
faculteit wetenschappen

en bio-ingenieurswetenschappen

Vakgroep Wiskunde

Expander Graphs and Key

Predistribution Schemes

JEROEN OOGE

2de Master wiskunde

Promotor: Prof. Dr. Philippe Cara

Eindwerk ingediend voor het behalen van de graad van Master in de

wiskunde met afstudeerrichting ‘Fundamentele wiskunde’.

ACADEMIEJAAR 2016-2017

Contents

Abstract and contributions iii

Samenvatting en bijdragen iv

1 Introduction 1

2 Basic concepts 3

2.1 Wireless sensor networks . 3

2.2 Key predistribution schemes . 4

2.3 Graphs . 6

2.4 Multigraphs and hypergraphs . 7

2.5 Cayley graphs . 8

2.6 Combinatorial designs . 9

3 Expander graphs 11

3.1 The expansion coefficient . 11

3.2 The adjacency operator . 13

3.3 The Laplacian operator . 17

3.4 The Rayleigh–Ritz theorem . 19

3.5 The Alon–Boppana theorem . 23

4 Zig-zag products 28

4.1 Definition of the zig-zag product . 28

4.2 Eigenvalues of zig-zag products . 32

4.3 An explicit expander family . 36

5 Key predistribution schemes 40

5.1 Blom key predistribution scheme . 40

5.2 Key distribution patterns . 46

5.3 Random key predistribution schemes 50

5.4 Combinatorial designs . 54

i

CONTENTS ii

6 Conclusions 60

A Implementations in Matlab 62

A.1 Zig-zag products . 63

A.2 Blom key predistribution scheme . 67

A.3 Eschenauer–Gligor key predistribution scheme 70

Bibliography 73

Index 76

Abstract and contributions

A key predistribution scheme is a method for allocating symmetric cryptographic

keys to devices in a network. These devices are often part of a wireless sensor network:

they are scattered over a large area to perform basic tasks such as monitoring and

data gathering. Since the devices’ battery power and computational capacities are

limited, schemes should be carefully designed to make a trade-off between key storage,

connectivity and the network’s resilience.

We discuss several influential key predistribution schemes, shed light on their strengths

and weaknesses, and implement them in Matlab. Before we do so, however, a deeper

mathematical understanding is required of what characteristics ‘good’ networks have.

The introduction of the expansion coefficient as a graph invariant leads to surprisingly

deep connections with lots of different branches in mathematics.

Due to the relative newness of the mathematical research into expander graphs and

key predistribution, much of the literature is rather incoherent and few standard

references are available. The main challenge was therefore to unite the many existing

books and papers on these topics; to adopt a suitable notation and nomenclature for

the whole document; to find a seemingly optimal order for presenting all different

concepts; and to improve certain proofs.

Chapters 3 and 4 are basically an improvement and elaboration of [22], which is very

good concerning content, but which tends to confuse the reader with many lemmas and

sometimes unnecessarily complicated notation. Especially the introduction of zig-zag

products required quite some work: it took effort to clarify the product’s definition,

to overcome the horrible notation in [35] and to find illuminating examples. By the

way, all examples in this document are own work or adaptations of the literature.

Also, the proof of Lemma 4.2.6 was rewritten in terms of adjacency operators, instead

of vector decomposition, which dates from the original construction with tensor

products. Chapter 5 is a melting pot of many references, attempting to briefly

discuss the historically most significant key predistribution schemes. In Appendix A,

the zig-zag product and several key predistribution schemes are implemented in

Matlab, which demanded some non-trivial tricks.

iii

Samenvatting en bijdragen

Een sleutel-predistributieschema (vrije vertaling) is een methode om symmetrische

cryptografische sleutels toe te wijzen aan toestellen in een netwerk. Die toestellen

maken vaak deel uit van een draadloos sensorennetwerk (vrije vertaling): ze worden

verspreid over een groot gebied om basistaken uit te voeren zoals het controleren

van de omgeving en het verzamelen van gegevens. Aangezien de batterijduur en

de computationele capaciteiten van de toestellen beperkt zijn, moeten schema’s

nauwkeurig ontworpen worden om een compromis te vinden tussen de opslag van

sleutels, connectiviteit en de veiligheid van het netwerk.

We bespreken verscheidene invloedrijke sleutel-predistributieschema’s, belichten hun

sterktes en zwaktes, en implementeren ze in Matlab. Daarvoor hebben we echter

eerst een beter wiskundig begrip nodig van wat ‘goede’ netwerken karakteriseert.

De introductie van de expansiecoëfficiënt als grafinvariant leidt tot verrassend diepe

verbanden met veel verschillende takken van de wiskunde.

Vanwege de relatieve nieuwheid van het wiskundige onderzoek naar expansiegraffen

(vrije vertaling) en sleutelpredistributie is de literatuur redelijk onsamenhangend en

zijn er weinig standaardreferenties beschikbaar. De grootste uitdaging was daarom

de vele boeken en papers over die onderwerpen tot een geheel te maken; een gepaste

notatie en een gepast jargon te gebruiken in het hele document; een schijnbaar

optimale volgorde te vinden om alle verschillende concepten te presenteren; en

bepaalde bewijzen te verbeteren.

Hoofdstukken 3 en 4 zijn in se een verbetering en uitbreiding van [22], dat inhoudelijk

prima is, maar dat geneigd is de lezer te verwarren met veel lemma’s en soms onnodig

ingewikkelde notatie. Voornamelijk voor de invoering van zig-zagproducten was

redelijk wat werk nodig: het vergde inspanning om de definitie van het product te

verduidelijken, de vreselijke notatie in [35] te verteren en verhelderende voorbeelden

te vinden. Alle voorbeelden in dit document zijn trouwens eigen werk of adapta-

ties van de literatuur. Ook het bewijs van Lemma 4.2.6 werd zelf herschreven in

termen van adjacentie-operatoren, in plaats van vectordecompositie, die stamt van

de oorspronkelijke constructie aan de hand van tensorproducten. Hoofdstuk 5 is

iv

CONTENTS v

een smeltkroes van vele referenties, als poging om kort de historisch meest signi-

ficante sleutel-predistributieschema’s te behandelen. In Appendix A worden het

zig-zagproduct en enkele sleutel-predistributieschema’s gëımplementeerd in Matlab,

wat een aantal niet-triviale truucjes vergde.

Chapter 1

Introduction

A vital component of any cryptosystem is key establishment, which governs the

distribution of cryptographic keys in a network. This can be particularly challenging

in symmetric cryptosystems, where all parties — called nodes — should establish

appropriate keys to securely communicate with one another. For symmetric key

establishment, a trusted authority generates these keys and then assigns them to the

nodes. We call this process key distribution.

In some applications, the trusted authority is online and available all the time to

provide keys ‘on the fly’, that is, when required. However, this is often not the case:

it is no longer possible to interact with nodes after they have been deployed in the

environment. The only realistic alternative in those situations is for the trusted

authority to distribute keys before deployment during a secure initialisation process,

the so-called key predistribution. Afterwards, the trusted authority plays no

further role in key establishment, so two nodes who require a common key must

derive one from their predistributed keys. A well thought-out scheme to allocate

keys is thus crucial; we call such a strategy a key predistribution scheme (KPS).

Over the past few decades, dozens of KPSs have been suggested in the literature and

all of them are forced to make trade-offs between key storage, connectivity and the

network’s resilience to attacks from adversaries.

The design of KPSs of course relies on our understanding of what features a ‘good’

network must have. Lots of connections certainly speed up communication, but

they also imply higher storage and computational costs, which is disadvantageous

in practice. In order to find sparse yet reliable networks, the expansion coefficient

was introduced. Roughly speaking, this invariant measures how well parts of a

network are connected to the rest of the network. Surprisingly, the concept of

expansion leads to rich mathematical theories and connects many different branches

of mathematics.

1

CHAPTER 1. INTRODUCTION 2

In Chapter 2, we frame our discussion around wireless sensor networks, which

is nowadays the context for almost all of the related research. We discuss the

three aforementioned parameters of KPSs in more detail and recall some basic

mathematical concepts. In Chapter 3, we elaborately investigate the relationship

between the expansion coefficient and the second-largest eigenvalue, and prove

some deep mathematical results. Chapter 4 contains the construction of an explicit

expander graph, based on the nicely named zig-zag product. Next, we present

in Chapter 5 several historical KPS milestones, which form the baseline for many

other KPSs, and find lower bounds for the expansion coefficient in the resulting

networks. To conclude, we implement the zig-zag product and some KPSs in Matlab

in Appendix A.

Chapter 2

Basic concepts

For a better understanding of key predistribution schemes, we frame our discussion

around wireless sensor networks and then discuss the three conflicting parameters

in the design of schemes. Next, we briefly recall some mathematical concepts that

will play an important role throughout the rest of this document. We mainly

used [7, 19,20,22] as references.

2.1 Wireless sensor networks

Due to the development of small wireless technologies, some communication networks

are currently undergoing a major architectural shift: instead of centralised, wired

networks that consist of a few powerful devices, networks nowadays tend to consist

of many resource-constrained devices, which can be distributed over large areas and

communicate wirelessly. Wireless sensor networks are a very good example of this

change, and are just one class of emerging technologies for which a combination of key

predistribution and symmetric cryptography is well-suited for communication.

A wireless sensor network (WSN) is a collection of small, battery powered sensor

nodes, which collectively monitor and gather data about phenomena of interest.

There are plenty of application examples: health monitoring, seismic data gathering,

forest fire detection, gathering of ecological data, military intelligence gathering, etc.

The number of nodes may vary from dozens to several thousands, depending on the

application. WSNs are discussed in detail in [10,29,31,33,36,37,41]; the following

paragraphs summarize the aspects that are relevant for our purposes.

WSNs are especially useful in hostile environments that are not accessible to humans,

such as volcanic craters, disaster areas, enemy soil during wartime, etc. Indeed, it is

for example possible to release the nodes from the air. In this scenario, the nodes’

3

CHAPTER 2. BASIC CONCEPTS 4

location cannot be predicted before deployment. Other situations allow partial or

even full control over the network’s topology, which leads to specialized efficient KPSs,

such as KPSs for grid-based WSNs in [3]. We will always assume an uncontrolled

network topology and static nodes for the design of KPSs.

After deployment, nodes use a shared key discovery protocol to identify the nodes

with which they share a key and can thus establish a secure communication link.

There are many known such protocols; the simplest way is for nodes to broadcast

in plain text a list of identifiers of the keys they store. Our previous supposition

immediately motivates the study of KPSs for incomplete network topologies, that

is, networks wherein at least one node does not share keys with all other nodes.

It is namely possible that two nodes are located too far apart and can thus not

communicate directly, in spite of sharing a key. For non-direct communication

between a pair of nodes, WSNs rely on hopping: nodes may successively pass data

from the sender to nodes within range, until the receiver has been reached.

Because of their compact nature, nodes have limited memory, which constrains the

number of storable keys; nodes have batteries that may quickly be drained by many

computations and communications; and nodes may easily be compromised. The

second complication explains why we restrict ourselves to the study of symmetric

cryptography: public key cryptography typically requires more computational power.

This approach seems future-proof, because it is plausible that more constrained

sensor technology will be developed as soon as public key cryptography becomes

practical for WSNs. Battery saving is also desired for the sake of a long-lasting

network. Indeed, in many applications nodes cannot be recharged and simply expire

when they are out of power. To conclude, we assume homogeneous nodes, i.e. all

nodes have the same capabilities and restrictions.

2.2 Key predistribution schemes

The design of KPSs typically takes into account three conflicting parameters: the key

storage for each node, which should be minimised; the connectivity between different

nodes, which should be maximised; and the resilience of the network, which should

be maximised as well. Since these parameters play a crucial role throughout the rest

of our discussion, we will immediately explain them in more detail.

Key storage. This is the number of keys that each node is required to store, usually

denoted by the constant k. Due to their limited storage and computational capacities,

nodes are often unable to support public key cryptography. Therefore, any security

must be provided by symmetric key cryptography, which requires less memory and

is less expensive computationally.

CHAPTER 2. BASIC CONCEPTS 5

Connectivity. This is the sharing of keys between nodes in the network: in order

to establish a secure connection, nodes are required to have at least q ≥ 1 keys in

common. In some schemes, nodes must share multiple keys before they are allowed

to communicate, i.e. q > 1. We will present such a KPS in Section 5.3. However,

most KPSs allow communication between nodes when q = 1. We denote Pr1 for the

probability that a pair of randomly selected nodes is connected. Obviously, we want

Pr1 to be as close to 1 as possible.

Resilience. This is a measure of how often keys are re-used throughout the network,

or equivalently, the network’s ability to withstand attacks from an adversary. We

assume a continuously listening adversary, who can intercept any communication

across the network and who can thus compromise nodes, that is, learning the keys

they store. The resilience is measured with the parameter fails where 1 ≤ s ≤ n− 2

and n is the number of nodes in the network: if an adversary has compromised s nodes,

then fails is equal to the probability that the link between a pair of uncompromised

nodes is compromised. Of course, high resilience corresponds to a low value of fails.

If fails = 0 for all 1 ≤ s ≤ n− 2, then the network has perfect resilience.

In order to illustrate the trade-offs between key storage, connectivity and resilience,

we give some trivial examples of KPSs.

Example 1. Assigning the same key K to every node results in minimal key storage

and ensures a secure connection between any pair of nodes, i.e. Pr1 = 1 for all pairs

of nodes. However, there is also minimal resilience against an adversary, since the

compromise of a single node would reveal the key K, rendering all links insecure.

Formally, fails = 1 for all 1 ≤ s ≤ n− 2.

Example 2. Predistributing a unique key Kij to each pair of nodes {Ni, Nj}, that

is Kij 6= Klm if {i, j} 6= {l,m} for 1 ≤ i, j, l,m ≤ n, results in perfect resilience

and maximal connectivity. This scheme is known as the complete pairwise KPS.

Unfortunately, such a KPS requires all nodes to store n−1 keys and needs n(n−1)/2

different keys in total, which is infeasible for large n.

Example 3. If we assign to each node its own unique key, then we obtain an absurd

network with minimal key storage and maximal resilience, but no connectivity at all,

i.e. Pr1 = 0 for all pairs of nodes.

The above examples show that it is trivial to optimise any two of the three parameters.

However, these schemes are inappropriate for almost all real-life applications, so we

are interesed in KPSs that find a trade-off between the three metrics. Many proposals

for such KPSs can be found in the literature and we will present in Chapter 5 four

of them, which greatly impacted the research field.

CHAPTER 2. BASIC CONCEPTS 6

2.3 Graphs

Intuitively speaking, a graph consists of points, and lines that join one point to

another. For example, the points can represent devices in a network and the lines

can correspond to physical links between pairs of these devices. When drawing a

graph, the relative positions of points and the shapes of lines does not matter; the

only important information is whether or not two points are connected by a line.

Therefore, the same graph can give rise to many dissimilar drawings.

Most of the time, we will only consider graphs that are unweighted, undirected and

do not contain loops or multiple edges. These terms respectively indicate that the

points and lines are not assigned any weights, the lines are not directed from one

point to another, there are no lines from a point to itself, and there is at most one

line between two points. In the literature, this type of graph is sometimes referred to

as a ‘simple graph’, because there are some useful generalizations (see Section 2.4).

The formal definition is given as follows:

Definition 2.3.1. A graph is a pair (V,E), where V is a finite non-empty set

and E ⊆
{
{v, w}

∣∣ v, w ∈ V and v 6= w
}

is a set of unordered pairs.

The elements of V and E are respectively called vertices (the ‘points’) and edges

(the ‘lines’). For a graph G, we write V (G) and E(G) to respectively refer to the vertex

set and the edge set of G. If there exists an edge between two vertices v and w, i.e.

{v, w} ∈ E, then we say that these vertices are adjacent and that the edge {v, w} is

incident with its endpoints v and w. Formalising the aforementioned remark about

the graphical representation of graphs leads to the concept of an isomorphism. We say

that two graphs G and H are isomorphic if there exists a bijection ϕ : V (G)→ V (H)

such that {v, w} ∈ E(G) if and only if
{
ϕ(v), ϕ(w)

}
∈ E(H). An isomorphism can

also be interpreted as a relabeling of the vertices in V (G) and it is common practice

to treat isomorphic graphs as if they were equal.

We will now introduce some more general terminology and notation for graphs. Given

subsets X,Y ⊆ V , the set of edges between X and Y is denoted by

E(X,Y) =
{
{x, y} ∈ E

∣∣ x ∈ X, y ∈ Y }.
Notice that E(X,Y) = E(Y,X), because all edges in a graph are undirected. Also,

the complement Xc of X consists of the vertices that are not in X, i.e. Xc = V \X.

An ordered set of consecutive distinct edges
(
{v1, v2}, {v2, v3}, . . . , {vk−1, vk}

)
is

called a path of length k − 1. A cycle is a path with distinct vertices v1, . . . , vk−1

that begins and ends at the same vertex, i.e. v1 = vk. We say that a graph is

connected if there is a path between every pair of vertices, and complete if there

CHAPTER 2. BASIC CONCEPTS 7

is an edge between any two distinct vertices. Another special type of graph is a

bipartite graph for which there exists a bipartition (V1, V2) of V , i.e. there are

disjoint subsets V1, V2 ⊂ V such that V = V1 ∪ V2, and every edge in E is incident

with a vertex in V1 and a vertex in V2. The distance between vertices v and w,

denoted by d(v, w), is the length of the shortest path from v to w. The diameter of

a graph G is given by diam(G) = maxv,w∈V d(v, w). The degree of a vertex v ∈ V
is equal to the number of edges incident with v, and we write it as deg(v). If all

vertices of a graph have the same degree r, we call the graph r-regular.

WSNs and KPSs can be interpreted as graphs if we conceive the nodes N1, . . . , Nn as

vertices v1, . . . , vn respectively and the connections between the nodes as edges. To

be precise, we need to distinguish between connection before and after deployment of

the nodes, and consider the corresponding graphs. Let us denote V = {v1, . . . , vn}.
Firstly, we have the key graph (V,E1) where {vi, vj} ∈ E1 if Ni and Nj share at

least q common keys. Secondly, we define the communication graph (V,E2) where

{vi, vj} ∈ E2 if the nodes Ni and Nj are physically within communication range.

Two nodes Ni and Nj can communicate securely in a WSN if {vi, vj} ∈ E1 ∩ E2,

that is, if they are adjacent in the intersection graph (V,E1 ∩E2). An example of

these graphs for q = 1 is given in Fig. 2.1.

{K1,K2}

{K1,K3}

{K3,K4}

{K2,K4}

(a) Key graph

v1 v2

v4v3

(b) Communication graph

v3

v1

v4

v2

K2
K1 K4

(c) Intersection graph

Figure 2.1: Corresponding key, communication and intersection graphs.

As assumed in Section 2.1, we do not have any control over the positioning of the

nodes. In other words, the communication graph is a random graph. The only way

to affect the intersection graph is thus by carefully designing the key graph.

2.4 Multigraphs and hypergraphs

As mentioned earlier, we can generalise the notion of a graph to one that allows

loops and multiple edges, and for which the terminology introduced in Section 2.3 is

preserved. We start with a generalization of ordinary sets.

CHAPTER 2. BASIC CONCEPTS 8

Definition 2.4.1. A multiset is a collection of objects wherein each object

may appear several times. The number of appearances is called the object’s

multiplicity.

All familiar notation for sets is carried over to multisets. We can for example

write a ∈ {a, b, b, c, c, c}. In this particular multiset, the elements a, b and c re-

spectively have multiplicities 1, 2 and 3. An ordered multiset of consecutive edges

({v1, v2}, {v2, v3}, . . . , {v(k−1), vk}) is called a walk of length k − 1.

Definition 2.4.2. A multigraph is a pair (V,E), where V is a finite non-empty

set and E ⊆
{
{v, w}

∣∣ v, w ∈ V } is a multiset of multisets of size 2.

Comparing this definition to Definition 2.3.1, notice that we dropped the condition

v 6= w in the multiset that contains E. An edge of the form {v, v} for v ∈ V is called

a loop. There is also a second generalisation of graphs: we may no longer restrict

the number of vertices that can be connected by an edge to 2.

Definition 2.4.3. A hypergraph is a pair (V,E) where V is a finite non-empty

set and E consists of subsets A ⊆ V with 2 ≤ |A|.

The elements of E are called hyperedges. If every hyperedge contains r vertices,

we say that the hypergraph is r-uniform. A graph can thus be thought of as a

2-uniform hypergraph.

2.5 Cayley graphs

Given a group G and a special kind of multisubset S of G, we can construct highly

symmetrical multigraphs from which one can derive properties of the group. We

start with introducing the condition that S should meet.

Definition 2.5.1. A multisubset S of a group G is called symmetric if for any

g ∈ S with multiplicity m, also g−1 ∈ S with multiplicity m. We write S ⊂s G.

Definition 2.5.2. Let G be a finite group and S ⊂s G. We define Cay(G,S), the

Cayley graph of G with respect to S, as follows: the vertices in V
(
Cay(G,S)

)
are the elements of G and the multiplicity of an edge {g, h} in E

(
Cay(G,S)

)
is

equal to the multiplicity of h−1g in S.

Stated differently, two vertices g, h ∈ G are adjacent if and only if h−1g ∈ S, i.e.

CHAPTER 2. BASIC CONCEPTS 9

there exists a t ∈ S such that g = ht. We need S to be symmetric, because the

adjacency of two elements g, h ∈ G implies both g = ht and h = gu for certain

t, u ∈ S, which results in t−1 = u ∈ S. If we relax this condition, then we end up

with directed Cayley graphs. Note that an ordinary set S results in a Cayley graph

without multiple edges.

Proposition 2.5.3. Let G be a finite group and S ⊂s G. Then, Cay(G,S) is

|S|-regular.

Proof. We write S = {t1, . . . , tm} and pick an element g ∈ G. The vertices adjacent

to g are gt1, . . . , gtm, counted with multiplicity. Therefore, deg(g) = m = |S|.

2.6 Combinatorial designs

For any set X, we denote P(X) for the power set of X, which is the set of all subsets

of X.

Definition 2.6.1. A set system (X,B) consists of a set X and B ⊆P(X).

The elements of X are called points and the elements of B are called blocks.

Since we defined blocks as ordinary sets, each point occurs at most once in each

block. The degree of a point x ∈ X is the number of blocks that contain x. We say

that a set system is r-regular or regular of degree r if every point has degree r. The

size of the largest block is the degree of the set system and if all blocks have the

same size k, then the set system is said to be k-uniform or uniform of rank k.

A combinatorial design (design for short) is a general term used to describe a set

system with particular conditions on regularity, uniformity and block intersection.

We usually add a prefix to the word ‘design’ to specify these properties.

Definition 2.6.2. A set system (X,B) where |X| = n is a t-(n, k, λ) design if

it is uniform of rank k and every set of t points is contained in exactly λ blocks.

It is straightforward to represent a set system or design (X,B) as a graph G: let

V (G) = B and add an edge between two blocks Bi and Bj if Bi ∩Bj 6= ∅. This idea

is encapsulated in the following concept.

CHAPTER 2. BASIC CONCEPTS 10

Definition 2.6.3. Let (X,B) be a set system where X = {x1, . . . , xm} and

B = {B1, . . . , Bn}. The incidence matrix of (X,B) is an m × n-matrix A

whose entries are given by

aij =

1 if xi ∈ Bj,
0 otherwise.

The rows and columns of an incidence matrix thus respectively represent points and

blocks.

Chapter 3

Expander graphs

In this chapter, we discuss two very important graph invariants: the expansion

coefficient and the second-largest eigenvalue. Both numbers are intimately related by

a fundamental inequality that we will prove with standard linear algebra techniques.

All results are based on [11,22]. For further information on linear algebra, we refer

to [8].

3.1 The expansion coefficient

Definition 3.1.1. The expansion coefficient of a graph G = (V,E) is defined

as

ε(G) = min
{ |E(S, Sc)|

|S|
∣∣∣ S ⊂ V, 0 < |S| ≤ |V |

2

}
.

For brevity, we will write ε instead of ε(G) if the graph G is clear from the context.

Lots of synonyms for the expansion coefficient are being used in the literature: the

isoperimetric constant or number, the edge expansion ratio, the Cheeger constant,

the conductance. . . A large value of ε is desirable for many network applications,

which can be seen by the following observations:

(1) If ε = 0, then there exists a subset S ⊂ V such that E(S, Sc) = ∅. This is

equivalent to saying that the graph is disconnected.

(2) A small ε, particularly ε < 1, indicates that at least one set of vertices is

connected to the rest of the graph by relatively few edges. In a network, this

can lead to vulnerabilities such as communication bottlenecks; uneven burdens

on nodes, creating uneven battery drainage; a risk of being disconnected more

easily by an adversary; and longer average path lengths between unconnected

nodes.

11

CHAPTER 3. EXPANDER GRAPHS 12

(3) If ε is larger, particularly if ε ≥ 1, then there is no ‘easy’ way to disconnect

large sets of nodes, and there is a more even spread of communication burdens,

battery usage and data flow. Roughly speaking, the larger ε is, the faster and

more reliable the network is.

A graph with a ‘large’ value of ε is often said to have ‘good expansion’ and is informally

referred to as an expander graph. Let’s compute the expansion coefficient for two

concrete types of graphs.

Example 4. In general, we denote the complete graph with n ≥ 1 vertices by Kn.

Considering a fixed Kn = (V,E) where n ≥ 2, we get for any subset S ⊂ V that

|E(S, Sc)|
|S| =

|S|(n− |S|)
|S| = n− |S|,

which implies ε(Kn) = n/2 if n is even and ε(Kn) = (n+ 1)/2 if n is odd. Observe

that ε(Kn) becomes bigger as Kn grows in size. This matches well with our intuition

that Kn is a good communication network: all vertices are pairwise adjacent.

Example 5. We define a cycle graph Cn as a graph that consists of n ≥ 1 vertices

which form a cycle. For any fixed n ≥ 3, the graph Cn = (V,E) is 2-regular and

min
{ |E(S, Sc)|

|S|
∣∣∣ S ⊂ V, |S| = s

}
=

2

s
,

where the minimum occurs when S is connected. This implies ε(Cn) = 4/n if n is

even and ε(Cn) = 4/(n− 1) if n is odd. These expansion coefficients converge to 0

as n→∞, which suggests that cycle graphs become worse communication networks

as they become larger. This behaviour is intuitively clear: the network performance

greatly reduces when a single vertex is removed from the cycle graph, and the graph

even becomes disconnected when a second non-adjacent vertex is eliminated.

Although complete graphs seem to be good communication networks, they contain

far too many edges for practical means. We therefore restrict our attention to regular

graphs of fixed degree. This leads to the following definition:

Definition 3.1.2. Suppose (Gn)n is a sequence of r-regular graphs such that

|V (Gn)| → ∞ as n→∞. We say that (Gn)n is an expander family if there

exists a real number α > 0 such that ε(Gn) ≥ α for all n.

In other words, for any expander family the sequence of expansion coefficients must

be bounded away from zero. The definition immediately implies that every graph

in an expander family is connected. Note that the terms ‘expander graph’ and

‘expander family’ are in fact inaccurate and a bit misleading, because the actual

objects of study are sequences of graphs. However, in order to be conform with the

literature, we will use the traditional terminology.

CHAPTER 3. EXPANDER GRAPHS 13

Example 6. The calculations in Example 4 show that ε(Kn) ≥ 1 for any n ≥ 2.

Although every Kn is (n− 1)-regular, this degree is not fixed, so (Kn)n≥2 is not an

expander family. Example 5 implies that (Cn)n≥3 is no expander family either.

Based on Example 6, we can ask ourselves whether expander families exist at all. In

1973, Mark Pinsker (see [34]) used a probabilistic argument to demonstrate that they

do. That same year, Gregori Margulis came up with the first explicit construction

in [26]. We will present another elementary explicit construction in Chapter 4.

Computing ε requires the investigation of a lot of subsets and these grow exponentially

in number as the amount of vertices increases. It is thus often infeasible to explicitly

determine ε for very large graphs. Therefore, we will seek lower and upper bounds

for the expansion coefficient. Two trivial bounds for ε are the following:

Proposition 3.1.3. For any graph (V,E) with |V | ≥ 2, we have

0 ≤ ε ≤ min
v∈V

deg(v).

Proof. We have already mentioned that a graph is disconnected if and only if ε = 0.

Also, ε cannot be strictly negative by definition, so 0 ≤ ε. For the upper bound,

pick an arbitrary v ∈ V and consider S = {v}. Since |E(S, Sc)| = deg(v) and

|S| = 1 ≤ |V |/2, the result follows from the definition of ε.

3.2 The adjacency operator

Before introducing the adjacency operator, we provide a general framework in which

we will work.

Definition 3.2.1. For a finite set S, we denote L2(S) = {f : S → C}.

The set L2(S) can be turned into a complex vector space if addition and scalar

multiplication are defined as expected for f, g ∈ L2(S), α ∈ C and x ∈ S:

(f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x).

We can also place an inner product and a norm on this space:

〈f, g〉2 =
∑
x∈S

f(x)g(x) and ‖f‖2 =
√
〈f, f〉2 =

√∑
x∈S
|f(x)|2.

Note that ‖ · ‖2 is the traditional L2-norm for finite-dimensional vector spaces;

hence the notation L2(S). We will often drop the subscript and simply write 〈 ·, · 〉

CHAPTER 3. EXPANDER GRAPHS 14

and ‖ · ‖ when it is clear from the context that we are working in L2(S) for a

certain S. We will usually deal with the space L2(V) where V is the vertex set of

a graph. After ordering V = {v1, . . . , vn}, we can think of f ∈ L2(V) as a vector(
f(v1), . . . , f(vn)

)T ∈ Cn.

Definition 3.2.2. The adjacency matrix of a graph with ordered vertex set

V = {v1, . . . , vn} is an n × n matrix A, where every entry aij on the i-th row

and j-th column is equal to the number of edges that are incident to vi and vj.

We also write avw for the number of edges that are incident to the vertices v and w,

such that we may refer to an entry of A without having to order the vertices. We easily

see that the adjacency matrix A of a graph is symmetric with real entries 0 and 1 only,

and zeroes on the main diagonal, so it has n real eigenvalues λ1 ≥ · · · ≥ λn.

Definition 3.2.3. We define the eigenvalues of a graph G as the eigenvalues

of its corresponding adjacency matrix and we will denote them as

λ1(G) ≥ · · · ≥ λn(G) where n = |V (G)|.

If we do not need to emphasize the considered graph, then we simply write λ1, . . . , λn

for its eigenvalues in increasing order. We now show that the above definition is

well-defined by proving that the eigenvalues of a graph do not depend on the ordering

of the graph’s vertices.

Proposition 3.2.4. If A1 and A2 are two adjacency matrices of a graph (V,E)

using different orderings of the vertices in V , then they have the same eigenvalues.

Proof. Suppose that A1 and A2 use the orderings {v1, . . . , vn} and {vσ(1), . . . , vσ(n)}
respectively, where σ is a permutation of {1, . . . , n}. We then have

A1 = PA2P
T = PA2P

−1

for the permutation matrix P associated to σ. For all numbers λ ∈ R, we obtain

det(A2 − λI) = det(P) det(A2 − λI) det(P−1) = det(A1 − λI),

so we can conclude that A1 and A2 share the same eigenvalues λ.

In the following proposition, we construct the smallest possible symmetric interval

that contains all the eigenvalues of a regular graph.

CHAPTER 3. EXPANDER GRAPHS 15

Proposition 3.2.5. Let G be an r-regular graph with n vertices. Then,

(1) λi ∈ [−r, r] for all 1 ≤ i ≤ n,

(2) λ1 = r with a corresponding eigenvector whose entries are all equal.

Proof. (1) Since G is r-regular, the sum of the entries in each row and column of

its adjacency matrix A is r. If (x1, . . . , xn)T is the corresponding eigenvector for a

certain eigenvalue λk where 1 ≤ k ≤ n, then

n∑
j=1

aijxj = λkxi for all 1 ≤ i ≤ n. (3.1)

Choosing the specific index i such that xi 6= 0 is maximal, gives

|λk| ≤
n∑
j=1

|aij |
|xj |
|xi|
≤

n∑
j=1

|aij | = r.

(2) This follows immediately from Eq. (3.1).

Suppose that we have a graph with an ordered vertex set V = {v1, . . . , vn} and let A

be the adjacency matrix given this ordering. For any f ∈ L2(V), we can immediately

compute the matrix product

Af =

(n∑
i=1

a1if(vi), . . . ,
n∑
i=1

anif(vi)

)T
.

Looking carefully at this equation, we can actually think of A as a linear operator

from L2(V) to L2(V), given by the formula in the following definition.

Definition 3.2.6. The adjacency operator of a graph (V,E) with adjacency

matrix A is the linear operator A : L2(V)→ L2(V) that maps an f to the function

defined by

A(f)(v) =
∑
w∈V

avwf(w).

As the reader can see, we will use the letter A for both the adjacency operator and

the adjacency matrix. In order to become familiar with this new operator, we prove

two more spectral characterisations for regular graphs.

Proposition 3.2.7. Let G = (V,E) be an r-regular graph. Then,

(1) G is connected if and only if λ1 > λ2,

(2) G is bipartite if and only if −r is an eigenvalue of G.

CHAPTER 3. EXPANDER GRAPHS 16

Proof. As usual, we denote the adjacency matrix of G by A.

(1) Since A is diagonalizable, the multiplicity of the eigenvalue r is equal to the

dimension of the eigenspace Er = { f ∈ L2(V) | A(f) = rf }. It is sufficient to prove

that G is connected if and only if dim(Er) = 1.

Suppose G is connected and f is an eigenvector associated to r. We will show that f is

constant on the whole of V . Let v ∈ V be a vertex such that |f(v)| = maxw∈V |f(w)|.
Since −f is also an eigenvector associated to r, we may assume that f(v) > 0. If

f(w) < f(v) for some vertex w adjacent to v, then

f(v) =
A(f)(v)

r
=
∑
w∈V

avw
r
f(w) <

∑
w∈V

avw
r
f(v) = f(v),

which is a contradiction. We can repeat this reasoning for every vertex w that is

adjacent to v. Induction on the distance of w to v leads to the desired result, because

G is connected.

Conversely, suppose by contraposition that G is disconnected. Let v ∈ V and write

V1 for the set of all vertices for which there exists a path to v. Then, the functions

f1(w) =

1 if w ∈ V1,
0 if w ∈ V1c

and f2(w) =

0 if w ∈ V1,
1 if w ∈ V1c

are linearly independent eigenvectors of A associated to r. Hence, dim(Er) > 1.

(2) Let G be a bipartite graph with bipartition (V1, V2) and let λ be an eigenvalue of A

with multiplicity m. We will show that −λ is also an eigenvalue of A with multiplicity

m, which in particular implies that −r is an eigenvalue. Since dim(Eλ) = m, there

exist linearly independent eigenvectors f1, . . . , fm of A associated to λ. Define

gi(v) =

fi(v) if v ∈ V1,
−fi(v) if v ∈ V2

for all 1 ≤ i ≤ m.

For any v ∈ V1, the only adjacent vertices are situated in V2, hence

A(gi)(v) =
∑
w∈V2

avwgi(w) = −
∑
w∈V

avwfi(w) = −A(fi)(v) = −λgi(v)

and similarly for v ∈ V2. This shows that −λ is an eigenvalue of A. Since the

functions gi are linearly independent, −λ has multiplicity l ≥ m. Reversing the roles

of λ and −λ gives l = m.

Conversely, suppose −r is an eigenvalue of A with eigenvector f . First, assume

that G is connected. As in the previous proof, we can pick a v ∈ V such that

CHAPTER 3. EXPANDER GRAPHS 17

|f(v)| = maxw∈V |f(w)| and f(v) > 0, obtaining f(v) = −f(w) for all w adjacent to

v. Continuing this reasoning results in

f(w) =

f(v) if d(v, w) is even,

−f(v) if d(v, w) is odd,

so we get a bipartition (V1, V2) of G, where

V1 = {w ∈ V | f(w) = f(v) } and V2 = {w ∈ V | f(w) = −f(v) }.

If G is disconnected with m connected components, then every i-th connected com-

ponent has a bipartition (V
(i)
1 , V

(i)
2). It is easy to observe that

(⋃m
i=1 V

(i)
1 ,
⋃m
i=1 V

(i)
2

)
is a bipartition of G.

Note that we can also rewrite the proof of Proposition 3.2.5 in terms of the adjacency

operator: the trick for the second statement is then to check that A(f) = rf where

f(v) = 1 for all v ∈ V . To conclude the section, we introduce a new concept that

will play an important role throughout the rest of this chapter.

Definition 3.2.8. Consider an r-regular graph G with eigenvalues λ1 ≥ · · · ≥ λn.

Then the spectral gap of G is defined as λ1 − λ2 = r − λ2.

There exists a close relation between the spectral gap and the expansion coefficient:

the larger the former, the better the latter.

Theorem 3.2.9. The following boundaries hold for an r-regular graph:

r − λ2
2
≤ ε ≤

√
2r(r − λ2).

The Sections 3.3 to 3.4 are devoted to proving this fundamental result, which also

gives a spectral characterization of expander families.

Corollary 3.2.10. A sequence (Gn)n of r-regular graphs such that |V (Gn)| → ∞
as n→∞ is an expander family if and only if there exists a real number α > 0

such that r − λ2(Gn) ≥ α for all n.

3.3 The Laplacian operator

In this section, we discuss another linear operator associated to a graph, called the

Laplacian. We first introduce some notation.

CHAPTER 3. EXPANDER GRAPHS 18

Let (V,E) be a graph. We give E an arbitrary orientation, which means that for

each edge e ∈ E, we label one endpoint e− and the other endpoint e+, and orient e

from e− to e+.

Definition 3.3.1. Given an orientation on the edges of a graph (V,E), we define

dV : L2(V)→ L2(E) : f 7→ dV (f) where dV (f)(e) = f(e+)− f(e−),

dE : L2(E)→ L2(V) : f 7→ dE(f) where dE(f)(v) =
∑

e∈E, v=e+
f(e)−

∑
e∈E, v=e−

f(e).

The Laplacian operator ∆: L2(V)→ L2(V) is defined as ∆ = dE ◦ dV .

The maps dV and dE depend on the orientation of the graph. We will show in the

next lemma that the Laplacian operator does not for regular graphs.

Lemma 3.3.2. If (V,E) is an r-regular graph with adjacency matrix A, then

∆ = rI −A.

Proof. For any fixed f ∈ L2(V) and v ∈ V , we have

∆(f)(v) =
∑

e∈E, v=e+
dV (f)(e)−

∑
e∈E, v=e−

dV (f)(e)

=
∑

e∈E, v=e+
f(v)−

∑
e∈E

v=e+, w=e−

f(w)−
∑
e∈E

v=e−, w=e+

f(w) +
∑

e∈E, v=e−
f(v)

= rf(v)−
∑
w∈V

avwf(w)

= rf(v)−A(f)(v).

The above calculation shows that ∆(f)(v) = (rI −A)f(v), which ends the proof.

We end this short section with an investigation of some more properties of the Lapla-

cian operator ∆. Meanwhile, we will see that the maps dV and dE are adjoint.

Proposition 3.3.3. Let (V,E) be an r-regular graph with |V | = n. Given an

orientation of the edges in E, the following results hold:

(1) The eigenvalues of ∆ are given by 0 = r − λ1 ≤ r − λ2 ≤ · · · ≤ r − λn. In

particular, the eigenvalues of ∆ lie in [0, 2r].

(2) Let f ∈ L2(V) and g ∈ L2(E). Then 〈dV (f), g〉 = 〈f, dE(g)〉 and

〈∆(f), f〉 =
∑
e∈E
|f(e+)− f(e−)|2.

CHAPTER 3. EXPANDER GRAPHS 19

Proof. The first statement is easy to prove: if f ∈ L2(V) is an eigenvector of the

adjacency matrix A with corresponding eigenvalue λ, then we immediately get

∆(f) = rf −Af = rf − λf = (r − λ)f,

using Lemma 3.3.2 in the first equality. Since |λ| ≤ r, we have |r − λ| ≤ 2r. The

second result is also proved by some straightforward calculations. First note that

〈dV (f), g〉 =
∑
e∈E

dV (f)(e)g(e) =
∑
e∈E

(
f(e+)− f(e−)

)
g(e)

=
∑
v∈V

f(v)
∑

e∈E, v=e+
g(e)−

∑
v∈V

f(v)
∑

e∈E, v=e−
g(e) =

∑
v∈V

f(v)dE(g)(v)

= 〈f, dE(g)〉.

Thus, 〈∆(f), f〉 =
〈
dE
(
dV (f)

)
, f
〉

=
〈
f, dE

(
dV (f)

)〉
= 〈dV (f), dV (f)〉 where

〈dV (f), dV (f)〉 =
∑
e∈E

(
f(e+)− f(e−)

)(
f(e+)− f(e−)

)
=
∑
e∈E
|f(e+)− f(e−)|2,

so we are done.

3.4 The Rayleigh–Ritz theorem

We will now prove the Rayleigh–Ritz theorem, which provides a useful method for

determining the second-largest eigenvalue λ2 of a regular graph. We first introduce

some new notation.

Definition 3.4.1. Let S be a finite set. We denote cα for the constant function

that is equal to α ∈ R on the whole of S, and we define

L2(S,R) = { f : S → R },
L2
0(S,R) = { f ∈ L2(S,R) | 〈f, c1〉2 = 0 }.

Note that the inner product 〈 ·, · 〉2 in the definition of L2
0(S,R) is well-defined, since

L2(S,R) ⊆ L2(S). The inner product of two functions in L2(S,R) also simplifies, since

the conjugate of a real number is the number itself. If f, g ∈ L2(S,R), then

〈f, g〉2 =
∑
x∈S

f(x)g(x) and ‖f‖2 =

√∑
x∈S

f(x)2.

For brevity, the domain S of the constant functions cα is not explicitly contained in

the notation, but it will always be clear from the context.

CHAPTER 3. EXPANDER GRAPHS 20

Theorem 3.4.2 (Rayleigh–Ritz). For any r-regular graph (V,E) we have

λ2 = max
f∈L2

0(V,R)

〈A(f), f〉
‖f‖2

= max
f∈L2

0(V,R), ‖f‖=1
〈A(f), f〉.

Proof. Let |V | = n and denote the adjacency matrix of the graph by A. A

classic result in linear algebra guarantees the existence of an orthonormal basis

B = {f1, . . . , fn} for L2(V,R), such that every fi is a real-valued eigenvector of the

operator A associated with the eigenvalue λi. Pick an f ∈ L2
0(V,R) with ‖f‖ = 1.

Then, f =
∑n

i=1 αifi for certain coefficients αi ∈ R. Also note that

0 = 〈f, f1〉 =
n∑
i=1

αi〈fi, f1〉 = α1

by the constancy of f1 due to Proposition 3.2.5, and the orthonormality of B. Next,

〈A(f), f〉 =
〈 n∑
i=2

αiA(fi),
n∑
j=2

αjfj

〉
=
〈 n∑
i=2

αiλifi,
n∑
j=2

αjfj

〉
=

n∑
i=2

n∑
j=2

αiαjλi
〈
fi, fj

〉
=

n∑
i=2

α2
iλi

≤ λ2
n∑
i=2

α2
i = λ2‖f‖2 = λ2,

where we used that ‖f‖2 = 〈f, f〉 =
∑n

i=2

∑n
j=2 αiαj〈fi, fj〉 =

∑n
i=2 α

2
i . Hence,

λ2 ≥ max
f∈L2

0(V,R), ‖f‖
2=1
〈A(f), f〉.

The equality follows by noting that 〈A(f2), f2〉 = 〈λ2f2, f2〉 = λ2 and f2 ∈ L2
0(V,R).

Indeed, recall from the observations after Definition 3.2.2 that f1 is constant, so

〈f2, c1〉 = 〈f2, αf1〉 = 0 for a certain α ∈ R.

Corollary 3.4.3. For any r-regular graph (V,E) we have

r − λ2 = min
f∈L2

0(V,R)

〈∆(f), f〉
‖f‖2

= min
f∈L2

0(V,R), ‖f‖=1
〈∆(f), f〉.

Proof. This follows directly from Theorem 3.4.2 and Lemma 3.3.2.

We are now ready to prove the first inequality (r−λ2)/2 ≤ ε in Theorem 3.2.9.

CHAPTER 3. EXPANDER GRAPHS 21

Proof of Theorem 3.2.9 (part 1). By the definition of ε, we can pick a set S ⊂ V
such that |S| ≤ |V |/2 and ε = |E(S, Sc)|/|S|. Write a = |Sc| and b = |S|. Define the

following two functions in L2(V,R):

g(v) =

a if v ∈ S,
−b if v /∈ S

and f =
g

‖g‖ .

We have that ‖f‖ = 1 and because∑
v∈V

g(v) =
∑
v∈S

a−
∑
v∈Sc

b = ba− ab = 0,

we see that f, g ∈ L2
0(V,R). If we orient the edges arbitrarily, we get by the second

statement in Proposition 3.3.3 that

〈∆(g), g〉 =
∑
e∈E
|g(e+)− g(e−)|2 =

∑
e∈E(S,Sc)

(a+ b)2 = |E(S, Sc)|(a+ b)2.

Also,

‖g‖2 =
∑
v∈V

g(v)2 =
∑
v∈S

a2 +
∑
v∈Sc

b2 = ba2 + ab2 = ab(a+ b).

Since b ≤ a by definition, we obtain that

〈∆(f), f〉 =
〈∆(g), g〉
‖g‖2

=
(a+ b)εb

ab
=
(
1 +

b

a

)
ε ≤ 2ε

and we are done if we now apply Corollary 3.4.3 to the left hand side.

We will break the proof of the second inequality ε ≤
√

2r(r − λ2) in Theorem 3.2.9

into two lemmas. We write g ∈ L2
0(V,R) for the eigenvector of A associated with

λ2 and define V + = { v ∈ V | g(v) ≥ 0 }. We also define a function f ∈ L2(V,R)

as

f(v) =

g(v) if v ∈ V +,

0 if v /∈ V +.
(3.2)

Note that V + 6= ∅ and V + 6= V since
∑

v∈V g(v) = 0 and g 6= c0. Therefore, f cannot

be constant. In particular, f 6= c0 which implies 〈f, f〉 6= 0. Lastly, because −g is

also an eigenvector of A associated with λ2, we may assume that |V +| ≤ |V |/2.

Lemma 3.4.4. The following holds for the function f defined in (3.2):

〈∆(f), f〉
〈f, f〉 ≤ r − λ2.

CHAPTER 3. EXPANDER GRAPHS 22

Proof. If v ∈ V +, then by Lemma 3.3.2 we have that

∆(f)(v) = rf(v)−A(f)(v) = rg(v)−
∑
w∈V +

avwg(w)

≤ rg(v)−
∑
w∈V

avwg(w) = ∆(g)(v).

Thus,

〈∆(f), f〉 =
∑
v∈V +

∆(f)(v)f(v) ≤
∑
v∈V +

∆(g)(v)f(v)

=
∑
v∈V +

(
rg(v)− λ2g(v)

)
f(v) = (r − λ2)

∑
v∈V +

f(v)2

= (r − λ2)〈f, f〉,

which implies the desired result.

Lemma 3.4.5. The following holds for the function f defined in (3.2):

ε2

2r
≤ 〈∆(f), f〉
〈f, f〉 .

Proof. Orient the edges of the graph such that f(e+) ≥ f(e−) for all edges e ∈ E,

and define

D =
∑
e∈E

f(e+)2 − f(e−)2.

We will show that

ε〈f, f〉 ≤ D ≤
√

2r〈∆(f), f〉〈f, f〉, (3.3)

which proves the lemma after squaring. First, we use Cauchy–Schwarz, Proposi-

tion 3.3.3 and the fact that (a + b)2 ≤ (a + b)2 + (a − b)2 = 2(a2 + b2) for all

a, b ∈ R:

D =
∑
e∈E

(
f(e+) + f(e−)

)(
f(e+)− f(e−)

)
≤
√∑
e∈E

(
f(e+) + f(e−)

)2√∑
e∈E

(
f(e+)− f(e−)

)2
≤
√

2
∑
e∈E

(
f(e+)2 + f(e−)2

)√
〈∆(f), f〉

=

√
2r
∑
v∈V

f(v)2
√
〈∆(f), f〉 =

√
2r〈∆(f), f〉〈f, f〉.

CHAPTER 3. EXPANDER GRAPHS 23

For the other inequality in (3.3), let 0 = α1 < α2 < · · · < αm be the values of f on

V and write Vi = { v ∈ V | f(v) ≥ αi }. We obviously have

Vm ⊂ Vm−1 ⊂ · · · ⊂ V1 = V.

We have already mentioned that f cannot be constant, so there is an edge e ∈ E such

that f(e+) 6= f(e−). Thus, f(e+) = αi and f(e−) = αj for certain 1 ≤ j < i ≤ m

because of the chosen orientation. That means

e ∈
i⋂

k=j+1

E(Vk, Vk
c)

and e /∈ {E(Vl, Vl
c) | l = 1, . . . , j, i+ 1, . . . ,m }. Furthermore,

f(e+)2 − f(e−)2 = α2
i − α2

j =
i∑

k=j+1

α2
k − α2

k−1,

hence

D =
∑
e∈E

f(e+)=αi

f(e−)=αj

1≤j<i≤m

i∑
k=j+1

(α2
k − α2

k−1) =
m∑
k=1

|E(Vk, Vk
c)|(α2

k − α2
k−1).

Because Vi ⊆ V + and |V +| ≤ |V |/2, we have ε ≤ |E(Vi, Vi
c)|/|Vi| for all 1 ≤ i ≤ m.

This leads to the desired result as follows:

D ≥
m∑
k=1

ε|Vk|(α2
k − α2

k−1) = ε

(
|Vm|α2

m +
m−1∑
k=1

α2
k

(
|Vk| − |Vl+1|

))

=
m∑
i=1

∑
v∈V +

f(v)=αi

εf(v)2 = ε〈f, f〉,

where we used in the second line that v ∈ Vi \ Vi+1 if and only if f(v) = αi.

Proof of Theorem 3.2.9 (part 2). Combining Lemma 3.4.4 and Lemma 3.4.5

immediately gives the desired inequality.

3.5 The Alon–Boppana theorem

Recall that the inequalities in Theorem 3.2.9 imply a large expansion coefficient if

the spectral gap r − λ2 is large. Therefore, if we want regular graphs with a large

expansion coefficient, our goal is to find graphs with a small eigenvalue λ2. In this

section, we will show that there exists a constraint on how small λ2 can be:

CHAPTER 3. EXPANDER GRAPHS 24

Proposition 3.5.1. If (Gn)n is a sequence of connected r-regular graphs with

|V (Gn)| → ∞ as n→∞, then

lim inf
n→∞

λ2(Gn) ≥ 2
√
r − 1.

This is equivalent to saying that for every ε > 0, there exists an index n0 > 0 such

that

λ2(Gn) > 2
√
r − 1− ε for all n ≥ n0.

In other words: for connected r-regular graphs, λ2 is at best a little bit smaller than

2
√
r − 1, so asymptotically the best spectral gap is r − 2

√
r − 1.

We first prove another result due to A. Nilli (a pseudonym of Noga Alon, see [32])

that will imply Proposition 3.5.1. Remember that the traditional floor function is

defined as follows: for any α ∈ R, the symbol bαc stands for the greatest integer less

than or equal to α.

Proposition 3.5.2. For any connected r-regular graph G with diam(G) ≥ 4, we

have

λ2 > 2
√
r − 1− 2

√
r − 1− 1⌊

1
2 diam(G)− 1

⌋ .
Proof. Define b =

⌊
1
2 diam(G) − 1

⌋
and q = r − 1, and write G = (V,E). Note

that diam(G) ≥ 4 implies b > 0 and q > 0. The latter is true because the only

connected 1-regular graph is K2, which consists of a single edge between two vertices,

hence diam(K2) = 1 < 4. The proof requires quite some computations, so we

will break it down into four steps. The general idea is to use the Rayleigh–Ritz

theorem for a carefully constructed f ∈ L2
0(V,R), which leads to the inequality

λ2 ≥ r−〈∆(f), f〉/〈f, f〉. Calculating 〈f, f〉 and finding an upper bound for 〈∆(f), f〉
will then provide the desired lower bound for λ2.

Step 1. By definition of a graph’s diameter, we can pick two vertices x, y ∈ V such

that d(x, y) ≥ 2b+ 2. Define the following sets for all 0 ≤ i ≤ b:

Ai = { v ∈ V | d(v, x) = i } and Bi = { v ∈ V | d(v, y) = i }.

If v ∈ Ai∩Bj for certain 0 ≤ i, j ≤ b, then d(x, y) ≤ d(x, v) +d(v, y) = i+ j < 2b+ 2.

This is impossible, so all Ai and Bj are disjoint and we can define the disjoint unions

A =
b⋃
i=0

Ai and B =
b⋃
i=0

Bi.

Suppose that there exist adjacent vertices v ∈ A and w ∈ B. Then, we would get

d(x, y) ≤ d(x, v) + d(v, w) + d(w, y) ≤ 2b+ 1 < 2b+ 2, which is again impossible. We

CHAPTER 3. EXPANDER GRAPHS 25

now construct a function f ∈ L2(V,R) as follows:

f(v) =

α if v ∈ A0,

α/q(i−1)/2 if v ∈ Ai for 1 ≤ i ≤ b,
1 if v ∈ B0,

1/q(i−1)/2 if v ∈ Bi for 1 ≤ i ≤ b,
0 otherwise,

where we can choose α ∈ R such that f ∈ L2
0(V,R). Indeed, because

〈f, c1〉 = α

(
1 +

b∑
i=1

|Ai|
q(i−1)/2

)
+

(
1 +

b∑
i=1

|Bi|
q(i−1)/2

)
= αβ1 + β2

for certain β1, β2 > 0, we get that 〈f, c1〉 = 0 if α = −β2/β1.

Step 2. We can easily compute the inner product

〈f, f〉 =

(
α2 +

b∑
i=1

α2|Ai|
qi−1

)
+

(
1 +

b∑
i=1

|Bi|
qi−1

)
and we denote the first and second term by P1 and P2 respectively.

Step 3. We now search an upper bound for 〈∆(f), f〉. If we orient the edges in E

arbitrarily, we get from Proposition 3.3.3 that 〈∆(f), f〉 = Q1 +Q2 where

Q1 =
∑
e∈E

e+∈A or e−∈A

(
f(e+)− f(e−)

)2
and Q2 =

∑
e∈E

e+∈B or e−∈B

(
f(e+)− f(e−)

)2
,

because there are no vertices in A that are adjacent to a vertex in B. We also have

Q1 =
b−1∑
i=0

∑
v∈Ai

w∈Ai+1

Avw
(
f(v)− f(w)

)2
+
∑
v∈Ab
w/∈A

Avwf(v)2,

where f(v)− f(w) = α− α = 0 if i = 0. For all v ∈ Ai where 1 ≤ i ≤ b− 1, at most

q vertices in Ai+1 are adjacent to v, because at least one vertex in Ai−1 is adjacent

to v. We therefore obtain

Q1 ≤
b−1∑
i=1

q|Ai|
(

α

q(i−1)/2
− α

qi/2

)2
+ q|Ab|

α2

qb−1

=
b−1∑
i=1

q|Ai|
α2(
√
q − 1)2

qi
+
(
(
√
q − 1)2 + 2

√
q − 1

)α2|Ab|
qb−1

= (
√
q − 1)2

b∑
i=1

α2|Ai|
qi−1

+ (2
√
q − 1)

α2|Ab|
qb−1

= (
√
q − 1)2(P1 − α2) +

2
√
q − 1

b

α2b|Ab|
qb−1

.

CHAPTER 3. EXPANDER GRAPHS 26

We try to find an upper bound for the second term in the previous line. We saw

earlier that |Ai+1| ≤ q|Ai| for all 1 ≤ i ≤ b− 1, so

|A1| ≥
|A2|
q
≥ |A3|

q2
≥ · · · ≥ |Ab|

qb−1
.

In particular,

α2b|Ab|
qb−1

=
b∑
i=1

α2|Ab|
qb−1

≤
b∑
i=1

α2|Ai|
qi−1

= P1 − α2.

We thus get

Q1 ≤
(

(
√
q − 1)2 +

2
√
q − 1

b

)
(P1 − α2) <

(
q + 1− 2

√
q +

2
√
q − 1

b

)
P1,

where we used that the first factor cannot be equal to 0 because q ≥ 1. Of course,

we can repeat the above calculations entirely for Q2, replacing all appearances of Ai,

α2 and P1 by Bi, 1 and P2 respectively. This results in

Q2 <

(
q + 1− 2

√
q +

2
√
q − 1

b

)
P2,

so we can finally conclude that

〈∆(f), f〉 <
(
r − 2

√
q +

2
√
q − 1

b

)
〈f, f〉.

Step 4. Corollary 3.4.3 delivers

r − λ2 ≤
〈∆(f), f〉
〈f, f〉 < r − 2

√
r − 1 +

2
√
r − 1− 1

b

and solving this inequality for λ2 gives the desired result.

Before continuing, we would like to point out that the previous result is not true

for a connected regular graph G with diam(G) = 1, i.e. a complete graph. We have

already mentioned that the above proof does not work for K2 and this graph is

also a counterexample. Indeed, one can easily compute that both sides of the strict

inequality in Proposition 3.5.2 are equal to −1, which is impossible.

Proof of Proposition 3.5.1. Consider a fixed graph Gn = (V,E) and pick a certain

vertex v ∈ V . Because of the regularity of Gn, there are r paths of length 1 starting

at v and r(r − 1) < r2 paths of length 2 starting at v. By induction, there are less

than rdiam(Gn) paths of length diam(Gn) starting at v. These paths cover the entire

graph and each such path contains diam(Gn) + 1 vertices, thus

|V (Gn)| <
(
diam(Gn) + 1

)
rdiam(Gn).

We assumed that |V (Gn)| → ∞ as n→∞, so diam(Gn)→∞ accordingly. Therefore,

the last term in Proposition 3.5.2 approaches 0 as n→∞ and this implies the desired

inequality.

CHAPTER 3. EXPANDER GRAPHS 27

Suppose G is an r-regular graph with n vertices. Recall from Proposition 3.2.5 that

r is always an eigenvalue and from Proposition 3.2.7 that −r is an eigenvalue if G

is bipartite. These integers are called the trivial eigenvalues. Following [25], we

denote λ(G) for the absolute value of the largest eigenvalue of G that is distinct from

the trivial eigenvalues. Equivalently,

λ(G) =

max {|λ2(G)|, |λn(G)|} if G is not bipartite,

max {|λ2(G)|, |λn−1(G)|} if G is bipartite.

Note that λ(G) is able to ‘detect’ disconnected graphs: in that case λ(G) = r

by Proposition 3.2.7. In general, we have λ(G) ≥ λ2(G), so a sequence (Gn)n of

connected r-regular graphs with |V (Gn)| → ∞ as n→∞ is an expander family if(
r − λ(Gn)

)
n

is bounded away from zero. Since any lower bound for λ2(G) is also a

lower bound for λ(G), Proposition 3.5.1 directly implies

Theorem 3.5.3 (Alon–Boppana). If (Gn)n is a sequence of connected r-regular

graphs with |V (Gn)| → ∞ as n→∞, then

lim inf
n→∞

λ(Gn) ≥ 2
√
r − 1.

Therefore, if we want λ(G) to be as small as possible, 2
√
r − 1 serves as the lower limit

of what can be done for graphs with a very large vertex set. In [25], Lubotzky, Phillips

and Sarnak introduced a special kind of graph that is optimal in this sense.

Definition 3.5.4. An r-regular graph G is Ramanujan if λ(G) ≤ 2
√
r − 1.

In the last three decades, the study of Ramanujan graphs has gained prominence

because they fuse diverse branches of pure mathematics, such as number theory,

representation theory and algebraic geometry. For our purposes, sequences of r-

regular Ramanujan graphs (Gn)n are interesting because they form expander families

if r ≥ 3. Indeed,

ε(Gn) ≥ r − λ2(Gn)

2
≥ r − 2

√
r − 1

2
> 0 for all n ≥ 1.

Note that we cannot pick r = 2, because we already know from Example 6 that the

cycle graphs (Cn)n are no expander family.

Chapter 4

Zig-zag products

We mentioned in the previous chapter that Pinsker was able to prove the existence

of expander families in [34], using relatively easy probabilistic techniques. However,

explicitly constructing such families seemed troublesome. Margulis was the first to

give an explicit construction in [26], based on the theory of group representations.

Over the next thirty years, many other explicit constructions were discovered, but

they all relied on rather heavy algebraic techniques, such as algebraic geometry,

group theory and number theory. Only in 2002, Reingold, Vadhan and Wigderson

significantly simplified matters with an elementary combinatorial method in [35].

They came up with a whole new type of graph product, the so-called zig-zag product.

The only minor disadvantage of their construction is that it forces us to consider

multigraphs. In this chapter, we will present the Reingold–Vadhan–Wigderson

expansion family, following [17,22,35,40].

4.1 Definition of the zig-zag product

Informally, taking the zig-zag product of a large and a small multigraph results in a

multigraph that roughly inherits its size from the large one, its degree from the small

one, and its expansion properties from both. That means the composed multigraph

has good expansion properties if both original multigraphs have good expansion

properties. In Sections 4.1 and 4.2, G and H respectively will always be

rG-regular and rH -regular multigraphs such that |V (H)| = rG, (4.1)

and we will write V = V (G)×V (H). We start off with formally defining what it means

to assign a unique label to each of the edges incident with a certain vertex v ∈ V (G).

For E = E(G), we denote the multiset Ev = { e ∈ E | e is incident with v }.

28

CHAPTER 4. ZIG-ZAG PRODUCTS 29

Definition 4.1.1. Let G and H be multigraphs satisfying (4.1). For every

vertex v ∈ V (G), we call a bijection Lv : V (H) → Ev the labeling at v. The

set L = {Lv | v ∈ V (G) } is called the labeling from H to G.

The condition |V (H)| = rG guarantees the existence of such labelings. In order

to avoid notational clutter further on, it is convenient to regard V (H) as the set

{1, . . . , rG}, such that labelings assign a numerical label to every edge. It might

be syntactically unclear that Lv(i) is an edge in E(G) for every v ∈ V (G) and

i ∈ V (H); it should therefore be read as “the edge incident with v with label i”.

Before describing the full technicalities of the zig-zag product, it seems best to

first introduce another construction in order to gain some intuition (similar to the

approaches in [17,40]).

Definition 4.1.2. Let G and H be multigraphs satisfying (4.1). The replace-

ment product G r LH with labeling L is the graph
(
V,E

)
where

� {(v, i), (v, j)} ∈ E for all v ∈ V (G) if {i, j} ∈ E(H),

� {(v, i), (w, j)} ∈ E if Lv(i) = Lw(j).

It is preferable to think of V (G r LH) as being created by replacing every vertex

v ∈ V (G) with a cloud of vertices { (v, i) | i ∈ V (H) }. Adding the prescribed edges

to these clouds results in |V (G)| exact copies of H, which are interconnected in

a particular way that depends on the labeling. The following example illustrates

that different labelings can lead to non-isomorphic replacement products, hence the

necessary inclusion of the chosen labeling L in the notation.

Example 7. Consider the graphs G and H in Fig. 4.1. We see that G is 3-regular,

H is 2-regular and |V (H)| = 3. Thus, the conditions (4.1) are fulfilled, and we can

denote V (G) = {v, w} and V (H) = {1, 2, 3} as shown in the figure.

v w

1

2
3

Figure 4.1: The multigraphs G (left) and H (right).

We fix two distinct labelings L and L′ from H to G, which we depict in Fig. 4.2

CHAPTER 4. ZIG-ZAG PRODUCTS 30

by labeling the edges of G near each vertex. For example, Lv(3), Lw(3), L′v(3) and

L′w(2) are all the edge that is incident with the vertices v and w.

1

2

33
1

2

1

2

23
1

3

Figure 4.2: The labelings L (left) and L′ (right).

The resulting replacement products R = G r LH and R′ = G r L′ H can be found in

Fig. 4.3. The bold edges are the ‘inter-cloud’ edges, arising from the second bullet in

Definition 4.1.2.

(v, 1)

(v, 2)

(v, 3) (w, 3)

(w, 1)

(w, 2)

(v, 1)

(v, 2)

(v, 3)

(w, 2)

(w, 1)

(w, 3)

Figure 4.3: The graphs R (top) and R′ (bottom).

The graphs R and R′ respectively have four and three vertices with two loops, so

they cannot be isomorphic. In this simple example, we could quickly determine the

replacement products by hand; for more complicated cases, one can use the Matlab

code provided in Appendix A.

The zig-zag product of multigraphs G and H also takes V as vertex set, the edges

arise from walks in G r LH of length three and of ‘zig-zag shape’. The latter means

that (v, i) and (w, j) are adjacent if we can move from (v, i) to an adjacent vertex

(v, i′) in the same cloud, then jump to a vertex (w, j′) in another cloud and finally

move from (w, j′) to (w, j) in this new cloud. This three-step process clarifies the

nomenclature. The formal definition is now much less intimidating.

CHAPTER 4. ZIG-ZAG PRODUCTS 31

Definition 4.1.3. Let G and H be multigraphs satisfying (4.1). The zig-zag

product G z LH with labeling L is equal to
(
V,E

)
, where the multiplicity of an

edge {(v, i), (w, j)} is equal to the number of pairs (i′, j′) ∈ V (H)× V (H) such

that {i, i′}, {j, j′} ∈ E(H) and Lv(i
′) = Lw(j′).

By construction, if two replacement products under different labelings are isomorphic,

then so are the zig-zag products under the same labelings. The converse, however, is

not true.

Example 8. Consider the multigraphs G and H, and the labelings L and L′ from

Example 7. It is easily checked by hand or with the Matlab code in Appendix A that

the zig-zag products M = G z LH and M ′ = G z L′ H are both isomorphic to the

graph displayed in Fig. 4.4.

Figure 4.4: The zig-zag products M and M ′.

Based on Example 8, we might conjecture that zig-zag products are independent of

the chosen labeling, but the following counterexample demonstrates the contrary.

However, we will always simplify the notation of a zig-zag product to G z H if the

used labeling is either irrelevant or clear from the context.

Example 9. The multigraphs G and H displayed in Fig. 4.5 satisfy (4.1), because

they are both 3-regular and |V (H)| = 3.

v w

1

2

3

Figure 4.5: The multigraphs G (left) and H (right).

We can thus use the Matlab code in Appendix A to compute the adjacency matrices

CHAPTER 4. ZIG-ZAG PRODUCTS 32

of the zig-zag products G z LH and G z L′ H, where the labelings L and L′ from H

to G are shown in Fig. 4.6.

3

1 1

2 2
3 1

3 1

2 2
3

Figure 4.6: The labelings L (left) and L′ (right).

It turns out that these adjacency matrices are respectively

1 1 1 4 0 2

1 1 1 0 4 2

1 1 1 2 2 2

4 0 2 1 1 1

0 4 2 1 1 1

2 2 2 1 1 1

and

0 0 0 4 2 3

0 4 2 0 2 1

0 2 1 2 2 2

4 0 2 1 1 1

2 2 2 1 1 1

3 1 2 1 1 1

.

We immediately observe that the first zig-zag product contains a loop at every vertex,

whereas the second has a vertex without loop. Hence, the multigraphs G z LH and

G z L′ H cannot be isomorphic.

In Example 9, it is no coincidence that the entries in every row and column of the

adjacency matrices sum to the same value 9.

Proposition 4.1.4. For multigraphs G and H as in (4.1), G z H is r2H-regular.

Proof. This follows immediately from the regularity of H, and the fact that the

choices of i′ and j′ in Definition 4.1.3 are independent of each other.

4.2 Eigenvalues of zig-zag products

The main theorem of this section provides an upper bound for λ(G z H). In

Section 4.3, this result will be the crucial key to show that a carefully constructed

sequence of graphs forms an expander family.

Theorem 4.2.1. Let G and H be non-bipartite multigraphs satisfying (4.1).

Then,

λ(G z H) ≤ r2Hλ(G)

rG
+ rHλ(H) + λ(H)2.

Throughout the whole section, we will give V (G) a fixed ordering v1, . . . , vn and we

will order V = V (G)× V (H) lexicographically, which means that the ordering looks

CHAPTER 4. ZIG-ZAG PRODUCTS 33

like (v1, 1), . . . , (v1, rG), (v2, 1), . . . , (v2, rG), . . . , (vn, 1), . . . , (vn, rG). We respectively

denote Z and N for the adjacency matrices of the graphs with vertex set V and

edges defined as in respectively the first and second bullet of Definition 4.1.2. Note

that Z is a |V (G)||V (H)| × |V (G)||V (H)|-matrix of the special form
B 0 · · · 0

0 B · · · 0
...

...
. . .

...

0 0 · · · B

 ,

where B is the adjacency matrix of the multigraph H. That means Z is independent

of the labeling, whereas N is not.

It so happens that it is possible to entirely repeat the proof of Theorem 3.4.2 for

complex-valued functions, such that we obtain

λ(G z H) = max
f∈L2

0(V)

|〈M(f), f〉|
‖f‖2

, (4.2)

where M is the adjacency operator associated to G z H. The only technical subtlety

is that G z H should be non-bipartite in order to have λn ≤ λ. We can thus prove

Theorem 4.2.1 with a typical Rayleigh–Ritz argument: pick an arbitrary f ∈ L2
0(V)

and find an appropriate upper bound for |〈M(f), f〉|.

Definition 4.2.2. We call f ∈ L2(V) constant on clouds if f(v, i) = f(v, j)

for all v ∈ V (G) and i, j ∈ V (H). We define an operator C : L2(V)→ L2
(
V (G)

)
by

C(f)(v) =
∑

i∈V (H)

f(v, i) for all v ∈ V (G).

The main idea is to decompose each f ∈ L2
0(V) into a part that is constant on clouds

and a part that sums to 0 on clouds.

Definition 4.2.3. For all f ∈ L2
0(V), we define f‖ ∈ L2(V) and f⊥ ∈ L2(V) by

f‖(v, i) =
1

rG

∑
j∈V (H)

f(v, j) and f⊥ = f − f‖.

In other words, f‖(v, i) is the average value of f over the cloud { (v, j) | j ∈ V (H) },
recalling that rG = |V (H)|. Hence, f‖ is constant on clouds and we also see that

C(f⊥)(v) =
∑

i∈V (H)

f(v, i)−
∑

i∈V (H)

f‖(v, i) = 0.

When we regard f‖ and f⊥ as vectors, they are thus respectively parallel and

orthogonal to the constant vector with entries 1, which explains the notation. The

CHAPTER 4. ZIG-ZAG PRODUCTS 34

decomposition allows us to estimate |〈M(f), f〉| by a sum of three terms which each

consist of either a Z or an N .

Lemma 4.2.4. For any f ∈ L2
0(V), the following holds:

|〈M(f), f〉| ≤ r2H |〈N(f‖), f‖〉|+ 2rH‖f‖‖‖Z(f⊥)‖+ ‖Z(f⊥)‖2.

Proof. By construction of the zig-zag product, we have M = ZNZ. Let f ∈ L2
0(V).

The symmetry of Z gives 〈M(f), f〉 = 〈N(Z)(f), Z(f)〉. If g ∈ L2(V) is constant on

clouds, then we have for any (v, i) ∈ V that

Z(g)(v, i) =
∑

(w,j)∈V

z(v,i)(w,j)g(w, j) =
∑

j∈V (H)

z(v,i)(v,j)g(v, i) = rHg(v, i).

In particular, Z(f‖) = rHf
‖. The Cauchy–Schwarz inequality leads to

|〈M(f), f〉| = |〈N(Z)(f‖ + f⊥), Z(f‖ + f⊥)〉|
≤ r2H |〈N(f‖), f‖〉|+ rH‖N(f‖)‖‖Z(f⊥)‖

+ rH‖N(Z)(f⊥)‖‖f‖‖+ ‖N(Z)(f⊥)‖‖Z(f⊥)‖
= r2H |〈N(f‖), f‖〉|+ 2rH‖f‖‖‖Z(f⊥)‖+ ‖Z(f⊥)‖2,

where we used in the last equality that ‖N(h)‖ = ‖h‖ for all h ∈ L2(V). This follows

from the fact that N is a permutation matrix. Indeed, the graph determined by N

is regular of degree 1 by construction.

We now estimate the factors |〈N(f‖), f‖〉| and ‖Z(f⊥)‖ in terms of the eigenvalues

λ(G) and λ(H).

Lemma 4.2.5. If G is non-bipartite, then for any f ∈ L2
0(V):

|〈N(f‖), f‖〉| ≤ λ(G)

rG
‖f‖‖2.

Proof. Suppose g, h ∈ L2(V) such that h is constant on clouds. Then,

〈C(g), C(h)〉 =
∑

v∈V (G)

(∑
i∈V (H)

g(v, i)
)(∑

j∈V (H)

h(v, j)
)

= rG
∑

(v,i)∈V

g(v, i)h(v, i) = rG〈g, h〉.

For any v ∈ V (G), we denote αv = h(v, i) where i ∈ V (H) and we write A for the

adjacency operator associated to the multigraph G. On the one hand we have

A
(
C(h)

)
(v) =

∑
w∈V (G)

avw

(∑
i∈V (H)

h(w, i)
)

= rG
∑

w∈V (G)

αwavw

CHAPTER 4. ZIG-ZAG PRODUCTS 35

and on the other hand we get

C
(
N(h)

)
(v) =

∑
i∈V (H)

∑
(w,j)∈V

n(v,i)(w,j)h(w, j) =
∑

w∈V (G)

αw

(∑
i,j∈V (H)

n(v,i)(w,j)

)
,

where the last summation between brackets is equal to the number of edges in E(G)

between v and w, i.e. avw. Hence, A
(
C(h)

)
= rGC

(
N(h)

)
. For all f ∈ L2

0(V), we

can particularly choose h = f‖. Since C(f⊥) = 0, we obtain C(f) = C(f‖) and

〈N(f‖), f‖〉 =
〈C
(
N(f‖)

)
, C(f‖)〉

rG
=
〈A
(
C(f)

)
, C(f)〉

r2G
.

This finally leads to the desired result by the general counterpart of Eq. (4.2):

|〈N(f‖), f‖〉| ≤ λ(G)

r2G
〈C(f‖), C(f‖)〉 =

λ(G)

rG
‖f‖‖2,

using that C(f) ∈ L2
0

(
V (G)

)
. Indeed,

∑
v∈V (G)C(f)(v) =

∑
(v,i)∈V f(v, i) = 0.

Lemma 4.2.6. If H is non-bipartite, then for any f ∈ L2
0(V):

‖Z(f⊥)‖ ≤ λ(H)‖f⊥‖.

Proof. Let f ∈ L2
0(V). We write f⊥v (i) = f⊥(v, i), such that f⊥v ∈ L2

0

(
V (H)

)
for all

v ∈ V (G). As in the proof of Theorem 3.4.2, we can write f⊥v =
∑n

j=2 αjgj , where

any αj ∈ C and every gj is an eigenvector of B associated to λj(H). Since H is

non-bipartite, we get that ‖B(f⊥v)‖ ≤ λ(H)‖f⊥v ‖ for all v ∈ V (G). Next,

Z(f⊥)(v, i) =
∑

(w,j)∈V

z(v,i)(w,j)f
⊥(w, j) =

∑
j∈V (H)

bijf
⊥(v, j) = B(f⊥v)(i)

for any (v, i) ∈ V and we also compute

‖f⊥‖2 =
∑

(v,i)∈V

f⊥(v, i)f⊥(v, i) =
∑

v∈V (G)

‖f⊥v ‖2.

Combining the above three facts leads to

‖Z(f⊥)‖2 =
∑

(v,i)∈V

B(f⊥v)(i)B(f⊥v)(i) =
∑

v∈V (G)

‖B(f⊥v)‖2 ≤ λ(H)2‖f⊥‖2,

so we are done after taking the square root.

Proof of Theorem 4.2.1. Due to Eq. (4.2), it is sufficient to prove

|〈M(f), f〉|
‖f‖2

≤ r2Hλ(G)

rG
+ rHλ(H) + λ(H)2 for all f ∈ L2

0(V).

CHAPTER 4. ZIG-ZAG PRODUCTS 36

Let f ∈ L2
0(V). Lemmas 4.2.4, 4.2.5 and 4.2.6 immediately give

|〈M(f), f〉|
‖f‖2

≤ r2Hλ(G)

rG
p2 + 2rHλ(H)pq + λ(H)2q2,

where p = ‖f‖‖/‖f‖ and q = ‖f⊥‖/‖f‖. Since f‖ and f⊥ are orthogonal, we obtain

by Pythagoras’ theorem that p2 + q2 = 1. Hence, p, q ≤ 1 and 0 ≤ (p− q)2 = 1− 2pq

or 2pq ≤ 1, which implies the desired result.

To conclude, we note that the original paper [35] states Theorem 4.2.1 in a slightly

different form: given an eigenvalue λ of an r-regular graph, we put λ̃ = λ/r and The-

orem 4.2.1 then results in the more elegant λ̃(G z H) ≤ λ̃(G) + λ̃(H) + λ̃(H)2.

4.3 An explicit expander family

In this section, we present the recursive construction of the Reingold–Vadhan–

Wigderson expander family from [35]. Therefore, we first need a special graph G

that will act as a building block. It will turn out that G should be r-regular and

non-bipartite such that |V (G)| = r4 and λ(G) ≤ r/5. Let us first construct such a

graph.

We consider Z8
p for a fixed prime number p > 35, the direct product of eight copies

of the additive group Zp, which consists of the integers modulo p. The choice of 8

and 35 seems obscure at the moment, but these integers will ultimately do the job.

Next, we define an injective map h : Z2
p → Z8

p by

h(x, y) = (x, xy, xy2, xy3, xy4, xy5, xy6, xy7)

and write S = Im(h). We can now define G = Cay(Z8
p, S), because S is symmetric.

Indeed, the inverse of an element h(x, y) ∈ S is obviously h(−x, y) ∈ S. By

Proposition 2.5.3, we have that G is |S|-regular, hence r = p2. This also settles the

condition |V (G)| = p8 = r4.

We are left to verify that G is non-bipartite and satisfies λ(G) ≤ r/5. Therefore,

we prove two lemmas, in which we write ξ = exp(2πi/p) and denote an element

(z1, . . . , z8) ∈ Z8
p as z. The identity element of Z8

p is written as 0 and we also recall

the usual scalar product a · b = a1b1 + · · ·+ a8b8 for all a, b ∈ Z8
p.

Lemma 4.3.1. All eigenvalues of G are of the following form for some a ∈ Z8
p:

λa =
∑

x,y∈Zp

ξa·h(x,y).

CHAPTER 4. ZIG-ZAG PRODUCTS 37

Proof. Let A be the adjacency operator associated to G. We first show that the

numbers λa are eigenvalues of A with according eigenvectors fa ∈ L2
(
V (G)

)
, defined

by fa(b) = ξa·b for b ∈ Z8
p:

A(fa)(b) =
∑

h(x,y)∈S

fa
(
b+ h(x, y)

)
=
∑

x,y∈Zp

ξa·
(
b+h(x,y)

)
=
∑

x,y∈Zp

fa(b)ξ
a·h(x,y) = λafa(b).

Secondly, we observe that all fa are distinct. Indeed, if fa = fc for some a, c ∈ Z8
p,

then by definition ξ(a−c)·b = 1 and thus p | (a− c) · b for all b ∈ Z8
p. If we now choose

particular elements b with entries 0 except for a 1 on the jth place, then p | (aj − cj).
That means aj − cj = 0 for every 1 ≤ j ≤ 8, i.e. a = c.

As a last step, we show that the set { fa | a ∈ Z8
p } is linearly independent, such that

it becomes a basis of Z8
p. It is sufficient to prove that all eigenvectors fa and fb with

a 6= b are orthogonal. We compute

〈fa, fb〉 =
∑
x∈Zp

ξ(a−b)·x =
1− ξ(a−b)·p

1− ξa−b = 0,

so we are done.

Lemma 4.3.2. Using the notation from Lemma 4.3.1, we have

0 ≤ λa ≤ r/5 for all a 6= 0.

Proof. Fix an a 6= 0. By definition, we have that 0 ≤ λa. We can rewrite λa as

λa =
∑

x,y∈Zp

ξa1xξa2xy · · · ξa8xy7 =
∑

x,y∈Zp

ξ(a1+a2y+···+a8y
7)x.

If we write g(t) = a1 + a2t+ · · ·+ a8t
7, then we have for any fixed y ∈ Zp that

∑
x∈Zp

ξg(y)x =

p if g(y) = 0,

0 if g(y) 6= 0.

The first case is trivial and the second one follows again from the elementary formula

∑
x∈Zp

ξg(y)x =
1− ξg(y)p
1− ξg(y) = 0.

Thus, λa = np where n is the number of roots of g in Zp. But since a 6= 0, the

polynomial g is non-zero and of degree at most 7, so a well-known result from field

theory ensures that n ≤ 7. Recalling that p > 35, we obtain that λa ≤ 7p < p2/5.

CHAPTER 4. ZIG-ZAG PRODUCTS 38

Lemma 4.3.1 and Lemma 4.3.2 directly imply that λ(G) ≤ r/5 and that −r is not an

eigenvalue of G. The latter fact combined with Proposition 3.2.4 and Proposition 3.2.7

shows that G is not bipartite. Before we finally demonstrate how the building block

G is used, we need the concept of powers of multigraphs.

Definition 4.3.3. The mth power of a multigraph G is the multigraph Gm

whose vertex set is V (G) and where the multiplicity of an edge {v, w} is equal to

the number of walks of length m from v ∈ V (G) to w ∈ V (G).

For any fixed ordering of V (G), it is known that the adjacency matrix of Gm is equal

to Am, where A is the adjacency matrix of G (refer for example to [7]). Specifically,

the square of a multigraph, i.e. m = 2, will play an important role in the

construction of the Reingold–Vadhan–Wigderson expander family. We will therefore

investigate it a bit more on the basis of an easy example.

Example 10. Given a suitable ordering of the vertices, the adjacency matrices of

the cycle graph C4 and its square are respectively
0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 and

2 0 0 2

0 2 2 0

0 2 2 0

2 0 0 2

 .

We observe that C2
4 contains both loops and multiple edges, so it is a multigraph. It

is easily seen that the former holds in general: the square of a (multi)graph with a

non-empty edge set contains at least one loop.

Proposition 4.3.4. If a graph G has eigenvalues λ1, . . . , λn, then the multigraph

Gm has eigenvalues λm1 , . . . , λ
m
n .

Proof. Let A be the adjacency matrix of G. There exists a matrix B such that

BAB−1 is diagonal with diagonal entries λ1, . . . , λn. Thus, BAmB−1 is diagonal

with diagonal entries λm1 , . . . , λ
m
n . Using a similar argument as in the proof of

Proposition 3.2.4, we see that Am and BAmB−1 share the same eigenvalues.

At long last, we have all the tools at our disposal to define the Reingold–Vadhan–

Wigderson expander family and show that it is indeed an expander family.

CHAPTER 4. ZIG-ZAG PRODUCTS 39

Theorem 4.3.5. Let G be the graph that was defined at the beginning of this

section. The following sequence of multigraphs (Gn)n is an expander family:

G1 = G2 and Gn+1 = G2
n z G,

where the zig-zag product is formed using an arbitrary labeling from G to G2
n.

Taking the zig-zag product is allowed, because G2
n is regular of degree |V (G)| = p8

for every n ≥ 1. Indeed, G1 is regular of degree r2 = p4, so G2
1 is p8-regular, and Gn

is regular of degree r2 = p4 by Proposition 4.1.4, hence G2
n is p8-regular for all n > 1.

Also, Example 10 demonstrates the need for multigraphs.

Proof of Theorem 4.3.5. First, we have |V (Gn)| → ∞ as n → ∞, because it

follows by induction that |V (Gn)| = p8n. Indeed, |V (G1)| = p8 by definition of a

Cayley graph and if we assume that |V (Gn−1)| = p8(n−1), then we obtain

|V (Gn)| = |V (G2
n−1)||V (G)| = p8(n−1)p8 = p8n.

We have already checked that every Gn is p4-regular, so we are left to prove that

the spectral gaps of all Gn are bounded away from 0 (recall Corollary 3.2.10). It

is sufficient to show that λ(Gn) ≤ 2p4/5 for all n ≥ 1, since this implies that the

spectral gap of Gn is bigger than p4 − 2p4/5 > 0. We use induction once more. The

base case follows from Proposition 4.3.4 and the crucial property λ(G) ≤ p2/5:

λ(G1) = λ(G)2 ≤ p4

25
≤ 2p4

5
.

For the induction step, we assume that λ(Gn) ≤ 2p4/5. Since G2
n and G are

non-bipartite, Theorem 4.2.1 implies

λ(Gn+1) ≤
r2λ(G2

n)

p8
+ rλ(G) + λ(G)2 ≤ 4r2

25
+
r2

5
+
r2

25
=

2p4

5
,

where we again used Proposition 4.3.4 in the first term of the second inequality.

To conclude, we may ask ourselves whether the miraculous numbers 8 and 35 are

the only possible choice for constructing an expander family in the way we did. At

first sight, we might try to modify the map h and repeat all proofs for other integers.

Apart from the estimates, though, it seems tricky to fulfil all the required conditions

for the subsequent zig-zag products. Maybe there is a deeper connection between 8,

35 and the zig-zag product after all?

Chapter 5

Key predistribution schemes

We now present in historical order several milestones in the study of key predistri-

bution. All the discussed KPSs had and still have a major impact on the research

field. For Sections 5.1 and 5.2 we mainly consulted [27,28,39], the formulas for the

connectivity and resilience in Section 5.3 are from [18], and Section 5.4 is based

on [16,20].

5.1 Blom key predistribution scheme

In 1985, Blom suggested the earliest combinatorial KPS in [4]. As will become

clear later on, Blom’s proposal does not strictly conform to what we defined as a

KPS. Indeed, instead of keys, nodes store secret information that allows them to

compute keys themselves. This storage reduction comes at the cost of a computational

overhead for key establishment: it requires a particular polynomial evaluation. We

will, however, call Blom’s scheme a KPS nevertheless, since it inspired many KPSs

in the more recent literature (see [13] for example).

Blom’s scheme is S-unconditionally secure, which means that an adversary can-

not compute any partial information about the keys of uncompromised nodes in

polynomial time until a certain threshold S is exceeded. The complete pairwise KPS

is (n− 2)-unconditionally secure, but recall from Example 2 that we should try to

reduce the amount of keys that need to be stored. The Blom KPS does precisely that,

while still allowing each pair of nodes Ni and Nj to compute a secret key Kij .

In general, S-unconditionally secure KPSs pre-specify a security parameter S,

which is independent of the network size n. By definition, the network is perfectly

resilient to node compromise until S + 1 nodes have been compromised; at this point

the entire network’s communications are compromised. Differently stated, fails = 0

40

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 41

for all 1 ≤ s ≤ S and fails = 1 when S + 1 ≤ s ≤ n− 2. For each pair of nodes Ni

and Nj , the security condition thus becomes: compromising a set of at most S nodes

that is disjoint from {Ni, Nj} must not reveal any information about Kij .

The key space in the Blom KPS is a finite field Fp, where p ≥ n is a publicly known

prime. The trusted authority transmits S + 1 elements of Fp to each node over a

secure channel, as opposed to n− 1 elements in the complete pairwise KPS. In order

to obtain some intuition, we first present the special case where S = 1.

Definition 5.1.1. The Blom KPS for S = 1 works as follows:

(1) A unique publicly known element rN ∈ Fp is assigned to every node N .

(2) The trusted authority chooses three random elements a, b, c ∈ Fp and forms

the bivariate polynomial f ∈ Fp[x, y], which is defined as

f(x, y) = a+ b(x+ y) + cxy mod p.

(3) All nodes N are preloaded with the two coefficients of f(x, rN) mod p.

(4) Two nodes Ni and Nj communicate with the common key

Kij = f(rNj , rNi) mod p.

Note that the first step is possible, because p ≥ n. It is crucial that the polynomial

f in the second step is symmetric, i.e. f(x, y) = f(y, x) for all x, y ∈ Fp, because it

ensures that the common key in the last step is well-defined. Indeed,

Kij = f(rNi , rNj) mod p = Kji.

The polynomial f(x, rN) = (a+ brN) + (b+ crN)x mod p is computed by the trusted

authority before securely transmitting its coefficients, so every node N only stores

the values

aN = a+ brN mod p and bN = b+ crN mod p,

which means that the elements a, b and c remain private. The following example

illustrates this protocol.

Example 11. Suppose that we have a network of size n = 10, which contains the

nodes Ni, Nj and Nk. The trusted authority chooses p = 11, rNi = 3, rNj = 6 and

rNk
= 8, and fixes the polynomial

f(x, y) = 4 + 1(x+ y) + 6xy.

After sending the appropriate coefficients to Ni, Nj and Nk, the aforementioned

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 42

nodes can compute their communication keys

Kij = 4 + 1 · (3 + 6) + 6 · 3 · 6 mod 11 = 0,

Kik = 4 + 1 · (3 + 8) + 6 · 3 · 8 mod 11 = 5,

Kjk = 4 + 1 · (6 + 8) + 6 · 6 · 8 mod 11 = 9.

In this case, all parameters were chosen at random by the Matlab function in

Appendix A.2. In fact, the code computes a common key for every pair of nodes in

the network, which is depicted in Fig. A.1.

We now prove that an adversary who compromised one node cannot determine the

common key of two other nodes.

Proposition 5.1.2. The Blom KPS is 1-unconditionally secure.

Proof. Suppose that an adversary compromised the node Nk, which means that he

knows the values aNk
and bNk

. We will show that this information is consistent with

any possible value K ∈ Fp of the key Kij (where k 6= i, j), because this would imply

that the adversary cannot rule out any values for Kij . Consider1 rNi + rNj rNirNj

1 rNj 0

0 1 rNj

ab
c

 =

 K

aNk

bNk

 .

The determinant of the first matrix is equal to

r2Nk
− (rNi + rNj)rNk

+ rNirNj = (rNk
− rNi)(rNk

− rNj).

Since rNi 6= rNk
6= rNj by construction, this determinant is non-zero in Fp. Therefore,

the equation has a unique solution for a, b and c in Fp, which shows the desired

result.

On the other hand, figuring out the information stored in two nodes suffices to

compromise every node in the network.

Proposition 5.1.3. The Blom KPS with S = 1 can be broken by an adversary

who compromised two nodes.

Proof. If an adversary compromised two nodes Ni and Nj , then he knows the values

aNi = a+ brNi mod p,

aNj = a+ brNj mod p,

bNi = b+ crNi mod p,

bNj = b+ crNj mod p.

Solving these four equations in three unknowns for a, b and c delivers f(x, y), which

allows the computation of each common key in the network.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 43

Example 12. Consider the network from Example 11 once more. Suppose that an

adversary compromised the nodes Ni and Nj . Then,

a+ 3b = aNi = 4 + 1 · 3 mod 11 = 7,

a+ 6b = aNj = 4 + 1 · 6 mod 11 = 10,

b+ 3c = bNi = 1 + 6 · 3 mod 11 = 8,

b+ 6c = bNj = 1 + 6 · 6 mod 11 = 2.

are known. The first two equations give b ≡ 1 (mod 11), so b = 1 since b ∈ F11. It

then immediately follows from the other equations, say the first and the third, that

a = 4 and c = 6, which were indeed the chosen parameters.

We will now generalize the Blom KPS to larger security parameters S. Definition 5.1.1

remains almost unchanged; the only thing that changes is the polynomial f(x, y).

Of course, it should still be symmetric.

Definition 5.1.4. The Blom KPS with security parameter S works as follows:

(1) A unique publicly known element rN ∈ Fp is assigned to every node N .

(2) The trusted authority chooses random elements aij ∈ Fp where aij = aji

for all 0 ≤ i, j ≤ S. A bivariate polynomial f ∈ Fp[x, y] is defined as

f(x, y) =

S∑
i=0

S∑
j=0

aijx
iyj mod p.

(3) All nodes N are preloaded with the coefficient vector of f(x, rN) mod p.

(4) Two nodes Ni and Nj communicate with the common key

Kij = f(rNj , rNi) mod p.

We observe that a00, a01 = a10 and a11 respectively correspond to the parameters a,

b and c for the case S = 1. Note that every node N is preloaded with a vector of

length S + 1 whose ith entry is given by

S∑
j=0

aijr
j
N mod p.

We are left to prove the claimed S-unconditional security of the general Blom KPS.

We will first show that S + 1 compromised nodes can break the scheme. Instead

of modifying the attack from the case S = 1, we will make use of the well-known

interpolation formula for polynomials. The following is a modification of the theorem

and proof in [2]. For brevity, we write x/y instead of xy−1 for all x, y ∈ Fp.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 44

Theorem 5.1.5 (Lagrange’s interpolation theorem). Let x1, x2, . . . , xn be dis-

tinct elements in the finite field Fp and let y1, y2, . . . , yn be not necessarily distinct

elements in Fp. Then there is a unique P ∈ Fp[x] of degree at most n− 1 such

that P (xi) = yi for all 1 ≤ i ≤ n. This polynomial is given by

P (x) =

n∑
i=1

yi
∏

1≤j≤n
i 6=j

x− xj
xi − xj

.

Proof. Fix an 1 ≤ i ≤ n. Since all elements xj are distinct, we have that xi−xj 6= 0

for every 1 ≤ j ≤ n where i 6= j. Therefore, the polynomial

Qi(x) =
∏

1≤j≤n
i 6=j

x− xj
xi − xj

is well-defined and has degree n− 1. We observe that Qi(xj) = 0 if i 6= j, because

one of the factors in the nominator will be zero. Also, Qi(xi) = 1 so it follows that

P satisfies the requirements. Suppose that there is another polynomial Q ∈ Fp[x]

with the same properties. Then, P −Q is of degree n− 1 and has n distinct roots,

which is only possible if P −Q = 0 by the fundamental theorem of algebra.

Lagrange’s interpolation theorem also has a bivariate form, which is proven in

precisely the same way.

Theorem 5.1.6. Let x1, x2, . . . , xn be distinct elements in the finite field Fp
and let y1(x), y2(x), . . . , yn(x) be not necessarily distinct polynomials in Fp[x] of

degree at most n− 1. Then there is a unique P ∈ Fp[x, y] of degree at most n− 1

such that P (x, xi) = yi(x) for all 1 ≤ i ≤ n, namely

P (x, y) =
n∑
i=1

yi(x)
∏

1≤j≤n
i 6=j

y − xj
xi − xj

.

It now becomes very straightforward to show that the Blom KPS is broken if S + 1

nodes are compromised.

Proposition 5.1.7. The Blom KPS can be broken by an adversary who com-

promised S + 1 nodes.

Proof. Suppose an adversary has compromised the nodesN1, . . . , NS+1, which means

he knows the distinct elements rN1 , . . . , rNS+1
and the polynomials f(x, rNi) mod p

for 1 ≤ i ≤ S+1. Applying Theorem 5.1.6 delivers the desired polynomial f(x, y).

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 45

Example 13. Suppose we have a network of size n = 10, which uses the Blom KPS

with S = 3, p = 11 and parameters
6 10 6 10

10 7 9 1

6 9 8 7

10 1 7 5

 ,

where the entry in the ith row and jth column represents a(i−1)(j−1). Let the network

contain four compromised nodes N1, N2, N3 and N4, whose publicly known identifiers

are respectively rN1 = 0, rN2 = 2, rN3 = 4 and rN4 = 6. That means the adversary

knows the polynomials

y1(x) = f(x, rN1) = 10x3 + 6x2 + 10x+ 6,

y2(x) = f(x, rN2) = 3x3 + 2x2 + 2x+ 9,

y3(x) = f(x, rN3) = 6x3 + 2x2 + 4x+ 1,

y4(x) = f(x, rN4) = 6x3 + x2 + 9x.

It is easy to verify this by hand or by using part of the code for the general Blom

KPS in Appendix A.2. Polynomial interpolation then leads to

f(x, y) = 5x3y3 + 7x3y2 + x3y + 10x3 + 7x2y3 + 8x2y2 + 9x2y

+ 6x2 + xy3 + 9xy2 + 7xy + 10x+ 10y3 + 6y2 + 10y + 6,

as shown in Appendix A.2. This polynomial corresponds precisely to the param-

eter matrix above, which means that the adversary is now able to intercept all

communications in the network.

To end this section, we finally prove that compromising S nodes does not reveal any

information about the common keys of uncompromised nodes. Of course, the same

then also holds when less nodes have been compromised.

Proposition 5.1.8. The Blom KPS is S-unconditionally secure.

Proof. Suppose that an adversary has compromised the nodes N1, . . . , NS , which

means he knows the polynomials f(x, rNk
) mod p for every 1 ≤ k ≤ S. We will show

that this information is consistent with any possible value of the common key Kij of

two uncompromised nodes Ni and Nj . Let K ∈ Fp be chosen at random and define

the polynomial

g(x, y) = f(x, y) + (K −Kij)
∏

1≤k≤S

(x− rNk
)(y − rNk

)

(rNi − rNk
)(rNj − rNk

)
.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 46

We note that g is symmetric, because both terms in its definition are symmetric.

Also, g(x, rNk
) = f(x, rNk

) for all 1 ≤ k ≤ S, and

g(rNi , rNj) = f(rNi , rNj) +K −Kij = K.

Thus, for any possible value K of the key Kij there is a polynomial g that is

consistent with the information known to the adversary. It is therefore impossible

for the adversary to rule out any values of Kij .

The major drawback of the Blom KPS is the sharp security threshold which must

be specified, namely the security parameter S. However, it is optimal with respect

to key storage, because it has been proven in [5] that any S-unconditionally secure

KPS requires a key storage of at least S + 1.

5.2 Key distribution patterns

We now discuss the first combinatorial approaches for key predistribution without

any computational overhead, dating from 1987 in [30]. We still consider a network

with n nodes N1, . . . , Nn and we would still like to obtain a complete network. The

general idea is as follows: a trusted authority chooses m elements K1, . . . ,Km from

an additive abelian group G and assigns a different subset of these keys to each node,

such that any pair of nodes has some keys in common. The latter requirement allows

each two nodes to determine a common key for communication.

Definition 5.2.1. A key distribution pattern (KDP) is a public m × n-

matrix M with binary entries, which specifies which nodes are to receive which

keys. Namely, the node Nj is given the key Ki if and only if M(i, j) = 1.

We denote Sj = { 1 ≤ i ≤ m |M(i, j) = 1 } for any 1 ≤ j ≤ n, i.e. Sj is the index set

of the keys assigned to the node Nj . For any set of nodes N , we define

S(N) =
⋂

Nj∈N
Sj and KN =

∑
j∈S(N)

Kj

if S(N) 6= ∅, where the addition takes place in G. We call KN the group key,

because each node in N can compute it independently. Indeed, S(N) contains

precisely those indices of the keys that every node in N stores.

Note that sets N consisting of only two nodes Ni and Nj are actually sufficient for

our purposes and in that case we will denote Kij = K{Ni,Nj} as usual. However, the

original framework of KDPs permits the construction of group keys for larger node

collections, so we will work in this extended setting.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 47

Proposition 5.2.2. Let N and P be two sets of nodes. Then, an adversary who

compromised every node in P can compute KN if and only if

S(N) ⊆
⋃
Nj∈P

S(Nj). (5.1)

Proof. If there exists a node Nj ∈ N ∩ P , then the adversary can determine KN by

testing all summations of the keys of Nj , so we may assume that N ∩ P = ∅. It is

clear that the adversary can compute KN if (5.1) holds, because the compromised

nodes collectively hold all the required keys. Conversely, if (5.1) does not hold, then

there is an element i ∈ S(N) such that

i /∈
⋃
Nj∈P

S(Nj).

Since KN is a sum of which one of the terms is Ki, the adversary has no information

about the group key’s value.

Example 14. Suppose that n = 4, m = 6 and the KDP is

M =

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

.

We then have S3 = {2, 4, 6} and S4 = {3, 5, 6}, hence K34 = K6. Similarly, we obtain

K12 = K1, K13 = K2, K14 = K3, K23 = K4 and K24 = K5.

It is possible to extend Example 14 to an arbitrary number of n nodes. Indeed, it is

always possible to construct an
(
n
2

)
×n-matrix such that any two nodes in the resulting

KDP have exactly one common key, which acts as the group key. Such a KDP

requires every node to store n− 1 keys and is perfectly resilient to node compromise.

However, this is just the complete pairwise KPS from Example 2 in disguise, so we

have not gained anything. We therefore try to find certain combinatorial properties

for the KDP such that it becomes perfectly resilient against the compromise of S

nodes where 1 ≤ S ≤ n, similar to the Blom KPS.

Definition 5.2.3. A Fiat–Naor S-KDP is a KDP whose rows are all possible

binary vectors of length n with at most S zeros.

Note that a Fiat–Naor S-KDP is thus an m× n-matrix, where m =
∑S

i=0

(
n
i

)
. By

definition, any set of at least n− S nodes is assigned a unique key.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 48

Proposition 5.2.4. Given a Fiat–Naor S-KDP, there exists a group key for

any set of nodes N , such that N is perfectly resilient to the compromise of at

most S other nodes.

Proof. Let P be a set of compromised nodes such that N ∩ P = ∅ and |P | ≤ S.

That means |P c| ≥ n− S, so there exists a key Ki that is only given to the nodes

in P c. Since N ⊆ P c, all nodes in N were assigned Ki and we see that (5.1) is not

satisfied.

Example 15. For n = 6 and S = 1, we have m =
(
6
0

)
+
(
6
1

)
= 7 and the Fiat–Naor

1-KDP is then the m× n-matrix

1 1 1 1 1 1

1 1 1 1 1 0

1 1 1 1 0 1

1 1 1 0 1 1

1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1

.

Suppose that P = {N1, N2, N3} is a set of uncompromised nodes. Their group key is

KP = K1 +K2 +K3 +K4 and no other node can compute this value, since none of

them is assigned K2, K3 and K4 simultaneously.

Definition 5.2.5. A Mitchell–Piper (t, S)-KDP is a KDP that yields a group

key for every set N of exactly t nodes, such that N is perfectly resistent to the

compromise of at most S nodes.

We show that such KDPs exist with the probabilistic method. This approach was

initiated by Paul Erdős and is covered in full in [1]. The general idea is as follows:

in order to prove the existence of a combinatorial structure with certain properties,

one constructs an appropriate probability space and shows that a randomly chosen

element in this space has the desired properties with positive probability.

Definition 5.2.6. A set system (X,B) is called a (t, S)-cover-free family if

for any disjoint N,P ⊂ B with |N | = t and |P | = S we have⋂
Bi∈N

Bi 6⊆
⋃
Bj∈P

Bj .

For brevity, we write that (X,B) is a (t, S)-CFF(m,n).

The next theorem links cover-free families and Mitchell–Piper KDPs.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 49

Theorem 5.2.7. Let M be an KDP of dimensions m×n. Then, M is a Mitchell–

Piper (t, S)-KDP if and only if M is the incidence matrix of a (t, S)-CFF(m,n).

Proof. Let M be a Mitchell–Piper (t, S)-KDP. Consider the set system (X,B)

where X = {K1, . . . ,Km} and B = {S1, . . . , Sn}. The definitions imply that the

incidence matrix of (X,B) is precisely M . Also, (X,B) is a (t, S)-CFF(m,n), since

for any N,P ⊂ B where |N | = t and |P | = S we have⋂
Si∈N

Si = S(N) 6⊆
⋃
Sj∈P

Sj

because of Proposition 5.2.2. The converse follows directly from Proposition 5.2.2.

This connection with cover-free families is very interesting, because there are many

known constructions for the latter in the literature. However, we restrict ourselves

to a non-constructive existence proof as mentioned earlier.

Theorem 5.2.8. A (t, S)-CFF(m,n) exists if

m >
(t+ S) log n

− log pt,S
where pt,S = 1− ttSS

(t+ S)t+S
.

Proof. Let M be an m× n-matrix whose columns are labeled 1, . . . , n. An entry of

M is defined to be 1 with probability ρ and 0 with probability 1− ρ. We will later

determine a specific optimal value for 0 < ρ < 1. Suppose that N,P ⊆ {1, . . . , n},
where |N | = t, |P | = S and N ∩ P = ∅. We say that a row i of M satisfies the

property γ(N,P, i) if the entries of the columns in respectively N and P are all 1

and 0. Next, we define the random variable X as

X(N,P) =

0 if γ(N,P, i) is satisfied for a certain row i,

1 otherwise.

We observe the following equivalent statements:

(1) M is the incidence matrix of a (t, S)-CFF(m,n)

(2) for all N and P , we have
⋂
Bi∈N Bi 6⊆

⋃
Bj∈P Bj

(3) for all N and P , there exists an xl ∈
⋂
Bi∈N Bi such that xl /∈ Bj for all Bj ∈ P

(4) for all N and P , γ(N,P, l) is satisfied for a certain 1 ≤ l ≤ m, i.e. X(N,P) = 0.

For fixed subsets N and P , the probability that γ(N,P, i) does not hold for any

1 ≤ i ≤ m is equal to

E[X(N,P)] =
(
1− ρt(1− ρ)S

)m
.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 50

In order to minimize E[X(N,P)], we have to maximise 1− ρt(1− ρ)S , so we should

choose ρ such that

tρt−1(1− ρ)S − ρtS(1− ρ)S−1 = 0,

that is ρ = t/(t+ S). We define I =
{

(N,P)
∣∣ |N | = t, |P | = S,N ∩ P = ∅

}
and

X =
∑
I

X(N,P).

The above equivalences imply that M is the incidence matrix of a (t, S)-CFF(m,n)

if and only if X = 0. It is sufficient to choose values for all parameters such that

E[X] = P(X = 1) < 1, since then P(X = 0) > 0. We compute

E[X] =
∑
I

E[X(N,P)] =

(
n

t

)(
n− t
S

)(
1− ρt(1− ρ)S

)m
=

(
n

t

)(
n− t
S

)(
1− ttSS

(t+ S)t+S

)m
≤ nt+S

(
1− ttSS

(t+ S)t+S

)m
.

Writing pt,S as in the statement, we obtain that E[X] < 1 if and only if

(t+ S) log n+m log pt,S < 0,

which is precisely the desired condition after reordering.

5.3 Random key predistribution schemes

After the discovery of many elegant combinatorial KPSs, such as the Blom KPS,

the interest in key predistribution faded. The evolution of wireless technologies in

recent years led to a resurgence of research and completely different approaches. In

2002, Eschenauer and Gligor presented the first random KPS in [15]. Their scheme is

pretty straightforward, but provides good trade-offs for many WSN scenarios.

Definition 5.3.1. The Eschenauer–Gligor KPS works as follows. A key

pool K of keys is generated from the space of all possible keys. Each node is

independently assigned a uniformly random subset of k distinct keys from K.

If nodes have more than one key in common, then they should select a single one

at random to use for communication. For further analysis later on, we denote d

for the maximum number of common keys that two nodes may use to secure their

communications. Thus, in general q ≤ d ≤ k, and for the Eschenauer–Gligor KPS we

have d = q = 1. We first compute the probability that two nodes are connected.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 51

Proposition 5.3.2. For the Eschenauer–Gligor KPS with key pool K, we have

Pr1 = 1−
(|K|−k

k

)(|K|
k

) .

Proof. Suppose that two nodes Ni and Nj respectively store the key sets Si and Sj .

Then, the probability that they share a key is equal to

Pr1 = 1− P(Si ∩ Sj = ∅).

If Si ∩ Sj = ∅, then the k keys in Sj must have been picked from K \ Si, for which

there are
(|K|−k

k

)
ways. There are

(|K|
k

)
ways to pick Si, so the result follows.

The networks that result from the Eschenauer–Gligor KPS are not necessarily

complete, since Pr1 < 1. Even worse, they may be disconnected. This is demonstrated

in Appendix A.3. Based on the results of Erdős and Rényi on random graphs in [14],

it is however possible to choose the parameters |K| and n in such a way that a

network becomes connected with a high probability. It is even stated in [20] that

random KPSs provide key graphs with good expansion with high probability.

In their paper [15], Eschenauer and Gligor do not give a formula for fails. Instead,

they simulate a network with n = 1000, k = 40 and |K| = 10,000, and observe that

only 50% of the keys from the key pool were used to secure links: 30% were used to

secure a single link, 10% to secure two links and 5% to secure three links. Thus, the

compromise of a single key compromises one other link with probability 0.1.

Proposition 5.3.3. For the Eschenauer–Gligor KPS with key pool K, we have

fails = 1−
(

1− k

|K|
)s

for all 1 ≤ s ≤ n− 2.

Proof. Let Ni and Nj be two uncompromised nodes that share a key Kij . Suppose

that the adversary has compromised the nodes Nl for 1 ≤ l ≤ s, which respectively

store the uniformly random sets Sl ⊂ K of size k. Note that

P(Kij /∈ S1) =

(|K|−1
k

)(|K|
k

) = 1− k

|K| .

Denoting S = S1 ∪ · · · ∪ Ss, we obtain

fails = P(Kij ∈ S) = 1− P(Kij /∈ S) = 1− P(Kij /∈ S1)s,

where we used the independence of the sets Sl in the last equality.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 52

Since the Eschenauer–Gligor KPS uses the same key pool K for all nodes, the security

of the network gradually erodes as keys from K are compromised by an adversary.

That motivated the development of random KPSs with better resilience. In [9], Chan

et al. extended the Eschenauer–Gligor KPS.

Definition 5.3.4. The q-composite KPS is identical to the Eschenauer–Gligor

KPS, except that it requires nodes to have at least q > 1 common keys in order

to be connected and d = k.

Suppose that two nodes Ni and Nj have c common keys K1, . . . ,Kc, where q ≤ c ≤ k.

Their communication key Kij can then be computed with an appropriate function h

such as a hash function (see [39] for more on hashes), that is

Kij = h(K1, . . . ,Kc),

such that an adversary needs to learn c > 1 keys in order to compromise the

link. Intuitively, the resilience in the q-composite KPS is thus better than in the

Eschenauer–Gligor KPS where q = d = 1. However, the connectivity is worse for the

same key pool size and key storage, because nodes are less likely connected in the

case q > 1. We will formally prove the latter statement first.

Proposition 5.3.5. In a q-composite scheme with key pool K, we have

Pr1 = 1−
q−1∑
i=0

p(i) where p(i) =

(|K|−k
k−i

)(
k
i

)(|K|
k

)
is the probability that two nodes share exactly i keys.

Proof. Two nodes N1 and N2 do not have a secure connection if they share i keys

where 0 ≤ i ≤ q − 1. In order to compute the probabilities p(i), we fix the i keys

from N1 that N2 shares. That means N2 has k− i keys chosen from the |K| − k keys

that are unknown to N1. There are
(|K|−k
k−i

)
ways to do this, out of the

(|K|
k

)
ways to

choose keys for N2. The result follows from the fact that there are
(
k
i

)
ways to fix

the i keys from N1.

Note that the formula in Proposition 5.3.5 agrees with the one in Proposition 5.3.2.

Indeed, if q = 1 then we obtain

Pr1 = 1− p(0) = 1−
(|K|−k

k

)(|K|
k

) .

We now present a formula for the resilience in the q-composite KPS, following [18].

Actually, this formula for fails holds for any random KPS with a construction similar

to the q-composite KPS. Specifically, it applies to all random KPSs where

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 53

(1) each node is allocated k keys, which are selected independently, uniformly at

random and without replacement from a key pool;

(2) nodes may only establish a common key if they share at least q ≥ 1 keys;

(3) if two nodes share more than d keys where q ≤ d ≤ k, then they should

randomly pick d of their keys for the computation of their communication key;

(4) the function for producing the communication key from c common keys is such

that an adversary must know all c keys to compromise the link.

Proposition 5.3.6. Any random KPS that fulfils the above conditions (1)-(4)

has a resilience given by

fails =
1

Pr1

d∑
c=q

(
1−

c∑
i=1

(−1)i−1
(
c

i

)(|K|−i
k

)s(|K|
k

)s) p(c) +

1

Pr1

(
1−

d∑
i=1

(−1)i−1
(
d

i

)(|K|−i
k

)s(|K|
k

)s) k∑
c=d+1

p(c).

Proof. Consider a pair of uncompromised nodes with c common keys K1, . . . ,Kc,

where q ≤ c ≤ d. The probability that all these keys are known to an adversary who

compromised s nodes N1, . . . , Ns is

P
(
{K1, . . . ,Kc} ⊂ S

)
= 1− P

(c⋃
i=1

{Ki /∈ S}
)
,

where S has the same meaning as in the proof of Proposition 5.3.3. By the law of

inclusion and exclusion, we get

P
(
{K1, . . . ,Kc} ⊂ S

)
= 1−

c∑
i=1

(−1)i+1

(
c

i

)
P
(
{K1, . . . ,Ki} 6⊂ S

)
= 1−

c∑
i=1

(−1)i+1

(
c

i

)
P
(s⋂
j=1

{K1, . . . ,Ki} 6⊂ Sj
)

= 1−
c∑
i=1

(−1)i+1

(
c

i

)(|K|−i
k

)s(|K|
k

)s .

The probability of the randomly chosen uncompromised nodes is p(c)/Pr1, so

fails =
1

Pr1

d∑
c=q

(
1−

c∑
i=1

(−1)i−1
(
c

i

)(n−i
k

)s(
n
k

)s) p(c)
for q ≤ c ≤ d. If d < c ≤ k, then the probability of two connected nodes sharing c

keys is also p(c)/Pr1, but only d keys will be used for the computation of a common

key. We already know that

P
(
{K1, . . . ,Kd} ⊂ S

)
= 1−

d∑
i=1

(−1)i+1

(
d

i

)(|K|−i
k

)s(|K|
k

)s

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 54

from the previous calculating, so we obtain for d < c ≤ k that

fails =
1

Pr1

(
1−

d∑
i=1

(−1)i−1
(
d

i

)(n−i
k

)s(
n
k

)s) k∑
c=d+1

p(c).

Adding the two results gives the final formula for fails.

We can easily verify that this formula agrees with the one given in Proposition 5.3.3:

for q = d = 1, we obtain

fails =
1

Pr1

(
1−

(|K|−1
k

)s(|K|
k

)s)
p(1) +

1

Pr1

(
1−

(|K|−1
k

)s(|K|
k

)s) k∑
c=2

p(c)

= 1−
(

1− k

|K|
)s
,

where the last equality follows from
∑k

c=1 p(c) = Pr1 by definition of Pr1. The

formula for the resilience of the q-composite KPS also follows immediately.

Corollary 5.3.7. For the q-composite KPS with key pool K, we have

fails =
1

Pr1

k∑
c=q

(
1−

c∑
i=1

(−1)i−1
(
c

i

)(|K|−i
k

)s(|K|
k

)s) p(c).

Proof. Setting d = k in Proposition 5.3.6, we observe that the summation from

c = k + 1 to c = k in the second term vanishes, leaving only the first term.

5.4 Combinatorial designs

The major drawback of random key predistribution is that it cannot guarantee with

absolute certainty that the network satisfies desired properties, such as connectedness

or good expansion. Deterministic KPSs, on the other hand, do have this advantage,

which often facilitates the analysis. This provoked a second rise of combinatorial

key predistribution [28]. Many of the proposed deterministic KPSs are based on

combinatorial designs that have the property of being a configuration.

Definition 5.4.1. A design (X,B) where |X| = n and |B| = m is called

an (n,m, r, k)-configuration if it is r-regular and k-uniform, and any pair of

distinct points occurs in at most one block.

Configurations allow some flexibility, because their graphs are not necessarily com-

plete, contrary to the more restrictive KDPs.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 55

Proposition 5.4.2. The graph of an (n,m, r, k)-configuration is k(r−1)-regular.

Proof. Let v be a vertex in the graph of a configuration, which corresponds to the

block B. By definition, B is of size k and any point x ∈ B appears in r − 1 other

blocks. Hence, it follows that deg(v) = k(r − 1).

Proposition 5.4.3. For an (n,m, r, k)-configuration, we have ε ≈ k(r− 1)/2 if

m is large.

Proof. We know from Proposition 5.4.2 that any point is k(r− 1)-regular. Thus, for

every S ⊂ V we have E(S, Sc) = |S|k(r− 1)− 2E(S, S). We now try to approximate

E(S, S). Let vi and vj be two vertices in S, and denote Si and Sj for the key sets of

their corresponding nodes Ni and Nj . We write Si = {K1, . . . ,Kk} and define the

random variables

Xl =

1 if Kl ∈ Sj ,
0 otherwise,

for 1 ≤ l ≤ k. Then X =
∑k

l=1Xl is the number of edges between vi and vj . Since

P(Kl ∈ Sj) = (r − 1)/(m− 1), the linearity of expectation gives

E[X] =
k∑
l=1

P(Kl ∈ Sj) =
k(r − 1)

m− 1
.

The expected number of edges with endpoints in S is thus
(|S|

2

)k(r−1)
m−1 , so we obtain

ε ≈ min
{
k(r − 1)− 2

|S|

(|S|
2

)
k(r − 1)

m− 1

∣∣∣ S ⊂ V, 1 ≤ |S| ≤ m

2

}
= min

{
k(r − 1)

(
1− |S| − 1

m− 1

) ∣∣∣ S ⊂ V, 1 ≤ |S| ≤ m

2

}
= k(r − 1)

(
1− b

m
2 c − 1

m− 1

)
≈ k(r − 1)

2
,

The approximation in the last line holds for large m, because (bm2 c − 1)/(m − 1)

converges to 1/2 as m→∞.

In practice k(r − 1)/2 > 1, so KPSs that are based on configurations have a large

expected expansion coefficient. However, the following example illustrates that good

expansion is not guaranteed.

Example 16. Consider the (6, 6, 2, 2)-configuration whose graph is given in Fig. 5.1.

Since the graph is disconnected, we have ε = 0, so the configuration is no expander.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 56

{1, 2} {1, 3} {5, 6}

{2, 3} {4, 5} {4, 6}

Figure 5.1: A disconnected configuration graph.

Example 16 shows that we require connected configuration graphs if we want to

construct KPSs that are based on configurations. In order to guarantee this connect-

edness, two new classes of configurations were introduced: µ-common intersection

designs and strongly regular graphs.

Definition 5.4.4. An (n,m, r, k)-configuration (X,B) is called a µ-common

intersection design if for any two disjoint blocks Bi and Bj we have

|{Bk ∈ B | Bi ∩Bk 6= ∅ and Bj ∩Bk 6= ∅ }| ≥ µ.

µ-common intersection designs were introduced by Lee and Stinson in [23,24], specifi-

cally for key predistribution purposes. The idea is that nodes, which are disconnected

in the key graph, may benefit from having at least µ common adjacent nodes, since

they are then able to communicate via two hops. The following proposition further

supports the use of µ-common intersection designs for building KPSs.

Proposition 5.4.5. The graph of any µ-common intersection design has ε ≥ 1.

Proof. Let S ⊂ V be chosen such that 1 ≤ |S| ≤ |V |/2. It is sufficient to show that

|E(S, Sc)| ≥ |S|, because we then have

ε ≥ min
{ |S|
|S|

∣∣∣ S ⊂ V, 1 ≤ |S| ≤ |V |
2

}
= 1

as desired. Suppose for a contradiction that |E(S, Sc)| < |S|. That means there

exists a vertex v ∈ S that is not adjacent to Sc. Denoting the set of vertices adjacent

to v by B, we get that E(B,Sc) ⊆ E(S, Sc), so

|E(B,Sc)| ≤ |E(S, Sc)| < |S| ≤ |Sc|.

This implies the existence of a vertex w ∈ Sc that is not adjacent to B. But then

v and w do not have a common neighbour, which is impossible by definition of a

µ-common intersection design.

We now give a brief introduction to the important class of strongly regular graphs,

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 57

restricting ourselves to the tools we need to find a lower bound for the expansion

coefficient of such graphs. More interesting results can be found in [16].

Definition 5.4.6. An (n, r, µ, ν)-strongly regular graph is an r-regular graph

with n vertices such that any two distinct vertices have µ common adjacent vertices

if they are not adjacent and ν common adjacent vertices if they are adjacent.

A strongly regular graph may be regarded as the graph of a µ-common intersection

design (X,B) with the extra condition

|{Bk ∈ B | Bi ∩Bk 6= ∅ and Bj ∩Bk 6= ∅ }| ≥ ν

for any two blocks Bi and Bj such that Bi ∩Bj 6= ∅.

Example 17. Two easy examples of strongly regular graphs are C5 and the well-

known Petersen graph, which is depicted in Fig. 5.2. Indeed, their parameters are

respectively (5, 2, 1, 0) and (10, 3, 1, 0).

Figure 5.2: The Petersen graph is strongly regular.

The parameters of strongly regular graphs are not independent: the following

proposition establishes a so-called feasibility condition, which is an equation that

must be satisfied by the graph’s parameters.

Proposition 5.4.7. For any (n, r, µ, ν)-strongly regular graph G, we have

r(r − ν − 1) = µ(n− r − 1).

Proof. Let v ∈ V (G), and write B for its set of adjacent vertices and C for its set

of non-adjacent vertices. By definition, we have |B| = r and |C| = n− r − 1. The

desired equality follows by counting the edges between B and C in two ways. On the

one hand, every vertex in B is adjacent to ν vertices in B, hence adjacent to r−ν− 1

vertices in C. Therefore, |E(B,C)| = r(r − ν − 1). On the other hand, every vertex

in C is adjacent to µ vertices in B, so we also have |E(B,C)| = µ(n− r − 1).

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 58

Example 18. We can easily check that the feasibility condition from Proposi-

tion 5.4.7 holds for C5 and the Petersen graph. Indeed, we respectively obtain

2 · (2− 0− 1) = 2 = 1 · (5− 2− 1) and

3 · (3− 0− 1) = 6 = 1 · (10− 3− 1).

By constructing a list of parameters that meet this feasibility condition, we can

narrow down the possible candidates for strongly regular graphs. We will present

another feasibility condition later on.

Lemma 5.4.8. For any graph G, the eigenvectors with different eigenvalues are

orthogonal with respect to the scalar product.

Proof. Let A be the adjacency matrix of G. Suppose that Au = αu and Av = βv

with α 6= β. Since A is symmetric, we get that

βuT v = uTAv = (vTAu)T = αuT v.

This is only possible if uT v = 0, i.e. when u and v are orthogonal.

Theorem 5.4.9. The non-trivial eigenvalues of an (n, r, µ, ν)-strongly regular

graph are solutions of the following equation with variable x:

x2 − (ν − µ)x− (r − µ) = 0.

Proof. Let A be the adjacency matrix of a strongly regular graph G. The entry

avw of A2 is the number of walks of length two from v ∈ V (G) to w ∈ V (G). In a

strongly regular graph, this number only depends on whether v and w are equal,

adjacent or distinct and non-adjacent, so we get that

A2 = rI + νA+ µ(J − I −A) = (ν − µ)A+ (r − µ)I + µJ,

where I is the identity matrix of dimension n and J is the matrix of dimension n

whose entries are all equal to 1. For any eigenvector u of A with eigenvalue θ 6= r,

we then obtain

θ2u− (ν − µ)θu− (r − µ)u = A2u− (ν − µ)Au− (r − µ)Iu = µJu = 0,

where the last equality follows from Proposition 3.2.5 and Lemma 5.4.8.

CHAPTER 5. KEY PREDISTRIBUTION SCHEMES 59

Corollary 5.4.10. For an (n, r, µ, ν)-strongly regular graph, we have

ε ≥ r

2
− ν − µ+

√
(ν − µ)2 + 4(r − µ)

4
.

Proof. Theorem 5.4.9 implies that the second largest eigenvalue of the graph is

λ2 =
ν − µ+

√
(ν − µ)2 + 4(r − µ)

2
.

By Theorem 3.2.9, we have ε ≥ (r − λ2)/2 and that gives the desired result.

Example 19. Filling in the parameters of the Petersen graph in the inequality from

Corollary 5.4.10 gives ε ≥ 1. If we let S be set of the vertices that form the ‘outer

ring’ C5, then ε ≤ |E(S, Sc)|/|S| = 5/5 = 1. We may thus conclude that ε = 1.

The following proposition yields a second feasibility test, which is very useful in

practice. Although it does not give us an explicit construction method for strongly

regular graphs, it considerably reduces the list of possible parameters.

Proposition 5.4.11. For an (n, r, µ, ν)-strongly regular graph, the two evalua-

tions of the following expression are integral:

1

2

(
(n− 1)± 2r + (n− 1)(ν − µ)√

(ν − µ)2 + 4(r − µ)

)
.

Proof. We know from Theorem 5.4.9 that the non-trivial eigenvalues of a (n, r, µ, ν)-

strongly regular graph are

θ1 =
ν − µ−

√
D

2
and θ2 =

ν − µ+
√
D

2
,

where D = (ν − µ)2 − 4(r − µ). Let m1 and m2 be the multiplicities of θ1 and θ2

respectively. Since r +m1θ1 +m2θ2 = Tr(A) = 0 and m1 +m2 = n− 1, we obtain

m1 =
(n− 1)θ2 + r

θ2 − θ1
and m2 =

(n− 1)θ1 + r

θ1 − θ2
.

Substituting the values of θ1 and θ2 gives the expression in the statement.

Example 20. Consider (n, r, µ, ν) = (11, 4, 2, 0). The equality from Proposition 5.4.7

is fulfilled, because 4·(4−0−1) = 12 = 2·(11−4−1). However, (ν−µ)2+4(r−µ) = 12

is not a square, so the evaluation of the expressions in Proposition 5.4.11 cannot be

integral. Therefore, a (11, 4, 2, 0)-strongly regular graph does not exist.

Discussing known constructions for strongly regular graphs would lead us too far, so

we refer the interested reader to [16] and the references in [20].

Chapter 6

Conclusions

We have seen that a high expansion coefficient ε is certainly desirable in a network.

Therefore, this invariant should be taken into account in the design of KPSs with

WSN applications. Its use is further justified by the fact that many existing KPSs,

which provide good trade-offs, already yield networks with good expansion.

However, there is still some room for improvement. In practice, it is namely very

difficult to compute ε for large networks and even when its exact value is known for

the network’s key graph, the expansion of the intersection graph cannot be predicted

if the communication graph is modelled as a random graph. Fortunately, ε can be

approximated with an upper and lower bound, and the other issue can of course be

resolved in applications where the position of deployed nodes is traceable. A possibly

more concerning limitation of ε is that it only reflects the weakest point of a network,

without providing any information about the network’s structure elsewhere. This is

illustrated in Fig. 6.1: the three cases are equally evaluated with ε = 0, although the

network’s topologies are completely different.

(a) (b) (c)

Figure 6.1: Three cases where ε = 0.

Especially situations like Fig. 6.1b, where only a few nodes are disconnected from the

rest of the network, which otherwise has good expansion, may be perfectly acceptable

in networks with hundreds or thousands of nodes. It therefore seems interesting to

60

CHAPTER 6. CONCLUSIONS 61

investigate whether something can be gained with graph invariants that also take

into account the number of connected components, for example a weighted average

of the expansion coefficients of all connected components.

The study of key predistribution gave birth to many interesting proposals for KPSs,

mostly targeted at WSN applications. We presented several of the most trend-setting

ones, both deterministic and random. While some KPSs in the literature achieve in

practice good trade-offs between key storage, connectivity and resilience, a better

understanding of these compromises is absolutely required. Indeed, the added value

of many new KPSs is only motivated with a comparison against a limited number of

previous proposals and some simulations, for example [6]. Even worse, papers like [38]

essentially base a KPS on an expander graph construction, assign unique keys to all

edges and then claim to have proposed a valuable KPS without much further ado.

This approach might suffice for engineering disciplines, but from a mathematical

point of view, it is questionable whether much is added to our knowledge of key

predistribution.

Recent research of KPS construction techniques and a deeper exploration of desirable

network features on a mathematical basis (e.g. [19,20,22]) are definitely a step in the

right direction. It is for example suggested in [20] that KPSs based on hypergraphs

with good expansion, of which currently little is known, may be very promising.

Appendix A

Implementations in Matlab

The code in this appendix is written by the author in Matlab R2016a, but should

also be usable in older versions. Before presenting the code for zig-zag products and

several KPSs, we provide a way to plot weighted graphs and networks in general.

These functions require at least Matlab R2015b and will be used in multiple places

later on.

function [P] = WeightedGraph(A)

%WEIGHTEDGRAPH Plot the weighted graph of the provided adjacency matrix.

fig=figure; clf

fig.Color='white';

fig.Position(3)=500;

fig.Position(4)=500;

axes('position',[0 0 1 1]);

P=plot(graph(A));

P.NodeLabel={};
P.NodeColor='black';

P.EdgeColor='black';

W=graph(A).Edges.Weight;

for i=1:size(W,1)

if W(i)>1

labeledge(P,i,W(i));

end

end

axis off square tight;

%Uncomment the following line to export the figure as a png file.

%print('weightedgraph','-dpng','-r600')

end

Note that we had to fall back on weighted graphs, because Matlab R2016a does

not support multiple edges. Although not very pleasing from an aesthetic point of

view, these graphs can certainly help to visually investigate the structure of large

62

APPENDIX A. IMPLEMENTATIONS IN MATLAB 63

adjacency matrices, and they are particularly useful to quickly discover isomorphic

graphs due to the way Matlab constructs them. The following function outputs a

graph where each edge is labeled with the common key of its endpoints.

function [P] = PlotNetwork(A,L)

%PLOTNETWORK Plot the network of the provided adjacency matrix A (whose

%entries are the node's common keys increased by 1) and node labels L.

fig=figure;

fig.Color='white';

axes('position',[0 0 1 1]);

P=plot(graph(A));

P.NodeColor='black';

P.EdgeColor='black';

P.NodeLabel=L;

W=graph(A).Edges.Weight;

for i=1:size(W,1)

labeledge(P,i,W(i)-1);

end

axis off square tight;

%Uncomment the following lines to export the figure as a 500x500 png file.

% fig.Position(3)=500;

% fig.Position(4)=500;

% print('Network','-dpng','-r600')

end

It is crucial to note that all entries in the input adjacency matrix have to be increased

by one, since Matlab would otherwise not plot an edge between nodes who have 0 as

a common key.

A.1 Zig-zag products

All notation is inherited from Section 4.2; except the use of an apostrophe is replaced

by enumeration, due to the specific meaning of that symbol in Matlab. We will

illustrate the usage of every function with the multigraphs and labelings from

Example 8. Every adjacency matrix is also accompanied by a graph plot.

>> A=[2 1;1 2];

B=[1 0 1;0 1 1;1 1 0];

L1=[1 2 3;3 1 2];

L2=[1 2 3;2 1 3];

The matrices that represent the labeling should be constructed as follows: the ith

row contains the labels of the edges incident with vertex vi; the labels are added

according to the ordering of the vertex set, and a random ordering should be fixed

APPENDIX A. IMPLEMENTATIONS IN MATLAB 64

on all multiple edges between two vertices.

function [Z] = Zmatrix(A,B)

%ZMATRIX Determine Z based on the adjacency matrices of G and H.

[n,~]=size(A);
Z=kron(eye(n),B);

>> Z = Zmatrix(A,B)

1 0 1 0 0 0

0 1 1 0 0 0

1 1 0 0 0 0

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 1 1 0

function [N] = Nmatrix(A,L)

%NMATRIX Determine N based on the adjacency matrix of G and the labeling.

r=sum(A(1,:));

[n,~]=size(A);
N=zeros(n*r);

for v=1:n

for w=v:n

for k=1:A(v,w)

labv=L(v,k+sum(A(v,1:w-1)));

labw=L(w,k+sum(A(w,1:v-1)));

i=(v-1)*r+labv;

j=(w-1)*r+labw;

N(i,j)=1;

end

end

end

N=N+triu(N,1)';

APPENDIX A. IMPLEMENTATIONS IN MATLAB 65

>> N1 = Nmatrix(A,L1)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

>> N2 = Nmatrix(A,L2)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

function [R] = Replace(A,B,L)

%REPLACE Determine the replacement product of G and H with labeling L.

Z=Zmatrix(A,B);

N=Nmatrix(A,L);

R=Z+N;

end

>> R1 = Replace(A,B,L1)

2 0 1 0 0 0

0 2 1 0 0 0

1 1 0 0 0 1

0 0 0 2 0 1

0 0 0 0 2 1

0 0 1 1 1 0

APPENDIX A. IMPLEMENTATIONS IN MATLAB 66

>> R2 = Replace(A,B,L2)

2 0 1 0 0 0

0 2 1 0 0 0

1 1 0 0 1 0

0 0 0 2 0 1

0 0 1 0 1 1

0 0 0 1 1 1

function [M] = ZigZag(A,B,L)

%ZIGZAG Determine the zig-zag product of G and H with the labeling L.

Z=Zmatrix(A,B);

N=Nmatrix(A,L);

M=Z*N*Z;

end

>> M1 = ZigZag(A,B,L1)

1 0 1 1 1 0

0 1 1 1 1 0

1 1 2 0 0 0

1 1 0 1 0 1

1 1 0 0 1 1

0 0 0 1 1 2

>> M2 = ZigZag(A,B,L2)

1 0 1 0 1 1

0 1 1 0 1 1

1 1 2 0 0 0

0 0 0 2 1 1

1 1 0 1 1 0

1 1 0 1 0 1

All previously displayed graph plots are made with the function WeightedGraph.

APPENDIX A. IMPLEMENTATIONS IN MATLAB 67

A.2 Blom key predistribution scheme

We inherit all notation from Section 5.1 and demonstrate how Example 11 was

obtained.

function [A] = BlomSimple(n)

%BLOMSIMPLE Plot a network of size n using the Blom KPS with S=1.

p=n;

while isprime(p)==0

p=p+1;

end

r=mod(randperm(p,n),p);

A=randi([0 p-1],1,3);

syms x y;

f(x,y)=A(1)+A(2)*(x+y)+A(3)*x*y;

K=zeros(n);

for i=1:n

for j=i+1:n

K(i,j)=mod(f(r(i),r(j)),p)+1;

end

end

PlotNetwork(K+K',r);

end

For simplicity, the function uses for p the smallest prime such that n ≤ p, but the

code can be simplified if p is provided by the user. The parameters a, b and c are

outputted for reference.

>> BlomSimple(10)

4 1 6

The output graph is shown in Fig. A.1. Every node N is labeled with rN , so it is

immediately clear where Ni (rNi = 3), Nj (rNj = 6) and Nk (rNk
= 8) are located.

We see that the edge labels correspond to our manually calculated values for the

common keys, namely Kij = 0, Kik = 5 and Kjk = 9.

The implementation of the general Blom KPS requires a small trick, because Matlab

does not allow symbolic indices for the matrix entries aij in the definition of the

polynomial f . We can solve this problem by noting that f(x, y) can be written as

APPENDIX A. IMPLEMENTATIONS IN MATLAB 68

Figure A.1: A network using the Blom KPS with S = 1.

the sum of all entries in the square matrix
a00 a01 · · · a0S

a10 a11 · · · a1S
...

...
. . .

...

aS0 aS1 · · · aSS

 ?

x0 x0 · · · x0

x1 x1 · · · x1

...
...

. . .
...

xS xS · · · xS

 ?

y0 y1 · · · yS

y0 y1 · · · yS

...
...

. . .
...

y0 y1 · · · yS

 ,

where ? denotes the element-wise multiplication.

function [a] = Blom(n,S)

%BLOM Plot a network of size n using the Blom KPS.

p=n;

while isprime(p)==0

p=p+1;

end

r=mod(randperm(p,n),p);

a=randi([0 p-1],S+1);

APPENDIX A. IMPLEMENTATIONS IN MATLAB 69

a=triu(a)+triu(a,1)';

k=repmat((0:S)',1,S+1);

l=repmat((0:S),S+1,1);

syms x y;

f(x,y)=sum(sum(a.*x.ˆk.*y.ˆl));

K=zeros(n);

for i=1:n

for j=i+1:n

K(i,j)=mod(f(r(i),r(j)),p)+1;

end

end

PlotNetwork(K+K',r);

end

>> Blom(10,3)

6 10 6 10

10 7 9 1

6 9 8 7

10 1 7 5

The coefficients aij are displayed as a matrix for reference. The resulting network is

shown in Fig. A.2.

function [P] = Interpolation(X,Y,p)

%INTERPOLATION Apply Lagrange's polynomial interpolation in Fp for the

%values in X and respective polynomials whose coefficients are given

%row-wise in Y (from low to high degree).

syms x y;

n=length(X);

P=0;

for i=1:n

Q=1;

for j=1:n

if j~=i
[~,q,~]=gcd(X(i)-X(j),p);
Q=Q*(y-X(j))*q;

end

end

P=P+sum(Y(i,:).*x.ˆ(0:n-1))*Q;

end

P=expand(mod(P,p));

end

>> X=[0 2 4 6]; Y=[6 10 6 10; 9 2 2 3; 1 4 2 6; 0 9 1 6];

>> Interpolation(X,Y,11)

5*xˆ3*yˆ3 + 7*xˆ3*yˆ2 + xˆ3*y + 10*xˆ3 + 7*xˆ2*yˆ3 + 8*xˆ2*yˆ2 + 9*xˆ2*y

APPENDIX A. IMPLEMENTATIONS IN MATLAB 70

+ 6*xˆ2 + x*yˆ3 + 9*x*yˆ2 + 7*x*y + 10*x + 10*yˆ3 + 6*yˆ2 + 10*y + 6

Figure A.2: A network using the Blom KPS with S = 3.

A.3 Eschenauer–Gligor key predistribution scheme

function [S] = EschenauerGligor(n,k,m)

%ESCHENAUERGLIGOR Plot a network of size n using the Eschenauer-Gligor KPS

%with a key pool of size m.

S=zeros(n,k);

for i=1:n

S(i,:)=randperm(m,k);

end

M=zeros(n);

for i=1:n

for j=i+1:n

I=intersect(S(i,:),S(j,:));

APPENDIX A. IMPLEMENTATIONS IN MATLAB 71

if isempty(I)==0

r=randi(length(I));

M(i,j)=I(r)+1;

end

end

end

PlotNetwork(M+triu(M)',{});
end

In order to illustrate the built-in randomness of the Eschenauer–Gligor KPS, we apply

it on four networks with the same parameters n = 10, k = 5 and |K| = 100, using

the notation from Section 5.3. We see in Fig. A.3 that the resulting communication

networks may become disconnected.

>> EschenauerGligor(10,5,100)

APPENDIX A. IMPLEMENTATIONS IN MATLAB 72

Figure A.3: Four networks using the Eschenauer–Gligor KPS.

Bibliography

[1] N. Alon and J.H. Spencer. The Probabilistic Method. Discrete Mathematics and Optimization.

John Wiley & Sons, Hoboken, New Jersey, fourth edition, 2016.

[2] T.M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics.

Springer-Verlag, New York, 1976.

[3] S.R. Blackburn, T. Etzion, K.M. Martin, and M.B. Paterson. Efficient key predistribution for

grid-based wireless sensor networks. In R. Safavi-Naini, editor, 3rd International Conference

on Information Theoretic Security, volume 5155 of Lecture Notes in Computer Science, pages

54–69, Calgary, August 2008. Springer-Verlag, Berlin, Heidelberg.

[4] R. Blom. An optimal class of symmetric key generation systems. In T. Beth, N. Cot, and

I. Ingemarsson, editors, Advances in Cryptology. EUROCRYPT 1984, volume 209 of Lecture

Notes in Computer Science, pages 335–338. Springer-Verlag, Berlin, Heidelberg, 1985. Springer

Link.

[5] C. Blundo, A. De Santis, and A. Herzberg et al. Perfectly-secure key distribution for dynamic

conferences. In Advances in Cryptology, CRYPTO’ 92, volume 740 of Lecture Notes in Computer

Science, pages 471–486. Springer-Verlag, August 1992. Springer Link.

[6] S.A. Camtepe, B. Yener, and M. Yung. Expander graph based key distribution mechanisms in

wireless sensor networks. In IEEE, editor, IEEE International Conference on Communications,

IEEE International Conference on Communications, pages 2262–2267. IEEE, 2006. IEEE Link.

[7] P. Cara. Discrete wiskunde. Course notes, Vrije Universiteit Brussel, 2012.

[8] P. Cara. Lineaire algebra, volumes I and II. Course notes, Vrije Universiteit Brussel, 2012.

[9] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks.

In Proceedings of the 2003 IEEE Symposium on Security and Privacy, pages 197–214. IEEE

Computer Society, Washington DC, May 2003.

[10] W. Dargie and C. Poellabauer. Fundamentals of Wireless Sensor Networks. Theory and Practice.

Wireless Communications and Mobile Computing. John Wiley & Sons, West Sussex, 2010.

[11] G. Davidoff, P. Sarnak, and A. Valette. Elementary Number Theory, Group Theory, and

Ramanujan Graphs. Cambridge University Press, Cambridge, 2003.

[12] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Information

Theory, 22(6):644–654, November 1976.

[13] W. Du, J. Deng, Y.S. Han, and P.K. Varshney. A pairwise key pre-distribution scheme

for wireless sensor networks. In Proceedings of the 10th ACM conference on Computer and

communications security, pages 42–51, Washington D.C., October 2003.

[14] P. Erdős and A. Rényi. On the evolution of random graphs. Bulletin of the International

Statistical Institute, 38(4):343–347, 1960.

73

http://download.springer.com/static/pdf/690/chp%253A10.1007%252F3-540-39757-4_22.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F3-540-39757-4_22&token2=exp=1494368738~acl=%2Fstatic%2Fpdf%2F690%2Fchp%25253A10.1007%25252F3-540-39757-4_22.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fchapter%252F10.1007%252F3-540-39757-4_22*~hmac=fe8317e8d6b729f4db7b50e55a161d3baec09a8021243dc4047f6f7ac736ea73
http://download.springer.com/static/pdf/690/chp%253A10.1007%252F3-540-39757-4_22.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F3-540-39757-4_22&token2=exp=1494368738~acl=%2Fstatic%2Fpdf%2F690%2Fchp%25253A10.1007%25252F3-540-39757-4_22.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fchapter%252F10.1007%252F3-540-39757-4_22*~hmac=fe8317e8d6b729f4db7b50e55a161d3baec09a8021243dc4047f6f7ac736ea73
http://link.springer.com/chapter/10.1007/3-540-48071-4_33
http://ieeexplore.ieee.org/document/4024502/

BIBLIOGRAPHY 74

[15] L. Eschenauer and V.D. Gligor. A key-management scheme for distributed sensor networks.

In Proceedings of the 9th ACM conference on Computer and communications security, pages

18–22, Washington DC, November 2002.

[16] C. Godsil and G. Royle. Algebraic Graph Theory. Graduate Texts in Mathematics. Springer-

Verlag, 2001.

[17] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin of the

American Mathematical Society, 43(4):439–561, October 2006.

[18] E. Kendall, M. Kendall, and W.S. Kendall. A generalised formula for calculating the resilience

of random key predistribution schemes. Cryptology ePrint Archive, Report 2012/426, 2012.

http://eprint.iacr.org/2012/426.

[19] M. Kendall and K.M. Martin. On the role of expander graphs in key predistribution schemes

for wireless sensor networks. In F. Armknecht and S. Lucks, editors, WEWoRC 2011. Research

in Cryptology, volume 7242 of Lecture Notes in Computer Science, pages 62–82. Springer-Verlag,

Berlin, Heidelberg, 2012. Springer Link.

[20] M. Kendall and K.M. Martin. Graph-theoretic design and analysis of key predistribution

schemes. Designs, Codes and Cryptography, 81(1):11–34, October 2016. Springer Link.

[21] N. Koblitz. A Course in Number Theory and Cryptography. Graduate Texts in Mathematics.

Springer–Verlag, New York, second edition, 1994.

[22] M. Krebs and A. Shaheen. Expander Families and Cayley Graphs: A Beginner’s Guide. Oxford

University Press, Oxford, 2011.

[23] J. Lee and D.R. Stinson. Deterministic key predistribution schemes for distributed sensor

networks. In H. Handschuh and M. Anwar Hasan, editors, Selected Areas in Cryptography,

volume 3357 of Lecture Notes in Computer Science, pages 294–307. Springer-Verlag, Berlin,

Heidelberg, 2004.

[24] J. Lee and D.R. Stinson. Common intersection designs. 14(4):251–269, 2006.

[25] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277,

1988.

[26] G.A. Margulis. Explicit constructions of concentrators. Problems of Information Transmission,

9(4):325–332, October–December 1973.

[27] K.M. Martin. On the applicability of combinatorial designs to key predistribution for wireless

sensor networks. In Y.M. Chee, C. Li C., S. Ling, H. Wang, and C. Xing, editors, Coding and

Cryptology, volume 5557 of Lecture Notes in Computer Science, pages 124–145. Springer, Berlin,

Heidelberg, 2009. Springer Link.

[28] K.M. Martin. The rise and fall and rise of combinatorial key predistribution. In A. Biryukov,

G. Gong, and D.R. Stinson, editors, Selected Areas in Cryptography, volume 6544 of Lecture

Notes in Computer Science, pages 92–98. Springer, Berlin, Heidelberg, 2011. Springer Link.

[29] F. Martincic and L. Schwiebert. Introduction to wireless sensor networking. In I. Stojmenovic,

editor, Handbook of Sensor Networks. Algorithms and Architectures, Parallel and Distributed

Computing, chapter 1, pages 1–40. John Wiley & Sons, Hoboken, New Jersey, 2005.

[30] C.J. Mitchell. Key storage in secure networks. Discrete Applied Mathematics, 21(3):215–228,

October 1988.

[31] T. Newe, V. Cionca, and D. Boyle. Security for wireless sensor networks, configuration aid. In

S.C. Mukhopadhyay and H. Leung, editors, Advances in Wireless Sensors and Sensor Networks,

volume 64 of Lecture Notes in Electrical Engineering, pages 1–24. Springer-Verlag, Berlin,

Heidelberg, 2010. Springer Link.

http://eprint.iacr.org/2012/426
http://link.springer.com/chapter/10.1007/978-3-642-34159-5_5
http://link.springer.com/article/10.1007/s10623-015-0124-0
http://link.springer.com/chapter/10.1007%2F978-3-642-01877-0_12
http://link.springer.com/chapter/10.1007/978-3-642-19574-7_6
http://link.springer.com/chapter/10.1007%2F978-3-642-12707-6_1

BIBLIOGRAPHY 75

[32] A. Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91:207–210, August 1991.

[33] H.K. Patil and S.A. Szygenda. Security for Wireless Sensor Networks using Identity-Based

Cryptography. CRC Press, Boca Raton, 2013.

[34] M. Pinsker. On the complexity of a concentrator. In 7th International Telegraffic Conference,

pages 318/1–318/4, Stockholm, June 1973.

[35] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and

new constant-degree expanders. Annals of Mathematics, 155(1):157–187, January 2002.

[36] E. Sabbah and K. Kang. Security in wireless sensor networks. In S. Misra, I. Woungang, and

S.C. Misra, editors, Guide to Wireless Sensor Networks, Computer Communications 491 and

Networks, chapter 19, pages 491–512. Springer-Verlag, London, 2009.

[37] R.R. Selmic, V.V. Phoha, and A. Serwadda. Wireless Sensor Networks. Security, Coverage,

and Localization. Springer, 2016.

[38] H. Shafiei, A. Mehdizadeh, A. Khonsari, and M. Ould-Khaoua. A combinatorial approach for

key-distribution in wireless sensor networks. In IEEE, editor, IEEE GLOBECOM 2008, IEEE

Global Telecommunications Conference. IEEE, 2008. IEEE Link.

[39] D.R. Stinson. Cryptography, Theory and Practice. Discrete Mathematics and its Applications.

Chapman and Hall, Boca Raton, third edition, 2006.

[40] L. Trevisan. Pcp and hardness of approximation, notes for lecture 11. Course notes, U.C.

Berkeley, 2006.

[41] Y. Zhou, Y.G. Fang, and Y.C. Zhang. Securing wireless sensor networks: A survey. IEEE

Communications Surveys & Tutorials, 10(3):6–28, 2008.

http://ieeexplore.ieee.org/document/4697809/

Index

(n,m, r, k)-configuration, 54

(n, r, µ, ν)-strongly regular graph, 57

(t, S)-cover-free family, 48

S-unconditionally secure, 40

µ-common intersection design, 56

k-uniform set system, 9

q-composite KPS, 52

r-regular, 7, 9

r-uniform hypergraph, 8

t-(n, k, λ) design, 9

adjacency matrix, 14

adjacency operator, 15

adjacent vertex, 6

bipartite graph, 7

block, 9

Blom KPS, 41, 43

bounded away from zero, 12

Cayley graph, 8

cloud, 29

combinatorial design, 9

communication graph, 7

complement, 6

complete graph, 6

complete pairwise KPS, 5

connected graph, 6

constant on clouds, 33

cycle, 6

cycle graph, 12

degree, 7, 9

diameter, 7

distance, 7

edge, 6

eigenvalue of a graph, 14

endpoint, 6

Eschenauer–Gligor KPS, 50

expander family, 12

expander graph, 12

expansion coefficient, 11

feasibility condition, 57

Fiat–Naor S-KDP, 47

graph, 6

group key, 46

hopping, 4

hyperedge, 8

hypergraph, 8

incidence matrix, 10

incident, 6

intersection graph, 7

isomorphic graph, 6

key distribution, 1

key distribution pattern, 46

key graph, 7

key predistribution, 1

key predistribution scheme, 1

KPS, 1

labeling, 29

76

INDEX 77

labeling at v, 29

Laplacian operator, 18

length, 6

loop, 8

Mitchell–Piper (t, S)-KDP, 48

multigraph, 8

multiplicity, 8

multiset, 8

node, 1

node compromise, 5

orientation, 18

path, 6

perfect resilience, 5

point, 9

power of a multigraph, 38

probabilistic method, 48

Ramanujan graph, 27

replacement product, 29

security parameter, 40

set system, 9

spectral gap, 17

square of a multigraph, 38

symmetric multiset, 8

trivial eigenvalue, 27

vertex, 6

walk, 8

wireless sensor network, 3

WSN, 3

zig-zag product, 31

	Abstract and contributions
	Samenvatting en bijdragen
	Introduction
	Basic concepts
	Wireless sensor networks
	Key predistribution schemes
	Graphs
	Multigraphs and hypergraphs
	Cayley graphs
	Combinatorial designs

	Expander graphs
	The expansion coefficient
	The adjacency operator
	The Laplacian operator
	The Rayleigh–Ritz theorem
	The Alon–Boppana theorem

	Zig-zag products
	Definition of the zig-zag product
	Eigenvalues of zig-zag products
	An explicit expander family

	Key predistribution schemes
	Blom key predistribution scheme
	Key distribution patterns
	Random key predistribution schemes
	Combinatorial designs

	Conclusions
	Implementations in Matlab
	Zig-zag products
	Blom key predistribution scheme
	Eschenauer–Gligor key predistribution scheme

	Bibliography
	Index

