniques at that time
required a different approach to quantitatively explain the self-induced sloshing phenomenon
based on high accurate velocity field information.

That is why a numerical simulation of the self-induced sloshing motion was conducted in Saeki
et al. (2001) to obtain detailed flow data. These numerical results were verified with experimental
results and used to describe the sloshing motion quantitatively in terms of oscillation energy fed
back to the sloshing motion. They concluded that the self-induced sloshing was generated by
the nonlinear interaction between sloshing motion and jet fluctuation. The spatial phase state
was found to be the most determining parameter for the sloshing growth.

In contrast with previous studies, it seemed that circulating flow and free-surface flow are less
significant for the excitation mechanism. A conditional equation was derived that predicts a
combination of the sloshing mode and stage for sloshing conditions in the same mode as the
jet mode or for multi-mode sloshing. Finally, the feedback mechanism of Saeki et al. (1999)
was validated in which the positive feedback energy for the sloshing motion is supplied by the
fluctuation of the incoming jet.

Many studies have been done to investigate the nonlinearities of the free surface oscillation due
to an external force (externally-induced sloshing). But only a few studies have focused on the
self-induced sloshing phenomenon in the absence of external forces. The main limitation of these
studies is that they are not applicable to the filling process of a lock. Most of them consider
the self-induced sloshing motion in case a horizontally injected plane jet has a downward outlet
on the bottom of the tank. Other studies focus on a vertically injected water jet, impinging at
the free surface. The phenomenon of a horizontally injected water jet without an outlet has in
contrast not been studied in earlier research and should be investigated in further research.

2.2 Physical insights in the phenomenon of self-induced slosh-
ing

The most recent insights in self-induced sloshing, mainly based on the paper of Saeki et al. (2001),
are described hereafter. Although this paper does not reveal new insights in the phenomenon, the
cross-validation between experimental and numerical data makes their work the most scientific
significant work on self-induced sloshing so far.

2.2.1 Flow regimes

The self-induced sloshing phenomenon was studied in a series of simplified, two-dimensional
rectangular test tanks as shown in Figure 2.1. The characteristics of these tanks are the tank
width W, the tank depth from the front D, the inlet height from the bottom of the tank B, the
outlet location from the left side wall S, the inlet width b and the outlet width s.

The determining parameters on the flow pattern within the test tank are the tank geometry,
the jet inlet velocity Uy and the mean water level H. Depending on these three factors, it was
observed that three flow states can occur in the test tank which are schematically shown in
Figure 2.2.

First of all, a stable state in which both the free surface and the flow pattern are stable and
unique can be discerned. In that case, two streams can be distinguished: a submerged water
jet from the inlet that turns downward to the outlet as well as an underwater stream from the
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Figure 2.1: Experimental test tank. From Saeki et al. (2001).
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far sidewall towards the inlet sidewall. This leads to a large counterclockwise circulating flow in

the far side of the tank and a small clockwise flow below the jet at the entrance.

In case the water level becomes lower and closer to the inlet, a reverse flow pattern is distin-
guished. Only one large clockwise circulating flow, opposite in direction as in the stable state,
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is present and a rough wavy surface with significant bubble entrainment is formed.

A third pattern corresponds with self-induced sloshing, in which the water surface shows a
periodic oscillation in time. First mode self-induced sloshing occurs when both ends of the surface
move up and down alternately and a node appears in the midsection of the tank. Superimposed
on this standing wave, a nonlinear wave is present which propagates against the free surface
flow. In case of second mode self-induced sloshing, both ends oscillate in phase w.r.t. each other
and with a phase difference of 180° w.r.t. to the midsection. Two nodes, at which the water
surface remains stationary, are therefore present within the tank. Together with this sloshing
motion, the jet also shows an oscillatory behavior, which will be further discussed later in this
chapter.

2.2.2 Sloshing frequency

The theoretical frequency of the n® mode of sloshing without circulating flow is considered to
be equal to the eigenvalue of the water in the test tank. This can be calculated using following
expression, given by Lamb (1932):

1 nmw nmH

n_ _— e h
fi = oo\ oS tanh(MEE)

(2.1)
This formula, which predicts that the sloshing frequency increases with increasing water level,
was verified with experimental results using the fast Fourier transform (FFT) on the time-series
water level data. These theoretical derived frequencies were calculated based on the dimensions
of the test-tank and are represented by the dotted lines in Figure 2.3. It can be noticed that
the experimental results observed in the test tank show good correspondence with the predicted
values.

It must be mentioned that the dominant frequencies of self-induced sloshing under the higher
velocity condition were on average lower than theoretical eigenvalues, both in the experiments
as well as in numerical simulations (see Section 2.2.3).

2.2.3 Excitation map

For one specific test tank setup, two separate sloshing regions of the same or different modes of
oscillation are distinguished. Test tank A showed two conditions for self-induced sloshing: high
velocity first stage sloshing and low velocity second stage sloshing. In case the inlet velocity
corresponds to one of both stages, first mode sloshing will occur. For inlet velocities in between
the first and second stage, a sustained water oscillation was not noticeable.

Secondly, only for tanks M and N second mode sloshing could be established. For those tank
geometries, the inlet width b was reduced to one fifth compared to tanks A and C. The influence
of the parameter b is however complicated as it influences both the inlet velocity and tank
geometry. As such, a simple formula to account for the variation in b is difficult to derive.

Additionally, it was found that the jet oscillates asymmetrically and wavely and eventually
becomes synchronized with the sloshing motion. The wave number of the jet fluctuation is in
that case approximately twice as large compared to first stage sloshing: one or two large vortices
are formed between the inlet and outlet for respectively first and second stage sloshing. These
vortices are then transported along the jet towards the outlet of the rectangular tank. The
spatial phase of jet fluctuation, called the mode of jet fluctuation, is therefore different for first
and second stage sloshing.

11
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Figure 2.3: Frequency of self-induced sloshing for two different tank setups: a) Tank A; b) Tank
M. From Saeki et al. (2001).

Finally, ‘multi-mode sloshing’ did not occur for every tank setup and was only observed in case
of a small nozzle width. A decrease in the distance from the outlet to the inlet sidewall (S) in
tank N appeared to result in ‘multi-mode sloshing’. In that case, the sloshing mode is different
than the mode of jet fluctuation. The geometry of the test tank additionally determined whether
first mode sloshing occurred at low velocities and second mode sloshing at high velocities or the
other way around. A physical reason for this observation could however not be derived.

Saeki et al. (2001) derive in their paper excitation maps for self-induced sloshing, based on
experimental data. These predict the occurrence of self-induced sloshing in function of the
inlet velocity Uy and inlet-surface distance h = H — B for one specific geometric test tank setup.
Figure 2.4 shows two examples of such experimentally derived excitation maps for two particular
test tanks. As can be seen in Figure 2.4, both the free surface and the flow inside the tank tend
to become stable with increasing h. A higher water level requires therefore more energy for free
surface oscillations. However, when h becomes very small, the jet is directed towards the surface
and a reverse flow pattern develops without further sloshing oscillations.

These experimental results were verified with a two-dimensional laminar code. This code, based
on a numerical solution of the Navier-Stokes and continuity equation, simulates the transient
flow with a free surface in a rectangular tank and includes the horizontally injected plane jet.
Both the stable flow pattern as well as self-induced sloshing were simulated and the simulated
frequencies and water motions were analyzed. The frequencies corresponding with self-induced
sloshing showed good agreement with the theoretical frequencies.

Secondly, the simulated excitation map was derived in function of h and Uy for the tank setup in
which first mode sloshing occurred in the experimental study. Numerical self-induced sloshing
was observed under two separate conditions: high velocity sloshing A and low velocity sloshing
B. Between both sloshing conditions, a stable condition was present in which the free surface was
not self-excited. As can be seen in Figure 2.5, these sloshing conditions correspond qualitatively
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2.2.4 Excitation mechanism

Self-induced sloshing is caused by a closed feedback mechanism, in which the flow-surface inter-
action enhances the sloshing motion (Figure 2.6). The free surface oscillation can be described
in terms of potential flow, in which the sloshing potential is used to approximate the free-surface
oscillation. The first mode sloshing potential is given by Lamb (1932):

wsW cosh(%

iy TH
s sinh W

bs(zyt) = a sin(%)) sin(wst + 6) (2.2)
where wgs, W and H denote respectively the angular sloshing frequency, tank width and water
level in the tank. The amplitude a is determined as the average value of the water surface
fluctuations. In this study, the phase delay 0 was set to zero, as the phase-averaged data were
measured using the surface phase information.

The influence of the unsteady flow in the test tank can be represented as the force on a fluid
volume F,s, which can be calculated by means of the momentum theory (volume integrated
form of Navier-Stokes equation):

d
— [ pudV = / pu(u-n) dS+/ p(grad p+ pg) dV+/ pvViu dV (2.3)
dt Jy o Js v v

~~
Funst Feon Fpress Fdiss

where S and V denote the surface and volume of a control surface over the entire width of the
tank and n is the normal vector on this control surface.

The oscillation energy supplied for sloshing F, in a control volume per unit of time can then
for each term in eq. (2.3) be calculated using the sloshing velocity grad(¢s(z,y,t):

AFE,(z,y,t) = F,(z,y,t) - grad(¢s(x,y,t)) (2.4)

with n: con, press, diss and unst from eq. (2.3). The local oscillation energy over a natural
sloshing period T can be found from:

AE,(zy) = | AE,(xy,t) dt (2.5)
Ts

This is finally space-integrated for the whole field (test tank), which results in the total oscillation
energy supplied for sloshing motion:

1 -
E,=— AE, (z.y)d 9.
- /S BB fra)is (2.6)

where Stqnr=two-dimensional area of the tank. The oscillation energy is subsequently converted
into energy per unit mass Syanr = WH and the squared amplitude a?.

In case this procedure is followed for every force in the Navier-Stokes equations, the total oscilla-
tion energy for the unsteady term can be found by the sum of the other oscillation energies:

Eunst = Econ + Epress + Ediss (27)

In case this total unsteady oscillation energy is positive, self-induced sloshing will be excited.
The different terms in eq. (2.7) were determined based on the numerical simulations. It was
observed that with increasing water level, E, s becomes smaller and less energy is available for
the sloshing of the water mass. For negative F,, s, the sloshing motion even becomes damped
and a stable situation is in that case established. When the contributions of the different energies
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are considered, it can be found that the pressure term F,,s, is independent of sloshing and has
no impact on sloshing growth. Additionally, the dissipation term FEy;, is very small and its effect
can therefore be neglected. As such, the sign of the oscillation energy of the convection term
corresponds very closely with the sign of the energy for sloshing growth. The nonlinear force
causes by flow variation, which is the driving force behind the convection energy, is therefore
the main excitation mechanism of self-induced sloshing.

Free-surface oscillation —

Sloshing motion

(potential solution)

E, >0 E <0
positive feedback negative feedback

Fluid force variation >

———  Unsteady flow —

Figure 2.6: Feedback process for self-induced sloshing. From Saeki et al. (2001).

In case one considers the magnitude of the oscillation energy distribution for the convection
term AFE,(z,y), it is found that the absolute value of the local oscillation energy is the largest
along the jet.

Figure 2.7 shows the sloshing energy distributions for one particular test case, calculated based
on the measured velocity distributions. Its sign changes along the flow path from inlet to outlet
and the number of these sign oscillations decreases with increasing inlet velocity. In case the
total amount of positive peaks is less than the amount of negative peaks along the jet, sloshing
inside the tank is damped. Additionally, it was observed that even if the number of positive
and negative peaks are equal, a minimum inlet velocity Uy is required to obtain a positive
growth rate. At very low inlet velocities, the inlet energy seems insufficient for E,, to sustain
self-induced sloshing.

Figure 2.7: Sloshing energy distribution. From Okamoto et al. (2000).
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This was verified by numerical simulations, which confirmed that in case the amount of positive
peaks is equal to the amount of negative peaks, self-induced oscillation is possible. The amount
of the (+/-) energy pattern pairs along the jet also determines the stage of self-induced sloshing:
1%t and 2"¢ stage sloshing occurred for respectively 1 or 2 pairs. The number of pairs was
observed to be inversely proportional with inlet velocity Uy. The results of these numerical
studies is shown in Figure 2.8.

It can be concluded that the spatial phase state of the jet fluctuation, responsible for the emerging
of large vortices along the jet, determines the sloshing regime inside the tank. The circulating
flow pattern and under-surface flow are in contrast not contributing to the sustainable energy
for sloshing.
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Figure 2.8: Oscillation energy supplied to self-induced sloshing. From Saeki et al. (2001).

2.2.5 Conditional equation for self-induced sloshing

The unstable behavior of a jet is normally described by the use of the Strouhal number:

il

St
Ur

(2.8)

in which f,., [, and U, are respectively the representative frequency, length and velocity. In
case the jet fluctuation is synchronized with the sloshing motion, the frequency in the Strouhal
number equals the natural frequency of sloshing f!'.
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Because the excitation of self-induced sloshing is largely dependent on the tank geometry, the
distance from inlet to outlet L = v/B? 4 52 is used as representative length. Turbulent shear
flow along an unsteady jet results in turbulent jet fluctuations. These have different phase
velocities but show a certain dominant phase velocity uc,, due to their mutual interaction.
The representative velocity depends on the longitudinal distance along the jet due to spatial
damping. It is known that the velocity gradient of the jet is the largest where the jet velocity is
approximately half on the jet centerline velocity wu,,. Blake (1986) suggests ucop, is taken at this
most unstable position:

Ucon & §um($) (2.9)
where x represents the distance along the jet in the direction of propagation.

Based on these results, a modified Strouhal number can be defined for a turbulent jet in con-
junction with a sloshing motion:

Lo L
Sty = fg/ dz ~ fg/ —de (2.10)
0 Ucon 0 >

2

Sts can be considered as the time necessary for a turbulent jet disturbance to propagate a
distance L from inlet to outlet, expressed as a multiple of the sloshing period. St is therefore
an indicator of the wavenumber of the turbulent jet, more precisely the number of large vortices
that emerge from inlet to outlet over one sloshing period.

The integration of eq. (2.10) was done by using an experimental velocity distribution of the
turbulent free jet. Based on the work of Abramovich and Schindel (1963), the effect of spatial
damping can be taken into account by assuming following velocity distribution:

1.20,

um(@) = a(z + 0,41b)/b (211)

where b is the inlet width and « ~ 0.22 an experimental constant.

It must be mentioned that this expression is a rough simplification as it neglects effects of the
tank walls, free surface and circulating flow, ... In case these effects are neglected, substitution
of this expression in eq. (2.10) results in:

"L JL+2b
Sty = /s K * in case L >>b (2.12)
Uy b
in which the experimental constant x ~ 0,67 and the term % allows to account for the tank

geometry.

Under certain conditions of the modified Strouhal number, self-induced sloshing is excited.
Based on experimental results of several authors (Okamoto et al. (1991); Okamoto et al. (1993);
Fukaya et al. (1995)), a conditional equation was derived that needs to be fulfilled for self-induced
sloshing to occur:

m—0.25 < Sty <m+0.25 (2.13)

with (m=1: first stage or m=2: second stage)

where m is an integer and equals the number of large vortices that occur along the jet during
one sloshing period. The value of m 4 0.25 represents a quarter phase of the jet oscillation
= 4 /4. This conditional equation is visually shown in Figure 2.9 for different tank geometries.
Depending on the tank geometry, initial water depth and inlet velocity, either the sloshing mode
or jet stage can change.
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The excitation map for sloshing can in an alternative representation be expressed in function of
the Reynolds number Re and St, (Figure 2.10). The Reynolds number for sloshing is defined as
(Saga et al. (2000a)):

. pU()b

I

Re (2.14)
where p, Uy, b, p are respectively the water density, inlet jet velocity, height of the test tank
inlet and dynamic viscosity of water.

The sloshing motion is defined by its jet mode (stage) m and sloshing mode n. As the natural
frequency fI' for mode n=1 or n=2 is fixed for a certain water level and tank geometry, the
relationship between Re and Sts becomes hyperbolic Re o« St;. Self-induced sloshing occurs
at the intersections of these hyperbolas with the regions that are described by the conditional
equation. The combination (n,m) of sloshing mode and jet-stage is dependent on the tank
geometry, initial water depth and inlet velocity Up. Sloshing and jet fluctuations can occur
at the same mode but also multi-mode sloshing (m # n) can occur at different and separate
conditions of Uj.

2.3 Conclusion

The results given earlier in this chapter allow to obtain a good understanding and description
of the excitation mechanism of self-induced sloshing. In case of self-induced sloshing, the jet
fluctuation becomes synchronized with the sloshing motion. The jet is that case fluctuated by
the pressure oscillations that are synchronized with the sloshing motion. The inlet velocity
Up and tank geometry, defined by the inlet-outlet distance L and inlet width b, determine the
behavior of this horizontal injected jet. This jet fluctuation generates one or two large vortices
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previously mentioned parameters.

In case the large vortices satisfy eq. (2.13), positive feedback energy (FE.o, > 0) will be supplied
to the sloshing motion by the jet fluctuation. The spatial and temporal interaction of the jet
fluctuation and sloshing motion can therefore be considered as the excitation mechanism of self-
induced sloshing. In that case, the feedback loop is closed and the sloshing motion in the tank
is self-excited and will grow. However, it must be mentioned that the predicted self-induced
sloshings, based on eq. (2.13), cannot be excited in certain conditions. Experiments showed
that for too low inlet velocities or too high flow velocities below the free surface, sloshing was
not self-excited. A graphical representation of this excitation mechanism is shown in Figure

2.11.
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Chapter 3

Image-based surface
reconstruction

This chapter explains different methods that have been developed to obtain three-dimensional
information of objects in a scene. Our goal is to develop a method that allows to describe
the spatio-temporal variability of a water surface in an experimental test setup. Because
these measurements should interfere as less as possible with the hydrodynamic phenomena
that are reconstructed, optical techniques are for this purpose preferred over traditional me-
chanical measurement techniques. The latter could cause direct changes to the flow pattern
and the resulting water surface. Additionally, mechanical devices could require adaptations of
the test tank/flume which results in a less realistic representation of the real-life scene to be
modeled.

Hence, we focus on image-based approaches as they allow high accurate measurements without
interfering with the scene itself. The overview that is given in the rest of this chapter serves as
reference work to gain insight in the possibilities of optical techniques. Additionally, it serves as
a source of possible adaptations and improvements to the technique that is developed during this
thesis. The finally chosen technique is explained in Chapter 4, on the basis of the considerations
made in Section 3.3.

3.1 Difficulties in water surface reconstruction

The reconstruction of a time-varying water surface has been subject of many studies but still
remains a challenging problem. The analysis of liquids from video recordings and images com-
prises several difficulties compared to traditional 3D photography applications. Normally, image-
based 3D reconstruction is used to determine the 3D-shape of static objects. As pointed out
by Morris and Kutulakos (2005), liquids are in contrast much more difficult to capture due to
several reasons:

e No prior scene model.

Because the spatio-temporal evolution of water is only constrained by the laws of fluid
mechanics, a low-degree-of-freedom parametric model can for such scenes be unreliable.
The error or inaccuracy due these simplifications is however largely dependent on the
phenomenon that is studied. Regular waves can for example be described by a sinusoidal
function that describes their spatial and temporal variability. In contrast, the complex
surface shape in case water is poured into a glass would be very hard to approximate by
a theoretical solution.
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e Nonlinear light path.
Due to refraction at the interface of water and air, incident light rays are broken and a
point below the surface will therefore be projected along a nonlinear path to a viewpoint
above the water surface.

¢ Shape-dependent appearance modulation.
Absorption, scattering and Fresnel transmission cause the appearance of points below the
surface to depend on the light’s path and hence on the surface shape. Moreover, these
effects are dependent on the wavelength of light and therefore different colors of the visible
light spectrum will be affected in a different way.

e Turbulent behavior.
As liquid flow is a volumetric phenomenon, not only the time-varying surface but also the
vector field describing the internal motion must be determined.

e Instantaneous 3D capture.
Because liquids behave dynamically and the shape of the water surface can change rapidly,
instantaneously captured information is necessary to analyze the time-evolution of the
water surface.

Multiple techniques to determine the shape of objects captured in a sequence of images are
available. In the overview that is given in the rest of this chapter, most methods are however
not described in detail because they are not suitable to capture water surface variations.
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3.2 Overview of optical reconstruction techniques in computer
vision

Computer vision comprises a broad research domain, which focuses on mathematical techniques
to recover the three-dimensional shape and appearance of objects in a scene. Based on analyzing
and processing these images, computer vision techniques allow to steer artificial systems and
reconstruct the properties of objects (e.g. shape, color, ...) depicted in those images (Szeliski
(2010); Bradski and Kaehler (2008)). This is difficult because in theory there exist an infinite
amount of combinations of 3D scenes that correspond with the same 2D image. Noise, insufficient
image quality and distortion even further complicate this ill-posed problem. For more informa-
tion about computer vision techniques and image processing, we refer to Szeliski (2010). We
will limit ourselves to two basic optical techniques in computer vision: appearance modeling and
stereo reconstruction. After this basic introductory, we elaborate the different techniques that
have been developed to reconstruct specular reflective, transparent and refractive objects.

3.2.1 Fundamental techniques in computer vision
3.2.1.1 Appearance modeling

Although the problem of 3D modeling and simulation of 3D objects is not in the scope of this
thesis, some basic understanding about generating novel views of a 3D scene is required. A brief
summary of ‘appearance modeling’ is given hereafter because several methods discussed later in
this chapter are based on techniques developed in this branch of computer vision.

‘Appearance modeling’ captures the appearance of the scene through images and subsequently
produces novel views of the scene (new viewpoints or modifying other aspects such as back-
ground). For this purpose, no shape information of the scene itself is however extracted. In the
following, we describe the two mostly used techniques: ‘plenoptic measurements’ and (environ-
ment) matting’.

a. Plenoptic measurements

In plenoptic measurements, images are rendered by sampling the so-called ‘plenoptic function’.
This is a parameterized function to describe everything that can be seen from all possible
viewpoints in the scene.

In a full description of the plenoptic function P, this is function of 7 parameters. P depends
on one hand on the spherical coordinates 6 and ¢ that describe the direction of the light rays
that converge in one point. The location of this converging point is denoted as (V;,V},,V;). In
case the scene is captured by a camera, the light rays converge in the center of projection of the
camera. The light intensity of each ray is also dependent on the wavelength A and in case of
temporal sequences, a time-parameter t must be included. This results in the plenoptic function
P(0,0,\t,V,,V,,V,) which fully describes the light rays converging in one particular point. In
case P is known for every point in the scene, this allows to calculate the plenoptic function
parameterized by the camera’s field of view with the converging point located at the camera’s
center of projection.

It must be noted that it is most often assumed that the plenoptic function is redundant in ‘free-
space’, i.e. with no occluding objects. As such, the intensity of the light rays remains the same
as long as they do not strike an object. In case the sampled light rays converge on the camera’s
center of projection, the CCD elements (charge-coupled devices) of the camera record the light
intensity. The image pixels values can then be considered as the average intensity of the rays
that are recorded by the light receptor of the corresponding pixel. By taking many images of
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a scene (‘sampling the plenoptic function’), new views of the scene can be created using some
sort of interpolation of the recorded images.

Sampling the plenoptic function for imaging water remains however difficult. Firstly, the water
surface is dynamic which makes sampling from all expected angles at one particular time instance
necessary. Secondly, water’s optical properties such as reflection and refraction cause that its
appearance is actually the reflected or refracted appearance from another object in the scene. It
can be concluded that this technique is not ideal to capture the position and shape of fluctuating
water surfaces and will therefore not be further elaborated.

b. Matting and environment matting

The technique of ‘matting’ separates the background from the foreground in images. To that
end, a matte is constructed which is opaque over the background, partially transparent at the
edges of the foreground and fully transparent over the foreground.

Zongker et al. (1999) propose a technique called ‘environment matting’ to approximate the
appearance for transparent objects in the foreground. In case the foreground object reflects/re-
fracts part of the background light, it is not possible to simply exclude the background of the
image. The environment matte allows to model the effects of reflection, refraction, translucency,
gloss and inter-reflection.

For every pixel in the foreground image (image of the foreground object), a function is created
which includes the original matte as well as the contribution of the reflected and/or refracted
background light. The technique relies on taking several images of the object that needs to be
reconstructed, with structured textures on screens surrounding the object.

Each screen of the texture set is composed of a hierarchy of vertical and horizontal stripes with
varying widths. The pattern used is also different for every screen as is shown in Figure 3.1.
The color of every foreground pixel is composed of direct part originating from the color of the
foreground object and a contribution of the background (patterns on the screens). The latter
comprises both a reflected and refracted part, each corresponding to a different pattern/screen.
Several images are taking with varying stripe thickness and orientations of the patterns. Next,
an objective function is minimized over the series of photographed images for each covered
(foreground) pixel in the scene. This finally allows to determine the axis-aligned rectangular
patches of the background that best approximate the reflection and refraction on the foreground
object. Using this knowledge, novel views of the foreground object in which it is placed into a
new environment (background) can artificially be produced. This technique has however two
disadvantages.

First of all, it requires static objects because multiple images must be captured to estimate
mappings from the background through the foreground object. Chuang et al. (2000) solve this
issue by using a darkened room and a single color gradient map background. This allows to
capture and matte dynamic refractive objects against arbitrary backgrounds, although it remains
limited to one single viewpoint. The second limitation is the use of a fixed viewpoint. Several
methods have however been developed to determine the reflectance of objects captured from
multiple viewpoints. These techniques remain limited to static objects and are consequently
unsuitable for water surface reconstruction.

3.2.1.2 Stereo reconstruction

Stereo reconstruction is used frequently to determine the shape of objects in a scene. Initially, we
will consider basis stereo reconstruction of Lambertian scenes. A Lambertian surface is defined as
a surface which is characterized by diffuse or Lambertian reflectance and the luminous intensity
obeys in that case Lambert’s cosine law. This basically means that the brightness of a particular
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Figure 3.1: The environment matting process: multiple screens with varying patterns are placed
around the object and their contribution to the appearance of the object is used to construct
an environment matte for the refractive and reflective object. From Zongker et al. (1999).

point on the surface is independent on the observers’ view angle. Because a water surface is
non-Lambertian, several difficulties have to be overcome which will be explained further in this
chapter.

Stereo reconstruction uses the same principle as the human visual system in which the parallax
of both eyes is matched to determine the position of a specific point observed by both eyes. The
basis of stereo reconstruction consists of computing the depth (z) of a point from the stereo
baseline based on the disparity between two images of a certain point. Disparity can be defined
as the distance between two corresponding points in the left and the right image of a stereo
pair.

Figure 3.2 explains the concept of disparity and disparity mapping. A point X will be seen in
the left image plane at X = (u,v), which can be found by the intersection of the line X — Op,
with the image plane. The same can be done for the right image plane for which a location
Xr = (p,q) is found. The difference in position of the point X in the corresponding two (left
and right) images, measured in pixels, is denoted as ‘the disparity’.

X [
. Xy o
X, *
3e
XI}-’ -----
OL. °eL
Left view Right view

Figure 3.2: Principle of stereo reconstruction using disparity between images. Author unknown.

25



In order to find the disparity of a point, it is necessary to find the match (called ‘corresponding
point’) in the other image plane. After finding the match for every pixel in the left image, the
distance between two corresponding pixels is computed. This results in a disparity value for
every pixel in the left image, which is inversely proportional to the depth along the line X — Op,.
Using the computed disparities, it is possible to define a mapping from a (u,v,d)-triple to a
three-dimensional position.

In conventional stereo vision, the depth (z) of a point is, as mentioned earlier, defined as the
distance from that point to the stereo baseline, i.e. the line connecting the centers of projection
of both views. For the simplified case of a binocular view with two cameras having parallel
optical axes and the same focal length, the depth z can be determined as followed:

b-f
AT

y (3.1)

where b and f denote respectively the length of the stereo baseline and the focal length of the
cameras as is shown in Figure 3.3.
The corresponding x- and y-coordinates can then be determined using following set of equa-
tions:

{xzu-z/f or b+p-z/f (3.2)

y=v-z/f or q-z/f

(x.y,2)

Figure 3.3: Two cameras separated by a baseline b, observing the same object at distance z
from the stereo baseline. Based on Bradski and Kaehler (2008).

This methodology can be used to determine the 3D position of a point for the more general case
in which both the focal length and optical axes of the cameras are not the same. For simplicity’s
sake, this will however not be elaborated in this short overview.

In most of the stereo algorithms, the stereo reconstruction of an object comprises three stages
which will be elaborated below.
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Matching cost determination

In this first step, correspondences between views is determined in order to assign a certain cost
to each candidate: the squared or absolute difference between the assumed matching pixels in
the stereo views is usually adopted. Several techniques have been developed to improve this
matching. In order to make the technique more robust against mismatched pixels, Black and
Anandan (1993) use robust estimators, truncated quadrics or Lorentzian estimators to eliminate
outliers. Cox et al. (1996) propose a pixel-based stereo technique in which matching is performed
on the individual pixel intensities. The algorithm proposed optimizes a maximum likelihood cost
function, subject to ordering and uniqueness constraints. This means that they assume that
corresponding features in the left and right images follow a common normal distribution.

Birchfield and Tomasi (1998) match pixels in one image by interpolated sub-pixel offsets in
the other image. This technique showed to be insensitive to the image sampling because it
uses the linearly interpolated intensity functions surrounding the pixels. Okutomi and Kanade
(1993) attempt to derive a stereo matching technique with less mismatches using multiple stereo
images from different baselines. This proves to be efficient and especially useful for objects with
repeated textures or edges.

In case of stereo reconstruction of water, the water surface is rather smooth and will exhibit few
occlusions when viewed from overhead. This makes the matching cost techniques developed for
handling discontinuities normally unnecessary (in case splashing etc. is avoided). The optical
properties of water however require that the matching technique needs to be performed on an
image projected on the water surface. As the water surface fluctuations will distort this image,
applying stereo reconstruction to water surfaces inhibits several challenges which will be dealt
with in Section 3.2.2.1.

Cost aggregation

Subsequently, the aggregation of the costs of all points is done in which a ‘matching window’
around the pixel of interest is constructed. The intensity difference in the left and right im-
age corresponding to the assumed disparity is subsequently summed over the entire window.
For this purpose, use can be made of square windows, shift-able windows or even windows
with adaptive size. The sum of the intensity differences in these windows can be taken as the
sum of absolute differences, squared differences, normalized cross correlation, ... Additionally,
Scharstein and Szeliski (1998) proposes a technique named ‘iterative-diffusion’. The weighted
cost of neighboring pixels is in this approach added to the cost of the pixel of interest.

Disparity computation and refinement

One has to distinguish between global and local stereo methods: in global methods the corre-
spondence is found for every pixel whereas local methods match distinctive features between
images.

In global methods, the disparity values are determined for every point after which an optimiza-
tion procedure is followed to minimize the sum of a certain energy function. This energy function
is typically expressed as:

E(d) = Edam(d) + )\Esmooth(d) (33)

where the Fg.44(d) measures the pixel similarity, meaning how much the left image is matched
in the right image. Egnootn(d) penalizes disparity variations, which can be associated with the
smoothness in the support region around each point. Extensive research has been done on robust
smoothing functions. Also several minimization/optimization routines to minimize the energy
function have been developed. These will however not be further elaborated in this thesis.
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In local or window disparity methods, each point is optimized separately by aggregating the
cost of the neighborhood or support region as was explained in the previous paragraph. The
advantage of local (area-based) approaches is that the computation cost is much lower than
global methods. The disadvantage of these methods is however that points in the reference
image may not have 1-to-1 mapping to points in the second image. This makes the optimization
for these points obviously difficult.

3.2.2 Reconstruction based on specular reflection

Reconstruction of water surfaces is challenging because they are highly specular reflective and
therefore no Lambertian shading model can be obtained. For non-Lambertian scenes, the color
or intensity of a specific 3D patch is not independent of the angle of the viewing rays w.r.t.
the surface. In this section, several methods are discussed to deal with the reconstruction of
specular reflective but still opaque (non-transparent) scenes.

Perfect (mirror-like) specular reflection is defined as the reflection in which light (or any kind
of waves) is reflected by the surface in a non-diffuse manner. For a single incoming ray, the ray
is (partly) reflected in only one outgoing direction. The relationship between these two rays is
governed by the law of reflection, which states that the angle between the surface normal and
the incoming or outgoing ray stays the same. Specular reflection is valid for smooth surfaces,
such as relatively quiet water, for which a bundle of light will stay concentrated when it leaves
the surface after reflection.

Surfaces that are microscopically rough (e.g. clothing or an asphalt roadway) are on the other
hand characterized by diffuse reflection. In that case, the surface imperfections have a similar
or even larger magnitude then the wavelength of the incoming light. Light is then reflected in a
diffuse manner and the rays of a single bundle of light leave the surface in different directions.
A graphical representation of specular and diffuse reflection is shown in Figure 3.4.

Surface reconstruction of specular surfaces is difficult because surface features of the reflecting
object cannot be observed directly. In contrast, the surface shows reflections of its environment.
The location of particular features from these indirect views of the original object changes in
case the viewpoint is altered. In case the viewing ray and a 3D world position of the incident
light ray on the surface are fixed, the depth and surface normal are determined up to a one-
dimensional family of possible solutions. This depth-normal ambiguity can subsequently be
solved by assuming distant illumination or by measuring an additional point on the incident
light ray.

Specular and Diffuse Reflection

Specular Diffuse
Reflection Reflection

Figure 3.4: Comparison between specular and diffuse reflection. From Davidson and The Florida
State University (2013).
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Additionally, the complexity of the projection process of original objects on the mirror surface
has led to new image-based techniques such as environment matting which was explained earlier.
These approaches do not compute the shape of objects but only determine a function that maps
points of a pattern placed near the scene to pixels in the distorted and reflected view of the
pattern in the image.

Reflection-based approaches all assume non-transparency and therefore seem inappropriate to
determine the shape of water surfaces. However, by mixing the water with a certain substance
that makes the water non-transparent (e.g. kaolinite clay), the water surface becomes approx-
imately an opaque scene. Methods used for mirror-like objects could therefore theoretically be
applied and are investigated hereafter. The rest of this chapter is based on previous work of
Ihrke et al. (2010) and Morris (2004). The former make a comparative study of the different
techniques that have been developed to reconstruct the surface shape of specular or transparent
objects.

The general classes of optical techniques that will be described in this chapter!' are listed in
Table 3.1. Although most of these techniques are able to reconstruct the shape of general 3D
objects in a scene, we will focus on their applicability to reconstruct a dynamically changing
water surface. Table 3.1 shows that the different techniques can be grouped into three main
categories, each exploiting a different optical property of water.

!This review is based on extensive research done by Thrke et al. (2010). We do not claim to be authentic and
refer for a more elaborated comparison to the aforementioned authors. In this thesis, only a brief summary of
their work is given to obtain more insight in the possibilities of image-based techniques.
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3.2.2.1 Reflective stereo reconstruction

Several methods have been developed to obtain a stereo reconstruction of objects that mirror
light (for which a Lambertian shading model is not valid). A first approach is to detect and
subsequently remove specular highlights in the data by treating them as outliers. Bhat and
Nayar (1995) use a trinocular stereo system, in which pairs of images are compared to identify
these highlights. Nayar et al. (1997) suggest to remove specular highlights in a pre-processing
stage by separating the specular and diffuse components of reflection from the images. Blake
and Brelstaff (1988) use ad-hoc constraints that describe deviations from Lambertian reflectance
to identity these highlights.

A second approach does not assume Lambertian reflectance (color constancy of a common
feature between view points). This approach generalizes the multi-view matching constraint to
obtain a more sophisticated model of the color variation between the different views. Stich et al.
(2006) detect discontinuities in epipolar plane images using a multi-view stereo setup. Yang
et al. (2003) use a linear color variational model, based on the observation that the reflected
colors for most real-world surfaces are co-linear in the RGB color space. Next, they develop
a photo-consistency measure, valid for both specular and Lambertian surfaces, which can be
incorporated in existing space carving methods.

Jin et al. (2003) use the color variation to make a constrained radiance tensor, which defines
the discrepancy between the image and the underlying model. Assuming the rank of this tensor
equal to 2, this allows to reconstruct the surface while the reflectance properties of the surface
are simultaneously estimated. Additionally, the estimate of the radiance can be used to generate
novel views of the non-Lambertian appearance of the scene.

3.2.2.2 Photometric stereo reconstruction

A second set of techniques can be classified under ‘photometric stereo’, which uses the variation
in illumination for a static view-point to compute shape. For a point source of light, the fraction
of the incident light that is reflected in a given direction can be considered as a smooth function
of the surface normal, angle of the incident light ray and the emitted (reflected) light ray.
This allows to determine the shape of the object in case the reflectivity function for a single
viewpoint and the position of the light-source(s) is known. This function can be derived based on
the properties of the object’s surface and the light source location. The observed radiance under
changing, calibrated illumination is for this purpose used to determine the surface bidirectional
reflectance distribution function (BRDF) and surface normal. This procedure is in literature
denoted as ‘photometric calibration’. The special case where the data consists of a single image,
known as ‘shape from shading’, was studied extensively by Horn (1970).

The reflectivity and the gradient of the surface can be related by a nonlinear first-order partial
differential equation in two unknowns. These consist of the first partial derivatives of z (height
of the object above the xy-plane) with respect to x and y, denoted p and q respectively:

B 0z 0z

P—% qzﬁiy

Several approaches have been developed to compute a solution for the unknown height z but
will not be further elaborated in this summary.

Traditionally, shape from shading algorithms assume a Lambertian reflectance model, for which
the reflective properties are isotropic and the shading is independent of the viewing angle.
Because water is highly specular, the technique needs further improvement as mentioned by
Horn (1970). Several challenges have to be overcome:
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e Multiple light sources are needed.
A point light source will not be sufficient, as only a part of the surface will be highlighted,
i.e. where the viewing angle and the angle of the light ray that is emitted are equal. Other
parts of the surface will however not be lit, as the incident light ray will not reflect towards
the camera.

e Splashing of water impedes the reconstruction.
Water surfaces do normally not show occlusions or discontinuities which facilitates surface
reconstruction. However, in case of splashing a high degree of non-linearity exists in case
the surface slope is determined based on irradiance. This makes the method mentioned
above less appealing.

e Small reflection of light at grazing angles.
Because the Fresnel coefficients govern reflectivity, it is important to note that at grazing
angles very little reflection will occur. A very large light source will therefore be required
to capture the water surface at these small angles.

Goldman et al. (2010) consider the surface BRDF as a linear combination of basis BRDFs in
which the unknown coeflicients are optimized. However, the combination of photometric stereo
with multi-view stereo approaches makes a BRDF-invariant reconstruction of surfaces possible.
Based on this principle, several approaches haven been developed.

A first technique consists of using natural lighting conditions in combination with traditional
stereo image matching (Shemdin (1990)). This technique is however not advised, as the resolu-
tion of the reconstruction appears to be insufficient for the determination of small wavelength-
waves. Other problems are the observed correspondence error due to specular bias between
binocular views and the fact that several specular artifacts complicate the reconstruction of
small amplitude-waves.

A second technique is based on specular highlight falloff to compute the shape of the water
surface. The surface slope at various points on the surface is in that case determined. Under
certain assumptions mentioned by Schultz (1994), these can be used to determine the surface
orientation based on the calculated and observed irradiance. This technique allows to determine
the surface shape accurately in controlled circumstances.

Zickler et al. (2003) use on the other hand Binocular Helmholtz stereopsis, which is based on the
principle that viewing rays and incident light rays can be switched without altering the surface
reflectance. They use a reciprocating camera and light source to ensure that the pixel intensities
in two images are only dependent on the surface shape and not on the object’s reflectance
properties. This allows to determine the shape of objects with arbitrary reflectance properties
and in textureless regions.

Treuille et al. (2004) propose a technique which avoids the need of a reciprocity camera and light
setup. They rely on the observation of the target object along with a reference object with a
known geometry, having the same reflectance properties and observed under the same illumina-
tion conditions. Their work is based on orientation-consistency, which states that surface points
with the same surface normal and material properties have the same radiance. Additionally,
their model proves robust for self-shadowing of objects in case the lighting itself is calibrated.
On the other hand, assumptions such as orthographic projection and distant lighting are made
which decreases the general applicability and accuracy of this method.

Davis et al. (2005) combine photometric information with multi-view stereo by varying the
incident radiance at every scene point but keeping the direction of the incident light constant.
The varying illumination intensity can be used to find stereo matches without the need for
photometric calibration.
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Li et al. (2011) combine shape from shading with water incompressibility to develop a method
in which the conservation of mass is used to determine the optical flow. The principle of optical
flow will be explained more in detail in Chapter 8. The suggested technique uses shape from
shading to acquire a prior (initial estimate) for the water surface, after which the horizontal and
vertical velocities can be determined based on the mass conservation constraint. By using a set
of Euler-Lagrangian equations, an objective energy function is minimized. This function is a
weighted combination of intensity-conservation, mass-conservation and a smoothness constraint
and results in the horizontal velocities u and v at every location (x,y) for a specific time instance
t. Based on the derived horizontal velocities, the final vertical velocity (w) can be calculated and
the change of the water surface height can be re-estimated. This allows to reconstruct a height
field h(x,y,t) which represents the water surface at time t (Figure 3.5). It can be concluded
that this method looks very promising. There are however several limitations to the proposed
method.

Figure 3.5: Li et al. (2011) uses a single input video to compute a height field of the water
surface (in realtime). From Li et al. (2011).

First, it strongly depends on the surface prior acquired from shape from shading. Li et al. (2011)
show that shape from shading works consistently well over a wide range of water surface shapes
that have opaque and Lambertian properties. However, failure modes can appear in case this
technique is used for water (transparent and highly specular) for which refraction and reflection
distort the reconstructed surface. The proposed technique uses a basic low-pass filter to remove
the extreme bright or dark pixels in the image. This proves insufficient for some applications
but could be improved by using better specular/shadow removal methods. Additionally, the
height field representation works efficiently well for calm water surfaces but fails to describe
complex scenes such as splashing and breaking waves. A more sophisticated fluid representation
is needed in those cases to handle the topological changes.

3.2.2.3 Shape from polarization

The shape of a mirror-like object can also be obtained from polarization, i.e. the phenomenon
that light waves sometimes vibrate in a single plane. Because reflected light becomes partially
polarized in the direction of the surface normal, the phase image of the object encodes the
orientation of the reflection plane (plane defined by surface normal and incident light ray).
Once the orientation of the reflection plane is known, several techniques exist to determine the
surface normal and location of the surface.

Rahmann and Canterakis (2001) propose to use multiple views of the surface, after which the
reconstruction problem is solved with an optimization scheme. In their paper, they show that
the presented method is independent of the illumination of the surface and the optimization
algorithm can be considered as converging and noise resistant.

Secondly, Miyazaki et al. (2004) solve the ambiguity problem by tilting the object over a small
angle. By calculating the difference in polarization degree between two sets of data, the correct
surface normal can be obtained. The use of polarization-based approaches becomes however dif-
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ficult in case transmission instead of specular reflection dominates the image formation, making
this approach less suitable for water reconstruction.

3.2.2.4 Shape from distortion

The shape of the mirror surface will deform the reflected view from the scene. As such, the
distortion of a projected pattern can be used to reconstruct the surface shape. The adopted
pattern is in some cases projected as a radiance map in case distant illumination is assumed.
Others propose to place it close to the object, which results in depth-normal ambiguity.

Oren and Nayar (1997) use the apparent motion of features captured by a moving camera.
They make a distinction between two types of features. A first type is denoted as ‘real scene-
features’, which are physical points on the object and remain stationary independent of the
camera position. ‘Virtual features’ are on the other hand specular reflections of features that
are not located on the object and travel on the surface in case the camera is moved. For
the 2D case in which the camera motion and surface profile are coplanar, the surface can be
reconstructed by tracking two virtual features. For a 3D surface, an algorithm is developed that
allows to reconstruct a 3D curve on its surface using a single virtual feature on the occluding
boundary of the object.

A different approach uses the tangential information of the specular surface on the intersection
of distorted lines. The curvatures of these intersecting lines are used to determine the surface
normal, which then allows to compute the surface location of these intersection points. To that
end, the local geometry of a planar world pattern is combined with the observed reflections
on the mirroring surface. This information can then be used to locally reconstruct the surface
itself, but requires a priori information about the mirroring surface or an approximation of its
distance.

This principle was first used by Savarese and Perona (2001) and later improved by Savarese
et al. (2005), who determine the surface depth and higher order properties at these sparse
set of intersection points. This allows to extract up to third-order information from a single
viewpoint in case the calibrated planar scene is known and at least six reflected scene points are
captured.

Based on their results, Rozenfeld et al. (2011) present a system in which several images with
parallel stripes are displayed on the mirroring surface at different angles. The camera captures
these distorted stripes on the mirroring surface and based on the difference between the distorted
stripes and projected stripes, a 1D-homography can be estimated. Initially correspondence is
only extracted for a sparse set of points and by minimization of a self-defined error measure, the
depth and first-order local shape is obtained. Dense surface recovery is subsequently performed
using constrained interpolation. In their paper, they show that the developed cost function
usually results in a single minimum and allows computations that only depend on local infor-
mation.

A third approach uses a certain pattern of features that is localized in the reflected image
after which multi-view voxel carving is used in combination with a normal consistency check
(Bonfort and Sturm (2003)). The three-dimensional space around the surface is discretized in
voxels, which can be considered as the three-dimensional equivalent of pixels (i.e. boxes in a
3D-regular grid). For each of these voxels, a surface normal is computed that corresponds with
the appearance of the reflected image in case the surface passes through that voxel. This is
done for every viewpoint, which results in series of normal sets. The voxels associated with
surface normals which are not consistent between the different viewpoints are then discarded.
The collection of voxels and surface normals can then be be used to determine the approximate
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shape of the surface in 3D space. Similarly as stated earlier, this method requires some knowledge
about the surface shape and position and again multiple images of the object under different
viewpoints are needed.

Nehab et al. (2008) also use the consistency of normal directions as an alternative cost function
in the standard stereo algorithm. Because the matching is not robust, mismatches have to
be removed by an aggregation method based on anisotropic diffusion (Scharstein and Szeliski
(1998)). This cost computation is performed over a window around the point of interest, which
is in this paper expressed as a 2D or 3D convolution. Additionally, the authors discuss the
different ambiguities that can occur during reconstruction.

Tarini et al. (2003) suggest a technique in which a single camera and a monitor displaying
several images on the mirroring surface are adopted. An improved environment matte for the
mirroring object can then be constructed. A dense, sub-pixel accurate correspondence between
the observed image and the displayed image by the monitor is subsequently obtained using the
uniformity of some photometric properties. These correspondences result in restrictions on the
depths and surface normals, which are finally used together with smoothness assumptions to
determine the surface shape in a global optimization procedure. The disadvantage is that this
method and its accuracy are highly dependent on the photometric calibration. Additionally the
technique remains limited to static objects because several images of the object are necessary
to construct the environment matte.

3.2.2.5 Shape from specularity

These approaches are based on the detection of discrete surface highlights caused by specular
reflection at particular points of the reconstructed object. Healey and Binford (1988) compute
the local orientation and principal curvatures/directions of a specular surface by examining the
image intensities around a specularity. Based on the statistics of this radiance fall-off, a complete
local characterization of the surface up to second order can be made.

Other methods rely on the movement of these specular highlights in case the imaging sensor is
moved over a known distance (Zisserman et al. (1989)) or in case of a moving object observed
by a static camera (Zheng et al. (1996); Zheng et al. (1997);Zheng and Murata (1998);Zheng
and Murata (2000)). Based on the apparent motion of these highlights on the object surface,
the surface shape can be derived.

Another method proposed by Sanderson et al. (1988) uses an array of light sources that are
positioned far from the object. By alternately activating these point light sources, the normal
field of the surface can be reconstructed by observing the corresponding highlights.

A final approach makes use of the information contained in the polarization of specular high-
lights. Because light becomes partially polarized due to reflection, polarization will be minimal
in the plane containing the incident light ray, viewing ray and surface normal. Saito et al. (2001)
use a rotating linear polarizer in front of the camera to determine the polarization state of the
light measured by the imaging sensor. This allows to determine the angle between the surface
normal and the incident light ray and as such calculate the plane of reflection.

Several variations of these methods have been developed to obtain more detailed surface infor-
mation from specularity measurements.

Wang and Dana (2006) move a parabolic mirror across the object’s surface, and change the
incident light directions by shifting a movable aperture. This allows to determine the surface
normals and a spatially varying BRDF.
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Other approaches are based on static viewpoint sampling with a moving point light source
which results in different incident illumination directions. By using a predefined threshold
(Chen et al. (2006)) or coded illumination (Francken et al. (2008b); Francken et al. (2008a)),
specular highlights in the images are identified which allows to determine the normal field. The
final surface shape can then be obtained by integration. Because these approaches can only be
used to reconstruct approximately planar surfaces, extensions in which gradient illumination is
used have been developed to reconstruct more complex shapes. By comparison of the images
under constant and gradient illumination (produced by spherically distributed LED’s (Ma et al.
(2007)) or an LCD screen (Francken et al. (2008c)), the surface normals of arbitrary objects can
be determined. Additionally, the authors propose a method to separate the diffuse and specular
reflection. This allows to recover high resolution surface models.

Due to their high accuracy, these methods seem very promising to be used for the reconstruction
of specular static objects, although capturing the dynamic shape of water surfaces will require
a different approach.

3.2.2.6 Shape from specular flow

A different approach tracks a (semi-)dense set of feature points on the specular surface from
a distant environment map. The concept of specular flow is relatively new (Roth and Black
(2006)). They define specular flow as the image motion due to a moving camera around a
reflective object. Specular flow represents the dense (or semi-dense) flow field (vector field) on
these specular surfaces. They additionally expand their model to surfaces which are considered
to be a mixture of diffuse and specular regions.

Their algorithm is based on a known camera position and a derived vector field describing the
optical flow between image pairs (Figure 3.6). The authors incorporate an initially unknown
material distribution (specular or diffuse) and segment the flow field in diffuse optical flow and
specular flow using a maximization algorithm. Regions moving due to diffuse and specular
flow can as such be distinguished from each other. Based on the assumption of a distant
illumination field, the parametric models of diffuse and specular flow can then be used for
surface reconstruction.

Figure 3.6: Roth and Black (2006) use distant illumination of a specular surface, for which the
diffuse (e) and specular flow (f) of feature points on the surface are separated. These are finally
used to derive the material properties and shape of the surface. From Roth and Black (2006).

Several improvements to this technique have been made. Assuming orthographic projection and
far-field illumination, Adato et al. (2007) use a method that relates the observed specular flow
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velocities through a pair of coupled non-linear partial differential equations. These can be solved
in case the angular rotation around the optical axis of the camera remains constant. Finally,
Vasilyev et al. (2008) propose a similar approach to determine the shape from specular flow
induced by three rotations around arbitrary axes.

However, it must be mentioned that all of these methods require multiple images of the surface
from different camera positions which makes their applicability limited to static objects. As
water is highly dynamic, specular flow can therefore not be used in this thesis.

3.2.2.7 Direct ray measurements

In case of near-field illumination, depth-normal ambiguity arises. In contrast with far-field illu-
mination, the incident angle at each scene point is different. Direct ray measurements therefore
require a second 3D point on the incident light ray which fixes its direction.

Although Kutulakos and Steger (2008) assume that exactly one reflection occurs along the ray,
they present a framework that does not impose a priori assumptions on the shape of the surface
or the nature of the media (e.g. opaque or transparent). To that end, they formulate the
reconstruction problem as a geometric constraint satisfaction problem by using the individual
light paths and use a function that maps each image point to two known reference points along
its light path. These two points are determined by placing a known, planar pattern at several
positions w.r.t. the object. The refracted view of this pattern captured by the camera is then
related to the corresponding position of the actual plane in the scene. By using the knowledge
about the reflected and incident light ray, the surface normal and the corresponding surface
point can be determined separately which allows an even more accurate measurement for planar
surfaces. Bonfort et al. (2006) extend this approach to arbitrary surface shapes.

3.2.2.8 Laser rangefinders

Laser rangefinders allow surface reconstruction based on the same principle of triangulation.
This involves projecting laser light onto the object surface, and measuring the reflected light at
a known receiver. Solving this triangulation problem results in the reconstruction of the object
surface. Although these methods are usually developed for Lambertian surfaces, several laser
rangefinders have recently been developed to cope with specular surfaces.

Baba et al. (2001) restrict the incident light ray by using a special light device, i.e. a shield
mask in front of the image sensor, to only receive light from the expected angle. In further
improvements of the proposed technique (Baba et al. (2004)), they equip the laser rangefinder
with an image sensor that makes it possible to detect both the position of light ray and the
incident angle on the sensor. After determining the incident angle on the sensor, the orientation
of the object can mathematically be estimated.

Additionally, this technique allows to determine not only the three-dimensional shape but
also the surface reflectance properties of the object. Experiments showed that the improved
rangefinder is able to detect the object’s shape faster than the original laser rangefinder and can
be used to reconstruct specular, Lambertian (diffuse) or hybrid objects. Despite these improve-
ments, the proposed method remains slow and also requires high technological equipment such
as laser rangefinders and sensors. A direct application to scan highly dynamic water surfaces is
therefore not possible.
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3.2.3 Reconstruction based on transparency

Because water is (partially) transparent for light rays, techniques applicable to transparent
objects can be adopted to determine the shape of water surfaces. The object (water) is in
this case not considered as an obstacle but rather as a transition to a medium with different
optical properties than the surrounding environment. A short list of possible methods is given
hereafter.

3.2.3.1 Computerized Tomography

In case the wavelength of the light used for illumination is sufficiently high and the refrac-
tive index of the object and the medium surrounding the object are approximately equal, the
incident rays do not refract at the objects surface. The technique is well known in medical imag-
ing in which X-ray images are taken from different view-angles which results in cross-sectional
(tomographic) images of specific areas of the scanned object. To that end, Kak and Slaney
(1988) propose a technique, called the ‘backpropagation algorithm’, to perform the compilation
necessary for three-dimensional reconstruction. The disadvantage of this technique is that si-
multaneous images of the object are required and it is difficult to avoid imaging the capturing
equipment at the same time. Additionally, the technique can only be used with X-rays because
it fails in combination with direct optical images and ultrasound due to surface refraction.

3.2.3.2 Multi-view reconstruction

Multi-view reconstruction with transparency can be considered as a modified version of voxel
carving. For each ray through each pixel, a weight is assigned to the voxels along that ray
which indicates how much a particular voxel contributes to the pixel color. These weights can
subsequently be used to find the transparency values. The most consistent set of voxels and
corresponding weights is finally found by using several views of the object. This approach is
also called the Responsibility Weighted 3D Volume Reconstruction (Roxel) algorithm. De Bonet
and Viola (1999) mention however that due to the fact that transparency is equated with uncer-
tainty, surface edges become blurry in case the precise location of these edges is uncertain. The
Roxel algorithm additionally suffers from the same problems as CT-techniques in combination
with water: it does not consider refraction and requires simultaneously images from multiple
views.

Tsin et al. (2003) propose a method based on stereo reconstruction but taking into account the
presence of reflections and translucency. Image formation is modeled as the additive superposi-
tion of layers at different depths. They develop a nested plane sweep framework, which allows
to determine depth components in a systematic way. Using a component-color-independent
matching error, the depth hypotheses are then optimized. This results in an accurate estima-
tion of the stereo correspondences for complex scenes consisting of multiple layers. Additionally,
they present an iterative color update algorithm to extract the correct colors of the different
layers.

3.2.3.3 DPolarization analysis and separation of local and global light transport

The difficulty for traditional structural light 3D scanning techniques applied to transparent
objects is the occurrence of subsurface scattering just below the object surface. This results in
a drastic reduction of the signal-to noise ratio and shifts the intensity peak beneath the surface,
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to a point which does not coincide with the point of incidence. Several methods have been
developed to overcome this problem.

A first approach is to use specular highlights as mentioned previously. Because specular reflection
is not influenced by sub-surface light transport, specular highlights always appear at the same
position independent of the global light transport within the object. (Chen et al. (2006))

Chen et al. (2007) propose a method in which a combination of polarization and phase-shifting
is employed. By using polarization-difference imaging, subsurface scattering is filtered because
multiple scattering randomizes the polarization direction. In contrast, the surface reflection
partially keeps the polarization direction. By using two orthogonal polarized images, they rely
on this idea to remove specular highlights. In the same paper, they use a phase-shifting technique
on high frequency light patterns which allows the separation of specular highlights and diffuse
components.

In further research, they suggest to improve the technique by combining low-frequency and high-
frequency light patterns (Chen et al. (2008)). This allows to separate the local direct illumination
effects and the light contribution due to global light transport. The improved technique proves
to be more robust and eliminates the need for polarization filters compared with the method of
Chen et al. (2007). On the other hand, the suggested method only finds an approximate solution,
for which the errors are rapidly accumulated in case of several internal reflections.

Morris (2004) suggests that multi-view or a binocular stereo shape from polarization approach
could theoretically be used to overcome this problem. However, this is not yet attempted in
practice and simpler methods are used to reconstruct the water surface.

3.2.4 Reconstruction based on refraction

The surface description of refractive objects with inhomogeneous material properties is very
complex and the image formation for objects with inclusions and cracks is very difficult. In
most cases however, refraction can be considered to occur at a single surface which forms the
boundary of the observed object and its environment. Almost all methods assume the refractive
object therefore homogeneous and most of them are based on a priori known refractive index.
Although these assumptions made somewhat limit the general applicability of these methods,
the determination of a water surface by using its refraction properties offers two main advantages
compared to reflectance-based techniques as is mentioned by Morris (2004):

e Refraction nonlinearities are much lower than those for reflection, which allows a smaller
light source or pattern to be used.

e Most refraction techniques light the surface from below and as such, no specular artifacts
are present that would occur due to specular reflection.

3.2.4.1 Shape from distortion

These approaches are based on the same principle as for reflective objects. However, an addi-
tional complexity arises due to the fact that the light path is not only dependent on the surface
normal but also on the refractive index of the media at both sides of the surface.

Murase (1990) applies the concept of shape from refractive distortion to water surfaces. Using
a unknown pattern that is placed on the bottom of the water tank, a sequence of images of
the water surface is captured. The distortion (due to refraction at the air-water interface)
of an initially unknown pattern is then used to derive the shape of the water surface. The
reconstruction algorithm is composed of four stages (Murase (1992)):
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1. Using the distortion of the image of the pattern, optical flow is computed for the entire
pattern.

2. The average of these optical flow displacements is taken as the location of the undistorted
background pattern, meaning only refracted at a planar interface.

3. The distortion vectors w.r.t. the mean location can then be calculated for every frame.
Based on these optical characteristics, the surface gradient and normal can subsequently
be computed for every point.

4. The entire surface is determined by integration of the surface normals.
The proposed technique has however some disadvantages:

e A distant, orthographic and one-view set up with parallel light rays is assumed during his
derivations (see Figure 3.7). For camera setups at which the camera is placed at small
heights above the water surface, this simplification is not longer valid.

e The method can only be used for low amplitude waves because large amplitudes would
result in a too large distortion of the projected pattern.

e The surface can only be reconstructed up to some unknown scale factor. The scale of
the surface is in that case influenced by the refractive index and the distance between the
water surface and the bottom of the tank.

Camera

Air surface

Figure 3.7: Murase (1992) uses an orthographic camera view to detect an initially unknown dis-
torted pattern below the surface. Using the average position as approximation of the undistorted
position the pattern, the surface shape can be reconstructed. From Murase (1992).

Morris (2004) derives a method to reconstruct a time-varying water surface in which the same
principle of refractive distortion is used. The imaging and statistical assumptions made by
Murase (1992) are however avoided by combining refractive distortion with a stereo setup and
the use of a known background pattern, making the methodology more physically consistent
(Morris and Kutulakos (2005)). The algorithm is a special case study of a general analysis on
the reconstruction of light paths (direct ray measurements) conducted by Kutulakos and Steger
(2008). The method involves the determination of the surface normals based on the observed
feature points on the water surface of which the light rays are refracted at the air-water interface.
Based on the known, physical location of these feature points on the bottom of the tank, the
geometric problem can be solved in case a certain depth along the viewing ray is assumed. This
is done for two stereo cameras, which results in two sets of surface normals and corresponding
water surface locations for every time frame. The hypothesized depth is then verified by using
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an error metric which expresses the dissimilarity between corresponding surface normals at
particular locations, each determined with a different camera.

refraction planes

reference

pattern

Figure 3.8: Sparse multi-view stereo technique based on shape from distortion. From Morris
and Kutulakos (2005).

For this purpose, two different error metrics are suggested: the normal collinearity metric and
the disparity difference metric. Based on numerical simulations, the disparity metric proves
to give more accurate results for small water depths. An accurate reconstruction of the water
surface is finally obtained by a minimization procedure to find the optimal depth for every
feature point that minimizes a normal matching cost function. The feature points are tracked
using a Lucas-Kanade tracking algorithm to obtain the time-dependent variation of the water
surface. This extended stereo setup allows to determine an initially unknown refractive index
(Morris and Kutulakos (2005)) and does not rely on an average surface shape as the water depths
for the different feature points are optimized separately. The method proves to be robust for
the loss of feature points and can also be used in case the tank is partially empty.

The same principle has also been applied to other translucent objects than water. Hata et al.
(1996) use multi-stripe lighting that is projected on objects with one planar surface that rest
on a diffuse base. By detection of the distorted patterns, the shape of the glass and drop-like
objects can be obtained. The light path is in that case refracted twice (entering and leaving the
glass object), which makes an analytic solution of the problem difficult. The authors therefore
develop genetic algorithms to solve this issue. In their paper, they show that transparent paste
drops can accurately and efficiently be reconstructed.

A method proposed by Ben-Ezra and Nayar (2003) is based on feature tracking in which feature
points are imaged through a transparent object as shown in Figure 3.9. They implement a
model-based approach in which the shape and pose of transparent object is determined by
minimizing a certain object function using a steepest descent method. In this way, they are able
to reconstruct not only one surface but the complete surface shape of the objects. Their study
remains however limited to objects that are parameterized by a single shape parameter €, such
as super-quadrics or spheres. They characterize the orientation and position of the object by the
rotation matrix R and translation vector T. The proposed method shows promising results to
determine the shape of transparent, refractive media, although its applicability remains limited
to low-dimensional shapes. Additionally, multiple images with a moving camera are needed to
estimate the position of the static object.
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Figure 3.9: Ben-Ezra and Nayar (2003) use parallel incident light rays from a distant feature
F that are scattered due to the refraction within the transparent object. The light rays are

detected by a moving camera and given the expected shape, the position and shape parameter
of the object can be determined. From Ben-Ezra and Nayar (2003).

For methods based on tracking feature points through images of refracted scenes, localization of
these feature points proves sometimes difficult. Due to refraction, the pattern can be severely
magnified or reduced in size and the distortion can even be so severe that feature matching is
not longer possible. Moreover, the pattern might become difficult to distinguish for media that
are not completely transparent. Absorption of light might in that case cause variations in the
intensity of the tracked feature points.

This problem is studied by Agarwal et al. (2004), who generalize the optical flow equation derived
by Murase (1992) using a particular choice of optical kernel function. This allows to account for
the warping and attenuation caused by a refractive object. Using their algorithm, they are able
to solve the warping and attenuation problem in case of refractive objects to obtain a plane-
to-plane mapping. For this purpose, a known or unknown movement of a planar background
is tracked and the 3D distortion of this plane can then be determined. It must be noted that
the proposed method is based on some restricting assumptions. The specular, Fresnel and total
internal reflection are not considered and the background behind the object is assumed to be
planar.

3.2.4.2 Direct ray measurements

The concept of ray tracing can also be used for refractive media, in which the rays are measured
after having passed through the refractive object. A first technique uses a known, planar cali-
bration pattern at several positions w.r.t. the object to measure the incident light ray on the
surface as described in Section 3.2.2.7.

Kutulakos and Steger (2008) investigate the application of direct ray measurements extensively
for a large range of situations. In their paper, they distinguish for both refractive and specular
surfaces different types of light-path triangulations based on 3 parameters: (N,K,M). N repre-
sents the number of view points necessary for reconstruction, K the number of vertices of which
the light rays are composed and M the number of known reference points per image point. By
a case-by-case analysis in which these three parameters are varied, they obtain an enumeration
of tractable triangulation problems. An overview of their results is given in Figure 3.10.

The (1,1,2) -triangulation problem was already explained in Section 3.2.2.7. The method pro-
posed by Morris and Kutulakos (2005) is an application of the (2,1,1) -triangulation problem.
A third class, the (3,2,2) -triangulation, is also detailed described in this paper and can be used
to reconstruct glass objects.
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Theorem 1 The only tractable (N, K, M)-triangulations are
shown in the tables below:
One reference point (M =1

K=1 K =2 K>3

N=1

N2 v X

Two or more reference points (M > 2)

K=1 K=2 K>3

N=1 v X

N =2 v x

N=3 v X% v

N =4 v x v X

where ‘v"" marks tractable problems where the scene is either
known to be a mirror or its refractive index is known; *x’ marks
tractable problems where the refractive index (or whether it is a
mirror) is unknown; and blanks correspond to intractable cases.

Figure 3.10: Tractable triangulation problems in function of (N,K,M). From Kutulakos and
Steger (2008).

The authors show that a pixel-wise independent reconstruction procedure is not possible for
more than two, specular or refractive, intersections of the light ray. Finally, it is proven that
more than 2 known 3D points per light ray do not contribute to additional information for the
reconstruction problem.

Another approach described by Atcheson et al. (2008) approximates the refracted light rays
based on optical flow data in which it is assumed that the object (gas flow in their case) is
small compared to the distance between the object and the background pattern. In that case,
the small deflections of a known background pattern, shown in Figure 3.11, can be computed
with optical flow methods. In their paper, they reconstruct the variations in the refractive index
of gases due to temperature changes by studying the small changes in direction of these rays.
A linear system which describes these differential changes is finally solved using a least-square
minimization method, which results in a volumetric measurement of the refractive index.
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Figure 3.11: Atcheson et al. (2008) first detect the frequency of a dot pattern without the object.
Another image is then taken with the object and the deflection of the light ray in the image
plane is determined with optical flow. From Atcheson et al. (2008).
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3.2.4.3 Laser rangefinders

Special laser rangefinders have been developed to reconstruct water surface based on the re-
fraction of the laser ray. Wu and Meadows. (1990) project a laser ray through the water and
measure the ray’s deflection due to refraction. Subsequently, the surface normal is found by the
detection of the refracted ray with an sensor screen positioned at the opposite side of the surface.
These surface normals can then be used to calculate the wave slopes in two dimensions. The
water surface intersection point is finally determined by using an iterative search that accounts
for the detected ray on the screen.

3.2.4.4 Inverse ray-tracing

In case of inverse ray-tracing, input data is compared with synthetically generated images.
Instead of matching distinctive features in the scene with image points (pixels) in the image,
they search for an image formation model based on volumetric ray tracing, i.e. the 3D geometry
and material properties of the reconstructed object, that best explain the observations. The
input data set is then compared with the computed 2D data set (based on the current estimate
of the surface shape) and the dissimilarity between both is minimized. Different approaches can
be used to obtain this input data, in which usually one of the previously mentioned techniques
is used.

A first approach uses the effect of fluorescence or chemiluminescence. Thrke et al. (2005) dissolve
the chemical Fluorescein in the water, after which the water is illuminated by UV Light. A
measurement of the thickness of the water can then be obtained from the amplitude of the
emitted light in case the self-emission is assumed homogeneous throughout the water column.
The water surfaces is then matched by a video frame of synthetically produced images which is
generated by a multi-view setup based on a constant self-emissivity model. The visual hull of
the water surface is finally calculated by utilizing a weighted minimal surface using the thickness
measurements as constraints.

Goldlucke et al. (2007) suggest a similar approach but use chemiluminescence that produces
light by a chemical process instead of the reflection of UV.

Wang et al. (2009) dye water with white paint and light patterns are projected onto the water
surface. This allows to use standard stereo reconstruction to reconstruct the shape of the water
surface. A dense reconstruction algorithm is adopted to determine a depth field which is refined
afterwards using physically-based constraints. They suggest that their physically-guided model
allows to automatically fill in missing regions, remove outliers, and refine the geometric shape
so that the final 3D model is consistent with both the input video data and the laws of physics.
This method shows very accurate reconstruction of surface details.

3.2.4.5 Thermographic surface reconstruction

Because the infrared spectrum is not subjected to refraction, using an IR-laser instead of visible
light is a promising alternative to be used in surface reconstruction. Eren et al. (2009) develop a
method, named ‘scanning from heating’, to reconstruct the shape of glass objects that are heated
to make them detectable with an infrared sensitive sensor. The resolution of this technique
remains however limited since the wavelength of incident light is much larger and therefore
much more difficult to focus in comparison with visible light.

Hilsenstein (2005) proposes a method based on stereo reconstruction, in which water waves are
reconstructed from thermographic image sequences acquired from a pair of infrared cameras.
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Infrared stereo reduces the problem associated with transparency, specular reflection and lack
of texture that occurs for visible wavelengths. These techniques all require sophisticated and
expensive equipment and complex experimental setups which make them less attractive.

3.2.4.6 Shape from refractive irradiance

This approach is based on the idea of relating image intensity or color with a certain surface
shape (and corresponding slope). Several techniques have been developed (Daida et al. (1995),
Keller and Gotwols (1983), Zhang and Cox (1994), although most of these are based on the
same basic principle.

By using a specialized lens, a screen of light is collimated in order to make parallel light ray
columns with a certain intensity or color. If these light rays are refracted by the water surface,
only a part of these light ray columns will reach the camera, which is positioned far enough from
the water surface. The color or intensity detected by the camera, can therefore be associated with
a particular slope (and normal) of the surface. The entire surface is subsequently reconstructed
by integrating these surface normals.

Morris (2004) mentions that this technique has however several disadvantages:

e An infinitely distant camera is assumed. Parallel incoming rays are however only a rough
approximation and a model error is inherently incorporated in this technique.

e Additional errors will occur due to the collimating lens because the light rays may not be
perfectly collimated.

e The light attenuation by the water surface will be different for different parts of the image as
the underwater path lengths will slightly be different. Therefore, the measured intensities
will not only be the result of the slope of the water surface and the measured intensities
should be corrected to find the actual surface elevation.

3.2.4.7 Reflection-based reconstruction for refractive media

We finally present an algorithm suggested by Morris and Kutulakos (2007) to determine the
exterior surface of refractive and transparent objects with an inhomogeneous interior (e.g. mul-
tiple interfaces or reflective interiors). Although the application to self-induced sloshing does
not suffer from these problems, the proposed method can still be useful to investigate other
fluid-dynamic phenomena. Additionally, it could be used in case the research on self-induced
sloshing is expanded to two-liquid media such as fresh-salt water or fresh-muddy water.

The method involves acquiring high-resolution images of a static object from one or more view-
points, while a light source is moved in a regular 2D (or 3D) pattern. This produces a 2D (or
3D) set of measurements per pixel, the so-called pixel’s scatter trace, which can be considered
as the trajectory of the light before interacting with the object and arriving at the given pixel.
The reflectance measurements, which are the result of both direct reflection and global light
transport effects, are then split in its two components by exploiting the physical properties of
light transport. Additional constraints are then set in order to formulate a ‘scatter-trace stereo
algorithm’ to compute the shape of the exterior surface (depth and surface normals). The major
disadvantage of this method is that multiple images of a static object are necessary to compute
the pixel’s scatter trace. Because water is highly dynamic, a modification of this approach would
be necessary to be applicable for water surfaces.
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3.3 Conclusion and choice of the most suitable technique

Based on the overview given in this chapter, a choice was made on which reconstruction method
our developed method will be based. As explained earlier, every type of reconstruction method
uses a different optical property of water to determine the shape of the water surface. Reflection
of light is the basis of the techniques described in Section 3.2.2, for which several possible
solutions have been developed to handle specular highlights. Reflectance of light on the air-
water interface is however governed by non-linear Fresnel reflection. The amount of light that
is reflected is in that case largely dependent on the viewing angle w.r.t. the surface normal.
Although the amount of reflected light is large in case these intersect the water surface at a
sharp angle, light that encounters the water-air interface approximately perpendicular is almost
completely transmitted. This makes such methods less robust and unsuitable in case water
surfaces with large variations in surface slope need to be reconstructed. Methods that use
transparency of light (Section 3.2.3) usually require multiple images of the same water surface.
Although solutions have been sought to accommodate this issue, other approaches seem therefore
more appropriate.

Laser rangefinders are an example of sensor-based techniques, in which the reflected or refracted
rays are subsequently detected at the same or opposite side of the air-water interface respectively.
The available methods seem however to slow to capture highly dynamic water surfaces and
require specialized and expensive measurement equipment. Image-based techniques combined
with refraction of light are therefore the most obvious choice. Optical or image-based techniques
have the advantage that the required imaging equipment is easily available. Additionally, the
accuracy of these methods can in most cases simply be improved by adopting higher-resolution
cameras and better lighting setups.

Shape from refractive distortion and direct ray measurements seem the most promising ap-
proaches compared to other image-based techniques. Most refractive-based methods require
however a distant, orthographic camera or a collimating lens under water. The imaging as-
sumptions related to this make an accurate reconstruction more difficult. Inverse ray-tracing
seems also promising but requires the media (water) that is modeled to be altered to obtain
an image formation model. This makes these methods more difficult to combine with other
measurement techniques such as PIV or PTV.

The method proposed by Morris (2004) is based on the same basic principle but takes into
account the perspective transformation during capturing of images. They suggest a sparse,
multi-view stereo approach in which the distortion of a feature pattern due to refraction is used
to derive the shape of the water surface. It allows to avoid some of the assumptions made in
other techniques (e.g. the use of a distant orthographic camera view or statistical properties of
the surface undulations) which significantly improves the accuracy. For this reason, the chosen
technique is based on their work. Some adaptations are however made to improve the robustness
w.r.t. feature localization in the images of the water surface.

We combine this refractive stereo technique with a low parameter model of the water surface,
similarly as explained in Ben-Ezra and Nayar (2003). They however use only one shape parame-
ter £ to describe the shape of a reconstructed refractive and static object. This shape parameter
is then optimized together with a rotation matrix R and translation vector T to estimate the
pose of the object w.r.t. the camera position. We will use more extensive surface models to
obtain a theoretical description of the entire water surface shape.

Compared to the original method of Morris (2004), this allows to reduce the computational time
for a singe surface reconstruction and improves the robustness of the algorithm with respect to
loss of feature points. Additionally, the spatial extent of the surface reconstruction can be
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improved in case only a limited amount of cameras is available. The theoretical framework, on
which our surface reconstruction algorithm is based, will be explained in the next chapter.
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Chapter 4

Theoretical framework of the
reconstruction algorithm

4.1 Image-based reconstruction of the water surface

The presented method which is used to determine the water surface is based on the sparse
multi-view reconstruction approach of Morris (2004). The basic principle in which 3D shape
information is derived from refractive distortion was already applied by other authors. However,
Morris (2004) does not not assume a distant, orthographic camera view of the surface which is in
most methods adopted. Instead, they combine a traditional stereo approach with a shape from
distortion approach. As mentioned by Morris (2004) and Morris and Kutulakos (2005), this
makes their method more physically consistent and eliminates the need for an extra collimating
lens under the water surface. Their technique is therefore more accurate and less difficult to
implement in practical applications.

4.1.1 Light refraction at the air-water interface

It is known that light travels at different speeds in media with other densities. At the boundary
of two layers, the light rays are refracted or bent. This change in direction between the incident
and refracted light rays can be described by Snell’s law:

r1 sin(6;) = rq sin(6,) (4.1)
where:
r1 The refractive index of the first medium.
9 The refractive index of the second medium.
0; The angle between the incident ray and the surface normal of this boundary.
0, The angle between the refracted ray and the surface normal of this boundary.

These incident and refracted rays are located in the same plane, which in every situation also
contains the surface normal (ﬁ) Refraction can therefore be considered as a two-dimensional
problem as depicted in Figure 4.1. At the interface between water and air, this equation can be
further simplified because the refractive index of air equals 1:

sin(0;) = ry sin (6,) (4.2)
where the refractive index of water r,, typically equals 1.33.
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Figure 4.1: Schematic representation of Snell’s law: the incident light rays is refracted at the
air-water interface with a surface normal 77.

Two important aspects of light refraction must be mentioned. Firstly, light rays that travel
from water to air (in the opposite direction as defined earlier) will partly be reflected and partly
refracted. The ratio of reflected to refracted light increases as the angle of incidence increases.
In the limiting case, no light is refracted and total internal reflection occurs. The angle at which
total internal reflection takes place is denoted as the critical angle 6.,.. For incident light rays
that encounter a boundary between two media at the critical angle, the refracted rays are tangent
to this boundary. To find 6.,, the angle of refracted light 6 in (4.1) is set equal to 90° and thus

sin(fz) = 1. The resulting critical angle can therefore be calculated with 6. = sin ! (%) For

the water-air interface, this gives a critical angle equal to:

1
0, = sin~! (> ~ 48°
Tw

Secondly, refraction of light rays is also dependent on the wavelength as red light has a higher
refractive index in water than blue light. Also the temperature of the water has an effect on the
refractive index. This particular feature has been studied extensively by Harvey et al. (1998),
Schiebener et al. (1990) and Thorméhlen et al. (1985). They developed graphs and empirical
formulas that describe the refractive index as a function of the wavelength, temperature and
density of the water. Because we will use pure water in this thesis, the final parameter is only
dependent on the water temperature. To account for the varying refractive index r, we split the
images obtained by the cameras in their different color channels (RGB). The processing of the
different color channels is done separately, each with a refractive index that corresponds with
the wavelength of that particular part of the light spectrum and temperature of the water. The
graphs and formulas provided by the previously mentioned authors are used to get a reliable
prediction of the refractive index. Inaccuracies related to an incorrect estimation of the refractive
index are in such a way prevented as much as possible.

4.1.2 Schematic overview of imaging setup

The principle of shape from refraction distortion is simple. A regular pattern of feature points
f on a plain surface F is projected on the water surface. The local shape of the surface results
in a deformed, projected pattern that is captured by the camera. Based on the deformation of
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the detected pattern compared to the actual pattern on plane F, it is possible to derive the 3D
shape of the refractive air-water boundary.

Figure 4.2 shows a schematic representation of the imaging setup, in which light rays are traced
from discrete points beneath the water surface to an ideal camera. The center of projection of the
camera is located at point ¢ and the points are imaged on the image plane (I). The intersection
of the rays with this image plane determine the location of points q and q’. These points
correspond with the image of feature point f, located on the bottom of the tank, respectively
without and with water. The same ray from c through point q’ would intersect with the bottom
of the tank at point f” in case no refraction would occur. For a classical stereo setup, the distance
between the image points of one point in the scene in the two image planes is defined as the
disparity (as explained in Chapter 3). Based on similarity, the distance between f and f’ is
defined by Morris (2004) as ‘the refractive disparity’. In the following, we denote the distance
between points q and q’ in the image plane as the corresponding ‘image disparity shift’.

refracted ray

ray without water present

Surface n(x,y)

Feature plane F

f f

Figure 4.2: Schematic representation of the refraction of the viewing rays through q’. In case
no refraction occurs, the feature points would be located at f’. Due to refraction, the light rays
change in direction at the air-water interface and intersect the feature plane at points f. Based
on Morris (2004).

The solution of the reconstruction problem can be described in function of two unknowns, namely
the position of the surface point p and the direction of the corresponding surface normal 7. In
case either p or the direction of 7 is known, the other parameter can be determined based on
the equations that are described in Section 4.3.1.

The total solution space contains all surface point-surface normal pairs (p,ﬁ) that refract the
light ray from f to the image point q’ as shown in Figure 4.3. The surface normal remains
however still bounded by the physical limits of refraction. The angle between the light rays in
water and the direction of the surface normal (6,.) has therefore a maximum equal to the critical
angle 0.

Morris (2004) solves the ambiguity of this imaging problem by using a hypothesized distance
along the light ray (depth along the ray) between the camera center c to the water surface.
Using the refractive properties of water, the surface normal at the intersection of this light ray
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Surface n(x,y) Z o

Feature plane F \

Figure 4.3: Tllustration of the possible solutions with surface points (p1,P2,Pis- - - yPm ), €ach
with a corresponding surface normal 7i; that refracts the ray starting at f towards the camera
center c. Based on Morris (2004).

with the water can then be determined. In order to verify this hypothesized depth along the ray,
an alternative prediction of the water surface is required. Because water is a highly dynamic
liquid, multiple views of the surface with a single camera for one specific surface shape is however
not possible. Morris (2004) uses therefore a second camera as depicted in Figure 4.4. Using
the image points detected by the second camera, these secondary refractive displacements can
be used to find an optimal depth along the ray. This comprises a one-dimensional search for
the optimal depth along the ray of the so-called ‘reference camera’, which minimizes a certain
error metric. This cost function expresses the dissimilarity between the two computed surface
normals using one of both cameras in the area where their views overlap.

In this thesis, a different approach is developed. We make use of prior knowledge about the
physical phenomenon that is captured to derive a general formulation of the surface shape that
needs to be reconstructed. In most cases, a good prediction of the possible shape of the water
surface can be made in case we limit ourselves to one specific hydrodynamic phenomenon. As
such, a general solution that describes the surface shape can be proposed in which parameters
are incorporated to fit the model to the specific water surface under consideration.

The principle of using a low parameter model to describe the shape of refractive objects has al-
ready been applied by Ben-Ezra and Nayar (2003). They however assumed a distant background
pattern to obtain the best fitting value of a single shape parameter £&. We intend to combine
the approach of Morris (2004) with a parametric description of the water surface to obtain an
algorithm which allows the spatio-temporal reconstruction of a varying water surface. A general
derivation of this theoretical model for the case of self-induced sloshing is given hereafter. In
case another hydrodynamic phenomenon would be studied, the theoretical model to describe
the surface shape should be adapted based on the expected shape of the reconstructed water
surface.
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Figure 4.4: Morris (2004) uses a second camera to obtain a second set of surface normals to
verify the hypothesized location of surface points p. From Morris (2004).

4.2 Deriving a predefined shape for the water surface

4.2.1 Theoretical derivation of the water surface shape

This section deals with the description of oscillating water surfaces in a rectangular tank. The
theory of Lamb (1932) is used to obtain a theoretical model that represents the water surface
shape. The derivation given hereafter is based on a more recent and practical description of
Lambs theory in Anonymous.

The initial water surface is supposed to be a plane sheet located at a uniform depth h relative to
the bottom of the tank. In case the vertical acceleration can be neglected, we can assume that
the fluid motion is uniform over the entire depth h. The horizontal motion of the fluid particles
is therefore the same for all particles on the same vertical line. A Cartesian coordinate system
is defined in which the x- and y-axes are assumed to be horizontal. The horizontal velocity
components are further denoted as u and v in respectively the x- and y-direction. ((x,y) is the
corresponding elevation of the free surface above the undisturbed water level at a point (x,y)
in the tank. The equation of continuity is expressed by calculating the flux of water through a
columnar volume over a rectangular area 0zdy.

d(uhdy) oz +

0
- 5o 0y ==, (C+ ) oy)

Neglecting the terms of the second order, this gives:

o¢ ou Ov
5 = —h <6az + ay) (4.3)
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The dynamic equation is a formulation of the Bernoulli equation for unsteady irrotational flow
in case no disturbing force is present. This results in:

8u7 @ 81}7 @

Par = " ox pa__ﬁy

in which the pressure term is defined as:

(4.4)

p—po=pgh+(—2)

where:
Do The atmospheric pressure.
h The ordinate of the free surface in undisturbed state.
z The vertical position above the bottom of the tank as shown in Figure 4.5.

1

Figure 4.5: Tllustration of the relationship between the different terms used to derive eq.(4.4)

This allows to further simplify the dynamic equation as follows:

ou  0¢ dv _ I¢

= = 4.5
Par = "o Por T ay (45)
By eliminating u and v this finally results in:
¢ _ *¢ 9% 2
5 I [ A 4.6
o2 Cwave <ax2 + 8y2> Cwave C ( )

where the constant cyqpe is the propagation speed of the wave: c2,,. = gh. This equation is

also known as the two-dimensional wave equation, in which the expression between parentheses
is called the Laplacian A = V2¢. In the case of simple harmonic motions, the equations can

be shortened if a complex time factor €@t is assumed. This results in:

y o 182
B fg 820 (4.7)
v = 7@
¢ ¢ 5
Z o> 7 =0 4.8
op2 B2 +r7¢ (4.8)
where 12 = —Z— This last expression in eq. (4.8) derived from the general eq. (4.6) is also

called the two-dimensional Helmholtz equation.

In order to solve this problem, boundary conditions need to be specified. Each boundary con-
dition is described as a conditional equation on the boundary curve C in the xy-plane. Three
main types can be distinguished:
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I. Dirichlet boundary condition: u is prescribed on C.

II. Neumann boundary condition: the normal derivative u,, = g—fL is prescribed on C.

III. Robin boundary condition: ¢ + bg—g is prescribed on C.

The vertical bounding wall of the rectangular tank corresponds with ‘a free boundary’ which
can be expressed by the following Neumann B.C.:

o) _

on
where On denotes the normal to the boundary of the element. In case a rectangular spatial
domain is adopted, further denoted as Q((z,y)|0 < < L;,0 < y < L,) with L, and L, the
width and length of the tank, the boundary conditions can be formulated in function of x and
y:

0 (4.9)

oC oC
O, — = — = <y < .
B.C o (0,y,t) =0, ax(La:af%t) 0, 0<y<Ly,t>0 (4.10)
¢ oC
. = —0, = — << Ly, .
B.C 3 (2,0,t) =0, 5 (2,Lyt) =0, 0<az<L,t>0 (4.11)

The partial differential equation (PDE) given by eq. (4.8) can further be simplified by applying
separation of variables. The function ((z,y) is split into H(x)Q(y) and substituting this in eq.
(4.8), this result in:

H"(2) Qy) = —H () (Q'(y) + V" Q(y))

The two variables can be separated by dividing both sides by H(x)Q(y) which results in:

H”(:U) _ 1 " V2

Both sides must be constant as the left hand side is only dependent of x and the right hand side
only dependent of y. It is assumed that this constant is negative and equal to - k:

Hl/(‘r) _ 1 " V2 — _ 12
o) = 00 (@ W) + QW) =~k

This yields in following ordinary different equations (ODE’s) for H and Q:

H'(x) + k*H (z)
Q"(y) +’Q(y)
2 2

where p?> = k? — v2. Both boundary conditions can be formulated in function of H and Q as
follows:

0, 0<z <Ly (4.12)
0, 0<z <L, (4.13)

H.(0)
Qy(0)

The general solution for eq. (4.12) and eq. (4.13) in combination with the boundary conditions
can therefore be solved separately.

0,
0,

The general solution for H(x) can be written as H(x) = ¢, cos(kx) + 1, sin(kx), and by substi-
tuting H'(0) = 0; H'(L;) = 0, this results in:

oz sin(kzr) =0, P, =0 (4.14)
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in which A # 0 in order to find a solution that is not identically zero. This results in:

mm mnx
k=kn=—, Hpu(x)=@zmcos( 7
X

), m=12,... (4.15)

The problem for Q(y) can be solved similarly which results in:

nmw nmy

D =Dn = f’ Qn(y) = Py.n COS(T)? n=12,... (4'16)
Y )

The solutions for the Helmholtz equation can as such be written as:

mmx nm
nn(29) = Hu@)@u(0) = o o5 gycos("2), mn=12... (417
@ y
where vy, = kp, +pp = ("F2) + (”L—T:f’)?

This equation describes the water surface fluctuations in the entire spatial domain at each specific
time instance t. In order to describe the actual surface height, the initial water depth has to be
added which is represented by the component corresponding with m=0 and n=0. This results
in following double Fourier’s series:

Z Z A cos(

nmy
Ly

)cos( ), mn=0,12... (4.18)

4.2.2 Surface model adopted in this work

The surface model that will be used in this thesis is inspired on the derivations of Lamb (1932)
as explained in the previous section. We will however apply our surface model to cases in which
his assumptions are strictly speaking no longer valid (e.g. vertical velocity=0, ¢ considered
small, ...). Our surface model will however be parameterized to fit the actual shape of the
water. Accurate reconstruction is in that case determined by the choice of an appropriate model
(that is able to describe the actual surface shape), rather than the assumptions made during
the derivation. The error made by violating Lamb’s assumptions can therefore be considered
negligible.

In Chapter 2, we showed that in case of self-induced sloshing usually the first and second
order modes are present. For this reason, we will limit the infinite sum in eq. (4.18) and
only adopt a limited amount of cosine terms to describe the shape of the water surface. For
most hydrodynamic phenomena where the water surface remains smooth, the error made by
neglecting the higher order terms can be considered small. The model will however be extended
with a linear component in both the x- and y-direction to cope with small inclinations of the
tank bottom as will be explained in Chapter 6. This finally results in our ‘surface function’
n(z,y) that will be used to describe the surface heights within the tank at one specific time
instance:

n(z,y) =Ago + Aio cos( ) + Ao cos( ) + Aqq cos(ﬂx) cos(—ﬂy)—i—
LZ‘ Ly LJI Ly
) . oy ey (4.19)
20 €OS( I ) + Aoz cos(— I, )+ 7Lx + z,

where A,,,, B and C are the unknown, time-dependent coefficients that need to be fitted to
describe the instantaneous surface shape.

In case the function n(z,y) that describes the water surface is assumed to be known, the surface
point locations p of the projected features points f on the water surface can easily be deter-
mined. To that end, we make an estimate of the coefficients A,,,, B and C in order to define a
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‘hypothesized surface’ n(z,y). Each surface point p is then computed as the intersection point of

the viewing ray cq’ with this hypothesized water surface. Given the location of p, every normal
is found as the surface normal that accounts for the refraction of the incident light ray at point
p towards point f.

In order to verify our hypothesis about the coefficients A,,,,, B and C, an alternative set of surface
normals is required similarly as in Morris (2004). For this purpose, we use the mathematical
formulation of eq. (4.19) to compute the normal at every location on the surface defined by
n(x,y). This will further be elaborated in the section 4.3.2. Both sets can then be compared in
order to verify if the hypothesized coefficients in eq. (4.19) are correct.

4.3 Description of the global reconstruction algorithm

This section involves the determination of the surface shape in an ideal imaging model, in which
inaccuracies related to incorrect camera calibration, pose estimation or feature localization are
not considered. We combine two methods to determine the surface normal given a known surface
location. Based on a certain error <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>