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Abstract

Fibre reinforced polymers (FRPs) are part of a growing market, mostly thanks to their

high specific strength and stiffness. This makes them invaluable in the transportation and

construction sector, for example to reduce fuel costs. All industrial FRP manufacturing

processes have one thing in common: at some point during the process, pressure is applied

to consolidate the reinforcing fabric. While required, this can also introduce defects into the

model, leading to reduced mechanical properties or even failure. As such, there is a need for

predictive tools that can model consolidation numerically.

In this dissertation, an attempt is made to construct such a fabric model in the finite element

package ABAQUS. The discrete meso-scale model is built by superimposing truss and beam

elements on a chain at (microscopic) fibre level, to decouple the fabric’s Young’s modulus

and flexural rigidity. These fibres are then assembled into yarns and further integrated into

a fabric. Weaving of the fabric is simulated by thermal shrinkage to reach an as-woven

state, where the model is validated with experimental data gathered via micro-computed

tomography (µCT)-scans. The as-woven state is then used as the input for a compression

simulation. The results of this are compared to experimental results gathered from µCT

images of a compression experiment carried out on a dry fabric sample.

The created truss-and-beam model proved to be an improvement over a truss-only model,

but still requires finetuning to become accurate enough to be industrially useful.

Keywords

Fabric consolidation, compression behaviour, finite element analysis (FEA), ABAQUS,

truss-and-beam model, discrete meso-scale model
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Experimental and numerical characterisation of the
consolidation behaviour of woven fabrics for the

production of composites
Brecht Tomme

Supervisor(s): prof. dr. ir. Karen De Clerck, prof. dr. ir. Wim Van Paepegem, dr. ir. Lode Daelemans

Abstract—Fibre reinforced polymers (FRPs) provide high strength and
stiffness properties at a low structural mass. This offers potential in many
industries, most notably in the construction and transportation sectors.
These FRPs are manufactured using different processes, but one thing they
all have in common is a consolidation stage. In this stage, any reinforcing
fibres are subjected to pressure to increase their fibre volume fraction (Vf).
This serves to improve the mechanical properties of the final part, but can
also introduce defects, having the opposite effect. Effective simulations of
the consolidation stage are thus required to avoid problems before they
occur, saving time and money, and reducing environmental impact.

This study attempts to construct a fabric model for consolidation
simulation in the finite element package ABAQUS. A discrete meso-scale
model is built by superimposing truss and beam elements at the fibre
level, to decouple the fabric’s Young’s modulus and flexural rigidity.
Weaving of the truss-and-beam model is replaced by applying thermal
shrinkage. Parameters of the as-woven model are investigated and the
model is validated by comparison with experimental data gathered via
micro-computed tomography (µCT). The as-woven model is then used as
the input for a compression simulation, which is compared to a compression
experiment.

The truss-and-beam model exhibits more accurate consolidation
behaviour than a truss-only model, which serves as a good proof of concept,
though improvements to the model are necessary before use in industrial or
research applications.

Keywords—Fabric consolidation, compression behaviour, finite element
analysis, ABAQUS, truss-and-beam model, discrete meso-scale model

I. INTRODUCTION

THE composite materials market is continuously growing,
as major industrial drivers demand ever-increasing

amounts of light structural materials. The construction and
transport sectors, especially, appreciate FRPs’ high specific
strength and toughness, notably for the production of lighter
moving parts,, which greatly reduce fuel costs. FRP parts are
made by different processes, balancing cost and quality. In
all these processes, however, consolidation takes place. This
implies that the reinforcing fibres get compressed to increase
their Vf - one of the main parameters that influence the material
properties.

Consolidation of a fabric is described in literature as
occurring in three stages; see figure 1. In stage 1, any crimp
inequalities between warp and weft directions are balanced out
by yarn flattening. Here, compression is linear with pressure. In
stage 2, individual fibres within yarns are compressed together,
removing voids in the material and deforming the yarn cross
sections. This becomes more difficult as fibres come into contact
with each other, making compression exponential with pressure.
In stage 3, void removal and fibre displacement have reached
their limit, and further compaction requires elastic deformation
of the fibres. This is again linear with pressure [1] [2] [3].
Nesting is also described to occur in multilayer fabrics. This

Fig. 1. The three-stage consolidation process for fabrics described in literature.

is the phenomenon where fabric layers slide into each other,
aligning the yarn “hills” of one layer with the yarn “valleys”
of an adjacent layer, reducing the total thickness [4].

During consolidation, defects can be introduced in a FRP. The
main defects produced by compression during consolidation are
porosity and fibre waviness [5]. Both can have severe effects on
the mechanical properties of a composite, reducing interlaminar
shear strength, transverse tensile strength, compressive strength,
flexural modulus and strength, and fatigue life, often leading to
failure.

To predict consolidation behaviour and avoid defects,
analytical fabric models are required. Often, finite element
models are used, which can be classified according to their
multi-scaled nature [6]. Macro-scale models focus on the fabric
as a whole - continuous models assume the fabric is a continuous
material and model this using membrane or shell elements,
while discrete models divide the fabric up into simplified yarns
in the shape of a pin-jointed net. Meso-scale models focus on the
yarns - continuous models view the yarns as three dimensional
solid continuum elements, while discrete models break down
the yarns into an amount of fibres. Particularly interesting is
the discrete meso-scale model introduced by Zhou et al. [7],
that models fibres as chains of truss elements connected by
frictionless pins. Micro-scale models focus on the fibres, and
a true micro-scale model would require every individual fibre to
be simulated. As this is computationally expensive, micro-scale
models are rare.

In this study, a discrete meso-scale model will be built
to simulate consolidation behaviour. The parameters of this
model will be investigated, and the model will be validated,
by comparing its geometry to that of the real fabric it attempts



to model. The created model will then be used as the input
for a compression simulation. Additionally, consolidation
will be examined experimentally by setting up a compression
experiment.

II. MATERIALS AND METHODS

The fabric modelled in this study is a 2/2 twill, E-glass fibre,
woven fabric produced by P-D Interglas Technologies GmbH. It
will be modelled in Abaqus Unified FEA (ABAQUS), version
6.18-1 (2018), by Dassault Systèmes. Python version 3.7.3 will
be used to easily construct input files for ABAQUS.

Any experimental data is gathered from µCT images,
generated by the HECTOR tomograph at the Ghent University
Centre for X-ray Tomography. This scanner uses an XWT
240-SE microfocus source and a large PerkinElmer flat panel
detector, allowing for images with a maximum spatial resolution
of approximately 10 µm. ImageJ version 1.52i (contained within
the Fiji distribution package, version “Madison”) is employed to
measure distances on the reconstructed µCT images.

The compression experiment carried out in this study uses
a uniaxial CT5000-TEC compression cell by Deben (UK). The
device is controlled by Deben Microtest software and uses a load
cell with a maximum force of 1 kN. During the experiment, a
constant strain rate of 0.5 mm

min is applied to a single layer or four
layer dry fabric sample.

III. FABRIC MODEL CREATION

A. Fibre model (micro-scale)

One of the main problems encountered in literature is that
existing fibre models cannot accurately represent both material
stiffness (i.e. the Young’s modulus) and flexural rigidity,
simultaneously. This is because flexural rigidity is defined as
E · I, the Young’s modulus multiplied by an area moment
of inertia. Assuming fibres have a circular cross section,
this area moment of inertia is only dependent on the fibre
geometry, namely its radius. Yet fibres, unlike metals, polymers
or ceramics, have an unusually high stiffness in their fibre
direction, coupled with a very low flexural rigidity. Applying
this high Young’s modulus, then, automatically creates an
overestimation of the flexural rigidity. To remedy this, many
fibre models use truss elements, which can only transmit axial
forces (no bending moments or shear forces), and thus negate
flexural rigidity completely. It is not an entirely negligible
property, however, as it plays a crucial role in any simulations
involving the bending of fibres, such as those simulating
consolidation.

In this study, the Young’s modulus and flexural rigidity are
decoupled at the fibre level. Material stiffness is assigned to
fibres by using T3D2 truss elements on a flexible chain of
nodes, as in [7]. Flexural rigidity is then assigned separately
by superimposing B31 beam elements onto the truss elements,
between the same nodes. Beam elements are similar to truss
elements but also transmit bending moments and shear forces.
These superimposed beam elements can be given a drastically
reduced Young’s modulus (factor 1

100 ) so as not to affect the
actual stiffness of the fibres, but can be made large enough to
still represent an accurate flexural rigidity by having a large

area moment of inertia. The beams will become larger than
the trusses, but they are purposefully not given any contact
interaction properties in ABAQUS, to ensure they do not affect
the fabric geometry in any way except by contributing their
flexural rigidity. The actual fabric geometry will be represented
by the truss elements.

B. Yarn model (meso-scale)

At the mesoscopic scale, yarns are constructed out of these
truss-and-beam fibres. The real fabric contains 2314 fibres
per yarn in the warp direction and 1841 fibres per yarn in the
weft direction, but modelling this many yarns would be very
computationally expensive. As such, only 61, 91 or 127 virtual
fibres are included per yarn, in a hexagonal closed packing. This
smaller amount of virtual fibres still needs to represent the same
cross sectional area as the real fibres, so the individual cross
sectional areas of the truss elements were increased:

Atotal,virtual = Atotal,real (1)
⇔ nvirtual ·Afibre,virtual = nreal ·Afibre,real (2)

A represents the cross sectional area, and n represents the
amount of fibres per yarn. This calculation results in virtual
cross sectional areas that are two orders of magnitude higher
than the real cross sectional areas.

It is also at this scale that the flexural rigidity of the yarn is
assigned. This must be equal in total for the virtual yarn and the
real yarn:

(E · I)yarn,virtual = (E · I)yarn,real (3)
⇔ nvirtual · (E · I)fibre,virtual = (E · I)yarn,real (4)

Remember that the Young’s modulus in the equation for the
virtual flexural rigidity is 1

100 of the actual Young’s modulus.
From this formula, the required dimensions of the beam
elements can be calculated, as long as the flexural rigidity of
the real yarns is known. This is measured according to BS 3356
(1961), based on the Peirce cantilever test. An accurate yarn
number is required to calculate the flexural rigidity, which is
measured according to ISO 7211/5 and ISO 7211/3 (1984).

C. Fabric model (meso-scale)

The yarn model constructed thus far is integrated into an
existing fabric model by Daelemans at the macroscopic scale.
This model was built to emulate the same 2/2 twill weave
E-glass fibre fabric that is studied here. A single unit cell
consisting of four warp and four weft yarns was modelled, and
boundary conditions were applied by using constraint equations
and a master-slave yarn system, ensuring perfect periodicity.
Evolution from the idealised, created model to the as-woven
state was realised by applying a negative thermal load (thermal
shrinkage), until the crimp in the virtual fabric matched that of
the real fabric, as in [8]. The existing model was constructed
in the same way as the model in this study at micro- and
meso-scale, with the large difference being that it only used truss
elements. As such, it could not model consolidation accurately.

The new truss-and-beam fabric model is created by first
updating all the linearly elastic material properties in the



Fig. 2. The combined truss-and-beam fabric model (127 fibres per yarn)
in its undeformed state (top) and its as-woven state (bottom). The truss
elements (yellow and blue) determine the stiffness of the material and its real
geometry while the beam elements (green and red) contribute their flexural
rigidity. The outer slave yarns only serve as boundary conditions.

ABAQUS input file via a custom Python script. Accurate
densities and estimates of the Young’s modulus and Poisson
coefficient are inserted. The main change to the truss model
is then due: the superposition of beam elements on top of the
existing truss elements. This is again achieved via a Python
script, and the beam elements are defined as circular sections
between the same nodes that hold the truss elements. Their
Young’s modulus is lowered by a factor 100 and their radius is
set at the value required to reach the correct flexural rigidity of
the yarn. A version of the completed model is shown in figure 2.

IV. FABRIC MODEL VALIDATION

To validate the constructed model, real fabric samples
are µCT-scanned, and yarn widths are measured on the
reconstructed images it provides. These widths are then
compared to the yarn widths of the as-woven truss-and-beam
fabric model, measured in ABAQUS. Several different
simulations are run, investigating the effect of the amount of
fibres per yarn, the coefficient of friction, the time step and the
weaving process. While the µCT images are of low quality
due to low resolution, high noise and low contrast, general
conclusions can still be made.

With increasing amounts of fibres per yarn, it is found that
the yarn width within the model increases, even though each
yarn has the same total cross sectional area contained in its
constituent fibres. The yarn width variability (standard deviation
on the measurement) also increases, which can be explained
by the fact that fibres with smaller diameters (more fibres per
yarn) can migrate out of the yarn more easily in an inconsistent
manner.

The coefficient of friction is a measure for interfibre friction

Fig. 3. A warp cross section view of the final as-woven truss-and-beam model
with 127 fibres per yarn and a coefficient of friction of 0.10, deformed in
a time step of 0.06 s via a two-stage weaving process. The cross section is
compared to real cross sections imaged via µCT-scanning.

as instated in the contact interactions between truss elements.
The lower this coefficient gets, the larger the yarn widths
become, as the fibres are less hindered from slipping along
each other. This leads to the irregular fanning out of fibres,
accompanied by an increase in the yarn width variability.

Increasing the time step of the simulation (the real time given
to ABAQUS to perform the simulation in, not the time it takes to
compute it) seems to lead to more variable yarn widths, though
no clear increase or decrease in yarn width is noticed. This may
be a product of the inertia effects that are taken into account in
dynamic simulations, where the kinetic energy is higher than the
internal energy for the model. Increasing the time step is found
to lead to more dynamic simulations.

The final investigated parameter is the “weaving” process
(by thermal shrinkage, not actual weaving). This process can
be modelled in one stage, evolving directly from the loose
topology to the as-woven state with the correct crimp values,
or it can be modelled in two stages. In that case, the first
stage emulates the actual weaving process by applying higher
tensions than required, and the second stage then allows the
model to relax from this weaving process, reaching the desired
crimp value. Daelemans found that the one-stage process lead
to more stressed yarns in the truss-only model. This is repeated
here, as smaller yarn widths are found for the one-stage weaving
process, though variability does not increase or decrease. It is
also determined that care should be taken with the two-stage
weaving process, as it easily leads to dynamic simulations.

In the end, the model agreeing most with experimental
measurements is found to be a model with 127 fibres per yarn, a
coefficient of friction of 0.10, deformed in a time step of 0.06 s
via a two-stage weaving process. A cross section of this model
is shown in figure 3.

V. FABRIC CONSOLIDATION

A. Experimental compression

The compression experiment in this study is carried out by
allowing the Deben cell to apply increasing loads to single layer
or four layer fabric samples. At certain loads, the cell is paused
and µCT-scans are taken. An example is shown in figure 4. On
these µCT images, the distance between the compression cell
clamps, h, can be measured, which allows for easy calculation



Fig. 4. µCT images of the four layer fabric sample during compression. A weft
cross section is shown. Yarn flattening, void removal, yarn cross section
deformation and nesting can all be observed.

of the fibre volume fraction:

Vf =
Vfibres
Vclamps

(5)

=
Asample · ρAρV
Asample · h

(6)

=
ρA

ρV · h
(7)

Vfibres represents the volume taken up by the fibres, while Vclamps
represents the total volume contained between the clamps of the
Deben cell. Asample is the average fabric area of each sample, and
ρA and ρV are the areal and volumetric densities of the fabric,
respectively. The Deben cell itself also returns the force F it
applies at each point in time, which can be used to calculate the
applied pressure P:

P =
F

Asample
(8)

Using these measurements, a pressure-Vf graph can be
constructed to evaluate the consolidation behaviour; see figure 5.
It is clear that this curve shows good agreement with the
linear-exponential-linear consolidation behaviour reported in
literature. Combining the µCT images with the graph shows
that at low applied pressure, the yarns are moved into contact
with the clamps and stage 1 consolidation occurs. Yarns are
flattened and any crimp inequalities are balanced out. At
higher pressures, stage 2 consolidation occurs: interyarn and
interfibre voids are removed by fibre displacement, and the
yarn cross sections are thus deformed. As the fibres start
coming into contact with each other, interfibre friction provides
an exponentially increasing resistance to displacement. Stage
3 consolidation occurs at the end of the experiment, when
void removal and yarn slippage are at their limits. Further
compaction is now only possible by elastic deformation of
the fibres, explaining the very high increase in pressure for
minimal increases in Vf. The four layer fabric displays higher

Fig. 5. Pressure-Vf plot of the compression experiment data for single layer and
four layer fabric samples. The shape of the curve is in good agreement with
the linear-exponential-linear consolidation behaviour reported in literature.

Vf than the single layer fabric at equal pressures, mainly due
to nesting. This can be seen in the decompression µCT image,
and in the large hysteresis found between the uncompressed and
decompressed states. Hysteresis always takes place, indicating
that the deformation caused by compression is not fully elastic,
but it is higher for the four layer fabric sample. The single layer
fabric sample starts with a Vf of 33.72% while uncompressed
and returns to a Vf of 38.15% after decompression, but for the
four layer fabric sample these values are 25.56% and 44.30%,
respectively.

B. Numerical compression

Consolidation behaviour is investigated numerically by
subjecting the chosen truss-and-beam model to a compression
simulation. To do this, the output nodes of the woven model
are used as the input for a new simulation, and two rigid plates
are added to either side of the fabric. These plates are then
brought together (time step of 0.1 s), compressing the fabric
between them, and subsequently separated an equal distance
(time step 0.1 s) to simulate decompression. Each plate is
displaced 0.18 mm, meaning a total compression of 0.36 mm
is simulated. An example of the compression simulation is
shown in figure 6. Again, yarn flattening and void removal
are visible in this image, and yarn cross section deformation is
very pronounced. An issue is encountered with warp and weft
fibres migrating away from the centre of the fabric in opposite
directions, but no solution has yet been found.

Images of the decompression step in the simulations show
that yarns regain some of their former shape when pressure is
lifted, but the fully relaxed fabric also remains more deformed
and “disorganised”, with fibres spread in between yarns. This
confirms the hysteresis that is observed experimentally.

To gain numerical data, the reaction forces on the plate and
the plate displacement are queried in ABAQUS. The reaction
forces on the plates are equal (but opposite) to the forces exerted
by the plates on the fabric, meaning they can be converted into
the applied pressures via equation (8). The displacement of the
plates can used to calculate their distance, h, as the original plate



Fig. 6. A warp cross section of the compression simulation of the
truss-and-beam model. The woven fabric (top) is deformed by two nearing
rigid plates, until it reaches its final compressed state (bottom)

distance before compression can be measured in ABAQUS. The
distance between the plates can then be used to calculate Vf
according to equation (7).

The pressure-Vf plot is given in figure 7. The shape of the
curve is again found to agree with the linear-exponential-linear
curve described in literature. This is an improvement of the
truss-and-beam model over the truss-only model. However,
when compared to the experimental results, it is clear that the
curve is also shifted towards higher Vf, even reaching physically
impossible Vf over 100%. The cause for this is a failure of the
contact interactions between the truss elements in the model:
at high levels of compression, the elements are found to clip
into each other and beyond the rigid plates. A solution to
this problem would likely require the definition of new contact
interaction properties or boundary conditions.

VI. CONCLUSION

The goal of this study was to investigate consolidation
behaviour of fabrics, and to create a finite element model that
could simulate this behaviour accurately.

A novel, discrete meso-scale fabric model was constructed
in the image of a 2/2 twill, E-glass, woven fabric. At the
microscopic scale, fibres were designed by superimposing beam
elements onto truss elements, in an effort to decouple the
stiffness and flexural rigidity properties. The truss elements
contributed to the stiffness and geometry of the material,
while the beam elements’ sole purpose was to contribute a
flexural rigidity. These yarns were arranged in a hexagonal
closed packing at the mesoscopic scale, and experimentally
measured values were assigned to each element, ensuring
correct dimensions and properties of the assembled yarns. At
the macroscopic scale, the fabric was built by expanding on a
truss-only model by Daelemans, superimposing beam elements
on top of the existing truss elements. Deformation towards its

Fig. 7. Pressure-Vf plot of the compression/decompression simulation data
for the truss-and-beam model, compared to the compression experiment
data for the single layer fabric sample. The shape of the curve is in
good agreement with the linear-exponential-linear consolidation behaviour
reported in literature, but is shifted towards higher Vf.

as-woven state was realised by applying thermal shrinkage.

With the model constructed, the influence of several different
parameters (number of fibres per yarn, coefficient of friction,
time step and one- or two-stage weaving) on the deformation
towards its as-woven state was investigated. From these results,
the best model was chosen by comparison to experimental
results gathered via µCT-scans. A combined truss-and-beam
model with 127 fibres per yarn and a coefficient of friction of
0.10, deformed in a time step of 0.06 s via a two-stage weaving
process was chosen.

Experimentally, consolidation behaviour was studied by
carrying out a compression experiment on single layer and
four layer fabric samples, and µCT-scanning the samples at
certain pressures. This yielded a pressure-Vf curve that agreed
well with the consolidation behaviour reported in literature.
The µCT images showed yarn flattening, removal of voids
and cross section deformation, as well as nesting in the case
of the four layer fabric sample. Hysteresis was observed
upon decompression, indicating that some of the compression
deformation was inelastic in nature.

Numerically, consolidation behaviour was studied by
subjecting the as-woven truss-and-beam model to a compression
simulation. The fabric was surrounded by two rigid plates that
were brought together and subsequently separated, modelling
compression and decompression. From the reaction forces on
these plates and their displacements, a pressure-Vf curve was
again plotted. A similar shape of the curve was obtained as in
the experimental investigation, but the curve was shifted towards
much higher Vf due to contact interaction errors.

Despite the inaccuracies in the constructed truss-and-beam
model, its improved bending behaviour as compared to the
truss-only model (noted in the shape of its pressure-Vf curve,
for example) acts as a proof of concept for the model. If the
contact interaction and boundary condition issues can be solved,
the potential for the model within the industry is great.
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Chapter 1

Introduction

1.1 The composite materials market

Composites are heterogeneous materials consisting of clearly distinguishable phases, usually

created to combine the properties of their constituent materials - emphasizing good

properties, diminishing the effect of lesser properties or generating new properties altogether

[1].

Man-made composite materials have been designed throughout human history, spanning

as far back as the Indus Valley Civilisation around 7000 B.C., where huts were built

using mud bricks reinforced with straw [2]. While better construction materials have since

been developed to replace these mud bricks - including composite materials such as (steel

reinforced) concrete - other composite materials remain current, such as paper, invented in

China around 105 B.C. [3]. In the current day and age, the term “composites” - as used in

the structural materials market - most commonly refers to FRPs. These consist of reinforcing

fibres embedded into a polymer matrix; see figure 1.1. Each vertical layer of embedded fibres

forms a lamina, and the stack of laminae form the composite as a whole. Within each lamina,

the fibres can be aligned in a certain direction, oriented randomly or woven as a fabric.

The fibres predominantly determine the stiffness of the combined material and act as the

principal load-bearing constituent, while hindering matrix crack propagation [1]. The two

dominant reinforcing fibres used in the FRP market are glass fibres and carbon fibres, with

polymer fibres (e.g. aramid, ultra high molecular weight polyethylene (UHMWPE), flax) and

metallic fibres (e.g. steel, aluminium, titanium) representing a smaller portion of the market.

The matrix, on the other hand, encases the fibres to keep them in their intended position
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Figure 1.1: A polymer matrix containing reinforcement materials. These reinforcement
materials are most commonly long, continuous fibres (left) or short fibres (middle).

Particulates (right) are a less common alternative that provide different properties [4].

and protect them from the environment, while also being responsible for the transmission of

external loads onto the fibres, increasing material toughness and reducing fibre fracture [1].

Polymer matrices are split into thermosets (e.g. polyesters, vinylesters, epoxies, phenolics,

polyimides) and thermoplastics (e.g. polyethylene, polypropylene, polyamide, polysulphone,

polyphenylene, sulphide, polyether sulphone, PEEK), each with different properties [1]. More

niche applications sometimes require non-polymeric matrices to form general fibre reinforced

composites (FRCs). Metals (e.g. steel), for example, may be used for their electrical and

heat conductivity, and ceramics (e.g. glass, carbon) may be used for their heat resistance

and insulation [1].

The main advantage of FRPs is their high specific stiffness and strength - the ratio

of these properties to their mass. In the construction sector, this opens up design

options for architecturally creative buildings without heavy foundations and facilitates quick

construction times [1]. In the wind energy sector - one of the most important for FRPs [5]

- the specific stiffness and strength of glass fibre reinforced polymers (GFRPs) are required

to produce large turbine blades, as any metallic turbine blades would buckle under their

own weight. The low structural mass provides the most significant benefit in the transport

sector, however, making it the largest market for FRPs, with a market share of 33% [5]. The

use of composite materials in this sector notably started in the aeronautical and aerospace

industry, where any mass reduction in aircraft, satellites, rockets, etc. leads to increased

fuel efficiency and thus reduced costs and a lower environmental impact [6, 7, 8]. In the

last decade, the automotive industry has also taken a keen interest in composite materials,

especially in carbon fibre reinforced polymers (CFRPs), for the same reasons [9, 10, 11].

It has been calculated that a reduction in automobile mass of 10% leads to a decrease in

fuel consumption of 6-8%, which makes lighter materials close to necessary to adhere to

ever-tightening automotive emission standards [12, 13].
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A second benefit FRPs have over competing materials is their corrosion and chemical

resistance, which leads to high demand in the pipe and tank industry [14, 15], and generally

low maintenance in all applications [1]. Similarly, their flame retardant properties and tunable

electrical conductivity/resistivity encourage FRP use in the electrical and electronics industry

[16, 17].

Thanks to all these major industrial drivers, the worldwide composite materials market is

continuously growing. To illustrate this, consider that the Airbus A350 (launched in 2013)

is composed of FRP parts for 55% by mass, or almost 80% by volume, while its predecessor,

the A380 (launched in 2005), consists of only 20% FRP by mass [1]. Lucintel estimates that

by 2024, the intermediate materials market (for FRC parts) will reach AC36 billion, while the

end product market is expected to reach AC102.8 billion [18].

1.2 Composite consolidation

1.2.1 FRP manufacturing methods

With a market this size, it is clear that the industrial production of composite parts needs to

be efficient. This is achieved by having many different manufacturing methods available,

each more suited to the production of specific parts than the rest. Wet hand lay-up

or spray-up techniques require only minimal investment and as such are suited to small

production series, for example. Resin infusion techniques such as vacuum assisted resin

transfer moulding (VARTM) can create larger shapes with consistent mechanical properties

and two finished surfaces, while autoclave processes can create composites with even better

mechanical properties at a high investment cost [1]. Pultrusion, filament winding, tape

laying, injection moulding and compression moulding round off the list of common, industrial

composite manufacturing methods.

While it is outside the scope of this dissertation to delve into the specifics of each

manufacturing method, one thing all methods have in common - with the exception of

3D-printing which is still in its development and upscaling stage [19] - is that, at some

point during the process (this can be before or after impregnation with the matrix material),

the reinforcement fibres are submitted to an external pressure and are thus compressed; see

figure 1.2. This is called the consolidation stage of the process.
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Figure 1.2: Several different composite manufacturing methods: wet hand lay-up (top left),
VARTM (top right), VARI (middle left), filament winding (middle right) and autoclave
processing (bottom) [21]. In each process, the pressure applied during consolidation is

marked by the blue arrows.
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1.2.2 Fabric consolidation behaviour

The goal of the consolidation stage is to increase the composite’s Vf. This is defined as the

volume the fibres take up in the entire volume of the composite, and is often expressed as a

percentage:

Vf =
Vfibres
Vcomposite

=
Vfibres

Vfibres + Vmatrix + Vvoids

=
Vfibres

Vfibres + Vmatrix + Vvoids
· 100%

Vfibres, Vmatrix and Vvoids are the absolute volumes of the fibres, the matrix and any voids in

the composite, respectively. As pressure is increased during a consolidation stage, the fibres

are pushed together and matrix material is pushed away, increasing the Vf. This is why a wet

hand lay-up method, where pressure is applied to the fibres by hand, produces parts with

lower Vf than a vacuum assisted resin infusion (VARI) method, where atmospheric pressure

is applied. The highest Vf can be reached via autoclave processes, where external pressures

can exceed 7 bar [20].

A composite’s Vf is one of the main parameters that influence its material properties [1]. As

Vf increases, the amount of fibres embedded in the composite increases, providing strength

and stiffness, but the amount of matrix material capable of taking up global deformation

decreases. As such, every FRC product aims towards a certain Vf. Generally, high-end

applications require high strength and stiffness, and thus desire a higher Vf.

While the compaction behaviour of a fabric depends on several parameters (compaction

speed, number of compaction cycles, number of fabric layers, stacking sequence, etc.), the

actual mechanism behind fabric compaction is always similar. As can be seen in figure 1.3,

there are three global stages. In stage 1, the perpendicularly applied compressive force

acts on the highest and lowest points of the fabric, flattening the yarns until any gaps

in their thickness direction (δ) are removed. This means one set of yarns receives an

increase in curvature while the other receives a corresponding decrease in curvature, which

is why the process is termed “crimp balance” (crimp describes the undulation of the fibres).

This thickness reduction is linear with increasing pressure as it depends solely on the
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flexural rigidity of the yarns. As this is generally quite low, large thickness reductions

are possible. Note that these gaps are a symptom of the weaving process: woven fabrics

generally have unequal crimp in warp and weft directions. Since NCFs do not display this

geometry, they are not affected by crimp balance. In stage 2, the individual fibres within the

yarns are compressed together, removing voids between them and thus deforming the yarn

cross-sections. The thickness reduction is now no longer linear but rather exponential with

the applied pressure, as the fibres start interacting with each other and interfibre friction

starts influencing the equation. At this point, a much larger surface area of the fabric is

uniformly in contact with the plate providing the consolidation pressure. When the removal

of voids and the slipping of fibres reach their limits, stage 3 is reached. In this stage, further

compression is almost impossible, requiring elastic deformation at the fibre level itself, which

is linearly related to the transverse modulus of the fibres. This serves as a physical limit to

the Vf obtainable through compression [22, 23, 24].

When multiple layers of fabric are stacked on top of each other before consolidation (as is

almost always the case with FRCs), a secondary phenomenon can take place: nesting. This

is where the layers slide into each other under influence of compression, as in figure 1.4. The

“hills” and “valleys” of adjacent layers will thus align more, reducing the total thickness of

the stacked fabrics by a certain value, as compared to the non-nesting situation. This value

is not dependent on the applied external pressure, only on the fabric geometry and material

properties. Note that nesting has an immediate effect in woven fabrics and unidirectional

NCFs: it contributes to thickness reduction of the plies from stage 1 of the aforementioned

mechanism [23, 25, 26]. The thickness of each layer is reduced by increased nesting as the

amount of layers in a stack is increased - until a critical limit. Chen et al. determined that for

a glass fibre fabric, that limit was 10 plies: the thickness of each ply did not reduce further

due to nesting from 10 to 25 plies. The total thickness reduction due to nesting was found

to be 15% for two plies and up to 29% for any ply number above 10. [26]. Saunders et al.

identified the steady state starting at 5 plies, for a plain weave glass fibre fabric [27].

Upon release of the consolidation pressure, much of the deformation is returned. Stage 3 is

completely inverted as all deformation there (if any) is fully elastic, but the fabric as a whole

does not return to its original, uncompressed state. This is because macroscopic deformations

such as void removal, fibre entanglement and nesting can all be permanent. According to

Grieser et al., if the fabric is held under pressure before decompression, the fibres get more

time to realign and thus invert less, which results in higher Vf [23].
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Figure 1.3: The mechanism behind the compaction of a single layer of woven fabric. In
stage 1, any crimp inequalities are balanced out by removal of the gap δ, by flattening of
the yarns. This is linearly related to the flexural rigidity of the yarns. In stage 2, voids

between the individual fibres are removed, causing exponentially more interfibre friction as
the fibres make contact with each other. In stage 3, the fibres are all touching and further
compression is near impossible, requiring elastic deformation of the fibres themselves. This

is linearly related to the transverse modulus of the fibres [22].

Figure 1.4: A two-layer plain weave fabric before (left) and after (right) nesting. The total
laminate thickness is reduced by a distance rz

nesting that is inherent to the fabric and is not
affected by applied consolidation pressure [25].
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1.2.3 Defects introduced during consolidation

While the pressure applied during consolidation is necessary to reach the required Vf, it

can simultaneously lead to the introduction of defects in the composite part. These differ

from defects created during the composite’s lifetime because they often prevent the part

from ever entering service and as such, lead to completely wasted materials or expensive and

time-consuming repair processes. Beside not reaching the correct Vf, the two main defects

produced by compression during consolidation are porosity and fibre waviness [28].

1.2.3.1 Porosity

Porosity is the term used for the presence of small voids in the matrix. These voids are

created by air bubbles or volatile compounds being trapped within the composite before the

curing stage, which is the result of insufficient matrix material being used or incorrect curing

parameters. Of the latter, pressure is just one component (the others being temperature,

duration, vacuum bleeding, etc. [28]), but it contributes heavily and as such, specific pressures

have even been used in autoclave tests to purposefully induce porosity for research purposes,

from 0.3 vol% to 40 vol% [29, 30, 31, 32]. Liu et al. discovered that it is not only the

volume fraction of voids that is dependent upon the applied pressure, but also the location,

distribution, shape and size of individual voids [29]. Irregularly shaped voids or voids at

critical locations can be more dangerous than the sheer volume of voids in general, for

example due to a higher chance of causing crack initiation [33, 34].

While porosity is always accompanied by a loss of mechanical properties, this deterioration is

not isotropic [33, 35]. As porosity affects the matrix and does not affect the integrity of the

fibres or their alignment, the in-plane effects of porosity in the fibre direction (along the axis

of the fibres) are minimal [30]. In composites with uni-directionally aligned fibres, however,

this means a large detrimental effect can be observed in the transverse direction, orthogonal

to the fibre direction. Voids that facilitate crack initiation under transverse stress can lead to

intralaminar fracture along the fibres; see figure 1.5. The material properties that are affected

by the void content are those that are matrix-dominated instead of fibre-dominated, i.e.

compressive modulus and strength, in-plane and interlaminar shear properties, and fatigue

life [32, 33, 36]. Demma et al. state that any observed effects depend on the reduction

in matrix material at a macro-scale, or the local reduction in fibre-matrix contact or crack

initiation at a micro-scale [37].
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The material property most severely affected by porosity is interlaminar shear strength

(ILSS). This is a measure for the composite’s ability to endure out-of-plane shear stresses

between laminae, which can exist even in pure in-plane loading, due to the binding together

of layers with anisotropic properties. One layer can force Poisson contraction upon another

layer, for example, while that layer will in turn hinder Poisson contraction of the first layer,

causing stress throughout the thickness of the material [1]. When interlaminar shear stresses

exceed the ILSS, this causes interlaminar fracture or delamination (a separation of the

laminae); see figure 1.5. According to Mohite, this is the prevalent lifespan-limiting damage

composite materials accrue [38]. Siver and Ghiorse reported similar results: an increase in

porosity of 1% in carbon fibre/epoxy systems was found to decrease ILSS by 9-9.7% [30, 39].

Concerning the effect of porosity on compressive strength, results in literature vary strongly.

Suarez et al. have observed reductions in compressive strength of 40% for void volume

fractions of just 4% [40], but Cinquin et al. later found that a void volume fraction of 11%

in the same CFRP material only corresponded to a reduction in compressive strength of

14% [41].

The opposite is true for flexural measurements - results have always been consistent: Both

Olivier et al. and Almeida et al. describe CFRPs losing approximately 20% of their flexural

modulus and 28% of their flexural strength for a void volume fraction of 14% [32, 42].

Fatigue life was also found to decrease with increasing void content by Almeida et al., but

only if the volume fraction of voids is above 2% [42]. Chambers et al. reported that increasing

the void volume fraction from 2% to 3.1% in a CFRP, resulted in a severe fatigue life drop

from 2000 cycles to 106 cycles [43].

1.2.3.2 Fibre waviness

Fibre waviness is the phenomenon that occurs when fibres within a FRC are not aligned

as intended because of fibre bending. This can be split up into two types of defect:

in-plane waviness, which occurs when fibres bend two dimensionally, within the lamina,

and out-of-plane waviness (better known as wrinkling), which occurs when fibres bend three

dimensionally, out of the lamina; see figure 1.6.

In-plane fibre waviness is a difficult defect to detect: it cannot be visualised via ultrasonic

inspection - the most commonly used inspection technique during composite manufacturing -
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Figure 1.5: Two modes of failure facilitated by porosity in a composite: intralaminar
fracture caused by the transverse stress exceeding the matrix’ tensile strength, and

interlaminar fracture (delamination) caused by interlaminar shear stresses exceeding the
material’s ILSS. The composite’s fibre direction is aligned with the Y-axis [44].

Figure 1.6: Fibre waviness in a composite sample. In-plane fibre waviness occurs when
fibres bend within their designated lamina (left) and out-of-plane waviness or wrinkling

occurs when fibres bend out of their designated lamina (right).
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and methods to detect it, such as micro-computed tomography (µCT), are not feasible for

large structures [45]. At the same time, in-plane waviness leads to matrix-rich areas within

a lamina, unsupported by reinforcing fibres, which in turn lead to high stress concentrations

and decreases in local mechanical strength, possibly culminating in delaminations [46]. While

this difficulty of detection and the substantial effects on material properties make in-plane

fibre waviness a dangerous defect, Kugler and Moon determined that it is not affected

by consolidation pressure. Only sample length, cooling rate and mould material affect

the introduction of in-plane fibre waviness and as such, it falls outside the scope of this

dissertation [47].

Out-of-plane fibre waviness is a different matter. The main mechanism behind wrinkle

formation during consolidation is outlined in figure 1.7. When a composite is compressed

over a curve, its thickness is reduced, meaning the outer ply moves towards the centre of the

curve. The radius of the curve is smaller there, so its arc length decreases. The physical

length of the ply cannot simply disappear, however, so the ply must compensate. It does

this by in-plane compression or by extending its length at the edges, creating the so-called

book-end effect. In practice, neither of these compensations can often take place: if the

length change is applied along a fibre direction, this direction is virtually inextensible and

so cannot compress. If the ply has constrained ends (as most moulds will enforce) or the

composite generally does not allow interply slip (due to high interply friction, for example),

the book-end effect cannot occur. The only option left then, to the ply, is to buckle out of

its plane, creating the wrinkle. Each ply under the outer layer follows the same course of

action, with a diminishing length difference as the innermost ply is neared [48, 49, 50, 51].

This wrinkling is determined by several key parameters during the consolidation process:

laminate thickness [45, 48, 49, 52, 53], ply stacking sequence [49], fibre tensile stiffness and

flexural rigidity [49, 54], consolidation temperature [45], mould geometry [45, 49, 52, 53], and

- most importantly - interply friction [45, 48, 49], which is in turn affected by the consolidation

pressure. This pressure simultaneously drives and restricts the interply slip, and to reach an

optimum Vf, it must be balanced with other consolidation parameters such as temperature

and rate [55].

For FRCs made from woven fabrics or biaxial NCFs, there is one other important wrinkling

mechanism, shown in figure 1.8. When the fabric is draped or consolidated over a geometry

such as a double curved surface (e.g. a hemisphere or a tetrahedron), the warp and weft

11



Figure 1.7: The mechanism behind out-of-plane fibre waviness upon consolidation over a
curve. When the ply ends are unconstrained and the plies can slip over one another freely,

the arc length reduction of the plies due to consolidation is compensated by in-plane
compression or end-point extension (left). When the ply ends are constrained or the plies
cannot slip over one another, the plies must buckle outwards to compensate for the arc

length reduction (right) [48].

yarns rotate rigidly and the starting angle between them (usually 90◦) is reduced. The

friction of these crossing yarns only increases the in-plane shear stress. If this trellising

continues, the yarns will eventually interlock and prevent further rotation. At this critical

shear locking angle, compressive and shear forces build up until the ply buckles outward,

creating the wrinkle [56, 57, 58, 59]. The research group under Hivet and Allaoui at the

Université d’Orléans remarked that this mechanism for out-of-plane fibre waviness occurs

largely during draping rather than consolidation, as the shear-inducing friction (between

mould and fabric, fabric and fabric, and yarn and yarn) is governed by relative positioning

and orientation, instead of consolidation pressure [60, 61].

Piggott et al. argue that out-of-plane fibre waviness defects are very important because they

affect not only material properties but also part geometry and dimensions. This can lead to

problems during assembly and expensive trimming [62]. Even if the wrinkling does not change

the geometry of the part enough to warrant rejection, Zhu et al. found that fibre waviness can

change a composite’s in-plane Poisson ratio to be negative, causing unexpected geometrical

changes upon loading [63, 64]. Farnand et al. noted that internal wrinkling cannot be seen

from the outside surface of a part, meaning that even for these three-dimensional defects,

non-destructive damage inspections are necessary [45].
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Figure 1.8: The shear-induced wrinkling mechanism for woven or bi-axial NCFs. As the
fabric is draped or consolidated over a curved geometry, its warp and weft yarns rigidly
rotate towards one another, until they each a critical shear locking angle, after which

continued rotation is physically blocked and the built-up shear and compressive forces are
manifested as wrinkles [56].

Figure 1.9: The maximum wrinkle angle (θ), wavelength (λ) and amplitude (h) of an
out-of-plane waviness defect [70].
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The effect of out-of-plane fibre waviness on the mechanical properties of a FRP depend most

strongly on the maximum wrinkle angle (θ), followed by the wrinkle wavelength (λ) and

the total size (particularly transverse to the fibre direction) of the undulating region; see

figure 1.9. Sometimes, the maximum wrinkling angle is linked to the ratio of its amplitude

to its wavelength [65, 66].

In compression along the fibre direction, composites with wrinkling defects fail in one of two

ways. If the maximum wrinkle angle is small (approximately under 4-6◦), the waviness has

little influence on the compressive strength and fibre failure takes place, as would be the case if

no wrinkle defects were present. The fibre properties then dominate the failure mechanism. If

the maximum wrinkle angle is larger, the matrix properties determine the strength and failure

mechanism of the FRP. Interlaminar shear stresses are generated around the wrinkle due to

the compression, and inter-fibre failure then takes place in the form of interply delaminations

or intraply matrix cracking [67, 68]. Xie et al. found a reduction of 40% in compressive

strength for a CFRP as the maximum wrinkle angle increased from 4◦ to 28◦ [65]. For

a similar quasi-isotropic carbon fibre/epoxy, Mukhopadhyay et al. observed a decrease in

compressive strength of 34% in samples with maximum wrinkle angle of 9.9◦ and 11.4◦, with

respect to a pristine sample [68]. Nimbal et al. discovered that the location of wrinkles (and

their accompanying matrix-rich zones) within a composite has a more significant influence

on the reduction of compressive strength than the total number of wrinkles present [69].

Under a tensile load, wrinkles negate the stiffness of the surrounding region, which undermines

its ability to carry load. As such, transverse matrix cracks can easily occur. The wrinkles also

act as local interlaminar shear stress concentrators, causing delamination around the defects

before any tensile fracture of the fibres takes place. This effect is amplified near the edge of

composites with multi-axial reinforcing fibres, as the in-plane shear stress is localised there

[70, 71]. Bloom et al. found a reduction in tensile strength of 39% in a glass fibre/epoxy

laminate for a maximum wrinkle angle of 39.4◦, compared to a pristine sample [71].

While in-plane compressive and tensile strengths are significantly reduced by out-of-plane

fibre waviness, flexural strengths are even more affected. Matrix-rich areas are created by

more wrinkled plies next to less wrinkled plies, and these areas become larger with increasing

maximum wrinkle angle, increasing wave amplitude, decreasing wavelength, increasing

number of concave waves and increasing wrinkle length. Larger matrix-rich areas have a

weaker load carrying capacity than smaller matrix-rich or balanced fibre/matrix areas. Under
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bending, the dominant failure mode is once again interlaminar shear leading to delamination

and microbuckling. [66, 72] Allison et al. reported a 37% reduction in flexural strength

for a glass fibre/epoxy sample with large concave up waves (h
λ

= 0.102) with respect to

a flat sample [66]. Potter et al. simulated the problem via finite element analysis (FEA)

and observed a reduction of up to 72% in stress at initiation of failure under bending, if all

plies were affected by wrinkling. If 25% of plies were affected, the reduction was still 35%.

This corresponded to a practical experiment that was also executed on a unidirectional FRP,

where 50% of plies were affected. The result of that was a flexural strength reduction of

approximately 50% [72].

The final mechanical property that should be mentioned is fatigue life. Due to the small, local

delaminations incurred early on by repetitive compressive or tensile loads, the material can

fail, even if the applied loads are below the ultimate strength values of the wrinkled composite

(which are already lower than those of a pristine composite as mentioned above). These small

delaminations grow steadily with an increasing number of cycles until they become critical,

leading to structural failure [73, 74]. Hörrmann et al. measured a 50% shorter fatigue life in a

CFRP under a cyclical compression-compression and tension-compression load, as compared

to a sample without defects [73]. Mukhopadhyay et al. found that the fatigue life of wrinkled

CFRP samples was approximately one order of magnitude lower than pristine samples under

the same cyclical tension-tension load [74].

1.3 Finite element modelling of fabrics

Analytical modelling of fabrics was uncommon before the 21st century, as it was locked behind

limited computing capabilities. As computers have become increasingly powerful in the past

two decades, so too has the numerical modelling of fibrous materials become increasingly

popular, particularly by use of the finite element method. As computational power is still

finite, large fabrics are almost never modelled in their entirety. Instead, they are represented

by a unit cell in the case of periodic materials such as woven, knitted or braided fabrics, or

an elementary volume in the case of non-woven fabrics. This is a limited area or volume

of the fabric that can be extended to represent the entire material when periodic boundary

conditions are applied [75].

Modelling fibrous materials differs from modelling more conventional materials such as

metals, polymers or ceramics because of two features: the actual material properties and
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their multi-scaled nature. Fibrous materials have properties that conventional materials do

not exhibit. Fibres in any kind of fabric represent heterogeneous elements - rather than

being part of a homogeneous material - that give the fabric anisotropic properties: tensile

stiffness and strength are often many times higher in the fibre direction than in the transverse

directions. This becomes particularly pronounced in fabrics where the fibres are aligned along

one direction. Additionally, fabrics generally exhibit very low interfibre friction and thus low

cohesion between the fibres, meaning large relative displacements can easily take place. In

other words, shear stiffness through the thickness and thus flexural rigidity are very low

[76]. Combining these unconventional properties with porosity and compressibility means

simplifications are often made. For example, flexural rigidity is a property that is ignored in

many models.

The multi-scaled nature of fibrous materials entails that they can be broken down into

different constituents depending on the scale. At the macroscopic scale (from several

centimetres to metres), the fabric as a whole is examined. At the mesoscopic scale (from one

to several millimetres), fabrics are considered to be made out of yarns. At the microscopic

scale (several micrometers), yarns are broken down into fibres. This multi-scaled nature

allows for the modelling of fabrics at any of the scales, depending on the desired scope or

dimensions of the model [77]. The macro-scale models can be split into continuous or discrete

macro-scale models. Continuous models assume the fabric as a whole is a continuous material,

while discrete models assume it is made out of an amount of simplified yarns. A similar split

exists for the meso-scale models: at the mesoscopic scale, continuous models simulate each

yarn but assume the yarns are continuous, while discrete models divide the yarns into an

amount of fibres. Usually these fibres have larger dimensions than the actual fibres, so as not

to simulate thousands of fibres per yarn. Micro-scale models are not further split up, as they

all consider individual fibres to be continuous elements. Note that sometimes small parts

of the fabric are modelled at a lower scale to determine accurate properties, which are then

homogenised at a larger scale to reduce computation times. For example, a small section of

yarn might be accurately modelled using a very large amount of fibres at the microscopic

scale, after which the gathered fibre properties are used to make a homogenised meso-scale

yarn model which no longer requires many elements. This can in turn be used to construct

a macro-scale model; see figure 1.10. This results in models with as little loss of information

as possible, though only microscopic models can ever truly be accurate, as all others make

simplifications in the name of computational efficiency [75].
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Figure 1.10: Hierarchy of the multi-scale nature of fibrous material modelling [75].

1.3.1 Macro-scale models

At the macroscopic scale, large areas of fabric can be modelled without high computational

costs. This is useful when global fabric behaviour over those large areas, such as draping or

wrinkling, is more important than local yarn behaviour, such as cross section deformation.

As such, it is used extensively in forming and draping simulations, which are necessary to

optimise the lay-up stage of composite manufacturing.

Continuous macro-scale models portray the fabric as one large, two dimensional surface.

To take the fibrous material properties into account, homogenised material properties are

used. Membrane elements are often employed, which are two dimensional surface elements

that only transmit in-plane forces (no moments) and have no flexural rigidity [78]. For

example, Nadler et al. created a multi-scale model using membrane elements but based all

their mechanical properties on homogenisations of the properties at the fibre and yarn scales

[79]. The most active research group developing continuous macro-scale models in recent

times has been the group under Boisse et al., at the Université de Lyon. They use shell

elements, which are plates that utilise the two dimensional theory of shells to approximate a

three dimensional continuum material by having one dimension - the thickness - significantly

smaller than the other dimensions. They have three three rotational and three displacement

degrees of freedom [78]. Boisse et al. created triangular shell elements between three nodes

that are subjected to tensile stresses, in plane shear moments and bending moments caused

by the yarns within them and within their neighbouring shell elements. The fabrics made
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from these shell elements have been draped over hemispherical, cylindrical and tetrahedral

shapes, and the simulations show good correlation with experimental results in wrinkling

behaviour; see figure 1.12 [54, 80, 81].

Discrete macro-scale models are based on the cargo-net or pin-jointed net approach, proposed

by Kawabata et al. in 1973 [82, 83, 84]. In this approach, several points in the fabric where

yarns cross each other are modelled as pins with an associated mass. These pins are then

connected by one dimensional elements, allowing yarn interactions such as crimp and shear

locking to be modelled. The yarns are assumed to be inextensible and are allowed to rotate,

but not translate. This is not a huge restriction, as in reality these nodes do not displace much,

excluding the case of out-of-plane penetration (e.g. ballistic impact simulations). Cherouat

et al. used truss elements as connectors, which transmit only axial forces along their centre

line and thus have no shear stiffness [78], but superimposed membrane elements onto that net

to achieve the desired shear stiffness; see figure 1.13 [85]. Diehl et al. used a similar model

but replaced the membrane elements for shell elements in applications where flexural rigidity

(also not provided by truss elements) was more important than shear stiffness, such as fabric

consolidation [77]. King et al. later created a truss pin-jointed network without membranes or

shells, but with springs connecting the pin joints, making three dimensional yarn interaction

possible, important for the modelling of cross sectional deformation, in-plane shear and

phenomena such as crimp balance [86]. Harrison recently returned to the truss-membrane

model but replaced the truss elements with beam elements, which are similar but can also

transmit flexural forces [78], and used hinge elements between beam nodes. This allowed for

independent control of axial stiffness along the fibre directions, in-plane shear compliance

and both the out-of-plane and in-plane flexural moduli of the fabric; see figure 1.13 [87].

Figure 1.11: Triangular shell finite elements used in the continuous macro-scale model by
Boisse et al. [80].
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Figure 1.12: Simulation of the continuous macro-scale model by Boisse et al. draping over a
tetrahedron. [81].

Figure 1.13: The truss-membrane discrete macro-scale model by Cherouat et al. (left) and
the pantographic beam-membrane discrete macro-scale model by Harrison (right) [87].
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1.3.2 Meso-scale models

The mesoscopic scale is focused on yarns, and thus meso-scale models are adopted in

applications or situations where yarn behaviour is of paramount importance, such as the

consolidation examined in this dissertation, or ballistic impact on woven high-strength fabrics.

Continuous meso-scale models have received a lot of attention in research due to their ease

of construction and relatively low required computational power, but the yarns they model

require constitutive laws and mechanical coefficients to reproduce fibre behaviour. Due to

the anisotropic material properties yarns exhibit, this behaviour is often simplified to be

orthotropic, or even transversally isotropic [75]. To properly model a yarn, Gasser et al.

argue that it must act like a flexible thread and as such, needs to have shear moduli and

a Poisson ratio close to zero. The transverse Young’s modulus must also be much lower

than the Young’s modulus in the fibre direction; Page et al. propose a difference of a factor

100 [88, 89, 90]. Unlike continuous macro-scale models, contact interaction properties and

associated interyarn friction are also needed here. All models use three dimensional solid

continuum elements - which are the standard volume elements composed of one material

[78] - shell elements, or a combination of the two. Shells are only used to cut down on

computation time, but they do not allow for changes in yarn cross section, weakening the

accuracy of the model [91]. These elements are given the required material properties by

gathering experimental data and assigning them via constitutive laws, usually hypoelastic

laws. This allows the elements to have orthotropic properties such as differing stiffness and

strength in the fibre direction and transverse directions. Examples of continuous meso-scale

models can be found in the biaxial tension simulations by Boisse et al. [89, 92, 93], the in-plane

shear simulations by Badel et al. [94, 95], and the compaction simulations by Nguyen et al.

[96] and Potluri et al. [22].

Discrete meso-scale models break down yarns into their constituent fibres, but do not model

each individual fibre to retain lower computation times. To do so, virtual fibres that are

several times the size of the real fibres, and are thus no longer truly microscopic, are employed.

This still allows for interfibre interaction and displacement but can present small differences

with reality. In general, discrete meso-scale fabric models are the most accurate models that

can be built while retaining acceptable computation times. The discrete model stems from

the work done by Wang et al. who modelled yarns as one dimensional chains of “two-node

digital rod elements”, that correspond to truss elements. These elements were connected
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at their end nodes, instated as frictionless pins; see figure 1.14 [97]. This was of course

a yarn model, and did not divide the yarn up into fibres and so always had a fixed cross

section. Zhou et al. created the first real discrete meso-scale fabric model by seeing to this

issue. They split the yarn into fibres and deemed that between 19 and 50 virtual fibres

sufficed to represent any amount of real fibres [98]. Miao et al. later expanded on this

model to improve the efficiency of the simulation, particularly its contact algorithm. They

also created a final fabric model in the as-woven state without simulating the whole weaving

process, but by static relaxation of yarns, saving computing time [99, 100]. Beam elements

were first introduced to this multi-chain model by Durville, to study the mechanical behaviour

of entangled materials [101, 102] or woven fabrics [103, 104]. Fibres were always assumed to

be linearly elastic. Chakladar et al. used a similar beam multi-chain model to improve upon

the discrete macro-scale model by King et al.; see figure 1.15 [105]. Green et al., Mahadik et

al. and Thompson et al. studied the compaction of 3D woven fabrics using the beam model,

but used elastic-plastic beam elements with constraints on the yarn end nodes to ensure

periodicity [76, 106, 107]. The main weakness of this model was the inherent link between

in-plane stiffness and flexural rigidity, leading to an overestimation of the flexural rigidity

and requiring artificial solutions. This will be further examined in section 3.1. Thompson

et al. additionally applied a negative thermal load (thermal shrinkage) to the original fabric

topology to obtain the as-woven state, and found this to be equivalent to applying tension

during a weaving process, drawing the fabric together [107].

1.3.3 Micro-scale models

Modelling of fabrics at the microscopic scale is rarely done and hard to find in literature,

because it is so computationally intensive. At this scale, each real fibre is modelled as a

virtual fibre with the same dimensions and properties, leading to the best possible fabric

model. A micro-scale model was built by Duhovic et al. to investigate deformation

in knitted fabrics, but only 20 fibres of the 120 fibres per yarn were actually modelled.

Figure 1.14: The discrete yarn model by Wang et al., made up of truss elements connected
by frictionless pins at the nodes [97].
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Figure 1.15: The discrete meso-scale model by Chakladar et al., where yarns are
constructed from 37 chains of beam elements. The upper and lower rigid bars are used for a

compaction simulation [105].

Nevertheless, the fibres were kept true to their real dimensions - a diameter of 17 µm -

and the model was thus microscopic in scale. Each fibre was modelled using linearly elastic

beam elements with a circular profile [108]. Instead of studying a global fabric, micro-scale

modelling has also been used to study the behaviour of single yarns, for example by Van

Langenhove. They constructed a model to predict yarn stress-strain and torque-strain

behaviour, using geometrical fibre properties (e.g. twist angle, packing density, interfibre

friction) as inputs [109, 110, 111].

1.4 Goal and scope of this dissertation

It is clear that the consolidation stage during the composite manufacturing process has

a significant effect on the final mechanical properties and geometry of the produced FRP

part. Currently, ensuring a correct Vf is reached while keeping defects at a minimum

relies heavily on the manufacturer’s experience and trial-and-error [48]. This is the cause

of a lot of waste generation. For example, Airbus estimates that between 30% and 50%

of composite parts for aircraft are scrapped due to manufacturing errors or induced defects

[112]. This obviously translates into high costs, both in wasted materials and processing time,

and in waste disposal. Material costs are significant in composite production, representing

20-60% of the total production cost of CFRPs, depending on the manufacturing throughput

[113, 114, 115]. As most FRPs are not recyclable and are disposed of via landfill or

incineration, this waste generation also imposes a heavy burden on the environment [112]. As

such, a better understanding of fabric consolidation behaviour is necessary, so that accurate
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predictions can be made before production commences, leading to parts with fewer defects,

reduced manufacturing inspection costs and increased manufacturing throughput [45]. As

experimental manufacturing trials are expensive, FEA of fabric consolidation has become

the most important predictive tool in the industrial community [48].

The goal of this dissertation, then, is to create a robust fabric model that can be used as

such a predictive tool. The model needs to be able to take any load (particularly compressive

loads) and accurately portray consolidation. A woven fabric will be modelled instead of a

NCF as they are known to have better drapeability, meaning woven fabrics are used when

complex mould geometries and thus more defects are involved [116]. Actual simulation of

these defects is beyond the scope of this dissertation, though the goal is for the created

fabric model to be applicable to this end in future work. Next to all the numerical analysis,

consolidation behaviour of a woven fabric will also investigated experimentally.

In chapter 2, the fabric used during this dissertation is given, as are the tools used to create

and validate the model, and to perform and process the experiments. In chapter 3, the

creation of the model is outlined from the ground up, starting at the microscopic scale and

ending at the macroscopic scale. In chapter 4, the model is validated by comparing the

simulated as-woven results to the geometry of the real fabric, and the fabric model with the

most accurate parameters is chosen. In chapter 5, this model is subjected to consolidation

and results are discussed. The experimental consolidation results are also found here. Note

that many of the parameters that affect consolidation such as temperature and number of

compression iterations have not been taken into account in this dissertation. The focus is

kept at the applied pressure.
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Chapter 2

Materials and methods

2.1 Materials

2.1.1 Fabric

The fabric that the finite element model in this dissertation is based on, is a 2/2 twill weave

produced by P-D Interglas Technologies GmbH, to aviation and automotive standards. This

means that the weft yarn passes over two warp yarns, then under two warp yarns, and so on.

One unit cell of this weave is defined to be a cut-out area of four warp yarns and four weft

yarns, as that is the smallest repeating unit in the fabric geometry; see figure 2.1.

The fabric is made of E-glass, combining filaments with a diameter of 9 µm, both in the

warp and the weft direction. According to the producer, this creates warp yarns with a

yarn number of 340 tex and weft yarns with a yarn number of 272 tex. The thread count

is 6 warp ends per cm, and 6.7 weft ends per cm. The fabric as a whole has an areal

density of 390 g
m2 and is treated with a 0.5-1.5% FK 144 finish (Interglas style 92140); see

figure 2.2 [117, 118, 119].

As the areal and volumetric densities of the material are important factors in the calculation

of the Vf and in the simulation, these properties were experimentally measured. To measure

the area of a surface, an accurate ruler was used on a square fabric coupon, cut out using

glass fibre scissors. To measure the mass of such a coupon, a calibrated scale was used.

To determine the volume, the fabric coupons were individually submerged in water and the
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Figure 2.1: Pattern of a 2/2 twill weave, with a single, repeating unit cell marked within
the red square [120].

Figure 2.2: The E-glass fibre 2/2 twill fabric produced by P-D Interglas Technologies
GmbH, used as a basis for the finite element model in this dissertation [119].
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displaced volume of water (equal to the volume of the fabric) was measured via its mass.

ρA =
mfabric

Afabric

ρV =
mfabric

Vfabric

Here, ρA and ρV are the areal and volumetric densities, respectively, while mfabric, Afabric

and Vfabric are the mass, surface area and volume of the fabric. An average areal density

of 386.52 g
m2 was found, with a standard deviation of 6.60 g

m2 . This is very close to the

predetermined areal density of 390 g
m2 given by the manufacturer. For the volumetric density,

an average of 2295.08 kg
m3 was measured, with a standard deviation of 10.30 kg

m3 , which is

somewhat lower than the conventional values of 2540-2550 kg
m3 for E-glass density [121].

To be able to calculate the required flexural rigidity of the simulated beam elements (see

section 3.2), an accurate measurement of the yarn number was required. This measurement

was executed according to ISO 7211/5 and ISO 7211/3 (1984). The standards require a yarn

number to be estimated by simply measuring the mass and length of several yarns with a

scale and a ruler, and calculating the yarn number:

yarn number =
myarn

lyarn

Here, myarn and lyarn represent the mass and length of a yarn, respectively. This resulted

in average yarn number estimates of 341.92 tex for the warp direction, and 263.23 tex for

the weft direction. To now more accurately measure the yarn lengths, prestress was applied

to each yarn in the fibre direction. The standards specify a prestress of 0.5 · estimated

yarn number, in cN, but only 63 cN was available in the used ITF maillemeter. As such,

maximum prestress was applied. The length of 10 warp and 10 weft yarns was measured with

the maillemeter, and bundles of 50 yarns of each direction were weighed using a calibrated

scale. Using the above formula, the yarn number was found to be 337.88 tex in the warp

direction, with a standard deviation of 0.71 tex, and 268.75 tex in the weft direction, with a

standard deviation of 0.41 tex. Both values are similar to those provided by the manufacturer

of the fabric.

The relevant physical properties of the fabric, that will be used throughout this dissertation,

are summarised in table 2.1.
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Warp Weft

Weave 2/2 twill

Volumetric density [ kg
m3 ] 2295.08

Areal density [ g
m2 ] 386.52

Young’s modulus [GPa] 70

Poisson coefficient [-] 0.2

Yarn number [tex] 337.88 268.75

Fibre diameter [µm] 9 9

Table 2.1: Relevant properties of the glass fibre fabric material used in this dissertation,
either supplied by the manufacturer or experimentally determined.

2.1.2 Matrix material

For the compression experiment with static loading, an epoxy resin was used to make small

composite samples. EPIKOTE Resin MGS RIMR 135 was used, with EPIKURE Curing

Agent MGS RIMH 137, both produced by Hexion [122]. A mass ratio of 10 parts epoxy resin

to 3 parts curing agent was used.

2.2 Methods

2.2.1 Finite element analysis (FEA)

2.2.1.1 Modelling and simulation

The software used for the finite element modelling of the fabric and analysis of its

compression behaviour is Abaqus Unified FEA, also called ABAQUS, by the Dassault

Systèmes Simulia Corporation. This is in fact an entire product suite, containing

pre-processing (ABAQUS/CAE), processing (ABAQUS/Standard, ABAQUS/Explicit, etc.)

and post-processing (ABAQUS/CAE) software, thus not requiring any external software to

execute entire analyses [75]. In the pre-processing step, the model is constructed geometrically

and then meshed. Material properties and boundary conditions are also applied at this

stage. The processing step is somewhat of a black box for the user, but it is during this

step that any calculations are performed. Essentially, the solver calculates the forces at each
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node for each time step, according to Newton’s second law of motion. In this dissertation,

ABAQUS/Explicit is used, because it allows for contact between truss elements and remains

stable when calculating large deformations. In the post-processing step, any results of the

simulation can be requested and visualised.

The ABAQUS product suite is commonly used for FEA in the oil and gas, life sciences,

aerospace, automotive, industrial equipment, consumer packed goods and electronics

industries [123]. It was chosen because the Department of Materials, Textiles and Chemical

Engineering (MaTCh) at Ghent University has extensive experience with the suite, and

because it is has a good reputation within academic and commercial institutions for the

modelling of fabrics [48, 50, 51, 75, 81, 87, 124, 125, 126]. ABAQUS version 6.18-1 (2018)

was used.

To assist in modifying and creating input files for ABAQUS, scripts were written in Python

version 3.7.3. The Tkinter package was used to create a graphical user interface (GUI),

though this was only implemented for ease of repetitive use and had no technical impact.

2.2.1.2 Distance measurements

The post-processing ABAQUS/CAE was used to measure the yarn widths and heights of the

as-woven but uncompressed fabric models, to compare their geometries to experimental data

for model validation. To do so, the deformed fabric was shown in the CAE viewer, with beam

profiles rendered for easier distinction of the individual fibres. The required warp or weft

fibres were then displayed while removing all other elements from view to prevent the selection

of incorrect nodes. It should be noted that the truss elements were always displayed and the

beam elements were always hidden, as the truss elements represent the actual geometry of the

fabric and the beam elements only contribute their flexural rigidity (see section 3.1). Once a

correct angle was found to view the yarn under so that the fibres at the extrema (“left” and

“right” for yarn width, i.e. highest and lowest X or Y coordinates, or “top” and “bottom”

for yarn height, i.e. highest and lowest Z coordinates) were unmistakably identified, the

distance between these extrema was queried. ABAQUS/CAE measures distances in X, Y

and Z components instead of a vector sum, but as the warp yarns were modelled to align

with the X-direction and the weft yarns were modelled to align with the Y-direction, this was

acceptable. It means warp yarn widths were always measured in the Y-direction, weft yarn

widths were always measured in the X-direction, and yarn heights were always measured in
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the Z-direction. Whether the result was positive or negative depended only on which of the

two nodes was selected first and had no impact: physically, lengths are always positive. Note

that ABAQUS measures the distance between nodes which lie on the centre line of the fibres;

this means the actual yarn widths and heights are two fibre radii larger than the result it

returns. For each yarn, this measuring process was repeated five times along the length of

the yarn, in equidistant intervals. The yarns were virtually cut through for easier access to

the nodes at those interval boundaries by using the free body cuts integrated in the CAE

viewer. Figure 2.3 shows an example of this measuring process for the width of a weft yarn.

2.2.2 Micro-computed tomography (µCT)

2.2.2.1 Imaging

To evaluate the results of compression experiments and to validate the created fabric model,

µCT-scanning was used. This is a method for the three dimensional imaging of both

dry and embedded fabrics via X-rays. The main advantages it has is that it is a highly

accurate, non-destructive technique, allowing for the examination of cross sections without

difficult mechanical sectioning that can generate damage in the material [127]. It can also

be performed in-situ if desired [128, 129].

All µCT-scans were executed at the Ghent University Centre for X-ray Tomography (UGCT),

on a tomograph named HECTOR. This tomograph generates X-rays with an XWT 240-SE

microfocus source and utilises a large PerkinElmer flat panel detector, which allows for images

with a maximum spatial resolution of approximately 10 µm [130].

To create compound images of µCT cross sections, GIMP version 2.8.22 was used. No

measurements were performed with this program.

2.2.2.2 Distance measurements

To process the µCT-scans, which are reconstructed into image sequences, the Java-based

image processing program ImageJ was used. Specifically, the Fiji distribution package

(version “Madison”) that contains ImageJ version 1.52i was used. Just like in

ABAQUS/CAE, the program was used to measure yarn widths and heights, but from

experimental data rather than simulations. It was also used to measure the distance between

compression plates in the determination of Vf. To do this, the reconstructed image sequence
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Figure 2.3: The yarn width measuring process in ABAQUS/CAE. First, the deformed
fabric is displayed and beam profiles are rendered (top left). All unnecessary fibres are then
temporarily removed from view, in this case leaving only weft fibres displayed (top middle).
Each yarn is measured at 5 equidistant points along its axis; this is achieved by free body

cuts (top right). The yarn cross section is angled to see which fibres form the extrema, and
the distance between them is measured by querying the distance between the frontmost

nodes of each fibre, as indicated by the red dots (middle). The measured distance is read
from the “Deformed distance” row and the column corresponding to the measuring

direction, in this case along the X-axis, corresponding to “1” (bottom).
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was imported into the program, displaying an XY (“top-down”) cross section of the fabric. To

ensure correct scaling, the digital voxel size was set to correspond to the voxel size stipulated

in the reconstruction data file. This XY view was then resliced to transfer to an XZ or YZ

point of view instead, revealing cross sections of the individual yarns. Zooming in on these

allowed for the measurement of distances by drawing straight lines and querying their length.

Figure 2.4 shows an example of this measuring process for the width of a yarn. Note that

some of these µCT-images had a high amount of noise and low contrast, and as such, selecting

the correct voxels at the extrema proved difficult. To compensate for this uncertainty, the

error margins were manually increased, depending on the severity of the noise.

2.2.3 Compression experiments

In this dissertation, two experiments were carried out with the same goals in mind: to

experimentally observe fabric behaviour during compression, and to have empirical data

against which to validate the created finite element model. The first experiment used in-situ

µCT to scan a dry fabric sample as it was being compressed. The second experiment consisted

of subjecting resin-embedded fabric samples to a static load and µCT-scanning them after

the matrix had cured, capturing the fabric deformation. In both cases, single layers of the

glass fibre fabric and stacks of 4 layers of the fabric were compressed and scanned.

2.2.3.1 Experiment 1: continuous loading

For the in-situ scanning experiment, a uniaxial compression cell by Deben (UK) was used,

called the CT5000-TEC. This device was developed to fit on the HECTOR tomograph at

the UGCT and is controlled by Deben Microtest software; see figure 2.5 [130]. A load cell

with a maximum force of 1 kN was used and a constant strain rate of 0.5 mm
min

was applied

to the dry fabric samples. The load was exerted by the Deben cell onto the samples via two

circular PEEK jaws, or clamps. The top jaw had a height of 59.5 mm and the bottom jaw

had a height of 19.5 mm. Both had a radius of 44 mm.

While the pressure could be increased continuously, the µCT-scanning did not happen

continuously. Around certain loads (e.g. 1.2 N, 5 N, 10 N, 15 N, 30 N, 120 N, 240 N, 800 N

and back down to 0 N for the single layer of glass fibre fabric), the Deben cell compression

was paused and a µCT-scan was taken. As such, continuous machine data is available from

the Deben cell, but only discrete image data is available from the tomograph.
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Figure 2.4: The yarn width measuring process in ImageJ. First, the reconstructed µCT
image sequence is imported, revealing an XY cross section of the fabric. At this point the
scale is set so that the voxel size is correct (top). A reslice is then taken, along one of the
axes. This produces an XZ or a YZ cross section of the fabric, revealing the cross sections

of the weft and warp yarns, respectively (middle). A straight line is drawn between the
voxels on the extrema of the yarn cross sections, as indicated by the yellow line, and the

length of the line is queried (bottom).
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Figure 2.5: The Deben CT5000-TEC cell, mounted on the HECTOR tomograph [130].

For the test on the single layer of fabric, the samples used in this experiment contained 13

warp yarns and 14 weft yarns. The average yarn width before compression was measured in

µCT images (as described in subsubsection 2.2.2.2) to be 1.619 mm with a standard deviation

of 0.089 mm in the warp direction, and 1.581 mm with a standard deviation of 0.094 mm in

the weft direction. The 4 layer sample consisted of only 12 warp yarns and 12 weft yarns. The

warp yarns had an average width of 1.629 mm with a standard deviation of 0.109 mm, and

the weft yarns had an average of 1.543 mm with a standard deviation of 0.025 mm. These

measurements allow for the calculation of the average fabric area of each sample (Asample):

Asample = (Nwarp · dwarp) · (Nweft · dweft)
⇒ Asample,1 layer = (13 · 1.619mm) · (14 · 1.581mm)

= 466.063 mm2

⇒ Asample,4 layers = (12 · 1.629mm) · (12 · 1.543mm)

= 361.955 mm2

Here, Nwarp and Nweft are the amount of warp or weft yarns in the sample, respectively, and

dwarp and dweft are the average widths of the warp and weft yarns in the sample. Asample,1 layer

is the average fabric area of the single layer sample, and Asample,4 layers is the average fabric

area of the sample constructed out of 4 layers of fabric stacked on top of each other. These

values will become necessary when calculating the pressures these samples are subjected to

during consolidation.
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2.2.3.2 Experiment 2: static loading

In the second experiment, the noise and inaccuracies generated by the Deben cell (see

section 4.1) were attempted to be negated by creating fabric samples compressed under

static loads, and by fixing the fabric deformation under those loads by embedding the fabric

in resin before µCT-scanning. To apply the static loads, aluminium weights were used. Since

relevant pressures had to be achieved and a maximum of approximately 10 kg could be placed

on a sample, the sample surface areas had to be small but still representative of the entire

fabric. Samples were cut using glass fibre scissors to be 2 cm · 2 cm (4 cm2), containing at

least 9 unit cells and allowing pressures to reach around 0.25 MPa:

P =
Fweight
Afabric

=
mweight · g
Afabric

=
10 kg · 9.81 N

kg

4 cm2

= 0.2455 MPa

P is the pressure on the fabric, Fweight is the force exerted by the weight onto the fabric,

Afabric is the surface area of the fabric, mweight is the mass of the aluminium weights and g is

the gravitational acceleration constant (approximated as 9.81 N
kg

). This value of 0.25 MPa is

much lower than the ultimate pressures reached using the Deben cell, but most µCT-scans

were actually taken below this pressure. 6 out of 8 scan points of the single layer fabric and

8 out of 10 points of the 4-layer fabric were below this threshold.

A problem now occurred: these small 4 cm2 samples had to be subjected to the full force of

the weights, distributed equally over the fabric surface. To facilitate this, top moulds were

made out of steel sheets. Squares of 6 cm · 6 cm, 4 cm · 4 cm and 2 cm · 2 cm were cut

using a tabletop metal shear. It was ensured that the smallest of these squares had the exact

intended size and a flat surface by grinding. These squares were then glued to each other

(using epoxy glue) in a pyramid shape; see figure 2.6.

The eventual setup used to create the compressed composite samples is shown in figure 2.7.

The fabric - 1 layer or 4 layers - was placed on a glass plate that had been treated with

a release agent. A small amount of epoxy resin was then manually added to the fabric -

just enough to cover it. No attention was paid to the entrapment of air bubbles that would
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Figure 2.6: The steel squares used to create a top mould for the static loading experiment.
Via grinding, the smallest square was ensured to be the correct size and have a flat
surface (left). These squares were glued to each other to make the mould (right).

usually be avoided when making a FRP, as the resin’s only purpose was to anchor the fibres.

A release foil was placed on top of the fabric-resin mix and the mould was carefully aligned

on top of that. This mould provided a larger, 6 cm · 6 cm surface to place the aluminium

weights on top of, while only transferring that weight to a 2 cm · 2 cm area underneath the

mould - exactly the size of the fabric samples. The composites were left to harden for 48

hours at room temperature, and were then cured for 1 hour at 80◦C.

The final pressure applied to the fabric depended on the mass placed on top of it, as seen

in the previous formula. It should be noted that the mass of the steel top mould was also

taken into account, but the mass of the release foil or resin was deemed negligible. The final

masses (weights + mould) placed on the composite samples were weighed using a calibrated

scale and are shown in table 2.2, alongside the pressure they exerted on the samples.

Goal mass [kg] Real mass [kg] Pressure [MPa]

0 0 0

0.5 0.501 0.0123

1 0.99 0.0243

2 2.087 0.0512

5 4.943 0.1212

10 10.009 0.2455

Table 2.2: The masses (and their respective exerted pressures) placed on top of the
composite samples, to provide static loading during curing.
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Figure 2.7: Experimental setup to create the composite samples under static loading. The
mass of the weight was varied to achieve different load pressures. The composite consisted

of 1 or 4 layers of glass fibre fabric embedded in resin. The glass plate and mould were
treated with release agent or covered in release foil so as not to stick to the resin.
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Chapter 3

Fabric model creation

The fabric model in this thesis is built at multiple scales. First, the fibres and their mechanical

properties are examined at the microscopic scale, where the individual finite elements are

chosen to best represent all deformation behaviour in a fibre. These fibres are then combined

into a yarn at the mesoscopic scale, where the flexural rigidity of the yarn as a whole needs

to be implemented. Finally, the yarns are woven into a fabric at the macroscopic scale. The

final model can be considered a discrete meso-scale model, as fibres are kept discrete, even

at the fabric level, rather than yarns or even the entire fabric being imagined as continuous

elements. It is not a full micro-scale model because not every real fibre is represented by a

virtual fibre. Instead, a smaller amount of larger virtual fibres make up the yarns.

3.1 Fibre model (micro-scale)

At the microscopic scale, fibres (or more accurately, filaments) can easily be modelled as

flexible, one-dimensional chains made up of sequentially connected structural elements; see

figure 3.1. This provides a highly flexible structure, as the elements can rotate relative to

each other at the connection nodes.

As mentioned in subsection 1.3.2, particularly relevant structural elements in the modelling

of fibres are truss and beam elements. In ABAQUS, these are long, thin, cylindrical rods

that act as one-dimensional elements in a two- or three-dimensional environment. Truss

elements only transmit axial forces along their centre line and thus do not transmit forces

perpendicular to the centre line or any moments [78]. When these elements are used, the

connecting nodes function as frictionless pins [75]. The restricted load transmission means
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Figure 3.1: A fibre model consisting of structural truss or beam elements, sequentially
connected by single-point nodes along the centre line [75].

trusses are usable as computationally cheap elements for the modelling of fibres if those fibres

are loaded in the fibre direction, especially in tension, where no buckling takes place, but they

are weak candidates in any case where other loading is applied. To simulate the consolidation

stage, where pressure is applied perpendicular to the fibre directions and where the fibres are

expected to bend, these elements alone are not sufficient.

Beam elements are much broader in the transmission of loads. They are designed as flexural

members and so can transmit bending moments and shear forces alongside the usual axial

forces [78]. There are two main types of beam elements: Euler-Bernouilli beams that calculate

deformation during bending as a function of the applied moment and the element’s flexural

rigidity, and Timoshenko beams that also allow for transverse shear in the calculation [131].

In any case, both types of beam elements are intrinsically more suited to the modelling of

fibres than truss elements, in any load situation where bending takes place.

To illustrate the difference in bending behaviour, a digital experiment was set up, as described

by Daelemans [75]. A 20 mm length of fibre (modelled after carbon fibre but with increased

diameter for clearer visualisation) is clamped to a curved rigid surface, called the die, on one

side. Its other end is suspended over the die and is pulled downwards by 12.5 mm, as if to

simulate the bending of the fibre over the die under the influence of gravity; see figure 3.2.

The qualitative results are shown in figure 3.3. It is clear that because trusses do not transmit

bending moments, their bending behaviour is unrealistic: the elements only start displacing

when the element connected to them is displaced in the axial direction. This creates a fibre

which seems to “float in the air”. If the length of the trusses is reduced to zero, a completely

flexible thread would be obtained. Beam elements do transmit bending moments, and as

such, the whole fibre immediately starts displacing when a load perpendicular to the fibre

direction is applied.
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Figure 3.2: The setup for a digital experiment to visualise the difference in bending
behaviour in fibres made of truss elements and those made of beam elements [75].

In this dissertation, both truss and beam elements are used simultaneously. T3D2 trusses are

used, which is ABAQUS’ notation for truss elements in a three-dimensional space with one

node on either side of each element, on the centre line. The trusses have only three degrees of

freedom (translational) at each node. B31 beams are used, which is ABAQUS’ notation for

Timoshenko beam elements in a three-dimensional space that use linear interpolation. The

beams have six degrees of freedom at each node (three translational and three rotational).

The actual implementation of these elements on a fibre is easy within ABAQUS: when a wire

part is created and meshed, the structural elements can be generated in between the mesh

nodes. The mesh in this dissertation was created so that each element was approximately

0.16 mm long.

Considering that consolidation applies compressive forces perpendicular to the fibre direction,

it would seem that modelling the fibre using beam elements would be appropriate. This is,

however, problematic due to the nature of fibre properties, as Green et al., Mahadik et al.

and Thompson et al. discovered [76, 106, 107]. Unlike other materials, fibres have a very

high tensile strength and Young’s modulus coupled with very low but not negligible flexural

rigidity. As flexural rigidity is defined as E · I, where E is the Young’s modulus and I is

the area moment of inertia, it is clear that a high Young’s modulus can only be coupled

with a low flexural rigidity if the area moment of inertia is low. The latter, however, is only

dependent on the geometry of the fibre’s cross-section, which is assumed to be a circle. With

r being the radius of the fibre, its area moment of inertia is calculated as follows:
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Figure 3.3: The bending behaviour of a fibre made of truss elements (left) and beam
elements (right). It is clear that trusses do not provide realistic bending behaviour because

they do not transmit bending moments between nodes. Beam elements bend accurately.
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This means that the area moment of inertia cannot artificially be lowered while keeping a

circular profile and a correct fibre radius, which leads to an overestimation of the flexural

rigidity. To tackle this problem, a novel method is introduced in this dissertation, which has

not yet been reported in literature: the Young’s modulus and flexural rigidity properties are

disconnected from each other. First, truss elements are used to model the fibre geometry

and are given the correct Young’s modulus of the modelled material. Beam elements are

subsequently superimposed on top of these truss elements, between the same nodes, to

determine the flexural rigidity. These beam elements are given a Young’s modulus equal

to the real modulus divided by 100 (inspired by Page et al. [90]), so as not to affect the

stiffness of the total model in any significant way. To compensate, the area moment of

inertia is multiplied by 100 to reach the correct flexural rigidity. This is done by increasing

the radius of the beam elements by 4
√

100 but removing any contact interaction properties

from those elements. In this way, overly large beam elements do not influence the actual

fibre (or yarn or fabric) geometry but do contribute their flexural rigidity and transmission

of bending moments. A test fibre model with truss and beam elements superimposed in this

way was created and subjected to the digital visualisation experiment (as in figure 3.2) and

was found to display the same qualitative bending behaviour as the beam model, as was

expected.

3.2 Yarn model (meso-scale)

To construct an accurate yarn model, the yarn in the real fabric must be examined. It is clear

that the yarn is actually a tow - an untwisted bundle of continuous filaments - as is often the
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case for fibres used in composite applications. To create such a tow, fibres have to be placed

alongside each other, arranged into a certain packing. Real yarns tend to have an imperfect,

open packing, but in yarn models this disorder is replaced by an idealised structure. The

most common idealised packing model is (hexagonal) closed packing. In this model, the

fibres are fit into a hexagonal pattern surrounding a central fibre, which minimises the voids

left between the fibres; see figure 3.4 [132]. After deformation, for example by incorporating

the yarn into a woven fabric model, the idealised packing is removed. Miao et al. found

that the initial packing (whether open or closed) has no significant effect on the deformed

geometry and, as such, the easy to implement hexagonal closed packing model will be used

in this dissertation [99]. In the model assembly in ABAQUS/CAE, yarns can be created in

this way by copying a fibre axisymetrically around a central fibre.

In this hexagonal closed packing, the amount of fibres per yarn can only assume certain

values. If l is the amount of hexagonal layers (not counting the central fibre), the amount of

fibres in a yarn n is found as [133]:

n = 1 + 3 · l · (l + 1)

This means the amount of fibres per yarn can be 1, 7, 19, 37, 61, 91, 127, and so on. Of

course, the amount of fibres in a real yarn is orders of magnitude above these values. This

can be estimated from the material properties listed in table 2.1:

nreal =
yarn number

mass per unit lengthfibre

=
yarn number

Afibre,real · ρ

=
4 · yarn number
π · dfibre,real2 · ρ

⇒ nreal,warp =
4 · 337.88 tex

π · (9µm)2 · 2295.08 kg
m3

= 2314.28
fibres

yarn

⇒ nreal,weft =
4 · 268.75 tex

π · (9µm)2 · 2295.08 kg
m3

= 1840.74
fibres

yarn

Here, Afibre,real is the cross sectional area of the real fibre, ρ is the volumetric density of
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Figure 3.4: The difference between idealised closed packing and more realistic open packing
for the assembly of fibres in a yarn model [75].

E-glass and dfibre,real is the diameter of the real fibre. For FEA, it is not realistic to model

yarns consisting of thousands of fibres, as that would require too much computational power.

In this dissertation, yarns made up of 61, 91 and 127 fibres (nvirtual) are used instead. This

smaller amount of fibres still needs to represent the same cross sectional area as the real

fibres to accurately portray the yarn geometry. If the total area of the real and virtual fibres

is noted as Atotal,real and Atotal,virtual, respectively, then the cross sectional area of the single

virtual fibre (Afibre,virtual) can be expressed as follows:

Atotal,virtual = Atotal,real

⇔ nvirtual · Afibre,virtual = nreal · Afibre,real

⇔ Afibre,virtual =
nreal · π · dfibre,real2

4 · nvirtual

⇒ Afibre,virtual,warp =
2314.28 fibres

yarn
· π · (9µm)2

4 · nvirtual

⇒ Afibre,virtual,warp =
1840.74 fibres

yarn
· π · (9µm)2

4 · nvirtual

The numerical results of this calculation are summarised in table 3.1. These virtual cross

sectional areas are two orders of magnitude larger than the cross sectional area of the

real fibres (6.36 ·10-11 m2), which explains why the model that is being built is a discrete

meso-scale model instead of a true micro-scale model.
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nvirtual [fibres
yarn

] 61 91 127

Afibre,virtual,warp [m2] 2.41 ·10-9 1.62 ·10-9 1.16 ·10-9

Afibre,virtual,weft [m2] 1.92 ·10-9 1.29 ·10-9 9.22 ·10-10

Table 3.1: The cross sectional area each virtual fibre needs to have to accurately represent
real fibres without having as many fibres per yarn. These cross sectional areas define the

size of the truss elements in the yarn model.

The virtual cross sectional areas in table 3.1 define the size of the truss elements in the yarn

model, as it is these elements’ responsibility to portray the geometry of the yarns in the

combined truss-beam model. The beam elements, on the other hand, are designed solely to

contribute flexural rigidity to the virtual yarn. This is done by equating the flexural rigidity

of the virtual yarn ((E · I)yarn,virtual) to that of the real yarn ((E · I)yarn,real):

(E · I)yarn,virtual = (E · I)yarn,real

⇔ nvirtual · (E · I)fibre,virtual = (E · I)yarn,real

⇔ Ifibre,virtual =
(E · I)yarn,real
nvirtual · E

⇔ π · rfibre,virtual4
4

=
(E · I)yarn,real
nvirtual · E

⇔ rfibre,virtual = 4

√
4 · (E · I)yarn,real
π · nvirtual · E

⇒ rfibre,virtual,warp = 4

√
4 · (E · I)yarn,real,warp

π · nvirtual · E

⇒ rfibre,virtual,weft = 4

√
4 · (E · I)yarn,real,weft

π · nvirtual · E

Here, (E · I)fibre,virtual and Ifibre,virtual are the flexural rigidity and area moment of inertia of a

single virtual fibre, respectively. rfibre,virtual is the radius of a single virtual fibre and defines

the size of the beam elements in the combined truss-beam model. Note that the Young’s

modulus in this equation is artificially lowered by a factor 100, as discussed above.

To be able to calculate the required dimensions, the flexural rigidity of the real yarn must

first be known. This is measured experimentally according to BS 3356 (1961), based on the

Peirce cantilever test. In this test, a fabric sample cut to 200 mm in length and 25 mm in

width is placed on top of a flat surface, which is coated to reduce friction with the fabric. The
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sample is then slid forward. This makes the leading edge of the fabric bend downwards under

gravity as it is no longer supported (much like the digital bending test that was performed on

single fibres in figure 3.2). When the fabric is bent enough so that the edge reaches a certain

angle θ below the top surface, the test is stopped and the overhanging length l is measured

using a graduated ruler; see figure 3.5. This overhanging length is multiplied by a scaling

factor f1 to reach a certain bending length c [134]:

c = f1 · l

=
3

√
cos θ

2

8 · tanθ · l

The angle θ is taken as 41.5◦ in the used standard because for this angle, the scaling factor

becomes 0.5093, which is often rounded down to 0.5 for ease of use [135]. With the correct

bending length, the flexural rigidity of a real fabric ((E · I)fabric,real) can finally be calculated:

(E · I)fabric,real = w · c3

Here, w stands for the areal weight of the fabric. For the yarn model in this dissertation,

a slightly altered version of the Peirce cantilever test was performed, using single yarns as

specimens instead of fabric cut-outs. This means that instead of an areal weight, a linear

weight wyarn was used in the formula instead:

(E · I)yarn,real = wyarn · c3

= yarn number · g · c3

⇒ (E · I)yarn,real,warp = yarn numberwarp · g · c3
warp

⇒ (E · I)yarn,real,weft = yarn numberweft · g · c3
weft

An average overhang length of 69.8 mm was found for the glass fibre fabric’s warp yarns

(with a standard deviation of 7.6 mm), and an average of 65.8 mm was found for the weft

yarns (with a standard deviation of 6.2 mm). With these measurements, calculation of the

flexural rigidities and required beam radii is possible. The results are shown in table 3.2.
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Figure 3.5: The setup of a Peirce cantilever test. A fabric sample is laid on top of a flat
surface and gradually slid forward until its free edge bends down to reach a line θ◦ (usually

41.5◦) below the top surface. The overhanging length l is then measured [134].

nvirtual [fibres
yarn

] 61 91 127

(E·I)yarn,real,warp [N·m2] 1.49 ·10-7

rfibre,virtual,warp [m] 4.59 ·10-5 4.15 ·10-5 3.82 ·10-5

(E·I)yarn,real,weft [N·m2] 9.92 ·10-8

rfibre,virtual,weft [m] 4.15 ·10-5 3.75 ·10-5 3.45 ·10-5

Table 3.2: The flexural rigidity of the real yarns in both warp and weft directions, and the
corresponding radii that the virtual beam elements need to have to accurately represent the

real flexural rigidity if their Young’s modulus is artificially reduced by a factor 100.

3.3 Fabric model (macro-scale)

3.3.1 Existing truss fabric model

Now that the combined truss-and-beam fibre model has been integrated into a yarn model,

all that is left is to integrate these yarns into a woven fabric model. An already existing

model built by Daelemans in 2017 was used as a basis for this. That model was constructed

to emulate the same 2/2 twill weave, glass fibre fabric as described in subsection 2.1.1. Three

versions of the model exist, including 61, 91 or 127 fibres per yarn. They have identical fibre

and yarn models as described in this dissertation, except that they use pure truss element

chains as fibres instead of combined truss-and-beam element chains.
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A single unit cell consisting of four warp yarns and four weft yarns was modelled, and to

ensure the unit cell was representative for the entire fabric, periodic boundary conditions

were imposed. First, the nodes at both ends of each yarn were connected by equations so

that they could only displace in the exact same way, creating simple periodicity. This did

not hinder unravelling of the yarns and left free edges, so conditions to simulate neighbouring

yarns along the edges of the unit cell were required. A system of so-called master and slave

yarns was used to this end. Along each edge of the unit cell, a copy of the yarn on the

opposite side of the unit cell (the master yarn) was introduced as a slave yarn; see figure 3.6.

Each node in the slave yarn was then tied to its corresponding node in the master yarn via

pin MPCs, to duplicate the master yarn in all six degrees of freedom, creating “perfect”

periodicity. These slave yarns act as a contact surface for the yarns along the edges of the

unit cell within the layer, but also in adjacent layers if the single layer was copied above

or below itself [107]. It was discovered that simply duplicating the master yarns seemed to

provide stress relief for the edge yarns of the unit cell, as all deformation was force-controlled.

As such, a force applied to an edge yarn caused only half as much deformation as that same

force applied to an inner yarn because the force had to deform both the master and slave

yarn. To combat this, the Young’s modulus of the slave yarns was reduced by a factor 100

so that their deformation became governed purely by that of the master yarns.

After the loose topology of the single unit cell and its slave yarns was modelled, a method

for reaching the as-woven state was required. This was achieved by applying a negative

thermal load to the yarns, similar to Thompson et al., using thermal shrinkage to relax the

woven fabric structure [107]. The applied load was calculated so that the final yarn length

would equal the experimentally measured yarn length; in other words, ensuring the crimp

was equal. It was found that relaxing directly to the crimped state, however, resulted in a

stressed fabric with lower than expected thickness. To solve this, the real weaving process

was more accurately taken into account: during weaving, yarns are subjected to high axial

forces and have low crimp, but when they are cut from the roll they can relax, reducing stress

and increasing crimp. To model this, the loading step was split into two stages. In stage 1,

the weaving is simulated and the thermal shrinkage is equal to an arbitrary 1.25 times the

desired final crimp value. In stage 2, the relaxation is simulated and the thermal shrinkage

is set to reach the desired final crimp value. This two-step loading process resulted in higher

thickness fabrics with lower remaining stress. While replacing an actual weaving simulation,

the thermal shrinkage will be further referred to as the “weaving” process in this dissertation.
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Figure 3.6: Slave yarns inserted along the edges of a fabric unit cell to ensure periodicity.
Each slave yarn is a copy of the master yarn on the opposite side of the unit cell and is tied

to that master yarn via MPCs in each corresponding node [107].

The model was validated based on the comparison of the digital warp yarn width, weft yarn

width and fabric thickness with the corresponding experimental values. The portrayal of the

as-woven state was found to be accurate, which was to be expected as the weaving process is

governed by axial loads which can be transmitted by trusses; see figures 3.7 and 3.8. The lack

of any flexural rigidity (due to the lack of beam elements), however, means that it cannot

simulate compression behaviour correctly.

3.3.2 New truss-and-beam fabric model

To create the fabric model outlined in this dissertation, the linearly elastic material properties

defined in the truss model were first updated. A more accurate experimental density was

measured for the fabric, and estimates of the Young’s modulus and Poisson coefficient were

inserted; see table 2.1. This was done via a custom Python script, which became the

foundation for a modular and reusable ABAQUS input file editor, given in full in appendix

A. The script determines the location of the material properties definitions, then copies

the whole input file but applies whatever changes are requested to the lines containing the

information on the material properties. It works with a GUI to allow for easier user input of

the desired changes.
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Figure 3.7: The basic truss fabric model (61 fibres per yarn) by Daelemans in its
undeformed, loose topology state. The warp yarns (X-direction) are yellow, the weft yarns
(Y-direction) are blue. The green and red slave yarns have an artificially reduced Young’s

modulus.
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Figure 3.8: The basic truss fabric model (61 fibres per yarn) by Daelemans in its deformed,
as-woven state. The warp yarns (X-direction) are yellow, the weft yarns (Y-direction) are

blue. The green and red slave yarns have an artificially reduced Young’s modulus.
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After this update, the main change to the truss model was due: the superposition of beam

elements on top of the truss elements. The ABAQUS input file editor was expanded to

detect where elements are created and where sections are defined for those elements. This

is because ABAQUS works in two stages to create a structural element: first, the element

is created between certain nodes and is assigned an element type (e.g. truss, beam). Only

after that are its properties defined in a section (solid section for trusses, beam section for

beams). In the input file editor, the first stage is realised by creating an extra element for

each time it detects a fibre being discretised into truss elements. It creates this extra element

as a B31 beam element between the same nodes of the “truss fibre” node set, but as part of a

separate “beam fibre” element set instead of the corresponding “truss fibre” element set. To

then apply properties to these beam elements (stage 2), beam sections are defined below the

already present solid (truss) sections. They are characterised as circular sections with the

radius calculated in table 3.2, depending on the amount of virtual fibres per yarn. For ease

of programming, they are assigned the same material as the slave yarns, as it was established

that they need the same properties as the actual unit cell yarns, but with a Young’s modulus

lowered by two orders of magnitude, exactly like the slave yarns. Again, the Python script

functions by copying all identical lines into a new input file but modifying non-identical lines

where necessary. A version of the completed model is shown in figure 3.9.

In this superposition process, beam elements were not superimposed on top of the slave yarns,

as these don’t require a flexural rigidity: their deformation should follow the deformation of

their master yarns without influencing that deformation, which was the original reason for

their reduction in Young’s modulus. Their sole purpose is to provide contact interactions for

periodicity. On that note, no new contact interactions were defined for the beam elements:

these serve only to provide a flexural rigidity and are not accurate representations of the real

fibre dimensions - their radius is larger than the actual virtual fibre radius should be. To

show that the beams exist but have no contact interaction with the trusses, a test model

was created with hugely oversized beams. As can be seen in figure 3.10, the oversized beams

result in a less tightly-woven fabric structure, meaning they apply a very large resistance to

bending (flexural rigidity). At the same time, they also clip into each other as desired. The

truss elements do represent the actual fibre dimensions and do not clip into each other.

Note that the truss elements as defined by Daelemans were left unchanged in the superposition

of the beam elements, though their sections should have been updated with the cross sectional

areas presented in table 3.1.
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Figure 3.9: The combined truss-and-beam fabric model (127 fibres per yarn) in its
undeformed state (top) and its as-woven state (bottom). The truss elements, representing

the real fabric geometry, are yellow in the warp direction (X-direction) and blue in the weft
direction (Y-direction) (right). The beam elements, only contributing their flexural rigidity,

are made from the same material as the slave yarns with an artificially reduced Young’s
modulus and are coloured green in the warp direction (X-direction) and red in the weft

direction (Y-direction) (left).
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Figure 3.10: The combined truss-and-beam fabric model (61 fibres per yarn) with oversized
beam elements in its undeformed state (top) and its as-woven state (bottom). The truss
elements are coloured yellow and blue (right) while the beam elements are coloured green
and red (left). It is clear that the beams contribute to the flexural rigidity of the fabric
because the as-woven state is much looser but at the same time do not constrict node

movement through contact interactions.
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Chapter 4

Fabric model validation

To validate the created truss-and-beam fabric model, the final yarn widths of its deformed,

as-woven state were compared to yarn widths found in the real, woven glass fibre fabric.

The distances in the digital model were measured as described in subsubsection 2.2.1.2. The

distances in the real fabric were first visualised by taking µCT-scans of the fabrics, and then

measuring distances on the µCT images as described in subsubsection 2.2.2.2. These scans

came from the two experimental compression tests, before any consolidation pressure was

applied.

4.1 µCT image quality

Originally, only compression test 1 was planned in this dissertation. When the µCT-scans

of that test were received, however, the image quality was much lower than expected due

to three factors: resolution, noise and contrast. The resolution was low because a voxel size

of 15.525 µm was obtained whereas previous scans at the UGCT had achieved voxel sizes

between 9 and 10 µm. One goal of the scans was to image individual fibres in every voxel,

but as the voxel size was larger than the fibre diameter, this was impossible. Additionally,

there was a lot of noise on the image, which made it very difficult to determine the correct

boundaries between warp and weft yarns, and even between the yarns and the surrounding

air. This was not helped by the fact that the contrast on the image was not very strong;

see figure 4.1. To make use of the data but take the inaccuracy into account, an extra error

margin of 4 voxels (62.1 µm) was added to the standard deviation of any measurements

performed on experiment 1’s µCT image data.
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In an attempt to improve the image quality, many parameters were investigated. It was

argued that the most influential contributors to the image quality reduction were the PEEK

jaws around the Deben cell, the sample size and the materials used within the sample itself.

The PEEK jaws will always absorb some X-rays during scanning and thus interfere with

proper imaging. Garcea et al. proved that sample size is a limiting factor in the maximum

resolution of a µCT image, though mechanical behaviour is also affected by sample size, so

simply reducing sample size may cause the sample to no longer be representative for the real

fabric [127]. Finally, it is known that contrast in X-ray images is formed by the materials

in the sample having different X-ray absorption coefficients, which are correlated to material

density and atomic number [127, 128].

Using this knowledge, a second experiment was designed. To replace the PEEK jaw material,

less absorbing materials such as polyethylene or polypropylene foams were suggested, but in

the end it was decided to remove the Deben cell altogether and opt for pre-loaded samples

over continuous loading during scanning. To reduce the “sample size”, the scanning area

of the µCT-scanner was reduced without making physically smaller samples. This kept the

samples large enough to be representative for the entire fabric, as long as at least one central

unit cell was accurately scanned. Concerning the used materials, thought was given to using

hybrid fabrics, where the warp yarns and weft yarns are made of different materials. A carbon

fibre/glass fibre fabric, for example, would increase contrast between warp and weft yarns

because carbon has a lower density than E-glass (approximately 1800 kg
m3 ). Even more extreme

cases would concern hybrid fabrics with high molecular weight polypropylene (HMWPP)

(density of approximately 840 kg
m3 ) or UHMWPE (density of approximately 970 kg

m3 ). This

idea of using hybrid fabrics was eventually abandoned as that fabric would no longer represent

the fabric that the truss-and-beam model was modelled after. This all led to the development

of compression experiment 2, as described in subsubsection 2.2.3.2.

When the µCT images for compression experiment 2 were received, the image quality

appeared to not be much better after all; see figure 4.1. The contrast with the surrounding

matrix and the resolution (voxel size of 10 µm) were better, but there was still a lot of

noise and the warp and weft yarns were possibly even more indistinguishable. The exact

reason for this has not yet been found, but it is assumed that X-ray absorption by the resin

used to keep the fabric in place plays a small role, as does the noise filtering applied to the

image reconstruction. To use the data from these images, an arbitrary extra error of 3 voxels

(30 µm) was added to the standard deviation of any measurements.
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4.2 Influence of the model parameters

With the measuring of yarn widths from numerical models and their comparison to available

experimental (if somewhat inaccurate) data, several parameters of the truss-and-beam model

were investigated: the coefficient of friction, the time step, the weaving process and the

number of fibres per digital yarn. To easily change the first two parameters in between

simulations, the ABAQUS input file editor, as given in appendix A, was expanded.

The first parameter examined in the search for the most accurate fabric model was the

coefficient of friction, which is a measure for the interfibre friction. The higher this coefficient

gets, the more interfibre slippage is hindered, making the fanning out of fibres more difficult

and thus leading to more compact yarns. This friction coefficient was numerically calculated

by Daelemans to be 0.18 but was implemented in their truss model as 0.15 in the models

with 61 or 91 fibres per yarn, and as 0.20 in the model with 127 fibres per yarn. In all cases,

the yarn widths measured in the truss-and-beam model at a friction coefficient of 0.15 or 0.20

were lower than those measured experimentally, so simulations of the weaving process were

run with reduced coefficients of friction (0.15, 0.10, 0.05 and 0.00). The results are shown for

the 61, 91 and 127 fibres per yarn models in figures 4.2, 4.3 and 4.4, respectively. In all cases,

the yarn width increased with decreasing coefficient of friction, and with the exception of

the weft direction for the 91 fibres per yarn model, all cases also showed that the yarn width

becomes more variable (larger standard deviation). This all supports the explanation of the

coefficient of friction: as it is reduced, fibres fan out more easily and yarn cross sections get

larger but also more irregular.

These results also serve as insight into the effect of the amount of fibres per yarn. If the

warp yarns across figures 4.2, 4.3 and 4.4 are compared, it is noticeable that the simulated

yarn width increases with increasing amounts of fibres per yarn, even though each yarn has

the same total cross sectional area contained in its constituent fibres. Additionally, the yarn

width variability increases, especially in the case of the model with 127 fibres per yarn. This

is even more apparent when comparing the weft yarns. The reason for this behaviour is

similar to that of the friction coefficient: fibres with smaller diameters (more fibres per yarn)

can migrate out of the yarn more easily and cause a general fanning out of the yarn. Even the

maximum modelled amount, 127 fibres per yarn, is nowhere near the real amount of fibres

per yarn (2314.28 in the warp direction and 1840.74 in the weft direction, as calculated in

section 3.2), meaning digital fibres will always lead to an underestimation of yarn widths.
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Figure 4.2: The influence of the coefficient of friction on warp (top) and weft (bottom) yarn
width in the truss-and-beam model with 61 fibres per yarn. The time step for weaving is

set at 0.040 s and the two-stage weaving process is used. Note that the X-axes do not start
at 0 mm. The bars shown encompass the average yarn width and one standard deviation

along either side.
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Figure 4.3: The influence of the coefficient of friction on warp (top) and weft (bottom) yarn
width in the truss-and-beam model with 91 fibres per yarn. The time step for weaving is

set at 0.040 s and the two-stage weaving process is used. Note that the X-axes do not start
at 0 mm. The bars shown encompass the average yarn width and one standard deviation

along either side.
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Figure 4.4: The influence of the coefficient of friction on warp (top) and weft (bottom) yarn
width in the truss-and-beam model with 127 fibres per yarn. The time step for weaving is
set at 0.040 s and and the two-stage weaving process is used. Note that the X-axes do not

start at 0 mm. The bars shown encompass the average yarn width and one standard
deviation along either side.
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Another crucial parameter is the time step. This is the amount of time ABAQUS is given to

perform the desired loading or deformation - in this case the weaving process. Note that it

is not the computation time taken by the program (the time the user has to wait for results

after submitting a job) but rather the time used in internal calculations. For example, if a

part is modelled to move constantly at 1 m
s

and the time step is 5 s, the part will displace 5 m,

even if ABAQUS takes 3 hours to compute this displacement. Results of simulations given

different time steps are displayed in figures 4.5 and 4.6. It seems that increasing the time

step leads to more variable yarn widths, without clearly increasing or decreasing the size of

the yarn cross sections. This may be a product of dynamic inertia effects during simulation.

As the ABAQUS/Explicit solver is used, inertia effects play a role in the deformation

calculations, meaning node mass and displacement time are taken into account. This signifies

that the distinction between dynamic and quasi-static simulations becomes important. If a

simulation is dynamic, the exact time step is very influential, as a small change in time step

can have a large effect on the calculations: increasing the time step greatly lowers the impact

of dynamic effects on the calculations, while decreasing it does the opposite. If a simulation

is quasi-static, the time step is less influential and the calculations are more “robust”. While

it is difficult to determine whether a simulation is dynamic or quasi-static without running

it multiple times at different time steps, a general idea can be formed by looking at the

simulation’s energy balance. Internal energy is the energy that is present as stresses inside

the material, while kinetic energy is the energy spent to displace nodes at a certain velocity.

A general rule of thumb dictates that if the internal energy is much larger (often a factor

5) than the kinetic energy, the simulation is considered quasi-static. If the kinetic energy is

much higher than the internal energy, the simulation is considered highly dynamic. Figure 4.7

shows the energy balance for the truss-only model with 61 fibres per yarn, a time step of

0.04 s, a coefficient of friction of 0.15 and a two-stage weaving process, and compares that to

the energy balance of the truss-and-beam model with the same parameters. No major changes

are observed, except that both internal and kinetic energies are higher in the truss-and-beam

model. Near the end of the simulation, the kinetic energy also surpasses the internal energy,

becoming slightly less stable.

A much more pronounced effect is seen when comparing models that differ in the final

investigated parameter - the weaving process. As discussed in subsection 3.3.1, the weaving

process is split into two stages. In stage 1 the weaving itself is simulated and high shrinkage

is applied, reaching a fabric crimp value below the measured experimental value. In stage 2,
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Figure 4.5: The influence of the time step on warp (top) and weft (bottom) yarn width in
the truss-and-beam model with 61 fibres per yarn. The coefficient of friction is set at 0.00

and the two-stage weaving process is used. Note that the X-axes do not start at 0 mm. The
bars shown encompass the average yarn width and one standard deviation along either side.
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Figure 4.6: The influence of the time step on warp (top) and weft (bottom) yarn width in
the truss-and-beam model with 127 fibres per yarn. The coefficient of friction is set at 0.10
and the two-stage weaving process is used. Note that the X-axes do not start at 0 mm. The
bars shown encompass the average yarn width and one standard deviation along either side.

63



Figure 4.7: Energy balance for the weaving process of the truss-only model with 61 fibres
per yarn, a time step of 0.04 s, a coefficient of friction of 0.15 and a two-stage weaving
process (top), and the truss-and-beam model with the same parameters (bottom). The

truss model is clearly quasi-static, as the internal energy is always higher than the kinetic
energy. The truss-and-beam model remains mostly quasi-static, but becomes less stable

towards the end of the simulation.
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relaxation after weaving is simulated until the correct crimp value is reached. To investigate

the effect of this two-stage process on the yarn width, simulations were run with a one-stage

loading step, deforming immediately from the loose topology to the final as-woven state

with the correct crimp value. In figure 4.8, an energy balance is given for two simulations

at a high time step, that differ only in the number of stages of the weaving process. It is

clear that, contrary to the quasi-static one-stage process, the more realistic two-stage process

encompasses high kinetic energy and thus becomes a very dynamic simulation, requiring

care to be taken with computation time optimisation, as any mass scaling and time step

variation will have a significant impact on the obtained results. The yarn width results of

similar simulations are displayed in figure 4.9. A general shift towards smaller yarn widths

is found when two-step weaving is disabled, but the variability does not clearly increase or

decrease. This shift corresponds to the behaviour observed by Daelemans in the truss model:

disallowing relaxation leads to more stressed yarns, keeping fibres more stretched within their

yarns and hindering migration.

In the end, a single fabric model had to be chosen to perform the consolidation simulation

on. To emulate reality as closely as possible, the model with 127 fibres per yarn was

chosen, and two-stage weaving was allowed (despite the dynamic simulation conditions).

This provided as many fibres per yarn as possible and the most realistic weaving process,

while keeping computation time reasonable. Considering the presented data on the influence

of the model parameters, a coefficient of friction of 0.10 was chosen. For the time step,

significant because of the dynamic nature of the simulation, three candidates were examined:

0.040 s, 0.060 s and 0.080 s. For each model, warp and weft yarn heights were measured

and compared to experimental measurements from experiment 2; the image quality of the

µCT-scans of experiment 1 was too low to accurately measure yarn heights. This served as a

comparison between the three final models, but also as a validation of the models in a second

measurement. The results are shown in figure 4.10. While the simulated yarn heights all

seem low compared to the experimental results, the scale on the X-axis is much smaller than

on previous graphs concerning the yarn widths. Coupled with the fact that the number of

fibres per yarn is much lower than in reality and fanning out is thus hindered, the achieved

yarn heights are correct within the required order of magnitude. Of the three examined

models, the model with a time step of 0.060 s was chosen. Note that subjecting each yarn

to the applied thermal shrinkage for 0.060 s can be compared to the frequency which real
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Figure 4.8: Energy balance for the weaving process of the truss-and-beam model with 127
fibres per yarn, a time step of 0.1 s, a coefficient of friction of 0.10 and a one-stage weaving

process (top), and the same model with a two-stage weaving process (bottom). The
one-stage weaving simulation is clearly quasi-static, as the internal energy is always higher
than the kinetic energy. The two-stage weaving simulation behaves oppositely, becoming

highly dynamic and more unstable at high time steps.
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Figure 4.9: The influence of the one- or two-stage weaving process on warp (top) and weft
(bottom) yarn width in the truss-and-beam model with 127 fibres per yarn. The coefficient

of friction is set at 0.10. Note that the X-axes do not start at 0 mm. The bars shown
encompass the average yarn width and one standard deviation along either side.
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Figure 4.10: Validation of the truss-and-beam model with 127 fibres per yarn, a coefficient
of friction of 0.10 and a two-stage loading process (relaxation allowed) via comparison of its
warp (top) and weft (bottom) yarn heights with experimental data. Note that the X-axes

do not start at 0 mm. The bars shown encompass the average yarn width and one standard
deviation along either side.
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weaving processes use:

weaving frequency =
1

0.060 s
yarn

= 16.67
yarns

s

= 1000
yarns

min

This corresponds very well to the weaving frequency of projectile, rapier and air-jet looms,

all three of which are commonly used to weave glass fibre fabrics [136].

The chosen final model is shown during its weaving process in figures 4.11 and 4.12. This

clearly visualises that the yarns are flattened and the cross-sections are deformed as thermal

shrinkage is applied. In the relaxation stage of the process, the yarns spring back and

some gaps are created in between the yarns, as the fabric increases in thickness. In

figures 4.13 and 4.14, the cross sections of the digital warp and weft yarns are compared

to the experimental µCT images of the real glass fibre fabric, respectively.
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Figure 4.11: An XY-view of the final truss-and-beam model with 127 fibres per yarn and a
coefficient of friction of 0.10, deformed from its loose topology state (top left) to its

as-woven state (bottom right) in a time step of 0.06 s via a two-stage weaving process.
Only the truss elements are shown, as they represent the fabric geometry. These are yellow
in the warp direction (X-direction) and blue in the weft direction (Y-direction). Note the

relaxation occurring between the last two images.
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Figure 4.12: An XZ-view of the final truss-and-beam model with 127 fibres per yarn and a
coefficient of friction of 0.10, deformed from its loose topology state (top left) to its

as-woven state (bottom right) in a time step of 0.06 s via a two-stage weaving process.
Only the truss elements are shown, as they represent the fabric geometry. These are yellow
in the warp direction (X-direction) and blue in the weft direction (Y-direction). Note the

relaxation occurring in the last two images.
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Figure 4.13: A YZ-view of the final as-woven truss-and-beam model with 127 fibres per
yarn and a coefficient of friction of 0.10, deformed in a time step of 0.06 s via a two-stage

weaving process. The cross sections of the warp yarns (yellow) are shown and compared to
cross sections of warp yarns imaged via µCT-scanning in experiment 1 (middle) and

experiment 2 (bottom).

Figure 4.14: An XZ-view of the final as-woven truss-and-beam model with 127 fibres per
yarn and a coefficient of friction of 0.10, deformed in a time step of 0.06 s via a two-stage
weaving process. The cross sections of the weft yarns (blue) are shown and compared to

cross sections of weft yarns imaged via µCT-scanning in experiment 1 (middle) and
experiment 2 (bottom).
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Chapter 5

Fabric consolidation

5.1 Experimental compression

In this dissertation, two compression experiments were carried out, as described in

subsection 2.2.3. The first experiment, using continuous loading applied by the Deben cell,

was always planned but turned out to result in low quality µCT images (see section 4.1).

To achieve better results, a second experiment was designed, using static loading, but after

viewing the µCT images, the quality was not judged to be much better. The time investment

that would be necessary to measure and process all distances in these µCT images was not

deemed worthwile for the minimal improvement in accuracy it could bring. As such, only

the results from compression experiment 1 will be discussed in this section.

5.1.1 Machine and image data

As described in subsubsection 2.2.3.1, the Deben cell was able to apply pressure to the fabric

samples continuously, but the µCT-scanning was discontinuous. To combine these two, the

samples were subjected to compaction until a certain pressure was reached, at which the

Deben cell maintained its position and the tomograph took a µCT-scan. After scanning was

done, the compaction process was resumed, until a next threshold was reached, at which the

Deben cell would again pause, and so on. The Deben cell was never actually turned off, and

so measured the force it exerted and its own displacement continuously. At the same time,

µCT-scans are available at discrete pressures, from which displacements can be measured

as descibed in subsubsection 2.2.2.2, providing two different sources for the same data - so

called machine and image data, respectively.
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Logic dictates that the machine and image data must be the same, considering they measure

the exact same parameters in one experiment. To compare them, the machine data was

discretised to the pressures (or forces) the µCT-scans were taken at. For example, if a scan

was taken at a force of 30 N, all measurements by the Deben cell around the measurement

of 30 N (with an arbitrary limit, e.g. 29.6 N to 30.4 N) were averaged out. In each case, at

least 5000 measurement points were combined, leading to very low standard deviations on

the machine data. Note that the aimed at forces were never precisely reached. The 30 N

threshold, for example, was actually a scan around 27.06 N.

The data provided by the Deben cell consisted of the force it exerted on the sample, and

the distance between its PEEK clamps. The latter was calibrated by first compressing the

Deben cell at 900 N without inserting a fabric sample - a force higher than those applied

in the experiment - and setting that clamp distance at 0 m. From the applied force F, the

applied pressure P was calculated:

P =
F

Asample

⇒ P1 layer =
F

Asample,1 layer

⇒ P4 layers =
F

Asample,4 layers

Here, Asample is the average fabric area of each sample, as calulated in subsubsection 2.2.3.1.

From the clamp distance, Vf was calculated:

Vf =
Vfibres
Vclamps

=
Asample · ρAρV
Asample · h

=
ρA

ρV · h
=

ρA
ρV · h

· 100%

Here, Vfibres is the absolute volume of the fibres and Vclamps is the absolute volume of the

three dimensional space between the clamps, which is a function of the “height”, or distance

between the clamps, h. ρA and ρV are the areal and volumetric densities of the samples,

respectively. This is a simple formula as both densities are constant within each sample, and

so the Vf depends only on the distance between the clamps.
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The µCT images allowed for measurement of this distance h directly on the images, and so

equal pressure-Vf curves should have been obtained for the machine and image data. This

was, however, not the case. As the machine data depends on internal measurements within

the Deben cell and is thus less reliable than the image data, corrections were sought for the

machine data. Eventually, two corrections were applied: PEEK jaw compliance was taken

into account, and the zero-point was shifted slightly.

The first correction was the most significant: little attention had been paid to the fact that

the PEEK jaws of the Deben cell were themselves elastically compressible, and so distorted

the displacement measurements. To remedy this, five calibration measurements were made,

activating the Deben cell without an inserted sample. This returned the calibration curves

displayed in figure 5.1. The curves were converted into stress-strain curves by:

σjaws =
F

Ajaws

=
F

π · rjaws2

=
F

π · 44 mm2

εjaws =
∆L

L0

=
∆L

59.5 mm+ 19.5 mm

Here, σjaws and εjaws are the stress and strain of the PEEK jaws. F is the applied force by

the Deben cell and Ajaws is the cross sectional area of the jaws, calculated using their radius

rjaws. ∆L is the compressed height of the jaws and L0 is their original, uncompressed height.

Remarkably, the calibration curves seem to be split into two linear regions. The gradients of

these linear trendlines reveal the compliance of the jaws: if a force below 64.71 N is applied,

the jaws compress by 6 · 10-4 mm per N, but upwards of that value, the compliance is

9 · 10-5 mm per N. The slopes in the converted stress-strain curves show that this corresponds

to linear elastic behaviour for materials with a Young’s modulus of approximately 98 and

576 MPa. The fact that these curves have two linear regions instead of one, and that the

Young’s modulus is much lower than the average Young’s modulus of PEEK (approximately

3.6 GPa) has not yet been explained, but it is thought to be the result of the jaws not touching

each other in a completely parallel way during compression. In any case, the compliance from

these calibration tests was applied to the machine data generated by the Deben cell.
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Figure 5.1: Calibration curves to evaluate the compliance of the PEEK jaws used to apply
pressure in experiment 1. The compliance is equal to the slope of the linear elastic regions

in the displacement-force curve (top). These regions can be described with a Young’s
modulus, found similarly as the slope in the stress-strain curve (bottom). Linear elastic

behaviour was expected, but two regions with differing Young’s moduli were not.
Additionally, the moduli are much lower than the reported value for PEEK.
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As the machine data still did not correspond to the image data after this correction, a minor

secondary correction was applied: the zero point was artificially shifted so that the distance

between the jaws, h (and thus also Vf), for the uncompressed fabric samples, was equal in both

machine and image data. Applying both corrections yielded the graphs in figure 5.2. From

this, it is clear that there is still a difference between the machine and image data, though

it is quite minor. Plots of the machine data versus the image data are shown in figure 5.3,

and reveal that the machine data for the four layer fabric is actually more accurate than the

machine data for the single layer fabric. For both samples, the µCT image data is considered

more correct than the machine data, so only image data will be used in further discussion.

5.1.2 Experimental compression results

Combining the previous pressure-Vf curves yields figure 5.4. The first observation that should

be made is that the shape of these curves agrees well with the linear-exponential-linear

consolidation behaviour of fabrics outlined in subsection 1.2.2. Stage 1 consolidation appears

to occur up to 45-50% Vf, as a large increase in Vf is found for a very minimal increase in

pressure. It is at this stage that the Deben cell jaws come into contact with the fabric and

crimp balance takes place by flattening of the yarns. This continues on for longer in the four

layer fabric sample, as there are more gaps (δ) to remove in the thickness direction. Stage

2 consolidation then occurs for most of the rest of the measurement, up to approximately

60% Vf for the single layer fabric sample and 70% for the four layer fabric sample. Here,

voids are removed between the yarns and individual fibres within the yarns but the fibres

start coming into contact with each other, providing exponentially increasing resistance to

displacement and thus compaction, due to interfibre friction. Stage 3 consolidation takes

place at the end of the experiment, when the removal of voids and the slipping of the fibres

have reached their limits. Further compaction is now only possible by deformation of the

fibres themselves, which is almost impossible, explaining the very high increase in pressure

for minimal increases in Vf.

At equal pressures, the four layer fabric seems to exhibit higher Vf than the single layer fabric.

One of the main reasons for this could be nesting, the concept described in subsection 1.2.2.

As yarns fill the spaces between yarns in the layers above and below their own layer, voids

are efficiently removed and the fabric thickness is reduced significantly more at the same

compression than if the yarns remained neatly stacked on top of each other. This hypothesis is

strengthened by the fact that larger hysteresis takes place upon decompression. For the single
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Figure 5.2: Plots of the pressure versus the Vf for the single layer fabric sample (top) and
the four layer fabric sample (bottom), after corrections were applied to the machine data.
The machine data still differs from the image data, though they should be the same. The
shape of the curves is in good agreement with the linear-exponential-linear consolidation

curve observed in literature.
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Figure 5.3: Plots of the clamp distance as gathered from the image data versus the machine
data, for the single layer fabric sample (top) and the four layer fabric sample (bottom).

While clearly correlated, both values are not identical: the slopes of the trendlines should
be 1.
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Figure 5.4: Plot of the pressure versus the Vf for the µCT image data of the single layer
and the four layer fabric samples. The shape of the curves is in good agreement with the
linear-exponential-linear consolidation curve observed in literature. The four layer fabric
sample seems to have a higher Vf at equal stress, indicating a larger thickness reduction
took place, which can be ascribed to more crimp balance, a higher void content before

compression, and nesting.
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layer of fabric, the average Vf before compression was 33.72%, while after decompression this

was 38.15%, indicating that the deformation caused by compaction was not fully elastic.

This makes sense considering it is not energetically beneficial for many of the removed voids

to reintroduce themselves, for example. For the four layer fabric sample. the difference was

much higher: a Vf of 25.56% was noted before compression, but a Vf of 44.30% remained

after decompression. As nesting is an inelastic displacement, this likely occurred, on top of

void removal and intrayarn fibre displacement.

These same observations can be made by inspecting the µCT images visually, as in figures 5.5

and 5.6. At low applied forces, the yarns are moved into contact with the clamps of the Deben

cell and each other. This is achieved by flattening the yarns and thus balancing out any crimp

inequalities, which can also be seen by the apparent rotation of the yarn cross sections. At

intermediate applied forces, the yarns are stuck in place and voids between them are removed

by interyarn fibre displacement, deforming the yarn cross sections. Due to the low image

quality, this cross section deformation is difficult to notice, but it is clear that the yarns

no longer shift and the voids are removed. At very high applied forces, almost no further

deformation takes place, corresponding to the third stage of consolidation.

In an attempt to quantify the difficult to detect yarn cross section deformation, average yarn

widths were measured on the µCT images. The results for the single layer fabric are shown

in figure 5.7. It is clear that the error margins are large; this is due to the noise on the image

preventing accurate selection of voxels on the extrema of the yarn. As such, no statistically

significant results can be extrapolated. This means the expected increase in yarn width with

increasing pressure cannot be confirmed experimentally until better quality µCT images are

obtained. Curiously, the chart seems to indicate that the warp yarns actually decrease in

width between the uncompressed state and the loaded state. Note that the measurement at

10 N should be ignored, as this anomaly is caused by the sample being shifted with respect

to the µCT-scanner (see figure 5.5). Due to the missing results and the multilayer fabric

image displaying even more noise, especially at high pressures (see figure 5.6), no attempt

was made to measure yarn widths on the four layer fabric sample.
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Figure 5.6: µCT images of the four layer fabric sample during compression. The XZ section
shows the cross section of the weft yarns (top), while the YZ section shows the cross section

of the warp yarns (bottom). Yarn flattening, void removal and minor yarn cross section
deformation can be observed. From the decompressed image, it is clear that nesting has

taken place.
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Figure 5.7: Experimental weft (top) and warp (bottom) yarn width measurements of the
single layer fabric sample under increasing compression. The error margins are large due to
the low µCT image quality, so no statistically significant results can be obtained. Note that
the X-axes do not start at 0 mm. The bars shown encompass the average yarn width and
one standard deviation along either side. The anomalous measurement at 10 N should be

discounted.
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5.2 Numerical compression

5.2.1 Compression simulation

Consolidation behaviour was investigated numerically by subjecting the final truss-and-beam

model chosen in section 4.2 (127 fibres per yarn, a coefficient of friction of 0.10, a time step of

0.06 s and a two-stage weaving process) to a compression simulation. To do this, the output

of the woven model was used as the input for a new simulation, and two rigid plates were

added to either side of the fabric. The output nodes of the woven model - including those of

the slave yarns - were read using an adapted Python script, originally by Daelemans. The

script of this output node reader is given in Appendix A. These nodes were then copied and

pasted into a new ABAQUS input file. The rigid plates were created as two separate, new

parts in ABAQUS/CAE, with a surface area larger than the fabric area. The plates were set

to be undeformable but displaceable, and were brought to either side of the fabric (in the

Z-direction) by translation in the ABAQUS/CAE assembly. Care was taken to ensure the

plates were not touching any of the fibres. Contact interactions were also defined between the

plates and the truss elements. The beam elements were still not given any contact properties

as they do not represent the fabric geometry; they are just a tool for bestowing flexural

rigidity. Two loading steps were then defined. The first step entailed a displacement of the

plates towards each other, compressing the fabric in between them. The second step was a

mirror of this, simulating decompression by separating the plates over the same distance. The

distance moved by each plate in each step was 0.18 mm, meaning the fabric was compressed

by 0.36 mm in total. The time allocated to each step was 0.1 s. YZ- and XZ-views of the

compression/decompression simulation are shown in figures 5.8, 5.9, 5.10 and 5.11.

In these figures, the warp and weft yarns seem to migrate away from the centre of the fabric

at higher pressures during compression, or all throughout decompression, destroying the

woven structure. This is likely the result of an error in the contact interactions or boundary

conditions linked to a larger time step. Peculiarly, the simulation is not dynamic as this

would imply, but quasi-static - as judged by the energy balance in figure 5.12. The internal

energy during the simulation is always much higher than the kinetic energy, for both the

compression and the decompression loading steps. An explanation for this phenomenon or a

method to prevent the migration is yet to be found.
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Figure 5.8: A YZ-view of the compression simulation of the truss-and-beam model. The
as-woven fabric (top) is deformed by the nearing of two rigid plates, until it reaches its final

compressed state (bottom). The plates are displaced by 0.18 mm each, in a time step of
0.1 s. Only the truss elements are shown, as they represent the fabric geometry. These are
yellow in the warp direction (X-direction) and blue in the weft direction (Y-direction). Note

that the warp and weft yarns seem to migrate away from each other in the Y-direction.
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Figure 5.9: An XZ-view of the compression simulation of the truss-and-beam model. The
as-woven fabric (top) is deformed by the nearing of two rigid plates, until it reaches its final

compressed state (bottom). The plates are displaced by 0.18 mm each, in a time step of
0.1 s. Only the truss elements are shown, as they represent the fabric geometry. These are

yellow in the warp direction (X-direction) and blue in the weft direction (Y-direction).
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Figure 5.10: A YZ-view of the decompression simulation of the truss-and-beam model. The
fully compressed fabric (top) is allowed to relax by the separating of two rigid plates, until
it reaches its final relaxed state (bottom). The plates are displaced by 0.18 mm each, in a

time step of 0.1 s. Only the truss elements are shown, as they represent the fabric
geometry. These are yellow in the warp direction (X-direction) and blue in the weft

direction (Y-direction). Note that the warp and weft yarns seem to migrate away from each
other in the Y-direction.
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Figure 5.11: An XZ-view of the decompression simulation of the truss-and-beam model.
The fully compressed fabric (top) is allowed to relax by the separating of two rigid plates,
until it reaches its final relaxed state (bottom). The plates are displaced by 0.18 mm each,

in a time step of 0.1 s. Only the truss elements are shown, as they represent the fabric
geometry. These are yellow in the warp direction (X-direction) and blue in the weft

direction (Y-direction). Note that the warp and weft yarns seem to migrate away from each
other in the X-direction.
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Figure 5.12: Energy balance for the compression/decompression simulation of the
truss-and-beam model in a total time step of 0.2 s. Both loading steps in the simulation are

clearly quasi-static, as the internal energy is always higher than the kinetic energy.

5.2.2 Numerical compression results

Visually, figures 5.8 and 5.9 display the same consolidation behaviour that has been observed

thus far, if the erroneous yarn migration is ignored. The plates first make contact with the

fabric at the peaks of its yarns. Immediately the yarn cross-sections are deformed, flattening

the peaks, as the fibres touched by the plate start displacing. At the same time, any large

voids cause by crimp inequalities are removed. As pressure increases, yarn cross section

deformation becomes very pronounced - much more so than was visible in the experimental

results. The yarn cross sections are flattened and fibres fan out to fill the interyarn voids.

Further compression continues to result in further yarn cross section deformation through

fibre displacement, but the extent of new deformation is gradually decreased as fibres block

each other. Figures 5.10 and 5.11 show that yarn heights increase and yarn widths decrease as

pressure is lifted, by virtue of the fibres finding locations where they are no longer compressed

into neighbouring fibres. The fully relaxed fabric is shown to remain much more deformed

and “disorganised” than the original uncompressed, woven fabric, with fibres almost spread

in between yarns. This signifies that much of the fibre displacement is inelastic.

90



To gain numerical data on the consolidation behaviour, two history outputs were queried

in ABAQUS during the simulation: the displacement of the rigid plates, and the reaction

forces on those plates. By Newton’s third law of motion, the reaction forces Freaction on both

plates were equal and represented the force applied by the plates onto the fabric during the

simulation. This allowed for easy calculation of the applied pressure P via:

P =
Freaction
Afabric

=
Freaction

bwarp · bweft

Here, Afabric is the area of the fabric that was being compressed, and bwarp and bweft are the

average widths of the entire fabric in warp and weft direction, respectively. These widths

were measured in ABAQUS according to the method described in subsubsection 2.2.1.2, at

several points during the deformation. Due to the constraint equations applied to the end

nodes of each fibre, the fabric had the same size throughout the whole simulation. The width

of the fabric in the warp direction was found to be 7.06 mm, and in the weft direction this

was found to be 6.40 mm, leading to a fabric area of approximately 45.18 mm2. The queried

plate displacement was used to calculate the Vf with an analogous formula as employed in

experiment 1:

Vf =
ρA

ρV · h
· 100%

Here, h represents the distance between the plates, which was kept track of by measuring

the original distance between the plates before compression, and subtracting the combined

displacement of both plates from that value.

These calculations led to a pressure-Vf graph, as given in figure 5.13. Immediately, it is

clear that the shape of the curve is in good agreement with the experimental data and

the linear-exponential-linear curve described in literature. This is an improvement over the

consolidation behaviour displayed by the truss-only model by Daelemans. However, the curve

is also shifted towards higher Vf, though the attained pressures are within the correct order

of magnitude. The curve shift is so substantial that Vf over 100% are obtained, which is

physically impossible - the volume of fibres between the plates cannot be higher than the

total volume between the plates. A small contributor to this is likely to be the incorrect

dimensions given to the truss elements: the cross sectional area of these elements were left
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as defined by Daelemans instead of being updated to the values given in table 3.1. As these

cross sectional areas differ only approximately 10% from the values assigned in the truss

model, this cannot be the sole explanation for the abnormally high Vf.

Instead, the explanation was found when zooming in on the compressed state of the model;

see figure 5.14. It was discovered that the contact interactions between the truss elements

failed, leading to the clipping of fibres within other fibres and beyond the plates. Two fibres

taking up the same volume within the plate volume or finding their way out of the plate

volume illustrate how the Vf was able to increase above 100%. A theory was posited that this

clipping was caused by the constraint equations on the end nodes of the fibres: if all voids have

been removed from the fabric but compression continues, stage 3 consolidation must occur,

inducing elastic extension of the fibres due to the Poisson contraction effect. The constraint

equations prevent this extension as the unit cell is kept at a fixed size. This would lead

ABAQUS/Explicit to internal conflict, forcing it to allow more clipping and to compensate

for that by adding reaction forces to split the fibres later. A compression/decompression

simulation was run without constraint equations, but the results were no better: clipping still

occurred, disproving the theory. The only parameter found to affect the clipping behaviour

was the total applied compression. A simulation where the plates were only moved towards

each other by 0.284 mm instead of 0.36 mm displayed no clipping. A permanent solution to

this problem, other than restricting the simulation to lower compression, likely requires the

definition of new, stricter contact interaction properties or boundary conditions (which were

also the problematic components in the yarn migration issue). This was not attempted in

this dissertation due to time constraints.
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Figure 5.13: Plot of the pressure versus the Vf for the numerical
compression/decompression simulation of the truss-and-beam model, compared to the

experimental results of the single layer fabric sample from experiment 1. The shape of the
simulation curves is in good agreement with the experimental linear-exponential-linear

consolidation curve, but it is shifted towards higher Vf.

Figure 5.14: A zoomed in YZ-view of fully compressed truss-and-beam models, at a
compression of 0.284 mm (top) and 0.36 mm (bottom). The smaller compression seems to

cause few contact problems, but the larger compression results in clipping of the fibres
within each other and beyond the plates.
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Chapter 6

Conclusion

6.1 Summary

The goal of this dissertation was to investigate fabric behaviour under compression, both

experimentally and numerically, though focused on the latter. This is because all commonly

used FRP production processes apply pressure to reinforcing fabrics during a consolidation

stage, to increase Vf. During this consolidation, different defects (e.g. porosity and fibre

waviness) can be introduced, resulting in large costs for the industry and maluses to the

environment. There is, thus, a need for robust predictive tools such as finite element fabric

models.

A novel, discrete meso-scale fabric model was constructed, starting at the micro-scale, to

portray a 2/2 twill woven glass fibre fabric produced by P-D Interglas Technologies GmbH. At

the microscopic scale, fibres were created as chains of sequentially connected truss elements,

upon which beam elements were then superimposed, in an effort to decouple the fibres’

Young’s modulus and flexural rigidity. The truss elements only transmit axial loads and

are responsible for the stiffness (Young’s modulus) of the model while also representing the

actual geometry. The beam elements, on the other hand, can transmit flexural loads and

are responsible for the flexural rigidity of the model. At the mesoscopic scale, yarns were

created by arranging the fibres in a hexagonal bundle, and experimentally measured values

were assigned to each element, ensuring correct dimensions and properties of the assembled

yarns. At the macroscopic scale, the fabric was built by expanding on a model by Daelemans

containing only truss elements. Via a custom Python script, material properties were edited

and beam elements were superimposed on top of the existing truss elements.
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With the model constructed, its weaving process was investigated to discover the influence of

different parameters (coefficient of friction, number of fibres per yarn, time step and one- or

two-stage loading) on the final as-woven geometry. From these results, the best model was

chosen by comparison to experimental measurements gathered via µCT-scans. A combined

truss-and-beam model with 127 fibres per yarn, a coefficient of friction of 0.10, a time step

of 0.06 s and a two-stage weaving process was chosen. While the model is not completely

accurate, it was validated within the correct order of magnitude.

To study the behaviour of the fabric during consolidation, two experiments were set up,

where pressure was applied to fabric samples (continuously or statically) and the samples

were µCT-scanned. While there were challenges due to inaccurate machine data and low

µCT image quality (leading to the results of only one experiment being used), yarn flattening,

removal of voids and yarn cross-section deformation were all observed, as well as nesting in

the multilayer sample. In addition, hysteresis was encountered upon decompression, showing

that the compression deformation was not entirely elastic.

To investigate similar behaviour in the truss-and-beam model, the output of the weaving

simulation was used as the input for a new compression simulation. The fabric was

surrounded by two rigid plates that were brought together and subsequently separated, and

the reaction forces on these plates were numerically calculated. This was then compared to

the pressures and Vf from the experimental data. The same pressure-Vf curve shape was

obtained as in the experiments, which was an improvement over the truss-only fabric model,

but the curve was shifted towards higher Vf, mainly due to contact interaction errors in the

form of clipping.

6.2 Further research

The work done in this dissertation can provide useful information on fabric behaviour during

consolidation. The truss-and-beam model, especially, can be used to predict behaviour, if

the present errors are resolved, and the accuracy of the model is increased. The fact that it

applies flexural rigidity separately from other material properties allows it to be finetuned

easily. The model can also be used for other research in the composite industry as a robust

all-purpose fabric model, for example to study draping behaviour over complex shapes. If a

method is found to add twist to the yarns, it could even be used as a general fabric model

in the textiles industry.
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The first improvements that should be made to this model are those that can increase the

accuracy of its as-woven state. One change that should be made is to update the truss

element dimensions: the cross sectional areas in the model were left as they were designed by

Daelemans, but should be substituted by the values given in table 3.1. While these only differ

by approximately 10%, they define the size of the truss elements and so define the geometry

of the entire model. Secondly, a way should be sought to make the fanning out of fibres easier

in the model, to compensate for the reduced amount of fibres in a yarn as compared to the

real fabric. Thirdly, more attention should be paid to the quasi-static or dynamic nature of

the weaving simulations, as this was only investigated after all measurements were processed

but could greatly increase the robustness of the model.

To increase the accuracy of the compression simulation, the yarn migration and clipping issues

must be solved. This would likely require more complex contact interactions and possible

changes to the periodic boundary conditions. If after solving the issues, the pressure-Vf

curve is still shifted towards higher Vf, it can be artificially shifted back. This means not

allowing the fabric to compress as much, which could be achieved by increasing the flexural

rigidity of the beam elements by increasing their radius. Because their Young’s modulus is

so low, this would have a negligible effect on the other fabric properties. Another route that

could be taken is to use the as-woven state of the truss-only model (which displayed better

congruency with the real woven fabric but could not simulate consolidation accurately), and

superimpose beam elements onto the fibres of that deformed model before consolidation,

instead of superimposing them in the loose topology state. This would provide a more

accurate framework to subject to compression, while keeping the improvements in the shape

of the pressure-Vf curve that were added by the inclusion of a flexural rigidity.

Concerning the carried out experiments, the µCT image quality of experiment 2 should

be improved, after which the images should be processed as a valuable second - hopefully

more accurate - source of experimental data. For both the experimental and the numerical

analysis of consolidation behaviour, the effect of parameters other than the consolidation

pressure could be studied. Known parameters include temperature during the consolidation

stage, the number of compaction cycles, the compaction speed, the number of fabric layers

and their stacking sequence, interply friction, and matrix material viscosity. It would be a

good start to scale up the truss-and-beam model to allow for multiple layers of fabric (and

possibly 3D-weaving). Materials other than glass fibre, such as carbon fibre or aramid fibre,

could also be investigated.
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[94] P. Badel, E. Vidal-Sallé, and P. Boisse, “Computational determination of in-plane shear

mechanical behaviour of textile composite reinforcements,” Computational Materials

Science, vol. 40, no. 4, pp. 439–448, 2007.

105
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Appendix A 

Python code 

A.1    ABAQUS input file editor 

[Redacted for confidentiality]
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A.2   ABAQUS output node reader 

[Redacted for confidentiality]
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