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Abstract

Due to the recent successes of deep artificial neural networks (ANNs) and the resemblance of ANNs to the
mammalian brain, the question has arisen whether the learning processes in the mammalian brain are
driven by similar deep hierarchical models. This question is investigated in the newly emerged field of
biologically plausible deep learning. Answering this question can contribute both to the field of machine
learning and neuroscience. On the one hand, investigating biologically plausible deep learning can provide
machine learning with new insights on hard challenges such as continuous learning, one-shot learning and
general intelligence, which the human brain seems to achieve effortlessly. On the other hand, solving the
credit assignment problem –how the strength of synapses in the brain must be changed to improve global
behaviour– will help neuroscientists to develop new insights on how our brain (dys)functions in health
and disease. Although a lot of progress has already been made, many of the biologically plausible learning
methods currently lack a solid mathematical foundation and a well-defined link to the biological proper-
ties of neurons. This thesis focusses on target propagation (TP), a promising biologically plausible learning
method for ANNs. Its main contributions to the field of TP are (1) a new extensive mathematical frame-
work for TP, (2) various improvements to the TP method based on gained mathematical insights and (3)
two biological network models of TP that are closely linked to the properties of pyramidal neurons.

The new mathematical theory of TP has three main results. First, we prove that under well-specified
conditions, TP with exact inverses uses Gauss-Newton optimization to compute its local layer targets,
after which it performs a gradient descent step on the local layer losses to update the forward weights
of the network. Second, we show that in TP with approximate inverses, reconstruction errors interfere
with the propagated learning signals. We prove that difference target propagation (DTP), a variant of
TP, cancels out these reconstruction errors by adding a correction term to its targets, which explains the
better performance of DTP compared to TP. Third, we show that under well-specified conditions, DTP uses
Gauss-Newton to compute its local layer targets, even when approximate inverses are used.

Based on the gained mathematical insight on target propagation, we propose two improvements for the
TP method. First, we introduce a new parametrization for the backward mapping function of the targets,
which ensures that it can learn the inverse of the forward mapping to arbitrary precision when layers of
equal dimension are used. Experimental results show that this new form led to significantly better per-
formance of TP. Second, we propose a randomized version of TP which has better theoretical properties.
Experimental results indicate that the randomized TP is more stable for deeper architectures.

Finally, we develop two biological network models that exhibit TP-like learning dynamics and are closely
linked to the properties of pyramidal neurons. The first model is a mixture model of the apical dendritic
spikes and the basal dendritic spikes that occur in the pyramidal neuron. Both a single-phase and a
two-phase version of this model are introduced, that exhibit TP-like and DTP-like learning dynamics, re-
spectively. The second model makes use of multiplexing in pyramidal neurons to separate the feed-forward
and feedback signals. The separation of signal paths provides this network with cleaner learning signals,
compared to the previous mixture models. Both models are worked out in theory, while future research
should verify their experimental performance.

This thesis has as significant contributions to the field of biologically plausible deep learning that (1) it
creates an extensive mathematical foundation for the TP method that led to improved variants of TP and
(2) it develops two biological network models of TP that are closely linked to the biological properties of
pyramidal neurons. Future research can use the mathematical framework to further improve TP and
other biologically plausible learning methods and can use the biological network models in its quest for
solving the credit assignment problem in the mammalian brain.
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Samenvatting

Vanwege de recente successen van deep artificial neural networks (ANNs) en de gelijkenis van ANNs
met onze hersenen, is de vraag gerezen of de leerprocessen in onze hersenen worden aangedreven door
vergelijkbare diepe hiërarchische modellen. Deze vraag wordt onderzocht in het niewe onderzoeksveld
van biologically plausible deep learning. Het beantwoorden van deze vraag kan zowel bijdragen aan het
onderzoeksveld van machine learning als de neurowetenschappen. Aan de ene kant kan het onderzoeken
van biologisch plausibele leermethodes machine learning nieuwe inzichten geven over harde uitdagin-
gen zoals continuous learning, one-shot learning en general artificial intelligence, die het menselijk brein
moeiteloos lijkt te kunnen. Aan de andere kant zal het oplossen van het credit assignment problem –hoe
de sterkte van synapsen in de hersenen veranderd moet worden om het globale gedrag te verbeteren– neu-
rowetenschappers helpen met nieuwe inzichten te ontwikkelen over hoe onze hersenen (dys)functioneren
in gezondheid en ziekte. Hoewel er al veel vooruitgang is geboekt, missen veel van de biologisch plausibele
leermethoden momenteel een sterke wiskundige basis en een preciese gedefinieerde link naar de biolo-
gische eigenschappen van neuronen. Deze thesis richt zich op target propagation (TP), een veelbelovende
biologisch plausibele leermethode voor ANNs. De belangrijkste bijdragen aan het onderzoeksveld van
TP zijn (1) een nieuwe uitgebreide wiskundig theorie van TP, (2) verschillende verbeteringen aan de TP-
methode op basis van verworven wiskundige inzichten en (3) twee biologische netwerkmodellen van TP
die nauw verbonden zijn met de eigenschappen van piramidale neuronen.

De nieuwe wiskundige theorie van TP heeft drie belangrijke resultaten. Ten eerste hebben we bewezen dat
TP met exacte inverses Gauss-Newton optimalisatie gebruikt om de lokale targets te berekenen, waarna
het een gradiënt stap uitvoert op de lokale kostfuncties om de voorwaartse parameters van het netwerk
bij te werken. Ten tweede toonden we aan dat in TP met benaderende inverses, reconstructiefouten de
leersignalen vervormen. We hebben bewezen dat difference target propagation (DTP), een variant van TP,
deze reconstructiefouten verwijdert door een correctieterm aan zijn target signalen toe te voegen, wat de
betere prestaties van DTP in vergelijking met TP verklaart. Ten derde hebben we aangetoond dat DTP
Gauss-Newton optimalisatie gebruikt om de lokale targets te berekenen, zelfs wanneer benaderende in-
verses worden gebruikt.

Op basis van de opgedane wiskundige inzichten in target propagation, hebben we twee verbeteringen
voor de TP-methode voorgesteld. Eerst hebben we een nieuwe parametrisatie geïntroduceerd voor de
achterwaartse transformatie functie van de targets, die ervoor zorgt dat de inverse van de voorwaartse
transformatie functie kan worden geleerd tot willekeurige precisie wanneer de netwerk lagen van gelijke
dimensie zijn. Experimentele resultaten toonden dat deze nieuwe vorm tot significant betere prestaties
van TP leidde. Ten tweede hebben we een gerandomiseerde versie van TP voorgesteld die betere theo-
retische eigenschappen heeft. Experimentele resultaten gaven aan dat de gerandomiseerde TP stabieler
is voor diepere netwerken.

Ten slotte hebben we twee biologische netwerkmodellen ontwikkeld die TP-achtige leerdynamieken verto-
nen en nauw verbonden zijn met de eigenschappen van piramidale neuronen. Het eerste model is een mix-
ture model van de apicale dendritische spikes en de basale dendritische spikes die voorkomen in pirami-
dale neuronen. Zowel een enkel-fasige als een twee-fasige versie van dit model worden geïntroduceerd, die
respectievelijk TP-achtige en DTP-achtige leerdynamieken vertonen. Het tweede model maakt gebruik
van een multiplex techniek in pyramidale neuronen om de feed-forward en feedback signalen te scheiden.
De scheiding van de signaalpaden geeft dit netwerk betere leersignalen vergeleken met de eerdere mix-
ture modellen. Beide modellen zijn uitgewerkt in theorie. Toekomstig onderzoek zal hun experimentele
prestaties moeten verifiëren.
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Deze thesis heeft als belangrijke bijdragen aan het gebied van biologically plausible deep learning dat (1)
het een uitgebreide mathematische basis heeft gecreëerd voor de TP-methode die leidde tot verbeterde
varianten van TP en (2) het twee biologische netwerkmodellen van TP heeft ontwikkeld die nauw zijn
verbonden aan de biologische eigenschappen van piramidale neuronen. Toekomstig onderzoek kan de
wiskundige theorie gebruiken om TP en andere biologisch plausibele leermethoden verder te verbeteren
en kan de biologische netwerkmodellen gebruiken in haar zoektocht naar het oplossen van het credit
assignment problem in onze hersenen.
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Chapter 1

Introduction

During the last decade, the impact of machine learning on our daily life has increased enormously. Ex-
amples of applications range from customized web searches to improving medical diagnoses to beating the
world champion in the board game GO [1]. Most notably, deep learning –a form of machine learning that
allows models to learn data representations with multiple levels of abstraction– has driven the majority
of recent developments thanks to the increased computing power of graphics processing units (GPUs) and
the large size of available data sets. Artificial neural networks (ANNs) are the most common form of deep
learning, and their model architecture is loosely inspired by the neural networks inside the neocortex of
the mammalian brain. Multiple layers of artificial neurons are connected with each other, which enables
the model to process the data in different levels of abstraction. The model parameters that need to be
learned are the connection weights between the different artificial neurons. This resembles the synapses
in our own brain, which form the connections between the different neurons, and which have connection
strengths that can change over time.

Due to the recent successes of deep learning and the resemblance of ANNs to the mammalian brain, the
question has arisen whether the learning processes in the mammalian brain are driven by similar deep
hierarchical models. In the newly created research direction of biologically plausible deep learning, re-
searchers from the field of machine learning and neuroscience have joined forces to address this question.
The motivation for this new research field can be explained from a machine learning point of view and
a neuroscience point of view. Despite the numerous successes of deep learning, ANNs are still lacking
behind in fields such as continuous learning, one-shot learning and general intelligence, which the human
brain seems to achieve effortlessly. In the history of deep learning, researchers have repeatedly drawn
inspiration from neuroscience to improve their models. The most famous example is the convolutional
neural network (CNN), of which the origins can be traced back to the early neuroscience research of Hubel
and Wiesel in the 1960s [2], who first described the hierarchical neural processing of visual inputs in the
mammalian brain. Therefore, it is most likely that the field of biologically plausible deep learning will
inspire new developments in the field of machine learning to address the current challenges. In neuro-
science, the credit assignment problem –how the strength of each individual synapse in the brain must
be changed in order to improve global behaviour– remains still an open question. Answering this ques-
tion will help neuroscientists and psychologists to develop new insights and hypotheses on how biological
networks in the brain (dys)function in health and disease. In ANNs, the credit assignment problem is
solved by the error backpropagation algorithm [3]. However, this algorithm in its pure form is not likely
to be biologically plausible based on what is currently known. Therefore, the field of biologically plausible
deep learning can help neuroscience by providing new, more biologically plausible, solutions for the credit
assignment problem.

As the field of biologically plausible deep learning is still very young, there exist various areas that are
not yet explored in enough detail. First of all, many of the biologically plausible learning methods for
deep neural networks are based on intuition or insights from neuroscience, without having a thorough
mathematical foundation. Therefore, a better mathematical understanding of those learning methods can
lead to significant improvements to the performance of these methods and help the field to focus on the
most promising methods. Secondly, most of the biologically plausible learning methods are defined in an
abstract form [4, 5, 6] without a clear link to biological neurons, making it hard for neuroscientists to
interpret those models. Hence, creating learning methods that are more closely linked towards biological
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neurons will help neuroscientists to deduce workable hypotheses from those models that can provide new
insights on the inner working of our brain. Recent work [7, 8] has already started with bridging this gap,
but more research is still needed on this topic.

The focus of this thesis is on target propagation [9, 5], a promising biologically plausible learning method
that is intuitively very appealing and has already decent experimental results on benchmark datasets
such as MNIST [10, 5, 11].

This thesis aims to:

1. create a mathematical foundation for target propagation and its variants, in order to better under-
stand its learning dynamics,

2. improve the existing target propagation method, based on the gained mathematical understanding,

3. create a biologically realistic learning model that is closely linked to the biological properties of
neurons and exhibits target-propagation-like learning dynamics.

Based on the above-defined aims of this thesis, the following approach is followed.

• Chapter 2 explores the relevant properties of both biological neural networks and artificial neural
networks, in order to provide the needed background for this thesis.

• Chapter 3 provides an overview of the existing target propagation method and other relevant work
in the field of biologically plausible deep learning.

• Chapter 4 creates a thorough mathematical foundation for the target propagation method by propos-
ing and proving new theorems that clarify the optimization strategy and learning dynamics of target
propagation. Based on the gained mathematical insights, various improvements to the target prop-
agation method are proposed.

• Chapter 5 experimentally verifies the theoretical predictions and assumptions made in chapter 4 and
assesses the performance of the new variants of target propagation. As previous work has mainly
focussed on the performance of target propagation on large datasets such as MNIST, this chapter
focusses more on the fundamental learning properties of target propagation by investigating more
easily interpretable toy datasets.

• Chapter 6 proposes a biologically realistic learning model that is closely linked to the biological
properties of biological neurons and exhibits target-propagation-like learning dynamics.

This thesis will have two main contributions to the field of biologically plausible deep learning and the
scientific community as a whole. First, we will create an extensive mathematical foundation for the
target propagation method, which will lead to improved variants of target propagation and which will
help future research to further improve the target propagation method and other alternatives to error
backpropagation. Hopefully, this work will encourage other researchers and accelerate the mathematical
understanding of biologically plausible learning methods. Secondly, a biologically more realistic model of
target propagation can give new hypotheses for neuroscience on how credit assignment is done in biological
networks.
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Chapter 2

Background

In this chapter, the needed background for this thesis is explained, covering both biological and artificial
neural networks.

2.1 The biological neuron
Neuroscience is a wide and complex field, and it is not the purpose of this text to give a comprehensive
and detailed overview of the field. Instead, we will briefly explain the basics of a biological neuron that
are needed to understand the new ideas and experiments performed in this thesis. We refer the interested
reader to [12] and [13] for a more detailed and complete introduction to the field of neuroscience and the-
oretical neuroscience, respectively. This section discusses first the anatomy of the neuron, after which the
basic properties of the communication signalling between neurons – the action potential – are explained.
Thereafter this section discusses the properties of the synapses in our brain, and it ends with explaining
synaptic plasticity, which makes learning possible in the brain.

2.1.1 Anatomy of the neuron
A wide variety of neuron cell types exist that differ based on their structure, chemistry and function.
Nonetheless, all neurons have three characteristic compartments: the soma, the axon and the dendrites
[12] as visualized in figure 2.1. The synapse, which connects the axon of one neuron with a dendrite of
another neuron, is essential for learning in the brain and will be discussed separately from the axon and
dendrites in section 2.1.3.

Soma

The soma is the central, roughly spherical, part of the neuron. It supports the neuron in its basic functions
such as protein synthesis and cell respiration. The organelles present in the soma can also be found in all
other animal cells. The most important ones are the nucleus, the Golgi apparatus and the mitochondria
[12]. These organelles are shown in figure 2.2.

Axon

The axon is a cell structure only found in neurons and is highly specialized in transmitting electrical
signals to other neurons in the form of action potentials. The axon starts at the axon hillock (figure 2.2)
and ends in one or more (up to several thousands) axon terminals (figure 2.7). The length of an axon can
vary from less than a millimeter to over a meter, and the axon can split up in multiple branches (figure
2.3), which are called axon collaterals. All the branches combined are called the terminal arbor [12]. The
axon can propagate only one electrical signal at the same time, so the neuron has only one output signal,
that is delivered at the synapses of all the connecting neurons.

Dendrites

The dendrites receive the inputs of the connected neurons, and can therefore be seen as the ’antennas’ of
the neuron. The term ’dendrite’ is derived from the Greek word ’dendros’ for ’tree, reflecting the charac-
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Figure 2.1: The soma, axon and den-
drites of a neuron. Axons and den-
drites are also called neurites. Figure
reprinted from [12].

Figure 2.2: The internal structure and organelles
of a typical neuron. Figure reprinted from [12].

Figure 2.3: The structure of a neuron and its an axon. Figure reprinted from [14].

teristic branching of the dendrites in one or more dendritic trees (see figure 2.1). Dendrites are covered by
synapses which connect the axons of incoming neurons with the dendrites.

Types of neurons

The human brain consists of roughly 100 billion neurons and even more glial cells (cells that support the
neurons in the brain) [15]. All these neurons can be classified in numerous classes based on various crite-
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ria such as dendritic structure, axon length and neurotransmitters [12]. This thesis focuses on the neural
networks inside the cerebral cortex, as this brain area governs the processing of sensations, perceptions,
voluntary movement, learning, speech and cognition, which are of primary interest for the field of machine
learning. Furthermore, the cerebral cortex is also believed to be the foundation of human intelligence [16].
70−85% of the neurons in the cerebral cortex are pyramidal neurons, the other 15−30% are interneurons
and aspiny non-pyramidal neurons, which cover a wide variety of neurons [17]. The biological interpreta-
tion of the learning rules in this thesis is based on pyramidal neurons, which can be justified by their high
prevalence in the cerebral cortex. Furthermore, pyramidal neurons project to other brain areas, whereas
interneurons only project locally. This makes pyramidal neurons more suited for investigating hierarchical
learning mechanisms.

The pyramidal neuron. The pyramidal neuron can be schematized in 3 compartments as visualized
in figure 2.4: (1) The pyramidal-shaped cell body or soma, (2) the basal dendrites, connected to the lower
part of the soma and (3) the apical dendrites, connected to the upper part of the soma. Note that also
other compartment structures are possible, such as modelling each dendrite by a separate compartment.
The three compartment structure is used in this thesis because of its minimal complexity while it still
uses segregated dendritic compartments as observed in biology. The axon of the pyramidal neuron is
connected to the soma (not shown in the figure) and the generation of action potentials is dependent on
the voltage level in the soma. One supported idea is that in the primary sensory areas of the neocortex,
the feedback connections from neurons in higher-order areas arrive in the apical dendritic compartment of
the pyramidal neuron [18, 19, 20] and the feed-forward sensory information arrives at the basal dendrites
[21, 22, 23]. In a pyramidal neuron, the feed-forward and feedback connections thus arrive in electrically
distant compartments [8]. This feature of the pyramidal neuron will be used later in this thesis for a
biological interpretation of the discussed learning algorithms.

(a) (b)

Figure 2.4: The pyramidal neuron. (a) Anatomic drawing of the pyramidal neuron (figure adapted from
[24]). (b) Schematic representation of a pyramidal neuron, with (A) the apical dendrites compartment, (B)
the basal dendrites compartment and (S) the soma compartment.

2.1.2 The action potential
Neurons can transmit signals to other neurons via action potentials. An action potential thus can be seen
as the information signal of the nervous system. In what follows, first, the resting membrane potential
is explained as a balanced state between ion concentrations and overall electric charge. Afterwards, the
mechanisms of an action potential are described as an interaction between electrically charged ions and
voltage-gated ion channels. To conclude, the neural code and axon multiplexing, a recent hypothesis from
theoretical neuroscience, are discussed.

5



Neuronal membrane at rest

The neuronal membrane forms a boundary between the extracellular fluid and the intracellular cytosol.
The extracellular fluid and intracellular cytosol both consist out of electrically charged ions, dissolved in
water. However, the concentration of the 4 most prominent ions (Na+, K+, Cl− and Ca2+) is different
inside and outside of the cell, as can be seen in table 2.1. This results in a voltage difference, which
is called the membrane potential. The concentration difference inside and outside of the membrane is
controlled by ion pumps and ion channels in the neuronal membrane.

Table 2.1: The ion concentrations inside and outside of the neuron. The resulting resting potentials
are displayed at the right [12].

Ion Concentration outside [mM] Concentration inside [mM] Ratio out:in E ion (at 37°C)
K+ 5 100 1 : 20 −80mV

Na+ 150 15 10 : 1 62mV
Ca2+ 2 0.0002 10,000 : 1 123mV
Cl− 150 13 11.5 : 1 −65mV

Ion channels. The neuronal membrane is full of ion channels. Each channel is specific to one or more
ions (e.g. a potassium channel is only permeable for potassium ions). This property is called ion selectivity.
Another important property of many ion channels is gating. Channels with this property can be opened
and closed again by specific conditions in its environment. The most important gating conditions are intra-
cellular voltage level, the binding to neurotransmitters (this gating condition is essential for the working
of synapses, as discussed in section 2.1.3) and the binding to internal second messenger proteins such as
the g-protein.

Ion pumps. Ion pumps make it possible for the neuron to pump ions against the concentration gradient
to maintain a certain concentration difference. The ion pumps use energy from the breakdown of Adeno-
sine Triphosphate (ATP) to pump out ions. Ion pumps have also the property of ion selectivity.

In a passive membrane (membrane without voltage dependent and neurotransmitter dependent ion chan-
nels) with different ion concentrations inside and outside of the membrane, the equilibrium concentration
of ions inside and outside the membrane is governed by two forces. A diffusion force caused by the concen-
tration difference and an electrical force caused by the voltage difference. When an ion specific channel
opens, the membrane becomes permeable for that specific ion. The ions thus start moving through the
channel according to the concentration gradient. However, because the ions are electrically charged, this
causes a shift in the charge distribution which will create (or change) an electrical gradient which will in-
fluence the movement of the ions. When equilibrium is reached between these two forces, the membrane is
at its resting potential Erest. When the membrane is only permeable to one ion, the equilibrium potential
Eeq is equal to the ionic equilibrium potential E ion. The numeric values for E ion can be calculated via the
Nernst Equation [25] and are given in table 2.1. When the membrane is permeable to more than one ion,
the resting potential can be calculated via the Goldman Equation [26]. The resting potential of a typical
neuron is −65mV .

The action potential

The action potential is the information signal that makes it possible for neurons to communicate with
each other. The action potentials generated by a neuron are all similar in size and duration and their
amplitude stays the same while travelling down the axon (no leakage). The action potential is thus a
robust communication signal, in which the information is encoded in the frequency and precise timing
of the spikes (as will be further discussed in section 2.1.2 on the neural code). The action potential is
generated by the interaction between electrically charged ions and voltage-gated ion channels. Its typical
shape is shown in figure 2.5. An action potential is generated by the following chain of events:

1. Resting state. The neuronal membrane at rest is mostly permeable to K+ and slightly permeable
to Na+, resulting in a resting potential of Erest = −65mV , close to the equilibrium potential of K+
(see table 2.1).
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2. Depolarization above threshold. When the voltage level in the soma is depolarized above the
threshold E th =−40mV , voltage-gated sodium channels open, making the membrane highly perme-
able to Na+, relative to K+. How the threshold voltage is reached, is dependent on the function of
the neuron (e.g. visual stimuli for a neuron in the retina or input action potentials of other connected
neurons for a neuron in the cerebral cortex).

3. Rising phase. Because of the large electrochemical gradient for Na+ (compare the resting potential
of the neuron with the equilibrium potential of Na+ in table 2.1), a large influx of sodium ions rushes
into the cell. This causes a rapid depolarization of the neuron, as visualized in figure 2.5.

4. Overshoot. As the membrane highly favours the permeability of sodium, the membrane potential
rises close to ENa, which is above 0mV .

5. Falling phase. The repolarization is caused by the different time constants of the sodium and
potassium voltage-gated channels. The sodium channels opened immediately after the voltage was
above threshold. Now it closes again after 1ms (property of the channel) and cannot open again
until the membrane is back again at resting potential. The potassium channel is activated by the
change in voltage due to the sodium influx, and opens with a delay of approximate 1ms after the
opening of the sodium channel. Now the membrane is again more permeable to potassium, and
the depolarization gives a high driving force for potassium to enter the cell. This influx causes the
membrane potential to become negative again.

6. Undershoot. The extra open voltage-gated potassium channels cause the membrane potential to
go under its resting potential towards EK , causing a hyperpolarization. When the voltage-gated
potassium channels close again, the membrane goes back to its resting potential.

7. Absolute refractory period. The sodium channels cannot be activated again until the membrane
potential goes sufficiently negative to de-inactivate the channels.

The action potential originates in the axon hillock (figure 2.2) and propagates forward through the axon,
because the depolarization of one piece of the membrane causes the next piece of membrane to reach the
threshold value, causing again an action potential. Note that the action potential cannot propagate both
forward and backwards, because of the absolute refractory period. The velocity of an action potential varies
from 1m/s to 100m/s and increases with axon diameter. In the mammalian brain, most of the axons are
insulated by myelin, which greatly increases the velocity of action potentials. Because the general shape
of the action potential is always the same, it can be represented by a binary spike, as is frequently done in
the field of computational neuroscience. The next subsection discusses how a sequence of action potentials
or a spike train can encode information.

Figure 2.5: The characteristic shape of an action potential. Figure reprinted from [27]
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Neural code

The neural code represents how our state and environment (e.g. emotions and visual input) are encoded
by specific neurons in spike trains and how this information can be decoded from those spike trains. There
exist two important paradigms on how information is carried in spike trains [13]:

1. Rate coding. In this paradigm, the information is carried by the firing rate of the neuron (spiking
frequency). It is often assumed that the firing rate captures all the relevant information encoded in
the spike train. Most artificial neural networks implicitly use rate coding to represent information,
as the scalar activation value in each neuron represents the firing rate or the difference in firing rate
from the baseline rate to allow for negative scalars.

2. Temporal coding. This paradigm may refer to several different ideas, all related to the specific
timing of the spikes with respect to a reference signal.

(a) Phase. The specific timing of a spike, relative to a background oscillation (e.g. the thalamocor-
tical oscillations [28]) can carry information. This information is thus encoded in the phase of
the background oscillation at the moment of the spike.

(b) Synchrony. The synchronous or quasi-synchronous firing of neurons within and across ensem-
bles can carry information. The information is thus not encoded in a single spike train, but in
the co-firing of multiple spike trains from multiple neurons.

(c) Patterns. Specific patterns in a spike train can also carry information.

Note that the different forms of neural code do not exclude each other. There might well be general infor-
mation encoded in the firing rate of a neuron, while extra information is encoded in the phase, synchrony
and/or pattern of the spike train. In this thesis, we will use rate coding to represent the information in
spike trains, as this gives us a straight-forward mathematical scheme of scalar activation values for each
neuron.

Multiplexing through bursting spikes

An interesting phenomenon in cortical pyramidal neurons is the occurrence of plateau potentials, result-
ing in bursting spikes, as illustrated in figure 2.6 [21]. As explained in section 2.1.1, the apical dendrites
are electrically distant from the soma. When a small apical input current occurs, the current will leak
away before it can reach the soma (figure 2.6b) and thus before it can cause an action potential. If the
soma generates an action potential (e.g. because of a basal input above spiking threshold), this action
potential propagates back through the apical dendrites, with a decreased amplitude but increased width
(figure 2.6c). If a backpropagating spike and a significant apical input at the apical dendrites occur si-
multaneously, this gives rise to a plateau potential in the apical dendrite, which travels down to the soma
(figure 2.6d). This plateau current input in the soma results in a burst firing (fast firing sequence of a
small group of spikes). The initial spike of the soma, (e.g. caused by the basal input), is thus transformed
into a bursting spike group due to the apical inputs. If a very high apical input occurs, it can cause a
bursting spike group without the need for an initial spike in the soma (figure 2.6e).

Multiplexing. The bursting ability of pyramidal neurons gave rise to the hypothesis from theoretical
neuroscience that neurons are able to multiplex two distinct information signals through the same axon
[29]. Note that this hypothesis is not yet confirmed by experimental results.

1. Event rate. A group of bursting spikes, or a single spike if no burst occurs, counts as one event.
This event rate correlates the most with the basal inputs, as this input causes the initial spike that
starts an event (burst or single spike).

2. Burst probability. The probability that a single initial spike will result in a bursting spike is the
burst probability. It is calculated as the ratio between the burst rate (average number of bursting
groups) over the event rate. The burst rate correlates most with the apical inputs, as they cause
the plateau potential to arise when an initial spike from the soma propagates back to the apical
dendrites.

The pyramidal neuron can thus communicate information related to its basal and apical inputs to other
neurons through multiplexing.
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Figure 2.6: Apical dendritic input can transform a single somatic spike into a burst ensemble of
spikes, by evoking a plateau potential. (a) Reconstruction of a pyramidal neuron, with the 3 recording
pipettes shown in grey, blue and red, resp. for 0µm, 400µm and 770µm from the soma. (b) The apical input
(red) did not reach threshold for either a plateau potential in the apical dendrites or an action potential
in the soma. (c) an action potential evoked in the soma backpropagates through the apical dendrites,
decreasing in amplitude but increasing in width. (d) The combination of the same small apical input of
(b) with a backpropagating action potential of (c) gives rise to a plateau potential in the apical dendrites,
which results in a bursting action potential in the soma. (e) if the apical input is high enough, it can also
generate a plateau potential and resulting bursting spikes in the soma on its own. Figure reprinted from
[21].

Decoding. For multiplexing to work, the connected neurons need to have a mechanism in place to decode
the multiplexed signal. This role can be fulfilled by short-term synaptic facilitation (STF) and short-term
synaptic depression (STD) [29]. Both STF and STD are explained in more detail in section 2.1.4. STD acts
as a low-pass filter, making only the first spike of each event contribute significantly to the input current,
and thus STD can filter out the event rate. STF acts as a high-pass filter, causing the burst groups to have
a much larger effect on the input current compared to a single spike. The burst probability can then be
decoded by a combination of STF and a divisive feedforward inhibition from an event rate decoder [29].

Neural pathways. In section 2.1.1 it was mentioned that the apical dendrites receive mostly feedback
inputs and the basal dendrites receive mostly feed-forward inputs. If the apical dendrites decode the
burst probability input and if the basal dendrites decode the event rate, this can give rise to two separate
signalling pathways through the neural networks.

1. Feed-forward path. If the basal dendrites only decode the event rates, its inputs will correspond
with the event rates of incoming neurons. As the event rate of the current neuron correlates mostly
with the basal inputs, the event rate of the current neuron will correspond to the event rates of the
incoming neurons. This is the feed-forward path, as mostly feed-forward inputs arrive at the basal
dendrites.

2. Feed-backward path. If the apical dendrites only decode the burst probabilities, its inputs will
correspond with the burst probabilities of incoming neurons. As the burst probability of the current
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neuron correlates mostly with its apical inputs, the burst probability of the current neuron will
correspond to the burst probabilities of the incoming neurons. This is the feed-backward path, as
mostly feedback inputs arrive at the apical dendrites.

2.1.3 The synapse
A neuron on its own cannot produce the vast complexity of our neural processing, such as our image and
audio processing, reflexes and consciousness. For doing such complex processes, the neurons have to be
able to communicate with each other, forming networks of neurons. This communication of signals runs
through the synapse, a small area of the neuron that connects the axon terminal of one neuron with a
dendrite of another neuron.

Figure 2.7: The axon terminal and the chemical synapse. The axon terminals form synapses with the
somata or dendrites of other neurons. After an action potential arrives at the presynaptic axon terminal,
neurotransmitters are released from synaptic vesicles into the synaptic cleft. When the neurotransmit-
ters reach the post-synaptic cell, they bind to specific receptors, causing the generation of electrical and
chemical signals the cell. Figure reprinted from [12].

The axon terminal connects to the dendrite through a synapse, as shown in figure 2.7. The synapse consists
of two sides, presynaptic and postsynaptic, indicating the information flow through a neuron: from axon
terminal (pre) to dendrite (post). There exist two types of synapses: an electrical synapse, better known as
a gap junction, and a chemical synapse.

Electrical synapse. In the electrical synapse, the presynaptic axon terminal and the postsynaptic den-
drite are electrically coupled, resulting in a fast and reliable transmission of the whole presynaptic action
potential to the postsynaptic neuron (if the presynaptic neuron produces an action potential, it will almost
always cause an action potential in the postsynaptic neuron). This type of synapse is used for producing
reflexes and other signals that must be fail-safe and precise in time such as the heartbeat. The electrical
synapse ensures that the connected neurons are strongly synchronised, and evidence suggests that this
property is used in early brain development to help to coordinate the growth of the brain [30, 31].

Chemical synapse. The vast majority of the synapses in the adult brain are chemical synapses. As
visualized in figure 2.7, the chemical synapse consists of a presynaptic axon terminal, a synaptic cleft and
a postsynaptic dendrite. When an action potential arrives in the presynaptic axon terminal, voltage-gated
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calcium channels open and a strong influx of calcium ions into the axon terminal occurs. This influx causes
the synaptic vesicles to fuse with the presynaptic membrane at the synaptic cleft, resulting in a release
of their neurotransmitters into the synaptic cleft in a process called exocytosis [32]. There exist a wide
variety of neurotransmitters in the brain, with glutamate, gamma-aminobutyric acid (GABA), dopamine,
serotonin and norepinephrine (NE) the most important ones. The neurotransmitters diffuse through the
synaptic cleft and the majority reaches the neurotransmitter-receptors, located in the postsynaptic mem-
brane of the dendrite. There, the neurotransmitters bind to the receptors and depending on the type of
receptor, this can have various effects on the postsynaptic neuron:

• Transmitter-gated ion channels: When the corresponding neurotransmitter binds to a receptor
of this type, the channel opens for one or more types of ions, causing an influx or efflux of ions in/out
of the postsynaptic dendrite. When the channel is permeable to Na+, the postsynaptic voltage will
rise. When the channel is permeable to Cl−, the postsynaptic voltage will lower. These two channels
are respectively called excitatory and inhibitory channels. Transmitter-gated ion channels provide a
fast chemical synaptic transmission.

• G-protein-coupled receptors: Almost all the neurotransmitters can also have a slower, longer-
lasting and much more diverse effect on the postsynaptic membrane via G-protein-coupled receptors
[33]. This type of transmitter-receptor interaction involves three steps: (1) the neurotransmitter
binds to the receptor protein, (2) the receptor activates small proteins, called G-proteins, that can
now move freely along the postsynaptic membrane and finally (3) the activated G-proteins activate
effector proteins, also known as secondary messengers. These secondary messengers can diffuse into
the cytosol and they have widespread metabolic effects, other than influencing the postsynaptic
voltage.

• Voltage-gated ion channels: As the neurotransmitters influence the permeability of the post-
synaptic membrane and thus also the post-synaptic voltage level, voltage-gated ion channels are
also influenced indirectly by the neurotransmitters. The NMDA1 receptor in the post-synaptic mem-
brane, for example, is strongly voltage dependent and plays an important role in synaptic plasticity.

The chemical synapse has two important properties, that give the brain the power to perform complex
computations and signal processing:

1. In contrast to the electrical synapse, which transmits the incoming action potential directly to the
postsynaptic neuron, the signal through a chemical synapse will only have a small contribution to
the postsynaptic somatic voltage. The postsynaptic neuron thus needs a lot of simultaneous inputs
from various chemical synapses to induce a somatic voltage above threshold for producing an action
potential. On top of that, the strength (the change in postsynaptic voltage resulting from a presynap-
tic action potential) of the chemical synapses are different among synapses. This feature makes sure
that neurons only produce action potentials when specific input patterns occur at their dendrites.

2. The strength of a chemical synapse can be changed over time. This mechanism is called synaptic
plasticity and will be discussed in more detail in section 2.1.4. This synaptic plasticity is essential for
learning and forming memories, as experiences can be encoded in the changes of synaptic strengths
in the brain. From a mathematical point of view, the brain can be seen as a model that learns to
interpret its inputs (environment and state) by changing its model parameters (synaptic strengths).
The human brain contains roughly 100 billion neurons. Each neuron has on average thousands of
synapses, making the brain a model with over 1014 parameters.

2.1.4 Synaptic plasticity
Synaptic plasticity refers to the activity-dependent modification of the strength of synaptic transmission
at pre-existing synapses [34]. It gives a mammalian brain the capacity to modify its neural circuit function
depending on the neural activity generated by experience and thereby altering its thoughts, feelings and
behaviour. Plasticity can either enhance or depress the synaptic transmission, and the timescale of its
effect can be short term or long term. This section provides an overview of the different known forms
of synaptic plasticity. Note that almost all synapses in the mammalian brain simultaneously express a
number of different forms of synaptic plasticity, making the resulting plasticity of the synapse an even
more complex process. The different forms of synaptic plasticity result almost always in one or both of the
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two following outcomes: (1) modification of the efficacy of neurotransmitter release at the presynaptic side
or (2) modification in the amount of neurotransmitter-gated ion channels at the postsynaptic side. These
two outcomes should be a guideline for the reader through this section.

Short-term synaptic plasticity

Short-term synaptic plasticity acts on a timescale in the order of milliseconds to several minutes. These
forms of plasticity are thought to play important roles in the short-term adaptation to sensory inputs,
short-lasting forms of memory and transient changes in behaviour [34]. Short-term facilitation (STF)
(increased synaptic strength) and short-term depression (STD) (decreased synaptic strength) are mostly
linked to a calcium build-up in the presynaptic terminal and the depletion of release-ready neurotransmit-
ter vesicles available [35], but it is likely that additional mechanisms are involved such as the involvement
of glial cells

Short-term facilitation. When an action potential arrives shortly after a previous action potential,
there will still be some residual calcium ions present in the presynaptic terminal from the previous spike,
leading to a higher resulting calcium level after the current spike. This, in turn, leads to higher efficacy of
the neurotransmitter release.

Short-term depression. There are only a limited amount of neurotransmitter vesicles available in the
presynaptic terminals, thus neurotransmitters need to be recycled or reproduced and encapsulated in new
vesicles. This process is referred to as the synaptic vesicle cycle [32]. When a high amount of action poten-
tials arrive at the synapse in a short time, the synaptic vesicle cycle is not fast enough to keep up with the
high demand for neurotransmitters, resulting in a decrease in released neurotransmitters.

Short-term synaptic plasticity thus occurs mostly at the presynaptic terminal by modifying the neuro-
transmitter release efficacy. The function of short-term plasticity can be seen as a filtering function. For
example, synapses with a low initial probability to release neurotransmitters, act as a high-pass filter.
Due to the calcium build-up with high-frequency spike trains, the neurotransmitter release probability
will increase for high-frequency signals. On the other hand, synapses with a high initial release prob-
ability will act as a low-pass filter, as low-frequency signals pass without a problem (due to high release
probability), but high-frequency signals are attenuated due to the vesicle depletion. Moreover, the filtering
characteristics of the synapse can be altered by changing the initial release probability. This can be done
by neuromodulators that activate specific presynaptic receptors that reduce the release probability.

Long-term synaptic plasticity

In order to form memories, to learn new skills and to learn from its mistakes, the brain needs long-lasting
synaptic changes. This hypothesis was put forward over 100 years ago by the Nobel Laureate Santiago
Ramon y Cajal and was further investigated by Donald Hebb, who proposed that associative memories
could be formed by a plasticity process nowadays called Hebbian learning [36]. Bliss and colleagues gave
in the early 1970s the experimental support for the existence of long-lasting synaptic plasticity in the
mammalian brain [37, 38]. In long-term synaptic plasticity, a distinction is made between long-term
potentiation (LTP) which strengthens the synapse and long-term depression (LTD) which weakens the
synapse. It is well established that synapses that exhibit LTP also exhibit LTD, making it possible to
modify the synapses in both directions. Besides LTP and LTD, more recently discovered forms of long-
term plasticity exist, including homeostatic plasticity [39] and metaplasticity [40]. The most common
forms of LTP and LTD are dependent on the NMDA2 receptor (NMDAR) in the postsynaptic membrane
[41] and will be further discussed. Note that there exist other less common mechanisms for LTP and LTD,
such as metabotropic glutamate receptor-dependent LTD [42] and endocannabinoid-mediated LTD [43].

Long-term potentiation. Two receptors play an important role for LTP and LTD: the AMPA3 receptor
(AMPAR) and NMDA receptor (NMDAR). They are both receptors for the neurotransmitter glutamate.
AMPAR is permeable to Na+ and K+ and provides most of the inward current for the excitatory synaptic
response when the postsynaptic cell is around resting potential. NMDAR is mostly permeable to Ca2+ and
Na+, but is blocked by extracellular magnesium at resting potential (voltage-dependent). NMDAR acts as
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a ’coincidence detector’ for presynaptic and postsynaptic firing: If (1) the postsynaptic neuron is strongly
depolarized (close to threshold), which removes the magnesium blockade of the NMDAR and if (2) the
presynaptic neuron spikes, which releases glutamate in the synaptic cleft, the NMDAR opens and calcium
ions can enter the postsynaptic cell. This calcium influx acts as the coincidence signal. If the calcium level
in the postsynaptic terminal is above a certain threshold, it initiates a chain of reactions which ultimately
results in the creation of extra AMPAR in the postsynaptic membrane and in an increase of the existing
AMPARs conductances [34]. This increase in total AMPA receptors and individual conductances leads to
a stronger synaptic connection.

Long-term depression. When the calcium level in the postsynaptic terminal is below a certain up-
per threshold and above a certain bottom threshold –indicating that (1) the postsynaptic neuron is only
slightly depolarized, which slightly removes the magnesium blockage and (2) the presynaptic neuron has
fired, releasing glutamate in the synaptic cleft–, a chain of reactions is initiated that ultimately results
in a decrease of AMPAR in the postsynaptic membrane [44, 34]. This decrease in the amount of AMPA
receptors results in the long-term depression of the synapse.

Calcium as correlation signal. The quantitative properties of the postsynaptic calcium signal thus
dictate whether LTP or LTD occurs in the synapse, with LTD requiring a modest calcium level and LTP a
calcium level above a certain threshold. The calcium level indicates the amount of correlation between the
presynaptic spikes and postsynaptic spikes: if there is a presynaptic spike without a postsynaptic spike,
there will be a low calcium level, indicating LTD, whereas if there is both a presynaptic and postsynaptic
spike at the same moment, there will be a high calcium level, resulting in LTP. This link with the pre- and
postsynaptic firing led to the proposition of the Hebbian learning paradigm.

Hebbian learning rules. The dependence of LTD and LTP on the co-occurrence of pre-synaptic spiking
and postsynaptic voltage level are investigated in theoretical neuroscience under the branch Hebbian
learning rules. It is hypothesized that a synapse wi j has an internal state e i j, called a synaptic flag or an
eligibility trace. The synaptic plasticity then depends on this synaptic inner state, in most cases linearly
[45]:

d
dt

wi j = c · e i j (2.1)

with c a fixed constant. In Hebbian learning, the dynamics of the synaptic flag e i j depend only on two
factors: (1) the presynaptic factor x j (indicating the firing activity of the presynaptic neuron or the amount
of neurotransmitters in the cleft) and the postsynaptic factor yi (indicating the state of the postsynaptic
neuron) [45]. This is formulated mathematically as

d
dt

e i j = η f j(x j)g i(yi)− e i j/τe (2.2)

with η a constant learning rate, τe a decay time constant and f j and g i two arbitrary functions. A specific
type of Hebbian learning, spike-timing dependent plasticity [46], deserves some more details. It is experi-
mentally shown (reviewed in [47, 48]) that LTP and LTD strongly depend on the time difference between
the pre- and postsynaptic spike timing, as shown in figure 2.8. LTP and LTD have ’critical windows’ around
the postsynaptic spike in which the presynaptic spike must occur. The order of pre- and postsynaptic spike
decides whether LTP or LTD is occurring, and the closer they are to each other, the stronger the effect.
Although the mechanisms of STDP rely on the same principles as explained in the previous section on LTP
and LTD, it’s precise shape is more complicated to explain. For a detailed review of STDP, see [47, 48].

Three-factor learning rules. More recent experimental studies, reviewed in [45], support the hypoth-
esis that the eligibility trace e i j does not lead directly to a synaptic change, but only if a third factor is
involved. This third factor is most commonly a neuromodulator such as dopamine, indicating reward or
surprise, but can also be a local calcium spike from the apical dendrites. These three-factor learning rules,
also called neoHebbian learning rules, can be mathematically formulated as follows,

d
dt

wi j = e i j M3rd(t), (2.3)

with M3rd a time-varying third factor. This third factor is most commonly a global signal, as reward
and surprise are also global signals, but can also be cell specific, such as the calcium spike signal. The
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Figure 2.8: "The critical window for spike-timing-dependent plasticity of developing retinotec-
tal synapses." "The percentage change in the synaptic strength (excitatory postsynaptic potential (EPSP)
amplitude) after repetitive retinal stimulation was plotted against the onset time of the retinal stimula-
tion relative to the peak of the action potential initiated in the tectal cell. Data shown are for experiments
in which spiking of the tectal neuron was initiated by either a suprathreshold input or a group of coactive
inputs (filled circles) or by injection of a depolarizing current (open circles) in a tectal neuron". Figure cited
and reprinted from [47].

use of reward and surprise signals resembles the reinforcement learning paradigm in machine learning.
However, the neohebbian learning rules are locally controlled, compared to reinforcement learning where
a global policy is optimized. It is therefore not guaranteed that the three-factor learning rules optimize a
global policy or cost function, which is the cause of their yet poor performance on machine learning tasks.
There is thus still a vast area to discover on how synaptic plasticity is regulated and how this makes us
humans able to learn and create memories.

Homeostatic Plasticity. Without any form of stabilizing mechanisms, activity-dependent plasticity
rules such as LTP and LTD are unstable and would lead to epileptogenic excitation (constant firing) or
total neural silence. Synaptic scaling, a form of homeostatic plasticity counters this unstable behaviour by
globally changing the strength of all synapses of a neuron. When the activity of a neuron is dramatically
decreased for a long period of time, synaptic scaling increases the strength of all the synapses of the neu-
ron, whereas when the activity is dramatically increased for a long period of time, the synapses are scaled
down [49]. Important to notice is that all the relative strengths of individual synapses stay the same after
scaling. The precise molecular mechanisms of synaptic scaling are not yet fully understood [34].

Metaplasticity. Metaplasticity refers to ’plasticity of plasticity’: it is the higher-order plasticity, that
does not directly modify the synaptic strength, but modifies the magnitude and direction of activity-
dependent plasticity that takes place in the synapse [40]. For example, metaplasticity can cause shifts
in the calcium thresholds for LTP and LTD in neurons of the visual cortex during development [50].

2.2 Artificial neural networks
In recent years, artificial neural networks (ANNs), the most common form of deep learning, have caused a
revolution in machine learning, computer vision, speech recognition and many other fields. Deep learning
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is a form of machine learning, where the computational models are composed of multiple processing lay-
ers, which gives them the ability to learn representations of the data with multiple levels of abstraction
[1]. The architecture of an artificial neural network is inspired by biological neural networks. Abstract
neurons are connected with each other in multiple organized layers and information can flow through the
network. The processing characteristics of the ANN depend on the connection weights (synapses) between
the different abstract neurons. This section first discusses the perceptron, an abstract neuron model used
in most of the ANNs, after which the most basic form of an ANN, the feedforward multi-layer perceptron
(MLP) is explained. Thereafter, the backpropagation algorithm, the method of choice to train multi-layer
perceptrons, is discussed. Finally, a more advanced form of ANNs, auto-encoders, are briefly analysed.
Note that there are many other deep learning models, such as recurrent neural networks, energy-based
neural networks and convolutional neural networks, that will not be discussed in this thesis, as they are
not necessary to investigate the fundamental learning properties of networks, which is the topic of this
thesis.

2.2.1 The abstract neuron
As seen in the previous section, a biological neuron is a very complex cell with complex input-output
relations. In machine learning, this complexity is omitted by representing the neuron as an abstract unit
with input weights wi, an internal voltage level a and an output firing rate h, as shown in figure 2.9. This
abstract neuron is more commonly known as the perceptron [51, 52], which caused a wave of excitement in
the 1960s on the information processing capabilities of neurons. The abstract neuron used in this thesis
makes thus use of rate coding as neural code. The internal voltage level a is calculated as

a =∑
i

wixi +w0 (2.4)

with w0 the bias term. In a biological setting, this bias term is equal to the negative threshold of the
neuron, such that the neuron fires when a ≥ 0 and is silent when a < 0. In a machine learning setting,
the bias can have any value and is learned during training of the network. The output firing rate h of the
neuron is a nonlinear function of the internal voltage level:

h = s(a) (2.5)

with s an arbitrarily nonlinear function. In a biological setting, the relation s between the output firing
rate and the inner voltage level is typically as shown in figure 2.10. In a machine learning setting, various
nonlinear functions are used for s, most commonly the Rectified Linear Unit (ReLU), the sigmoid or the
tangens hyperbolicus.

2.2.2 Feed-forward neural network model
One of the most straightforward forms of artificial neural networks is a feed-forward neural network as
shown in figure 2.11a. The network consists of multiple layers of abstract neurons, with only feed-forward
connections (connection between a neuron of layer i with a neuron of layer i+1). As there are no inner
layer connections or recurrent connections, the information can only flow in the forward direction. The
following notation is used in this thesis: h j

i is the output value of the jth neuron of the ith layer. h j
0 are

the inputs of the feed-forward network (e.g. pixel values of a picture) and h j
L, with L the last layer of

the network, are the outputs of the feed-forward network (e.g. the probability that the picture contains
a cat). All other layers are called hidden layers, as they learn representations of the data without direct
external supervision. Typically a neuron of layer i is connected to all neurons of the previous layer i−1.
This network setting is called a fully connected network. A feed-forward network can be represented as a
vector for each layer, with as entries all the neurons in the specific layer, as visualized in figure 2.11b. The
relation between layers in the network can then be written as follows:

hi = f i(hi−1)= si(ai)= si(Wihi−1 +bi), (2.6)

with f i the umbrella layer function of layer i for ease of notation, si the non-linearity of layer i, Wi the
weight matrix of the weights connecting layer i−1 with layer i, bi the bias vector and hi the outputs of
layer i. In this thesis, vectors will be written in bold and matrices with a capital letter. As an exception,
loss functions L will also be written with a capital letter, although they are a scalar.
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Figure 2.9: Abstract representation of a
neuron, used in most artificial neural net-
works. xi ’s represent the inputs of the abstract
neuron, which can either be other neurons or
external inputs to the network. wi ’s are the
synaptic strengths, a the internal voltage level
and h the output firing rate.

Figure 2.10: Typical relation between input
current I [nA] of a neuron and its output
firing rate f [Hz]. Figure reprinted from [53].

(a) (b)

Figure 2.11: The feed-forward network. (a) Structure and notation of a feed-forward network with one
hidden layer and (b) vectorized structure and notation of a feed-forward neural network.

2.2.3 Training artificial neural networks
In machine learning, a distinction is made between three kinds of learning methods, depending on the
available training data:

• Supervised learning. If the dataset used to train the model consists of true input-output pairs{
(h0, ĥL)i

}
, there is a teaching output ĥL available to tell the model what the correct output is

supposed to be. This type of dataset is commonly called a labeled dataset. In supervised learning,
all data points and labels are available at the start of the training.

• Unsupervised learning. If the dataset only consists of input samples (e.g. a large dataset of unla-
beled animal pictures), the model cannot use teaching signals to learn. In unsupervised learning, the
model has to learn the underlying structure of the data by evaluating the statistics of the dataset,
without knowing what its output is supposed to be. Self-supervised learning, a subset of unsuper-
vised learning, uses the input samples for comparison with the outputs of the model. Auto-encoders
are a common example of self-supervised learning.

• Reinforcement learning. In reinforcement learning, no real dataset is available at the beginning
of training, but instead, an environment is given that the agent (machine learning algorithm) can
explore to gather its training data. An intuitive example of reinforcement learning is a video game.
The agent (player) can explore the virtual world, gathering new information with every action it
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takes. After a certain sequence of actions, the agent can get a feedback signal (e.g. reach the next
level in the game). Reinforcement learning (RL) differs from supervised learning (SL) for two main
reasons: (1) in RL, the algorithm can choose which data points it wants to explore, in contrast with
SL, where all data is given at the beginning of training and (2) the feedback signal in RL is typically
in a very low dimension (e.g. a scalar indicating reward), whereas in SL, the feedback signal can
have higher dimensions.

This thesis will mainly focus on supervised and unsupervised learning. The typical workflow of training
an ANN is visualized in figure 2.12. The available data should be split into three independent sets before
the start of the training: (1) the training data, used for training the ANN, (2) the validation data, used
for choosing the optimal model architecture and other hyperparameters and (3) the test data, used for
evaluating the final chosen model on data that it has never seen before. After that, the model is designed:
a suitable loss function is chosen and the hyperparameters such as the number of layers and neurons and
the regularization parameters are determined. Now the designed model can be trained on the training
data. This is typically done by an iterative non-linear optimization scheme with the following two steps
per iteration: (1) compute the gradient of the loss function with respect to the neuron weights and biases
(done by the back-propagation algorithm) and (2) use those gradients to perform an optimization step, most
commonly with stochastic gradient descent [1]. The trained model is then validated on unseen data from
the validation dataset. In most cases, multiple model designs are trained, and the performance of all the
trained models are tested on the validation dataset. The best model is picked out, and finally, this model
is evaluated on the test dataset, to check if its performance is consistent with the previous performance
on the validation dataset (to prevent overfitting on the validation data). In the following paragraph, three
important steps of this workflow are explained in more detail: designing the loss function, computing the
gradients with the backpropagation algorithm and performing the optimization step.

Figure 2.12: The machine learning work-flow, applied on deep learning.

Loss functions

A loss function indicates what you want to minimize during training or in other words, what you want
your network to learn. In a supervised learning setting, the outputs (or intermediate outputs) hL of the
network are compared to the true labels ĥL of the data by means of a loss function L(hL, ĥL). The most
commonly used loss functions for supervised learning are given in table 2.2. In an unsupervised learning
setting, defining the cost function is not that straightforward. Typically, custom loss functions are made
for each type of unsupervised ANN. For example, autoencoders use the input samples as a teaching signal
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for the output layer [54] and generative adversarial networks (GANs) [55] use a custom GAN loss e.g.
the Wasserstein distance [56]. An ANN is trained on a dataset which consists of many samples (either
input-output pairs or only input samples). The total loss of the network is then computed as the sum of all
sample losses:

L tot =
∑

i
L(i) (2.7)

Table 2.2: The most commonly used loss functions for supervised learning with deep neural
networks. hL is the output of the network and ĥL is the target of the output.

Loss function Formula Usage
L2

∥∥hL − ĥL
∥∥2

2 Regression with a linear output layer
L1

∥∥hL − ĥL
∥∥

1 Regression with a linear output layer
Cross-entropy loss −∑M

c ĥL,c loghL,c Classification with a softmax output layer

Backpropagation

Once the loss function is defined, the loss of each input-output pair of the dataset can be computed. To
know in which direction the parameters should be tweaked by the optimization algorithm, the gradients
of each loss to the model parameters should be calculated. This is typically done by the workhorse of deep
learning: backpropagation of the error, backpropagation in short, also known as the generalized delta rule
[57, 3]. The backpropagation algorithm is based on the chain rule of derivatives. First let us define δi as
the gradient of the loss function to the linear activation ai of layer i.

δi ,
( ∂L
∂ai

)T =
(∂hi

∂ai

)T(∂ai+1

∂hi

)T( ∂L
∂ai+1

)T = JT
hi ,ai

JT
ai+1,hi

δi+1 = DT
si

WT
i+1δi+1 (2.8)

with J the Jacobian matrix and Dsi diagonal matrix containing the partial derivatives of the nonlinear
activation function s(ai) to the linear activation of the layer ai. Note that because s′ is a diagonal matrix,
it can be replaced by a vectorized form to speed up computations. δi is often called an error signal, as
it represents the direction in which the output error (loss) increases the most by changing the linear
activation ai. The magnitude of δi indicates the magnitude of the increase. However, δi are in general not
pure error signals, but gradients, so I will call them simply helper variables to prevent confusion. These
helper variables can be cheaply computed recursively from the next layer’s δi+1. For ease of notation, we
define the function g i to perform the above computations:

δi = g i(δi+1)= DT
si

WT
i+1δi+1 (2.9)

The recursive process of computing the helper variables is shown in figure 2.13. Now that the helper
variables δi are computed, it is straightforward to compute the gradients of the loss function to the model
weights and biases:

∂L
∂Wi

= ∂L
∂ai

∂ai

∂Wi
=δihT

i−1 (2.10)

∂L
∂bi

= ∂L
∂ai

∂ai

∂bi
=δi (2.11)

The rightmost equalities hold because of the sparse structure of ∂ai
∂Wi

and that ∂ai
∂bi

is equal to the identity
matrix.
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Figure 2.13: Schematic network representation of backpropagation.

Optimization

An artificial neural network is trained by minimizing its loss function. The most straightforward method
is gradient descent. The weight updates are then given by:

∆Wi =−η∂L tot

∂Wi
(2.12)

∆bi =−η∂L tot

∂bi
(2.13)

with the gradients computed by backpropagation. In deep learning, usually very large training datasets
are used. This makes it very computationally expensive to compute the gradient of all the data samples
for each training iteration. Together with the need to overcome local minima, this problem gave rise to
stochastic gradient descent (SGD). In this optimization scheme, the gradient of the loss function for a
single sample is used as an estimate of the gradient of the total loss function in each training iteration.
SGD with mini-batches, a variant of normal SGD, uses a small subset of the dataset –called a mini-
batch– to estimate the gradient. When the optimization algorithm has gone through all the data once, it
is called an epoch. Usually, several epochs are needed to train an ANN. Note that also more elaborated
optimization algorithms can be used to train ANNs, such as second order (or approximate second order)
optimization strategies. However, variants of stochastic gradient descent are almost always used, due to
their computational simplicity and the large used datasets [58].

The biological problems of pure backpropagation

The great successes of artificial neural networks trained with backpropagation [1] raised the question of
whether our brain could also be doing backpropagation to learn. It is highly unlikely that pure backprop-
agation is used in a biological setting due to the following three main reasons [5, 4]:

1. Weight transport. As can be seen in equation (2.9), backpropagation requires that the weights of
the feedback path to compute δi are the transpose of the feed-forward weights. It is highly unlikely
that the feedback weights are coupled to the feed-forward weights in order to be always equal to each
other’s transposes, as they are separate synapses with no known direct communication. This issue
of weight transport is also often referred to as weight symmetry

2. Distinct plasticity of feedback weights. The feedback weights –known to provide attention
mechanisms and perceptual acuity enhancement in sensory cortices– are likely plastic [7, 59, 18].
This argument seems closely intertwined with the previous one, but a distinction is necessary as re-
cent research has shown that backpropagation-like algorithms can work with fixed random feedback
weights [6].

3. Distinct phases. The computations would need to be precisely clocked to alternate between the
feed-forward phase (needed to compute the output of the network) and the feedback phase (needed to
compute the gradients), as a neuron can only represent one voltage level. Arguments are made that
the known background oscillations in the brain [28] could provide a clocking mechanism for those
distinct phases [8], but with Occam’s razor [60] in mind and the fact that very simple organisms are
also able to learn, simpler solutions to this problem should be investigated.
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In recent years, the field of deep learning and neuroscience has made progress in addressing these cavities
in the biological plausibility of backpropagation and in searching alternatives to backpropagation. This
progress will be discussed in detail in chapter 3.

The credit assignment problem

In neuroscience, it is still an open question of how the brain can correctly change the local synaptic
strengths to achieve an improved global behaviour. This fundamental question is often referred to as the
credit assignment problem [3, 4]. In machine learning, the backpropagation algorithm is used for credit
assignment, as each synapse is changed along the direction and proportional to its negative gradient. The
core research question of this thesis is finding an algorithm for credit assignment in ANNs that could also
be implemented by our own brain.

2.2.4 Auto-encoder neural network models
Auto-encoder neural networks were first proposed as an unsupervised learning method to find a low di-
mensional representation of the data which can be used as a better alternative to principal component
analysis for data compression [61]. An auto-encoder consists of an encoder network coupled to a decoder
network, as shown in figure 2.14b. The encoder network is used to compress the input data to a low dimen-
sional bottleneck layer. The decoder network is used to decode the low dimensional representation back to
the original input data. The loss of the network is a measure of the difference between the reconstructed
data sample x̃ and the original data sample x, such as the L2 loss. As an alternative to the low dimen-
sional bottleneck layer for data compression, a sparse regularizer on the middle layer activations can be
used to enforce a low dimensional representation, such as the L1 loss [54].

(a) (b)

Figure 2.14: The auto-encoder.(a) A standard feedforward ANN with h0 the input and hL the output.
(b) An auto-encoder ANN with a bottleneck layer hb, input layer h0 and the auto-encoded input h̃0 as
output. The network to the left from the bottleneck layer functions as encoder, while the network to the
right of the bottleneck layer functions as decoder to reproduce the input.

Denoising auto-encoders. To make auto-encoders find a more robust lower dimensional representation
of the data, the input data can be corrupted with noise. The decoded output data is then compared with
the original uncorrupted data. This training method makes the auto-encoder less sensitive to noise. Auto-
encoders trained by this method are called denoising auto-encoders [62]. The denoising auto-encoder can
also be used to denoise corrupted data samples that are similar to the training data.

2.2.5 Spiking neural networks
All previous discussed deep learning models made use of scalar-valued signals, which represented the
average firing rate of the neurons. In biology, however, the signals are transmitted via spikes. A different
group of artificial neural networks, the spiking neural networks, simulates neurons communicating by
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spikes in time [63, 64]. One of the most simple and widely used models of a spiking neuron is the leaky
integrate and fire neuron [65]. This neuron model simply integrates the incoming spike trains to obtain its
voltage level, while having a small exponential leakage. Spiking networks have the following benefits in
nature.

• Robust signalling. From electrical communication theory, it is known that digital signals can be
transmitted more robustly over long distances compared to analogue signals. The action potential,
which can be seen as a digital signal, can propagate through the axon without diminishing in ampli-
tude, due to the specific action potential generating properties of the axon (section 2.1.2). If analogue
(voltage) signals would be used to communicate, a large part of the information would be lost due to
leakage in the axons and dendrites. In some small organisms, such as the C. elegans worm, graded
voltage signals instead of action potentials are observed [66]. This could be explained by the small
distance the signals in the axons have to travel, causing no voltage leakage issues.

• Energy saving. If the soma voltage level of a neuron is not above threshold, no spike is generated
so no energy is used. This property is called event based communication. If analogue voltage levels
would be used, also sub-threshold voltages would be transmitted, leading to larger energy usage.

• Neural code. Communicating with spikes opens the ability to use multiple different forms of neural
coding, such as phase coding (see section 2.1.2).

In machine learning, however, spiking neural networks have also disadvantages:

• Training. It is not yet discovered how to efficiently train spiking neural networks to perform tasks
such as classification, without first training a rate encoded network and afterwards converting it to
a spiking neural network.

• Computational complexity. To use spiking neural networks, the continuous time dynamics have
to be simulated. While nature has optimized our brain for doing this, regular computers are not,
making it very hard to simulate large spiking neural networks. Note that this is a hardware problem
and that efforts are made to make specialized hardware for spiking networks, such as the IBM’s True
North chip [67].

While spiking neural networks are more biologically realistic, this thesis does not use them, due to the
lack of knowledge on how to train them. It is hypothesized that spikes are mainly used in our brain for
energy saving and robust signalling, whereas the fundamental learning properties of the network can be
investigated by rate encoding networks.

2.3 Conclusion
This chapter gave the necessary background on both biological and artificial neural networks. In the sec-
tion on the biological neuron, it explained that biological neurons communicate through spike trains along
their axon and that biological neural networks learn from their environment by adapting the strength of
their synapses through various mechanisms of synaptic plasticity. We decided to use rate-coding to rep-
resent the information in the spike trains of neurons in the models that we develop in future chapters.
Furthermore, we showed a recent hypothesis from theoretical neuroscience that proposes a multiplexing
mechanism for neurons, by which a neuron can send two separate signals along its axon.

In the section on artificial neural networks, this chapter introduced the abstract neuron, better known as
the perceptron, and showed how neurons can be structured in multiple layers to create the multi-layer
perceptron, also known as a feed-forward neural network. After explaining the training framework of ar-
tificial neural networks, this chapter introduced error backpropagation, the algorithm by which artificial
neural networks perform credit assignment. We discussed that error backpropagation is highly unlikely
to be biologically plausible due to three main reasons: (1) the weight transport problem, (2) the coupled
plasticity of the feedback weights and (3) the need for distinct clocked phases during training. The follow-
ing chapter on related work will discuss the efforts from the field of biologically plausible deep learning to
create alternatives to error backpropagation that do not cope with the above three biological problems.
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Chapter 3

Related work

Almost immediately after the introduction of the backpropagation algorithm for artificial neural networks
in 1986 [3], the question emerged whether our brain could be doing something similar to tackle the credit
assignment problem. Neuroscientists in the 1980s agreed that this backpropagation algorithm for credit
assignment was not biologically plausible, most notably due to (1) the occurring weight transport, (2)
the lack of feedback weight plasticity and (3) the need for distinct phases (see section 2.2.3). In recent
years, the fields of neuroscience and deep learning have joined forces to tackle the open problem of how
our brain performs credit assignment in a biologically plausible manner. This chapter reviews the most
important progress made in this field: target propagation, feedback alignment and segregated compart-
ment neural models. Target propagation is a new alternative to backpropagation for performing credit
assignment in neural networks. Instead of propagating gradient signals backwards through the network,
the target signal is propagated back. Each layer thus receives its own local target which it can use for
local credit assignment. Target propagation solves the weight transport issue and the feedback plasticity
issue. Feedback alignment is closely related to backpropagation and solves the weight transport issue.
Instead of using the feed-forward weights to propagate the derivatives backwards through the network, it
uses fixed random feedback weights to propagate error-like signals back through the network and shows
that networks learn to interpret these feedback signals. Finally, the segregated compartment neural mod-
els combine aspects of target propagation and feedback alignment with biological properties of pyramidal
neurons to provide more biologically plausible algorithms. This section first explains target propagation
and its variants, after which it discusses feedback alignment and its variants. Lastly, this section closes
with analysing the segregated compartment neural network models.

3.1 Target propagation and its variants
The main idea of target propagation is to propagate target values for each layer backwards in the network,
based on the supervised output target [9, 5]. These layer specific targets are meant to provide a smaller
global loss while staying close to the current activation of the layers. Target propagation differs from back
propagation, where the partial derivatives of the output layers cost function are back-propagated through
the layers. From a machine learning point of view, target propagation has as a benefit that it can handle
discrete networks in a more natural way. From a biological point of view, target propagation solves the
weight transport and feedback plasticity issues of section 2.2.3 that back-propagation encounters. In the
following, the original target propagation algorithm is explained based on [5], after which some variants
on target propagation are elaborated.

3.1.1 Target propagation
Model setup. Let us consider a supervised deep learning setting, with inputs x and outputs y sampled
from an unknown distribution p(x, y). The network structure is then defined by:

hi = f i(hi−1)= si(Wihi−1), i = 1, ...,L (3.1)

where hi represents the activation of the i-th layer (with h0 = x and hL the output of the network), f i
is the i-th layer feed-forward mapping, with si a nonlinearity (e.g. ReLU) and Wi the weight matrix of
the feed-forward weights of the i-th layer, representing the synaptic strenghts. Note that the bias term is
absorbed into Wi for simplicity of notation. This model setup is visualized in figure 3.1
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Figure 3.1: Schematic network representation of target propagation.

Cost functions. Let θi: j
W denote the subset of parameters (weights) defining the mapping from layer i

to layer j. Now h j can be written in function of an arbitrarily lower layer i: h j = h j(hi;θ
i: j
W ). Now an

arbitrary cost function can be written in a form to emphasize the dependence on a particular layer i:

L
(
hL(x;θ0:L

W ), y
)
= L

(
hL

(
hi(x;θ0:i

W );θi:L
W

)
, y

)
(3.2)

The purpose of target propagation is to assign for each layer a nearby target ĥi that leads to a lower global
loss. The targets ĥi need thus to fulfill the following inequality:

L
(
hL

(
ĥi;θi:L

W
)
, y

)
< L

(
hL

(
hi(x;θ0:i

W );θi:L
W

)
, y

)
(3.3)

Now that each layer has a target (the specific assignments of proper targets will be discussed later), we
want to update the parameters of the network to let hi make a small move towards ĥi. This can be
done with the help of a local layer cost function L i(ĥi,hi), for example the Mean Squared Error (MSE)
loss function or other loss function in table 2.2. Now Wi can be updated locally with the help of this loss
function if hi−1 and ĥi are considered constant:

∆Wi =−η f i

∂L i(ĥi,hi)
∂Wi

=−η f i

∂L i(ĥi,hi)
∂θi−1:i

W

=−η f i

∂L i(ĥi,hi)
∂hi

∂hi
(
hi−1;θi−1:i

W
)

∂θi−1:i
W

(3.4)

with η f i the local layer learning rate. Note that the use of derivatives in this local setting is less likely to
cause problems like vanishing or exploding gradients, because the computations are done in a single layer,
which lowers the chance on strong non-linearities.

Assigning proper targets. The question remains how to find proper targets ĥi that fulfill (3.3). In
general, it is hard to track the influence of a local target ĥi on the global cost function, so we reduce the
requirement for a target ĥi to be a proper target to a condition on the local layer loss:

L i
(
ĥi, f i(ĥi−1)

)< L i
(
ĥi, f i(hi−1)

)
. (3.5)

In a supervised setting, the target of the top layer should be tweaked to a lower global loss via its gradient:

ĥL = hL − η̂ ∂L(hL, y)
∂hL

, (3.6)

with η̂ a small step size. In order to propagate this upper layer target to the lower layers, we can use an
"approximate inverse", as proposed in [9]. So for each mapping function f i+1, we try to find a function g i
for which

f i+1
(
g i(hi+1)

)≈ hi+1 or g i
(
f i+1(hi)

)≈ hi. (3.7)
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Now we can propagate the targets through the layers via

ĥi = g i(ĥi+1). (3.8)

Figure 3.1 visualizes this process. If g i is the perfect inverse of f i, the left side of (3.5) is zero and the
inequality holds trivially. Furthermore, in [5] they prove that if g i is a perfect inverse of f i and if f i
has a certain structure, the update direction of target propagation deviates no more than 90 degrees
from the gradient direction (obtained by back-propagation). However, in general, it is not possible or
computationally infeasible to compute a perfect inverse. We can try to approximate the inverse in an
auto-encoder setting of f i and g i, with g i parametrized as follows:

g i(ĥi+1)= ti(Q i ĥi+1) (3.9)

with ti a non-linear activation function (can be different from the forward activation function si), Q i the
backward weight matrix and the bias term included in Q i for simplicity of notation. In this setting, f i+1
can be viewed as the encoder and g i as the decoder. g i can then be trained via a reconstruction loss:

Linv
i

(
g i

(
f i+1(hi)

)
,hi

)
= ∥∥g i

(
f i+1(hi)

)−hi
∥∥2

2 . (3.10)

Q i can then be trained via this local loss:

∆Q i =−ηg i

∂Linv
i

∂Q i
=−ηg i

∂Linv
i

∂g i
(
f i+1(hi)

) ∂g i
(
f i+1(hi)

)
∂Q i

(3.11)

= 2ηg i · t′i
(
Q i f i+1(hi)

)T
(
hi − g i

(
f i+1(hi)

))
f i+1(hi)T (3.12)

With t′i the Jacobian of the nonlinear activation function, which is a diagonal matrix in the case of element
wise nonlinearities. Note that also loss functions other than the MSE could be used. This is however not
yet explored in literature for target propagation. In order to obtain an inverse mapping of the neighbouring
region around the training points instead of only the training points themselves, the authors of [5] opted
for noise injection in the local inverse loss function

Linv
i

(
g i

(
f i+1(hi)

)
,hi

)
= ∥∥g i

(
f i+1(hi +ε)

)− (hi +ε)
∥∥2

2 , ε∼N (0,σ) (3.13)

with σ a chosen hyper parameter. Similarly to denoising auto-encoders, this increases the robustness
of the auto-encoding couple f i+1 and g i. Now that g i is an approximate inverse of f i instead of the exact
inverse, there is no guaranty anymore that the computed targets will lead the network layers to a decrease
in local cost (3.5) and the network itself to a decrease in global cost (3.3). This is a central problem in
target propagation and is the major cause of the poor performance of "vanilla" target propagation so far
in literature. Several variants of target propagation have been developed to cope with this problem, and
these algorithms will be discussed in the next section.

Major future challenges

• Signals will travel up and down through different possible loops, arriving at a neuron after different
time delays due to the recurrence introduced in the network. Ideally, the continuous time dynamics
should be taken into account, thus care has to be taken when the network is discretized, for example
in which order the neurons and synapses in the network are updated.

• The inverse mapping function f −1
i is known to be hard to approximate by g i. As a simple intuition:

the vanilla target propagation will have difficulties when different instances of the same class have
varying appearances, as the back-propagated targets will always be the same for the same class, if
no information other than the class labels is used in the upper layer to generate the targets. This
problem arises due to the decoupling of the forward and backward signals, as they don’t influence
each other directly. In error back-propagation, the propagated error is directly influenced by the feed-
forward activations, which makes the back-propagated error sample specific. The inverse mapping
will cause two issues: (1) there is no certainty that the inverses that we try to approximate even exist
and (2) even if the inverses exist, it will not be trivial to let the network converge, as the inverses
are hard to approximate. In order to make a working version of target propagation on challenging
datasets, first, a solution for these two problems should be found.
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3.1.2 Variants on Target propagation
Currently, there exist 3 closely related variations on target propagation to the best of our knowledge: (1)
Difference Target Propagation (DTP) [5], (2) Simplified difference target propagation (SDTP) [11] and (3)
Auxiliary output SDTP (AO-SDTP) [11].

Difference target propagation

A logical requirement for the training process of target propagation to converge is that if the activation
matches the target in a certain layer, the activation of the lower layers also should match their targets:

hi = ĥi ⇒ hi−1 = ĥi−1. (3.14)

Otherwise, the lower weights will still be adjusted during training, even if the output layer matches per-
fectly its target, leading to an increase in global loss. If g i = f −1

i , condition (3.14) holds trivially, but if g i
is not a perfect inverse, a correction term is needed to make the condition hold. This correction term was
introduced in [5] under the name "difference target propagation"

ĥi−1 = g i(ĥi)+hi−1 − g i(hi) (3.15)

Now condition (3.14) holds by definition. This correction makes a lot of sense in a machine learning point
of view (for above reason), and in [5] it is proved that condition (3.5) holds for DTP under mild conditions
for g i and f i. In a biologically point of view however, difference target propagation is harder to motivate.
To compute the target ĥi−1, two distinct signals (hi and ĥi) need to go through the same channel g i, which
rises the need for separate phases. These phases could be coordinated by background occilations [28], as
discussed in section 2.2.3, but there is not yet experimental evidence proving that this is possible.

In classification problems, the output layer is usually of much smaller dimension than the second last layer,
and this causes severe problems for the inverse mapping between these layers. To cope with this problem
in DTP, they set ĥL−1 = hL−1 − η̃ ∂L(hL ,y)

∂hL−1
. In other words, the gradient is back-propagated into the second

last layer. This is of course not biologically motivated and was only done to improve the performance of
DTP.

Simplified Difference Target Propagation

Simplified Difference Target Propagation (SDTP) [11] removes the gradient backpropagation between the
last two layers to make it more biologically plausible. It is thus literally a simplified version of DTP. Of
course, the performance of the algorithm suffers from this simplification, and that is why Auxiliary output
SDTP was developed.

Auxiliary output SDTP

In Auxiliary output SDTP (AO-SDTP) [11], a different solution for the inverse mapping problem between
the two last layers is proposed. To give the inverse mapping auxiliary information about the activation of
the second last layer ĥL−1, a composite structure for the output layer is introduced: hL = [o, z], with o the
predicted class distribution and z an auxiliary output vector. This auxiliary output z can then be used to
generate more varying targets for the second last layer:

ĥL−1 = gL−1(ô, z;QL−1)+hL−1 − gL−1(o, z;QL−1), (3.16)

with ô the correct class distribution, z computed from z = sL
(
W̃LhL−1

)
and QL−1 the parameters of the

inverse mapping. z does not need to match some external data, and is only used to improve the inverse
mapping. Their forward weights W̃L can thus be kept constant to simplify the training process (as the
inverse weights still can change).

3.2 Feedback Alignment and its variants
In contrast to target propagation, which is a new alternative to backpropagation, feedback alignment
[68, 6] is closely related to backpropagation. In feedback alignment, they discovered that if the feedback
weights in backpropagation –normally equal to the transpose of the feed-forward weights– were instead
random and fixed, the network was still able to learn. In the following, the setup of feedback alignment
is explained, after which the current variants on feedback alignment are discussed. For a deeper under-
standing of why feedback alignment can work, the reader is referred to [6].
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3.2.1 Feedback Alignment
Feedback alignment (FA) shows that a deep neural network does not need the exact transpose of the feed-
forward weights as feedback weights to propagate useful feedback signals through their layers, thereby
resolving the biological implausibility of weight transport in backpropagation, mentioned in section 2.2.3.
FA uses a fixed random feedback matrix Bi instead of the symmetric weight matrix WT

i to propagate
error signals δi backwards through the network. Figure 3.2 shows a schematic representation of the
propagating signals in feedback alignment. The forward mapping function f i is the conventional mapping
used in feedforward networks:

hi = f i(hi−1)= si(Wihi−1), i = 1, ...,L, (3.17)

with the bias term included in Wi for simplicity of notation. The feedback mapping function g i for the
error signals δi is defined by:

δF A
i = g i(δF A

i+1)= Dsi Biδ
F A
i+1, i = 1, ...,L−1, (3.18)

with Dsi the Jacobian of si(ai) with respect to ai. This backward mapping is based on back propagation,
where g i is defined by:

δBP
i = g i(δBP

i+1)= Dsi W
T
i+1δ

BP
i+1, i = 1, ...,L−1, (3.19)

with δBP
i−1 = ∂L

∂ai
, and ai = Wihi−1 the linear activation of the layer. The forward weights in FA are then

updated according to this propagated error signal:

∆Wi =δF A
i hT

i−1 (3.20)

In [68, 6] it is shown that during learning, the propagated error of feedback alignment starts to align
with the real back-propagated error, more precisely that angle between the backpropagation update and
feedback alignment update is smaller than 90 degrees (δF A

i ∠δBP
i < 90°). The feed-forward weights thus

learn to use the random backward mappings of the output error with as a result that the backwards
propagated errors point in a useful direction for the network to learn.

Performance In [11], the authors show that the performance of FA is almost equal to back-propagation
on simple datasets like MNIST [10] and CIFAR-10 [69], but that it performs much worse than back-
propagation on difficult data sets like ImageNet when specialized architectures are needed. In [70] the
performance of FA on ImageNet is slightly improved, but remains still much worse compared to back-
propagation. It is also mentioned in [6] that for FA to be able to perform well, there has to be some
redundancy available in the representations in the hidden layers, otherwise the network does not have
the flexibility to learn their weights Wi to both align with the random feedback matrix Bi and to learn
useful hidden representations for the supervised task. It is shown for example that in auto-encoders with
a bottleneck, FA performs badly.

Figure 3.2: Schematic network representa-
tion of Feedback Alignment (FA).

Figure 3.3: Schematic network representa-
tion of direct feedback alignment (DFA).
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3.2.2 Direct feedback alignment
In [71] it is shown experimentally that the random feedback mapping of the error does not have to be
layer-wise, but can also be in a direct connection from the last layer error to the wished hidden layer, as
visualized in 3.3. This extension of feedback alignment is called ’Direct Feedback Alignment (DFA)’. Here
the feedback mapping function g̃ i is defined as follows:

δDF A
i = g i(δDF A

L )= Dsi B̃iδ
DF A
L , i = 1, ...,L−1 (3.21)

This direct connection between the outer layer error and the hidden layers has as benefit that no vanishing
gradient or exploding gradient problems occur when used in very deep networks, but this learning method
performs a lot worse in comparing to FA on MNIST and CIFAR-10 [11].

3.2.3 Broadcast Feedback Alignment
Feedback alignment solves one of the major biological implausibilities of back-propagation: weight trans-
port between the feed-forward weights and the feed-backwards weights. Therefore, a logical extension of
FA is to test if it works in a more biological setting, such as with spiking neurons. This extension is ex-
plored in Broadcast Feedback Alignment (BFA) [72], where the authors train a neural network consisting
of leaky-integrate-and-fire (LIF) spiking neurons on MNIST. BFA largely resembles DFA but uses a couple
of extensions to make it work on a LIF spiking neural network. These extensions will not be discussed in
this thesis, as we will not work with spiking networks. The authors of [72] show that feedback alignment
also works on spiking neural networks. It achieves state-of-the-art performance on the MNIST dataset
for spiking neural networks and thus shows that biological inspired spiking neural networks can learn
without weight transport between feed-forward and feed-backwards weights.

3.2.4 Bidirectional Feedback Alignment
A major biological shortcoming of feedback alignment is that the random feedback weights are fixed, while
in the brain all the synapses, both feed-forward and feed-backwards, are plastic. One attempt to fix this
shortcoming is Bidirectional Feedback Alignment (BDFA) [73]. In this learning scheme, two phases are
used to update respectively the feed-forward and feed-backwards weights, as illustrated in figure 3.4.
Phase one (indicated by superscript f ) is almost exactly the same as in normal feedback alignment: the
input is fed through the network by f f

i in the forward direction, and the error is propagated from the last
layer to the hidden layers via g f

i (figure 3.4a) to update the feed-forward weights Wi.

h f
i = f f

i (h f
i−1)= si(Wih

f
i−1), i = 1, ...,L, (3.22)

δ
f
i = g f

i (δ f
i+1)= Dsi Biδ

f
i+1, i = 1, ...,L−1, (3.23)

∆Wi =δ f
i (h f

i−1)T . (3.24)

In phase two (indicated by superscript b), the feedback weights are updated to let the sequence of backward
mappings gb

i approximate the inverse of the sequence of forward mappings f f
i as follows: the true target

hb
L = y is propagated backward through the network via gb

i and the reconstructed input hb
0 = x̂ is compared

to the original input h f
0 = x via the auto-encoder loss Lb = ‖x− x̂‖2

2. Then the derivative of this loss with
respect to the reconstructed input (more precisely the linear activation ab

0 of the reconstructed input) δb
0

is propagated forward through the network via f b
i to provide a teaching signal for the feedback weights Bi

(as visualized in figure 3.4b).

hb
i = gb

i (hb
i+1)= si(Bihb

i+1), i = 1, ...,L, (3.25)

δb
i = f b

i (δb
i−1)= Db

si

(
Wiδ

b
i−1

)
, i = 1, ...,L−1, (3.26)

∆Bi =δb
i (hb

i+1)T , (3.27)

with Db
si

the Jacobian of si(Bihb
i+1) with respect to Bihb

i+1. The learning of the inverse mapping gb
i reminds

us of target propagation, leading one to think of BDFA as a combination of FA and TP. There are however
two important differences in comparing to TP:

1. BDFA propagates a pure error signal through the layers, derived from the global loss function (in
both forward and backward phase). In Target Propagation, a target signal for each layer is propa-
gated, after which a local loss in each layer is computed with that local target.
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2. BDFA tries to learn the inverse mapping gb
i by propagating the output target through the whole

network and afterwards propagating the auto-encoder error through the network with FA. In TP,
however, the inverse mapping is learned layer by layer individually. BDFA also does not use a pure
auto-encoder, as it feeds the output target through the network instead of the forward output of the
network. There is no clear benefit of why they do this, and this can be expected to deteriorate the
performance.

(a) Forward weights update phase (b) Backward weights update phase

Figure 3.4: Schematic network representation of Bidirectional Feedback Alignment (BDFA). (a)
The feed-forward weight update phase. (b) The feedback weight update phase.

Performance In [73] they show that BDFA performs better than normal FA on simple tasks (e.g.
MNIST), however, when compared to the results of a more recent study on FA [11], BDFA underper-
forms normal FA. On more complex tasks (e.g. CIFAR) BDFA performs even worse, because the inverse
mapping is much harder to learn, making it harder for the network to interpret the error signals than in
the case of random fixed feedback matrices. In pure FA, the feed-forward weights align with the fixed feed-
back weights in order to receive useful feedback signals. If the feedback weights are not fixed anymore,
without giving additional benefits, the feed-forward weights will have more difficulties with aligning to
the feedback weights.

Biological Plausibility Whereas the authors of [73] proposed BFA to be more biologically plausible
than FA because of the plastic feedback weights, they introduce other methods to the learning scheme
that are biologically highly unlikely:

• There are now four distinct phases that need to be coordinated precisely after each other: (1) prop-
agate the input forward through the network, (2) propagate the output error backward through the
network to update the forward weights, (3) propagate the output target backward through the net-
work to reconstruct the input and (4) propagate the auto-encoder error forward through the network
to update the backward weights.

• There are now 4 distinct channels that share weights (Wi and Bi), but have different mapping func-
tions and process different signals (making it highly unlikely that they are represented by the same
biological channel), whereas in biological networks you only have two distinct channels (feed-forward
and feed-backwards)

3.3 Learning with segregated dendrites
Feedback alignment and target propagation were both developed from a deep learning point of view and
received a biological interpretation later on. This section discusses 2 models that are greatly inspired by
the specific properties of pyramidal neurons in our brain to solve the credit assignment problem.

3.3.1 Deep learning with segregated dendrites
In order to solve the credit assignment problem in a more biologically plausible way, the authors of the
segregated dendrites deep learning model [8] were inspired by the following four observations:
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1. Current solutions to the credit assignment problem in deep learning without weight transport (target
propagation and feedback alignment) need segregated feed-forward and feedback signal pathways
or distinct phases to transmit the two signals [6, 5].

2. In the neocortex, feedforward sensory information and higher-order feedback signals are largely
received in respectively the basal dendrites and apical dendrites (see section 2.1.1).

3. The apical dendritic compartments are electrically distant from the soma of the neuron. As com-
munication between the two, plateau potentials are generated (see section 2.1.2). These plateau
potentials can generate burst spiking groups at the soma.

4. Plateau potentials can guide synaptic plasticity in pyramidal neurons in vivo [74, 75].

With their proposed model, the authors manage to solve the weight transport issue in a biological setting.

Model. For a detailed view on the model dynamics and the plasticity rules, the reader is referred to
[8]. In what follows, an intuitive approach to the model is explained. Figure 3.5 shows the network
structure of the segregated dendrite deep learning model. Each compartment has its own voltage level.
The voltage level of the basal and apical compartments depends respectively on the feed-forward inputs
and the feedback inputs. The authors use a spiking neural network model, in which the voltage levels of
the dendritic compartments are simply the weighted sums of the incoming spike trains with the synaptic
strengths as weights, and the spike trains are generated by a Poisson process. To understand the model
intuitively, however, it is sufficient to assume a rate encoded network. The voltage level of the soma is
largely dependent on the voltage level of the basal compartment, and only weakly connected to the apical
voltage level. At the apical dendritic compartment, plateau potentials are generated, which are modelled
as a time window average of the apical compartment voltage level.

Figure 3.5: Structure of the deep learning model with segregated dendrites. (A) the three-
compartment model of the pyramidal neuron. (B) The network structure of a segregated dendrite network
with one hidden layer. Figure adapted from [8].

Learning mechanism. The learning method of this model is a mixture between difference target prop-
agation [5] and feedback alignment [6], structured in two distinct learning phases.

1. Free phase. During the free phase, no teaching signals are imposed on the output layer. Sensory
signals are propagating forward through the network, and feedback signals (originating from the
feed-forward activation of the output layer) are propagated back to the hidden layer of the network,
which result in plateau potentials in this hidden layer. These plateau potentials are similar to g i(hi)
in equation (3.15) of difference target propagation.
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2. Target phase. During the target phase, the output layer is tweaked to the target value by a ’teach-
ing current’, similar to target propagation. Now the output layer will send different feedback inputs
to the hidden layer, causing different plateau potentials to occur in this layer. These plateau poten-
tials are similar to g i(ĥi) in equation (3.15) of difference target propagation.

The feedback weights to the apical dendrites are kept fixed, as in feedback alignment. Similar to difference
target propagation, a local L2 loss is computed in the hidden layer:

Lh = ∥∥ĥh −hh
∥∥2

2 (3.28)

=
∥∥∥hh +αt

h −α f
h −hh

∥∥∥2

2
(3.29)

=
∥∥∥αt

h −α f
h

∥∥∥2

2
(3.30)

with hh the hidden layer activation, ĥh the target of the hidden layer, computed as in (3.15), and αt
h and

α
f
h the plateau potentials in the hidden layer of respectively the target phase and free phase. The forward

weights of the hidden layer are then updated via the gradient of the local loss function.

Discussion. The contribution of this work is the introduction of the segregated compartment model as
a more biologically correct version of the abstract pyramidal neuron. Mathematically, their model is not
innovative, as it is a plain combination of difference target propagation and feedback alignment. The
biological arguments the authors provide for this model are a step in a good direction, however, there are
still issues that need to be further investigated:

• The plateau potentials in this model are only used to regulate the plasticity of the basal synapses.
The somatic voltage level is only very weakly coupled to the plateau potentials. However, it is exper-
imentally observed that the plateau potentials interact greatly with the soma, generating bursting
spikes (see section 2.1.2 and [21]).

• There is no mechanism in place in the model to propagate the plateau potentials through multiple
hidden layers in the network. The authors now solve this issue by having direct connections from
the output layer to each hidden layer, similar to direct feedback alignment [71]. This is no optimal
solution, as it breaks the layered structure of the feed-forward path, which makes it harder for the
network to learn representations of the data in multiple layers of abstraction. This issue is reflected
in their results, that state that the network does not improve further when modelling more than 2
hidden layers. The multiplexing properties of a neuron, discussed in section 2.1.2, could provide a
biological solution for this problem.

• Two separate phases are needed for their model: free phase and target phase. This could be co-
ordinated in the brain with the help of background oscillations as discussed before, but this is a
complicated solution with so far no experimental evidence supporting it.

3.3.2 Dendritic error backpropagation
The dendritic error backpropagation model [7] consists of cortical microcircuits of pyramidal neurons and
inhibitory interneurons as shown in figure 3.6. The modelled pyramidal neurons consist of the same three
compartments as in the segregated dendrites model. The used interneurons consist out of two compart-
ments: the basal dendritic compartment and the soma. In this model, each compartment has its own
voltage level. The dynamics of the dendritic voltage levels depend on their inputs and connection weights,
the dynamics of the soma voltage level depends on the voltage level of the dendritic compartments. The
output firing rates of both types of neurons are a non-linear function of their soma voltage level. The spe-
cific wiring of the cortical microcircuit can be seen in figure 3.6. The feed-forward connections arrive at the
basal dendritic compartment, the feedback connections and the connections from the inhibitory interneu-
ron arrive at the apical compartment of the pyramidal neuron. The interneurons receive connections from
the basal compartments of all pyramidal the neurons in the same layer and its output connects to the
apical compartments of all pyramidal neurons in the same layer. On top of that, each interneuron receives
a small teaching current of one neuron of the next layer (one-on-one pairing). With this proposed model,
the authors manage to solve the weight transport issue of backpropagation and have a learning method
without phases, all in a biological setup.
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Figure 3.6: Structure of the cortical microcircuits used in the dendritic backpropagation model.
Figure adapted from [7].

Learning mechanism. For the detailed description of the dynamics of the microcircuits and their plas-
ticity, the reader is referred to [7]. In what follows, an intuitive explanation of the learning mechanism is
proposed.

• Local dendritic prediction. Before the actual training of the network begins, the interneurons
learn to predict the feedback input of its coupled pyramidal neuron, given the feedforward activation
of the pyramidal neurons in its layer. This local prediction can be achieved by letting the plasticity
of the synapses from the interneuron to the apical dendrites be driven by the negative of the api-
cal dendrite voltage level. This plasticity rule drives those synapses to always counterbalance the
feedback input that the apical compartment receives, as then the total voltage level of the apical
compartment is zero. After that the network is initialized in its self-predicting state, the plasticity
of the synapses from the interneuron to the pyramidal neuron is kept on, so the synapses can adapt
to the changing network during training.

• Local prediction error. During the training phase, a teaching current is imposed on the output
layer of the network (new associative input in figure 3.6). Now the interneurons of the hidden layers
cannot exactly predict the feedback inputs anymore, as the output layer is tweaked to another value
by the teaching current, which cannot be explained by the feed-forward activity of the network alone.
This results in a non-zero voltage level in the apical dendritic compartment, which can be interpreted
as an error signal. This error signal influences the voltage level of the soma. The plasticity of the
basal synapses (connecting the previous layer pyramidal neurons to the current one) is driven by the
difference of the soma voltage level and the basal voltage level. If there is no error signal, the soma
voltage level is solely driven by the basal voltage level, thus there occurs no plasticity. If there is an
error signal, the difference will be non-zero and plasticity occurs.

• Local teaching currents. To improve learning, a weak feedback coupling from higher layer pyra-
midal neurons to the interneurons is introduced (shown in striped lines in figure 3.6). This makes
the interneuron able to mimic the higher layer activity, by adapting its basal weights.

• Feedback weights. The synapses connecting the higher layer pyramidal neurons to the apical den-
dritic compartment of the current neuron are random and fixed. As shown in the feedback alignment
algorithms, the network is still able to deduce useful teaching errors with random fixed feedback
weights. Sacramento et al. [7] show that the network can also learn with plastic feedback weights,
through a mechanism similar to difference target propagation.
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Discussion. The dendritic error learning rule is an elegant interpretation of the properties of the ob-
served microcircuits in the human brain. The used neural dynamics are more realistic compared to the
dynamics of the previously discussed segregated dendrites model. The performance results of this learn-
ing rule are close to the ones of backpropagation on MNIST. The authors also prove that their model is an
approximation of backpropagation [7]. From a biological point of view, this model solves all three issues
of error backpropagation (no weight transport, feedback plasticity and no distinct phases). However, it
introduces two new issues that prevent the model from being an all-comprehensive biologically plausible
learning method:

1. The network makes use of a dedicated micro-circuit, in which each pyramidal cell needs a corre-
sponding interneuron. Hence, there must be at least as many interneurons as pyramidal neurons in
the next layer for the self-prediction to work. However, 70−85% of the neurons in the cerebral cor-
tex are pyramidal neurons, the other 15−30% are interneurons and aspiny non-pyramidal neurons,
which cover a wide variety of other neurons [17].

2. The local teaching current from higher layer pyramidal neurons to the interneurons is a direct cou-
pled current proportional to the voltage levels, instead of spike trains that travel through connecting
synapses.

3.4 Conclusion
In this chapter, the relevant learning models that try to merge deep learning with neuroscience were dis-
cussed. The field of biologically plausible deep learning was only recently developed, although already a lot
of progress has been made. The two major advances in abstract biologically plausible learning methods are
target propagation and feedback alignment. In the literature was mentioned that the pure form of target
propagation performs poorly, but that difference target propagation, a variant of target propagation, can
reach good performance on benchmark datasets such as MNIST. The deep learning model with segregated
dendrites [8] and the dendritic error backpropagation model [7] use both difference target propagation and
feedback alignment to create a learning model based on the properties of pyramidal neurons. The den-
dritic error backpropagation model of Sacramento et al. [7], succeeds in tackling all the three biological
issues of backpropagation mentioned in section 2.2.3, however, it needs a very specific cortical microcircuit
structure that is unlikely to be found in large numbers in the brain. Table 3.1 gives an overview of the
performance of the discussed learning algorithms on the MNIST and CIFAR-10 dataset [10, 69].

Table 3.1: Comparison of the discussed learning methods. The test error (%) is given for fully
connected networks on the MNIST and CIFAR-10 dataset. For MNIST, 5 fully connected layers of 256
neurons were used, with a softmax layer on top. For CIFAR, 3 fully connected layers of 1024 neurons
were used, with a softmax layer on top. For the segregated dendrites algorithm, a fully connected network
of 2 hidden layers was used, resp. with 500 and 100 neurons. For the dendritic error algorithm, a fully
connected network of 2 hidden layers was used, both with 500 neurons. As a summary, the solved biological
issues are also displayed per algorithm. [11, 7, 8, 73]

Algorithm Test error [%] Solved issues

MNIST CIFAR No weight transport Feedback plasticity No phases

DTP 1.83 42.32 3 3 7
SDTP 2.28 54.27 3 3 7

AO-SDTP 1.86 45.40 3 3 7
FA 1.85 41.97 3 7 7

DFA 2.75 47.80 3 7 7
BFA 2.37 / 3 7 7

BDFA 2.84 48.01 3 7 7
Segr. dendrites 3.20 / 3 7 7
Dendritic error 1.96 / 3 3 3

BP 1.48 41.32 7 7 7

In the next chapter, we delve deeper into target propagation by developing an extensive mathemati-
cal foundation of the method and by showing why the pure form of target propagation performs poorly,
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whereas its variant difference target propagation reaches good results. In chapter 6, we go further on the
work of Sacramento et al. [7] and Guerguiev et al. [8] by developing a new segregated dendrite model of
pyramidal neurons that exhibits target-propagation-like learning dynamics.
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Chapter 4

A theoretical analysis of Target
Propagation

In this chapter, a thorough theoretical analysis of target propagation and its variants is done to gain a
deeper understanding of the network learning mechanisms. This makes a significant contribution to the
field of target propagation and biologically plausible training methods for deep learning more generally,
as most of these methods do not yet have a solid mathematical foundation. This chapter starts with in-
vestigating the ideal form of target propagation: target propagation with exact invertible layers. The
characteristics of the propagated targets are investigated by linear Taylor approximations and an efficient
implementation of target propagation with exact inverses is explored. The next section handles the main
result of this chapter: target propagation with exact inverses uses Gauss-Newton optimization to compute
its local layer targets. After proving this main theorem, we discuss the implications of this insight on
designing suitable training schemes for target propagation. The last section investigates the target prop-
agation method in a more general setting, as now the backward mapping functions learn to approximate
the inverses of the forward mapping. First, the implications of the occurring reconstruction errors on the
learning signals are investigated, after which we propose new approximation methods for learning the
inverses. The section ends with the second main result of this chapter: under well-specified conditions,
difference target propagation uses Gauss-Newton optimization to compute its local layer targets, without
the need for the existence of perfect inverses.

4.1 Target propagation with exact inverses
This section starts with investigating how the targets are backpropagated through the layers, after which
it proves that for sufficient small step sizes, the update direction computed with target propagation is
always a descending direction. Finally, an efficient implementation of the exact inverses is discussed.

4.1.1 A linear Taylor approximation of the local layer targets
Figure 4.1 shows the schematic network representation of pure target propagation. The forward propaga-
tion of layer activations is defined by

hi = f i(hi−1)= si(Wihi−1), i = 1, ...,L (4.1)

and the backward propagation of target activations is defined by

ĥi = g i(ĥi+1), i = L−1, ...,0. (4.2)

Throughout the rest of the thesis, no biases will be used in the analyses, for ease of notation. The created
mathematical framework can be extended to include biases by using homogeneous coordinates. This ex-
tention is left for future research. Let us now consider the ideal case, in which g i is the perfect inverse of
f i+1:

g i(ĥi+1)= f −1
i+1(ĥi+1)=W−1

i+1s−1
i+1(ĥi+1). (4.3)

Note that for this perfect inverse to exist, the forward nonlinearity si has to be invertible (e.g. a leaky
ReLU) and the matrix Wi has to be square and of full rank. This implies that the network layers all need
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Figure 4.1: Schematic network representation of target propagation.

to have the same dimensions. Later in this thesis, we will propose methods to relax this strict condition
on the layer dimensions. Lets now define the target of the output layer as the forward output, tweaked in
the direction of lower loss:

ĥL = hL − η̂eL (4.4)

eL ,
∂L
∂hL

, (4.5)

with η̂ the output target step size, L the loss function of the network and eL the gradient of the loss
function with respect to the output, which can be interpreted as an error signal if for example the L2 loss
is used. To investigate how the output target gets propagated backwards through the network, we do a
Taylor approximation around hi for each local layer target ĥi. For clarity, we start with ĥL−1.

ĥL−1 = gL−1(ĥL)= gL−1(hL − η̂eL) (4.6)

= gL−1(hL)− η̂JgL−1 eL +O (η̂2) (4.7)

= hL−1 − η̂JgL−1 eL +O (η̂2) (4.8)

with Jg i the Jacobian of g i with respect to hi+1, evaluated at hi+1. For the last step, we used that g i
is the perfect inverse of f i+1. If we continue doing Taylor expansions for each layer, we reach a general
expression for ĥi:

ĥi = hi − η̂
[L−1∏

k=i
Jgk

]
eL +

[L−2∏
k=i

Jgk

]
O (η̂2)+O (η̂2) (4.9)

≈ hi − η̂
[L−1∏

k=i
Jgk

]
eL (4.10)

From the penultimate term in equation (4.9), we can see that the Taylor approximation becomes inaccurate
when Jg i has large eigenvalues or when η̂ is not taken small enough. From the inverse function theorem,
we know that Jg i = J−1

f i+1
, with J−1

f i+1
evaluated at hi. Note that Jf i+1 = Dsi+1Wi+1, with Dsi+1 the diagonal

matrix with the derivatives of the activation function evaluated at Wi+1hi. Now the following expression
can be written for ĥi

ĥi ≈ hi − η̂
[L−1∏

k=i
W−1

k+1D−1
sk+1

]
eL (4.11)

When an L2 loss 1
2‖hi − ĥi‖2

2 is taken as local layer loss, the forward weight updates (see (3.4)) have the
following form:

∆Wi =−ηiDsi (hi − ĥi)hT
i−1 (4.12)

≈−ηiDsi

(
η̂

[L−1∏
k=i

W−1
k+1D−1

sk+1

]
eL

)
hT

i−1, (4.13)
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with ηi the local learning rate. The difference hi − ĥi can be seen as the learning signal of the target
propagation method, similar to the backpropagated error in the backpropagation method. The weight
update resulting from the classic backpropagation of the error algorithm can be written in a similar form:

∆Wi =−ηiDsi

([L−1∏
k=i

WT
k+1Dsk+1

]
eL

)
hT

i−1. (4.14)

We thus see that target propagation with exact inverses is similar to backpropagation, but that WT
i+1 and

Dsi+1 are replaced by resp. W−1
i+1 and D−1

si+1
. Note that η̂ can be absorbed in the local learning rate ηi after

the Taylor approximation.

4.1.2 Descent direction of the target propagation update
In what follows, we prove that the weight update computed with the target propagation method points
always in a descent direction, if the output target step size η̂ is taken sufficiently small. A similar proof
already exists in [5], but there the authors used an uncommon form of the feed-forward mapping f i =
Wisi(hi−1) instead of f i = si(Wihi−1), thus a proof for the common form of target propagation is still lacking
in the field.

Theorem 4.1. Consider a feed-forward neural network with forward mapping function hi = f i(hi−1) =
si(Wihi−1), i = 1, ...,L where si can be any differentiable, monotonically increasing and invertible element-
wise function. Assume that the backward mapping functions g i, used for propagating the target activa-
tions, are the exact inverses of f i+1. Let ∆W tp

i and ∆Wbp
i be the target propagation update and the back-

propagation update in the i-th layer, respectively. If η̂ in equation (4.4) is taken in limit to zero (η̂→ 0+),
then the angle α between ∆W tp

i and ∆Wbp
i is bounded by

0< cos(α)≤ 1, (4.15)

implying a descent direction of ∆W tp
i , as ∆Wbp

i points in the opposite direction of the gradient.

The proof of this theorem can be found in appendix B.

4.1.3 Efficient implementation of target propagation with exact inverses
In target propagation with exact inverses, g i is defined by

g i(ĥi+1)=W−1
i+1s−1

i+1(ĥi+1). (4.16)

The inverse nonlinearity s−1
i+1 is still element-wise, thus can be computed in O (n) time, with n the dimen-

sion of the layer. For W−1
i+1 however, either a linear set of equations has to be solved or a matrix inversion

has to be computed, which both have an expensive time complexity of O (n3) in general. This makes it
unfeasible with current hard-ware to scale a naive implementation of TP with exact inverses to large
networks, emphasizing the need for an efficient implementation of target propagation with exact inverses.

Sherman-Morisson formula. From equation (4.12) we see that the forward weights are updated by
rank-1 matrix additions. This makes it possible to compute the inverse of the updated forward weights
based on the inverse of the forward weights of the previous iteration with the Sherman-Morrison formula1

[76]:

ui =−ηiDsi

(
hi − ĥi

)
(4.17)

vi = hi−1 (4.18)(
Wi +∆Wi)−1 =W−1

i − W−1
i uivT

i W−1
i

1+vT
i W−1

i ui
. (4.19)

If ∆Wi is averaged over multiple samples, like is done in mini-batch stochastic gradient descent, this
update is not of rank 1 anymore. Hence, the Sherman-Morisson formula can only be used when mini-
batch sizes of 1 are used. In [77], the authors extend the Sherman-Morrison formula for pseudo inverses,
which could be used for extending the target propagation framework to non-uniform layer dimensions.

1Sherman-Morisson formula:
(
A+uivT

i )−1 = A−1 − A−1uivT
i A−1

1+vT
i A−1ui

.
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Computational cost. The inverse W−1
i only needs to be computed once at the beginning of training,

after which only matrix-vector products are needed to compute the updated inverses. These updates have
the same time complexity as backpropagation, which is O (n2). In what follows, we compare the computa-
tional cost of target propagation with exact inverses to the computational cost of back-propagation. Table
4.1 summarizes the computational cost of the operations used in both target propagation and error back-
propagation. The total cost for one training iteration per layer is summarized in tables 4.2 and 4.3 for
error backpropagation and target propagation, respectively. A leaky-ReLU was chosen as non-linearity,
but other non-linearities will give similar results. We see that target propagation with exact inverses has
roughly the double amount of computations compared to error backpropagation, but stays in the same
time-complexity O (n2).

Table 4.1: Computational cost of the most common operations in training feed-forward neural
networks. n represents the layer dimension

Operation # additions # multiplications
matrix-vector product n∗ (n−1) n2

vector outer product 0 n2

vector inner product n−1 n
element-wise vector product 0 n

matrix sum n2 0
leaky-ReLU non-linearity 0 n or less

Table 4.2: Total computational cost per layer of the error-backpropagation method. M stands for
multiplication, A for addition and n for the layer dimension.

Training phase Operations Cost
Forward pass 1 matrix-vector product n(n−1)A+n2M

1 Leaky-ReLU non-linearity nM
Backpropagation of error 1 matrix-vector product n(n−1)A+n2M

element-wise vector product nM
Updating weights vector outer product n2M

matrix sum n2 A
Total: (3n2 −2n)A+ (3n2 +2n)M

Table 4.3: Total computational cost per layer of the target propagation method with exact in-
verses. M stands for multiplication, A for addition and n for the layer dimension.

Training phase Operations Cost
Forward pass 1 matrix-vector product n(n−1)A+n2M

1 Leaky-ReLU non-linearity nM
Update inverse weights 3 matrix-vector products 3n(n−1)A+3n2M

vector outer product n2M
vector inner product (n−1)A+nM

matrix sum n2 A
Backpropagation of target 1 matrix-vector product n(n−1)A+n2M

inverse leaky-ReLU non-linearity nM
Updating weights vector outer product n2M

matrix sum n2 A
Total: (7n2 −4n−1)A+ (7n2 +3n)M

4.2 Target propagation as an approximation of Gauss-Newton
optimization

In this section, we will show that target propagation with exact inverses is an approximation of the Gauss-
Newton optimization algorithm [78, 79]. More specific, Target Propagation computes the local layer targets
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conform with Gauss-Newton optimization and then updates the layer weights by gradient descent in or-
der to push the layer activation towards the target layer activation. This section starts by explaining the
Gauss-Newton optimization scheme after which it applies the Gauss-Newton scheme on feed-forward neu-
ral networks to show that the target propagation equations appear. This section ends with a discussion
on choosing suitable step sizes for target propagation compatible with the Gauss-Newton optimization
scheme.

4.2.1 The Gauss-Newton optimization algorithm
The Gauss-Newton (GN) algorithm is an iterative optimization method that is used for non-linear regres-
sion problems, defined as follows:

min
β

L = 1
2

B∑
i=1

e2
(i) (4.20)

e(i) , y(i) − t(i), (4.21)

with L the regression loss, B the mini-batch size, e(i) the regression residual of the ith sample, y(i) the
model output and t(i) the target output. The one-dimensional output y is a nonlinear function of the in-
puts x, parameterized by β. At the end of this section, the Gauss-Newton method will be extended for
models with multiple outputs. The Gauss-Newton algorithm is an approximation of Newton’s method,
more precisely, it approximates the Hessian matrix used in Newton’s method by a positive semidefinite
matrix approximation. As the GN method is related to Newton’s method, it can approximate second-order
convergence, however, there are no convergence guaranties [80]. Especially when the initialization of the
parameters is far from the optimum, Gauss-Newton is known to have convergence problems. There ex-
ist variations on the Gauss-Newton algorithm to cope with this convergence problem, most notably the
Levenberg-Marquardt algorithm [81]. The Gauss-Newton algorithm can be derived in two different ways:
(1) via a linear Taylor expansion around the current parameter values β and (2) via an approximation of
Newton’s method. Both derivations will be discussed, after which we elaborate on Gauss-Newton optimiza-
tion for multiple output models and on the Levenberg-Marquardt variant of Gauss-Newton optimization.

Derivation of the Gauss-Newton method via a Taylor expansion

The goal of a Gauss-Newton iteration step is to find a parameter update ∆β that leads to a lower regression
loss:

β(m+1) ←β(m) +∆β. (4.22)

Ideally, we want to minimize the regression loss L with respect to the parameters β:

0 != ∂L
∂β

= JT e (4.23)

J ,
∂y
∂β

, (4.24)

with e a vector containing all the B residuals e(i) and y a vector containing all the outputs. y and e can be
approximated by a first order Taylor expansion around the current parameter values β(m):

y(m+1) ≈ y(m) + J∆β (4.25)

e(m+1) = y(m+1) − t≈ e(m) + J∆β (4.26)

Now this approximation of e can be filled in equation (4.23), which results in

∂L
∂β

≈ JT(
e(m) + J∆β

)= 0 (4.27)

⇔ JT J∆β=−JT e(m). (4.28)

If JT J is invertible, this leads to:

∆β=−(
JT J

)−1JT e(m) (4.29)

∆β=−J†e(m), (4.30)
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With J† the left Moore-Penrose pseudo inverse of J. Note that if JT J is not invertible, −J†e(m) leads to
the solution ∆β with the smallest norm, thus J† is still the best choice. If J is square and invertible, the
pseudo inverse is equal to the real inverse, leading to the following expression:

∆β=−J−1e(m). (4.31)

Note the similarity between the above equations (4.28)-(4.31) and linear least squares: the design matrix
X is replaced by the Jacobian J and the residuals and parameter increments are used instead of the output
values and the parameters respectively.

Derivation of the Gauss-Newton method via Newton’s method

Newton’s method updates the parameters in each iteration as follows:

β(m+1) ←β(m) −H−1 g, (4.32)

with H and g the Hessian and gradient respectively of the loss function L with respect to parameters β.
The gradient is given by equation (4.23) and the elements of the Hessian are given by:

H jk =
B∑

i=1

(∂e(i)

∂β j

∂e(i)

∂βk
+ e(i)

∂2e(i)

∂β j∂βk

)
. (4.33)

Note that the Hessian H is not necessary positive semi definite (PSD), which can lead to a solution of
equation (4.32) with a higher loss. The Gauss-Newton algorithm approximates the Hessian by ignoring
the second term in the above equation, as in many cases, the first term dominates the Hessian. This leads
to the following approximation of the Hessian:

H ≈G , JT J, (4.34)

with G the curvature matrix of the Gauss-Newton optimization method. This Gauss-Newton approxima-
tion G of the Hessian is always a PSD matrix. By adjusting equation (4.32), the update from Newton’s
method with the approximated Hessian gives rise to the Gauss-Newton update:

β(m+1) ←β(m) − (
JT J

)−1JT e(m) (4.35)

The Gauss-Newton method for multiple-output models

In the previous paragraphs, the Gauss-Newton method was derived for regression models with a one-
dimensional output. This can easily be extended to regression models with multi-dimensional outputs,
such as most feed-forward neural networks. The regression loss is now given by:

L = 1
2

B∑
i=1

‖e(i)‖2
2 (4.36)

e(i) , y(i) − t(i), (4.37)

The Jacobian J of the model outputs and samples with respect to the model parameters can be structured
in a 3 dimensional tensor, with its first axis ds equal to the number of samples, its second axis do equal
to the number of outputs and its third axis dβ equal to the number of parameters. The derivations of the
previous paragraph stay exactly the same, only the matrix products with JT should be replaced by tensor
inner products along ds and do. y and e are now two-dimensional tensors with axes ds and do. In the
following sections, we will assume a mini-batch size of 1, such that dimension ds disappears and we can
work again with matrices and vectors for clarity of the reasoning.

The Levenberg-Marquardt method

The linear system (4.28) can sometimes be poorly conditioned, leading to very large step sizes of the Gauss-
Newton (GN) method. The Levenberg-Marquardt (LM) method solves this issue by adding a reguralizer
matrix to the curvature matrix G = JT J:(

JT J+λI
)
∆β=−JT e(m), (4.38)
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with λ the damping parameter. λ is typically updated during each training iteration by a heuristic based on
trust regions. The added damping prevents the Levenberg-Marquardt method from taking too large steps
and thereby greatly stabilizes the optimization process. Intuitively, the Levenberg-Marquardt method can
be seen as an interpolation between Gauss-Newton optimization and gradient descent, as for λ→ 0 the
LM method is equal to the GN method, and for λ→∞ the LM method is equal to gradient descent with a
very small step size.

4.2.2 Target Propagation as an approximation of the Gauss-Newton method
In the following derivations, we will show that target propagation with exact inverses uses an approxi-
mation of the Gauss-Newton optimization method to compute its local layer targets after which it does
gradient descent to update the network parameters in order to move the layer activations closer to the
layer targets. We first start with proving a lemma, which will later be used in the main theorem.

Lemma 4.2. Consider a feed-forward neural network with as forward mapping function hi = f i(hi−1) =
si(Wihi−1), i = 1, ...,L where si can be any differentiable element-wise function. Furthermore assume a
mini-batch size of 1 and a L2 output loss function. Under these conditions, the Gauss-Newton optimization
step for the layer activations, with a block-diagonal approximation of the Gauss-Newton curvature matrix
with blocks equal to the layer sizes, is given by:

∆hi =−J†
i eL, i = 1, ...,L−1, (4.39)

with Ji = ∂hL
∂hi

= ∏L
k=i+1 DskWk, J†

i its Moore-Penrose pseudo-inverse [82, 83] and eL = hL − t the output
error, with t the output target.

Proof. The output loss function L can be written as:

L = 1
2
‖eL‖2

2 (4.40)

eL ,
∂L
∂hL

= hL − t, (4.41)

with hL the output layer activation and t the output target. As an experiment of thought, imagine that the
parameters of our network are the layer activations hi, i = 1, ...,L−1, concatenated in the total activation
vector h̄, instead of the weights Wi. The weights can be seen as fixed values for now. If we now want to
update the activation values h̄ according to the Gauss-Newton method we get the following approximation
of the Hessian of the output loss with respect to h̄:

H ≈G = J̄T J̄ (4.42)

with J̄ the Jacobian of hL with respect to h̄. J̄ can be structured in blocks along the column dimension:

Blocki(J̄)= Ji = ∂hL

∂hi
, i = 1, ...,L−1 (4.43)

Consequently, G can also be structured in blocks of the form:

Blocki, j(G)= JT
i J j, i, j = 1, ...,L−1 (4.44)

In the field of Gauss-Newton optimization for deep learning, it is common to approximate G by a block-
diagonal matrix G̃ [84, 85, 86], as the authors of [84] show that the GN Hessian matrix is block diagonal
dominant for feed-forward neural networks. G̃ then consists of the following diagonal blocks:

Blocki,i(G̃)= JT
i Ji, i = 1, ...,L−1 (4.45)

Now the following linear system has to be solved to compute the activations update ∆h̄:

G̃∆h̄=−J̄T eL, (4.46)

As G̃ is block-diagonal, this system factorizes naturally in L−1 linear systems of the form

JT
i Ji∆hi =−JT

i eL, i = 1, ...,L−1 (4.47)

⇔∆hi =−J†
i eL, i = 1, ...,L−1 (4.48)
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If JT
i Ji is not invertible, the Moore-Penrose pseudo-inverse gives the solution ∆hi with the smallest norm,

so is still the best choice in practice. Due to the layered structure of the network, Ji can be decomposed:

Ji =
i+1∏
k=L

∂hk

∂ak

∂ak

∂hk−1
(4.49)

Ji =
i+1∏
k=L

DskWk, (4.50)

thereby concluding the proof.

With this lemma proven, we are now ready to prove the main result of this section.

Theorem 4.3. Consider a feed-forward neural network with as forward mapping function hi = f i(hi−1) =
si(Wihi−1), i = 1, ...,L where si can be any differentiable, monotonically increasing and invertible element-
wise function. Assume that the inverse of the forward mappings f i exist and that the backward mapping
functions, used for propagating the target activations, are equal to g i(ĥi+1) = f −1

i+1(ĥi+1) = W−1
i+1s−1

i+1(ĥi+1).
Furthermore assume a mini-batch size of 1, a sufficiently small output step size η̂ and an L2 output loss
function. Under these conditions, target propagation approximately uses Gauss-Newton optimization with
a block-diagonal approximation of the Gauss-Newton Hessian, with block sizes equal to the layer size, to
compute the local layer targets ĥi.

Proof. Under the conditions assumed in this theorem, the Gauss-Newton optimization step for the layer
activations, with a block-diagonal approximation of the Gauss-Newton Hessian matrix with blocks equal
to the layer sizes, is given by (a result of lemma 4.2):

∆hi =−J†
i eL, i = 1, ...,L−1, (4.51)

with Ji defined as:

Ji =
i+1∏
k=L

∂hk

∂ak

∂ak

∂hk−1
(4.52)

Ji =
i+1∏
k=L

DskWk, (4.53)

As the forward mappings are assumed to be invertible, the weight matrices Wi are square and of full rank
and the diagonal matrices Dsk have non-zero entries. A product of full rank, square matrices is also square
and of full rank, indicating that the pseudo inverse J†

i is equal to the real inverse J−1
i . The inverse can be

factorized over the decomposed Ji, leading to the following update for ∆hi:

∆hi =−
( L∏

k=i+1
W−1

k D−1
sk

)
eL. (4.54)

Now define the layer target ĥGN
i as the updated layer activation:

ĥGN
i = hi +∆hi. (4.55)

Due to the block-diagonal approximation, it is common practice in the field to use an optimal step size η̂
for the parameter update, leading to:

ĥGN
i = hi + η̂∆hi. (4.56)

= hi − η̂
( L∏

k=i+1
W−1

k D−1
sk

)
eL (4.57)

This optimal step size will be further discussed in the next section. To get an expression for the targets
propagated by the target propagation method, we can do a sequence of first order Taylor expansions around
hi, similar to equation (4.9):

ĥTP
i = hi − η̂

[L−1∏
k=i

Jgk

]
eL +O (η̂2) (4.58)

= hi − η̂
[ L∏

k=i+1
W−1

k D−1
sk

]
eL +O (η̂2). (4.59)
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We see that ĥGN
i and ĥTP

i are approximately equal with an error of O (η̂2) in equations (4.57) and (4.59)
respectively, thereby proving the theorem.

Discussion of the theorem In theorem 4.3, we showed that target propagation uses Gauss-Newton op-
timization to compute its local layer targets. This is an important result for the research field of biologically
plausible learning mechanisms, as there were no theoretical results showing that target propagation does
any kind of useful optimization, before this result. Now we do not only have a proof that target propaga-
tion does optimize a cost function, but we also proved that it consists of a mix of approximate second-order
optimization (for computing the targets) and first-order optimization (for computing the weight updates).
In the following, we discuss the important implications of this theorem for the interpretation of target
propagation.

• In the theorem, the layer activations were treated as parameters that could be optimized with the
Gauss-Newton method. However, the final outcome of the target propagation method is of course to
optimize the layer weights. In the original target propagation method [9, 5], this is done by gradient
descent on the local layer L2 loss for updating the network parameters in order to move the layer
activations closer to the layer targets:

L i = ‖hi − ĥi‖2
2 = ‖−∆hi‖2

2 (4.60)

∆Wi =−ηi
∂L i

∂Wi
. (4.61)

So target propagation mixes 2 optimization methods, with very different characteristics and heuris-
tics to choose the training parameters (such as step sizes and damping). Hence, for obtaining good
performance, care has to be taken with choosing suitable training parameters for this mixture of
optimization methods. The next section will discuss this topic in more detail.

• The Gauss-Newton method can be extended to other loss functions besides the L2 loss [87]. We
hypothesize that our theorem also works for other output losses, but future work should elaborate in
more detail whether target propagation can be made compatible with other output losses for Gauss-
Newton.

4.2.3 Choosing training parameters for target propagation
In the deep learning field, there exist a wide variety of training schemes to improve the performance of
plain stochastic gradient descent, most notably the momentum method [88], Nesterov momentum [89, 90],
Adagrad [91] and Adam [92]. The last two methods have adaptive step sizes, which greatly improves the
robustness of the training methods to the chosen values of the training hyperparameters. On the other
hand, the Gauss-Newton optimization method has also an extensive variety of training schemes to improve
its performance, convergence and robustness, most notably the Levenberg-Marquardt method [93, 94] and
the modified Gauss-Newton method [95]. This section first briefly discusses the existing Gauss-Newton
training methods for deep neural networks, after which it will explore training schemes for the target
propagate method that merges knowledge of both first and second order optimization methods for deep
neural networks.

Training parameters for GN optimization in deep neural networks

In the practical Gauss-Newton optimisation for deep learning [85], the authors introduce four extra pa-
rameters for training the network parameters θ:

• A damping parameter ψ added to the full Gauss-Newton matrix G,

• A separate damping parameter γ added to the block-diagonal approximation matrix G̃,

• A common additive damping parameter to both G and G̃, with weight α
2

• An optimal step size η̂, resulting from a line search.
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The damping parameters can be interpreted in the Levenberg-Marquardt optimization framework [93].
The added damping parameters result in the following full curvature matrix C and diagonal approximated
curvature matrix C̃:

C =G+ (ψ+α)I (4.62)

C̃ = G̃+ (γ+α)I (4.63)

The optimal step size η̂ is introduced to compensate for the diagonal approximation of G. Based on the full
curvature matrix C, a quadratic approximation is made of the objective function L:

L(θ+∆θ)≈ L̂(θ+∆θ;C), L(θ)+∆θT∇θL+ 1
2
∆θTC∆θ (4.64)

This quadratic approximation is then used to find an optimal step size η̂ for the parameter update ∆θ̃, that
was found with the block-diagonal curvature matrix C̃:

η̂= argmin
η

L̂(θ+η∆θ̃;C)= argmin
η

L(θ)+η∆θ̃T∇θL+ 1
2
η2∆θ̃TC∆θ̃ =−∆θ̃

T∇θL
∆θ̃TC∆θ̃

(4.65)

Note that the product ∆θ̃TC∆θ̃ can be computed efficiently both in computations and in memory [85],
explaining why it can be used to improve the GN optimization, without the need of explicitly storing C.
For adapting the damping parameter ψ throughout training, the authors use a Levenberg-Marquardt
heuristic based on the reduction ratio ρ, which is defined as:

ρ = L(θ+ η̂∆θ̃)−L(θ)
L̂(θ+ η̂∆θ̃;C)− L̂(θ;C)

. (4.66)

ρ expresses how well the quadratic approximation matches with the real objective function. When ρ < 1,
the quadratic approximation underestimates the objective curvature, while in the other case it overesti-
mates the curvature. The Levenberg-Marquardt heuristic introduces a parameter ωψ < 1. When ρ < 0.75,
ψ is divided by ωψ and in the other case, ψ is multiplied by ωψ.

The parameter γ is used to regularize C̃, in order to better match with the quadratic approximation with
the full C. γ is updated greedily: the algorithm computes the update η̂∆θ̃ for each of {ωγγ,γ,ω−1

γ γ} with
scaling factor ωγ, and the one with the lowest L̂ is selected.

Training parameters for target propagation

The target propagation method was first proposed as a more biologically plausible method for training
neural networks, compared to error backpropagation. The main focus of this thesis is also on biologically
plausible training methods for neural networks, so the training parameters for target propagation should
also have a certain abstract biologically plausible implementation. This implies that neurons should have
all training information locally available. This imposes a major restriction on possible adaptive training
parameters. If one is interested to exploit the newly discovered quasi-Newton characteristics of target
propagation in a non-biological setting, the training parameters of the previous section can be tailored
towards target propagation without restrictions, but in the following, we will limit the discussion to pos-
sible local implementations of training parameters for target propagation. We first focus on finding an
alternative for the damping parameters γ and α, that only needs information which is locally available to
each layer in the network. Afterwards, we investigate which step sizes and learning rates should be used
for target propagation.

An alternative for damping parameters in target propagation. We start by investigating the influ-
ence of the damping parameters introduced by the Levenberg-Marquardt (LM) modification of the Gauss-
Newton method. LM adds an extra diagonal term λI to the GN hessian matrix G̃. We have reduced the
two damping parameters γ and α of the above paragraph into one damping parameter λ for simplifying
the discussion. Adding a damping parameter increases the curvature of the quadratic approximation and
consequently decreases the step size of the parameter update. This can be seen more clearly by making
use of the singular value decomposition of Ji =UiΣiV T

i . The i-th diagonal block of C̃ can then be written
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as:

Blocki(C̃), C̃i = JT
i Ji +λI (4.67)

=ViΣ
T
i ΣiV T

i +λViV T
i (4.68)

=Vi
(
ΣT

i Σi +λI
)
V T

i (4.69)

There is thus a constant term λ added to each singular value of C̃i, indicating an increase in curvature.
λ will have the biggest effect on the smallest singular values, corresponding to the directions of smallest
curvature. This will greatly decrease the step size in those directions of small curvature, as the minimum
of the quadratic approximation will now be much closer to the current iteration point in those directions.
If Ji is square, C̃i can be interpreted as the Gauss-Newton matrix computed with an adjusted Jacobian
J∗

i :

C̃i = J∗T

i J∗
i (4.70)

J∗
i =Vi

√
Σ2

i +λIV T
i . (4.71)

In the LM method, the layer activation update would be computed as

∆hLM
i =−η̂(JT

i Ji +λI)−1JT
i e, (4.72)

which is not equal anymore to ∆hi = −η̂J†
i e. In target propagation, the targets are computed following

equation (4.58). By comparing equation (4.58) and (4.72), the following equality must hold for target
propagation to incorporate the LM method:

L−1∏
k=i

Jgk = (JT
i Ji +λI)−1JT

i (4.73)

In general, it is not possible to find a sequence of g i for which this equality always holds based on only local
information, as the influence of λ on the singular values of JT

i Ji cannot be factored over the different gk as
is needed for the left-hand expression, without having access to global information (all the Jgk ’s). In what
follows, we will explore a training scheme for target propagation with exact inverses that incorporates the
same principles as LM (ensuring that there are no directions with too low curvature), but with only local
information. First, we approximate the LM update (4.72) by the pseudo-inverse of J∗

i :

∆h∗
i =−η̂(J∗T

i J∗
i )−1J∗T

i e (4.74)

=−η̂(JT
i Ji +λI)−1J∗T

i e (4.75)

=−η̂
(
(JT

i Ji +λI)−1JT
i e+ (JT

i Ji +λI)−1U(
√
Σ2

i +λI −Σi)V T e
)

(4.76)

The first term on the right-hand side is equal to the LM update (4.72), while the second term is the error
of the approximation. This error is small comparing to the LM update, as

‖U(
√
Σ2

i +λI −Σi)V T‖2 ≤λ, (4.77)

and λ is small compared to the average singular values of Ji. Note that if e lies entirely along a direction
corresponding to one of the smallest singular values, the relative approximation error can be significant,
but in general there will likely be parts of e that lay alongside higher singular values.

If now the Jacobian of the sequence of forward mappings f i would match J∗
i and g i be the inverse of the

forward mappings, the target propagation update would be equal to the LM approximation (4.74). How-
ever, as the Jacobian of the sequence of forward mappings f i is also factored by the product of Jf i , the
influence of λ on the singular values of Ji should be factored over all Jf i . This is not possible for target
propagation, as it would need global information of all Jf j 6=i to adjust one particular Jf i . Therefore, we
make one last approximation to the LM update: instead of adding a diagonal term λ to JT

i Ji in order to
make the smallest singular values bigger, we ensure that all singular values of JT

i Ji are big enough. In
this way, there are no small singular values causing small curvature in the GN Hessian matrix and there
is thus no need to adjust them by λ. Note that this approximation is very crude, but that it still has the
same goal as the LM-update: ensure that there are no directions with too low curvature to prevent too
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large step sizes.

As the smallest singular value of Ji for a network as specified in lemma 4.8 is bounded by below by the
product of the smallest singular values of Jfk , k = i+1, ...,L, it suffices to ensure that the singular values
of Jfk are sufficiently big. Jfk can be written as:

Jfk = DskWk, (4.78)

with Dsk a diagonal matrix with the derivatives of the element-wise non-linearity and Wk the k-th layer
weight matrix. If we assume that the network has invertible non-linearities without saturation (e.g. leaky-
ReLU), the diagonal terms of Dsk (and consequently its singular values) will not be close to zero. To ensure
that the singular values of Jfk are big enough, it thus suffices to make sure that the smallest singular
value σmin of Wk is never too close to zero. For this, two actions need to be taken: (1) when initializing
the network, the random weight matrices Wi should have a large enough σmin and (2) during training, we
have to prevent that the weight updates (4.12) cause Wi to become close to singular.

Initialization of weight matrices. Two approaches can be taken in order to ensure initial weight
matrices with σmin big enough.

1. One can keep generating random matrices until σmin is above a user-specified threshold τinit. A
better measure could be that σmin ·σmax should be above a user-specified threshold, such that the
norm of W−1

i is roughly smaller than the norm of Wi. Note that the expected magnitude of σmin

of random Gaussian matrices is of order O (n−0.5) [96] with n the size of the matrix, which means
that this brute-force technique will work well for small networks, but will have trouble to find good
weight matrix initializations for big networks.

2. One can perform a singular value decomposition of the random initialized weight matrix, change
all singular values si below a user-specified threshold to a larger value and take the resulting ma-
trix as weight matrix initialization. Note however that this method can interfere with the random
properties of the matrix, as the singular values of the random matrix are changed.

For this thesis, we use method 1 to initialize the weight matrices, as we use only small networks and it
works well in practice.

Robust weight updates. Even when we start with far-from-singular weight initializations, the weight
matrices Wi can still become singular during training. From equation (4.19) we can see that the inverse up-
date becomes unstable when the denominator 1+d = 1+vT

i W−1
i ui of the right-hand side has a value close

to zero. In chapter 5, we will see that 1+d experimentally correlates very well with σmin of the updated
forward matrix Wi. A straight forward method to keep the updated matrices Wi far away from singularity
is to clip the denominator when its absolute value is below a user-specified threshold ε. However, to en-
sure that the updated inverse remains the exact inverse of the forward weight matrix, the forward weight
update ∆Wi should be scaled by a corresponding β, which can be interpreted as a scaling of the learning
rate of the specific layer. The resulting robust Sherman-Morrison update is depicted in algorithm 4.1.

The scaling value β is derived from the condition that the clipped inverse update must be the perfect
inverse of the scaled forward update:

I = (
Wi +βuivT

i
)(

W−1
i − W−1

i uivT
i W−1

i
ε

)
(4.79)

⇒ β= 1
ε−vT

i W−1
i ui

(4.80)

Optimal output target step size η̂. The previous paragraphs focused on finding a substitute method
for the LM damping parameters used in conventional GN optimization. However, the discussed Gauss-
Newton method for deep learning has also an optimal step size parameter η̂ resulting from a line search.
From equation (4.65), we see that the full curvature matrix C is used for computing the optimal step
size. C consists of non-local matrix products JT

i J j, making it not feasible for target propagation to use
a similar line search. This can be explained intuitively, as the line search is used to compensate the
block-diagonal approximation of the curvature matrix. However, the structure of target propagation itself
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Algorithm 4.1: Robust Sherman-Morrison update

Result: Wi,(m+1) and W−1
i,(m+1): robust update of the forward weight matrix and its inverse with the

adjusted Sherman-Morrison update.
ui =−ηiDsi

(
hi − ĥi

)
;

vi = hi−1;
d = vT

i W−1
i,(m)ui;

if |1+d| ≥ ε then
Wi,(m+1) =Wi,(m) +uivT

i ;

W−1
i,(m+1) =W−1

i,(m) −
W−1

i,(m)uivT
i W−1

i,(m)
1+d ;

else
β= 1

ε−d ;
Wi,(m+1) =Wi,(m) +βuivT

i ;

W−1
i,(m+1) =W−1

i,(m) −
W−1

i,(m)uivT
i W−1

i,(m)
ε

;

limits its available information to the block-diagonal approximation, thus it cannot compensate for it due
to this lack of global information. For the simulations done in this thesis, a decreasing step-size scheme
is used for η̂, similar to the decreasing step-size schemes used in many first-order optimization training
schemes. However, this approach is prone to a lot of hyperparameter tuning and is far from ideal (as it was
developed for first order optimization methods), so more thorough theoretical and experimental research
on this matter is encouraged for future work.

Step-size for gradient descent on layer loss. The local layer targets were all computed by an approx-
imation of Gauss-Newton optimization, whereas the layer weights are updated by gradient descent on the
local layer loss L i. As this is a form of first-order optimization, a step-size η is needed. We take all layer
step-sizes ηi equal to η, to reduce the number of training hyperparameters, but in future work, layer spe-
cific step sizes can be explored. In state-of-the-art deep learning, adaptive training schemes are used such
as Adagrad [91] or Adam [92]. However, in order to not mix too many properties of first and second order
optimization, we choose here for a simple step-size decay scheme as is used in stochastic gradient descent.
As can be seen in equation (4.12), both η̂ and η have the same influence on the weight update ∆Wi after
the first order Taylor expansion. Consequently, we opt for implementing the decaying step-size scheme in
η̂ instead of η, as the Taylor approximation is more accurate for small η̂ and thus target propagation will
more accurately approximate Gauss-Newton optimization. η can than be taken a constant.

Discussion on the training parameters of target propagation. In this section, we derived a local
training scheme for target propagation with exact inverses that only uses local information. To summarize,
4 training hyperparameters are used: τinit for the initialization of the weight matrices, ε for ensuring that
the weight matrices do not become close to singular during training, the output target step size η̂ and the
step size η used for gradient descent on the local layer loss. We end this section with some comments on
the obtained training method for target propagation.

• Although the robust weight updates have the same purpose as the LM update, there are also some
fundamental differences. With the robust weight updates, the forward weight matrices are forced to
remain far from singularity, while with the LM update, the weight matrices can be singular, as the
LM update compensates for this. Furthermore, the LM update can change both the direction and
length of the update step (it can be interpreted as an interpolation between the Gauss-Newton step
and the gradient descent step), while our robust weight update scheme can only adjust the length of
the update step with β.

• Note that β is always smaller than one because ε is always taken positive (instead of e.g. sign(1+d)·ε),
resulting in an adaptive decrease of the step-size. This was done to improve the stability of training.
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4.3 Target propagation with approximate inverses
In a biological setting, it is not very likely that the exact inverse of the forward mapping can be computed
with a method such as the Sherman-Morrison algorithm. Therefore, this section explores the target prop-
agation method where g i learns to approximate the inverse of f i+1, instead of computing the exact inverse
during training. This section starts with investigating the influence of the occurring reconstruction er-
rors on the training of the network, after which it discusses methods to learn the approximate inverses
of f i. The section ends with a brief analysis of Difference Target Propagation [5] in this mathematical
framework.

4.3.1 The influence of reconstruction errors on the network training
We repeat the previous Taylor analysis of the backpropagated targets in section 4.1.1, but now with g i not
necessarily equal to the exact inverse of f i+1. For clarity of the derivation, we start with the penultimate
layer. The target of the second to last layer can be approximated by a first order Taylor expansion around
hL−1 as follows.

ĥL−1 = gL−1(ĥL)= gL−1(hL − η̂eL) (4.81)

≈ gL−1(hL)− η̂JgL−1 eL (4.82)

= hL−1 +
(
gL−1(hL)−hL−1

)− η̂JgL−1 eL (4.83)

By repeating the first order Taylor expansions for the other layers, the following general approximation
for ĥi is obtained.

ĥi ≈ hi − η̂
[L−1∏

k=i
Jgk

]
eL + (

g i(hi+1)−hi
)+ L−1∑

j=i+1

[( j−1∏
k=i

Jgk

)(
g j(h j+1)−h j

)]
. (4.84)

When comparing this approximation of ĥi to the one obtained in (4.84) with exact inverses, we see that two
extra error terms appeared. The third term on the right-hand side of (4.84) represents the reconstruction
error of g i in the current layer, while the fourth term represents the backpropagated reconstruction errors
of the layers on top. Note that these backpropagated reconstruction errors can either be amplified or
attenuated by Jgk , depending on the singular values of these Jacobians. The weight updates are derived
from a gradient step on the local L2 layer loss L i = ‖ĥi −hi‖2

2:

∆Wi =−ηiDsi (h− ĥi)hT
i−1 (4.85)

≈−ηiDsi

(
η̂

[L−1∏
k=i

Jgk

]
eL

)
hT

i−1 +ηiDsi

((
g i(hi+1)−hi

)+ L−1∑
j=i+1

[( j−1∏
k=i

Jgk

)(
g j(h j+1)−h j

)])
hT

i−1, (4.86)

By comparing the above equation to (4.12), we see that the two reconstruction error terms of equation
(4.84) cause an error term in the weight update ∆Wi. If the approximations g i of the inverses of f i+1 are
not accurate enough, the reconstruction error term will dominate the weight update, resulting in weight
updates that do not contribute to the objective of minimizing the output loss. Therefore, it is of uttermost
importance that either the approximation of the inverses are accurate enough, or that an adjustment to
the target propagation method is made to get rid of the occurring reconstruction errors. The next section
will explore which forms and training methods of g i can provide the network with good approximations of
the inverses of f i+1, while the last section will interpret Difference Target Propagation [5] as a method to
get rid of the reconstruction errors.

4.3.2 Approximate the inverses
The goal of this section is to explore how to find a suitable form and training method for g i in order to
approximate the inverse of f i+1:

f −1
i+1(hi+1)=W−1

i+1s−1
i+1(hi+1) (4.87)

Note that this inverse only can exist between layers of equal size. For layers of unequal size, we want to
approximate the unexisting inverse by its pseudo-inverse defined as:

f †
i+1(hi+1)=W†

i+1s−1
i+1(hi+1), (4.88)
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with W†
i+1 the Moore-Penrose pseudo-inverse [82, 83] of Wi+1. In the following derivations and discussions,

we assume that the element-wise non-linearity si is always invertible. The section starts with defining an
appropriate form for g i, after which it discusses learning methods to train the parameters of g i.

Defining an appropriate form of gi

In the original papers on target propagation [9, 5], the authors use the following form of g i:

g i(hi+1)= ti(Q ihi+1), (4.89)

with ti an element-wise non-linearity and Q i the backward weight matrix. The authors based this form on
the theory of auto-encoders, as the f i+1 - g i pair can be seen as an auto-encoder. However, it is important
to notice that the f i+1 - g i pair is a shallow auto-encoder (it has no hidden layers in both its encoder
f i+1 and decoder g i). Therefore, the universal approximation theorem [97] does not hold for g i and in
general, it will not be able to approximate the inverse of f i+1 to arbitrary precision. This means that the
reconstruction errors of equation (4.85) will keep interfering with the weight updates ∆Wi during training.
Either a hidden layer should be introduced to g i, or another form of g i should be used. We propose the
following form of g i:

g i(hi+1)=Q i ti(hi+1) (4.90)

When ti is taken equal to s−1
i+1 and if the inverse of Wi+1 exists, this form of g i can approximate f −1

i+1 to
arbitrary precision, as it is of the same form as f −1

i+1. From a biological perspective, this form of g i is
less appealing than the one of equation (4.89), but from a mathematical point of view this form makes
more sense. For future work, other forms of g i should be explored that can both approximate f −1

i+1 to a
sufficiently high precision and that are more biologically plausible.

The training of gi

In the original papers on target propagation [9, 5], the authors propose the following loss function to train
the backward parameters Q i:

Linv
i

(
g i

(
f i+1(hi)

)
,hi

)
= ∥∥g i

(
f i+1(hi)

)−hi
∥∥2

2 (4.91)

In the following, we will analyse the training behavior of the backward weights Q i when using gradient
descent on the inverse loss function defined in equation (4.91) with the form of g i as specified in equation
(4.90). We start with proving two lemmas on the gradient of Linv

i and its corresponding energy function,
after which a theorem that under certain conditions Q i approximates W†

i+1 is proposed and proved.

Lemma 4.4. Consider a feed-forward neural network with forward mapping f i(hi−1) = si(Wihi−1) and
backward mapping g i(hi+1)=Q is−1

i+1(hi+1). In this network setting, the expected gradient E
[∇Q i L

inv
i

]
with

Linv
i as specified in equation (4.91) is equal to

E
[∇Q i L

inv
i

]= 2
(
Q iWi+1 − I

)
ΓiWT

i+1, (4.92)

with Γi the covariance matrix of hi.

The proof of this lemma can be found in appendix B.

Lemma 4.5. Consider a feed-forward neural network with forward mapping f i(hi−1) = si(Wihi−1) and
backward mapping g i(hi+1)=Q is−1

i+1(hi+1). If hi is uncorrelated and has equal variance σ2, the expectation
of the inverse loss function Linv

i , defined in equation (4.91) can be written as the following decoupled energy
function E(Q i) depending on w j and qk, the columns of Wi+1 and the rows of Q i respectively:

E(Q i)=σ2 ∑
j

[(
qT

j w j −1
)2 + ∑

k 6= j

(
qT

k w j
)2

]
. (4.93)

The proof of the lemma can be found in appendix B.

This lemma shows that during the training of the backward weights Q i, the rows q j of Q i start to couple
with the columns of the same index w j of Wi+1 towards an inner product of 1, while they start to decouple
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from all other columns wk 6= j. If Wi+1 is square and of full rank, there exist precisely one Q i for which
qT

j w j = 1 and qT
j wk 6= j = 0 holds, as there are as many equations as variables. If Wi+1 has more rows than

columns, in general there exist multiple solutions for Q i for which qT
j w j = 1 and qT

j wk 6= j = 0 holds, whereas
if Wi+1 has less rows than columns, there are more equations than parameters, thus in general no solution
Q i exist for which qT

j w j = 1 and qT
j wk 6= j = 0 holds, and a minimum of E(Q i) different from zero is found.

These insights lead to the following theorem.

Theorem 4.6. Consider a feed-forward neural network with forward mapping f i(hi−1) = si(Wihi−1) and
backward mapping g i(hi+1) = Q is−1

i+1(hi+1). If Wi+1 is square and of full rank, the minimization of the
inverse loss Linv

i , defined in equation (4.91) leads in expectation towards the unique solution

Q∗
i =W−1

i+1, (4.94)

if and only if Γi, the covariance matrix of hi, is of full rank.
If Wi+1 is not square, the minimization of the inverse loss Linv

i , defined in equation (4.91) leads in expecta-
tion towards the unique solution

Q∗
i =W†

i+1, (4.95)

with W†
i+1 the Moore-Penrose pseudo-inverse of Wi+1[82, 83], if and only if Wi+1 has linearly independent

rows and if hi is uncorrelated and has equal variances different from zero.

The proof of this theorem can be found in appendix B.

Discussion on theorem 4.6. The first result of this theorem is that if Wi+1 is of full rank, the backward
weights Q i approximate W−1

i+1 when they optimize the loss function Linv
i of equation (4.91), if and only if

the covariance matrix of hi is of full rank. The second result of this theorem shows that if Wi+1 is not of full
rank, the backward weights Q i approximate W†

i+1 when they optimize the loss function Linv
i , if and only if

Wi+1 has linearly independent rows and hi is uncorrelated and has equal variances. In the following, the
implications of the conditions of the theorem are discussed.

• If Wi+1 is of full rank, the only condition is that Γi has to be of full rank. During the training phase
of Q i, this condition on hi should thus be fulfilled.

• The condition that hi is uncorrelated and has equal variances implies that is should represent white
noise during the training phase of Q i. This is biologically speaking a bit awkward, as hi represent
firing rates of neurons, which are always positive. However, as discussed in Akrout et al. [98], this
inconsistency can be solved by treating hi as the deviation of the firing rates from a specified base
firing rate, which could be determined genetically in the neurons or by a moving average.

• As hi has to represent white noise, Q i has to be trained for each layer with a separate white noise
injection of the neurons. If only a white noise injection at the bottom layer would be done, the prop-
agated hi is in general not uncorrelated anymore in the other network layers. The layer activations
hi used for training the backward weights are thus different from the layer activations hi during
the forward phase of the network.

• The condition regarding the linear independence of the rows of Wi+1 implies that in the network,
only equal or diminishing layer sizes are allowed (ni+1 ≤ ni, with ni the dimension of the i-th layer).
Therefore, we should explore if Linv

i of equation (4.91) could be adjusted with regularizing terms to
ensure that Q i approximates W†

i+1, also for expanding layers. In the next theorem, we will show
that this can be done by regularizing the Frobenius norm of Q i. Another interesting observation is
that the expected gradient of Linv

i with Γi =σ2I, shown in equation (4.92) has a related form to the
iterative method of Ben-Israel and Cohen [99], used for iterative approximating the pseudo-inverse.
This iterative method has the following iteration step for letting Q i approximate W−1

i+1:

Q(m+1)
i = 2Q(m)

i −Q(m)
i Wi+1Q(m)

i , (4.96)

which can be interpreted as a gradient descent step with gradient ∇Q i L
inv
i = (

Q iWi+1 − I)Q i and
a step size equal to one. This gradient has the same form as in equation (4.92), only with WT

i+1
replaced by Q i. In future research, it should thus be investigated if Linv

i can be adapted in order
to incorporate the Ben-Israel and Cohen method, as this method approximates the pseudo-inverse
without restrictions on the layer sizes and has a quadratic convergence rate.
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Improved inverse loss function. We now propose a new regularized inverse loss function Linv,r
i for

which the minimum will approximate W†
i+1 more generally.

Linv,r
i

(
g i

(
f i+1(hi)

)
,hi

)
= ∥∥g i

(
f i+1(hi)

)−hi
∥∥2

2 +λ‖Q i‖2
F . (4.97)

The square of the Frobenius norm is defined as:

‖Q i‖2
F =∑

j,k

(
Q( j,k)

i
)2, (4.98)

with Q( j,k)
i the element on the j-th row and k-th column of Q i. This new loss function uses weight decay, a

regularizing method widely used in the deep learning community [100].

Theorem 4.7. Consider a feed-forward neural network with forward mapping f i(hi−1) = si(Wihi−1) and
backward mapping g i(hi+1) = Q is−1

i+1(hi+1). If and only if hi is uncorrelated and has equal variances
σ2, the minimization of the inverse loss Linv,r

i , defined in equation (4.97) leads in expectation towards the
unique solution

Q∗
i =WT

i+1
(
Wi+1WT

i+1 +
λ

σ2 I)−1. (4.99)

When the weight-decay parameter λ is driven in limit to zero, this results in the unique solution

lim
λ→0

Q∗
i =W†

i+1 (4.100)

with W†
i+1 the Moore-Penrose pseudo-inverse of Wi+1 [82, 83].

The proof of this theorem can be found in appendix B.

Now we have an inverse loss function that lets the backward weights Q i converge in expectation towards
the pseudo-inverse of the forward weights Wi+1, independently of the layer sizes. hi still needs to be white
noise during the training phase of the backward weights, as was discussed after theorem 4.6. If Wi+1 is of
full rank, Q i will approximate W†

i+1 by minimizing Linv,r
i for λ→ 0, if and only if Γi is of full rank, thereby

relaxing the condition on hi (same proof as in theorem 4.6). In the following section, we will analyse
difference target propagation [5], and with the help of the above theorems and lemmas, we will show that
under well-specified conditions, difference target propagation uses Gauss-Newton optimization to define
its local layer targets, even when it only has approximate inverses.

4.3.3 A theoretical analysis of difference target propagation
In difference target propagation (DTP) [5], the authors introduce a difference correction in the propagated
target ĥi, in order to make sure that if one layer matches its target, all lower layers should also match
their target:

ĥi = g i(ĥi+1)+ (
hi − g i(hi+1)

)
(4.101)

With the new mathematical framework of target propagation, we see that this correction exactly can-
cels out the reconstruction error terms of (4.84), as there are no reconstruction errors to be propagated
backwards anymore. The local layer targets can now again be approximated as in (4.10):

ĥi ≈ hi − η̂
[L−1∏

k=i
Jgk

]
eL (4.102)

Note however that the Jacobians Jgk are not equal anymore to J−1
fk+1

, as no exact inverses are used. The
success of difference target propagation can be explained by the disappearance of these reconstruction
error terms in the backward propagation of the targets. Each layer still receives a clean error signal from
the output, only the transformations of the target error via gk are not completely equal anymore to the
ones obtained in target propagation with exact inverses. When an L2 loss function is used for the local
layer loss L i, the forward weight update ∆Wi (resulting from a gradient step on the local loss function) are
now given by:

∆Wi =−ηiDsi (h− ĥi)hT
i−1 (4.103)

≈−ηiDsi

(
η̂

[L−1∏
k=i

Jgk

]
eL

)
hT

i−1, (4.104)
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In what follows, we will propose and prove the final theorem of this chapter, showing that under well-
specified conditions, difference target propagation uses Gauss-Newton optimization to compute its target
values. We will first prove a lemma, that is needed later on for proving the theorem.

Lemma 4.8. Consider a feed-forward network with L layers and with as forward mapping function hi =
f i(hi−1)= si(Wihi−1), i = 1, ...,L where si can be any differentiable, monotonically increasing and invertible
element-wise function. The Moore-Penrose pseudo-inverse of all Jacobians Ji = ∂hL

∂hi
= ∏i+1

k=L DskWk, i =
1, ...,L−1, can be factorized as J†

i = ∏L
k=i+1 W†

k D†
sk if and only if nL = nL−1 = ... = n2 and n2 ≤ n1, with ni

the dimension of the i-th layer, Wi is of full rank for i = 3, ...,L−1 and W2 is of full row rank.

The proof of this lemma can be found in appendix B.

With this lemma proven, we are now ready to state the main result of this section.

Theorem 4.9. Consider a feed-forward neural network with as forward mapping function hi = f i(hi−1) =
si(Wihi−1), i = 1, ...,L where si can be any differentiable, monotonically increasing and invertible element-
wise function. Take the backward mapping functions , used for propagating the target activations, equal
to g i(ĥi+1) = Q is−1

i+1(ĥi+1) and assume that after each forward weight update, they are trained until opti-
mality with white noise hi and loss function Linv,r

i as defined in equation (4.97) with λ→ 0 in the limit.
Furthermore assume a mini-batch size of 1, a sufficiently small output step size η̂ and an L2 output loss
function. Finally, assume that nL = nL−1 = ... = n2 and n2 ≤ n1, with ni the dimension of the i-th layer,
that Wi is of full rank for i = 3, ...,L−1 and W2 is of full row rank. Under these conditions, difference target
propagation approximately uses Gauss-Newton optimization with a block-diagonal approximation of the
Gauss-Newton Hessian to compute the local layer targets ĥi.

As the proof of this main theorem is similar to the proof of theorem 4.3, it is moved to appendix B.

Discussion of theorem 4.9. This last theorem of the chapter proves that target propagation can ap-
proximate Gauss-Newton optimization in a more general network setting, with plastic feedback weights
and more general architectures.

• The property of difference target propagation that it eliminates the reconstruction error of equation
(4.84) is crucial for the theorem to hold for different layer sizes, because even when the g i is equal
to the pseudo-inverse of f i+1, there will still be reconstruction errors in pure target propagation
when different layer sizes are used. Only when equal layer sizes are used, pure target propagation
with plastic feedback functions g i can be used to approximate Gauss-Newton optimization, without
having reconstruction errors that interfere with the learning signal.

• Lemma 4.8 implicates that the theorem only holds for networks with constant layer sizes except
from the first two hidden layers (the first hidden layer can be any dimension, and the second hidden
layer must be smaller than the first one, after which all further layers need to be of the same size
as the second hidden layer). This is a serious restriction on the possible network architectures. It
should thus be experimentally investigated whether the theorem still approximately holds for other
network architectures.

• Similarly to target propagation with exact inverses, the weights are trained by performing a gradient
step on a local loss function in function of the layer target and the layer activation. This makes dif-
ference target propagation a mix between Gauss-Newton optimization (for the targets) and gradient
descent (for the weights), which makes it not trivial to find good training parameters. For the output
step size η̂ and the gradient step size η, the same comments hold as in section 4.2.3. The regularizer
parameter λ of the inverse loss function Linv,r

i (4.97) can also be seen as a training parameter. If
equation (4.99) is compared with the Levenberg-Marquardt optimizing step

∆hLM
i =−η̂(JT

i Ji +λI)−1JT
i e, (4.105)

Ji =
L∏

k=i+1
DskWk, (4.106)

51



a certain similarity is clear. With difference target propagation, the optimizing step has the following
form:

∆hDTP
i =−η̂

[L−1∏
k=i

Q iD−1
sk+1

]
eL (4.107)

= η̂
[L−1∏

k=i
(WT

i+1
(
Wi+1WT

i+1 +λI)−1D−1
sk+1

]
eL. (4.108)

Although equations (4.105) and (4.108) are not equal, both strive to make sure that the matrices
that need to be inverted are far enough away from singularity, thereby limiting the step size with
a sort of thrust region. The regularizer parameter should consequently be treated as a Levenberg-
Marquardt-like training parameter. In classical Levenberg-Marquardt optimization, this is done by
a heuristic based on the reduction ratio ρ (see section 4.2.3). As this heuristic is not likely to be
biologically computable, other more biologically plausible heuristics for λ should be investigated in
future research. For the simulations in this thesis, we treat λ as a fixed training hyperparameter.

• Even if the backward weights Q i are not trained to approximate W†
i+1, the network can still learn

from the backpropagated errors if the weights of gk change slower in time compared to the forward
weights. This was shown in feedback alignment, which is the limit case of a total fixation of the
backward weights to random values [6]. Guerguiev et al. [8] confirmed this hypothesis. In thit case,
however, theorem 4.9 does not hold anymore and most likely no Gauss-Newton optimization is used
anymore.

4.4 Conclusion
This chapter performed a thorough theoretical analysis of target propagation and its variants and cre-
ated a well-founded mathematical framework around target propagation to better understand its learning
mechanisms. This provides a significant contribution to the field of biologically plausible deep learning, as
the target propagation method did not yet have a solid mathematical foundation.

The chapter started with investigating the target propagation method with perfect inverses. By doing first
order Taylor approximations around the layer activations hi, it was discovered that the learning signal
hi − ĥi of target propagation has a form very similar to the backpropagated error in the backpropagation
method. Based on this Taylor approximation of the learning signal, theorem 4.3 showed that target prop-
agation uses Gauss-Newton optimization to compute its local layer targets ĥi. After computing the local
layer targets, target propagation performs a gradient descent step on the local layer loss L i to update its
parameters Wi. Therefore, target propagation can be interpreted as a mixture between first and second
order optimization. Based on this insight, we investigated which training hyperparameters should be used
for target propagation. We developed a robust Sherman-Morrison update for the forward weights and its
inverse, that has similar stabilizing characteristics as the Levenberg Marquardt method. We highlighted
that the target propagation method from literature uses a constant step size, whereas the Gauss-Newton
optimization methods for deep learning use an adaptive step size. Hence, future research should investi-
gate whether target propagation can be improved by using adaptive step sizes. Furthermore, we showed
that the expensive computations of the weight inverses W−1

i can be implemented efficiently by using the
Sherman-Morrison formula that operates in O (n2). Consequently, target propagation performs a mixture
of first and second order optimization with approximately the cost of first-order optimization.

The chapter ended with investigating the target propagation method with approximate inverses. By doing
first order Taylor approximations around the layer activations hi, it was discovered that reconstruction
errors interfere with the useful learning signal of target propagation. This explains the poor performance
of pure target propagation described in the literature. We proposed an improved form of the backward
mapping g i, that is able to learn the inverse of f i+1 more accurately. Therefore, we hypothesise that the
performance of target propagation with this form of g i will suffer less from the reconstruction errors and
perform better. Furthermore, we showed that difference target propagation cancels out the reconstruc-
tion errors by adding a correction term to its targets. Therefore, difference target propagation does not
suffer from reconstruction errors, which explains its good performance. Finally, theorem 4.9 shows that
difference target propagation uses Gauss-Newton optimization to compute its local layer targets, when our

52



improved form of the backward mapping g i is used to learn the inverses.

The next chapter will experimentally verify the theoretical assumptions and predictions made in this
chapter, and will further investigate the learning behaviour of target propagation in an experimental
manner. Chapter 6 will use the results of this chapter to develop a network model more closely linked to
the biological properties of neurons.
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Chapter 5

An experimental analysis of target
propagation

In this chapter, we perform an experimental analysis of the target propagation method in order to exper-
imentally verify the theoretical results of the previous section and to get a more intuitive understanding
of the learning dynamics of the target propagation method. This chapter starts with investigating target
propagation with exact inverses, after which it analyses target propagation with approximate inverses.

5.1 Experiments on target propagation with exact inverses
This section starts with an easy interpretable toy example to highlight the similarities and differences
of target propagation compared to both error back-propagation and Gauss-Newton optimization. Based
on the obtained results, we propose modified target propagation, a new variant of target propagation
that is more closely linked to Gauss-Newton optimization. Subsequently, various theoretical assumptions,
made in the previous chapter, are experimentally verified. These results reveal that the block-diagonal
approximation of the GN curvature matrix used for lemma 4.2 is not valid. We propose a randomized
target propagation variant that solves this issue. This section ends with a more challenging task to test
the performance of the target propagation method and its new variants: a student-teacher non-linear
network training in higher dimensions.

5.1.1 Toy example

Figure 5.1: A visualization of
the toy example network.

For this toy example, we use a network with one hidden layer as visu-
alized in figure 5.1. The network has one input neuron h0, two hidden
neurons h1 with two corresponding weights W1 and two output neu-
rons h2 with four corresponding weights W2. No biases are used in
this toy network. As we want to visualize the learning dynamics of
this network in 2D plots, only the weights W1 of the hidden layer are
trained, while W2 is kept fixed. This student network needs to learn to
imitate a teacher network, which has the same architecture and out-
put weights W2, but has a different set of hidden weights W∗

1 . An L2
output loss is used to train the network. We first start with a purely
linear network setting, after which we repeat the analysis in a more
general non-linear setting.

Linear case

The forward propagation in the linear network is given by the follow-
ing set of equations:

h1 =W1h0 (5.1)

h2 =W2h1. (5.2)
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The backward propagation in the target propagation method with exact inverses is expressed by:

ĥ1 =W−1
2 ĥ2 (5.3)

We assume that W2 is always invertible. We first derive analytical expressions for the learning dynam-
ics (update steps) of this linear toy example when using error back-propagation, target propagation and
Gauss-Newton optimization, after which we discuss the simulated results. The expected L2 loss in this
student-teacher network setting can be expressed as:

E
[
L

]= E
[1

2
(h2 − t)T (h2 − t)

]
(5.4)

= E
[1

2
(W2W1h0 −W2W∗

1 h0)T (W2W1h0 −W2W∗
1 h0)

]
(5.5)

= 1
2
E
[
h2

0
]
(W1 −W∗

1 )TWT
2 W2(W1 −W∗

1 ) (5.6)

This is a convex quadratic loss function, as E
[
h2

0
]
WT

2 W2 is always positive semidefinite. From this loss
function, we can derive the expectation of the error backpropagation update step ∆WBP

1 , the target propa-
gation update step ∆WTP

1 and the Gauss-Newton update step ∆WGN
1 :

∆WBP
1 =−ηE

[ ∂L
∂W1

]
=−ηE[

h2
0
]
WT

2 W2(W1 −W∗
1 ) (5.7)

∆WTP
1 = E

[(
ĥ1 −h1

)
h0

]
= E

[(
W−1

2 (h2 − η̂ ∂L
∂h2

)−h1
)
h0

]
(5.8)

=−η̂E[
h2

0
]
(W1 −W∗

1 ) (5.9)

∆WGN
1 =−

(
E
[( ∂h2

∂WT
1

)T( ∂h2

∂WT
1

)])−1

E
[ ∂L
∂W1

]
(5.10)

=−
(
E
[
h2

0
]
WT

2 W2

)−1
E
[
h2

0
]
WT

2 W2(W1 −W∗
1 )=W∗

1 −W1 (5.11)

In practice, the expectations E are estimated by using mini-batches, resulting in a stochastic training
scheme. We see that the Gauss-Newton update step reaches always directly the optimum. This could
have been expected, as Gauss-Newton optimization is equal to Newton optimization for linear models and
Newton optimization reaches the optimum in one step if the loss function is quadratic. In this linear
setting with a scalar input h0, the target propagation update lies in the same direction as the Gauss-
Newton update, only the scaling factor η̂E

[
h2

0
]

is different. As we will see later, this will not always be
true anymore for the non-linear case or when the network has multiple inputs. The direction of error back-
propagation update (gradient descent) is not equal anymore to the Gauss-Newton update, but is instead
weighted by ηE

[
h2

0
]
WT

2 W2, resulting in the direction of steepest descent. With the help of the singular
value decomposition of W2 =UΣV T , ∆WBP

1 becomes more intuitive:

∆WBP
1 =−ηE[

h2
0
]
VΣ2V T (W1 −W∗

1 ) (5.12)

The parameter error (W1−W∗
1 ) gets first projected to the principal directions V of W2, after which they are

scaled by the squared singular values σ2
i and projected back to the original space. The gradient step thus

weights the principal directions of the parameter error (W1−W∗
1 ) with σ2

i , indicating the importance of that
principal direction on the output loss. Hence, it prioritizes first the most important directions to decrease
the loss, whereas Gauss-Newton cancels out the influence of W2 on the output loss and directly follows the
direction of the parameter error (W1 −W∗

1 ). Target propagation follows the same intuitive interpretation
as Gauss-Newton for this toy example. Figure 5.2 shows the experimental results of this toy example,
which match nicely with the above analytic derivation. Note that the step size η̂ of the target propagation
method could have been cherry-picked to reach the optimum in one single step, but in realistic problems,
this is not possible, so a more modest step size was used.

Non-linear case

Now the analysis of the toy example is repeated for the non-linear case: a Leaky-ReLU element-wise
activation function with a negative slope of 0.1 is applied on the hidden layer h1. Equation (5.1) is now
replaced by:

h1 =Leaky-ReLU(W1h0), s(W1h0), (5.13)
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(a) (b) (c)

Figure 5.2: Simulated training results of the linear toy example. In all subfigures, the elliptic
contours of the loss function are visualized in blue. The training iterations are visualized by connected
red stars. The inputs h0 were Gaussian distributed with σ2 = 1. (a) The Gauss-Newton training method
reaches the optimum in a single step. (b) The target propagation training method has updates in the
same direction as the Gauss-Newton method, but needs multiple steps to reach the optimum. The output
step size was set as follows: η̂= 0.8. (c) the error back-propagation method follows the gradient direction,
resulting in a typical zig-zag trajectory towards the optimum. The learning was set as follows: η= 0.3.

with Leaky-ReLU(x)= x if x ≥ 0 else 0.1x, and s an abbreviation for clarity of notation. Equation (5.2) and
(5.3) remain the same. The expected L2 loss is now given by:

E
[
L

]= E
[1

2
(h2 − t)T (h2 − t)

]
(5.14)

= 1
2
E
[(

s(W1h0)− s(W∗
1 h0)

)TWT
2 W2

(
s(W1h0)− s(W∗

1 h0)
)]

(5.15)

The resulting update steps for W1 can be expressed as:

∆WBP
1 =−ηE

[ ∂L
∂W1

]
=−ηE

[
h0DsWT

2 W2
(
s(W1h0)− s(W∗

1 h0)
)]

(5.16)

∆WTP
1 = E

[
Ds

(
ĥ1 −h1

)
h0

]
=−η̂E[

h0Ds
(
s(W1h0)− s(W∗

1 h0)
)]

(5.17)

∆WGN
1 =−

(
E
[( ∂h2

∂WT
1

)T( ∂h2

∂WT
1

)])−1

E
[ ∂L
∂W1

]
(5.18)

=−
(
E
[
h2

0DsWT
2 W2Ds

])−1
E
[
h0DsWT

2 W2
(
s(W1h0)− s(W∗

1 h0)
)]

(5.19)

with Ds a diagonal matrix with as entries the derivatives of s, evaluated at W1h0. For a mini-batch size of
1, the last expression can be simplified to:

∆WGN
1 = 1

h0
D−1

s
(
s(W1h0)− s(W∗

1 h0)
)

(5.20)

Figure 5.3 shows the experimental results of this non-linear toy example. The target propagation training
scheme has update steps in the same direction as the Gauss-Newton training scheme. However, after the
first update step, it suffers from the same slow convergence as gradient descent, whereas Gauss-Newton
only needs two steps to reach the optimum.
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(a) (b) (c)

Figure 5.3: Simulated training results of the nonlinear toy example. In all subfigures, the contours
of the loss function are visualized. The training iterations are visualized by connected red stars. The
inputs h0 were Gaussian distributed with σ2 = 1 and a mini-batch size of 1 was used. (a) The Gauss-
Newton training method reaches the optimum in two steps. (b) The target propagation training method
has updates in the same direction as the Gauss-Newton method, but needs multiple steps to reach the
optimum. The training hyper-parameter was set as follows: η̂= 1.0. (c) the error back-propagation method
follows the gradient direction. The training hyper-parameter was set as follows: η̂= 0.5.

To better understand the experimental results, we further investigate the analytical expressions for the
update steps. If W1 is close to W∗

1 , ∆WTP
1 and ∆WGN

1 can be approximated by a first order Taylor expansion
(with a mini-batch size of 1):

∆WTP
1 ≈−η̂h2

0DsD∗
s
(
W1 −W∗

1
)

(5.21)

∆WGN
1 ≈ D−1

s D∗
s
(
W1 −W∗

1
)

(5.22)

with D∗
s a diagonal matrix with as entries the derivatives of s, evaluated at W∗

1 h0. We see that ∆WGN
1 is

scaled by D−1
s D∗

s , which is close to the identity matrix if W1 is close to W∗
1 and s is smooth in the neighbour-

hood. ∆WTP
1 , on the other hand, is scaled by h2

0DsD∗
s , which can change both the direction and magnitude

of the update step compared to the parameter error (W∗
1 −W1). As the leaky-ReLU nonlinear activation

function results in a piece-wise linear network model, the L2 loss function is piece-wise quadratic as can
be seen in figure 5.3. The starting point of the training is located in the positive region of both leaky-ReLU
nonlinearities, resulting in Ds = I. For a mini-batch size of 1, this implies that ∆WTP

1 lies in the same
direction as ∆WGN

1 for the first update step (see equations (5.17) and (5.20)). Because E
[
h2

0
]= 1 and η̂= 1,

also the magnitudes are roughly equal. After this first update step, the iteration step is located at the neg-
ative region of both leaky-ReLU nonlinearities, resulting in Ds = 0.1I. From equations (5.21) and (5.22),
we now see that ∆WTP

1 ≈ 0.12η̂h2
0∆WGN

1 ≈ 0.12∆WGN
1 , explaining the many small steps target propagation

needs to take after the first update step.

Generalization of the toy example

In the previous chapter on the theoretical analysis of target propagation, we showed that target propa-
gation uses an approximation of Gauss-Newton optimization to compute its local layer targets. In this
toy example, we highlighted that target propagation not only uses Gauss-Newton for its layer targets,
but that it is also closely related to Gauss-Newton optimization for the layer parameters Wi if the other
layer parameters Wj 6=i remain fixed. As the toy-example used a very specific network architecture, we now
briefly analyse a more general network setting in order to reach a more general interpretation of target
propagation. Assume a network of L equally sized layers with perfect inverses. Now assume that we want
to train the parameters Wi while keeping all the other parameters Wj 6=i fixed. Using equation (4.12) and
assuming Wi is close to the optimum W∗

i , ∆WTP
i can be approximated as:
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∆WTP
i = E

[
−ηiDsi (hi − ĥi)hT

i−1

]
(5.23)

≈ E

[
−ηiDsi

(
η̂
[L−1∏

k=i
W−1

k+1D−1
sk+1

]
eL

)
hT

i−1

]
(5.24)

≈ E

[
−ηiη̂Dsi

[L−1∏
k=i

W−1
k+1D−1

sk+1

][ i∏
k=L−1

D∗
sk+1

Wk+1

]
D∗

si

(
Wi −W∗

i
)
hi−1hT

i−1

]
(5.25)

≈ E

[
−ηiη̂Dsi D

∗
si

(
Wi −W∗

i
)
hi−1hT

i−1

]
(5.26)

For the third equation, we used a first order Taylor expansion for eL = hL − t around W∗
i , assuming that

with W∗
i , the exact output targets are reached. For the fourth equation, we assumed that Dsk ≈ D∗

sk
for Wi

close to W∗
i .

We can do a similar analysis for the Gauss-Newton update step ∆WGN
i . First let us define HT

i as:

HT
i ,


hT

i 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 hT

i

 (5.27)

Now take vec
(
Wi

)
the vector consisting of the concatenated rows of Wi. Then it holds that Wihi−1 =

HT
i−1vec

(
Wi

)
. ∆WGN

i is now given by:

∆WGN
i =−E

[
JT

i Ji

]−1
E
[
JT

i eL
]

(5.28)

Ji ,
∂hL

∂vec
(
Wi

) = [ i∏
k=L−1

Dsk+1Wk+1

]
∂hi

∂vec
(
Wi

) (5.29)

=
[ i∏

k=L−1
D∗

sk+1
Wk+1

]
Dsi H

T
i−1 (5.30)

For Wi close to W∗
i , eL can again be approximated as

eL ≈
[ i∏

k=L−1
D∗

sk+1
Wk+1

]
D∗

si

(
Wi −W∗

i
)
hi−1 (5.31)

=
[ i∏

k=L−1
D∗

sk+1
Wk+1

]
D∗

si
HT

i−1
(
vec(Wi)−vec(W∗

i )
)= Ji

(
vec(Wi)−vec(W∗

i )
)
. (5.32)

This leads to

∆WGN
i ≈−E

[
JT

i Ji

]−1
E
[
JT

i Ji

](
vec(Wi)−vec(W∗

i )
)= vec(W∗

i )−vec(Wi), (5.33)

when Wi is close to the optimum. In the last expression, vec(Wi) can be transformed again to Wi, as no
matrix multiplications are present anymore. When the approximate Gauss-Newton step (5.33) is compared
to the approximate target propagation step (5.26), we observe that ∆WTP

i is very similar to ∆WGN
i , apart

from a left multiplication with ηiη̂Dsi D
∗
si

and a right multiplication with hi−1hT
i−1. In the following, we

propose a modified target propagation method, in order to make ∆WTP
i more similar to ∆WGN

i such that
it better approximates second-order optimization.

Modified target propagation.

The diagonal matrix Dsi in equation (5.26) is due to the gradient step on the local layer L2 loss function.
If we modify this gradient step towards a more Gauss-Newton inspired update step by replacing Dsi with
D−1

si
and if we assume Dsi ≈ D∗

si
, we get the following approximation of the modified target propagation

update step:

∆WMTP
i ≈−ηiη̂

(
Wi −W∗

i
)
E
[
hi−1hT

i−1

]
(5.34)
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Figure 5.4: The modified target propagation training scheme applied on the nonlinear toy ex-
ample. Only two training steps are needed to reach the minimum.

If we take ηiη̂= 1, the only difference between the approximation of ∆WMTP
i and ∆WGN

i is the right mul-
tiplication with E

[
hi−1hT

i−1
]
. In the deep learning community, a common technique for improving the

training of neural networks is batch normalization [101]. In this technique, each neuron of the network
is independently whitened for each mini-batch. Intuitively speaking, this can be interpreted as prepro-
cessing not only the input layer, but also all hidden layers of the network during each mini-batch. It also
introduces a scaling parameter and a bias parameter for each neuron, so that the network can learn how
to preprocess its hidden layers, but those parameters are omitted here. If each neuron of hi is whitened
independently, the entries of E

[
hi−1hT

i−1
]

are given by E
[
hi−1hT

i−1
]

j,k = ρ j,k, with ρ j,k the Pearson’s cor-
relation coefficient between the j-th and k-th neuron of hi−1. This matrix has diagonal entries equal to
1, but in general it has also non-diagonal entries with values in the interval [−1,1]. Hence, in general
E
[
hi−1hT

i−1
]

is not equal to the identity matrix when using batch normalization, but it will be closer to
the identity matrix compared to a network without batch normalization, so ∆WMTP

i will also be closer
to ∆WGN

i . Therefore, we also include batch normalization into the modified target propagation training
scheme.

To summarize, modified target propagation differs from normal target propagation by replacing Dsi with
D−1

si
and by using batch normalization for its hidden layers. Algorithm A.1 gives an overview of the modi-

fied target propagation method. Figure 5.4 shows the results of applying the modified target propagation
training scheme on the nonlinear toy example. As can be seen, the optimum is reached in two steps, sim-
ilar to the Gauss-Newton optimization in figure 5.3a. During further experiments in section 5.1.3, the
modified target propagation scheme will be compared to the normal target propagation scheme to see if it
improves the performance.

Conclusion toy example

In this toy example, we showed that target propagation not only uses Gauss-Newton optimization to com-
pute its local layer targets, but that it is also closely related to Gauss-Newton optimization for the layer
parameters Wi if the other layer parameters Wj 6=i remain fixed. Intuitively, when updating the parameters
Wi, target propagation cancels out the curvature in the loss function introduced by all higher layers j > i
(as Wj and Ds j disappear in equation (5.21)), as also is done by Gauss-Newton optimization. However,
due to the gradient step on the local layer loss function, the curvature Dsi of the layer itself still influ-
ences the target propagation update, resulting in a gradient-descent-like behaviour of target propagation
in the nonlinear toy example shown in figure 5.3b. In order to further eliminate this gradient-descent-like
behaviour, we introduced modified target propagation, which also counters the curvature Dsi of the layer
itself and uses batch-normalization to reduce the influence of the covariance matrix E

[
hi−1hT

i−1
]

on the
parameter update.

5.1.2 Experimental verification of theoretical assumptions
In this section, we verify two important assumptions made in chapter 4: (1) the smallest singular value
of the update weight matrix Wi +∆Wi has a significant positive correlation with the denominator of the
Sherman-Morrison update 1+d = 1+vT

i W−1
i ui and (2) the Gauss-Newton approximation of the Hessian is
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block-diagonal dominant, so can be approximated by a block-diagonal matrix.

Correlation of σmin with the Sherman-Morrison update

In section 4.2.3 we developed a robust Sherman-Morrison update, based on the assumption that the de-
nominator 1+d = 1+ vT

i W−1
i ui of the Sherman-Morrison update (4.19) correlates well with the smallest

singular value σmin of Wi+∆Wi. Algorithm 4.1 gave an overview of this robust Sherman-Morrison update.
Figure 5.5 shows the scatter plot of the absolute value of 1+ d versus σmin, resulting from a series of
random trails where Wi is updated with ∆Wi = uivT

i and ui and vi taken as Gaussian random vectors. We
see that |1+d| correlates well with σmin of the updated matrix. For samples with |1+d| < 0.1 (the samples
for which the robust Sherman-Morrison update would threshold the denominator), a Pearson correlation
coefficient of ρ = 0.80 was measured with σmin. The assumption that the denominator 1+d = 1+vT

i W−1
i ui

of the Sherman-Morrison update (4.19) correlates well with the smallest singular value σmin of Wi +∆Wi
is thus well justified. As a verification for the robust Sherman-Morisson procedure, figure 5.5b shows
the scatter plot of the absolute value of 1+d versus σmin, when Wi is updated with the robust Sherman-
Morrison update with threshold ε= 0.1. We see that σmin of the updated matrix is lower bounded, ensuring
that the updated matrix Wi +∆Wi is robust invertible.

(a) (b)

Figure 5.5: Scatter plots of the denominator d+1 of the Sherman-Morrison update versus the
smallest singular value σmin of the updated weight matrix Wi +∆Wi. 20000 trails were used to
produce the scatter plots. During each sample trail, Wi was taken as a Gaussian random robust invertible
matrix with σmin(Wi) ·σmax(Wi)> 0.4. ui and vi were taken as Gaussian random vectors. In both figures,
σmin represents the smallest singular value of the updated matrix Wi+∆Wi and |d+1| = |1+vT

i W−1
i ui| the

absolute value of the denominator of the Sherman-Morrison update, as defined in equation (4.19). (a) Wi
is updated with ∆Wi = uivT

i . (b) Wi is updated with the robust Sherman-Morrison update as summarized
in algorithm 4.1, with threshold ε= 0.1.

Block-diagonal approximation

In the field of Gauss-Newton optimization for deep learning, it is common to approximate the Gauss-
Newton curvature matrix G = JT J by a block-diagonal matrix G̃ [84, 85, 86], as the authors of [84] show
that the GN Hessian matrix is block diagonal dominant for feed-forward neural networks. As this block-
diagonal approximation is an important building block of the main theorem of this thesis (theorem 4.3),
we verify experimentally whether this approximation holds for the setting of the theorem: a mini-batch
size of 1. For the experiment, we use Gaussian random layer Jacobians Jhi = ∂hi

∂hi−1
= Dsi Wi and compute

the blocks Ji of the total Jacobian Jtot as follows:

Ji = block
(
Jtot

)
i =

∂hL

∂hi
=

i+1∏
k=L

Jhk i = 1, ...,L−1 (5.35)

Each block of Jtot represents the Jacobian of the output layer hL towards a hidden layer hi. We then
compute two different updates ∆h̄, with ∆h̄ the concatenation of all hidden layer updates {∆hi}L−1

i=1 as
defined in theorem 4.3: (1) ∆h̄ f ull , computed with the full Gauss-Newton curvature matrix G and (2)
∆h̄approx, computed with the block diagonal approximation G̃ of the curvature matrix, as defined in lemma
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4.2. Figure 5.6 shows the result of the experiment. For two hidden layers and a mini-batch size of 1, figure
5.6a shows that the angle α between ∆h̄ f ull and ∆h̄approx can take almost any value within the interval
[−π

2 , π2 ], which implicates that G is not always block-diagonal dominant for a mini-batch size of 1. If the
network consist of more hidden layers, figure 5.6b indicates that the situation is even worse: in general,
the updates ∆h̄ f ull and ∆h̄approx are approximately orthogonal with each other. In the previous papers on
Gauss-Newton optimization for deep learning [84, 85, 86], the authors used mini-batches of at least 100
samples to average the curvature matrix G. Figure 5.6c shows that the block-diagonal approximation is
valid in this case of large mini-batches.

(a) (b) (c)

Figure 5.6: Histogram of the angle α between the layer targets computed with full Gauss-
Newton and with the block-diagonal approximation of Gauss-Newton. For each figure, 10000
random trails were taken. (a) a network with 2 hidden layers and a mini-batch size of 1. (b) a network
with 10 hidden layers and a mini-batch size of 1. (c) a network with 10 hidden layers and a mini-batch
size of 100.

The results of this experiment can be explained by the phenomenon that the higher the dimensionality of
the vector space, the higher the chance that random vectors are approximately orthogonal to each other
[102]. For mini-batches greater than one, Jtot consists of concatenated Jacobians along the row dimension,
thus increasing the row dimension of Jtot. Consequently, the curvature matrix G = JT

tot Jtot consists of
inner products of high dimensional vectors. The diagonal has the squared magnitude of these vectors as
entries, and the rest of G has inner products of different vectors as entries. Hence, for large mini-batches,
this makes G diagonal dominant. For small mini-batches, however, this argument does not hold anymore
and the block-diagonal approximation of G is no longer valid.

Implications of the experimental verifications

From the experimental results, it is clear that the assumptions made for the robust Sherman-Morrison
update were correct and that the method works. However, the experimental results on the block-diagonal
approximation of the Gauss-Newton curvature matrix showed us that this approximation is not accurate
for a mini-batch size of 1. Note that the mini-batch size of the Gauss-Newton algorithm cannot be in-
creased, as target propagation uses directly the (pseudo-)inverses of the forward weight matrices Wi to
compute its layer targets, instead of averaging the curvature matrix G over the mini-batch and afterwards
solving the linear system, as is done in classical Gauss-Newton. This implicates that the block-diagonal
approximation used in theorems 4.3 and 4.9 needs to be adjusted in order to be useful in practice.

Luckily, this issue can be resolved in an intuitive way. If during each training iteration, only one set of
layer weights Wi is updated, while all other layer weights Wj 6=i are considered fixed, theorems 4.3 and
4.9 still hold. Now, the GN curvature matrix G consists of only one block and is by default equal to its
block-diagonal approximation. Intuitively, this makes also more sense. During each training iteration,
the output target is now transformed to a local target for one of the layers and those layer parameters
are updated. This is in contrast with the original target propagation method, where the output target is
transformed to a local layer target for all layers simultaneously and where all the layer parameters are
updated at once. In the last case, the output target would be overused by all layers, and each layer updates
its parameters assuming that the other parameters stay fixed. In reality, however, all layer parameters
change simultaneously.

Consequently, we hypothesize that the target propagation method can be improved by making asyn-
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chronous updates for the layer parameters: during each training iteration, one layer is randomly chosen
from all layers {hi}L

i=1 to compute its local layer target and update its parameters. This can be extended to
a mini-batch setting by choosing randomly a layer to update for each mini-batch. Note that the mini-batch
setting of target propagation differs from the one of Gauss-Newton optimization. In Gauss-Newton opti-
mization the curvature matrix G and the gradient of the loss function are averaged over the mini-batch,
after which one single linear system is solved to compute the parameter updates. In target propagation,
however, a parameter update is computed for each sample in the mini-batch, and all the parameter up-
dates are averaged to obtain the final update. Algorithm A.2 in appendix A summarizes this randomized
target propagation method. The same reasoning can also be applied to the modified target propagation
method, giving rise to the randomized modified target propagation method, as shown in algorithm A.3.

To conclude, in chapter 4, we investigated the mathematical properties of target propagation and which
assumptions need to be made for the theorems in order to fit them with the literature on target propaga-
tion. In this section, we experimentally investigated those assumptions and proposed modifications and
improvements to the target propagation method in order to match the mathematical insights with the
experimental results. In the next sections, we will compare the modifications of target propagation with
the original target propagation method and with error back-propagation as a control.

5.1.3 Non-linear regression on a student-teacher network
In this section, we investigate the training behaviour of target propagation with exact inverses and its
variants on a student-teacher non-linear regression problem. In a student-teacher regression problem,
first a random ’teacher network’ is initialized to create a training dataset of input-output data pairs by
feeding random inputs to the teacher network and recording its outputs. Afterwards, a ’student network’
of the same architecture is randomly initialized and it is trained on the previously created dataset in or-
der to mimic the teacher network. In this setting, we investigate 5 different training methods: (1) target
propagation with exact inverses, (2) randomized target propagation with exact inverses, (3) randomized
modified target propagation with exact inverses, (4) error backpropagation and finally (5) error backprop-
agation with fixed hidden layer parameters as a control. First, we explain the used methods for this series
of experiments, after which we discuss the obtained results.

Methods

We structure the methods in (1) the network setting, (2) the loss functions, (3-8) the five above men-
tioned training methods, (9) the expression for reconstruction errors and finally (10) the implementation
in Python.

Network setting. For all experiments, we use for both the teacher as the student network a network
architecture with one input layer, one hidden layer and one output layer, all of equal dimension n1 = n2 =
n3 = 6. For the hidden layer, a Leaky-ReLU non-linearity with a negative slope of 0.35 was used as the
forward non-linearity s1. A linear layer was used as the output layer (s2 is the identity function). As with
random weight initializations, some weight initializations might start close to the optimum while others
start far away from it, we removed this random ’luckiness’ by initializing each student network with
weight matrices that have a Frobenius distance of 8.0 from the corresponding teacher weight matrices.
This Frobenius distance of 8.0 is approximately the mean of the Frobenius distance between two random
Gaussian square matrices of dimension 6.

Loss function. For our series of non-linear regression experiments, we chose an L2 output loss, which
is a widely used loss for regression problems. This L2 loss is expressed as:

L
(
hL, tL

)= B∑
b=1

‖h(b)
L − t(b)

L ‖2
2, (5.36)

with B the size of the mini-batch and tL the output value of the used dataset. For the local layer losses L i
to train the forward weights, we also used a L2 loss based on the layer activation and target.

Target propagation with exact inverses. In target propagation with exact inverses (TP-EI), the exact
inverse of the forward mapping of the output layer is used to propagate the output target to the hidden
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layer. This results in a linear mapping with the inverse of the output feed-forward weights, as the output
non-linearity is the identity function:

ĥ1 =W−1
2 ĥ2. (5.37)

In order to minimize computational cost, W−1
2 is updated with the Sherman-Morrison formula (4.19) during

each iteration. This Sherman-Morrison formula requires that the forward weight update ∆W2 is of rank
1, thereby making it necessary to use a mini-batch size of 1 during training. For all methods discussed
in this section, a mini-batch size of 1 is used, with 2000 mini-batches per epoch. When testing the target
propagation training method with exact inverses, it turned out that in order to stabilize the training, it
was absolutely necessary to ensure that the singular values of W2 remained far away from zero. Therefore,
we used two theoretical results of section 4.2.3: (1) for the initialization of W2, it is ensured that σmin ·
σmax > 0.4, with σi the singular values of W2, by generating random Gaussian matrices until the condition
is satisfied and (2) the forward and backward weights are updated with the robust Sherman-Morrison
procedure, explained in algorithm 4.1, in order to prevent W2 from becoming close to singular. Algorithm
A.4 summarizes the target propagation method with exact inverses used in our experiments. Note that
for the experiments, L = 2 and s2 is the identity function, while s1 is the leaky-ReLU nonlinearity. During
the initialization of the network, the exact inverses W−1

i are computed for all layers i = 2, ...,L.

Randomized target propagation with exact inverses. The randomized target propagation training
scheme with exact inverses (RTP-EI) uses the same method as the previously explained TP-EI, except that
it updates only one randomly chosen pair of layer parameters Wk and W−1

k during each training iteration.
Algorithm A.5 provides an overview of the used randomized target propagation method with exact inverses

Randomized modified target propagation with exact inverses. The randomized modified tar-
get propagation method (RMTP), proposed in the previous section (algorithm A.3), makes use of batch-
normalization. However, for target propagation with exact inverses and its variants, the Sherman-Morrison
formula is used to update the inverses of the weight matrices, which requires a mini-batch size of 1. Batch-
normalization is not possible for a mini-batch size of 1, thus in the randomized modified target propagation
method with exact inverses (RMTP-EI), we do not use batch-normalization. The only remaining difference
with the RTP-EI method is that RMTP-EI uses D−1

si
instead of Dsi for the parameter updates. Algorithm

A.6 summarizes the RMTP-EI method.

Error backpropagation. Error backpropagation (BP) is the training method of choice in the deep learn-
ing community. In our experiments, we use a combination of error backpropagation with plain stochas-
tic gradient descent with mini-batches. For completeness, we provide the pseudo-code for this training
method in algorithm A.7. As all previously discussed variants on target propagation with exact inverses
use a mini-batch size of 1, we also use a mini-batch size of 1 for this training method in order to remove
the influence of the mini-batch sizes when comparing the results of the training methods.

Error backpropagation with fixed hidden layer parameters. In the error backpropagation method
with fixed hidden layer parameters (BP-fixed), only the forward weights of the output layer are trained
with the error backpropagation method. This training method serves as a benchmark for models that
cannot propagate useful learning signals to their hidden layers. If a training method X performs better on
average than this error backpropagation method with fixed hidden layer parameters, it indicates that this
training method X can propagate useful learning signals towards its hidden layers.

Reconstruction errors. As the methods TP-EI, RTP-EI and RMTP-EI use exact inverses for g i, we
would suspect that no reconstruction errors occur during training. However, due to the limited numerical
accuracy of the inverse computations, we notice that reconstruction errors do appear during training with
these methods. From section 4.3 on target propagation with approximate inverses, we restate the first
order Taylor approximation of the layer targets ĥi:

ĥi = hi − η̂
[L−1∏

k=i
Jgk

]
eL + (

g i(hi+1)−hi
)+ L−1∑

j=i+1

[( j−1∏
k=i

Jgk

)(
g j(h j+1)−h j

)]
+O (η̂2). (5.38)
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The second term of the right-hand side represents the useful learning signal eTP
i :

eTP
i ,−η̂

[L−1∏
k=i

Jgk

]
eL (5.39)

The third and fourth term represent the reconstruction errors and backpropagated reconstruction errors,
respectively. We assign those two error terms to the symbol erec

i :

erec
i ,

(
g i(hi+1)−hi

)+ L−1∑
j=i+1

[( j−1∏
k=i

Jgk

)(
g j(h j+1)−h j

)]
. (5.40)

The fifth term on the righ-hand side of equation (5.38) represents the Taylor approximation error and is
referred to as eTaylor

i . Finally, we define the total approximation error eapprox
i :

eapprox
i , ĥi −hi − eTP

i = erec
i + eTaylor

i . (5.41)

Note that in our experiments, we use piece-wise linear functions as non-linearities. This implies that
eTaylor

i will almost always be equal to zero, except when hi finds itself on a borderline of the piece-wise
linear function. Consequently, eapprox

i = erec
i in most cases. As eapprox

i is more straight-forward to compute
during training, we use this error to investigate the occurring reconstruction errors in the network.

Implementation. All experiments were done making use of our newly developed PyProp framework.
This framework makes use of the PyTorch framework [103] in Python, but replaces its automatic differ-
entiation framework with a new framework that allows for variants of error backpropagation, such as
target propagation. The framework is built as flexible as possible, such that future work can continue to
use this framework for exploring new alternatives to error backpropagation. Appendix C provides a short
documentation on the PyProp framework.

Results and discussion

Figure 5.7 shows the training progress of the student-teacher regression problem trained by the target
propagation method with exact inverses and its variants. The results were averaged over 7 random gener-
ated network initializations and teacher datasets. During post-processing, we needed to remove 3 outlier
runs, because the training of either TP-EI (twice) or RMTP-EI (once) became unstable and the loss ex-
ploded to very high values. The fact that the RTP-EI method remained stable during all 10 runs, indicates
that the randomization method adds stability to the target propagation method. However, as only 10 runs
were examined, no significant conclusions can be drawn and future work (with more time and computing
power) should perform an experiment containing more runs to obtain more precise conclusions.

The performance of BP and TP-EI are similar, while RTP-EI is stuck in a local minimum from around
epoch 30. This highlights that different optima are reached by TP-EI and RTP-EI, while the methods only
slightly differ from each other. Chapter 4 and section 5.1.1 showed that both TP-EI and RTP-EI are related
to Gauss-Newton optimization, which is an approximate second-order optimization method. Therefore, we
would hope to see a fast initial decay in the output loss during the training process of TP-EI and RTP-EI,
which is a typical second order optimization characteristic. However, on figure 5.7 we see that both TP-EI
and RTP-EI do not converge faster than the error backpropagation method, which is a first order optimiza-
tion method. We hypothesize that this is due to the step-sizes used in target propagation and its variants.
During each iteration in the Gauss-Newton method, the update step reaches the minimum of a parabola
based on the curvature in the current iteration point. Hence, the Gauss-Newton method has implicitly
an adaptive step size that always reaches exactly the minimum of the fitted parabola. Furthermore, a
linesearch is done in Gauss-Newton optimization for deep learning [85] to find explicitly the optimal step
size. Target-propagation-like methods, however, only approximate the direction of the Gauss-Newton up-
date step, not its step size. In our implementation, a linear decaying scheme for the step size was used,
which does not take information on the local curvature into account. Hence, the non-adaptive step size
must be stable for all iterations, and consequently, it has to be taken very small, similar to first order
optimization methods. This explains why both TP-EI and RTP-EI are more similar to first order gradient
descent instead of second order Gauss-Newton optimization.
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(a) (b)

Figure 5.7: Training progress of the student-teacher regression problem trained by the target
propagation method with exact inverses and its variants. The output mean-squared-error (MSE)
loss, also known as L2 loss, is given in function of the training epoch for all the discussed variants of tar-
get propagation. (a) The training loss, evaluated on the training dataset. (b) The test loss, evaluated on
the test dataset. The results are averaged over 7 random generated network initializations and teacher
datasets. For all experiments, a mini-batch size of 1 was used and a network setting as explained in
the methods of section 5.1.3. The output step size was taken equal to η̂ = 0.1 and the threshold parame-
ter for the robust Sherman-Morrison update equal to ε = 0.5, for all target propagation-like methods. A
limited grid-search was done to find the best learning rates for each method: ηTP−EI

init = ηRTP−EI
init = 0.01,

ηRMTP−EI
init = 0.0005 and ηBP

init = η
BP− f ixed
init = 0.001. All learning rates decayed linearly towards ηinit/5 over

the training epochs.

Figure 5.7 shows that the performance of RMTP-EI is only slightly better than BP with fixed hidden
layer parameters and much worse compared to BP, TP-EI and RTP-EI. RMTP-EI differs from RTP-EI
by using D−1

si
instead of Dsi for computing its parameter updates, in order to resemble more closely the

Gauss-Newton optimization method. As the diagonal matrix Dsi has entries smaller or equal to 1 when
a leaky-ReLU non-linearity is used, the step sizes of RMTP-EI will always be greater or equal to those of
RTP-EI. Consequently, the step size of RMTP-EI has to be taken very small in order to make the training
method stable, as no adaptive step sizes are used in the implementation. This explains the very slow
training progress of RMTP-EI. From this insight, we can conclude that the modified target propagation
method and its variants will only have a chance of good performance when adaptive step sizes are used in
order to stabilize the training progress. This is left for future research.

Finally, we investigate the reconstruction errors occurring in the training process of TP-EI, RTP-EI and
RMTP-EI. Figure 5.8 shows the magnitude of the approximation error eapprox

1 defined in equation (5.41)
and the angle between the propagated learning signal ĥ1−h1 = eTP

1 + eapprox
1 and the useful learning sig-

nal eTP
1 defined in equation (5.39). This angle indicates whether the direction of the propagated learning

signal is still useful for training the network. Figure 5.8a shows that the magnitude of eapprox
1 stays stable

around 10e-4 for TP-EI and RTP-EI. This magnitude stayed the same for different values of the output
step size η̂ (not shown in the figure), indicating that eTaylor

1 ≈ 0 and eapprox
1 = erec

1 . The approximation
error is thus almost entirely caused by the limited numerical accuracy of the inverse matrix computation.
Figure 5.8b shows that after 40000 mini-batches, the propagated learning signals ĥ1 −h1 of TP-EI and
RTP-EI are not perfectly aligned anymore with the useful learning signal eTP

1 . As eapprox
1 has the same

magnitude throughout the whole training process, this dealigning of the learning signals is due to the de-
cay in magnitude of the useful learning signal eTP

1 during training. This decay in magnitude is normal, as
the optimum comes closer and the gradients consequently become smaller. As the useful learning signal
eTP

1 is directly proportional to the output step size η̂, a logical remedy for the dealigning of the learning
signal is to increase η̂. However, when η̂ becomes too big, eTaylor

1 will grow, because the chance that h1 and
ĥ1 find themselves on different parts of the piece-wise linear function grows bigger. We thus observe that
two opposite forces influence the angle α between the propagated learning signal ĥ1 −h1 = eTP

1 + eapprox
1
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and the useful learning signal eTP
1 : (1) increasing η̂ increases eTP

1 , which lowers α and (2) increasing η̂

also increases eTaylor
1 and consequently increases eapprox

1 , which raises α. erec
1 is independent from η̂.

During experiments, η̂ = 0.1 turned out to be a good equilibrium value for these two forces. Note that in
section 4.2.3 we opted to keep η̂ as small as possible to reduce eTaylor

1 , but now we see that it needs to
be big enough to counter the numerical inaccuracies in TP-EI and RTP-EI. In figure 5.8 we see that for
RMTP-EI, eapprox

1 approx grows while the angle α stays equal to zero. This is due to the weight matrices
of the network, which keep on growing during the training. Consequently, both ĥ1 and h1 grow during
training, thereby increasing both eapprox

1 and ĥ1−h1. This indicates that the training process of RMTP-EI
was not entirely stable. This instability issue could be solved by further decreasing the learning rate of the
training. However, this would make the training progress so slow that even the benchmark of backprop-
agation with fixed hidden layer parameters is not reached during 60 epochs, so we refrained from further
lowering the learning rate.

(a) (b)

Figure 5.8: Approximation errors occurring during the training process of the student-teacher
regression problem trained by the target propagation method with exact inverses and its vari-
ants. (a) The norm of the approximation error, as defined in equation (5.41). (b) The cosinus of the angle
between the propagated learning signal ĥ1 − h1 = eTP

1 + eapprox
1 and the useful learning signal eTP

1 de-
fined in equation (5.39). All results are averaged over 7 random generated network initializations and
teacher datasets, and a moving average window of length 8 was used in the time dimension for clarity of
the results. The following training hyperparameters were used: η̂= 0.1, ε= 0.5, ηTP−EI

init = ηRTP−EI
init = 0.01,

ηRMTP−EI
init = 0.0005. All learning rates decayed linearly towards ηinit/5 over the training epochs.

Conclusion. To conclude this student-teacher toy experiment, we reiterate that the performance of TP-
EI and RTP-EI is comparable to the performance of error backpropagation. This indicates that, unfortu-
nately, TP-EI and RTP-EI display no approximate second-order characteristics of fast initial convergence.
We hypothesized that this is mainly due to the non-adaptive learning rate used in TP-EI and RTP-EI,
while Gauss-Newton optimization uses implicitly an adaptive learning rate. Furthermore, we observed
that by using the randomized target propagation training scheme, the training process is more stable,
however, more experiments should be done to confirm this hypothesis. The modified target propagation
training scheme was not successful in improving the normal target propagation training scheme, because
the learning rate needs to be very small to stabilize this method, leading to too slow convergence. Finally,
we observed that the output step size η̂ needs to be chosen carefully in order to balance on the one hand
the relative magnitude of the useful learning signal compared to the reconstruction errors, with on the
other hand the Taylor approximation errors.

5.2 Experiments on target propagation with approximate inverses
In the previous section, we explored the behaviour of target propagation with exact inverses. Now we
investigate the learning dynamics of target propagation with approximate inverses. This setting is biolog-
ically more realistic, as the weights (synapses) Q i of the feedback mapping g i need to be learned in the
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brain. First, the relevant theoretical predictions are verified, after which the training behaviour of target
propagation and its variants are investigated on a student-teacher non-linear regression problem.

5.2.1 Experimental verification of theoretical predictions
In the following, we verify the theoretical predictions made by theorems 4.6 and 4.7 on learning the pseudo-
inverse of the forward weights, and lemma 4.8 on the network architecture constraints for the factorization
of the pseudo-inverse of the total Jacobian of the network.

Learning the pseudo-inverse of the feed-forward weights

For the experimental verifications of theorems 4.6 and 4.7, we used a toy network of two layers h1 and h2
of size n1 and n2, respectively. Layer h2 has feed-forward weights W and layer h1 has feedback weights
Q. The feed-forward and feedback mapping of h1 and h2 are given by:

h2 = f (h1)= s(Wh1) (5.42)

g(h2)=Qs−1(h2), (5.43)

with s an element-wise Leaky-ReLU nonlinearity with a negative slope of 0.35. During the experiments,
the forward weights W are kept fixed, while the backward weights Q are learned by doing gradient steps
on the inverse loss Linv of equation (4.91) or the regularized inverse loss Linv,r of equation (4.97), which
are both restated here for the convenience of the reader:

Linv
(
g
(
f (h1)

)
,h1

)
= ∥∥g

(
f (h1)

)−h1
∥∥2

2 (5.44)

Linv,r
(
g
(
f (h1)

)
,h1

)
= ∥∥g

(
f (h1)

)−h1
∥∥2

2 +λ‖Q‖2
F . (5.45)

g
(
f (h1)

)−h1 can be interpreted as the reconstruction error, making Linv equal to the squared norm of
the reconstruction error and Linv,r the regularized form of the squared norm of the reconstruction error.
In the following, we consider three distinct cases: (1) layers of equal size (n1 = n2), (2) contracting layers
(n1 > n2) and (3) expanding layers (n1 < n2).

Layers of equal sizes. For layers of equal sizes, theorem 4.6 predicts that Q converges to W−1 if and
only if the covariance matrix Γ of h1 is of full rank. For the experiment, we take an equal layer size of
n1 = n2 = 5. Both Q and W are square and start with robust invertible values by design (σmin ·σmax > 0.4
for both matrices, with σi the singular values). W is kept fixed throughout the experiment and Q is
updated with gradient steps on Linv. Figure 5.9a shows that when h1 is white noise (h1 has a covariance
matrix Γ=σ2I) or full rank coloured noise (h1 has a full rank covariance matrix Γ 6=σ2I), Q converges to
the pseudo-inverse of W . In this case, W† = W−1, as W is square and of full rank by design. Figure 5.10a
shows that in both cases, the reconstruction error g

(
f (h1)

)−h1 converges to zero, which was expected,
as Q learns to be the perfect inverse of W . When h1 does not have a covariance matrix of full rank, e.g.
when it is a linear transformation of a lower dimensional vector, figure 5.9a indicates that the feedback
weights Q do not converge to the inverse of the forward weights W , as multiple solutions for Q exist for
which Linv = 0, due to the singularity of Γ. Figure 5.10a confirms this explanation, as the reconstruction
error converges to zero, indicating that Linv = 0. Note that in the standard deep learning setting, hi are
nonlinear transformations of the lower layer hi−1, so hi has in general a full-rank covariance matrix. This
indicates that only the first two discussed cases appear in the standard deep learning setting, and Q will
always converge to W−1 in expectation.

Contracting layers. For contracting layers and if W has linear independent rows, theorem 4.6 predicts
that Q converges to W† if and only if h1 has a covariance matrix Γ = σ2I, representing white noise. For
the experiment, we take n1 = 5 and n2 = 3. Both Q and W are initialized with robust singular values
by design (σmin ·σmax > 0.4 for both matrices, with σi the singular values), ensuring that W has linear
independent rows. W is kept fixed throughout the experiment and Q is updated with gradient steps on
Linv. Figure 5.9b shows that if h1 is white noise (orange and green curve), Q indeed approaches W†. For
a mini-batch size of 1, the estimate of the expected gradient of Linv is too noisy, causing that Q does not
completely converge towards W†. If a larger mini-batch size is taken, the estimate of the expected gradient
of Linv is more accurate and Q converges to W†. For a coloured activation h1, figure 5.10b shows that Q
does not converge to W†, as expected from the theory. Note that for all three cases, the reconstruction
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(a) (b) (c)

Figure 5.9: The approximation error of the feedback weights Q on learning the pseudo-inverse
of the forward weights W . The infinity norm of the approximation error Q −W† is given during the
optimizing iterations of the inverse loss Linv,r. g and f take the form as defined in equations (5.42) and
(5.43). (a) The approximation error for equal sized layers of dimension 5. For the blue curve, white noise
was used for h1. For the orange and green curve, coloured noise of the form h1 = Ch0 was used, with h0
white noise of dimension 5 and 2, respectively, and C a fixed random Gaussian matrix of size 5×5 and
5×2, respectively. An initial step size of 0.01 was used that decayed linearly to 0.008 over 2500 iterations,
no regularization was used (λ= 0) and a mini-batch size of 1 was taken. (b) The approximation error for
contracting layers of size 5 and 3 respectively. For the blue curve, coloured noise of the form h1 = Ch0
was used, with h0 white noise of dimension 5 and C a fixed random Gaussian matrix of size 5×5. For the
orange and green curve, white noise was used for h1 with a mini-batch size of 1 and 16, respectively. An
initial step size of 0.01 was used that decayed linearly to 0.0001 over 2000 iterations and no regularization
was used (λ = 0). (c) The approximation error for expanding layers of size 3 and 5 respectively. For the
blue and orange curve, white noise was used for h1, and the regularizing parameter of Linv,r was set to
λ = 0 and λ = 0.2, respectively. For the green curve, coloured noise of the form h1 = Ch0 was used, with
h0 white noise of dimension 5 and C a fixed random Gaussian matrix of size 5×5, and the regularizing
parameter was set to λ= 0.2. An initial step size of 0.01 was used that decayed linearly to 0.008 over 2000
iterations and a mini-batch size of 1 was taken.

error g
(
f (h1)

)− h1 does not converge to zero, because there exist no perfect inverse mapping from the
higher layer h2 towards the lower layer h1, as shown by figure 5.10b. Consequently, a network with
contracting layers will always suffer from reconstruction errors that deteriorate the learning signal if a
target propagation training method is used. For such networks, it is necessary to use difference target
propagation or a similar method that cancels out the reconstruction errors.

Expanding layers. For expanding layers, theorem 4.6 predicts that Q does not converge to W† by min-
imizing the inverse loss Linv. However, if the regularized inverse loss Linv,r is minimized, theorem 4.7
predicts that the backward weights Q do converge to W† in the limit of λ→ 0, if and only if h1 has a
covariance matrix Γ=σ2I, thus representing white noise. For the experiment, we take n1 = 3 and n2 = 5.
Both Q and W are initialized with robust singular values by design (σmin ·σmax > 0.4 for both matrices,
with σi the singular values). W is kept fixed throughout the experiment and Q is updated with gradient
steps on Linv,r. Figure 5.9c shows that if λ = 0, representing the unregularized loss Linv, the backward
weights Q do not converge to W†, conform with the theory. The reconstruction error however does con-
verge to zero as visualized in figure 5.10c, because Q has converged to a left inverse of W (which is not
unique), making the inverse loss Linv equal to zero. If white noise is taken as h1 and λ > 0, we see that
Q approaches more closely W†. However, Q does not completely converge to W†, but instead converges
towards WT (WWT + λ

σ2 I)−1, as predicted by theorem 4.7. Due to the regularizing term in Linv,r, the re-
construction error is not completely minimized to zero, as shown in figure 5.10c. If coloured noise is taken
as h1, minimizing the regularized inverse loss Linv,r with λ> 0 does not make Q converge towards W†, as
shown in figure 5.9c.

Original target propagation. To complete this set of experiments on learning the inverse g of the
forward mapping f , we compare our results with the original target propagation method as proposed
by the authors of [9, 5]. Our forward and backward mappings are given by equations (5.42) and (5.43).
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(a) (b) (c)

Figure 5.10: The reconstruction error of the sequential feed-forward mapping f and feedback
mapping g. The 2-norm of the reconstruction error g

(
f (h1)

)−h1 is given during the optimizing itera-
tions of the inverse loss Linv,r. g and f take the form as defined in equations (5.42) and (5.43). (a) The
reconstruction error for equal sized layers of dimension 5. For the blue curve, white noise was used for
h1. For the orange and green curve, coloured noise of the form h1 = Ch0 was used, with h0 white noise of
dimension 5 and 2, respectively, and C a fixed random Gaussian matrix of size 5×5 and 5×2, respectively.
An initial step size of 0.01 was used that decayed linearly to 0.008 over 2500 iterations, no regularization
was used (λ= 0) and a mini-batch size of 1 was taken. (b) The reconstruction error for contracting layers
of size 5 and 3 respectively. For the blue curve, coloured noise of the form h1 = Ch0 was used, with h0
white noise of dimension 5 and C a fixed random Gaussian matrix of size 5×5. For the orange and green
curve, white noise was used for h1 with a mini-batch size of 1 and 16, respectively. An initial step size of
0.01 was used that decayed linearly to 0.0001 over 2000 iterations and no regularization was used (λ= 0).
(c) The reconstruction error for expanding layers of size 3 and 5 respectively. For the blue and orange
curve, white noise was used for h1, and the regularizing parameter of Linv,r was set to λ= 0 and λ= 0.2,
respectively. For the green curve, coloured noise of the form h1 = Ch0 was used, with h0 white noise of
dimension 5 and C a fixed random Gaussian matrix of size 5×5, and the regularizing parameter was set
to λ = 0.2. An initial step size of 0.01 was used that decayed linearly to 0.008 over 2000 iterations and a
mini-batch size of 1 was taken.

However, in the original target propagation method they are inspired on auto-encoders and given by [9, 5]:

h2 = f (h1)= s(Wh1) (5.46)

g(h2)= s(Qh2), (5.47)

with s the tangens hyperbolicus non-linearity. However, as mentioned in section 4.3.2, this represents an
auto-encoder without a hidden layer, so the universal approximation theorem does not hold anymore and
in general, it will not be possible to achieve a reconstruction error g( f (h1))−h1 of zero. This theoretical
hypothesis is confirmed by experimental results shown in figure 5.11. For all three previous discussed
cases (equal, contracting and expanding layers), minimizing the inverse loss Linv with f and g defined by
equations (5.46) and (5.47) does not succeed in driving the reconstruction error towards zero. Networks
trained with the original target propagation method will thus always suffer from reconstruction errors
that deteriorate the learning signal, unless the difference target propagation scheme is used or a similar
method that cancels out the reconstruction errors.

Architecture constraints for the factorization of the pseudo-inverse

In the following paragraphs, we investigate the constraints, stated by lemma 4.8, on the network archi-
tecture which ensure that the pseudo inverse of the Jacobians Ji = ∂hL

∂hi
are factorizable. Lemma 4.8 states

that the pseudo-inverses of all Jacobians Ji are factorizable as:

J†
i = J f

i ,
L∏

k=i+1
W†

k D†
sk

(5.48)

if and only if nL = nL−1 = ... = n2 and n2 ≤ n1, with ni the dimension of the i-th layer, Wi is of full rank
for i = 3, ...,L − 1, W2 is of full row rank and Dsk are square and of full rank. This lemma poses very
strict constraints on the possible architectures of the network, so this experiment aims to investigate
whether these constraints can be relaxed, while still ensuring that J†

i = J f
i approximately holds. During
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Figure 5.11: The reconstruction error of the sequential feed-forward mapping f and feedback
mapping g for the original target propagation method. The 2-norm of the reconstruction error
g
(
f (h1)

)−h1 is given during the optimizing iterations of the inverse loss Linv. g and f take the form as
defined in equations (5.46) and (5.47). The blue curve shows the reconstruction error for contracting layers
of size n1 = 5 and n2 = 3, the orange curve for equally sized layers of size n1 = n2 = 5 and the green curve
for expanding layers of size n1 = 3 and n2 = 5. An initial step size of 0.002 was used that decayed linearly
to 0.0001 over 2000 iterations, a mini-batch size of 8 was taken and no regularization was used (λ= 0).

the experiments, we ensured that both Wi and Dsi had singular values significantly greater than zero, in
order to prevent J†

i from exploding and to fulfill the conditions on Wi and Dsi stated in lemma 4.8. As

J f
i is used in the target propagation scheme for computing the layer activation updates ∆hi = J f

i eL, we

investigated the distance between the update computed with the factorized pseudo-inverse J f
i eL, as done

in target propagation, and the update computed with the real pseudo-inverse J†
i eL, as done in Gauss-

Newton optimization. For all experiments, we did a 1000 repetitions to obtain a reliable histogram of the
distance ‖J f

i eL − J†
i eL‖2, we took eL as a random Gaussian vector and averaged each result over a mini-

batch-size of 8. We investigated a network architecture of 2 hidden layers in three different cases: (1) all
the hidden layers and the output layer have the same size (n1 = n2 = n3) (2) the first hidden layer has a
larger size (n1 > n2 = n3) and (3) the output layer has a smaller size (n1 = n2 > n3).

Equally sized network. This network setting serves as a control, as for equally sized layers Ji is square
and its pseudo-inverse is equal to its inverse, which is always factorizable as in equation (5.48). Figure
5.12a shows that for layer dimensions of 5 the distance ‖J f

i eL −J†
i eL‖2 is indeed approximately zero. The

deviations from zero are due to the limited accuracy of the inverse matrix computations.

Larger first hidden layer. For this network setting, the size of the first hidden layer is n1 = 7 and the
sizes of the second hidden layer and output layer are n2 = n3 = 5. In this case, lemma 4.8 predicts that
it is still allowed to factorize the pseudo-inverse as J†

i = J f
i . From figure 5.12b, we see that the distance

‖J f
i eL−J†

i eL‖2 is indeed approximately zero and comparable to the distances obtained in the equally sized
network of figure 5.12a.

Smaller output layer. A network architecture with a smaller output layer is common in the field of
deep learning for classification purposes, as the number of classes is typically lower than the number of
features. Hence it would be beneficial if equation (5.48) still approximately holds in this situation, because
then theorem (4.9) also approximately holds. In this network setting, the size of the hidden layers are
taken equal to n1 = n2 = 5 and the size of the output layer is taken equal to n3 = 3. Figure 5.12c shows
that, unfortunately, the distance ‖J f

i eL − J†
i eL‖2 is not approximately zero anymore and that for many

random cases, the distance is actually significantly big. Similar results are obtained when other network
architectures are tried out that are not conform with the architecture constraints from lemma 4.8, but are
not shown here for brevity reasons. From these results, we conclude that the constraints on the network
architecture of lemma 4.8 are necessary for J†

i to be factorizable and that in general, the constraints cannot

be relaxed while keeping J†
i = J f

i approximately true.
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(a) (b) (c)

Figure 5.12: Histograms of the distances ‖J f
i eL − J†

i eL‖2 between updates computed with the
factorized pseudo-inverse J f and the real pseudo-inverse J† for different network settings. For
each experiment, 1000 repetitions were done to create the histograms and each result is averaged over a
mini-batch size of 8 for eL. Random Gaussian vectors were used for eL during all experiments. Wi and
Dsi are taken as random Gaussian matrices with σmin ·σmax > 0.4 and Dsi are diagonal. For all three
experiments, a network architecture with two hidden layers and one output layer was used. (a) A network
architecture of equally sized layers with n1 = n2 = n3 = 5. (b) A network architecture of layer sizes n1 = 7
and n2 = n3 = 5. (c) A network architecture of layer sizes n1 = n2 = 5, n3 = 3.

Conclusion and further implications of the experimental verifications

During the experiments on learning the pseudo-inverse of the feed-forward weights, we showed that the
theoretical predictions from theorem 4.6 and 4.7 match perfectly with the experimental results. Conse-
quently, it is allowed to assume that a network can always reach a state during pre-training in which
its backward weights are the pseudo-inverse of the forward weights, when the correct hyper-parameters
and training methods are used and the forward weights are kept fixed. This has as an important im-
plication that for experiments, it is allowed to start with an initial state in which the backward weights
are the pseudo-inverse of the forward weights. In a more biological setting, we hypothesize that during
the development of the brain, the neural networks could be trained such that the backward weights are
approximately the pseudo-inverse of the forward weights. In this way, the learning signals can propagate
correctly through the network when the brain starts learning from its environment and experiences.

In the experimental verification of the architecture constraints put forward in lemma 4.8, we showed that
the architecture constraints cannot be relaxed in a general manner if the pseudo-inverses of the Jacobians
Ji = ∂hL

∂hi
need to be factorizable as J†

i = ∏L
k=i+1 W†

k D†
sk . So in order for difference target propagation to

approximate Gauss-Newton optimization, according to theorem 4.9, the following constraints are put on
the network architecture:

n1 > n2 = ...= ni = ...= nL (5.49)

with ni the size of the i-th layer. Note that there are no constraints on the size of the input layer n0.
In the literature on difference target propagation [5, 11], the architecture constraints were satisfied for
difference target propagation (DTP) and auxiliary-output simplified DTP (AO-SDTP), as both authors
used equally sized hidden layers and used a trick for propagating the target from the low-dimensional
output layer to the last hidden layer. In difference target propagation [5], error-backpropagation was used
for propagating an error signal from the output layer towards the last hidden layer. Hence, a target for the
high-dimensional last hidden layer was computed corresponding with equation (4.4) instead of computing
it for the low-dimensional output layer, after which that target is propagated through equally sized layers.
In AO-SDTP [11], they append the low-dimensional output layer with extra random features computed
from the last hidden layer, making the appended output layer of equal size to the hidden layers. In
simplified DTP (SDTP) [11], however, no tricks are used for propagating the low dimensional output target
through the network. Consequently, theorem 4.9 does not hold for this training method if contracting
layers are used, which explains its inferior performance compared to DTP and AO-SDTP. Finally, note
that when only one hidden layer is used, the output layer can be of lower dimension, as then L = 2, so the
constraints expressed in equation (5.49) still hold.
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5.2.2 Non-linear regression on a student-teacher network
In this section, we investigate the training behaviour of target propagation with approximate inverses and
its variants on a student-teacher non-linear regression problem. We investigate 6 different training meth-
ods: (1) target propagation with approximate inverses, as discussed in section 4.3, (2) difference target
propagation with approximate inverses, as discussed in section 4.3.3, (3) original target propagation from
the literature [9, 5], (4) original difference target propagation from the literature [5], (5) error backprop-
agation and finally (6) error backpropagation with fixed hidden layer parameters as a control. The first 4
methods are investigated both in a randomized as not randomized setting. We do not discuss modified tar-
get propagation with approximate inverses, as even with batch normalization, it suffered from the same
instability as RMTP-EI, which was already discussed in the previous section. First, we explain the used
methods for this series of experiments, after which we discuss the obtained results.

Methods

We structure the methods in (1) the used network setting, (2) the used loss function, (3-9) the six above
mentioned training methods, (10) the used expressions for the approximation errors and learning signals
and finally (11) the implementation in Python.

Network setting. In these series of experiments, we use three different network architectures: (1) all
equally sized layers of dimension n0 = n1 = n2 = 6 with one hidden layer, (2) contracting layer setting
with one hidden layer and n0 = n1 = 6 and n2 = 4 and (3) equally sized layers with 4 hidden layers and
n0 = n1 = n2 = n3 = n4 = n5 = 6. All three network architectures satisfy the architecture constraints of
lemma 4.8, hence, theorem 4.9 will hold for the discussed difference target propagation method. For both
network architectures, a Leaky-ReLU non-linearity with a negative slope of 0.35 is used for the forward
non-linearity s1 of the hidden layer, while a linear output layer is used. Following the same reasoning as
section 5.1.3, all forward weight matrices of the student networks are initialized with a Frobenius distance
of 8.0 from the corresponding teacher weight matrices. All backward weight matrices Q i are initialized
to the (pseudo-)inverse of the forward weight matrices Wi+1, following the discussion in section 5.2.1 in
which we showed that any well-trained network can reach this state during pre-training. For all training
methods discussed below, a mini-batch size of 32 is used, with 60 mini-batches in one epoch.

Loss function. For our series of non-linear regression experiments, we chose an L2 output loss, which
is a widely used loss for regression problems. This L2 loss is expressed as:

L
(
hL, tL

)= B∑
b=1

‖h(b)
L − t(b)

L ‖2
2, (5.50)

with B the size of the mini-batch and tL the output value of the used dataset. For the local layer losses L i
to train the forward weights, we also used an L2 loss based on the layer activation and target. For training
the backward weights, we used the regularized inverse loss defined in equation (4.97).

Target propagation with approximate inverses. In target propagation with approximate inverses
(TP-AI), the backward mapping g i learns to be the inverse of the forward mapping f i+1. For g i we take
the new form proposed in section 4.3.1:

g i(ĥi+1)=Q is−1
i+1(ĥi+1). (5.51)

Note that this form of g i differs from the original target propagation papers [9, 5]. The forward parameters
Wi are updated conform with equation (4.12) with learning rate ηi. The backward parameters Q i are
updated by a gradient step on the inverse loss Linv,r

i defined in equation (4.97) with white noise as input
to the loss function, following the results of theorem 4.7. Algorithm A.10 gives a detailed overview of the
used target propagation method with approximate inverses. The randomized version of TP-AI, randomized
target propagation with approximate inverses (RTP-AI) uses exactly the same method as TP-AI, with as
only difference that during each training iteration, only one layer k gets randomly selected to update its
forward parameters Wk. All the backward parameters Q i are still updated during each training iteration.
Algorithm A.11 gives a detailed overview of RTP-AI.
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Difference target propagation with approximate inverses. The difference target propagation method
with approximate inverses (DTP-AI) uses the same training method for its forward and backward weights
as the above explained target propagation method with approximate inverses, only the targets are prop-
agated differently through the network. Restating equation (4.101), the following backward mapping is
used in DTP-AI:

ĥi = hi + g i(ĥi+1)− g i(hi+1) (5.52)

= hi +Q is−1
i+1(ĥi+1)−Q is−1

i+1(hi+1) (5.53)

The forward and backward parameters are updated with the same equations as in TP-AI. Algorithm A.12
and A.13 give a detailed overview of the DTP-AI method and its randomized version RDTP-AI, respectively.

Original target propagation. In the original target propagation method (original-TP) [9, 5], a different
form for the backward mapping g i is used, inspired on auto-encoders:

ĥi = g i(ĥi+1)= si(Q i ĥi+1). (5.54)

The non-linearity of the backward mapping is thus the same as for the forward mapping. The forward
weights are updated with the same equations as in TP-AI, while a slightly different method for the back-
ward weights is used: a gradient step on the inverse loss function Linv

i is done, with the current sample
activation hi as input to the loss function instead of white noise. Algorithm A.14 and A.15 give a detailed
overview of the original-TP method and its randomized version original-RTP, respectively.

Original difference target propagation. The original difference target propagation method (original-
DTP) [5] uses the same training method as original-TP to update its forward and backward weights, with
as only difference the backward mapping of the targets. Similar to DTP-AI, original-DTP uses the following
backward mapping:

ĥi = hi + g i(ĥi+1)− g i(hi+1) (5.55)

= hi + si(Q i ĥi+1)− si(Q ihi+1) (5.56)

Algorithm A.16 and A.17 give a detailed overview of the original-DTP method and its randomized version
original-RDTP, respectively. Note that, in order to stay close to DTP-AI, we do not use error backpropa-
gation to propagate the learning signal to the second-to-last layer, as was done in the original difference
target propagation method. Therefore, original-DTP refers to the simplified difference target propagation
method [11].

Error backpropagation The same error backpropagation method is used as in section (5.1.3), with as
only difference that now a mini-batch size of 32 is used for the experiments instead of a mini-batch size of
1. Algorithm A.7 gives a detailed description of the used backpropagation method.

Error backpropagation with fixed hidden layer parameters. Following the same reasoning as in
section 5.1.3, we use the error backpropagation method with fixed hidden layer parameters (BP-fixed) as
a bench-mark to see if the other methods succeed in propagating useful learning signals towards their
hidden layers. In the BP-fixed method, only the forward weights of the output layer are trained.

Approximation errors and learning signals Similar to section 5.1.3, we define the following learning
signals and approximation errors:

eTP
i ,−η̂

[L−1∏
k=i

Jgk

]
eL (5.57)

erec
i ,

(
g i(hi+1)−hi

)+ L−1∑
j=i+1

[( j−1∏
k=i

Jgk

)(
g j(h j+1)−h j

)]
. (5.58)

eapprox
i , ĥi −hi − eTP

i = erec
i + eTaylor

i , (5.59)
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with eTaylor
i the fifth term in the right-hand side of equation (5.38). Note that for the difference target

propagation variants, eapprox
i = eTaylor

i , as the reconstruction errors erec
i are canceled out by the altered

scheme for propagating the targets through the network (see section 4.3.3). As now approximate inverses
are used for g i, the learning signal eTP

i is not exactly the same anymore to the learning signal eGN
i

obtained by Gauss-Newton optimization, defined as:

eGN
i ,−η̂

[ L∏
k=i+1

W†
k D−1

sk

]
eL (5.60)

Therefore, it is interesting to see the evolution of the angle between the propagated learning signal ĥi −
hi and eGN

i throughout the training process for the different methods. Finally, we also track the angle
between ĥi −hi and eBP

i , the learning signal obtained by error-backpropagation, to check whether ĥi −hi

lies in a descent direction. eBP
i is defined as:

eBP
i ,−η̂

[ L∏
k=i+1

WT
k Dsk

]
eL (5.61)

Implementation. The experiments are created within the Pyprop framework in Python, similar to sec-
tion 5.1.3.

Results and discussion

In the following, we present and discuss the results of the experiments on the three different network
architectures: (1) 4 hidden layers in an equally sized network, (2) 1 hidden layer in an equally sized
network and (3) 1 hidden layer in a contracting network.

4 hidden layers in an equally sized network. We investigate this deeper architecture in order to
examine more clearly the difference between the randomized target propagation scheme and the target
propagation scheme with full updates (all layers at once). Following the reasoning of section 5.1.2, we
expect that the randomized version will work better, as this version is more theoretically well-founded. As
the simulations were very heavy, we only compare TP-AI to RTP-AI and use BP and fixed-BP as baselines
for comparison. Figure 5.13 shows the obtained simulation results. It is clear that the randomized version
RTP-AI has a more stable training process compared to TP-AI which does full layer updates. At the end of
the training, RTP-AI outperforms TP-AI. Note that the forward weights of TP-AI are on average updated
5 times more than those of RTP-AI due to the randomization of RTP-AI. This emphasizes that the param-
eter updates of RTP-AI are more effective compared to those of TP-AI. Note that only a single training run
was investigated. Hence, future research should verify if these results can be reproduced.

When the performance of both TP-AI and RTP-AI is compared to the performance of BP and fixed-BP, we
see that BP clearly outperforms the target propagation variants, while TP-AI and RTP-AI still perform
better than fixed-BP, indicating that the target propagation variants succeed in propagating useful learn-
ing signals towards their hidden layers. To improve the performance of the target propagation variants,
future experiments could use RDTP-AI and DTP-AI, as these training methods do not suffer from recon-
struction errors. It would also be interesting to investigate in future work whether useful learning signals
are propagated towards all 4 hidden layers, or whether the same performance could be reached with less
hidden layers. However, the main purpose of this experiment was to compare the randomized version of
target propagation to the version with full layer updates, in which we succeeded.

1 hidden layer in an equally sized network. In this series of experiments, we investigate in detail
the learning behaviour of all the variants of target propagation with approximate inverses. All results
are averaged over 15 random runs. First, the performances of the randomized methods, in general, are
compared to the performances of the not-randomized methods, after which each randomized target propa-
gation variant is discussed in more detail.

The training performances of the randomized variants of target propagation and the normal variants of
target propagation are shown in figure 5.14 and 5.15, respectively. For each training method, a sepa-
rate small grid search was done to find the best learning rates for the forward weights and the backward
weights and to find the ideal regularizer parameter λ for the inverse loss Linv,r

i . By comparing the two
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(a) (b)

Figure 5.13: Training progress of the student-teacher regression problem with 4 hidden layers,
trained by the target propagation method with approximate inverses. The output mean-squared-
error (MSE) loss, also known as L2 loss, is given in function of the training epoch. Results for RTP-AI,
TP-AI, BP and fixed-BP are shown. (a) The training loss, evaluated on the training dataset. (b) The test
loss, evaluated on the test dataset. For all experiments, a mini-batch size of 32 was used with 120 mini-
batches in one epoch, and a network setting as explained in the methods of section 5.2.2. The output step
size was taken equal to η̂= 0.1 and the backward weight regularizer equal to λ= 0.0 for RTP-AI and TP-AI.
A limited grid-search was done to find the best learning rates for each method: ηTP−AI

init = ηRTP−AI
init = 1e−4

and ηBP
init = η

BP− f ixed
init = 5e−6. All learning rates decayed linearly towards ηinit/5 over the training epochs.

figures, we see that the randomized variants of target propagation perform slightly worse than the not-
randomized variants. The forward weights in randomized training versions only get updated half of the
time on average, compared to the not-randomized training versions. This is most likely the cause of their
lesser performance. This indicates that, while the randomized methods have an advantage in deeper
structures due to their added stability, these benefits of added stability are overshadowed in more shallow
architectures by the dip in performance due to lesser parameter updates. Apart from their slightly lesser
performance, the training behaviour of the randomized variants of target propagation is very similar to
the training behaviour of their corresponding not-randomized variant. Hence we only discuss the random-
ized training variants in the following, in order to minimize the length of the discussion.

The performance of the original target propagation method [5, 9] is comparable to the performance of back-
propagation with fixed hidden layer parameters, as shown in figure 5.14. This implies that the original-
RTP method does not succeed in sending useful learning signals towards its hidden layer and only the
forward weights of the output layer are properly trained. In section 5.2.1 we showed that the original-TP
method does not succeed in decreasing its reconstruction errors towards zero. Figure 5.16a shows that
indeed, the approximation errors (largely determined by the reconstruction errors) are high compared to
the other methods. Figure 5.16b indicates that the approximation errors deteriorate the learning signals
in such a way that the learning signal received by the hidden layer is almost completely dealigned with
the useful learning signal eTP . Furthermore, we see in figure 5.17b that the propagated learning signal
ĥi−hi does not even point in a descent direction, as it has on average an angle more than 90 degrees away
from the gradient direction eBP .

In section 4.3.3 we showed that difference target propagation and its variants effectively cancel out the
reconstruction errors, such that a clean learning signal eTP gets propagated though the network. In figure
5.14 we see that the performance of original-RDTP is much better than the performance of original-TP, due
to the clean learning signal. Figure 5.16 confirms that the approximation errors eapprox and consequently
the reconstruction errors erec are very small and that the propagated learning signal ĥi −hi is completely
aligned with the useful learning signal eTP . Figure 5.17b shows that ĥi −hi lies in a descent direction.
However, from figure 5.17a we see that ĥi −hi does not align completely with the Gauss-Newton learning
signal eGN . In section 5.2.1 we showed that it is not possible for g i to learn the perfect inverse of f i+1
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Figure 5.14: Training progress of the student-teacher regression problem with 1 hidden layer
and an equally sized network, trained by the randomized target propagation method with ap-
proximate inverses and its variants. The output mean-squared-error (MSE) loss, also known as L2
loss, is given in function of the training epoch. Results for RTP-AI, RDTP-AI, original-RTP, original-RDTP,
BP and fixed-BP are shown. (a) The training loss, evaluated on the training dataset. (b) The test loss,
evaluated on the test dataset. For all experiments, a mini-batch size of 32 was used with 60 mini-batches
in one epoch, and a network setting with equally sized layers and one hidden layer, as explained in the
methods of section 5.2.2. All results are averaged over 15 random generated network initializations and
teacher datasets. The output step size was taken equal to η̂ = 0.1 and the backward weight regularizer
equal to λ = 0.0 for RTP-AI, RDTP-AI, original-RTP and original-RDTP. A limited grid-search was done
to find the best learning rates for each method: ηRTP−AI

init = 0.09, ηRDTP−AI
init = η

original−RDTP
init = 0.1 and

η
original−RTP
init = ηBP

init = η
BP− f ixed
init = 0.01. All learning rates decayed linearly towards ηinit/5 over the train-

ing epochs.

in original-TP and original-DTP, thereby explaining why ĥi −hi cannot align with eGN , as eGN uses the
Jacobian of the perfect inverse of f i+1.

The RTP-AI method, which makes use of our newly proposed form for g i, outperforms both original-RTP
as original-RDTP, as shown in figure 5.14. This increase in performance has two reasons: (1) the new
form of g i allows the network to learn perfect inverses when layers of equal size are used, therefore the
reconstruction errors erec are small and do not interfere much with the useful learning signal eTP and (2)
due to the fact that perfect inverses can be learned, the propagated learning signal ĥi −hi aligns much
better with the Gauss-Newton learning signal eGN . Figure 5.16 shows the course of the approximation
error eapprox during training. As the network is initialized in a setting with perfect inverses, eapprox

starts very small. However, during early training, the gradients for the forward weights are very big,
causing the forward weights to change rapidly. Consequently, the backward weights cannot learn the in-
verse fast enough, leading to a fast increase in eapprox. When the movement of the forward weights slows
down, the backward weights can catch up again and eapprox decreases again, making ĥi − hi to align
again approximately with eTP . Note that this alignment is never complete, because the forward weights
keep making small movements, preventing the backward weights to fully converge to the exact inverse.
Figure 5.17a confirms that the propagated learning signal of RTP-AI does indeed approximately align
with the Gauss-Newton learning signal, explaining its improved performance compared to original-RTP
and original-RDTP. The not-randomized version TP-AI performs slightly worse than original-DTP. This is
likely due to the faster movement of the forward weights, as during each iteration the forward weights of
all layers are updated instead of only one of the layers. This makes it harder for the backward weights to
catch up, which gives an advantage to difference target propagation and its variants, because they do not
suffer from the increased reconstruction errors. Future work can introduce multiple training iterations for
the backward weights after each training iteration for the forward weights in order to reduce this problem.

DTP-AI and RDTP-AI perform best of all variants of target propagation with approximate inverses, which
can be seen in figures 5.14 and 5.15. This good performance can be explained by two reasons: (1) DTP-like
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Figure 5.15: Training progress of the student-teacher regression problem with 1 hidden layer
and an equally sized network, trained by the target propagation method with approximate
inverses and its variants. The output mean-squared-error (MSE) loss, also known as L2 loss, is given
in function of the training epoch. Results for TP-AI, DTP-AI, original-TP, original-DTP, BP and fixed-BP
are shown. (a) The training loss, evaluated on the training dataset. (b) The test loss, evaluated on the
test dataset. For all experiments, a mini-batch size of 32 was used with 60 mini-batches in one epoch, and
a network setting with equally sized layers and one hidden layer, as explained in the methods of section
5.2.2. All results are averaged over 15 random generated network initializations and teacher datasets.
The output step size was taken equal to η̂= 0.1 for RTP-AI, RDTP-AI, original-RTP and original-RDTP. A
limited grid-search was done to find the best learning rates for each method: ηTP−AI

init = 0.09, ηDTP−AI
init =

η
original−DTP
init = 0.1 and ηoriginal−TP

init = ηBP
init = η

BP− f ixed
init = 0.01. All learning rates decayed linearly towards

ηinit/5 over the training epochs.

methods do not suffer from reconstruction errors and (2) due to our new form of g i, the propagated learn-
ing signal is much better aligned with the Gauss-Newton learning signal eGN compared to original-DTP
and original-RDTP. Figures 5.16 and 5.17 confirm these hypotheses.

Finally, when we compare all variants of the target propagation method to the error-backpropagation
method, we see that BP clearly outperforms all other methods. Chapter 4 showed that DTP-AI and RDTP-
AI are a mixture of Gauss-Newton optimization and gradient descent. Hence, the observation that BP out-
performs both DTP-AI and RDTP-AI indicates that our implementation of the mixture of Gauss-Newton
optimization and gradient descent does not succeed in improving plain gradient descent. Following the
discussion of section 5.1.3, we hypothesize that the performance of target propagation and its variants can
be improved greatly by introducing adaptive learning rates, such that it can benefit more from its relation
to Gauss-Newton optimization, which makes implicitly use of adaptive learning rates.

1 hidden layer in a contracting network. In this last series of experiments, we investigate the learn-
ing behaviour of target propagation and its variants in a contracting network setting. Note that the used
architecture with one hidden layer still satisfies the architecture constraints of lemma 4.8, hence theorem
4.9 still applies for DTP-AI and RDTP-AI. All results are averaged over 15 random runs. In the following,
we only discuss the randomized versions of the training methods, as their training behaviour is very simi-
lar to the not-randomized versions.

Section 5.2.1 showed that for contracting layers, there does not exist a perfect inverse of f2(h1), hence the
reconstruction error erec cannot be reduced to zero. Consequently, we expect RTP-AI and original-RTP
to suffer from this reconstruction error. Figure 5.18a confirms that there is a decrease in performance of
for RTP-AI and original-RTP, and figure 5.18b shows that the propagated learning signal ĥ1−h1 does not
align with the useful learning signal eTP due to the reconstruction error. From these results, we conclude
that for contracting networks, it is necessary to use methods such as difference target propagation that
cancel out the reconstruction errors, as it is not possible to reduce those reconstruction errors towards zero.
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(a) (b)

Figure 5.16: Approximation errors occurring during the training process of the student-teacher
regression problem trained by the randomized target propagation method with approximate
inverses and its variants. (a) The norm of the approximation error, as defined in equation (5.59). (b) The
cosinus of the angle between the propagated learning signal ĥ1−h1 = eTP

1 +eapprox
1 and the useful learning

signal eTP
1 defined in equation (5.57). A network with equally sized layers and one hidden layer was used,

as defined in the methods of section 5.2.2. All results are averaged over 15 random generated network
initializations and teacher datasets. Mini-batches of size 32 were used. The same hyper parameters as in
figure 5.14 were used.

(a) (b)

Figure 5.17: The angles between the propagated learning signal and the GN and BP learning
signals during the training process of the student-teacher regression problem trained by the
randomized target propagation method with approximate inverses and its variants. (a) The
cosinus of the angle between the propagated learning signal ĥ1 −h1 and the GN learning signal eGN

1 as
defined in equation (5.60). (b) The cosinus of the angle between the propagated learning signal ĥ1 −h1
and the GN learning signal eGN

1 as defined in equation (5.60). A network with equally sized layers and
one hidden layer was used, as defined in the methods of section 5.2.2. All results are averaged over 15
random generated network initializations and teacher datasets. Mini-batches of size 32 were used. The
same hyper parameters as in figure 5.14 were used.

More surprisingly, we see in figure 5.18a that also the performance of RDTP-AI has significantly decreased,
and that it now has a performance comparable with original-DTP. Figure 5.18b shows that the propagated
learning signal is still perfectly aligned with eTP and figure 5.19a shows that it is also perfectly aligned
with the Gauss-Newton learning signal eGN . Hence, the decrease in performance is not due to approxi-
mation errors or other inaccuracies during the training process, but needs to be explained by the theory
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on target propagation. We do not have a conclusive answer for this decrease in performance, but we would
like to propose a possible theory that is not yet confirmed by experimental evidence. As the output layer is
of lower dimension than the hidden layer, the Jacobian J1 = ∂h2

h1
has more columns than rows. Hence, the

Gauss-Newton curvature matrix G = JT
1 J1 is not of full rank and multiple solutions to the Gauss-Newton

system G∆h1 = JT
1 eL are possible. Target propagation solves this problem by taking the solution ∆h1 with

the lowest norm by using the pseudoinverse of J1 (∆h1 = J†
1 eL). Maybe there exist other and better choices

for ∆h1 that would increase the performance of RDTP-AI again compared to original-RDTP. However, in
most settings for Gauss-Newton optimization, the expectation of the curvature matrix G over different
samples is taken, which makes sure that G is almost always of full rank. So maybe the root of the problem
is the singularity of G, indicating that this problem will not be solved by taking another solution for ∆h1.
If this is the case, the problem is inherent to the target propagation method and more drastic changes need
to be made to the target propagation method to increase its performance. We encourage future research to
investigate this issue in more detail.

(a) (b)

Figure 5.18: The test loss and approximation errors during the training process of the student-
teacher regression problem with contracting layers, trained by the randomized target prop-
agation method with approximate inverses and its variants. (a) The MSE test loss, evalu-
ated on the training dataset. (b) The cosinus of the angle between the propagated learning signal
ĥ1 − h1 = eTP

1 + eapprox
1 and the useful learning signal eTP

1 defined in equation (5.57). The results are
averaged over 15 random generated network initializations and teacher datasets. For all experiments, a
mini-batch size of 32 was used with 60 mini-batches in one epoch. A network setting with contracting
layers as explained in the methods of section 5.1.3 was used. The output step size was taken equal to
η̂ = 0.1 and the backward weight regularizer equal to λ = 0.0. A limited grid-search was done to find the
best learning rates for each method: ηTP−AI

init = 0.09, ηDTP−AI
init = η

original−DTP
init = 0.1, ηoriginal−TP

init = 0.005
and ηBP

init = η
BP− f ixed
init = 0.05. All learning rates decayed linearly towards ηinit/5 over the training epochs.

Conclusion To conclude this series of experiments on the student-teacher non-linear regression prob-
lem, we reiterate our most important findings. By investigating a deep architecture of 4 hidden layers, we
indicated that the randomized version of target propagation provides extra stability to the training pro-
cess, confirming our theoretical predictions. However, the benefits from the randomized training scheme
only surface in deep architectures. In more shallow architectures, the training process is already stable
for the not-randomized versions, and the randomized version slows down the training progress because
only one layer gets updated each training iteration. During the experiments of an equally sized network
with one hidden layer, we showed that our new variants of target propagation TP-AI, RTP-AI, DTP-AI
and RDTP-AI outperformed their existing counterparts in the literature (original-TP and original-DTP),
because our form of g i allows the network to find the perfect inverses of f i+1, which is not possible in
original-TP and original-DTP. In a contracting network setting, we showed that there exists no perfect in-
verse of f i+1, making it necessary to use methods that get rid of the reconstruction errors, such as DTP-AI
and original-DTP and their randomized versions.
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(a) (b)

Figure 5.19: The angles between the propagated learning signal and the GN and BP learning
signals during the training process of the student-teacher regression problem with contracting
layers, trained by the randomized target propagation method with approximate inverses and
its variants. (a) The cosinus of the angle between the propagated learning signal ĥ1 −h1 and the GN
learning signal eGN

1 as defined in equation (5.60). (b) The cosinus of the angle between the propagated
learning signal ĥ1 −h1 and the GN learning signal eGN

1 as defined in equation (5.60). A network with
contracting layers was used, as defined in the methods of section 5.2.2. All results are averaged over 15
random generated network initializations and teacher datasets. Mini-batches of size 32 were used. The
same hyper parameters as in figure 5.18 were used.

5.3 Conclusion
This chapter investigated experimentally the learning dynamics of target propagation and its variants
and verified the theoretical assumptions and predictions from chapter 4.

The chapter started by investigating an easy interpretable toy example. In this, we showed that target
propagation not only uses Gauss-Newton optimization to compute its local layer targets, but that it is also
closely related to Gauss-Newton optimization for the layer parameters Wi if the other layer parameters
Wj 6=i stay fixed. However, due to the gradient step on the local loss, target propagation still has gradient-
descent-like behaviour. In order to make the behaviour of target propagation more close to second-order
optimization, we introduced modified target propagation. This new method uses batch-normalization to
reduce the influence of the covariance of the layer activations hi on the current parameter update Wi and
counters the part of the curvature of the loss function that is due to the nonlinearity of the current layer.
Unfortunately, the modified target propagation training scheme was not successful in improving the nor-
mal target propagation training scheme, because the learning rate needs to be very small to stabilize this
method, leading to slow convergence.

Further, we investigated the theoretical assumptions made in chapter 4 on target propagation with exact
inverses. This revealed that the block-diagonal approximation of the GN curvature matrix is not accurate
in the setting of target propagation. Therefore, we introduced randomized target propagation, in which
only one randomly chosen weight matrix Wi is updated during each training iteration. This randomized
version of target propagation uses Gauss-Newton optimization with the correct curvature matrix to com-
pute its local layer targets. By comparing the performance of normal target propagation and randomized
target propagation on a student-teacher non-linear regression problem in section 5.1.3 and 5.2.2, it became
clear that the randomized version of target propagation stabilizes the training process. The stabilizing ef-
fect of randomized target propagation is most clear in deeper architectures, where it outperformed normal
target propagation. In architectures with only 1 hidden layer, the training process of normal target propa-
gation is already stable, and the randomized version lowers the performance of target propagation due to
its fewer parameter updates per training iteration.

During the experiments on the student-teacher networks for both target propagation with exact inverses
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and approximate inverses, we showed that the performance of target propagation and its variants is com-
parable to the performance of error backpropagation. This indicates that, unfortunately, target propa-
gation displays no approximate second-order characteristics of fast initial convergence. We hypothesized
that this is mainly due to the non-adaptive learning rate used in target propagation, while Gauss-Newton
optimization in deep learning [85] uses implicitly an adaptive learning rate and explicitly a line-search
during each training iteration. Therefore, we encourage future research to look into adaptive learning
rates for target propagation, such that its approximate second-order characteristics can surface.

Lastly, we compared the performance of all the discussed variants of target propagation. We showed that
the poor performance of the original target propagation method [9] can be explained by the large occurring
reconstruction errors in this method. The experiments confirmed that difference target propagation and
its variants effectively cancel out the reconstruction errors, thereby explaining their good performance.
The results indicated that our new form of g i improved the performance of both target propagation and
difference target propagation significantly, because this new form can approximate the inverse of f i+1
to arbitrary precision if layers of equal size are used. When the network architecture has contracting
layers, the experiments showed that the reconstruction errors never disappear, making it necessary to
use difference target propagation or other methods that cancel out the reconstruction errors. Finally, we
observed that the output step size η̂ needs to be chosen carefully in order to balance on the one hand the
relative magnitude of the useful learning signal compared to the reconstruction errors, with on the other
hand the Taylor approximation errors.
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Chapter 6

Biological implementations of target
propagation

After a thorough theoretical and experimental analysis of target propagation and difference target prop-
agation, we now circle back to the beginning of this thesis, where we started with a description of the
biological properties of neurons. This chapter proposes two biologically plausible implementations of tar-
get propagation to solve the credit assignment problem, building further upon the models for deep learning
with segregated dendrites as discussed in section 3.3. The first model is based on a mixture of feed-forward
and feedback signals inside the somatic compartment of the neuron. The second model uses multiplexing
to separate the feed-forward and feedback signals inside a single neuron and is briefly explained in the
outlook section at the end of this chapter. Both models had to make significant modifications to the pure
mathematical target propagation method, emphasizing that even the ’biologically plausible methods’ for
credit assignment from the literature, are not straight forward to implement in a biologically realistic set-
ting. Both models are only discussed theoretically, due to the limited timespan of this thesis. Future work
should experimentally validate the performance and learning dynamics of these biologically plausible net-
works.

6.1 Introduction
Pure target propagation [9] and difference target propagation [5] use a discrete, two-step updating scheme
to calculate neural activations in the network. From a machine learning point of view, this is faster to
simulate, but from the biological point of view, it is not realistic. This chapter introduces a form of tar-
get propagation learning, implemented in a continuous-time nonlinear dynamical network with abstract
pyramidal neurons. The network is inspired by the work of João Sacramento [7], who also provided the
idea to investigate this dynamical target propagation network. We will first discuss the biological setting
and the network model, after which a theoretical analysis is done for the case with exact inverses and
approximate inverses. The important contribution of this new network is that it can operate in continuous
time without the need for separate phases and that it generates target-propagation-like dynamics with
very simple model equations. We name our network model dynamical target propagation with segregated
dendrites.

6.2 Biological setting
The dynamical target propagation with segregated dendrites model is based on the segregated compart-
ment model of a pyramidal neuron. The human cerebral cortex consists of 70− 85% out of pyramidal
neurons [17], motivating the choice for pyramidal neurons in this biological network model. We only sum-
marize the important properties of pyramidal neurons, as they were already discussed in section 2.1.1.
Figure 6.1b and 6.1c schematize the segregated compartment model of the pyramidal neuron. The feed-
forward connections are integrated into the basal dendritic compartment B, which has its own separate
voltage level. The feedback connections are integrated into the apical dendritic compartment A, which also
has its own voltage level. In both dendritic compartments, the voltage level gives rise to dendritic spikes
that propagate to the somatic compartment S of the neuron [104, 105]. In the somatic compartment, those
dendritic spikes influence the voltage level of the cell body and based on that voltage level, an output spike
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train is sent along the neuron’s axon. This model uses a rate-based network: the output spike train of
neuron j in layer i is represented by a single scalar h( j)

i indicating the average firing rate. All the output
firing rates of a layer i are combined in the vector hi.

Figure 6.1: Biological network implementation of pyramidal neurons with segregated dendritic
compartments (figure inspired on Sacramento et al. [7]). (a) A network consisting of multiple layers of
pyramidal neurons with segregated dendritic compartments: (1) the feed-forward connections originate
from the axons of pyramidal cells of layer i and end at the basal dendritic compartment of pyramidal cells
in layer i+1, (2) the feedback connections originate from the axons of pyramidal cells of layer i+1 and end
at the apical dendritic compartment of pyramidal cells in layer i and (3) the feed-forward and feedback
signals are combined in the somatic compartment of the pyramidal neuron. The combining mechanism
of the feed-forward and feedback signals are specified in the network models of section 6.1 and 6.9. For
visual clarity, only a few neuron connections are visualized, however, fully connected layers are used in the
biological network implementations. The blue lines represent the axons and the blue dots the synapses.
(b) A close-up of a pyramidal neuron with the following segregated compartments: the apical dendritic
compartment A, the basal dendritic compartment B and the somatic compartment S. The axon is not
shown on the figure. (c) An anatomical drawing of a pyramidal neuron in the human brain, used for
comparison (figure adapted from [8]).

6.3 Network model
The network dynamics presented here are specified in terms of rates. Working with rates instead of
potentials results in simpler network dynamics and is closer to the original TP method. The dendritic
spikes that occur in pyramidal neurons also give an intuitive biological explanation for the rate-based
network dynamics. The following dynamical equations are proposed:

τ
d
dt

hi =−hi + (1−µ) f i(hi−1)+µg i(hi+1), i = 1, ...,L. (6.1)

hi represent the output firing rates of the neurons, based on the somatic voltage level. f i(hi−1) represent
the dendritic firing rates of the basal compartments, based on the basal voltage levels which depend on the
feed-forward inputs hi−1. g i(hi+1) represent the dendritic firing rates of the apical compartments, based
on its voltage levels which depend on the feedback inputs hi+1. In this model, the output firing rates are
a linear mixture of the two dendritic firing rates. For brevity, we have omitted the notation of the time
dependence of the firing rates hi(t). τ is the neural integration time constant. The network has a layered
structure with L+1 layers, including inputs h0. Figure 6.1 gives a visual representation of the network.
The forward mapping is given by

f i(hi−1)= si(Wihi−1), i = 1, ...,L (6.2)

with si the point-wise forward nonlinearity representing the neural transfer function, and Wi the basal
synaptic weights. The purpose of g i is to approximate f −1

i+1. Two different forms of g i will be investigated
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in the following sections, so g i will be specified there. For the output layer, we set g to the desired target
activity htrgt

L :

gL(hL+1)= htrgt
L , (6.3)

where we use L+1 to denote a virtual teaching layer. An important aspect in (6.1) is that the update is a
convex combination, not a sum, of forward predictions f i(hi−1) and feedback activity g i(hi+1), with mixing
coefficient µ ∈ (0;0.5). In a more detailed biophysical model this could be achieved via shunting inhibition
[106].

6.4 Network with exact inverses
As a starting point for the analysis of this network, we assume that f i is a bijection (so layers of equal size
are needed) and that g i is the perfect inverse of f i+1:

g i(hi+1)= f −1
i+1(hi+1)=W−1

i s−1
i (hi+1). (6.4)

Note that it is not very likely that exact inverses can be computed in our brain, but investigating this ideal
case will give inportant insights in this dynamical model.

Fixed point equations. We assume that the network dynamics admit a stable fixed point {h∗
i }L

i=1, under
a fixed input pattern h∗

0 :

h∗
i = (1−µ) f i(h∗

i−1)+µg i(h∗
i+1), i = 1, ...,L. (6.5)

In section 6.7 we investigate whether the assumption on the stability of the fixed points is permissible. If
we now assume that the feedback is small comparing to the feed-forward activation (µ→ 0) we can make
a first order Taylor approximation for g i around f i+1(h∗

i ):

g i(h∗
i+1)= g i

(
(1−µ) f i+1(h∗

i )+µg i+1(h∗
i+2)

)
(6.6)

≈ g i
(
f i+1(h∗

i )
)+µJg i

(
g i+1(h∗

i+2)− f i+1(h∗
i )

)
(6.7)

= h∗
i +µJ−1

f i+1

(
g i+1(h∗

i+2)− f i+1(h∗
i )

)
, (6.8)

with Jg i the Jacobian of g i evaluated at f i+1(h∗
i ) and Jf i+1 the Jacobian of f i+1 evaluated at h∗

i . The last
step is based on the inverse function theorem and the fact that g i is the perfect inverse of f i+1. By filling
in the approximation of g i(h∗

i+1) into (6.5) and rearranging the terms, we get:

h∗
i ≈ f i(h∗

i−1)+ µ2

1−µ J−1
f i+1

(
g i+1(h∗

i+2)− f i+1(h∗
i )

)
(6.9)

This equation has some interesting properties. First, if we do not provide a target to the output layer
(by providing htrgt

L = hL as a target for the last layer), by recursion one can show that the activity at
every layer is equal to the forward prediction alone. This is possible due to the convex combination of
(6.5). Second, if we do provide a target, we see in equation (6.9) that the difference of this target with the
forward activation is backpropagated through the network. It seems that errors can propagate backwards
through the network in an implicit fashion, without the need for dedicated circuitry as in [7]. These errors
can be used as learning signals for the network. Third, a mixture state of the form (6.5) is probably useful
for updating f i without the need for distinct phases. We will first investigate how the target error gets
propagated backwards through the network, after which we will propose possible weight updates to exploit
this backpropagated target error.

Backpropagation of the target error. In a similar way to the original target propagation, let us define
the output target htrgt

L as

htrgt
L = h∗

L − η̂eL (6.10)

eL ,
∂L
∂h∗

L
, (6.11)

84



with L(h∗
L,htrue

L ) the loss for having output h∗
L instead of the wished true output htrue

L and η̂ the output
target step size. Filling this target into the fixed point equation (6.5) of the last layer, using (6.3) and
rearranging the terms gives us the following fixed point equation for the last layer:

h∗
L = fL(h∗

L−1)− µ

1−µη̂eL. (6.12)

From equation (6.5) we observe that

g i+1(h∗
i+2)− f i+1(h∗

i )= 1
µ

(
h∗

i+1 − f i+1(h∗
i )

)
(6.13)

Combining this with equation (6.9) gives us the following approximations for h∗
L−1 and all other h∗

i :

h∗
L−1 ≈ fL−1(h∗

L−2)− η̂ µ2

(1−µ)2
J−1

fL
eL (6.14)

h∗
i ≈ f i(h∗

i−1)− η̂ µL+1−i

(1−µ)L+1−i

[L−1∏
k=i

J−1
fk+1

]
eL (6.15)

= f i(h∗
i−1)− η̂ µL+1−i

(1−µ)L+1−i

[L−1∏
k=i

W−1
k+1D−1

sk+1

]
eL, (6.16)

with Dsk a diagonal matrix containing the partial derivatives of sk(Wkh∗
k−1) with respect to Wkh∗

k−1. The
obtained expression (6.16) is almost identical to the one of pure target propagation with exact inverses
(4.11), as f i(h∗

i−1) is similar to the feed-forward activation hi in target propagation. However, now there
is no need for separate phases, as we work with only one signal and continuous time dynamics. In (6.16),
a layer dependent scaling factor µL+1−i

(1−µ)L+1−i appeared. This scaling factor decays exponentially for layers
towards the bottom, leading to a decay of the propagated target error. This could be compensated by a
layer specific learning rate in the weight updates, as is done in [7]. However, in a noisy environment this
can result in noise signals dominating the learning signal.

Weight updates. Similar to the forward weights update in target propagation (4.12), we can define
purely local dynamics for the feed-forward weights.

dWi

dt
=−ηiDsi ( f i(h∗

i−1)−h∗
i )h∗T

i−1 (6.17)

≈−ηi
µL+1−i

(1−µ)L+1−i Dsi

(
η̂

[L−1∏
k=i

W−1
k+1D−1

sk+1

]
eL

)
h∗T

i−1 (6.18)

=−η̃iDsi

(
η̂

[L−1∏
k=i

W−1
k+1D−1

sk+1

]
eL

)
h∗T

i−1, (6.19)

with η̃i = ηi
µL+1−i

(1−µ)L+1−i , a layer specific learning rate. These weight dynamics can be seen as the continuous
version of the discrete weight update rules discussed in chapter 4. When this continuous weight update
(6.19) with the discrete weight update of target propagation with exact inverses (4.12), it can be seen that
both are equal, except from the layer specific learning rate. However, now there is no need for separate
phases or separate channels to propagate the target signals, it is done implicitly. Note that the backwards
weights from g i are equal to W−1

i+1 in this ideal case. They thus don’t need to be learned, as they are directly
computed from W−1

i+1 (e.g. with the Sherman-Morrison formula).

6.5 Network with approximate inverses
We now loosen the condition of exact inverses to approximate inverses and repeat the analysis of the
previous section. The analysis makes abstraction of the specific parametric form of g i.

Fixed point equations. By filling in the approximation of g i(h∗
i ) (6.7) into the fixed point equations

(6.5) and rearranging the terms (subtract µh∗
i from both sides of the equation and divide by (1−µ)), we

get the following equations for h∗
i :

h∗
i ≈ f i(h∗

i−1)+ µ

1−µ
(
g i

(
f i+1(h∗

i )
)−h∗

i

)
+ µ2

1−µ Jg i

(
g i+1(h∗

i+2)− f i+1(h∗
i )

)
(6.20)
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When compared to the fixed point equations obtained with exact inverses, we see that now a reconstruction
error term has appeared in the equations, similar to the reconstruction error term in target propagation
with approximate inverses. When g i is the exact inverse of f i+1 the reconstruction error term disappears.
Now we will investigate how this reconstruction error gets propagated backwards through the network.

Backpropagation of the reconstruction error. Similar to the analysis with perfect inverses, we now
obtain the following approximations for the fixed point equations in the case of approximate inverses:

h∗
L−1 ≈ fL−1(h∗

L−2)+ µ

1−µ
(
gL−1

(
fL(h∗

L−1)
)−h∗

L−1

)
− η̂ µ2

(1−µ)2
JgL−1 eL (6.21)

h∗
i ≈ f i(h∗

i−1)+ µ

1−µ
(
g i

(
f i+1(h∗

i )
)−h∗

i

)
+

L−1∑
j=i+1

[
µ j+1−i

(1−µ) j+1−i

( j∏
k=i+1

Jgk

)(
g j(h∗

j+1)−h∗
j

)]
.. (6.22)

− η̂ µL+1−i

(1−µ)L+1−i

[L−1∏
k=i

Jgk

]
eL, i = 1, ...,L−2

We now see that the reconstruction errors accumulate when propagating backward through the network.
Hence, the useful learning signal

[∏L−1
k=i Jgk

]
eL gets more and more deteriorated when going deeper in the

network. The obtained equations are again very similar to the ones obtained with target propagation with
approximate inverses, except from the layer specific scaling factors µ j+1−i

(1−µ) j+1−i .

Forward weight updates. For the forward weight updates, we can take the same update rule as with
perfect inverses (6.17). However, the reconstruction errors dominate the target error (scale factor of µ

1−µ
instead of µL+1−i

(1−µ)L+1−i ), thus it can be expected that this update rule will perform poorly if the approximation
of the inverses is not accurate enough.

Backward weight updates. Now that the backward mapping functions g i are not anymore the perfect
inverses of f i+1, we need to define a parameterization of g i. Let us stay close to our analysis of target
propagation in chapter 4 and take:

g i(hi+1),Q i ti(hi+1), (6.23)

with ti the backward nonlinearity (neural transfer function in the apical dendrites) and Q i the synap-
tic weights of the apical dendrites. Ideally, we want to minimize for each layer the regularized inverse
approximation loss as defined in chapter 4:

Linv,r
i =

∣∣∣∣∣∣h∗
i − g i

(
f i+1(h∗

i )
)∣∣∣∣∣∣2

2
+λ‖Q i‖2

F , (6.24)

with ‖Q i‖F the Frobenius norm of Q i. By computing the gradient, this leads to the following weight
update:

∆Q i =−ηinv
i

(
g i

(
f i+1(h∗

i )
)−h∗

i

)
ti

(
f i+1(h∗

i )
)T −ηinv

i λQ i, (6.25)

The weight decay term could be biologically implemented by a mechanism similar to homeostatic plasticity.
As seen in theorem 4.6, under the condition that ti = s−1

i+1, this weight update will drive Q i towards W−1
i+1

if Wi+1 is invertible or will drive Q i towards W†
i+1 if hi is white noise and Wi+1 is not invertible. As the

mixing factor µ is small, we can approximate this weight update by the following weight dynamics:

dQ i

dt
=−ηinv

i

(
g i

(
h∗

i+1
)−h∗

i

)
ti(h∗

i+1)T −ηinv
i λQ i. (6.26)

Note however that due to this approximation, Q i will not approximate exactly W−1
i+1 or W†

i+1 anymore. A
possible solution for this problem in networks with equal layer sizes is to introduce a sleep phase, where
no teaching signal is applied on the network. Then h∗

L = fL(h∗
L−1) (see equation (6.3)) and if the Q i ’s are

trained until optimality starting from the top layers to the bottom layers, f i(h∗
i−1) = h∗

i due to the convex
mixture used in the network dynamics. This results in equation (6.26) being an exact approximation of
equation (6.25). For networks with unequal layer sizes, this solution is not possible, as no exact inverses
of f i exist, introducing reconstruction error terms in the network. Even if no teaching signal is applied on
the network, h∗

i will not be equal to f i(h∗
i−1) in equilibrium.
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6.6 Neural dynamics for difference target propagation
In section 6.5, we showed that reconstruction errors are propagated through the network when g i is not
the perfect inverse of f i+1. Importantly, these reconstruction errors are scaled µ

1−µ , whereas the learning

signal (the target error) has a scaling factor of µL+1−i

(1−µ)L+1−i . This means that when g i is not the perfect inverse
of f i+1, these reconstruction errors will completely dominate the learning signal, resulting in a network
without useful learning signals. In section 4.3.3 we showed that difference target propagation [5] gets rid
of the reconstruction errors that deteriorate the learning signal, by adjusting the propagated target to:

ĥi = hi + g i(ĥi+1)− g i(hi+1). (6.27)

When a L2 loss function is used for the local layer loss L i, it can be simplified to:

L i = ‖hi − ĥi‖2
2 = ‖g i(hi+1)− g i(ĥi+1)‖2

2 (6.28)

Now we see that a difference between the backpropagated target and the backpropagated forward activa-
tion is used for the local layer loss, and consequently also for the learning signal to update the forward
weights Wi. Now we propose a modification to the dynamical network described in section 6.3 in order to
incorporate a similar mechanism as difference target propagation to get rid of the reconstruction errors
that deteriorate the learning signal. The new network consists of two phases: (1) a free phase, where no
teaching signal is applied on the network, such that htrgt

L = h∗
L and (2) a learning phase, where a teaching

signal is applied on the last layer of the network, according to equation (6.10). The learning signal for
the forward weights Wi can then be obtained by taking the difference between the two phases. We first
analyse the two phases, after which we discuss possible learning rules for both the forward weights Wi
and the backward weights Q i.

Free phase. In the free phase, the target output htrgt
L is taken equal to the output equilibrium activation

h f ∗
L (imagine it as short-circuiting the output activation to the target output activation input). The input

h0 remains fixed. The superscript f is used to indicate the free phase. Following equation (6.12), this
results in

h f ∗
L = fL(h f ∗

L−1). (6.29)

Now equation (6.20) and (6.13) can be used to obtain first order Taylor approximations of h f ∗
i during the

free phase:

h f ∗
L−1 = fL−1(h f ∗

L−2)+ µ

1−µ
(
gL−1

(
fL(h f ∗

L−1)
)−h f ∗

L−1

)
(6.30)

h f ∗
i ≈ f i(h

f ∗
i−1)+ µ

1−µ
(
g i

(
f i+1(h f ∗

i )
)−h f ∗

i

)
+

L−1∑
j=i+1

[
µ j+1−i

(1−µ) j+1−i

( j∏
k=i+1

Jgk

)(
g j(h

f ∗
j+1)−h f ∗

j

)]
(6.31)

The second and third term of the above equation represent the reconstruction error of the current layer
and the backpropagated reconstruction errors of the layers on top, respectively.

Learning phase. During the learning phase, the target output htrgt
L is set according to equation (6.3).

The input h0 remains fixed. The same derivation as the one of equation (6.22) can be used to obtain the
first order Taylor approximations of hl∗

i during the learning phase:

hl∗
L−1 ≈ fL−1(hl∗

L−2)+ µ

1−µ
(
gL−1

(
fL(hl∗

L−1)
)−hl∗

L−1

)
− η̂ µ2

(1−µ)2
JgL−1 eL (6.32)

hl∗
i ≈ f i(hl∗

i−1)+ µ

1−µ
(
g i

(
f i+1(hl∗

i )
)−hl∗

i

)
+

L−1∑
j=i+1

[
µ j+1−i

(1−µ) j+1−i

( j∏
k=i+1

Jgk

)(
g j(hl∗

j+1)−hl∗
j

)]
.. (6.33)

− η̂ µL+1−i

(1−µ)L+1−i

[L−1∏
k=i

Jgk

]
eL, i = 1, ...,L−2

The second and third term of the above equation represent the reconstruction error of the current layer
and the backpropagated reconstruction errors of the layers on top, respectively. The last term represents
the target error, which is the useful learning signal.
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Forward weights update. Similar as in difference target propagation, we opt for a local layer loss of
the following form:

L i = ‖h f ∗
i −hl∗

i ‖2
2 (6.34)

When comparing equation (6.31) and (6.33), we see that the second and third term of the equations, the
reconstruction errors, are almost equal. They have exactly the same form, only h f ∗

i differs from hl∗
i . As

the same fixed input h0 is used for both phases, the mixing constant µ is small and the output target htrgt
L

in the learning phase is only slightly moved towards lower loss with step size η̂, it can be expected that the
equilibrium points h f ∗

i will only slightly differ from hl∗
i . Therefore, in the local loss function L i of equation

(6.34), the reconstruction error terms are almost completely cancelled out against each other. Therefore,
the useful backpropagated output error term eL is less deteriorated by the reconstruction errors, and an
almost clean learning signal remains. Based on L i the following dynamics for Wi are proposed:

dWi

dt
=−ηiD l

si
(h f ∗

i−1 −hl∗
i )hl∗T

i−1 (6.35)

≈−ηiD l
si

(
µL+1−i

(1−µ)L+1−i η̂

[L−1∏
k=i

Jgk

]
eL + ephase

i

)
hl∗T

i−1 , (6.36)

with D l
si

the diagonal matrix with on its entries the derivatives of si, evaluated at Wihl∗
i−1, and ephase

i the
difference between sum of the second and third term of (6.31) and the sum of the ones of (6.33), which
is expected to be small compared to the learning signal eL. Note that these weight dynamics cannot be
directly interpreted as gradient descent dynamics on the local loss function L i, because both h f ∗

i and hl∗
i

depend on Wi. The specific form of the weight dynamics were chosen to stay close to the originial difference
target propagation method.

Backward weights update. As the reconstruction errors are almost completely cancelled out due to
the difference-target-propagation-like network setting, it is no major problem if the backward mappings
g i only approximate the inverse forward mappings f i+1 up to limited precision. Therefore, the same weight
dynamics as proposed in section (6.5) can be used:

dQ i

dt
=−ηinv

i

(
g i

(
h f ∗

i+1

)−h f ∗
i

)
ti(h

f ∗
i+1)T −ηiλQ i. (6.37)

The backward weights Q i will only approximate W−1
i+1 or W†

i+1 up to a limited precision, due to the ap-
proximations made in this weight dynamics (see section 6.5). However, this is not a major issue due to
the small influence of the remainder of the reconstruction errors ephase

i on the learning signal. As h∗
i+1

is more close to f i+1(h∗
i ) during the free phase, it is best to update the backward weights during that phase.

To conclude, this two-phase modification of the dynamical target propagation network reduced the influ-
ence of the useless reconstruction errors on the useful learning signal, at the cost of introducing separate
phases into the network dynamics. During the free phase, the plasticity of the backward weights Q i should
be turned on and the plasticity of the forward weights Wi turned off, whereas during the learning phase,
the plasticity of the forward weights Wi should be turned on and those of the backward weights Q i turned
off. Section 6.8 will briefly discuss how this 2-phase network could operate in a biological setting. Future
work should experimentally check whether this two-phase scheme can indeed reduce the reconstruction
errors sufficiently to have a clean enough learning signal that can be used to train the network on chal-
lenging tasks.

6.7 Stability analysis of the fixed points
In this section, a local stability analysis is done for the fixed point {h∗

i }L
i=1 defined in equation (6.5), under

the condition that g i is the perfect inverse of f i+1. During the local stability analysis, it is assumed that the
input h0 remains constant. Define h̄ as the concatenated vector of {hi}L

i=1, f̄ (h̄) as the concatenated vector
function { f i(hi−1)}L

i=1 and ḡ(h̄) as the concatenated vector function {g i(hi+1)}L
i=1, with gL(hL+1)= htrgt

L and
htrgt

L fixed. Now the full set of equations of the network dynamics can be written as:

τ
d
dt

h̄=−h̄+ (1−µ) f̄ (h̄)+µ ḡ(h̄). (6.38)
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In order to analyse the local stability of this dynamical system, a first order Taylor approximation is made:

τ
d
dt

h̄≈ J̄h̄ (6.39)

J̄ =−I + (1−µ)
∂ f̄ (h̄)
∂h̄

∣∣∣
h̄=h̄∗ +µ

∂ ḡ(h̄)
∂h̄

∣∣∣
h̄=h̄∗ , (6.40)

with h̄∗ the solution of h̄∗ = (1−µ) f̄ (h̄∗)+µ ḡ(h̄∗). The Jacobian matrix J̄ can be written as a block
tridiagonal matrix due to the local dynamics of the network layers (only interaction with itself, the layer
on top and the layer below). Now define the local Jacobian block Jf i as:

Jf i =
∂ f i(hi−1)
∂hi−1

∣∣∣
hi−1=h∗

i−1

= Dsi Wi, (6.41)

with Wi the forward weights of layer i and Dsi the diagonal matrix with as entries the derivatives of the
element-wise function si, evaluated at hi−1 = h∗

i−1. As this stability analysis is done for a network with
perfect inverses, the following equality holds due to the inverse function theorem:

∂g i(hi+1)
∂hi+1

∣∣∣
hi+1=h∗

i+1

= J−1
f i+1

. (6.42)

J̄ is thus a block tridiagonal matrix with the square blocks −I on its main diagonal, the square blocks
{(1−µ)Jf i }

L
i=2 on its lower diagonal and the square blocks {µJ−1

f i
}L
i=2 on its upper diagonal. For the fixed

point {h∗
i }L

i=1 to be stable, J̄ has to be negative definite (only strictly negative eigenvalues). It was checked
experimentally that a matrix of this form is always negative definite, thereby indicating that the fixed
point {h∗

i }L
i=1 is a stable fixed point. Hence, the assumption of a stable fixed point made in section 6.4 is

valid locally for networks with exact inverses. Future research could investigate whether this fixed point
is also globally stable, or in a certain region around the fixed point, similar to the work of Suykens et
al. [107, 108]. Furthermore, it should be investigated whether the fixed point is still locally stable when
approximate inverses are used. For the experiment, 100000 random cases were investigated, with Ji
random matrices with a Gaussian distribution and randomly selected variance and with µ taken randomly
in the interval (0;0.5).

6.8 Discussion and theoretical predictions
After a thorough theoretical analysis of the network proposed at the beginning of section 6.1, we can now
discuss the implications of the main assumptions and propose theoretical predictions on the performance
of this biological implementation of target propagation. Due to the limited size and timespan of this thesis,
the theoretical predictions are not experimentally validated, but this can be done in future work. During
this discussion, we will make a distinction between the single-phase network dynamics of section 6.3 and
the two-phase network dynamics of section 6.6. We structure this discussion in the theoretical predictions
we can make for its performance and the important assumptions we have made for our biological network
implementations.

Influence of the reconstruction errors on the performance. In section 6.5, we showed that recon-
struction errors are propagated through the single-phase network when g i is not the perfect inverse of
f i+1. Importantly, these reconstruction errors are scaled with µ

1−µ , whereas the learning signal (the target

error) has a scaling factor of µL+1−i

(1−µ)L+1−i . This means that when g i is not the perfect inverse of f i+1, these
reconstruction errors will completely dominate the learning signal, resulting in a network without useful
learning signals. The single-phase network should thus always be designed in a way that ensures the
existence of the inverses of the forward mappings f i, implying that layers of equal size need to be used and
that ti = s−1

i+1. If no perfect inverses of f i exist, the single-phase network has no chance of success. In sec-
tion (6.6), we proposed a two-phase network to get rid of the reconstruction errors that propagate through
the network. We predict that this network can operate properly even when no perfect inverses of f i exist,
based on recent results in difference target propagation [5, 11] and biological networks that incorporate
difference target propagation-like methods [8, 7]. This claim should however be experimentally verified in
future work.
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Distinct phases. The two-phase network model of section 6.6 uses two distinct phases: a free phase
and a learning phase. This imposes two biological feasibility issues on the network: (1) two distinct
global phases of neural processing are needed that need to be globally coordinated and (2) there exists a
temporal gap between the two phases, indicating that the weight update of equation (6.35) needs to be
computed over time. These issues could, theoretically, be solved by biologically plausible mechanisms [8].
The two distinct phases could be globally coordinated by neuromodulatory systems [109] or alternatively
by oscillations that indicate which phase is on [110]. Taking the difference between the neuron activations
at the free phase and learning phase (which is tens of milliseconds apart) is possible if there exists a
cellular signal that is dependent on the firing rate of the neuron, has a slow time constant and reacts
differently depending on which global phase is active. Whether such biological mechanisms exist and
whether they are used in the way described by our two-phase network model is highly speculative, we only
want to indicate in this discussion that they would be possible in theory. Future experimental research
should determine whether these mechanisms do in fact exist and are used for the same purposes as we
describe.

Comparison with related work. Our biological network implementation is mostly related to the work
of Sacramento et al. [7] and Guerguiev et al. [8], which both were discussed at the end of chapter 3. Com-
pared to the work of Sacramento et al., the advantage of our network is that it does not need a specialized
cortical microcircuit to operate. The authors of [7] need a separate interneuron for each pyramidal neuron,
which is inconsistent with the anatomical distribution of neurons in the cortex (the cortex consists out of
70−85% pyramidal neurons [17]). The disadvantage of our work compared to the work of Sacramento et
al. is that it needs two distinct phases to be able to operate in a noisy environment, whereas the corti-
cal microcircuits of Sacramento et al. continuously operate in a single phase. Compared to the work of
Guerguiev et al. [8], our model has the following advantages: (1) the feedback weights of our network are
plastic, which is also observed in biology and (2) our model can naturally be implemented for deep architec-
tures, whereas in the model of Guerguiev et al., each hidden layer needs a direct feedback connection from
the output layer and it is reported that adding more than two hidden layers does not help the performance
of the network. The disadvantage of our network model is that the learning signal exponentially decays
for deeper network architectures. This exponentially decaying of the learning signal is inherently to net-
work models that use a mixture of feed-forward and feedback signals and thus also occurs in the network of
Sacramento et al. Similar to our work, the authors of [7] solve this problem by layer-specific learning rates.

Conclusion. To conclude, we emphasize the conceptual importance of this network model. It showed
that a target-propagation-like method can be incorporated in a biologically realistic network model with
very simple and intuitive dynamics, encouraging further research in both target propagation and biological
network models with similar dynamics. The possible biological implementations of this network model are
speculative and only partially in line with experimental results from neuroscience, but nonetheless, it
provides the field with a new possible way forward to find a solution for the credit assignment problem in
our brain and can lead to new insights in both neuroscience and deep learning. We end this chapter with
a small outlook section on how a new hypothesis from theoretical neuroscience, neuronal multiplexing,
promises to solve the issue of the exponentially decaying of the learning signal in our network model.

6.9 Outlook
The exponential decaying of the learning signal in the network discussed in this chapter is inherent to
network models that use a mixture of feed-forward and feedback signals. Hence, a logical solution for the
exponential decay is to develop a network model that does not mix feed-forward and feedback signals, but
instead keeps them in separate channels. However, as a neuron only has a single output channel, the
axon, on which it has to send both its feed-forward signal to the next layer and feedback signal to the
lower layer, this poses a problem. In electrical engineering, such problems are solved by multiplexing: two
or more signals are encoded on a single channel and a decoder separates and decodes the encoded signals
at the end of the channel. A new hypothesis from theoretical neuroscience states that, similar to electrical
engineering, pyramidal neurons can multiplex two separate signals through their axons.
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6.9.1 Biological setting
This new proposed network model makes use of the segregated compartment model of pyramidal neurons
as visualized in figure 6.1. As discussed in section 2.1.2, a recent hypothesis from theoretical neuroscience
states that pyramidal neurons can multiplex through bursting spikes [29]. For a detailed description
of the multiplexing mechanism, the reader is referred to section 2.1.2. The important results from this
hypothesis are that a single neuron can now output two signals on its axon through bursting spikes: (1) an
event rate, representing the feed-forward signal and (2) a bursting probability, representing the feedback
signal. The event rate (feed-forward signal) is decoded at the synapses on the basal dendrites through
a low-pass filter mechanism called short-term-depression and the bursting probability is decoded at the
synapses of the apical dendrites through a high-pass filter mechanism called short-term-facilitation (see
section 2.1.4). The basal (feed-forward) inputs determine the output event rate of the neuron, whereas the
apical (feedback) inputs determine the output bursting rate of the neuron via plateau potentials. The feed-
forward connections roughly all arrive at the basal dendrites [20, 19] and the feedback connections roughly
all arrive at the apical dendrites [22, 23]. This gives rise to two completely separated and independent
signal paths: (1) a feed-forward path encoded by the event rate and (2) a feedback path encoded by the
bursting probabilities. Both signal paths also have their own non-linear activation function si and ti,
respectively, as they represent different neuronal mechanisms. The network wiring is again the same as
in the network model of 6.3 and is visualized in figure 6.1.

6.9.2 Network model
Due to the decoupling of the feed-forward and feedback signals, the network dynamics are straight forward
and no mixture model is needed. Let us define ab

i as the voltage level of the basal dendritic compartment
of neurons in layer i, aa

i as the voltage level of the apical dendritic compartment, hi as the output event
rate of the neurons in layer i and ĥi as the output bursting probability of the neurons in layer i. Our new
proposed network model has the following decoupled dynamics:

dab
i

dt
=−ab

i +Wihi−1 (6.43)

daa
i

dt
=−aa

i +Q i ĥi+1 (6.44)

hi = si(ab
i ) (6.45)

ĥi = ti(aa
i ), (6.46)

with Wi the forward weights (basal synapses) and Q i the backward weights (apical synapses), si the
neuron activation function transforming the basal voltage level to an output event rate and ti the neuron
activation function transforming the apical voltage level to an output bursting potential.

Equilibrium points. The network has the following equilibrium points:

ab∗
i =Wih∗

i−1 (6.47)

aa∗
i =Q i ĥ

∗
i+1 (6.48)

h∗
i = si(ab∗

i )= si(Wih∗
i−1)= f i(h∗

i−1) (6.49)

ĥ∗
i = ti(aa∗

i )= ti(Q i ĥ
∗
i+1)= g i(ĥ

∗
i+1), (6.50)

In equilibrium state, the network is thus entirely characterized by its event rates h∗
i , burst probabilities

ĥ∗
i , forward mapping f i and backward mapping g i. This network can be interpreted as a target propa-

gation network: the event rates hi represent the feed-forward signal, whereas the burst probabilities ĥi
represent the target signal. The neuron then tries to match the event rate to the target bursting probabil-
ity by adapting its basal and apical synapses.

Learning signal. We propose a difference target propagation-like method for solving the credit assign-
ment problem in our network implementation, similar to section 6.6. The output bursting rate ĥL of layer
L is defined by:

gL(ĥ∗
L+1)= htrgt

L , (6.51)
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where ĥ∗
L+1 can be seen as a virtual teaching layer, and htrgt

L as the wished event rate output of the
network. We introduce now two phases: a free phase and a learning phase. From now on, bursting
probabilities during the free phase are denoted by a superscript ĥ∗ f

i and during the learning phase by ĥ∗l
i .

The event rates h∗
i are the same during both phases, as the dynamics are decoupled and only the output

target burst probability is fixed to a different value between the phases. During the free phase, htrgt
L = h∗

L.

In other words, the bursting probability ĥ f ∗
L of the output layer L is short circuited to its event rate h∗

L.

If we assume that the backward mappings g i are approximate inverses of f i+1, ĥ f ∗
i will lay close to h∗

i

in this free phase, and ĥ f ∗
i can be approximated by a first order Taylor expansion around h∗

i (derivation
similar to section 4.3.1):

ĥ f ∗
L−1 = gL−1(ĥ f ∗

L )= gL−1(h∗
L)= h∗

L−1 +
(
gL−1(h∗

L)−h∗
L−1

)
(6.52)

ĥ f ∗
i ≈ h∗

i +
(
g i(h∗

i+1)−h∗
i
)+ L−1∑

j=i+1

[( j−1∏
k=i

Jgk

)(
g j(h∗

j+1)−h∗
j

)]
i = 1, ...,L−2 (6.53)

The approximate invertible state of the network can be a result of early development in the brain, after
which suitable weight updates for Wi and Q i keep the approximate invertible state intact. During the
learning phase, htrgt

L is tweaked towards lower loss:

htrgt
L = h∗

L − η̂eL (6.54)

eL ,
∂L
∂h∗

L
, (6.55)

Following the same derivation as equation (4.84), we can make the following first order Taylor approxima-
tions of ĥl∗

i around hi:

ĥl∗
L−1 ≈ h∗

L−1 +
(
gL−1(h∗

L)−h∗
L−1

)+ η̂JgL−1 eL (6.56)

ĥl∗
i ≈ h∗

i +
(
g i(h∗

i+1)−h∗
i
)+ L−1∑

j=i+1

[( j−1∏
k=i

Jgk

)(
g j(h∗

j+1)−h∗
j

)]
− η̂

[L−1∏
k=i

Jgk

]
eL. (6.57)

The second and third term represent reconstruction errors of g i and the fourth term represents the useful
learning signal (the same as in the original target propagation method). The second and third term of
equation (6.55) are exactly the same reconstruction error terms. Hence, we propose the following weight
dynamics for the forward weights Wi in order to cancel out the reconstruction error terms:

dWi

dt
=−ηiDsi (ĥ

f ∗
i−1 − ĥl∗

i )h∗T
i−1 (6.58)

≈−ηiDsi

(
η̂

[L−1∏
k=i

Jgk

]
eL

)
hl∗T

i−1 , (6.59)

We see that the reconstruction errors have exactly cancelled out in the first order Taylor expansion, leaving
the Wi dynamics with a clean learning signal. Furthermore, there is no decaying scaling term present
like in the mixture model of 6.3, making this model more suitable for deep architectures. The backward
weights Q i could be kept fixed, similar to the work of Guerguiev et al. [8], but more interestingly would
be to find weight dynamics for Q i such that g i approximates the (pseudo-)inverse of f i+1. In this way, the
Gauss-Newton properties of difference target propagation (see theorem 4.9) could be exploited. We leave
it to future research to find such update rules for Q i.

92



Chapter 7

Conclusion

This thesis focussed on the field of biologically plausible deep learning which seeks to bridge the gap be-
tween deep learning and neuroscience. We identified two current shortcomings in this field: (1) many
of the biologically plausible learning methods do not yet have a solid mathematical foundation and (2)
many of those methods are not closely linked to the properties of biological neurons, making it hard for
neuroscientists to deduce workable hypotheses from them. In this thesis, we decided to focus on target
propagation [9, 5], a promising biologically plausible learning method. We aimed to bridge the two above
mentioned gaps by (1) creating a well-founded mathematical theory around the learning dynamics of tar-
get propagation, (2) improving the target propagation method by the gained mathematical insights and (3)
developing a biological network model based on pyramidal neurons that exhibits target-propagation-like
learning dynamics.

Through developing a mathematical framework around target propagation, based on Taylor approxima-
tions of the network signals, we discovered which optimization methods target propagation uses to mini-
mize its output loss function. Under well-specified conditions, target propagation with exact inverses uses
Gauss-Newton optimization to compute its local layer targets, after which it performs a gradient descent
step on the local layer losses to update the forward weights of the network. As a second main theoretical re-
sult of this thesis, we discovered that reconstruction errors interfere with the propagated learning signals
when approximate inverses are used to propagate the targets through the network. These reconstruction
errors explain the poor performance of pure target propagation that was reported in the literature [5]. We
showed that difference target propagation cancels out these reconstruction errors by adding a correction
term to the propagated targets, which explains the good performance of difference target propagation in
the literature [5, 11]. As the third main theoretical result of this thesis, we proved under well-specified
conditions that difference target propagation uses Gauss-Newton optimization to compute its local layer
targets, even when only approximate inverses are used to propagate the targets.

Based on the gained mathematical insight on target propagation, we proposed various improvements for
the method. First, we introduced a new parametrization for the backward mapping function of the targets,
which ensures that it can learn the inverse of the forward mapping to arbitrary precision when layers of
equal size are used. Experimental results showed that this new parametrization significantly improved
the performance of target propagation. Secondly, we proposed a modified version of target propagation
that changes the gradient step of target propagation to a form more closely related to Gauss-Newton
optimization. We hoped that this modified version would approximate more closely the second-order op-
timization characteristics of Gauss-Newton. Unfortunately, this method is not robustly stable, thus could
not improve the existing target propagation method. Thirdly, we showed that target propagation uses a
block-diagonal approximation of the Gauss-Newton curvature matrix, which is frequently done in the field
of approximate second-order optimization for deep learning [85]. However, this block-diagonal approxima-
tion is not accurate in the setting of target propagation. Therefore, we proposed a randomized version of
target propagation, which does not make use of this block-diagonal approximation. Experimental results
showed that this randomized version of target propagation stabilizes the training process for deep network
architectures. Lastly, experimental results showed that the target propagation method and its variants
have slightly worse performance compared to error-backpropagation, which is a first-order optimization
method. Hence, the mix of first- and second-order optimization in target propagation does not succeed
in improving standard first-order optimization methods for deep learning. We hypothesized that this is
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mainly due to the non-adaptive learning rate used in target propagation, while Gauss-Newton optimiza-
tion in deep learning [85] uses implicitly an adaptive learning rate and explicitly a line-search during each
training iteration. Therefore, we encourage future research to look into adaptive learning rates for target
propagation, such that its approximate second-order characteristics can surface.

In the final part of this thesis, we developed two biological network models that exhibit target-propagation-
like learning dynamics, based on the segregated dendrites of pyramidal neurons. The first model is a sim-
ple mixture model of the apical dendritic spikes and the basal dendritic spikes that occur in the pyramidal
neuron. This model has as significant contribution that it operates in continuous time without the need for
separate phases, and it shows that target-propagation-like learning behaviour can be reached with very
simple and biologically realistic model equations. A more detailed theoretical study of the model revealed
that it suffers from reconstruction errors, similar to the target propagation method. Therefore, we intro-
duced two separate phases in the model, resulting in difference-target-propagation-like behaviour. This
reduced the influence of the reconstruction errors on the propagated learning signals. Lastly, we showed
that the propagated learning signals in this model decay exponentially with depth, which is an inherent
property of mixture-based models. Consequently, we introduced briefly a second biological model which is
not based on mixtures but uses multiplexing to separate the feed-forward and feedback signals in the net-
work. This model does not suffer from exponentially decaying learning signals. The learning performance
of these two models is only worked out in theory. Hence, we encourage future research to simulate these
networks to experimentally test their performance. If they perform well, future research should link the
models in more detail towards real biological processes inside neural networks, such that neuroscientists
can deduce workable hypotheses from them on the inner working of our brain.

To conclude, this thesis has made two main contributions to the field of biologically plausible deep learning
and the scientific community as a whole. First, we created an extensive mathematical foundation for
the target propagation method, which has led to improved variants of target propagation and which will
help future research to further improve the target propagation method and other alternatives to error
backpropagation. Hopefully, this work will encourage other researchers and accelerate the mathematical
understanding of biologically plausible learning methods. Secondly, we developed two biologically more
realistic models of target propagation. In future research, these two models can be linked in more detail
to biological mechanisms inside neurons, such that they can give new hypotheses for neuroscience on how
credit assignment is performed in biological networks.
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Appendix A

Algorithms

Algorithm A.1: The update of one set of layer parameters with modified target propagation
Result: ∆Wk: the modified target propagation update of the weights of the k-th layer, while all

other weights remain fixed;
Input: {h(b)

0 }B
b=1: a mini-batch of input samples;

for i in range(1,L) do
Batch normalize layer i−1: {h̃(b)

i−1}B
b=1 = { 1

σ(b)
i−1

¯ (
h(b)

i−1 −µ(b)
i−1

)
}B
b=1 ;

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 ;

Compute output target: {ĥ(b)
L }B

b=1 = {h(b)
L − η̂ ∂L

h(b)
L

}B
b=1;

for i in range(L-1,k) do
Propagate target backwards: {ĥ(b)

i }B
b=1 = {g i(ĥ

(b)
i+1)}B

b=1 ;

Counter batch normalization: {ĥ(b)
i }B

b=1 = {σ(b)
i ¯ ĥ(b)

i +µ(b)
i }B

b=1;

∆Wk =− 1
B

∑B
b=1ηkD−1,(b)

sk (h(b)
k − ĥ(b)

k )hT,(b)
k−1 ;

Algorithm A.2: Randomized target propagation training iteration
Result: The parameters Wk of one randomly chosen layer are updated by the target propagation

method;
Input: {h(b)

0 }B
b=1: a mini-batch of input samples;

for i in range(1,L) do
Propagate mini-batch forward: {h(b)

i }B
b=1 = { f i(h(b)

i−1)}B
b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 = {h(b)
L − η̂ ∂L

h(b)
L

}B
b=1;

Chose one random layer k from {k}L
k=1 ;

for i in range(L-1,k) do
Propagate target backwards: {ĥ(b)

i }B
b=1 = {g i(ĥ

(b)
i+1)}B

b=1 ;

∆Wk =− 1
B

∑B
b=1ηkD(b)

sk (h(b)
k − ĥ(b)

k )hT,(b)
k−1 ;

Wk ←Wk +∆Wk;

102



Algorithm A.3: Randomized modified target propagation training iteration
Result: The parameters Wk of one randomly chosen layer are updated by the modified target

propagation method;
Input: {h(b)

0 }B
b=1: a batch of input samples;

for i in range(1,L) do
Batch normalize layer i−1: {h̃(b)

i−1}B
b=1 = { 1

σ(b)
i−1

¯ (
h(b)

i−1 −µ(b)
i−1

)
}B
b=1 ;

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 = {h(b)
L − η̂ ∂L

h(b)
L

}B
b=1;

Chose one random layer k from {k}L
k=1 ;

for i in range(L-1,k) do
Propagate target backwards: {ĥ(b)

i }B
b=1 = {g i(ĥ

(b)
i+1)}B

b=1 ;

Counter batch normalization: {ĥ(b)
i }B

b=1 = {σ(b)
i ¯ ĥ(b)

i +µ(b)
i }B

b=1;

∆Wk =− 1
B

∑B
b=1ηkD−1,(b)

sk (h(b)
k − ĥ(b)

k )hT,(b)
k−1 ;

Wk ←Wk +∆Wk;

Algorithm A.4: Training iteration of target propagation with exact inverses

Result: The network parameters Wi, i = 1, ...,L, and W−1
i , i = 2, ...,L are robustly updated

according to the target propagation training scheme with exact inverses.
Input: h0: one input sample;
for i in range(1,L) do

Propagate sample forward: hi = f i(hi−1)= si(Wihi−1) ;

Compute output target: ĥL = hL − η̂ ∂L
hL

;
for i in range(L-1,1) do

Propagate target backwards: ĥi = g i(ĥi+1)=W−1
i+1s−1

i+1(ĥi+1) ;

for i in range(L,2) do
Update parameters with the robust Sherman-Morrison update;
Dsi = ∂si(Wi hi−1)

∂Wi hi−1
;

ui =−ηiDsi

(
hi − ĥi

)
;

vi = hi−1;
d = vT

i W−1
i ui;

if |1+d| ≥ ε then
Wi ←Wi +uivT

i ;

W−1
i ←W−1

i − W−1
i uivT

i W−1
i

1+d ;
else

β= 1
ε−d ;

Wi ←Wi +βuivT
i ;

W−1
i ←W−1

i − W−1
i uivT

i W−1
i

ε
;

Update the forward parameters of the first hidden layer;
W1 ←W1 −η1Ds1

(
h1 − ĥ1

)
hT

0 ;
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Algorithm A.5: Training iteration of randomized target propagation with exact inverses

Result: One pair of randomly chosen layer parameters Wk, and W−1
k , are robustly updated

according to the randomized target propagation training scheme with exact inverses.
Input: h0: one input sample;
for i in range(1,L) do

Propagate sample forward: hi = f i(hi−1)= si(Wihi−1) ;

Compute output target: ĥL = hL − η̂ ∂L
hL

;
Chose one random layer k from {k}L

k=1 ;
for i in range(L-1,k) do

Propagate target backwards: ĥi = g i(ĥi+1)=W−1
i+1s−1

i+1(ĥi+1) ;

if k>1 then
Update parameter pair with the robust Sherman-Morrison update;
Dsk = ∂sk(Wkhk−1)

∂Wkhk−1
;

ui =−ηkDsk

(
hk − ĥk

)
;

vi = hk−1;
d = vT

i W−1
k ui;

if |1+d| ≥ ε then
Wk ←Wk +uivT

i ;

W−1
k ←W−1

k − W−1
k uivT

i W−1
k

1+d ;
else

β= 1
ε−d ;

Wk ←Wk +βuivT
i ;

W−1
k ←W−1

k − W−1
k uivT

i W−1
k

ε
;

else
Update the forward parameters of the first hidden layer;
W1 ←W1 −η1Ds1

(
h1 − ĥ1

)
hT

0 ;
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Algorithm A.6: Training iteration of randomized modified target propagation with exact inverses

Result: One pair of randomly chosen layer parameters Wk, and W−1
k , are robustly updated

according to the randomized modified target propagation training scheme with exact
inverses.

Input: h0: one input sample;
for i in range(1,L) do

Propagate sample forward: hi = f i(hi−1)= si(Wihi−1) ;

Compute output target: ĥL = hL − η̂ ∂L
hL

;
Chose one random layer k from {k}L

k=1 for i in range(L-1,k) do
Propagate target backwards: ĥi = g i(ĥi+1)=W−1

i+1s−1
i+1(ĥi+1) ;

if k>1 then
Update parameter pair with the robust Sherman-Morrison update;
Dsk = ∂sk(Wkhk−1)

∂Wkhk−1
;

ui =−ηkD−1
sk

(
hk − ĥk

)
;

vi = hk−1;
d = vT

i W−1
k ui;

if |1+d| ≥ ε then
Wk ←Wk +uivT

i ;

W−1
k ←W−1

k − W−1
k uivT

i W−1
k

1+d ;
else

β= 1
ε−d ;

Wk ←Wk +βuivT
i ;

W−1
k ←W−1

k − W−1
k uivT

i W−1
k

ε
;

else
Update the forward parameters of the first hidden layer;
W1 ←W1 −η1D−1

s1

(
h1 − ĥ1

)
hT

0 ;

Algorithm A.7: Error backpropagation with stochastic gradient descent.
Result: The network parameters Wi, i = 1, ...,L, are updated according to the error

backpropagation method in combination with the stochastic gradient descent method with
mini-batches of one randomly chosen layer are updated by the target propagation method;

Input: {h(b)
0 }B

b=1: a mini-batch of input samples;
for i in range(1,L) do

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 =
{
si(a(b)

i−1)}B
b=1 = {si(Wih(b)

i−1)
}B

b=1
;

Compute output error: {δ(b)
L }B

b=1 =
{
∂L
a(b)

L

}B

b=1
;

for i in range(L-1,1) do

Propagate error signal backwards: {δ(b)
i }B

b=1 =
{
Dsi W

T
i+1a(b)

i+1)
}B

b=1
;

Update parameters: ∆Wi =− 1
B

∑B
b=1ηiδ

(b)
i hT,(b)

i−1 ;
Wi ←Wi +∆Wi;
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Algorithm A.8: Update backward weights Q i

Result: The backward weights Q i, i = 1, ...,L−1, are updated by performing a gradient step on the
regularized inverse loss Linv,r

i , defined in equation (4.97)
Input: backward learning rates ηb

i and regularizing parameters λi ;
for i in range(1,L-1) do

Sample input mini-batch {h(b)
i }B

b=1 from a white Gaussian distribution ;
Propagate mini-batch forward: {h(b)

i+1}B
b=1 = { f i+1(h(b)

i )}B
b=1;

Propagate mini-batch backward: {h̃(b)
i }B

b=1{g i(h(b)
i+1)}B

b=1 ;

Update backward parameters: Q i ← (1−ηb
i λi)Q i −ηb

i
1
B

∑B
b=1

(
h̃(b)

i −h(b)
i

)
s−1

i+1(h(b)
i+1)T

Algorithm A.9: Update backward weights Q i in the original TP methods
Result: The backward weights Q i, i = 1, ...,L−1, are updated by performing a gradient step on the

inverse loss Linv
i , defined in equation (4.91)

Input: the layer activations {h(b)
i }B

b=1, i = 1, ...,L and the backward learning rates ηb
i ;

for i in range(1,L-1) do
Propagate upper layer mini-batch backward: {h̃(b)

i }B
b=1{g i(h(b)

i+1)}B
b=1 ;

Update backward parameters;

{D(b)
si }B

b=1 =
{
∂si(Q i h(b)

i+1

∂Q i h(b)
i+1

}B

b=1
Q i ← (1−ηb

i λi)Q i −ηb
i

1
B

∑B
b=1 D(b)

si

(
h̃(b)

i −h(b)
i

)
(h(b)

i+1)T

Algorithm A.10: Training iteration of the target propagation method with approximate inverses
Result: All forward weights Wi, i = 1, ...,L and all backward weights Q i, i = 1, ...,L−1 are updated

by the target propagation method with approximate inverses;
Input: {h(b)

0 }B
b=1: a mini-batch of input samples;

for i in range(1,L) do
Propagate mini-batch forward: {h(b)

i }B
b=1 = { f i(h(b)

i−1)}B
b=1 = {si(Wih(b)

i−1)}B
b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

for i in range(L-1,1) do
Propagate target backwards: {ĥ(b)

i }B
b=1 = {g i(ĥ

(b)
i+1)}B

b=1 = {Q is−1
i+1(ĥ(b)

i+1)}B
b=1 ;

Update forward parameters;

{D(b)
si }B

b=1 =
{
∂si(Wi h(b)

i−1)

∂Wi h(b)
i−1

}B

b=1
;

∆Wi =− 1
B

∑B
b=1ηiD(b)

si (h(b)
i − ĥ(b)

i )hT,(b)
i−1 ;

Wi ←Wi +∆Wi;

Update backward parameters conform with algorithm A.8;
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Algorithm A.11: Training iteration of the randomized target propagation method with approxi-
mate inverses

Result: The parameters Wk of one randomly chosen layer and all backward weights Q i,
i = 1, ...,L−1 are updated by the randomized target propagation method with approximate
inverses;

Input: {h(b)
0 }B

b=1: a mini-batch of input samples;
for i in range(1,L) do

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 = {si(Wih(b)
i−1)}B

b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

Chose one random layer k from {k}L
k=1 ;

for i in range(L-1,k) do
Propagate target backwards: {ĥ(b)

i }B
b=1 = {g i(ĥ

(b)
i+1)}B

b=1 = {Q is−1
i+1(ĥ(b)

i+1)}B
b=1 ;

Update forward parameters;

{D(b)
sk }B

b=1 =
{
∂sk(Wkh(b)

k−1)

∂Wkh(b)
k−1

}B

b=1
;

∆Wk =− 1
B

∑B
b=1ηkD(b)

sk (h(b)
k − ĥ(b)

k )hT,(b)
k−1 ;

Wk ←Wk +∆Wk;
Update backward parameters conform with algorithm A.8;

Algorithm A.12: Training iteration of the difference target propagation method with approxi-
mate inverses

Result: All forward weights Wi, i = 1, ...,L and all backward weights Q i, i = 1, ...,L−1 are updated
by the difference target propagation method with approximate inverses;

Input: {h(b)
0 }B

b=1: a mini-batch of input samples;
for i in range(1,L) do

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 = {si(Wih(b)
i−1)}B

b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

for i in range(L-1,1) do
Propagate target backwards;

{ĥ(b)
i }B

b=1 = {h(b)
i + g i(ĥ

(b)
i+1)− g i(h(b)

i+1)}B
b=1 = {h(b)

i +Q is−1
i+1(ĥ(b)

i+1)−Q is−1
i+1(h(b)

i+1)}B
b=1 ;

Update forward parameters;

{D(b)
si }B

b=1 =
{
∂si(Wi h(b)

i−1)

∂Wi h(b)
i−1

}B

b=1
;

∆Wi =− 1
B

∑B
b=1ηiD(b)

si (h(b)
i − ĥ(b)

i )hT,(b)
i−1 ;

Wi ←Wi +∆Wi;

Update backward parameters conform with algorithm A.8;
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Algorithm A.13: Training iteration of the randomized difference target propagation method with
approximate inverses

Result: The parameters Wk of one randomly chosen layer and all backward weights Q i,
i = 1, ...,L−1 are updated by the randomized difference target propagation method with
approximate inverses;

Input: {h(b)
0 }B

b=1: a mini-batch of input samples;
for i in range(1,L) do

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 = {si(Wih(b)
i−1)}B

b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

Chose one random layer k from {k}L
k=1 ;

for i in range(L-1,k) do
Propagate target backwards;

{ĥ(b)
i }B

b=1 = {h(b)
i + g i(ĥ

(b)
i+1)− g i(h(b)

i+1)}B
b=1 = {h(b)

i +Q is−1
i+1(ĥ(b)

i+1)−Q is−1
i+1(h(b)

i+1)}B
b=1 ;

Update forward parameters;

{D(b)
sk }B

b=1 =
{
∂sk(Wkh(b)

k−1)

∂Wkh(b)
k−1

}B

b=1
;

∆Wk =− 1
B

∑B
b=1ηkD(b)

sk (h(b)
k − ĥ(b)

k )hT,(b)
k−1 ;

Wk ←Wk +∆Wk;
Update backward parameters conform with algorithm A.8;

Algorithm A.14: Training iteration of the original target propagation method
Result: All forward weights Wi, i = 1, ...,L and all backward weights Q i, i = 1, ...,L−1 are updated

by the target propagation method with approximate inverses;
Input: {h(b)

0 }B
b=1: a mini-batch of input samples;

for i in range(1,L) do
Propagate mini-batch forward: {h(b)

i }B
b=1 = { f i(h(b)

i−1)}B
b=1 = {si(Wih(b)

i−1)}B
b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

for i in range(L-1,1) do
Propagate target backwards: {ĥ(b)

i }B
b=1 = {g i(ĥ

(b)
i+1)}B

b=1 = {Q is−1
i+1(ĥ(b)

i+1)}B
b=1 ;

Update forward parameters;

{D(b)
si }B

b=1 =
{
∂si(Wi h(b)

i−1)

∂Wi h(b)
i−1

}B

b=1
;

∆Wi =− 1
B

∑B
b=1ηiD(b)

si (h(b)
i − ĥ(b)

i )hT,(b)
i−1 ;

Wi ←Wi +∆Wi;

Update backward parameters conform with algorithm A.9;
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Algorithm A.15: Training iteration of the randomized original target propagation method
Result: The parameters Wk of one randomly chosen layer are updated by the randomized target

propagation method with approximate inverses and all backward weights Q i,
i = 1, ...,L−1 are updated;

Input: {h(b)
0 }B

b=1: a mini-batch of input samples;
for i in range(1,L) do

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 = {si(Wih(b)
i−1)}B

b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

Chose one random layer k from {k}L
k=1 ;

for i in range(L-1,k) do
Propagate target backwards: {ĥ(b)

i }B
b=1 = {g i(ĥ

(b)
i+1)}B

b=1 = {si(Q i ĥ
(b)
i+1)}B

b=1 ;

Update forward parameters;

{D(b)
sk }B

b=1 =
{
∂sk(Wkh(b)

k−1)

∂Wkh(b)
k−1

}B

b=1
;

∆Wk =− 1
B

∑B
b=1ηkD(b)

sk (h(b)
k − ĥ(b)

k )hT,(b)
k−1 ;

Wk ←Wk +∆Wk;
Update backward parameters conform with algorithm A.9;

Algorithm A.16: Training iteration of the original difference target propagation method
Result: All forward weights Wi, i = 1, ...,L and all backward weights Q i, i = 1, ...,L−1 are updated

by the original difference target propagation method;
Input: {h(b)

0 }B
b=1: a mini-batch of input samples;

for i in range(1,L) do
Propagate mini-batch forward: {h(b)

i }B
b=1 = { f i(h(b)

i−1)}B
b=1 = {si(Wih(b)

i−1)}B
b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

for i in range(L-1,1) do
Propagate target backwards;

{ĥ(b)
i }B

b=1 = {h(b)
i + g i(ĥ

(b)
i+1)− g i(h(b)

i+1)}B
b=1 = {h(b)

i + si(Q i ĥ
(b)
i+1)− si(Q ih(b)

i+1)}B
b=1 ;

Update forward parameters;

{D(b)
si }B

b=1 =
{
∂si(Wi h(b)

i−1)

∂Wi h(b)
i−1

}B

b=1
;

∆Wi =− 1
B

∑B
b=1ηiD(b)

si (h(b)
i − ĥ(b)

i )hT,(b)
i−1 ;

Wi ←Wi +∆Wi;

Update backward parameters conform with algorithm A.9;
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Algorithm A.17: Training iteration of randomized difference target propagation with approxi-
mate inverses

Result: The parameters Wk of one randomly chosen layer and all backward weights Q i,
i = 1, ...,L−1 are updated by the randomized original difference target propagation
method ;

Input: {h(b)
0 }B

b=1: a mini-batch of input samples;
for i in range(1,L) do

Propagate mini-batch forward: {h(b)
i }B

b=1 = { f i(h(b)
i−1)}B

b=1 = {si(Wih(b)
i−1)}B

b=1 ;

Compute output targets: {ĥ(b)
L }B

b=1 =
{

h(b)
L − η̂ ∂L

h(b)
L

}B

b=1
;

Chose one random layer k from {k}L
k=1 ;

for i in range(L-1,k) do
Propagate target backwards;

{ĥ(b)
i }B

b=1 = {h(b)
i + g i(ĥ

(b)
i+1)− g i(h(b)

i+1)}B
b=1 = {h(b)

i + si(Q i ĥ
(b)
i+1)− si(Q ih(b)

i+1)}B
b=1 ;

Update forward parameters;

{D(b)
sk }B

b=1 =
{
∂sk(Wkh(b)

k−1)

∂Wkh(b)
k−1

}B

b=1
;

∆Wk =− 1
B

∑B
b=1ηkD(b)

sk (h(b)
k − ĥ(b)

k )hT,(b)
k−1 ;

Wk ←Wk +∆Wk;
Update backward parameters conform with algorithm A.9;
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Appendix B

Proofs

B.1 Theorem 4.1
Theorem. Consider a feed-forward neural network with forward mapping function hi = f i(hi−1)= si(Wihi−1),
i = 1, ...,L where si can be any differentiable, monotonically increasing and invertible element-wise function.
Assume that the backward mapping functions g i, used for propagating the target activations, are the exact
inverses of f i+1. Let ∆W tp

i and ∆Wbp
i be the target propagation update and the back-propagation update in

the i-th layer, respectively. If η̂ in equation (4.4) is taken in limit to zero (η̂→ 0+), then the angle α between
∆W tp

i and ∆Wbp
i is bounded by

0< cos(α)≤ 1, (B.1)

indicating a descent direction of ∆W tp
i , as ∆Wbp

i points in the opposite direction of the gradient.

Proof. In order to prove that 0 < cos(α) ≤ 1, it is necessary and sufficient that the inner product between
the vectorized updates vec

(
∆W tp

i
)

and vec
(
∆Wbp

i
)

is strictly positive for sufficiently small η̂. Given a
training example (x, y), the back-propagation update is given by

∆Wbp
i =−ηiDsi

([L−1∏
k=i

JT
k+1

]
eL

)
hT

i−1, (B.2)

with Jk = ∂hk
∂hk−1

= DskWk, as defined in equation 4.14. By means of a first order Taylor expansion, the
target propagation update can be written as

∆W tp
i =−ηiDsi

(
η̂

[L−1∏
k=i

J−1
k+1

]
eL +O (η̂2)

)
hT

i−1, (B.3)

similar to equation (4.12). For ease of notation, let us define J =∏i
k=L−1 Jk+1 and h= hi−1. Now the inner

product of vec
(
∆W tp

i
)

and vec
(
∆Wbp

i
)

can be written as follows:

< vec
(
∆W tp

i
)
,vec

(
∆Wbp

i
)> = η2

i Tr
((

Dsi JT eLhT)T(
η̂Dsi J−1eLhT)+Dsi O (η̂2)hT

)
(B.4)

= η2
i

(
η̂Tr

(
heT

L JD2
si

J−1eLhT)+Tr
(
heT

L JD2
si

O (η̂2)hT))
. (B.5)

The first term of equation (B.5) is scaled by O (η̂), whereas the second term is scaled by O (η̂2). With η̂

taken in limit to zero, the first term will thus dominate the expression and determine the sign of the
inner product. For the proof, it is therefore sufficient to show that the first term is always strictly positive
for h 6= 0 and eL 6= 0. As si is an invertible element-wise function, D2

si
is a diagonal matrix with strictly

positive entries and thus with strictly positive eigenvalues. JD2
si

J−1 can be seen as a similarity transform
of D2

si
, which means that JD2

si
J−1 has the same eigenvalues as D2

si
and is positive definite. Hence, the

first term of (B.5) can be written as

η̂Tr
(
heT

L JD2
si

J−1eLhT)= η̂c‖h‖2
2, c > 0. (B.6)

This proves that the inner product is strictly positive for h 6= 0 and eL 6= 0 and η̂ taken in limit to zero.
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B.2 Lemma 4.4
Lemma. Consider a feed-forward neural network with forward mapping f i(hi−1) = si(Wihi−1) and back-
ward mapping g i(hi+1)=Q is−1

i+1(hi+1). In this network setting, the expected gradient E
[∇Q i L

inv
i

]
with Linv

i
as specified in equation (4.91) is equal to

E
[∇Q i L

inv
i

]= 2
(
Q iWi+1 − I

)
ΓiWT

i+1, (B.7)

with Γi the covariance matrix of hi.

Proof.

Linv
i

(
g i

(
f i+1(hi)

)
,hi

)
= ∥∥g i

(
f i+1(hi)

)−hi
∥∥2

2 (B.8)

= ‖Q i
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s−1
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(
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(
Wi+1hi

)))−hi‖2
2 (B.9)

= ‖Q iWi+1hi −hi‖2
2 (B.10)

=Tr
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Q iWi+1hi −hi
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=Tr
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hihT

i

)
+Tr
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Q iWi+1hihT

i WT
i+1QT

i

)
−2Tr

(
Q iWi+1hihT

i

)
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with Tr the matrix trace. Taking the gradient of the above equation with respect to Q i results in

∇Q i L
inv
i = 2

(
Q iWi+1 − I

)
hihT

i WT
i+1 (B.13)

Now taking the expected value of the above equation, we get our final result:

E
[
∇Q i L

inv
i

]
= 2

(
Q iWi+1 − I

)
E
[
hihT

i

]
WT

i+1 (B.14)

= 2
(
Q iWi+1 − I

)
ΓiWT

i+1 (B.15)

B.3 Lemma 4.5
Lemma. Consider a feed-forward neural network with forward mapping f i(hi−1) = si(Wihi−1) and back-
ward mapping g i(hi+1) =Q is−1

i+1(hi+1). If hi is uncorrelated and has equal variance σ2, the expectation of
the inverse loss function Linv

i , defined in equation (4.91) can be written as the following decoupled energy
function E(Q i) depending on w j and qk, the columns of Wi+1 and the rows of Q i respectively:

E(Q i)=σ2 ∑
j

[(
qT

j w j −1
)2 + ∑

k 6= j

(
qT

k w j
)2

]
. (B.16)

Proof. This proof follows a similar approach to the work of Saxe et al. [111], but tailored towards the
target propagation method. If hi is uncorrelated and has equal variance, its covariance matrix Γi can be
written as a multiple of the identity matrix:

Γi =σ2I. (B.17)

Following lemma 4.4, the expected gradient of Linv
i is now defined by:

E
[∇Q i L

inv
i

]= 2σ2(
Q iWi+1 − I

)
WT

i+1 (B.18)

The gradient with respect to a single row q j of Q i can be expressed as:

E
[∇q j L

inv
i

]= 2σ2(
(qT

j w j −1)w j +
∑
k 6= j

(qT
j wk)wk

)
(B.19)

This gradient can be seen as the gradient of the following decoupled energy function of Q i, thereby proving
the lemma:

E(Q i)=σ2 ∑
j

[(
qT

j w j −1
)2 + ∑

k 6= j

(
qT

k w j
)2

]
. (B.20)
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B.4 Theorem 4.6
Theorem. Consider a feed-forward neural network with forward mapping f i(hi−1)= si(Wihi−1) and back-
ward mapping g i(hi+1) = Q is−1

i+1(hi+1). If Wi+1 is square and of full rank, the minimization of the inverse
loss Linv

i , defined in equation (4.91) leads in expectation towards the unique solution

Q∗
i =W−1

i+1, (B.21)

if and only if Γi, the covariance matrix of hi, is of full rank.
If Wi+1 is not square, the minimization of the inverse loss Linv

i , defined in equation (4.91) leads in expecta-
tion towards the unique solution

Q∗
i =W†

i+1, (B.22)

with W†
i+1 the Moore-Penrose pseudo-inverse of Wi+1[82, 83], if and only if Wi+1 has linearly independent

rows and if hi is uncorrelated and has equal variances different from zero.

Proof. With the help of lemma 4.4, the optimality conditions for Q∗
i in order to find a minimum of Linv

i ,
can be written as:

0 := E
[∇Q∗

i
Linv

i
]= 2

(
Q iWi+1 − I

)
ΓiWT

i+1 (B.23)

⇔Q∗
i Wi+1ΓiWT

i+1 =ΓiWT
i+1, (B.24)

First the case of Wi+1 square and of full rank is considered. If Γi is of full rank, equation (B.24) has a
unique solution

Q∗
i =ΓiWT

i+1
(
Wi+1ΓiWT

i+1
)−1 =W−1

i+1 (B.25)

If Γi is not of full rank, Wi+1ΓiWT
i+1 is singular and consequently has a null space of dimension greater than

zero, indicating that there exist multiple solutions of Q∗
i (hence no unique solution exist). Hereby the suffi-

ciency and necessity of the condition on the rank of Γi is proven for the case of Wi+1 square and of full rank.

Now the second case of Wi+1 non-square is considered. If hi is uncorrelated and has equal variances
different from zero, its correlation matrix can be written as Γi = σ2I. Therefore, equation (B.24) can be
rewritten as:

Q∗
i Wi+1WT

i+1 =WT
i+1, (B.26)

If Wi+1 has linearly independent rows, Wi+1WT
i+1 is invertible and there thus exist one unique solution for

Q∗
i equal to:

Q∗
i =WT

i+1
(
Wi+1WT

i+1
)−1 =W†

i+1, (B.27)

with W†
i+1 the Moore-Penrose pseudo-inverse of Wi+1 [82, 83, 112]. This proves the sufficiency of the con-

ditions in the theorem. If Wi+1 has linearly dependent rows, Wi+1WT
i+1 is singular and there thus exist

multiple solutions for Q∗
i of equation B.26, proving the necessity of the condition regarding the linear in-

dependence of the rows of Wi+1. If hi is not uncorrelated and/or not of equal variance, Γi cannot be written
as the multiple of the identity matrix. If Γi or Wi+1ΓiWT

i+1 is singular, the solution for Q∗
i of equation (B.24)

is not unique and if Wi+1ΓiWT
i+1 is of full rank, the unique solution is Q∗

i = ΓiWT
i+1

(
Wi+1ΓiWT

i+1
)−1, which

is only equal to W†
i+1 if Γi can be written as a multiple of the identity matrix or if Wi+1 is of full rank. This

concludes the necessity of the condition regarding that hi is uncorrelated and has equal variance.

B.5 Theorem 4.7
Theorem. Consider a feed-forward neural network with forward mapping f i(hi−1)= si(Wihi−1) and back-
ward mapping g i(hi+1) = Q is−1

i+1(hi+1). If and only if hi is uncorrelated and has equal variances σ2, the
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minimization of the inverse loss Linv,r
i , defined in equation (4.97) leads in expectation towards the unique

solution

Q∗
i =WT

i+1
(
Wi+1WT

i+1 +
λ

σ2 I)−1. (B.28)

When the weight-decay parameter λ is driven in limit to zero, this results in the unique solution

lim
λ→0

Q∗
i =W†

i+1 (B.29)

with W†
i+1 the Moore-Penrose pseudo-inverse of Wi+1 [82, 83].

Proof. As the gradient operator is linear, the gradient of the extra regularizer term λ‖Q i‖2
F can be added

with the expected gradient of Linv
i . Together with lemma 4.4, this results in:

E
[∇Q i L

inv,r
i

]= 2
(
Q iWi+1 − I

)
ΓiWT

i+1 +2λQ i. (B.30)

Requiring that E
[∇Q i L

inv
i

]= 0 gives the following optimality condition for Q i:

Q∗
i
(
Wi+1ΓiWT

i+1 +λI
)=ΓiWT

i+1. (B.31)

As Γi is a covariance matrix, it is always positive semi-definite and symmetric. Wi+1ΓiWT
i+1 can thus be

written as W̃i+1W̃T
i+1 with W̃i+1 = Wi+1Γ

1
2
i , proving that it is also positive semi-definite. Adding a positive

multiple of the identity matrix to a positive semi-definite matrix makes it positive definite (trivial proof via
the spectral decomposition of the positive semi-definite matrix). Therefore,

(
Wi+1ΓiWT

i+1+λI
)

is invertible
and Q∗

i has a unique solution:

Q∗
i =ΓiWT

i+1
(
Wi+1ΓiWT

i+1 +λI
)−1. (B.32)

If and only if Γi can be written as a multiple of the identity matrix σ2I, this expression is equal to:

Q∗
i =WT

i+1
(
Wi+1WT

i+1 +
λ

σ2 I
)−1. (B.33)

The condition on Γi implies that hi needs to be uncorrelated and of equal variances, thereby proving
equation (B.33) and its necessary and sufficient condition. The last part of the theorem can be proven
via the singular value decomposition (SVD) of Wi+1 =UΣV T . Based on this SVD, equation (B.33) can be
rewritten as:

Q∗
i =VΣTUT(

UΣΣTUT + λ

σ2 UUT)−1 (B.34)

=VΣT(
ΣΣT + λ

σ2 I
)−1UT (B.35)

=V Σ̃TUT , (B.36)

with Σ̃ of the same rectangular diagonal structure as Σ and with diagonal elements σ̃k:

σ̃k = σk

σ2
k + λ

σ2

, (B.37)

with σk the singular values of Wi+1. For the limit of λ to zero, limλ→0 σ̃k =σ−1
k if σk 6= 0 and limλ→0 σ̃k = 0

if σk = 0. This implies that

lim
λ→0

Q∗
i =VΣ†UT (B.38)

=W†
i+1, (B.39)

thereby concluding the proof.
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B.6 Lemma 4.8
Lemma. Consider a feed-forward network with L layers and with as forward mapping function hi =
f i(hi−1)= si(Wihi−1), i = 1, ...,L where si can be any differentiable, monotonically increasing and invertible
element-wise function. The Moore-Penrose pseudo-inverse of all Jacobians Ji = ∂hL

∂hi
= ∏i+1

k=L DskWk, i =
1, ...,L−1, can be factorized as J†

i = ∏L
k=i+1 W†

k D†
sk if and only if nL = nL−1 = ... = n2 and n2 ≤ n1, with ni

the dimension of the i-th layer, Wi is of full rank for i = 3, ...,L−1 and W2 is of full row rank.

Proof. (AB)† = B† A† if one of the following conditions hold [112]:

• A has orthonormal columns

• B has orthonormal rows

• B = A∗ (B is the conjugate transpose of A)

• A has all columns linearly independent and B has all rows linearly independent

In general, the matrices in Ji do not have the first three properties, thus the fourth condition should hold
for every factorization made in Ji.
In order to prove this lemma, we will follow a recursive approach. The key condition is that the pseudo-
inverse of all Jacobians Ji, i = 1, ...,L− 1 need to be factorizable. The conditions imposed on the layer
dimensions by factorizing J†

i should thus also hold while factorizing all other J†
j 6=i. We start with JL−1:

J†
L−1 =

(
DsLWL

)† (B.40)

Dsi are always square, diagonal and of full rank, as si is a differentiable and invertible element-wise
function, hence the fourth condition automatically holds for it. Throughout the rest of this proof, we will
assume that every matrix with #rows ≥ #cols has full column rank and every matrix with #rows ≤ #cols
has full row rank. So for the fourth condition to hold for WL, it must be true that:

nL ≤ nL−1. (B.41)

Let’s now consider JL−2.

J†
L−2 =

(
DsLWLDsL−1WL−1

)† (B.42)

As we now have 4 matrices, we will have to make 3 successive splits of the matrix product in 2 parts, for
which condition four has to hold always for both parts of the split. Regardless of which split scheme is
used, eventually there has to be a split at the right side of WL and another one at the left side of WL−1,
leading to the conditions:

nL ≥ nL−1 (B.43)

nL−1 ≤ nL−2 (B.44)

From equation (B.41) and (B.43) it follows that nL = nL−1. Thus DsLWLDsL−1 can be written as a square
matrix D. Together with equation (B.44), the argument can now be repeated for J†

i , i = L−3, ...,1, leading
to the conditions that nL = nL−1 = ...= n2 and n2 ≤ n1.

B.7 Theorem 4.9
Theorem. Consider a feed-forward neural network with as forward mapping function hi = f i(hi−1) =
si(Wihi−1), i = 1, ...,L where si can be any differentiable, monotonically increasing and invertible element-
wise function. Take the backward mapping functions , used for propagating the target activations, equal
to g i(ĥi+1) = Q is−1

i+1(ĥi+1) and assume that after each forward weight update, they are trained until opti-
mality with white noise hi and loss function Linv,r

i as defined in equation (4.97) with λ→ 0 in the limit.
Furthermore assume a mini-batch size of 1, a sufficiently small output step size η̂ and an L2 output loss
function. Finally, assume that nL = nL−1 = ... = n2 and n2 ≤ n1, with ni the dimension of the i-th layer,
that Wi is of full rank for i = 3, ...,L−1 and W2 is of full row rank. Under these conditions, difference target
propagation approximately uses Gauss-Newton optimization with a block-diagonal approximation of the
Gauss-Newton Hessian to compute the local layer targets ĥi.
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Proof. Under the conditions assumed in this theorem, the Gauss-Newton optimization step for the layer
activations, with a block-diagonal approximation of the Gauss-Newton Hessian matrix with blocks equal
to the layer sizes, is given by (a result of lemma 4.2):

∆hi =−J†
i e, i = 1, ...,L−1, (B.45)

with Ji defined as:

Ji =
i+1∏
k=L

∂hk

∂ak

∂ak

∂hk−1
(B.46)

Ji =
i+1∏
k=L

DskWk, (B.47)

If the network has a structure as specified by lemma 4.8 (nL = nL−1 = ... = n2 and n2 ≤ n1, with ni the
dimension of the i-th layer, Wi is of full rank for i = 3, ...,L−1 and W2 is of full row rank), the pseudo-
inverse can be factorized over the decomposed Ji, leading to the following update for ∆hi:

∆hi =−
( L∏

k=i+1
W†

k D†
sk

)
e. (B.48)

Note that Dk are diagonal square matrices and that si are invertible non-linearities, thus D†
k = D−1

k . Now

lets define the layer target ĥGN
i as the updated layer activation:

ĥGN
i = hi +∆hi. (B.49)

Due to the block-diagonal approximation, it is common practice in the field to use an optimal step size η̂
for the parameter update, leading to:

ĥGN
i = hi + η̂∆hi. (B.50)

= hi − η̂
( L∏

k=i+1
W†

k D−1
sk

)
e (B.51)

As shown in equation (4.102), the propagated targets ĥi by difference target propagation can be approxi-
mated with a first order Taylor expansion around hi as follows:

ĥDTP
i = hi − η̂

[L−1∏
k=i

Jgk

]
eL +O (η̂2), (B.52)

with Jgk = ∂gk(hk+1)
∂hk+1

= Q iD−1
sk+1

. As shown by theorem 4.7, Q i = W†
i+1 if Q i is trained with white noise

until optimality with loss function Linv,r
i and λ→ 0 in the limit. Therefore, under the assumptions of this

theorem, the propagated targets ĥi by difference target propagation can be expressed as:

ĥDTP
i = hi − η̂

[ L∏
k=i+1

W†
i D−1

sk

]
eL +O (η̂2), (B.53)

We see that ĥGN
i and ĥDTP

i are approximately equal with an error of O (η̂2) in equations (B.51) and (B.53)
respectively, thereby proving the theorem.
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Appendix C

PyProp: a neural network toolbox for
alternatives to backpropagation

C.1 Introduction
PyProp is a Python based toolbox for creating and training multilayer perceptron models with alternatives
to backpropagation. It is based on the PyTorch framework and defines its own types of layers and networks
(so it does not use the layers and networks of torch.nn) that are easily customizable to training methods
other than backpropagation. Currently, backpropagation and target propagation with both exact inverses
as approximate inverses are implemented, but it can easily be extended to other methods, as long as there
is a forward propagation and a backward propagation of training signals. This document serves as a
brief introduction to PyProp, a more detailed documentation is still needed. It starts with explaining the
structure of the PyProp package and ends with describing the typical training flow of models defined in
PyProp. The toolbox can be found at https://github.com/AlexanderMeulemans/PyProp.

C.2 Structure of the toolbox
The toolbox can be structured in three main parts:

1. layers

2. networks

3. optimizers

A layer defines a single layer of a multi-layer perceptron model, a network consists out of multiple layer
objects and defines a multi-layer perceptron model and an optimizer performs a training procedure on a
network with a specified dataset.

UML diagrams. In the Github repository of PyProp, you can find a folder containing UML-diagrams of
the different layers, networks and optimizers. network_models.png gives an overview of the inheritance
of all the layers and networks. The other diagrams give a more detailed view of each module.

C.3 PyProp in action
In this section, the practical aspects of how to use PyProp for your own research are discussed.

C.3.1 Training a network in PyProp
Creating the network The first step is of course creating your network that you want to train. For this,
you need first to create the layers of your network.

• If you want to train your network with backpropagation, you should use the child objects of the class
Layer. The first layer of your network should be of the type InputLayer and the last layer should
be a child of the class OutputLayer. The hidden layers can be all other children of Layer.
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• If you want to create an invertible network and train it with target propagation with exact inverses,
you should use the children of the class InvertibleLayer to create layers. Similarly, the input and
output layer must be of types InvertibleInputLayer and InvertibleOutputLayer respectively.

• You can also create new types of layers to train with other methods such as difference target prop-
agation. These can be created from other layer types with a limited amount of adjustments, see at
the end of section C.3 for more information.

After all the needed layers are created, you can put them in a list in the right order and create a network
with it. Use the Network class for this if your layers are children of Layer and use the InvertibleNetwork
class for this if you have invertible layers.

Optimizer After you have created the network, you can train it by using an optimizer. Currently,
stochastic gradient descent (SGD) and SGD with momentum are both implemented, however, the SGD
with momentum currently only works with backpropagation layers. The optimizers also have methods to
automatically train it on MNIST or a toy example dataset (see in the experiment folder for some examples
on how to use it). Under the hood of the optimizer, the following actions are taken during each training
step.

1. Forward propagation: The input mini-batch is propagated forward through all the layers. This is
done by the method propagateForward().

2. Backward propagation: At the output layer, the loss of the model output relative to the target
values is computed, and teaching signals are propagated backwards through the network. With
backpropagation, these teaching signals are the error signals, with target propagation variants, the
teaching signals are the local layer targets. The backwards propagation of teaching signals is done
by the method propagateBackward()

3. Compute the gradients: After the teaching signals are propagated, the weight gradients can be
computed. Note that the term gradient refers to the gradient of the output loss with respect to
the weights for backpropagation, and to the gradient of the local loss functions with respect to
the local weights for the target propagation variants. The gradients are computed by the method
computeGradients. For both the backpropagation layers and the invertible target propagation lay-
ers, there are only forward parameters that need to be updated, thus only gradients of the forward
parameters are computed. In the future, also the backward parameters need to be trained for pure
target propagation and difference target propagation.

4. Update the parameters: Now that the parameter gradients are computed, the parameters can be
updated according to the specified learning rate. This is done by the method updateForwardParameters
and the coordinating method updateParameters.

Visualize results The PyProp package uses TensorboardX to automatically visualize the training of the
multilayer networks. At the beginning of the experiment, you should make a SummaryWriter object and
specify the log directory to save the results to. This writer should be passed to all layers as an argument.
Currently, the following results are visualized:

• After each mini-batch:

– norm of the weights and biases of each layer
– norm of the activations of each layer
– norm of the gradients of the wieghts and biases of each layer
– mini-batch training loss
– the error of the inverse computation of the forward weights with the Sherman-Morrison trick
– the norm of the reconstruction errors

• After each epoch:

– the epoch test loss
– the epoch training loss
– histogram of the current weights and biases
– histogram of the layer activations for the last mini-batch
– histogram of the gradients for the last mini-batch
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C.3.2 Create new layer types
If you want to investigate a new training method for neural networks, you should create a new layer type
and a new corresponding network type (if needed).

New layer. For target propagation variants, you should make a new type of layer that inherits from
BidirectionalLayer and that overwrites the following methods:

• propagateBackward()

• computeForwardGradients()

• updateBackwardParameters()

• computeBacwardOutput()

If the backward weights need to be trained, the method updateBackwardParameters() should use a new
method computeBackwardGradients() to compute the direction in which the weights need to be changed
(in order to be in line with the forward weights update scheme). Besides creating the new coordinating
layer, you should also create children of it with specific nonlinearities and an input and output layer type.

New network. Normally, you can just use the BidirectionalNetwork with your new layer types. Only
if you want your network to have extra functionalities, you should create a network type that inherits from
BidirectionalNetwork.
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Figure 1: Schematic network representation of the target
propagation learning scheme. The input is propagated
forward through the successive network layer mappings
a . Afterwards, an output target is propagated
backwards through the inverse network layer mappings
a to provide local layer targets.

Figure 2: Schematic network representation of the error
backpropagation learning scheme. After the forward
propagation, an error term is propagated backwards
through the network layer mappings to provide
local error signals. Note that the feedback weights need to
be identical to the feedforward weights.
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TP as an approximation of Gauss-Newton optimization

Robust and efficient implementation of TP with exact inverses
• For rank 1 updates of , its (pseudo-)inverse can be computed in

a with the Sherman-Morrison formula [4]

• By thresholding the denominator in the above update and
correspondingly adjusting the stepsize of when needed,

a a can be prevented from becoming close to singular

Biological implementation of TP with segregated dendrites
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optimizing step

Take     small 
to compute a

Take  1st order Taylor 
expansion. around a

Take aaaaaaa
aaaaa

Apical dendrite 

compartment:

basal dendrite 

compartment:

Soma 

compartment:

Figure 3: Segregated dendrite model of a
pyramidal neuron. The pyramidal neuron can
be structured in three electrically distant
compartments (figure adapted from [5]).

Target propagation can be approximated by a set 
of biologically plausible differential equations :

1st order Taylor expansion around the fixed 
points reveals TP dynamics:

Machine learning Neuroscience

• Approximate second order 
optimization for deep learning 
with aaa computational cost

• Theoretical framework 
to analyse occurring 
phenomena in TP

• TP approach opens possibility 
for layer-specific loss functions

• Theoretical hypothesis on 
how deep learning 
mechanisms can be 
implemented in our brain

• Testable hypothesis of 
how synaptic plasticity 
depends on the voltage 
levels in the neuron 
compartments

In recent years, deep learning has reached incredible performance on many
real-world tasks such as image and speech recognition. However, ANN’s are
still lacking behind in fields such as continuous learning, one-shot learning
and general intelligence, which the human brain seems to achieve effortlessly.
Therefore, it is useful to draw inspiration from biological networks, as has
been done multiple times in the history of deep learning (e.g. convolutional
networks). On the other hand, biologically plausible deep learning can give
neuroscience testable hypotheses for synaptic plasticity mechanisms.

Goals of the thesis
1. Develop a deep learning training method that does not cope with the

three main biological implausibilities of backpropagation:
1. Weight transport
2. Coupled plasticity of feedback weights
3. Distinct clocked phases

2. Create testable hypothesis for the dependence of biological synaptic
plasticity on the inner states of neurons in the human brain

Approach used in the thesis
1. Create a mathematical framework around the biologically inspired

‘Target Propagation’ (TP) method [1, 2]
2. Adjust the TP framework where needed to increase performance
3. Make a biologically realistic implementation of TP

Gauss-Newton Target propagation

Student-teacher network: nonlinear regression toy example

TP has comparable performance to BP on nonlinear regression toy example 

Figure 4: Test loss of nonlinear regression toy example. A student network
was trained to approximate a teacher network of the same layer
dimensions (one hidden layer of 3 neurons and one output layer of 3
neurons). Blue: student network is trained with the error backpropagation
method. Orange: student network is trained with the target propagation
method with exact layer inverses ( ). Green:
student network with a fixed hidden layer, the output layer is trained with
the error backpropagation method.

https://www.pinterest.com/pin/495818240205349516/
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