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Abstract

Unmanned aerial vehicles (UAV's) are a subject of great interest in the world of
research, industry and commerce. This thesis contributes to the practical aspects of
automating drone ight and through the development of a live demo setup o ers an
interactive view on both recent developments in mechatronics such as Model Predic-
tive Control (MPC) for motion planning purposes and more established basic control
principles. As such it aims for a broad range of audiences, addressing uninformed
enthusiasts up to experienced researchers.

The study goes into the domains of modeling, localization, control and navigation,
and develops a structure to combine all aspects in a framework that is both robust
and exible regarding demo execution. It makes four contributions to these domains.
Firstly an asynchronous Kalman Iter (AKF) is developed and implemented for
position and velocity state estimation with accurate timing handling. Secondly the
design and implementation of an inversion-based feedforward controller with zero
phase ltering for trajectory tracking is established. Thirdly it integrates the OMG-
tools motion planning software and provides an experimental validation. Finally a
Finite State Machine (FSM) is developed to yield situation speci ¢ behavior with
integrated monitoring for detection and safe handling of non-nominal events.

The result of the study is an operational demo setup with a set of visually
impressive and interactive tasks, that provides the freedom to execute tasks in any
arbitrary order. It is available as an open-source software package, which together
with a modular design encourages further contributions to the current setup.



Samenvatting

Onbemande luchtvaartuigen (UAV's) of drones genieten een grote interesse in zowel
de onderzoekswereld, de industrie als de commerciéle wereld. Deze thesis draagt
bij aan de praktische aspecten van automatisatie van drones. De ontwikkelde live
demo biedt een interactieve blik op zowel recente ontwikkelingen in de mechatronica
zoals Model Predictive Control (MPC) voor motion planning als meer ingeburgerde
principes uit de regeltechniek. Hierbij wordt gemikt op een breed publiek, gaande
van geinteresseerde leken tot gespecialiseerde onderzoekers.

De studie beschouwt de modellering, lokalisatie, controle en navigatie van drones,
en ontwikkelt een structuur om deze aspecten te combineren in een robuust kader
dat exibiliteit toestaat bij de uitvoering van de demo. Ze stelt vier bijdragen in
deze domeinen voor. Een asynchroon Kalman Iter (AKF) voor de schatting van
positie en snelheid met nauwkeurige tijdsregistratie, het ontwerp en de implementatie
van een feedforward controller gebaseerd op modelinversie met zero phase Iter voor
trajectory tracking, de integratie van de motion planning software OMG-tools en de
ontwikkeling van een Finite State Machine (FSM) voor situatiespeci ek gedrag met
geintegreerde monitoring voor het detecteren van en veilig omgaan met niet-nominale
situaties.

Het resultaat van de studie is een operationele demo met een reeks visueel
indrukwekkende en interactieve taken, waarbij de taken in willekeurige volgorde
uitgevoerd kunnen worden. De ontwikkelde software is open-source beschikbaar wat
samen met het modulaire design uitnodigt tot verdere uitbreiding van de huidige
opstelling.
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Chapter 1

Introduction

In recent years unmanned aerial vehicles (UAV's) have gained great interest. Their
use in both industrial and commercial applications is the subject of many ongoing
research studies. They can be deployed in locations inaccessible to humans, in situa-
tions where human intervention is either di cult or impossible and even when the
environment is harmful to humans. A rst example of their use is in the inspection

of industrial plants, where the bird view of a UAV o ers possibilities beyond what
human inspection can o er. The Smart Tooling project is one of the initiatives
directed towards the development of such applications 1, 2]. Another application
which has become increasingly important in research is the autonomous delivery of
packages. Nowadays more and more clients place online orders leading to a large
increase in package deliveries. A possible solution to facilitate this delivery scheme
is to replace traditional delivery vans by UAV's. A third possible use of UAV's is

to aid in search and rescue patrties, in situations where the terrain is inaccessible
or for example to scout a burning building. A common denominator in all of these
applications is the need for both localization of the vehicle, as well as the navigation
through its surrounding environment.

This thesis is commissioned by and made in collaboration with the MECO
research team at KU Leuven (Faculty of Engineering Science, Department of Me-
chanical Engineering). One of MECOQO's research domains is the optimal control
and autonomous navigation of mechatronic systems. To this end they develop the
underlying algorithms as well as the higher level software required to steer UAV's
autonomously from point A to point B. An important part of applied research is
the ability to showcase the practical relevance and potential in real-life situations.
Therefore they wish to develop an indoor drone demo setup, to interactively show
the current possibilities in localization, control and navigation.

In order to address that desire, this thesis proposes to let the demo illustrate three
di erent levels of autonomous ight. The rst one, called setpoint tracking, amounts
to either the drone staying in one particular position as accurately as possible, or
tracking a variable setpoint. The second level is the tracking of a trajectory that is
given in advance. The third and last level is the most advanced one: it requires the

1



1. Introduction

drone to y autonomously through the room, by tracking an automatically generated
trajectory. The demo is available as an open-source software package on GitHub and
a video is available on YouTube [3, 4].

This introduction rst considers the state of the art in drone localization, control
and navigation. Next it presents in detail the design problems to which this thesis
proposes solutions and the challenges that are faced when constructing a demo on
autonomously ying drones. It concludes with the outline of the text.

1.1 State of the art

1.1.1 Localization

Indoor localization of drones relies on at least one of three following principles: on-
board camera vision based, external camera vision based or beacon based, possibly
combined with inertial measurement unit (IMU) data. This section introduces
existing systems in all three categories from which the applied system in this thesis
is selected. The selection itself is elaborated in Chapter 2. Also a hybrid solution
can be implemented, which combines measurements of multiple systems. In order to
improve the state estimate obtained through the measurements, a state estimator
can be used to combine the information in the measurements with a model of the
drone.

Measurement systems

On-board camera position tracking of the drone by using computer vision algorithms
is a rst option to solve the localization problem. Either the images are processed
on-board as in p] or the drone sends out a video feed to process the images o -
board as done by §]. It is di cult to recognize and track arbitrary objects based

on camera images. A smart solution to make visual recognition easier is by using
simple tags, such as Apriltags []. These tags, resembling QR-codes, are rapidly
recognized in an image, and based on the projection of the tag on the image plane,
the pose of the camera with respect to the tag can be estimated. The APRIL
Robotics Laboratory at the University of Michigan developed a nice application using
these Apriltags to track the pose of a box at runtime [3, 9], as illustrated in Figure 1.1.

In the category of external camera setups, a similar technique as just described
is applicable: tracking Apriltags or other types of tags attached to the drone using
external camera's attached to the ceiling. The number of cameras, the spacing
between them and the angular coverage of the lens determine the height up to
which this system can operate successfullyl[]]. The detection of tags with external
camera's falls under the denominator of passive camera systems.
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