Verwijdering van platinahoudende cytostatica uit urine en recuperatie van het edelmetaal

Janis Baeten
Promotor: Prof. dr. ir. Gijs Du Laing
Tutor: Karel Folens

Masterproef voorgedragen tot het behalen van de graad van Master in de bio-ingenieurswetenschappen: milieutechnologie
Woord vooraf

Voor deze thesis werden urinestalen van patiënten van de hospitalisatieafdeling Medische Oncologie van het UZ Gent gecompleteerd. Dit was alleen mogelijk dankzij de hulp van diensthoofd Prof. Van Belle, hoofdverpleegkundige Kristof Alluyn, de artsen op de dienst, het volledige team verpleegkundigen en de patiënten. Ik wil hen graag allemaal bedanken voor de hulp, de vriendelijkheid en om mijn regelmatige aanwezigheid op de dienst te tolereren. Tot slot wil ik ook mijn familie en vrienden bedanken voor hun steun, in het bijzonder mijn lief, mijn (plus)ouders en mijn broer.
Inhoud

1. Inleiding .. 11
2. Literatuurstudie ... 12
 2.1. Het economisch belang van platina .. 12
 2.1.1. Toepassingen van platina ... 12
 2.1.2. De bruto en netto vraag naar platina .. 12
 2.1.3. Het aanbod en de prijs van platina ... 13
 2.1.4. Platina als kritische grondstof .. 14
 2.2. Platina in het milieu .. 14
 2.2.1. Emissiebronnen ... 14
 2.2.2. Concentraties in milieucompartimenten en biomonitoring 14
 2.2.3. Toxiciteit en risico’s .. 15
 2.3. Farmacologie van platinahoudende cytot静态a ... 16
 2.3.1. De PHC en hun biologische werking ... 16
 2.3.2. Farmacokinetische processen .. 17
 2.3.3. Structuur van compartimentele modellen .. 17
 2.3.4. De verschillende parametrisaties van compartimentele modellen 19
 2.3.5. Kwalitatieve vergelijking van de farmacokinetische eigenschappen van de PHC ... 20
 2.3.6. Variatie van de FP .. 21
 2.3.7. De nood aan modellen voor platina-excretie ... 21
 2.3.8. Populatiefarmacokinetiek van de PHC .. 22
 2.4. De speciatie en reactiviteit van platina afkomstig van PHC 22
 2.4.1. Het belang van de speciatie van platina .. 22
 2.4.2. Stabiliteit van PHC in synthetische waterige milieus 22
 2.4.3. Speciatie en stabiliteit in urine en afvalwater ... 23
 2.5. Vermindering van PHC-stromen naar het aquatische milieu 24
 2.5.1. Huidige verwijderingsefficiëntie in een WZI ... 24
 2.5.2. Potentiële technieken voor een betere verwijdering van PHC en de preventie van milieuverontreiniging door deze geneesmiddelen ... 24
3. Materialen en methodes ... 26
 3.1. PHC in de WZI van een ziekenhuis ... 26
 3.2. Inventarisatie van de platinastromen in een ziekenhuis 26
 3.3. Degradatie van PHC in urine en water ... 27
 3.4. Platina-excretie via urine na een behandeling met PHC 27
 3.4.1. Bemonstersingsstrategie ... 27
3.4.2. Analyse van de urinestalen .. 28
3.4.3. Kalibratie van de modelparameters .. 28
3.4.4. Scenario- en onzekerheidsanalyse van de platina-excretie 30
3.5. Batchadsorptie van PHC op actieve kool en chitosan .. 30
3.6. Kolomadsorptie van PHC op actieve kool .. 31
3.7. Desorptie van PHC door urine van gezonde personen ... 32
3.8. Kwaliteitscontrole .. 33
4. Resultaten .. 34
4.1. PHC in de WZI van een ziekenhuis ... 34
4.2. Inventarisatie van de platinastromen in een ziekenhuis ... 34
4.3. Degradiatie van PHC in urine en water ... 35
4.4. Platina-excretie via urine na een behandeling met PHC ... 39
4.4.1. Analyse van de urinestalen ... 39
4.4.2. Kalibratie van de modelparameters .. 40
4.4.3. Scenario- en onzekerheidsanalyse van de platina-excretie 42
4.4.4. Speciatie van platina in urine na een behandeling met PHC 44
4.5. Batchadsorptie van PHC op actieve kool en chitosan ... 47
4.6. Kolomadsorptie van PHC op actieve kool .. 49
4.7. Desorptie van PHC door urine ... 50
5. Discussie ... 52
5.1. PHC in de WZI van een ziekenhuis ... 52
5.2. Speciatie van platina in urine en water ... 52
5.3. Platina-excretie via urine na een behandeling met PHC ... 53
5.3.1. Kalibratie van de modelparameters .. 53
5.3.2. Scenario- en onzekerheidsanalyse van de platina-excretie 54
5.4. Batchadsorptie van PHC op actieve kool en chitosan ... 54
5.5. Kolomadsorptie van PHC op actieve kool .. 55
5.6. Beoordeling van potentiële technieken om PHC-fluxen naar het milieu te beperken ... 57
6. Conclusie .. 59
7. Ideeën voor verder onderzoek ... 60
8. Referenties .. 61
9. Bijlagen ... 65
9.1. Goedkeuring van de studie door het Ethisch Comité UZ Gent 65
9.2. Informatie- en goedkeuringsformulier voor de deelnemende patiënten 66
9.3. Protocol voor de deelnemende patiënten .. 68
9.4. Protocol voor de verpleegkundigen die de staalname begeleiden 69
9.5. Template voor de patiënteninformatie ... 71
9.6. Analytische oplossing van het stelsel differentiaalvergelijkingen van een compartimenteel model met twee compartimenten

9.7. Protocol voor de verpleegkundigen die de collectie van de volledige hoeveelheid urine begeleiden

9.8. Voorgesteld protocol voor de staalname bij patiënten van de dagkliniek

9.9. Protocol voor de behandeling van resten van medicijnen in het UZ Gent
Lijst met gebruikte afkortingen

<table>
<thead>
<tr>
<th>Afkorting</th>
<th>Betekenis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Algemeen ziekenhuis</td>
</tr>
<tr>
<td>BE</td>
<td>België</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CH</td>
<td>Zwitserland</td>
</tr>
<tr>
<td>CV</td>
<td>Variatiecoëfficiënt</td>
</tr>
<tr>
<td>DACH</td>
<td>Diaminocyclohexaan</td>
</tr>
<tr>
<td>DE</td>
<td>Duitsland</td>
</tr>
<tr>
<td>DS</td>
<td>Droge stof</td>
</tr>
<tr>
<td>F-AAS</td>
<td>Vlam atoomabsorptiespectroscopie</td>
</tr>
<tr>
<td>FP</td>
<td>Farmacokinetische parameter</td>
</tr>
<tr>
<td>GGA</td>
<td>Gewogen gekwadrateerde afwijkingen</td>
</tr>
<tr>
<td>IC</td>
<td>Ionenchromatografie</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductief gekoppeld plasma massaspectrometrie</td>
</tr>
<tr>
<td>IS</td>
<td>IJsland</td>
</tr>
<tr>
<td>IV</td>
<td>Intraveneus</td>
</tr>
<tr>
<td>L/S</td>
<td>De verhouding van het volume vloeistof en de hoeveelheid vaste stof (Liquid/Solid-ratio)</td>
</tr>
<tr>
<td>LD50</td>
<td>Mediane letale dosis</td>
</tr>
<tr>
<td>MBR</td>
<td>Membraanbioreactor</td>
</tr>
<tr>
<td>MSDS</td>
<td>Veiligheidsinformatieblad (Material Safety Data Sheet)</td>
</tr>
<tr>
<td>NOEL</td>
<td>Het niveau van verontreiniging waarbij net geen biologische effecten worden waargenomen (No Observed Effect Level)</td>
</tr>
<tr>
<td>NTU</td>
<td>Een eenheid voor turbiditeit (Nephelometric Turbidity Unit)</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethyleen</td>
</tr>
<tr>
<td>PEC</td>
<td>Geschatte concentratie in het milieu (Predicted Environmental Concentration)</td>
</tr>
<tr>
<td>PGM</td>
<td>Platinagroep metalen</td>
</tr>
<tr>
<td>PHC</td>
<td>Platinahoudende cytostatica</td>
</tr>
<tr>
<td>Pt_{aq}</td>
<td>Opgelost platina, gemeten door filtratie over een 0,45 µm spuitfilter. Wanneer het over de concentratie van opgelost platina gaat wordt expliciet over de concentratie Pt_{aq} gesproken of wordt dit aangeduid met [Pt]_{aq}.</td>
</tr>
<tr>
<td>Pt_{tot}</td>
<td>Totaal platina. Wanneer het over de concentratie van totaal platina gaat wordt expliciet over de concentratie Pt_{tot} gesproken of wordt dit aangeduid met [Pt]_{tot}.</td>
</tr>
<tr>
<td>Pt_{UF}</td>
<td>Platina in het ultrafiltraat. Wanneer het over de concentratie van ultrafiltraat platina gaat wordt expliciet over de concentratie Pt_{UF} gesproken of over [Pt]_{UF}.</td>
</tr>
<tr>
<td>SD</td>
<td>Standaarddeviatie</td>
</tr>
<tr>
<td>t_R</td>
<td>Retentietijd</td>
</tr>
<tr>
<td>US</td>
<td>Verenigde Staten</td>
</tr>
<tr>
<td>UZ</td>
<td>Universitair ziekenhuis</td>
</tr>
<tr>
<td>WHO</td>
<td>Wereld gezondheidsorganisatie (World Health Organisation)</td>
</tr>
<tr>
<td>WZI</td>
<td>Waterzuiveringsinstallatie</td>
</tr>
</tbody>
</table>
Lijst met figuren

Figuur 1. De verdeling van de wereldwijde bruto vraag naar platina in 2013 per toepassingsgebied. De gerecycleerde hoeveelheid (ton) is boven de balken aangegeven (Johnson Matthey PLC 2014).12

Figuur 2. De verdeling van het wereldwijde aanbod van platina in 2013, ingedeeld naar het land van herkomst (Johnson Matthey PLC 2014). ...13

Figuur 3. De prijs van platina tijdens de voorbije tien jaar (Johnson Matthey PLC 2014). Voor de omzetting van dollar naar euro werd de gemiddelde prijs per maand vermenigvuldigd met de gemiddelde wisselkoers per maand volgens de ECB. ...13

Figuur 4. De structuur van de PHC (links) en voorbeelden van actieve metabolieten: rechtsboven een belangrijke actieve vorm van cisplatine en carboplatine en rechtsonder een van oxaliplatine (Desoize, Madoulet 2002).16

Figuur 5. Schema van een tweecompartimentele model (Rudek 2014). ...18

Figuur 6. Reacties van cisplatine in zuiver water bij 25°C. k₁ en k₂ zijn eerste orde reactieconstanten met waarden (2,06 ± 0,07).10^{-5} s^{-1} en (1,12 ± 0,06).10^{-9} s^{-1}. k₁ is verwaarloosbaar (<10^{-13} s^{-1}) en k₂ is (1,10 ± 0,09).10^{-8} s^{-1}. De tweede orde constante k₃ is 4,1.10^{-3} M^{-1} s^{-1} en k₄ is kleiner dan 10^{-8} M^{-1} s^{-1} (Hann et al. 2003). ..23

Figuur 7. Schema van de WZI te AZ Maria Middelares met aanduiding van de bemonsteringsplaatsen.26

Figuur 8. Proefopstelling van het kolomadsorptie-experiment voor de verwijdering van cisplatine en carboplatine met actieve kool. ..32

Figuur 9. Platinaconcentratie in functie van de tijd voor zowel het influent als het effluent. Het opgelost en totaal platina zijn beide weergegeven. ...34

Figuur 10. Chromatogram van 0,40 mg Pt L^{-1} cisplatine in water direct na toevoeging van de PHC en 69 h later. 36

Figuur 11. Chromatogram van 0,40 mg Pt L^{-1} cisplatine in urine na 0, 24 en 69 h..36

Figuur 12. Chromatogram van 0,40 mg Pt L^{-1} carboplatine in water, direct na toevoeging van de PHC en 69 h later. ..37

Figuur 13. Chromatogram van 0,40 mg Pt L^{-1} carboplatine in urine na 0, 24 en 69 h..37

Figuur 14. Chromatogram van 0,35 mg Pt L^{-1} oxaliplatine in water na 0, 1 en 69 h. ...38

Figuur 15. Chromatogram van 0,35 mg Pt L^{-1} oxaliplatine in urine na 0, 8, 24 en 69 h.38

Figuur 16. De concentraties van de intacte PHC in functie van de tijd met de gefitte modellen voor exponentiële afbraak. Voor cisplatine werd afbraak naar een evenwichtswaarde aangenomen. Cisplatine: R² = 0,9582. Carboplatine: R² = 0,9252. Oxaliplatine: R² = 0,9968. ...39

Figuur 17. De concentratie Pt_{tot} in urine na een cisplatine-infuus (patiënt 1 – 6) in functie van de tijd waarop het staal werd gecollecteerd. De concentratie na een carboplatine-infuus (patiënt 7) wordt weergegeven op de secundaire as..40

Figuur 18. Relatieve platina-excretie via urine na een cisplatinebehandeling als functie van de tijd na het begin van het infuus. Drie alternatieve modellen worden gefit: een ééncompartmentele model, een
tweecompartimenteel model dat gebruik maakt van de FP uit de literatuur (Tabel 7) en een tweecompartimenteel model dat volledig a.d.h.v. de data werd gefit. ...41

Figuur 19. Relatieve platina-excretie via urine na een carboplatinebehandeling als functie van de tijd na het begin van het infuus. Het verloop van het tweecompartimenteel model werd bepaald a.d.h.v. de infusieduur (0,5 h) en de parameters uit Tabel 4. ..41

Figuur 20. 90 % betrouwbaarheidsinterval van de platina-excretie U in functie van de tijd na het begin van een cisplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippelijn). Scenario 1: een infuus met inlooptijd T = 1 h met de gemiddelde platinadosis die bij die inlooptijd wordt toegepast, D_H = 51 ± 1 mg. Scenario 2: T = 6 h en D_H = 83 ± 3 mg. ..42

Figuur 21. 90 % betrouwbaarheidsinterval van de platina-concentratie C_H in het cumulatief volume urine in functie van de tijd na het begin van een cisplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippelijn). Scenario 1: een infuus met inlooptijd T = 0,5 h met de gemiddelde platinaconcentratie die bij die inlooptijd wordt toegepast, D_H = 203 ± 5 mg. Scenario 2: T = 1 h en D_H = 261 ± 5 mg. ..43

Figuur 22. 90 % betrouwbaarheidsinterval van de platinaconcentratie C_H in het cumulatief volume urine in functie van de tijd na het begin van een carboplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippelijn). Scenario 1: een infuus met inlooptijd T = 1 h met de gemiddelde platinaconcentratie die bij die inlooptijd wordt toegepast, D_H = 51 ± 1 mg. Scenario 2: T = 6 h en D_H = 83 ± 3 mg. ..43

Figuur 23. 90 % betrouwbaarheidsinterval van platinaconcentratie C_H in het cumulatief volume urine in functie van de tijd na het begin van een carboplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippelijn). Scenario 1: een infuus met inlooptijd T = 0,5 h met de gemiddelde platinaconcentratie die bij die inlooptijd wordt toegepast, D_H = 203 ± 5 mg. Scenario 2: T = 1 h en D_H = 261 ± 5 mg. ..44

Figuur 24. Chromatogrammen van urinestalen van patiënt 1, die 1,3, 3,3, 4,4 en 6,9 h na het begin van het cisplatine-infuus werden gecollecteerd. ..45

Figuur 25. Chromatogrammen van urinestalen van patiënt 4, die 1,5, 3,4, en 4,2 h na het begin van het cisplatine-infuus werden gecollecteerd. ..46

Figuur 26. Chromatogram van het urinestaal van patiënt 7 dat 11,0 h na het begin van het carboplatine-infuus werd gecollecteerd ..46

Figuur 27. Adsorptie-isotherm van cisplatine op actieve kool met de best passende Freundlich-curve. ...47

Figuur 28. Adsorptie-isotherm van cisplatine op chitosan met de best passende Langmuir-curve. ...47

Figuur 29. Adsorptie-isotherm van carboplatine op actieve kool met de best passende Freundlich-curve.48

Figuur 30. Datapunten van de adsorptie-isotherm van carboplatine op chitosan. ...48

Figuur 31. Platinaconcentratie in het influent en effluent tijdens kolomadsorptie op actieve kool met urine van een patiënt die een cisplatine-behandeling onderging. één kolomvolume is gelijk aan 84 mL. ...49

Figuur 32. Platinaconcentratie in het influent en effluent tijdens kolomadsorptie op actieve kool met urine van een patiënt die een carboplatine-behandeling onderging. één kolomvolume is gelijk aan 117 mL..........................50

Figuur 33. Platinaconcentratie in het effluent tijdens het desorptie-experiment met urine zonder PHC, voor de kolom met cisplatine (linkse as) en met carboplatine (rechtse as). ..51
Lijst met tabellen

Tabel 2. De input- en outputvariabelen en parameters van twee compartimentele modellen met hun betekenis in de context van PHC. Alle outputvariabelen zijn een functie van de tijd na het begin van het infuus, T (h). De enige input is F, maar deze kan beschreven worden d.m.v. de eenvoudig te verkrijgen waarden voor T en Dpt in het geval de infusiesnelheid constant is. De parameters worden ook farmacokinetische parameters (FP) genoemd.

Tabel 3. De tweede parametrisaties en andere parameters van twee compartimentele modellen.

Tabel 4. Gemiddelde FP ± standaarddeviatie (SD) hierop van PtUF voor de drie PHC. n staat voor het aantal patiënten waarbij de concentraties Pt in plasma en/of urine werden gemeten. A: (Graham et al. 2000), B: (Vermorken et al. 1984), C: (Elferink et al. 1987).

Tabel 5. Chromatografische condities.

Tabel 6. Informatie van de deelnemende patiënten die cisplatine kregen (patiënt 1 - 6) en één die carboplatine kreeg (Patiënt 7). * De dosis per m² lichaamsoppervlakte wordt niet op deze manier geïndividualiseerd bij carboplatine (zie paragraaf 2.3.6). ** Gegeven ontbreekt.

Tabel 7. FP van PtUF na een cisplatinebodeling (n = 43, samplingtijd = 24 h) (Urien, Lokiec 2004).

Tabel 8. Inputvariabelen voor de simulaties. T en Dpt zijn afgeleid uit de statistieken voor 2014 van het UZ Gent. Tussen haakjes staat het percentage van de totale toegediende hoeveelheid van het PHC dat met die specifieke infusieduur werd toegediend. Qu is afgeleid uit metingen van het urinedebiet en pragmatische schattingen.

Tabel 9. Initiële concentraties voor batch-adsorptie van de PHC op chitosan en actieve kool.

Tabel 10. Eigenschappen van de kolommen met actieve kool voor de verwijdering van cisplatine en carboplatine.

Tabel 12. Karakterisatie van de urine die gebruikt werd voor het degradatie-experiment.

Tabel 13. De FP bepaald d.m.v. de kleinste kwadratemethode voor de drie modellen. De R² en de p-waarden van de hypothesetoets voor normaliteit en constante variantie van de residuen zijn weergegeven.

Tabel 15. Karakterisatie van de urine die gebruikt werd voor het desorptie-experiment.

Tabel 16. Freundlichconstanten, afgeleid uit batchadsorptie-experimenten met initiële concentraties platina tussen 1 µg L⁻¹ en 0,5 mg L⁻¹ (Abebe 2014).
Tabel 17. Schatting van de winst door de recuperatie van platina afkomstig van cisplatine ($D_{Pt} = 66,11$ mg, $T = 1$ H, collectieperiode = 11 h) en carboplatine ($D_{Pt} = 124,73$ mg, $T = 0,5$ H, collectieperiode =16 h) uit urine van telkens één patiënt, d.m.v. adsorptie op actieve kool. ...56

Tabel 18. Opties om PHC te verwijderen vooraleer ze in het rioleringsstelsel terechtkomen met een aantal voordelen en uitdagingen die ermee gepaard gaan. ..58
Samenvatting

Platina is een zeer waardevol materiaal. Toepassingen waarin platina in vaste toestand gebruikt wordt, zoals autokatalysatoren, kennen reeds een aanzienlijke recyclagegraad. Platina wordt ook gebruikt in platinahoudende cytostatica (PHC), kankerbestrijdende middelen waarvan cisplatine, carboplatine en oxaliplatine de bekendste zijn. Na intravenous toediening van PHC komen ze door excretie via urine in het milieu terecht. Dit betekent een potentieel ecotoxicologisch risico én een verlies van het edelmetaal. In deze masterproef wordt onderzocht of de verwijdering van PHC uit urine technisch mogelijk is met adsorbentia en of het economisch interessant kan zijn om het metaal op deze manier te recupereren. Hiervoor werden verschillende tools gebruikt.

Ten eerste werden platinaconcentraties gemeten in de waterzuiveringsinstallatie (WZI) van een ziekenhuis. In het effluent waren de platinaconcentraties van dezelfde grootte-orde als in het influent, namelijk in het bereik 0,1 - 0,5 µg L⁻¹. Er is dus ruimte voor optimalisatie van de verwijdering. Ten tweede werden gegevens verzameld over de behandelingen met PHC die in het UZ Gent plaatsvinden. Hieruit bleek dat 2483 infusen met PHC gegeven werden in 2014, wat overeenkomt met 302 g of 11 467 € zuiver platina. Ten derde werden urinestalen gecollecteerd van patiënten die een infuus met PHC kregen. De platinaconcentratie in deze stalen werd gemeten om voor cisplatine een ééncompartimenteel farmacokinetisch model te kalibreren. Dit resulteerde in een gemiddelde renale excretiesnelheidsconstante kₑ = 0,26 ± 0,05 h⁻¹ en eliminatieconstante kₑl = 1,0 ± 0,2 h⁻¹. Dit model en een model voor carboplatine uit de literatuur, werden gebruikt om het gemiddelde verloop van de platina-excretie via urine te voorspellen na een typisch infuus met PHC, zoals het in het UZ Gent wordt gegeven. Hieruit blijkt dat er binnen de eerste 24 h na de start van een infuus met carboplatine een grotere hoeveelheid platina wordt uitgescheiden dan tijdens cisplatinetoebehandelingen. Speciatie-analyse van de urinestalen d.m.v. HPLC-ICP-MS toonde aan dat tijdens de eerste plasbeurt cisplatine vooral in intact vorm werd uitgescheiden. Op latere tijdstippen namen afbraakproducten in aantal en concentratie toe. Carboplatine werd vooral in intacte vorm uitgescheiden. Ten vierde werd de afbraak van PHC bestudeerd door de stoffen kunstmatig aan urine en water toe te voegen en op regelmatige tijdstippen te analyseren met HPLC-ICP-MS. Oxaliplatine is het minst stabiele PHC, met een pseudo eerste orde afbraak constante k = 0,158 ± 0,007 h⁻¹. In water verloopt de degradatie voor alle PHC veel trager. Er werd in urine een sterke overeenkomst waargenomen met de speciatie van platina die via urine van patiënten werd uitgescheiden. Dit bevestigt dat gespikete urine kan dienen voor onderzoek naar de verwijdering en (eco)toxicologie van PHC.

Tot slot werd adsorptie van PHC aan adsorbentia bestudeerd. Hiervoor werden eerst batchadsorptie-experimenten met actieve kool en chitosan uitgevoerd in synthetische urine waaraan carboplatine en cisplatine werden toegevoegd. Actieve kool bleek het meest geschikt voor de verwijdering van de PHC. Adsorptie van cisplatine op actieve kool kan worden beschreven door een Freundlichvergelijking met n = 1,07 ± 0,02 en Kᵣ = 0,18 ± 0,01. Voor carboplatine zijn de Freundlichconstanten n = 1,11 ± 0,02 en Kᵣ = 0,066 ± 0,002. Vervolgens werd adsorptie van platina op actieve kool in een kolom onderzocht, gebruik makend van urine van één patiënt die cisplatine kreeg en één die carboplatine kreeg. De verwijderingsefficiëntie van de kolom, die werd gedimensioneerd op basis van de batchadsorptie-experimenten, bedroeg globaal 64 % bij urine van de patiënt die cisplatine toegediend kreeg en 52 % bij urine van de patiënt die een carboplatine-infuus kreeg. Bij lage platinaconcentraties in het influent desorbeerde het geadsorbeerde platina. Uit een eenvoudige economische analyse bleek dat, ondanks de nog beperkte verwijderingsefficiëntie, recuperatie van platina op deze manier winstgevend zou kunnen zijn. Dit maakt verder onderzoek en optimalisatie van de techniek zeer relevant.
1. Inleiding

Platina is een edelmetaal dat door zijn economisch belang en het risico op tekorten wordt erkend als kritisch materiaal voor de Europese Economie (Working Group on defining critical raw materials 2014). De grote waarde van platina wordt weerspiegeld in de prijs, die vaak hoger ligt dan die van goud (Gold Price Pty. Ltd. 2015; Johnson Matthey PLC 2014). Platina wordt voornamelijk gebruikt voor de productie van autokatalysatoren en draagt zo bij tot een betere luchtkwaliteit (Johnson Matthey PLC 2014). De toepassing van het metaal in platinhoudende cytostatica (PHC) is al decennia lang van groot belang voor de behandeling van verschillende types kanker. Er worden in Europa drie kankerbestrijdingsmiddelen gebruikt die platina bevatten: cisplatine, carboplatine en oxaliplatine. Deze componenten worden bij chemotherapie intraveneus toegediend. Nadien scheiden de patiënten deze componenten voor een groot deel terug uit via urine, al dan niet in gewijzigde vorm (Desoize, Madoulet 2002; Graham et al. 2000). Dit zorgt voor milieuvorvertabinig met toxische platinaspecies doordat de verwijdering in WZI’s onvolledig is (Lenz et al. 2007b).

De ernst van de effecten van milieuvervuiling door PHC is nog grotendeels ongekend, onder andere door een gebrek aan informatie over de speciatie en mobiliteit in de natuurlijke omgeving (Lenz et al. 2007a; Easton et al. 2011). De flux van platina naar het natuurlijk milieu betekent echter ook het verlies van een waardevol metaal. Selectieve verwijdering van deze componenten uit urine of afvalwater zou dus niet enkel milieukosten vermijden, maar zou ook een economische winst kunnen betekenen indien het platina gerecycleerd wordt. Adsorptie op actieve kool of chitosan zijn twee opties om PHC te verwijderen uit waterige afvalstromen (Rabaey, Vlaeminck 2013; Guibal et al. 2000). Een belangrijke vraag hierbij is of het voor een economisch rendabele verwijdering loont om de urine van kankerpatiënten apart te vangen. Dit brengt organisatorische moeilijkheden met zich mee, niet het minst wegens de toxiciteit van de urine, maar de concentratie platina is wel veel hoger dan in het afvalwater van ziekenhuizen. In welke vorm platina wordt uitgescheiden via urine is nog weinig bestudeerd. De speciatie is echter van belang voor zowel de (eco)toxiciteit als de verwijderingsefficiëntie.

Deze thesis begint met een samenvatting van de relevante literatuur over PHC. Hier wordt het economisch belang van platina en de verspreiding ervan in het milieu toegelicht. Nadien volgt een inleiding tot de farmacokinetiek, met een focus op de PHC. Een basisbegrip van farmacokinetische modellen is essentieel om het experimentele deel te vatten. Nadien volgt een uiteenzetting over de reactiviteit van PHC. Tot slot wordt in de literatuurstudie een opsomming gegeven van de mogelijke technieken voor verwijdering van PHC uit waterige afvalstromen.

Het gedrag van PHC in het lichaam is al uitvoerig bestudeerd, maar wat er vóór en ná toediening gebeurt, kreeg tot voor kort weinig aandacht. Deze thesis omvat vier experimentele luiken om dit hiataal in de kennis te helpen opvullen, met het oog op het verhinderen van milieuvervuiling en de recyclage van platina. Ten eerste worden enkele platinastraten in een ziekenhuis in kaart gebracht. Hiervoor werden metingen uitgevoerd op de WZI’s van het AZ Maria Middelares, werden gegevens opgevraagd over de jaarlijks toegediende hoeveelheden PHC in het UZ Gent en werd de afvalverwerkingsteamte voor ongebruikte resten PHC achterhaald. Ten tweede wordt de reactiviteit van PHC verder opgeklaard. Hiervoor werden PHC toegevoegd aan water en urine van een gezonde persoon. D.m.v. HPLC-ICP-MS werden de reacties gemonitord. Ten derde wordt het verloop van de platina-excretie via urine door de tijd heen bestudeerd. Dit gebeurde door analyse van urinestalen van kankerpatiënten die PHC kregen toegediend. Van de urinestalen van de patiënten werd ook de speciessamenstelling onderzocht met HPLC-ICP-MS. Tot slot wordt de capaciteit van actieve kool en chitosan om PHC te adsorberen beoordeeld. Dit gebeurde d.m.v. batchadsorptie-experimenten met synthetische urine en een kolomadsorptie-experiment met reële urine van patiënten.

Om te eindigen worden in de laatste paragraaf van de discussie alle resultaten gebundeld om verschillende collectiesystemen, zoals de rechtstreekse verwijdering uit urine of de verwijdering uit afvalwater, te vergelijken. Hierbij worden een aantal voor- en nadelen van elke methode opgesomd.
2. Literatuurstudie

2.1. Het economisch belang van platina

2.1.1. Toepassingen van platina

In metallische vorm vertoont platina in vergelijking met andere metalen een hoog smeltpunt (1769 °C), een zeer grote massadichtheid (21,45 g cm\(^{-3}\)), een kleine hardheid (hardheid volgens Vickers 40), een grote plooibaarheid (treksterkte 14 MPa), een middelmatige geleidbaarheid (resistiviteit van 9,85 µΩ cm) en een trage oxidatie (Johnson Matthey PLC 2014). De belangrijkste toepassingen van platina en de hoeveelheden die hiervoor worden gebruikt zijn weergegeven in Figuur 1. In de chemische en petrochemische industrie wordt platina gebruikt als katalysator, bijvoorbeeld voor de productie van salpeterzuur. Het is ook essentieel in het productieproces van glas en vindt toepassing in harde schijven, tandvullingen, chemotherapie en medische legeringen. Voor chemotherapie werd in 2011 wereldwijd meer dan 0,71 ton gebruikt, waarvan het grootste deel voor de productie van carboplatine. Het gebruik van de platinahoudende cytostatica (PHC) wordt verwacht verder te stijgen, voornamelijk door de verhoogde incidentie van kanker (Cowley 2010). Het grootste deel van het platina wordt echter gebruikt in autokatalysatoren. In Europa is deze proportie groter dan het wereldgemiddelde (73 vs. 37 % van de totale vraag) door de verplichting van katalysatoren bij personenwagens in de EU (Johnson Matthey PLC 2014; Departement Leefmilieu, Natuur en Energie). Het gebruik van platina wordt voor de meeste van de toepassingen als zeer slecht substitueerbaar beoordeeld, met legeringen voor medische toepassingen en juwelen als uitzondering (Working Group on defining critical raw materials 2014).

2.1.2. De bruto en netto vraag naar platina

![Figuur 1. De verdeling van de wereldwijde bruto vraag naar platina in 2013 per toepassingsgebied. De gerecycleerde hoeveelheid (ton) is boven de balken aangegeven (Johnson Matthey PLC 2014).](image)

De bruto jaarlijkse vraag naar platina is tussen 2004 en 2013 van 198,1 naar 261,9 ton gestegen. Door een gelijktijdige verdubbeling van de gerecycleerde hoeveelheid is de netto vraag, zijnde de bruto vraag minus de gerecycleerde hoeveelheid, zelfs gedaald met 3 %. In 2013 kon 25 % van de bruto vraag door de recyclage van platina worden geleverd (Johnson Matthey PLC 2014). De proportie van het metaal in afgedankte producten dat
na recyclage opnieuw voor zijn specifieke eigenschappen kan worden gebruikt, heet de functionele recyclagegraad bij levens einde. Die van platina bedraagt 60 tot 70 %. Deze hoge waarde is vooral te danken aan intensieve recyclage bij industriële toepassingen, juwelen en in mindere mate bij autokatalysatoren (Graedel et al. 2011). Recuperatie uit waterige afvalstromen wordt slechts sinds enkele jaren onderzocht en is tot zover slechts beperkt geïmplementeerd in de industrie (Folens et al. 2014).

2.1.3. Het aanbod en de prijs van platina

Platina, palladium, rhodium, ruthenium, iridium en osmium worden de platinagroep metalen (PGM) genoemd. Van de PGM vindt minder dan 1 % van de primaire productie binnen de lidstaten van de EU plaats. Van de 178,5 ton primair platina die in 2013 door mijnen verkocht werd, kwam het grootste deel uit slechts een beperkt aantal landen, zoals te zien in Figuur 2. Deze sterke geografische concentratie brengt een verhoogd risico op tekorten voor de EU met zich mee en kan bijdragen aan stijgende en schommelende prijzen. De prijs van platina gedurende de voorbije 10 jaar wordt in Figuur 3 geïllustreerd (Working Group on defining critical raw materials 2014).

Figuur 2. De verdeling van het wereldwijde aanbod van platina in 2013, ingedeeld naar het land van herkomst (Johnson Matthey PLC 2014).

Figuur 3. De prijs van platina tijdens de voorbije tien jaar (Johnson Matthey PLC 2014). Voor de omzetting van dollar naar euro werd de gemiddelde prijs per maand vermenigvuldigd met de gemiddelde wisselkoers per maand volgens de ECB.
2.1.4. Platina als kritische grondstof

De Europese Commissie heeft in 2014 een rapport gepubliceerd waarin een groep van twintig grondstoffen worden geïdentificeerd als kritische grondstoffen voor de EU. Dat wil zeggen dat deze grondstoffen zowel van groot belang zijn voor de Europese economie, als dat er een aanzienlijk risico bestaat dat de voorziening ervan in het gedrang komt. De PGM worden als één van de kritieke materialen gezien. Het aanvoerrisico wordt berekend a.d.h.v. data over:

- de geografische situering van de productie en de politieke stabiliteit van de producerende landen;
- de substitueerbaarheid van het materiaal door andere materialen in de huidige toepassingen;
- het recyclagepercentage.

Een hoge geografische concentratie van de productie en politieke instabiliteit in de producerende landen verhoogt het risico op een aanbodtekort voor Europa, onder meer door competitie voor de materialen tussen economische regio’s. Zoals reeds uit paragraaf 2.1.3 bleek, is dit bij de productie van platina het geval. Een hoge substitueerbaarheid of recyclagepercentage verlaagt het risico daarentegen (Working Group on defining critical raw materials 2014). In paragraaf 2.1.1 werd aangehaald dat platina voor de meeste toepassingen momenteel slecht substitueerbaar is. Dit zorgt voor een groot kritisch karakter. Indien er in de toekomst een technologie voor de selectieve verwijdering van PHC uit afvalwater of urine operationeel wordt, kan dit het kritisch karakter van platina verlagen indien het metaal gerecycleerd wordt.

2.2. Platina in het milieu

2.2.1. Emissiebronnen

Emissie uit autokatalysatoren wordt gezien als de belangrijkste bron van platina in het milieu (Wiseman, Zereini 2009). Een andere bron van platina in het milieu is de excretie van PHC na chemokuren. De hoeveelheid platina die via ziekenhuisafvalwater wordt geëmitteerd, bedraagt in Europa 3,3 tot 12,3 % van de massa die uit autokatalysatoren vrijkomt (Kümmerer et al. 1999). Ook het industrieel gebruik en de productie van platina zorgen voor emissies, maar deze zijn voorlopig nog niet accuraat te kwantificeren.

2.2.2. Concentraties in milieucompartmenten en biomonitoring

Er wordt, als gevolg van de emissies, een stijgende trend waargenomen in de concentraties platina in de lucht, bodem, vegetatie, straatstof en zoetwaterorganismen (Wiseman, Zereini 2009). Typische concentraties in enkele media worden in Tabel 1 weergegeven. Platina kan in de bodem terecht komen door depositie uit de lucht of via afzetting van waterzuiveringsslib op het land. Het kan in aquatisch milieu terechtkomen via afspoeling met de regen, rechttreekse depositie uit de lucht, lozing van industrieel afvalwater of via de excretie van PHC. Platina dat in afvalwater van ziekenhuizen teruggevonden wordt, is bijna uitsluitend van PHC afkomstig en bevindt zich grotendeels in opgeloste vorm (Thornthon et al. 2001; Vyas et al. 2014). Eens PHC in het aquatisch milieu terecht komen, vindt er een verdeling plaats tussen de opgeloste vorm en de vorm die gebonden is aan sedimentpartikels. De partikel-waterdistributiecoëfficiënt Kd stijgt in de volgorde cisplatine, carboplatine en tot slot oxaliplatine, maar ligt steeds rond de 10² tot 10³ mL g⁻¹ (Turner, Mascorda 2015). Door hun beperkte sorptie op sediment wordt verwacht dat de PHC zich sterk verspreiden in het aquatisch milieu (Falter, Wilken 1999).
Humane biomonitoring van platina gebeurt gewoonlijk door de concentratie in urine te delen door de concentratie creatinine, een plasmamolecuule, om te corrigeren voor fluctuaties in de geproduceerde hoeveelheid urine. Oorzaken van verhoogde platinaconcentraties bij bepaalde individuen zijn beroepsmatige blootstelling, tandvullingen en een behandeling met PHC. Blootstelling aan platina in het natuurlijke milieu of via voeding wordt bij de huidige concentraties niet gezien als een oorzaak van verhoogde excretie (Schierl 2000).

2.2.3. Toxiciteit en risico’s

In steden ligt de hoogst gemeten platinaconcentratie in PM$_{10}$ (Tabel 1) onder de veilige limiet van 15 tot 150 ng m$^{-3}$ (Wiseman, Zereini 2009). Laboratoriumexperimenten met platina uit autokatalysatoren laten zien dat het metaal relatief inert is onder variërende pH en ionenconcentraties in bodems (Thornthon et al. 2001). Er wordt echter aan de veilige limiet in PM$_{10}$ getwijfeld omdat omzetting van metalisch platina naar meer toxische vormen in water of na opname door organismen niet uitgesloten is (Wiseman, Zereini 2009). Via PHC komt platina direct in oplosbare en toxische vorm in het aquatisch milieu terecht. Cisplatine vertoopt bij hogere planten, in een Amestest en bij menselijke cellen een sterkere genotoxicheit dan carboplatine en wordt geclassificeerd als waarschijnlijk carcinogeen door de WHO (Mišík 2014). Er zijn tot op heden geen epidemiologische of experimentele studies gepubliceerd waarin over de carcinogeniteit van oxaliplatine wordt gerapporteerd (Villa et al. 2015). Er werden voor carboplatine en cisplatine ook acute effecten aangetoond: een oplossing van de PHC zorgt bij contact met de wortels van uien voor groei-inhibetie en bij Crustacea werd immobilisatie aangetoond in zulke oplossingen (Easton et al. 2011; Mišík 2014). Cisplatine is ook wat acute toxiciteit betreft het meest schadelijk: de LD$_{50}$ bij ratten is 25,8 mg/kg terwijl die van carboplatine 343 mg/kg bedraagt (bron: MSDS).

Van de meeste medicijnen en hun metabolieën is de geschatte concentratie in het aquatisch milieu (PEC) minstens één grootteorde kleiner dan de concentratie waarbij biologische effecten worden geobserveerd. Van de chronische en gecombineerde effecten is echter nog maar weinig geweten (Turner, Mascorda 2015). Dit geldt ook voor PHC: met de huidige kennis worden geen milieurisico’s voorspeld, maar deze kennis is nog te beperkt om alle risico’s uit te sluiten (Lenz et al. 2007a). De hoogste concentraties van cisplatine en carboplatine waarbij geen negatieve effecten op planten worden voorspeld (NOEL) zijn respectievelijk 5 en 7 grootteordes hoger dan hun PEC (Mišík 2014). De PEC van carboplatine werd in een studie uit Groot-Brittanië geschat op 350 pg L$^{-1}$. Dat is lager dan de 10 ng L$^{-1}$ voor een individueel medicijn die door het Europees Geneesmiddelenbureau werd geformuleerd als grenswaarde waarbij een gedetailleerdere risicoanalyse dient te worden uitgevoerd (Vyas et al. 2014).

Tabel 1. Gemeten concentraties platina in diverse media. Er wordt een bereik gegeven, afgeleid uit het minimum en maximum dat in de literatuur gemeten werd, tenzij anders vermeld. A: (Vyasa et al. 2014), B: (Kümmerer et al. 1999), C: (Schierl 2000), D: (Thornton et al. 2001), E: (Wiseman, Zereini 2009)

<table>
<thead>
<tr>
<th>Fase</th>
<th>Medium</th>
<th>Typische concentratie platina</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Afvalwater van ziekenhuizen A,B</td>
<td>20 - 250 000</td>
<td>ng L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Rivierwater en water in estuaria A</td>
<td>8 - 6860</td>
<td>pg L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Gemeentelijk rioolwater bij droog weer B</td>
<td>10 - 30 (meestal)</td>
<td>ng L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Baltische zee B</td>
<td>2,2 (gemiddeld)</td>
<td>ng L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Menselijke urine C</td>
<td>6,2 (gemiddeld)</td>
<td>ng L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Afvalwaterzuiveringslib D</td>
<td>< 0,01 - 1</td>
<td>ng L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Toplaag van de bodem naast een weg D</td>
<td>0,2 - >100 (max. niet expliciet vermeld)</td>
<td>ng L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Straatstof D</td>
<td>0,2 - 1000</td>
<td>ng L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Typische concentratie platina in PM$_{10}$ in steden E</td>
<td>< 0,1 - 62</td>
<td>pg m$^{-3}$</td>
</tr>
</tbody>
</table>

Er wordt een bereik gegeven, afgeleid uit het minimum en maximum dat in de literatuur gemeten werd, tenzij anders vermeld. A: (Vyasa et al. 2014), B: (Kümmerer et al. 1999), C: (Schierl 2000), D: (Thornton et al. 2001), E: (Wiseman, Zereini 2009).
2.3. Farmacologie van platinahoudende cytostatica

2.3.1. De PHC en hun biologische werking

Figuur 4 toont de chemische structuur van de PHC waarvan het gebruik in de EU toegelaten is. Dit zijn de prodrugs die intraveneus worden toegediend. In het plasma ondergaan ze niet-enzymatische reacties tot verschillende actieve vormen. De belangrijkste reacties zijn substituties van de chloride-atomen van cisplatine en de organische liganden van oxaliplatine (oxalaat) en carboplatine (1,1-dicarboxycyclobutaan). Deze substituties kunnen gebeuren door water (hydrolyse), chloride of andere plasmacomponenten. Ook andere reacties zoals de vrijstelling van dianminocyclohexaaan (DACH) vinden plaats (Desoize, Madoulet 2002; Graham et al. 2000; Andersson et al. 1996).

De PHC behoren tot de groep van de alkylrende en gerelateerde agentia, die hun effect danken aan het vormen van covalente bindingen met DNA. Er worden crosslinks gevormd binnen en tussen tegenoverstaande DNA-strengen. Dit belemmert de replicatie van kankercellen (Rang, Dale 2014). Er wordt verondersteld dat vooral de PHC met DNA affiniteit vertonen (Desoize, Madoulet 2002). De stoffen hebben echter ook veel bijwerkingen. Bij cisplatine is de nefrotoxiciteit zo sterk dat ze beheerst wordt door hyperhydratie met een zoutoplossing. Carboplatine heeft als belangrijke bijwerking de onderdrukking van de bloedcelvorming en een oxaliplatinebehandeling kan leiden tot zenuwschade (Desoize, Madoulet 2002).

2.3.2. Farmacokinetische processen

Farmacokinetiek is de studie van het lot van farmaca in het lichaam a.d.h.v. het concentratieverloop in bepaalde lichaamsdelen of -vocht. Er zijn vier farmacokinetische processen: absorptie of opname, distributie of verdeling, metabolisatie of afbraak en excretie of uitscheiding. Voor stoffen die intraveneus (IV) worden toegediend, zoals meestal gebeurd bij de PHC, is er geen absorptie. Na IV toediening van een farmacon vindt er verdeling plaats: verspreiding naar andere lichaamsdelen zoals o.a. vetweefsel (Rang, Dale 2014). De stoffen kunnen reacties ondergaan, vaak specifiek in het lever, maar bij PHC ook in het plasma (zie paragraaf 2.3.1). Dit wordt metabolisatie genoemd (Graham et al. 2000). Het vierde farmacokinetische proces is excretie. Dit kan via allerlei wegen zoals zweet, adem, borstmelk en feces, maar bij de PHC is urine de voornaamste weg (Desoize, Madoulet 2002).

In farmacokinetische studies van platina-onderliggende cytotstatica is het gebruikelijk om platinaconcentraties te meten i.p.v. prodrugconcentraties doordat er intensieve metabolisatie kan plaatsvinden en er verschillende metabolieten met een kankerremmende werking gevormd kunnen worden. Er wordt voor analyse van het plasma wel vaak onderscheid gemaakt tussen twee fracties: platina in ultrafiltraat (PtUF) en totaal platina (PtTot). De hydrolyseproducten van de prodrugs binden namelijk covalent met plasmaproteïnen, aminozuren, rode bloedcellen en weefsels. De proteïnegebonden vorm kan via ultrafiltratie uit plasmastalen gescheiden worden van de vrije en aan kleine plasmamoleculen gebonden vorm. De concentratie PtTot wordt bepaald a.d.h.v. een totaalanalyse van plasma en omvat zowel gebonden als niet gebonden vormen (Desoize, Madoulet 2002). Voor oxaliplatine bijvoorbeeld was op het einde van een 2 uur durend infus 66 ± 5 % van het PtTot gebonden aan plasmaproteïnen. PtUF en PtTot vertonen een verschillende kinetiek (Graham et al. 2000).

2.3.3. Structuur van compartimentele modellen

Een compartimenteel model is een type farmacokinetisch model dat gebruikt kan worden om de processen distributie, metabolisatie en excretie wiskundig te beschrijven. Een compartimenteel model veronderstelt in het lichaam i compartimenten die een hoeveelheid X (mg) van een farmacon bevatten. Deze hoeveelheid wordt verondersteld zich te gedragen alsof het zich in een perfect gemengde reactor met volume V1 (L) bevindt. De compartimenten zijn niet eenduidig equivalent aan specifieke anatomische of fysiologische structuren, maar het centrale compartiment komt vaak grofweg overeen met het bloed en de extracellulaire ruimte van sterk doorbloedde weefsels (Rudik 2014). De fysiologische betekenis van een compartimenteel model is echter beperkt (Duffull, Robinson 1997). De concentratie in het plasma is meestal de gemeten variabele en wordt per definitie gelijkgesteld aan de concentratie in compartiment 1 \(C_1 = X_1/V_1\). In Figuur 5 is een tweecompartmenteel model weergegeven en de vergelijkingen 1 tot en met 3 zijn de bijhorende differentiaalvergelijkingen. Een één-, drie- of meercompartmenteel model wordt meestal volledig analoog opgebouwd: input en output via compartiment 1 en evenwichtsreacties tussen de andere compartimenten met compartiment 1 (Vermeulen, 2015).

F is een functie die de infusiesnelheid (mg h \(^{-1}\)) van platina in functie van de tijd weergeeft. Meestal wordt de totale dosis platina \(D_{tot}\) (mg), met een constante snelheid over een infusietijd \(T\) (h) toegediend. \(k_{21}\) en \(k_{12}\) zijn eerste orde snelheidsconstanten (h \(^{-1}\)) die de transfersnelheid tussen de twee compartimenten beschrijven. \(k_{el}\) is een eerste orde constante (h \(^{-1}\)) die de eliminatiesnelheid bepaalt. Eliminatie is het definitief verwijderen van de component uit compartiment 1 (Rudik 2014). Dit kan algemeen via twee routes: excretie en metabolisatie (Bourne, David W. A.). Wanneer PtUF wordt gemodelleerd is metabolisatie in theorie geen optie doordat Pt-atomen intact blijven tijdens chemische reacties, maar in de praktijk beschrijft \(k_{el}\) vaak ook binding van platina aan weefsels, proteïnen en rode bloedcellen. Dit wordt vaak als metabolisatie gemodelleerd doordat het gebonden platina slechts zeer traag terug vrijgesteld wordt in de ultrafiltereerbare fractie. In de praktijk is eliminatie in het geval van PtUF dus een combinatie van excretie en irreversibele binding met macromoleculen en weefsels (Graham et al. 2000; Urien, Lokiec 2004).
De totale uitgescheiden hoeveelheid platina via urine \(U \) (mg) kan berekend worden met vergelijking 3. Hierbij stelt \(k_r \) de renale excretiesnelheidsconstante voor (h\(^{-1}\)), het deel van \(k_{el} \) dat aan excretie via urine te danken is (Bourne, David W. A.). In dit werk zal de excretie vaak worden voorgesteld als de fractie van de toegediende dosis platina die reeds werd uitgescheiden. Dit wordt genoteerd als \(U_{rel} \).

\[
\begin{align*}
\frac{dX_1}{dt} &= F + k_{21}X_2(k_{el} + k_{12})X_1 \\
\frac{dX_2}{dt} &= k_{12}X_1 - k_{21}X_2 \\
\frac{dU}{dt} &= k_r X_1
\end{align*}
\]

(1) (2) (3)

Wanneer de plasmaconcentratie \(C_1 \) met een tweecompartimentele model gefit wordt, kunnen de parameters \(V_1 \), \(k_{12} \), \(k_{21} \) en \(k_{el} \) geschat worden. Om \(k_r \) te kennen dient men ook de uitgescheiden massa in urine \(U \) te meten. Dan
heeft men vijf parameters die het tweecompartimenteel model volledig beschrijven: \(V_1, k_{12}, k_{21}, k_e \) en \(k_i \) (ook de microconstanten genoemd). De FP worden bijvoorbeeld bepaald door minimalisatie van de gewogen gekwadrateerde afwijkingen (GGA). Om de variantie in vergelijking 4 te kwantificeren wordt een variantiemodel verondersteld. Dit kan bijvoorbeeld inhouden dat \(\sigma_i^2 \) evenredig met de concentratie wordt verondersteld, indien dit voor de gebruikte analysemethode aannemelijk is (Bonate 2011). De GGA wordt in het algemeen kleiner als het aantal parameters en dus het aantal compartimenten groter wordt, maar men dient ‘overfitting’ door onnodige parameters, te vermijden. De keuze van het aantal compartimenten kan bijvoorbeeld gebeuren door met een F-test te bepalen of een extra compartiment een significante daling in de GGA veroorzaakt of niet (Rudek 2014).

\[
GGA = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} (Y_{observed,i} - Y_{estimated,i})^2
\]

(4)

2.3.4. De verschillende parametrisaties van compartimentele modellen

In farmacokinetische studies wordt vaak een andere parametrisatie van compartimentele modellen gebruikt die bestaat uit de compartimentele volumes \(V_i \), de klaring \(K_i \), de intercompartimentele klaringen \(I_i \) en de renale klaring \(K_{re} \). In het geval van een twee compartimenteel model volstaan vijf parameters: \(V_1, V_2, I, K_l \) en \(K_{re} \). Er zijn nog andere parameters zoals \(\alpha, \beta, t_{1/2}, t_{1/2\beta} \) en \(V_\infty \) en in de praktijk worden al deze parameters door elkaar gebruikt, hoewel ze hetzelfde model beschrijven. Het verband tussen microconstanten van twee compartimentele modellen en de andere parameters wordt gegeven door vergelijking 5 tot en met 13. Deze vergelijkingen stellen ons in staat om a.d.h.v. parameters uit de literatuur simulaties van de platina-excretie te maken. Er bestaan analoge vergelijkingen voor meer compartimentele modellen (Rudek 2014). De meeste van de parameters die in deze paragraaf worden geïntroduceerd zijn van belang voor medische toepassingen. Voor de verwijdering van platina uit urine is enkel een mechanismische wiskundige beschrijving van de excretie interessant en slechts in mindere mate de kinetische processen die zich in het lichaam afspelen en hun medische relevantie. De interpretatie van elke parameter wordt hier daarom slechts beperkt toegelicht.

De klaring \(K_l \) (L h\(^{-1}\)) is gedefinieerd als het theoretisch volume plasma dat de hoeveelheid component bevat die per tijdsseenheid verdwijnt uit het plasma door eliminatie. Het is dus een maat voor de eliminatiesnelheid. Het deel van de klaring dat aan de excretie via de nieren te danken is, noemt men de renale klaring \(K_{re} \) (L h\(^{-1}\)) (Rang, Dale 2014). De intercompartimentele klaring \(I \) (L h\(^{-1}\)) is evenredig met de transfersnelheid tussen de compartimenten. De parameters \(\alpha \) en \(\beta \) werden in het leven geroepen om de analytische oplossing van de vergelijkingen 1 tot en met 3 te vereenvoudigen (zie Bijlage 9.6). De betekenis van deze eerste orde constanten is dat volgens een \(n \)-compartimenteel model de concentratie \(C_i \) daalt volgens een som van \(n \) exponentieel dalende functies met \(n \) verschillende exponenten, genaamd \(\alpha, \beta, \gamma \) etc. Daarom worden compartimentele modellen ook wel exponentiële modellen genoemd. Hierbij is per definitie \(\alpha < \beta < \gamma < ... \) De overeenkomstige halfwaardetijden (h) krijgen de symbolen \(t_{1/2\alpha}, t_{1/2\beta}, t_{1/2\gamma} \) enz. Tot slot is het stationair distributie volume \(V_\infty \) (L) een maat voor de verspreiding van de component in het lichaam.

\[
V_2 = \frac{V_1 k_{12}}{k_{21}}
\]

(5)

\[
K_l = k_{12} V_1
\]

(6)

\[
I = k_{12} V_1
\]

(7)

\[
K_{re} = \frac{k_i K_l}{k_{cl}}
\]

(8)
Tabel 3. De tweede parametrisatie en andere parameters van twee compartimentele modellen.

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Betekenis</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>Compartimentele volume van compartiment 1</td>
<td>L</td>
</tr>
<tr>
<td>V_2</td>
<td>Compartimentele volume van compartiment 2</td>
<td>L</td>
</tr>
<tr>
<td>K_l</td>
<td>Klaring</td>
<td>Lh(^{-1})</td>
</tr>
<tr>
<td>I</td>
<td>Intercompartimentele klaring</td>
<td>Lh(^{-1})</td>
</tr>
<tr>
<td>K_{lr}</td>
<td>Renale klaring</td>
<td>Lh(^{-1})</td>
</tr>
</tbody>
</table>

Andere parameters: α en β en $t_{1/2\alpha}$ en $t_{1/2\beta}$ en V_{ss}

$V_{ss}=V_1+V_2$ (13)

În compartimentele modellen inclusief urine-excretie worden volledig beschreven door slechts 3 parameters: V_1, k_{el} of V_1, K_l en K_{lr}. De halfwaartijd wordt in dit geval zonder subscript genoteerd ($t_{1/2}$). Telkens wanneer een extra compartiment wordt gemodelleerd zijn er 2 extra parameters nodig (Rudek 2014).

2.3.5. Kwalitatieve vergelijking van de farmacokinetische eigenschappen van de PHC

Enkele FP van Pt\textsubscript{UF} tijdens behandelingen met PHC worden in Tabel 4 weergegeven. In recente studies over oxaliplatine met adequate samplingtijden en analysemethoden zorgt een driecompartmenteel model meestal voor de beste beschrijving van de data (Graham et al. 2000). Bij cisplatine en carboplatine beschrijft een tweecompartmenteel model meestal het concentratieprofiel het best (Desoize, Madoulet 2002). De FP voor Pt\textsubscript{tot} worden niet besproken omdat de meest voorkomende proteinen zoals albumine onder normale omstandigheden niet in belangrijke hoeveelheden in urine terecht komen (Rang, Dale 2014). Hoewel in geen enkel van de gelezen artikels zowel Pt\textsubscript{UF} als Pt\textsubscript{tot} worden geanalyseerd in urine, kunnen we dus aannehmen dat het proteïnegebonden platina waarschijnlijk slechts traag wordt uitgescheiden via urine.

Er zijn twee belangrijke factoren die de FP beïnvloeden: de stabiliteit van het vertrekkende ligand bepaalt de reactiviteit van de component en de eigenschappen van het carrier ligand (het ligand dat overblijft tijdens de meest voorkomende reacties in het plasma) bepalen de verspreidingskarakteristieken in het lichaam. Zo wordt de grotere V_{ss} van oxaliplatine waarschijnlijk veroorzaakt door het carrier ligand DACH, dat door zijn lipofiel karakter voor goede celpersmeabiliteit en dus een sterke distributie zorgt. Bij carboplatine is de fractie van de klaring die renaal gebeurt het grootst van de drie PHC. De verklaring ligt in het minder stabiele vertrekende ligand 1,1-dicarboxycyclobutaan, in vergelijking met de chlorideliganden van cisplatine. Hierdoor wordt de molecule minder snel gehydrolyseerd dan cisplatine en zal het minder binden met weefsels en protéines. De fractie in het ultrafiltraat is voor carboplatine dan ook relatief groot. De kleinere fractie weefsel- en proteïnegebonden platina maakt dat urinaire excretie de primaire eliminatieweg is (Graham et al. 2000).
2.3.6. Variatie van de FP

De variatie in de FP van Pt_{UF} is groot tussen verschillende studies van eenzelfde PHC. Dat is gedeeltelijk toe te schrijven aan de grote biologische variatie tussen patiënten. Een tweede verklaring is het gebruik van verschillende analysemethoden zoals vlam atoomabsorptiespectroscopie (F-AAS) versus inductief gekoppeld plasma massaspectrometrie (ICP-MS). ICP-MS heeft een grotere gevoeligheid en kan daarom lagere concentraties meten, zoals in urine aan het begin van het infuus of lange tijd na het infuus in plasma of urine (Desoize, Madoulet 2002). In de studie over cisplatine waaruit de FP in Tabel 4 werden gehaald bijvoorbeeld, werd de detectielimiet voor Pt_{UF} al 3 uur na het einde van het infuus bereikt. Ten derde kunnen inadequaten tijdstippen van stalen ervoor zorgen dat soms niet elke exponentiële daling wordt waargenomen. Dit laatste kan doordat het tijdsinterval tussen de eerste 2 stalen na het infuus te groot is om een aparte exponentiële daling in plasma te detecteren of de volledige gemonitorte periode niet lang genoeg is om een extra exponentiële daling nauwkeurig te kunnen modelleren.

Een andere mogelijke verklaring voor de hoge variatie tussen publicaties zijn de verschillen in stalenbewaring: de timing van de centrifugatie van bloed, de timing van de ultrafiltratie van het plasma en de bewaartemperatuur en -tijd. Hierdoor worden de reacties met proteïnen anders beïnvloed en zal de fractie Pt_{UF} verschillen. Een laatste oorzaak is de variatie in stalenbereidingen, zoals het gebruik van verschillende cut-offs bij ultrafiltratie (Desoize, Madoulet 2002).

2.3.7. De nood aan modellen voor platina-excretie

Veel onderzoek over de farmacokinetiek van de PHC dateert uit de beginperiode van hun gebruik. Toen waren de analysemethoden in het algemeen nog minder gevoelig. In de weinige studies waar buiten plasmaconcentraties ook excretie via urine werd gemodelleerd, is het aantal onderzochte patiënten laag (zie bijvoorbeeld Tabel 4), terwijl de biologische variatie van FP erg hoog is (zie paragraaf 2.3.6). Om de economische haalbaarheid van platinarecuperatie te onderzoeken is het echter relevant om het gemiddelde verloop van de platina-excretie te kennen overheen de volledige patiëntenpopulatie. Hiervoor is een grote, representatieve steekproef nodig. Er werden voor de drie cytotatica recentere studies gevonden met gevoeliger analysemethodes én grotere steekproeven, maar hier werden geen concentraties in urine bepaald (Urien, Lokiec 2004; Duffull, Robinson 1997; Kho et al. 2006). Met het doel voor ogen is er dus nood aan nieuwe modellen die de gemiddelde excretie van platina na een PHC-kuur beschrijven.

Tabel 4. Gemiddelde FP ± standaarddeviatie (SD) hierop van Pt_{UF} voor de drie PHC. n staat voor het aantal patiënten waarbij de concentraties Pt in plasma en/of urine werden gemeten. A: (Graham et al. 2000), B: (Vermorken et al. 1984), C: (Elferink et al. 1987).

<table>
<thead>
<tr>
<th>Type PHC</th>
<th>t<sub>1/2α</sub> (h)</th>
<th>t<sub>1/2β</sub> (h)</th>
<th>t<sub>1/2γ</sub> (h)</th>
<th>V<sub>ss</sub> (L)</th>
<th>K<sub>r</sub> (L h<sup>-1</sup>)</th>
<th>K<sub>e</sub> (L h<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxaliplatine<sup>A</sup> n = 6</td>
<td>0,28 ± 0,06</td>
<td>16,3 ± 2,90</td>
<td>273 ± 19</td>
<td>582 ± 261</td>
<td>10,1 ± 3,071</td>
<td>4,66 ± 1,61</td>
</tr>
<tr>
<td>Cisplatine<sup>B</sup> n = 3</td>
<td>0,10 ± 0,02</td>
<td>0,60 ± 0,01</td>
<td>n.v.t.</td>
<td>19,2 ± 1,2</td>
<td>21,2 ± 1,2</td>
<td>4,44 ± 1,02</td>
</tr>
<tr>
<td>Carboplatine<sup>C</sup> n = 7 (*n=3)</td>
<td>0,38 ± 0,05</td>
<td>2,01 ± 0,07</td>
<td>n.v.t.</td>
<td>17,3 ± 0,9</td>
<td>6,33 ± 0,43</td>
<td>4,86 ± 0,59*</td>
</tr>
</tbody>
</table>

21
2.3.8. Populatiefarmacokinetiek van de PHC

Wanneer twee patiënten dezelfde dosis toegediend krijgen met dezelfde infusieduur zal dit nooit resulteren in exact hetzelfde concentratieverloop in het plasma. Dit komt door verschillen in de efficiëntie waarmee de nieren de component kunnen verwijderen uit het bloed, verschillen in de opname door erytrocyten, verschillen in de concentratie plasmamoleculen etc. Dit is de biologische interpatiëntvariatie, die een deel van de grote variatie in FP tussen verschillende studies verklaart (Desoize, Madoulet 2002). De populatiefarmacokinetiek tracht de gemiddelde farmacokinetische parameters te berekenen en bovendien de variatie te verklaren door relaties te achterhalen tussen de FP en patiëntkarakteristieken zoals lichaamsgewicht, nierfunctie of leeftijd (Rudek 2014). Bij carboplatine is de relatie tussen de klaring en de creatinineklaring zo sterk dat de dosis standaard wordt gecorrigeerd hiervoor. De klaring van creatinine wordt gebruikt als maat voor de performantie van de nieren. Bij cisplatine is de klaring van platina ook afhankelijk van de creatinineklaring, maar de relatie is complexer en minder sterk doordat hier niet enkel glomerulair filteren, maar ook reabsorptie en actieve tubulaire secretie in de nieren een rol spelen (Boisdron-Celle et al. 2001). Bij cisplatine is het standaardpraktijk om de dosis te corrigeren voor de lichaamsoppervlakte van de patiënt, maar de correlatie tussen de klaring en de lichaamsovergang is volgens sommige studies niet groot genoeg om de dosering significant te verbeteren (Urien, Lokiec 2004; Rudek 2014). Bij oxaliplatine werden geen significante effecten van zulke patiëntenkarakteristieken aangetoond (Kho et al. 2006).

2.4. De speciatie en reactiviteit van platina afkomstig van PHC

2.4.1. Het belang van de speciatie van platina

Momenteel is het nog onmogelijk om in de meeste milieumatrices individuele PHC of metaboolieten te kwantificeren gezien de analytische uitdagingen van de scheiding en detectie bij lage concentraties. Nochtans is de speciatie van platina om verschillende redenen van belang. Cisplatineadsorptie op sediment is in rivierwater groter dan in brak water doordat bij lagere chlorideconcentraties meer hydrolyse plaatsvindt en de resulterende species beter adsorberen (Turner, Mascorda 2015; Johnson et al. 2013). Gehydrolyseerd cisplatine accumuleert vermoedelijk ook sterker in de alg *Ulva lactuca* dan de intacte vorm (Easton et al. 2011). Een UV-behandeling voorafgaand aan adsorptie op actieve kool verlaagt de verwijderingscoëfficiënt van carboplatine uit afvalwater doordat UV-licht de speciatie beïnvloedt (Lenz et al. 2007a). De speciatie bepaalt ook de toxiciteit van platina (Wiseman, Zereini 2009). Samengevat vertonen de hydrolyseproducten van PHC op het eerste zicht meer affiniteit voor partikels, meer opname in organismen en sterkere biologische effecten dan de intacte vormen (Vyas et al. 2014).

2.4.2. Stabiliteit van PHC in synthetische waterige milieus

De speciatie van cisplatine dat in water met 50 of 100 mg/L chloride bij 25 °C werd opgelost bereikt een stationaire toestand binnen 48 uur. Hoe hoger de chlorideconcentratie, hoe minder monoaquacisplatine (pKₐ = 6,5) er ontstaat. Er ontstond in beide gevallen rond de 5 % diaquaform (pKₐ1 = 5,5 en pKₐ2 = 7,2). In water zonder chloride bereiken de concentraties mono- en diaqua cisplatine een maximum en dalen daarna door omzetten van de diaquaform naar ongekende producten (Figuur 6) (Hann et al. 2003; Turner, Mascorda 2015). In tegenstelling tot cisplatine, verloopt oxaliplatine-afbraak sneller naarmate de concentratie chloride groter is. In een experiment werd 24 uur na incubatie in een 53 mg L⁻¹ en 5,3 g L⁻¹ chloride-oplossing respectievelijk 3 en 24 % afgebroken naar één product, waarschijnlijk dichloride-DACH-platina (Hann et al. 2005). Dit reactieproduct kan verder reageren door hydrolyse (Turner, Mascorda 2015).

De speciatie van PHC in afvalwater hangt sterk af van de een afbraakproducten teruggevonden, o.a. cisplatinen (Tang et al. 1997). Carboxplatinen die kunstmatig aan urine werd toegevoegd met een concentratie van 10 mg Pt L⁻¹ degradeerde bij kamertemperatuur met een halfwaardetijd van 6,7 dagen. Bij -25 °C lag de halfwaardetijd tussen de 32 en 212 weken, afhankelijk van de samenstelling van de urine (Elferink et al. 1987).

De speciatie van PHC in afvalwater hangt sterk af van de een afbraakproducten teruggevonden, o.a. cisplatinen (Tang et al. 1997). Carboxplatinen die kunstmatig aan urine werd toegevoegd met een concentratie van 10 mg Pt L⁻¹ degradeerde bij kamertemperatuur met een halfwaardetijd van 6,7 dagen. Bij -25 °C lag de halfwaardetijd tussen de 32 en 212 weken, afhankelijk van de samenstelling van de urine (Elferink et al. 1987).
2.5. Vermindering van PHC-stromen naar het aquatische milieu

2.5.1. Huidige verwijderingsefficiëntie in een WZI

Platina kan in een klassieke WZI verwijderd worden door sorptie aan het slib. Het betreft dus enkel een verplaatsing van een vloeibaar naar een vast medium. Carboplatine wordt van de PHC waarschijnlijk het slechtst verwijderd (Lenz et al. 2007b). PHC worden geacht te binden op specifieke moleculaire groepen in actief slib en sediment, net zoals ze in het menselijk lichaam bijzondere affiniteit vertonen voor zwavel en stikstof atomen van biomoleculen (Lenz et al. 2005; Turner, Mascorda 2015). Bij een monitoringscampagne in een gemeentelijke WZI werd 74 % van het platina verwijderd, maar hier is het platina niet enkel van PHC afkomstig (Thornthon et al. 2001). In een pilootproject met een membraan bioreactor (MBR) die enkel ziekenhuisafval verwerkte, werd slechts 51 tot 63 % van het platina verwijderd (Lenz et al. 2007b). In het effluent van zulke MBR daalde de concentratie nooit naar nul en over een jaar steeg het gehalte platina in het slib aanhoudend. Dit wijst erop dat de sorptiecapaciteit van het slib niet bereikt werd en dat de sorptie kinetisch gelimiteerd wordt (Lenz et al. 2007a). Deze resultaten wijzen erop dat er nog ruimte voor verbetering is om de fluxen van PHC naar het aquatische milieu te verkleinen. Gezien de hoge prijs van platina (zie paragraaf 2.1.3) betekent een stroom van PHC naar het milieu niet enkel potentiële schade aan ecosystemen, maar ook een verlies van een waardevol materiaal. Misschien is het mogelijk om het platina na excretie op een economisch rendabele manier te recupereren uit urine of afvalwater (Folens et al. 2014).

2.5.2. Potentiële technieken voor een betere verwijdering van PHC en de preventie van milieuverontreiniging door deze geneesmiddelen

Verwijderingstechnieken voor PHC uit waterige afvalstromen zijn nog nauwelijks bestudeerd. Over de recuperatie van het element platina uit industrieel afvalwater en uitlogingsoplossingen van autokatalysatoren is meer geweten. Adsorptie van metalen op biomaterialen zoals actieve kool en chitosan of biosorptie op inactieve biomassa van algen en bacteriën is interessant wegens de lage koster van deze materialen (Rabaey, Vlaeminck 2013). Houtskool gaf in een 25 μg L⁻¹ oplossing van cisplatine en carboplatine met L/S = 100 na 5 dagen meer dan 95 % verwijdering (Falster, Wilken 1999). Met polyethyleenimine gemodificeerde biomassa van Escherichia coli vertoonde een maximale capaciteit van 109 mg g⁻¹ in een platina-oplossing met PtCl₆⁻² als meest abundante vorm (Won et al. 2010). Precipitatie gebeurt door het toevoegen van coagulanoten zoals ijzerchloride. In een studie met PHC in gestedeeld water vertoonde deze techniek slechts 20 % verwijdering, maar hier werd zowel het type coagulant als de dosis niet vermeld (Falster, Wilken 1999). Deze lage efficiëntie kan dus niet veralgemeend worden.

Elektrodepositie is het afzetten van een metaal aan een cathode. Bij bioreductie gebeurt een enzymatische omzetting en opslag van metalen door levende biomassa. Ionenuitwisseling, elektrodisale en solventextractie worden gebruikt om metaalioniën te concentreren (Xiaolong et al. 2013; Rabaey, Vlaeminck 2013). Hoewel deze laatste drie technieken nog niet op waterige media met PHC werden toegepast dient vermoedelijk eerst de speciatie beïnvloed te worden voor een efficiënte verwijdering, bijvoorbeeld door toevoeging van chemicaliën, aangezien er ook een aanzienlijk deel niet-ionaire species verwacht wordt. Succesvolle verwijdering van platina met een anionenwisselingshars uit een waterstofchlorideoplossing, met als voornaamste species PtCl₆²⁻ en PtCl₅²⁻, is al gedemonstreerd (Nikoloski, Ang 2013).

Recent werd de term ‘eco-directed sustainable prescribing’ gelanceerd voor de combinatie van twee methodes voor de preventie van milieuverontreiniging door geneesmiddelen. De eerste methode houdt in dat overmatige dosissen voorkomen worden (Daughton 2014). Individuele optimalisatie van de dosis cytostatica wordt voortdurend onderzocht voor de PHC (Duffull, Robinson 1997). Dit kan, hoewel onbedoeld, ook de fluxen van PHC naar het milieu wijzigen. De tweede optie voor preventie is de selectie van medicijnen op basis van hun
excretieprofiel. Wanneer twee geneesmiddelen nauwelijks een verschil in klinische activiteit vertonen kan voorrang gegeven worden aan die component waarbij de minst schadelijke metabolioten worden uitgescheiden. Vaak wordt de keuze van medicijnen en kuren gedeeltelijk bepaald door gewoontes (Daughton 2014). Ook in de keuze van PHC-kuren is er nog ruimte voor milieucriteria. Dit wordt geïllustreerd door de sterk variërende populariteit van carboplatine tussen Europese landen: de consumptie varieert met een factor acht zonder dat er grote verschillen in de incidentie van bepaalde kankertypes verwacht worden (Johnson et al. 2013). Deze preventietechnieken vereisen nauwe samenwerking tussen milieuwetenschappers en specialisten uit de gezondheidszorg (Daughton 2014).

In deze masterproef zullen, net zoals voor ‘eco-directed sustainable prescribing’ gebeurt, excretieprofielen worden onderzocht, maar ze zullen worden gebruikt op een volledig nieuwe manier. Ze zullen dienen om te achterhalen hoe platina, afkomstig van PHC, op een rendabele manier gerecupererd kan worden. Farmacokinetische modellen die normaal gezien voor medische toepassingen worden gebruikt, zullen hier dus op een innovatieve manier voor economische en ecologische toepassingen gebruikt worden.
3. Materialen en methodes

3.1. PHC in de WZI van een ziekenhuis

Het AZ Maria Middelares te Gent telt 554 bedden en is representatief als regionaal ziekenhuis dat chemotherapie aanbiedt. De WZI van het ziekenhuis bestaat uit een buffertank, een rooster, twee oxidatiebekkens en een sedimentatiebekken (Figuur 7). Actieve kool wordt discontinu toegevoegd aan de oxidatiebekkens en ijzerchloride druppelt er continu in. Het gemiddelde influentdebiet bedraagt $(2,3 \pm 0,2) \times 10^2$ m3, berekend uit gegevens van een week in oktober 2014, exclusief weekends. Stalen van het influent, effluent en recirculatieslib werden genomen op 7 oktober 2014. Voor staalname van het effluent werd om het kwartier een 100 mL PE recipiënt gevuld. Het influent werd op 2 tijdstippen bemonsterd. Bemonstering van het recirculatieslib gebeurde om 12:00. Alle stalen werden onmiddellijk op ijs gelegd.

Figuur 7. Schema van de WZI te AZ Maria Middelares met aanduiding van de bemonsteringsplaatsen.

Er werd een kalibratierereeks bereid met Pt-concentraties tussen 1 en 400 µg L$^{-1}$ uit een standaardoplossing Pt(IV) (Chem-lab, BE) in ultrapuur water (Milli-Q, Millipore, US) met 5 % HNO$_3$ (Chem-Lab, BE) als achtergrond. Er werd een destructie uitgevoerd in open recipiënten in een microgolfoven (MARS 6 240/50, CEM Matthews, US) na toevoeging van 3 mL HNO$_3$ aan 5 mL van de influent- en effluentstalen. Voor de bepaling van het opgelost platina, genoteerd als Pt$_{aq}$, werden de stalen eerst gefilterd over een 0,45 µm spuitfilter (Chromafil RC-45/25, Macherey-Nagel, DE). Na destructie werd met ultrapuur water aangelengd. Vóór introductie in ICP-MS (ELAN DRC-e, PerkinElmer SCIEX, CA) werd tien maal verdund (Microlab 500 series, Hamilton, US) met een 10 µg L$^{-1}$ oplossing van indium (Chem-lab, BE), de interne standaard. 195Pt en 115In werden gemeten zonder gebruik te maken van reactiegas. Het slib werd vijf dagen gedroogd in een droogstoof bij 55 °C (Loading model 100-800, Memmert, DE). Na weging werd een destructie met 2,5 mL HNO$_3$ en 7,5 mL HCl (Chem-Lab, BE) en een filtratie over een plooifilter (MN 640 m, Machery-Nagel, DE) uitgevoerd voor analyse met ICP-MS. Van de influent- en effluentstalen werd de conductiviteit (Microprocessor Conductivity Meter LFS37, WTW, DE), pH (Orion star A211, Thermo Scientific, US) en turbiditeit (Ankersmit DRT100B, HF scientific, US) gemeten. Analyse van Cl$^-$, NO$_3^-$, PO$_4^{3-}$ en SO$_4^{2-}$ gebeurde met ionenchromatografie (761 Compact IC, Metrohm, CH) na filtratie over een plooifilter en verdunning.

3.2. Inventarisatie van de platinastromen in een ziekenhuis

Om een zicht te krijgen op de hoeveelheden platina die in een ziekenhuis circuleren werd het personeel van het UZ Gent mondeling en via mail geïnterviewd. Op die manier werd toegang verkregen tot de beschrijvingen van de standaardkuren met PHC die in het UZ Gent werden gehanteerd, tot alle gedoseerde hoeveelheden van de drie PHC in het jaar 2014 en tot de afvalverwerkingsmethode voor ongebruikte resten PHC.
3.3. Degradatie van PHC in urine en water

Stockoplossingen van cisplatine (Sigma Aldrich, BE), carboplatine (Sigma Aldrich, DE) en oxaliplatine (Sigma Aldrich, DE), met een concentratie van 50 mg Pt L⁻¹, werden afzonderlijk bereid uit vaste stof. Cisplatine werd steeds in 0,15 M Cl⁻ bewaard om hydrolyse te vermijden. De stockoplossingen werden verdund tot 0,50 mg Pt L⁻¹ in enerzijds ultrapuur water en anderzijds urine. De platinaconcentraties in deze testoplossingen werden gemeten (zie paragraaf 3.1) omdat bij de bereiding van de stockoplossingen zeer kleine massa’s werden afgewogen. De testoplossingen werden gedurende het experiment op 37 °C gehouden in een warmwaterbad (PVNE14, Memmert, DE). Direct na toevoeging van de PHC en na 1, 2, 4, 6, 8, 24, 48 en 69 h werden de oplossingen bemonsterd in een HPLC-vial na filtratie over een 0,45 µm spuitfilter. Speciatie-analyse van platina gebeurde met HPLC-ICP-MS (MS: zie paragraaf 3.1, HPLC: 200 Series, PerkinElmer, US). De methode, beschreven in Tabel 5, is gebaseerd op (Hann et al. 2005). Er werd een kalibratieruks van 5 µg L⁻¹ tot 400 µg L⁻¹ Pt bereid uit de ingevroren stockoplossingen. Gezien de instabiliteit van de species werden HPLC-vials steeds bij -20 °C bewaard, 30 minuten voor injectie ontdooid en juist voor injectie geschud. De chromatografische pieken werden geanalyseerd met de software Chromera (PerkinElmer, US). De pseudo eerste orde afbraakconstanten k van de PHC werden berekend met Sigmaplot 13 (Systat Software, VS) door vergelijking 14 of 15 te fitten. Tot slot werd de gebruikte urine gekarakteriseerd door meting van anionenconcentraties en de pH (zie paragraaf 3.1). Albumine- en creatininegehaltes werden semi-quantitatief bepaald met dipsticks (Medi-Test Mikroalbumin, Machery-Nagel, DE). Hiermee kan onderscheid gemaakt worden tussen < 10, 30, 80 of 150 mg L⁻¹ albumine en tussen < 10, 50, 100, 200 en 300 mg dL⁻¹ creatinine.

\[
C(t) = (C_0 - C_{ev})e^{-kt} + C_{ev} \quad (14)
\]

\[
C(t) = C_0e^{-kt} \quad (15)
\]

Tabel 5. Chromatografische condities.

<table>
<thead>
<tr>
<th>HPLC kolom</th>
<th>Discovery HS-FS-3 15 cm x 2,1 mm, Supelco, US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injectievolume</td>
<td>5 µL</td>
</tr>
<tr>
<td>Kolomtemperatuur</td>
<td>Kamertemperatuur</td>
</tr>
<tr>
<td>Mobiele fase</td>
<td>10 mM NH₄COO in 2 vol% CH₃OH</td>
</tr>
<tr>
<td>Eluensdebit</td>
<td>0,20 mL min⁻¹</td>
</tr>
</tbody>
</table>

3.4. Platina-excretie via urine na een behandeling met PHC

3.4.1. Bemonsteringsstrategie

Urinentalen van kankerpatiënten werden verkregen via de hospitalisatieafdeling van de dienst Medische Oncologie van het UZ Gent. Voor de studie werd goedkeuring verkregen van het Ethisch Comité (Bijlage 9.1). Elke patiënt die deelnam, ondertekende het informatie- en goedkeuringsformulier (Bijlage 9.2). De patiënten kregen vóór aanvang van het PHC-infus een handleiding met de te volgen stappen (Bijlage 9.3). De staalname zelf gebeurde door de verpleging, volgens een vast protocol (Bijlage 9.4). Vanaf het begin van het PHC-infus werd bij elke plasbeurt de urine opgevangen in het gewassen recipiënt van een nachtstoel. De massa van de urine van één plasbeurt werd gewogen door de massa van het lege recipiënt af te trekken van die van het volle recipiënt. Uit die totale hoeveelheid urine werd een staal van 10 mL genomen met een plastic spuit. Dit staal werd onmiddellijk bij -20 °C bewaard tot analyse. Per deelnemende patiënt werd via een invulfomulier voor de arts (Bijlage 9.5) de volgende informatie opgevraagd: het type cytostaticum dat werd toegediend, het tijdstip van het begin van het...
infus, de duur van het infus T, de totale toegediende PHC-dosis D in mg en in mg m\(^2\) lichaamsoppervlakte, het gewicht m van de patiënt, het geslacht G van de patiënt en de creatinineklaring \(K_{\text{cr}}\) van de patiënt. Tabel 6 bevat deze informatie, de daaruit afgeleide dosis platina \(D_{\text{Pt}}\) en extra opgevraagde gegevens.

Tabel 6. Informatie van de deelnemende patiënten die cisplatine kregen (patiënt 1 - 6) en één die carboplatine kreeg (Patiënt 7). * De dosis per m\(^2\) lichaamsoppervlakte wordt niet op deze manier geindividualiseerd bij carboplatine (zie paragraaf 2.3.6). ** Gegeven ontbreekt.

<table>
<thead>
<tr>
<th>Patiënt</th>
<th>T (h)</th>
<th>D (mg)</th>
<th>D (mg m(^2))</th>
<th>D(_{\text{Pt}}) (mg)</th>
<th>m (kg)</th>
<th>(K_{\text{cr}}) (mg dl(^{-1}))</th>
<th>A (m(^2))</th>
<th>G</th>
<th>Naam van de kuur in het UZ Gent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>120,74</td>
<td>80</td>
<td>78,51</td>
<td>53,6</td>
<td>0,65</td>
<td>1,51</td>
<td>v</td>
<td>CISPLATINUM - ALIMTA *1368</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>175,88</td>
<td>100</td>
<td>114,36</td>
<td>62,3</td>
<td>0,62</td>
<td>1,76</td>
<td>m</td>
<td>CISPLATINUM/5FU (4 dagen) + CETUX. VERR. *1294</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>152,18</td>
<td>100</td>
<td>98,95</td>
<td>50,0</td>
<td>0,72</td>
<td>1,52</td>
<td>v</td>
<td>CISPLATINUM/5FU (4 dagen) + CETUX. VERR. *1294</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>122,31</td>
<td>80</td>
<td>79,53</td>
<td>55,0</td>
<td>0,73</td>
<td>1,53</td>
<td>v</td>
<td>CISPLATINUM - ALIMTA *1368</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>167,48</td>
<td>80</td>
<td>108,90</td>
<td>98,0</td>
<td>0,60</td>
<td>2,09</td>
<td>v</td>
<td>CISPLATINUM - ALIMTA *1368</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>101,67</td>
<td>70</td>
<td>66,11</td>
<td>49,0</td>
<td>0,55</td>
<td>1,45</td>
<td>v</td>
<td>MVAC (neo-adjuvant) *4051</td>
</tr>
<tr>
<td>Gem.</td>
<td>1</td>
<td>140,04</td>
<td>85</td>
<td>91,06</td>
<td>61,3</td>
<td>0,65</td>
<td>1,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,5</td>
<td>237,36</td>
<td>*</td>
<td>124,73</td>
<td>69,7</td>
<td>**</td>
<td>1,80</td>
<td>v</td>
<td>WEKELIJKS CARBOPLATINE - TAXOL *2263</td>
</tr>
</tbody>
</table>

3.4.2. Analyse van de urinestalen

De urinestalen werden ontdooi bij kamertemperatuur, geschud en een geschikte hoeveelheid werd met 2 mL HNO\(_3\) en ultrapauur water aangelengd tot 6 mL. Na destructie werd aangelengd tot 50 mL zodat een totale verdunning van 20, 200 of 2000 werd verkregen, afhankelijk van de grootteorde van de concentratie platina die verwacht werd op basis van de modellen in Tabel 4. Per patiënt werd van het eerst en laatst gecollecteerde volume urine ook de concentratie Pt\(_{\text{tot}}\) gemeten. Hiervoor werd 2 mL staal in een ultrafiltratiebuisje met NMWL 10 000 (Ultracel-10K, Millipore, DE) voor 15 min ge centrifuged op 7500 rpm bij 10 °C (5804R, Eppendorf, DE). Hierna werd 1,5 mL ultrafiltraat gestabiliseerd met 1,5 mL HNO\(_3\). Voor analyse werd weer tot een geschikte totale verdunning aangelengd. Van deze eerst en laatst gecollecteerde stalen werden [Pt]\(_{\text{tot}}\) en [Pt]\(_{\text{ur}}\) vergeleken met een eenzijdig gepaarde Wilcoxon Rangtekentoes met R 3.1.3 (R Foundation). Op de stalen werd ook een speciatieanalyse en analyse van anionen-, albumine- en creatinineconcentraties uitgevoerd (zie paragraaf 3.3). Voor de speciatieanalyse werden de stalen gepast verdund (10, 20 of 200 keer) op basis van de concentraties Pt\(_{\text{tot}}\).

3.4.3. Kalibratie van de modelparameeters

In de literatuur werd geen analytische oplossing gevonden voor de geëxcreteerde hoeveelheid U volgens een twee compartimente model. Om het modelleren en simuleren te vergemakkelijken werd een analytische oplossing voor vergelijking 1 tot en met 3 berekend voor een infus met een constante infusiesnelheid. De afleiding staat in Bijlage 9.6. Het resultaat is uitdrukking 16, die de relatieve uitgescheiden massa \(U_{\text{rel}}\) in functie van de tijd beschrijft op basis van 4 FP en de infusietijd.

\[
U_{\text{rel}} = \frac{U}{D_{\text{Pt}}} = \begin{cases} \frac{k_r k_2}{k_{21}} t + \frac{\alpha k_{12} (\alpha + \beta)}{\alpha^2 (\alpha + \beta)} e^{\alpha t} + \frac{\beta k_{21}}{\beta^2 (\beta - \alpha)} e^{\beta t} & \text{als } t < T \\ \frac{k_r k_2}{k_{21}} T + \frac{\alpha k_{12}}{\alpha^2 (\alpha + \beta)} e^{\alpha T} (1 - e^{\alpha T}) + \frac{\beta k_{21}}{\beta^2 (\beta - \alpha)} e^{\beta T} (1 - e^{\beta T}) & \text{als } t \geq T \end{cases}
\]

(16)
Voor een ééncompartimenteel model kan een analoge afleiding gemaakt worden die leidt tot vergelijking 17. Merk op dat hier geen constante α wordt ingevoerd omdat dit de afleiding niet vereenvoudigt. Er is maar één halfwaardetijd, die wordt voorgesteld met het symbool $t_{1/2}$ en wordt berekend als $\ln(2)/k_{el}$.

\[
U_{rel} = \frac{U}{D_{Pt}} = \begin{cases}
\frac{k_r}{T_{K_{el}}} \left[t + \left(\frac{e^{k_{el}T} - 1}{k_{el}} \right) \right] & \text{als } t < T \\
\frac{k_r}{T_{K_{el}}} \left[T + \left(1 - e^{k_{el}T} \right) \right] & \text{als } t \geq T
\end{cases}
\]

Voor carboplatine worden de parameterwaarden uit Tabel 4 volledig overgenomen omdat er slechts één patiënt deelnam aan de studie. Dat via urine enkel Ptuur wordt uitgescheiden is bij carboplatine zeer plausibel gezien de lage reactiviteit (zie paragraaf 2.3.5). Om de parameters uit Tabel 4 om te zetten naar die in vergelijking 16 (α, β, k_r en k_{el}) werd het stelsel, gevormd door vergelijking 5, 6 en 7, opgelost. Er werden geen urinestalen verkregen van patiënten die een oxaliplatinekuur ondergaan. Bovendien zijn er in de literatuur niet genoeg parameters gevonden om de excretie via urine te simuleren. Daarom wordt dit PHC buiten beschouwing gelaten. Voor cisplatine worden drie methodes vergeleken. Ten eerste worden de Ptuur-parameterwaarden overgenomen uit een recente studie op plasma met een grote steekproef (Tabel 7) en wordt de ontbrekende parameter k_r bepaald a.d.h.v. de analyseresultaten. Hierbij wordt aangenomen dat proteïnegebonden platina in urine verwaarloosbaar is t.o.v. Ptuur tijdens de eerste 24 h. Om de parameters uit Tabel 7 om te zetten naar die in vergelijking 16 werd het stelsel van vergelijking 5 tot en met 10 analytisch opgelost. Ten tweede wordt een twee compartimenteel model gefit zonder parameterwaarden uit de literatuur. Tot slot wordt ook een één compartimenteel model gefit.

Tabel 7. FP van Ptuur na een cisplatinebahendeling (n = 43, samplingtijd = 24 h) (Urien, Lokic 2004).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1 (L)</td>
<td>23,4 ± 1,0</td>
</tr>
<tr>
<td>V_2 (L)</td>
<td>12,0 ± 5,33</td>
</tr>
<tr>
<td>K_l (L h$^{-1}$)</td>
<td>35,5 ± 1,4</td>
</tr>
<tr>
<td>l (L h$^{-1}$)</td>
<td>8,64 ± 1,44</td>
</tr>
</tbody>
</table>

De experimentele platina-excretie werd berekend met Excel 2013 (Microsoft, VS). De concentratie PtTox (mg L$^{-1}$) in urine werd hiervoor vermenigvuldigd met het volume urine (L) ($p = 1,0$ kg L$^{-1}$). Dit levert de massa platina ΔU (mg) op die tussen twee tijdstippen werd uitgescheiden. Cumulatief leveren deze waarden de uitgescheiden massa platina U. Na deling door de toegediende dosis platina D_{Pt} wordt U_{rel} verkregen. Merk op dat de uitdrukking voor U_{rel} onafhankelijk is van de dosis platina D_{Pt} (vergelijking 16 of 17). Daarom kunnen de U_{rel}-curven met de data van alle patiënten tegelijk gefit worden om de gemiddeld parameters te schatten. Deze methode noemt men binnen de populatiefarmacokinetiek de ‘naïeve benadering’. D.m.v. een één compartimenteel model werden ook de individuele U_{rel}-curven gefit om te onderzoeken of de variatie in FP kan verklaard worden a.d.h.v. patiëntkarakteristieken. Dit noemt men de ‘tweestadiemethode’ (Rudek 2014). Correlaties tussen de FP en patiëntkarakteristieken werden berekend met software R. Hiervoor werden de data van patiënt 5 niet gebruikt omdat te weinig urinestalen zijn gecollecteerd op adequate momenten om de FP apart nauwkeurig te schatten. Voor de twee methodes werd de niet-gewogen kleinste kwadratenmethode toegepast met SigmaPlot 13.
3.4.4. Scenario- en onzekerheidsanalyse van de platina-excretie

Het doel van de scenarioanalyse is om de gemiddelde excretie U te voorspellen bij de verschillende kuren die momenteel in het UZ Gent worden gebruikt. De simulaties gebeuren a.d.h.v. de FP voor een twee compartimenteel model uit Tabel 4 voor carboplatine en voor cisplatine a.d.h.v. de FP van het één compartimenteel model in Tabel 13 (deze keuze wordt gemotiveerd in paragraaf 5.3.1). De inputvariabelen T en Dₚᵣ wurden afgeleid uit de statistieken van 2014 (Tabel 8). De infuseduur valt discreet in te delen op basis van de verschillende kuren in het UZ Gent. De dosissen worden voor cisplatine in mg m⁻² voorgeschreven en bij carboplatine gebeurt er een correctie d.m.v. de nierfunctie (zie paragraaf 2.3.6). Door de variatie in deze patiëntkarakteristieken valt er geen discrete indeling van de dosis waar te nemen. Daarom werd de gemiddeld toegediende dosis bij elke infuseduur berekend. Per PHC werden er simulaties gemaakt voor de twee infuseduren die de grootste fractie van de totale toegediende hoeveelheid van de PHC in 2014 voorstellen. De concentratie Cᵢ van platina in urine die vanaf het begin van het infuus tot op een tijdstip t in één recipiënt wordt opgevangen, werd geschat door een constant urinedeбит Qᵢ te veronderstellen (vergelijking 18). Voor cisplatine werd het debiet bij 6 mensen gemeten die een infuus van 1 h kregen. Voor langere infuseduren wordt hetzelfde debiet verondersteld. Het urinedebit van de patiënt die carboplatine kreeg bedroeg gemiddeld 114 mL h⁻¹. Omdat dit werd afgeleid uit gegevens van slechts één patiënt werd pragmatisch gekozen voor een minimum van 1,5 (Rang, Dale 2014) en een maximum van 4,5 L d⁻¹, lager dan bij cisplatine aangezien er geen expliciete hyperhydratatie wordt toegepast. De gebruikte software is Matlab (MathWorks, VS).

\[Cᵢ = \frac{U}{Qᵢ t} \]

De onzekerheidsanalyse is gebaseerd op een Monte Carlo simulatie. Hiervoor werden 5000 simulaties gemaakt door via 'Latin Hypercube sampling' de parameters te variëren binnen de range gedefinieerd door hun standaardafwijkingen of minimum en maximum (Tabel 4 voor de FP van carboplatine, Tabel 13 voor de FP van cisplatine en Tabel 8 voor de inputvariabelen) (Nopens 2010). Nadien werd het 5⁰e en 95⁰e percentiel van de simulatiereultaten berekend.

Tabel 8: Inputvariabelen voor de simulaties. T en Dₚᵣ zijn afgeleid uit de statistieken voor 2014 van het UZ Gent. Tussen haakjes staat het percentage van de totale toegediende hoeveelheid van het PHC dat met die specifieke infuseduur werd toegediend. Qᵢ is afgeleid uit metingen van het urinedebit en pragmatische schattingen.

<table>
<thead>
<tr>
<th>Type PHC</th>
<th>T (h)</th>
<th>Dₚᵣ (mg)</th>
<th>Qᵢ (mL h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatine</td>
<td>1 (61 %)</td>
<td>51 ± 1</td>
<td>(24 ± 3) 10⁻¹</td>
</tr>
<tr>
<td></td>
<td>6 (13 %)</td>
<td>83 ± 3</td>
<td>(24 ± 3) 10⁻¹</td>
</tr>
<tr>
<td>Carboplatine</td>
<td>0,5 (54 %)</td>
<td>203 ± 5</td>
<td>114 (min 62,5 en max 187,5)</td>
</tr>
<tr>
<td></td>
<td>1 (42 %)</td>
<td>261 ± 5</td>
<td>114 (min 62,5 en max 187,5)</td>
</tr>
</tbody>
</table>

3.5. Batchadsorptie van PHC op actieve kool en chitosan

Batchadsorptie van cisplatine en carboplatine in synthetische urine op chitosan (Sigma Aldrich, IS) en actieve kool (BX 8x30, Chemviron, US) werd reeds bestudeerd. De onderzochte concentraties (≤ 0,5 mg L⁻¹) zijn echter veel lager dan die in urine vlak na een PHC-infuus. Daarom werden adsorptie-isothermen opgesteld met hogere initiële concentraties volgens een vergelijkbare methode (Abebe 2014). In PE proefbuisjes werd aan synthetische urine het PHC toegevoegd in verschillende concentraties (Tabel 9). Aan het totaalvolume van 8 mL werd 40 mg adsorbens toegevoegd. Voor carboplatine werd in drievoud gewerkt. Na 24 h schudden werden de suspensies
gefilterd over een 0,45 µm spuitfilter. Om de finale concentratie binnen het bereik van de kalibratiecurve te laten vallen werd een geschikt volume filtraat met 1 mL HNO₃, 3 mL HCl en ultrapuuri water in een totaal volume van 8 mL gedestueurd voor analyse met ICP-MS (zie paragraaf 3.1). Om te compenseren voor adsorptie op de wand van de proefbuisjes werden op dezelfde manier controleoplossingen gemaakt, geschud en geanalyseerd, zonder adsorbens.

Tabel 9. Initiële concentraties voor batch-adsorptie van de PHC op chitosan en actieve kool.

<table>
<thead>
<tr>
<th>Type PHC</th>
<th>Adsorbens</th>
<th>Initiële concentraties (mg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chitosan</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Actieve kool</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Er werd een Langmuir-(vergelijking 19) en Freundlichisotherm (vergelijking 20) gefit met Sigmaplot 13. qₑ is de massa platina die na evenwichtsinstelling is geadsorbeerd per gram adsorbent (mg g⁻¹), Ce de concentratie in oplossing na evenwicht (mg L⁻¹), qₑₘₚₐₓ de maximale sorptiecapaciteit (mg g⁻¹), b de Langmuirconstante (L mg⁻¹) en n en Kᵣ (mg⁻ⁿ g⁻¹ Lⁿ) zijn de Freundlichconstanten. Het model dat resulteerde in de grootste R²-waarde en kleinste CV op de parameters werd geselecteerd voor verder gebruik (Abebe 2014).

\[
q_e = \frac{q_{max} b C_e}{1 + b C_e}
\]

(19)

\[
q_e = K_f C_e^n
\]

(20)

3.6. Kolomadsorptie van PHC op actieve kool

Bij één patiënt die carboplatine kreeg en één die cisplatine kreeg, werden de volledige volumes urine bijgehouden in een aparte fles per plasbeurt (Bijlage 9.7). Met deze urine werd een directe verwijdering van platina uit urine van de eerste uren na een infuus gesimuleerd. De concentratie Pt_{tot} in elke fles werd gemeten (zie paragraaf 3.4.2). Uit de volumes ΔV, de concentraties [Pt]_{tot} en de evenwichtscapaciteit bij die concentratie volgens de Freundlichvergelijking qₑ([Pt]_{tot}), werd met vergelijking 21 geschat hoeveel adsorbens nodig is om de totale massa platina per fles te verwijderen. Een factor 2 werd ingevoerd ter compensatie van het adsorptie-evenwicht dat niet onmiddellijk wordt bereikt. Een glazen kolom met een binnendiameter van 2 cm werd gevuld met de som van de berekende massa's (Tabel 10). Op basis van de adsorptie-isothermen werd actieve kool geselecteerd als meest geschikte adsorbens wegens de grotere adsorptiecapaciteit en lagere kost dan chitosan (Abebe 2014). Voor- en achteraan werd de kolom afgesloten met glaswol (Figuur 8). Daarna werd met water het debiet ingesteld op 14 mL min⁻¹, gelijk aan het gemiddeld aantal cisplatinetaken per dag (zie paragraaf 4.2) maal het gemiddelde urinedebiet van de patiënten die cisplatine kregen (Tabel 8). Wanneer alle cisplatinetaken in het ziekenhuis over één adsorbens zouden plassen, moet het effluentdebit ongeveer gelijk zijn aan het gemiddelde influentdebit per dag om geen al te grote buffertank nodig te hebben. Voor carboplatine werd hetzelfde debiet gebruikt.

\[
m_{adsorbent} = 2 \frac{[Pt]_{tot} \Delta V}{q_e ([Pt]_{tot})}
\]

(21)

Één voor één werd de urine met cisplatine uit de flessen op de kolom gebracht. Het effluent werd opgevangen in een maatcilinder. Om de 147,5 mL werd 2,5 mL apart opgevangen voor totaalanalyse (zie paragraaf 3.4.2). Alle
effluentfracties werden gecollecteerd in één vat. De platinaconcentratie in dit vat werd gemeten na doorloop van alle urine van de patiënt. De totale massa platina in het effluent werd berekend door de concentratie in het vat te vermenigvuldigen met het volume urine in het vat, met correctie voor de stalen die werden genomen voor analyse. Deze massa werd ook geschat door numerieke integratie van de effluentconcentratie in functie van het effluentvolume, om consistentie van de resultaten te controleren. Voor carboplatine werd een analoog methode gevolgd, met afname van kleinere volumes van 250 µL voor analyse, wegens de hogere concentraties platina.

Tabel 10. Eigenschappen van de kolommen met actieve kool voor de verwijdering van cisplatine en carboplatine.

<table>
<thead>
<tr>
<th>Type PHC</th>
<th>Massa adsorbens (g)</th>
<th>Bulkvolume adsorbens (mL)</th>
<th>Hoogte adsorbenskolom (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatine</td>
<td>46</td>
<td>84</td>
<td>26</td>
</tr>
<tr>
<td>Carboplatine</td>
<td>61</td>
<td>117</td>
<td>37</td>
</tr>
</tbody>
</table>

Figuur 8. Proefopstelling van het kolomadsorptie-experiment voor de verwijdering van cisplatine en carboplatine met actieve kool.

3.7. Desorptie van PHC door urine van gezonde personen

De capaciteit van urine zonder PHC om platina te desorberen na adsorptie, werd getest op de gebruikte kolommen. Hiervoor werd telkens 1,120 L eigen urine op de kolom gebracht. Het effluent werd op dezelfde wijze als in paragraaf 3.6 bemonsterd.
3.8. Kwaliteitscontrole

Voor analyse van platina met ICP-MS werden alleen kalibratiecurves gebruikt met een R-waarde groter dan 0,999. Minstens om de 20 stalen werd opnieuw gekalibreerd en op het einde van elke reeks werd een controlestandaard toegevoegd. Tijdens het kolomadsorptie-experiment werd de verwijderingsefficiëntie op twee manieren berekend: door analyse van het gecombineerde effluent en door analyse van het effluent op specifieke tijdspunten (zie paragraaf 3.7). De hieruit berekende efficiënties verschillen in één geval 4 % en in het andere geval 1 % van elkaar. Dat de effluentsamenstelling sterk fluctueert en de resultaten toch goed overeenkomen, wijst erop dat de methode voldoende robuust is. Alle reële urinestalen werden bij -20 °C bewaard om de samenstelling zo min mogelijk te laten wijzigen. Bij geen van de degradatie-experimenten vertoont de totale oppervlakte van de chromatogrammen (hiervoor werd een constante basislijn verondersteld), een significant (significantieniveau 0,05) dalende of stijgende trend in functie van de tijd. Dit is een aanwijzing dat drift beperkt is en externe kalibratie volstaat.
4. Resultaten

4.1. PHC in de WZI van een ziekenhuis

Het verloop van de platinaconcentratie in het influent en effluent van de WZI te AZ Maria Middelares wordt weergegeven in Figuur 9. Pt_{tot} en Pt_{aq} liggen steeds dicht bij elkaar. In het effluent is de concentratie relatief constant. De concentratie in het influent ligt om 11:35 lager dan om 10:53. Dit wijst op een dalende trend, eerder dan op een toevallige variatie omdat de buffertank zorgt voor een tijdmiddelde waarde. In het effluent vertonen de andere parameters ook weinig fluctuatie, met een gemiddelde turbiditeit van (1.4 ± 0.4) NTU, een geleidbaarheid van (2.75 ± 0.01) mS cm$^{-1}$ en een chlorideconcentratie van $(63 \pm 3) \times 10^1$ mg L$^{-1}$. In het influent bedraagt de turbiditeit om 10:53 64 NTU en om 11:35 103 NTU. De chlorideconcentratie en de conductiviteit daarentegen, dalen in het influent tussen 10:53 en 11:35. De concentratie platina in het slib bedraagt 0,9 mg kg$^{-1}$ DS.

![Figuur 9. Platinaconcentratie in functie van de tijd voor zowel het influent als het effluent. Het opgelost en totaal platina zijn beide weergegeven.](image)

4.2. Inventarisatie van de platinastromen in een ziekenhuis

In 2014 werden in het UZ Gent 2482 infusen met een PHC gegeven, equivalent aan 302 g platina. Enkele belangrijke statistieken, afgeleid uit gegevens van 2014, worden weergegeven in Tabel 11. Tijdens hun verblijf in het ziekenhuis urineren patiënten momenteel gewoon in het toilet. Bij sommige kuren mogen de patiënten snel na het infuus naar huis (dagkliniek) terwijl ze bij andere kuren één of meer keer overnachten in het ziekenhuis (hospitalisatie). Exacte gegevens over het relatieve aantal dagkliniekpatiënten werden niet verkregen. Van alle standaardkuren voor cisplatine die op de dienst Medische Oncologie worden gebruikt, is 34 % met hospitalisatie. Dit houdt geen rekening met het aantal keer dat een bepaalde kuur wordt voorgeschreven. Voor de andere PHC zijn dit er, wat de dienst Medische Oncologie betreft, nul. Ongebruikte resten van de PHC worden behandeld
volgens het protocol in Bijlage 9.9. Wanneer een flacon met PHC wordt aangeprikt om een infuus te doseren, wordt deze maximaal 14 dagen verder gebruikt. Sinds 2013 is er, alvast wat cisplatine betreft, geen enkele flacon weggegooid.

<table>
<thead>
<tr>
<th>Kengetal</th>
<th>Cisplatine</th>
<th>Carboplatine</th>
<th>Oxaliplatine</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (mg)</td>
<td>Totaal</td>
<td>Gemiddeld per infuus ± SD</td>
<td>Gemiddeld per infuus ± SD</td>
<td>Gemiddeld per infuus ± SD</td>
</tr>
<tr>
<td></td>
<td>57499</td>
<td>202321</td>
<td>42232</td>
<td>302053</td>
</tr>
<tr>
<td></td>
<td>58 ± 1</td>
<td>222 ± 3</td>
<td>73 ± 1</td>
<td>122 ± 2</td>
</tr>
<tr>
<td></td>
<td>6,33</td>
<td>27,10</td>
<td>18,42</td>
<td>6,33</td>
</tr>
<tr>
<td></td>
<td>150,96</td>
<td>520,95</td>
<td>129,24</td>
<td>520,95</td>
</tr>
<tr>
<td>T (h)</td>
<td>Gemiddeld per infuus ± SD</td>
<td>Gemiddeld per infuus ± SD</td>
<td>Gemiddeld per infuus ± SD</td>
<td>Totaal</td>
</tr>
<tr>
<td></td>
<td>2,9 ± 0,2</td>
<td>0,79 ± 0,04</td>
<td>2,00 ± 0</td>
<td>1,90 ± 0,07</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>0,5</td>
<td>2,0</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>12</td>
<td>2,0</td>
<td>24</td>
</tr>
<tr>
<td>Start infuus (hh:mm)</td>
<td>Gemiddeld</td>
<td>11:46</td>
<td>11:11</td>
<td>8:59</td>
</tr>
<tr>
<td>Aantal infusen</td>
<td>Totaal</td>
<td>989</td>
<td>913</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>Gemiddeld per dag</td>
<td>3,80</td>
<td>3,59</td>
<td>2,80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2482</td>
<td>8,99</td>
<td></td>
</tr>
</tbody>
</table>

4.3. Degradatie van PHC in urine en water

Enkele karakteristieken van de urine die voor het afbraakexperiment werd gebruikt, staan in Tabel 12.

Tabel 12. Karakterisatie van de urine die gebruikt werd voor het degradatie-experiment.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5,86</td>
</tr>
<tr>
<td>Chloride (mg L⁻¹)</td>
<td>944</td>
</tr>
<tr>
<td>Fosfaat (mg L⁻¹)</td>
<td>681</td>
</tr>
<tr>
<td>Sulfaat (mg L⁻¹)</td>
<td>601</td>
</tr>
<tr>
<td>Albumine (mg L⁻¹)</td>
<td>< 10</td>
</tr>
<tr>
<td>Creatinine (mg dL⁻¹)</td>
<td>50</td>
</tr>
</tbody>
</table>

Cisplatine vertoont nauwelijks afbraak in water (Figuur 10). Vanaf 24 h verschijnt er een kleine piek die finaal 3 % van de totale oppervlakte van het chromatogram bedraagt. In urine wordt 53 ± 3 % afgebroken met een afbraakconstant van 0,12 ± 0,03 h⁻¹ indien wordt aangenomen dat de concentratie naar een evenwichtswaarde groter dan 0 mg L⁻¹ evolueert (Figuur 16). Er elueren opvallende afbraakproducten met tᵣ = 2,6, 3,8, 4,8 en 6,2 min (Figuur 11). Carboplatine vertoont in zuiver water één afbraakproduct dat vanaf het begin tot het einde 2-4 % van de totale piekoppervlakte voorstelt (Figuur 12). In urine worden pas na 24 h afbraakproducten waargenomen (Figuur 13). Tijdens de analyse van de stalen met carboplatine is het ICP een aantal keer uitgevallen. Hierna werd opnieuw gekalibreerd en de gevoeligheid was nauwelijks veranderd, maar toch werd een uitschieter van 631 mg Pt L⁻¹ waargenomen na 8 h in urine. De pseudo eerste orde afbraakconstante bedraagt 0,011 ± 0,002 h⁻¹, wanneer deze uitschieter wordt weggelaten. In Figuur 16 is te zien dat een eerste orde model voor carboplatine waarschijnlijk niet volstaat om de afbraak nauwkeurig te beschrijven. Oxaliplatine vormt in water onmiddellijk één prominent afbraakproduct (tᵣ = 3,7 min) dat na 1 h 10 % van de totale piekoppervlakte voorstelt en daarna terug afneemt tot 4 % (Figuur 14). Op tijdstip 0 is er een kleine piek (tᵣ = 3,1 min) die geleidelijk aan terug verdwijnt. In urine wordt oxaliplatine naar minstens acht verschillende producten afgebroken die soms weer terug verdwijnen, zoals de piek met tᵣ = 12,7 min (Figuur 15). Vanaf 48 h is de piek van oxaliplatine niet meer te onderscheiden. Na 69 h bedraagt de piek met tᵣ = 9,2 min 34 % van de totale oppervlakte en wordt daarmee de dominante vorm.
afbraak vertoont een goede overeenkomst met een eerste orde reactiekinetiek met snelheidsconstante $k = 0,158 \pm 0,007 \text{ h}^{-1}$.

Figuur 10. Chromatogram van $0,40 \text{ mg Pt L}^{-1}$ cisplatine in water direct na toevoeging van de PHC en 69 h later.

Figuur 11. Chromatogram van $0,40 \text{ mg Pt L}^{-1}$ cisplatine in urine na 0, 24 en 69 h.
Figuur 12. Chromatogram van 0,40 mg Pt L⁻¹ carboplatine in water, direct na toevoeging van de PHC en 69 h later.

Figuur 13. Chromatogram van 0,40 mg Pt L⁻¹ carboplatine in urine na 0, 24 en 69 h.
Figuur 14. Chromatogram van 0,35 mg Pt L⁻¹ oxaliplatine in water na 0, 1 en 69 h.

Figuur 15. Chromatogram van 0,35 mg Pt L⁻¹ oxaliplatine in urine na 0, 8, 24 en 69 h.
Figuur 16. De concentraties van de intacte PHC in functie van de tijd met de gefitte modellen voor exponentiële afbraak. Voor cisplatine werd afbraak naar een evenwichtswaarde aangenomen. Cisplatine: $R^2 = 0,9582$. Carboplatine: $R^2 = 0,9252$. Oxaliplatine: $R^2 = 0,9968$.

4.4. Platina-excretie via urine na een behandeling met PHC

4.4.1. Analyse van de urinestalen

De patiënten stemden in om 24 h lang urine af te staan, maar in de praktijk is de collectie vaak vroeger gestopt. De concentraties Pt$_{tot}$ in urine na een PHC-infus worden in Figuur 17 weergegeven. De concentraties na een carboplatinebehandeling liggen over het algemeen hoger. Bij cisplatine zien we op het einde terug een stijging in de concentratie, doordat de urineproductie daalt. Uit de Wilcoxon-rangtekentoets blijkt dat de concentraties Pt$_{UF}$ voor zowel de eerst ($p = 0,9531$) als de laatst gecollecteerde stalen ($p = 0,6562$) niet significant verschillen van de Pt$_{tot}$-concentraties. Het gemiddelde van de concentraties Pt$_{UF}$ ligt zelfs 11 % hoger dan de gemiddelde Pt$_{tot}$-concentratie.
4.4.2. Kalibratie van de modelparame ters

Eerst worden de resultaten van de naïeve methode toegelicht (Figuur 18 en Tabel 13). Het twee compartimenteel model vertoont visueel de beste overeenkomst met de data omdat het de trage stijging op het einde mee in rekening brengt. De SD op de parameters is echter zeer hoog voor dit model: de CV van de FP die verband houden met het tweede compartiment (k_{21} en b) bedraagt meer dan 1. Dit valt te verklaren doordat er niet genoeg punten op late tijdstippen gecollecteerd zijn om deze FP nauwkeurig te schatten. De laatste, trage fase ($t_β = 3466$ h) wordt niet voorspeld door het twee compartimenteel model dat FP uit de literatuur gebruikt. De twee aparte vroege exponentiële fasen die door dit model uit de literatuur worden voorspeld, zien we niet duidelijk in de data weerspiegeld, waarschijnlijk doordat er niet genoeg punten op vroege tijdstippen gecollecteerd zijn om een onderscheid te maken. Het twee compartimenteel model dat gebruik maakt van de FP uit de literatuur en het één compartimenteel model vertonen visueel een vergelijkbare overeenkomst met de data. Voor geen van de modellen wordt de hypothese dat de residuen geen constante variantie hebben, verworpen. Dit is een aanwijzing dat de ongewogen kleinste kwadratenmethode volstaat (Bonate 2011). Met de twee-stadiamethode werden geen significante correlaties gevonden tussen de FP en patiëntkarakteristieken van een één compartimenteel model.

Tabel 13. De FP bepaald d.m.v. de kleinste kwadratenmethode voor de drie modellen. De R^2 en de p-waarden van de hypothesetoets voor normaliteit en constante variantie van de residuen zijn weergegeven.

<table>
<thead>
<tr>
<th>Type model</th>
<th>R^2</th>
<th>Normaliteit (p)</th>
<th>Constante variantie (p)</th>
<th>k_r (h$^{-1}$)</th>
<th>k_{el} (h$^{-1}$)</th>
<th>k_{21} (h$^{-1}$)</th>
<th>$α$ (h$^{-1}$)</th>
<th>$β$ (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Een compartiment</td>
<td>0,576</td>
<td>0,051</td>
<td>0,392</td>
<td>0,2614 ± 0,0523</td>
<td>1,0225 ± 0,2172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twee compartimenten – literatuur</td>
<td>0,582</td>
<td>0,084</td>
<td>0,742</td>
<td>0,3898 ± 0,0107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twee compartimenten</td>
<td>0,614</td>
<td>0,046</td>
<td>0,104</td>
<td>0,3074 ± 0,0931</td>
<td>0,0106 ± 0,0163</td>
<td>1,3213 ± 0,4001</td>
<td>0,0002 ± 0,0142</td>
<td></td>
</tr>
</tbody>
</table>
Figuur 18. Relatieve platina-excretie via urine na een cisplatinebehandeling als functie van de tijd na het begin van het infuus. Drie alternatieve modellen werden gefit: een ééncompartimenteel model, een twee compartimenteel model dat gebruik maakt van de FP uit de literatuur (Tabel 7) en een twee compartimenteel model dat volledig a.d.h.v. de data werd gefit. Wat de excretie van carboplatine betreft, stellen de data ons enkel in staat om te vergelijken met het verloop dat voorspeld wordt door de modelparameters uit Tabel 4. Visueel wordt de vorm van de excretie goed voorspeld (Figuur 19). Aangezien slechts één patiënt werd onderzocht, kan geen statistische test worden uitgevoerd om te bepalen of de modelvoorspellingen van het gemiddelde verloop overeenkomen met de metingen.

Figuur 19. Relatieve platina-excretie via urine na een carboplatinebehandeling als functie van de tijd na het begin van het infuus. Het verloop van het twee compartimenteel model werd bepaald a.d.h.v. de infusieduur (0,5 h) en de parameters uit Tabel 4.
4.4.3. Scenario- en onzekerheidsanalyse van de platina-excretie

De resultaten van de onzekerheidsanalyse op basis van een Monte Carlo simulatie worden in Figuur 20, Figuur 21, Figuur 22 en Figuur 23 weergegeven d.m.v. het 5de en 95ste percentiel. Dit betekent dat de werkelijke waarde met 90 % zekerheid tussen de onderste en bovenste limiet ligt, onder de aannames vermeld in paragraaf 3.4.4. Het is duidelijk dat de onzekerheid op de geëxcreteerde hoeveelheid U steeds toeneemt in functie van de tijd. Het scenario met de grootste dosis en langste inlooptijd, steeds scenario 2 genoemd, toont telkens de grootste onzekerheid. De relatie onzekerheid op de finale waarde van U t.o.v. de nominale waarde, verschilt tussen de twee scenario’s voor zowel cisplatine als carboplatine slechts 1 %. Dit wijst erop dat de onzekerheid bijna proportioneel stijgt met de dose. De standaarddeviatie op de gemiddelde dosis weegt dus minder hard door op het eindresultaat dan de standaarddeviatie op de modelparameters. De spreiding op de platinaconcentratie C_u is het grootst voor de simulaties van carboplatine door het gebrek aan informatie over het urinedebiet Q_u. Na het bereiken van een maximum verkleint de absolute onzekerheid op C_u in functie van de tijd.

In dezelfde figuren worden ook de simulatieresultaten weergegeven die worden bekomen door gebruik te maken van de nominale waarden van de inputvariabelen en modelparameters. Door vergelijking van Figuur 20 en Figuur 21 is het duidelijk dat de uitgescheiden massa’s platina bij carboplatine veel groter zijn dan bij cisplatine. Dit komt enerzijds door de grotere gemiddelde dosis en anderzijds door een grotere relatieve excretie U_{rel}. De excretie van carboplatine bereikt wel minder snel een saturatiewaarde dan cisplatine. Ook de concentraties in het cumulatief opgevangen volume urine zijn veel groter bij carboplatineinfusen (vergelijk Figuur 22 en Figuur 23). Dit komt enerzijds door de grotere uitgescheiden massa U en anderzijds door de lagere urineproductie als gevolg van de kleinere hoeveelheden vocht die worden toegediend in vergelijking met cisplatinekuren.

Figuur 20. 90 % betrouwbaarheidsinterval van de platina-excretie U in functie van de tijd na het begin van een cisplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippelijn). Scenario 1: een infuus met inlooptijd $T = 1$ h met de gemiddelde platinadosis die bij die inlooptijd wordt toegepast, $D_{Pt} = 51 \pm 1$ mg. Scenario 2: $T = 6$ h en $D_{Pt} = 83 \pm 3$ mg.
Figuur 21. 90 % betrouwbaarheidsinterval van de platina-excretie U in functie van de tijd na het begin van een carboplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippelijn). Scenario 1: een infuus met inlooptijd $T = 0.5$ h met de gemiddelde platinadosis die bij die inlooptijd wordt toegepast, $D_{Pt} = 203 \pm 5$ mg. Scenario 2: $T = 1$ h en $D_{Pt} = 261 \pm 5$ mg.

Figuur 22. 90 % betrouwbaarheidsinterval van de platinaconcentratie C_u in het cumulatief volume urine in functie van de tijd na het begin van een cisplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippelijn). Scenario 1: een infuus met inlooptijd $T = 1$ h met de gemiddelde platinadosis die bij die inlooptijd wordt toegepast, $D_{Pt} = 51 \pm 1$ mg. Scenario 2: $T = 6$ h en $D_{Pt} = 83 \pm 3$ mg.
Figuur 23. 90 % betrouwbaarheidsinterval van platinaconcentratie C_u in het cumulatief volume urine in functie van de tijd na het begin van een carboplatine-infuus en simulatieresultaten bij de nominale waarde van de parameters (stippel). Scenario 1: een infuus met inlooptijd $T = 0,5$ h met de gemiddelde platinadosis die bij die inlooptijd wordt toegepast, $D_{Pt} = 203 \pm 5$ mg. Scenario 2: $T = 1$ h en $D_{Pt} = 261 \pm 5$ mg.

4.4.4. Speciatie van platina in urine na een behandeling met PHC

Tijdens de analyse van patiëntenurine werden problemen met de instrumentatie ondervonden die kwantitatieve analyse via externe kalibratie onmogelijk maken, zoals het plasma dat regelmatig uitviel en een sterk fluctuerende gevoeligheid tussen opeenvolgende injecties. Soms was de gevoeligheid zo laag dat bijna alleen ruis werd waargenomen. Er wordt vermoed dat het probleem bij de automatische injectie ligt aangezien binnen de analysetijd van één staal geen opvallende fluctuaties worden waargenomen. De chromatogrammen geven wel nuttige kwalitatieve informatie. Let op: de hoogte van de verschillende chromatogrammen t.o.v. van elkaar is niet representatief voor de totale concentratie wegens de verschillende verdunningen en de fluctuerende gevoeligheid. In Figuur 24 worden enkele chromatogrammen getoond van urinestalen van patiënt 1, die cisplatine toegediend kreeg. Hierop is te zien dat er een verschuiving plaatsvindt van de speciessamenstelling. 1,3 h na het begin van het infuus is intact cisplatine dominant, met een piekoppervlakte die 60 % van de totale piekoppervlakte van het chromatogram bedraagt. Na 3,3 h bedraagt de oppervlakte van de cisplatinepiek nog 35 % van het totaal. Er is na 4,4 h een aparte piek te onderscheiden vóór cisplatine, met een retentietijd van 2,6 min. Dit komt overeen met de retentietijd van de piek die na 69 h incubatie in gespikte urine te zien is in Figuur 11. Na 6,9 h wordt dit afbraakproduct de dominante vorm waarin platina voorkomt. Tijdens de eerste uren is er nog een duidelijke piek met retentietijd 7,9 min te onderscheiden, maar deze verdwijnt weer vanaf 6,9 h.
Figuur 24. Chromatogrammen van urinestalen van patiënt 1, die 1,3, 3,3, 4,4 en 6,9 h na het begin van het cisplatine-infuus werden gecollecteerd.

Bij patiënt 2 zijn dezelfde trends te herkennen. De relatieve piekoppervlakte van cisplatine is hier 69 % in het eerste staal, dat na 1,9 h werd gecollecteerd. Bij deze patiënt ontbrak de piek met retentietijd 7,9 min. Bij patiënt 3 zijn de resultaten ook vergelijkbaar, met een relatieve piekoppervlakte van intact cisplatine van 81 % na 1,6 h en nog steeds 57 % na 5,2 h. Van de stalen van patiënt 4 zijn de chromatogrammen weergegeven in Figuur 25 omdat de resolutie hier hoog genoeg is om te zien dat ook net ná cisplatine twee aparte componenten elueren (t_R = 3,7 min en 4,7 min). Deze componenten komen waarschijnlijk overeen met de pieken met t_R = 3,8 min en 4,8 min die op de chromatogrammen van het degradatie-experiment met urine worden waargenomen. Na 1,5 h was hier de piekoppervlakte van cisplatine 61 % van het totaal. Na 6,9 h bedroeg dit nog 37 %.
Figuur 25. Chromatogrammen van urinestalen van patiënt 4, die 1,5, 3,4, en 4,2 h na het begin van het cisplatine-infuus werden gecollecteerd.

In Figuur 26 is het chromatogram van een urinestaal van patiënt 7, die carboplatine toegediend kreeg, weergegeven. Hieruit blijkt dat zelfs na 11 h nog steeds de intacte vorm dominant is. De piek stelt 75 % van de totale oppervlakte voor. Er elueren een aantal afbraakproducten vóór de intacte vorm, net zoals in het degradatie-experiment werd waargenomen (Figuur 13).

Figuur 26. Chromatogram van het urinestaal van patiënt 7 dat 11,0 h na het begin van het carboplatine-infuus werd gecollecteerd.
4.5. Batchadsorptie van PHC op actieve kool en chitosan

Voor cisplatine zien we dat zelfs bij de hoge concentraties die in reële patiëntenurine worden waargenomen (> 10 mg Pt L⁻¹), geen duidelijke verzadiging optreedt van actieve kool (Figuur 27). De CV op de parameters van de Langmuirvergelijking is daarom veel groter dan bij de Freundlichvergelijking (Tabel 14). Voor adsorptie op chitosan daarentegen, is er zelfs bij concentraties lager dan 10 mg L⁻¹ al een aanwijzing voor verzadiging van het adsorbens (Figuur 28). Daarom resulteert het Langmuirmodel in dit geval in een grotere R². Bij adsorptie van carboplatine op actieve kool wordt het Freundlichmodel verkozen wegens de kleinere CV op de parameters en het gebrek aan duidelijke verzadiging in Figuur 29. Carboplatine werd zeer weinig geadsorbeerd op chitosan. Doordat het verschil in concentratie tussen de controleoplossingen en de testoplossingen na evenwicht in de buurt ligt van de fout op de analyse, is de standaardafwijking op de qₑ-waarden erg groot (Figuur 30). Een model fitten op deze data zou weinig betekenis hebben. Uit deze experimenten blijkt dat voor beide PHC actieve kool de grootste adsorptiecapaciteit vertoont en de adsorptie goed beschreven wordt a.d.h.v. de Freundlichvergelijking.

Figuur 27. Adsorptie-isotherm van cisplatine op actieve kool met de best passende Freundlich-curve.

Figuur 29. Adsorptie-isotherm van carboplatine op actieve kool met de best passende Freundlich-curve.

Figuur 30. Datapunten van de adsorptie-isotherm van carboplatine op chitosan.

<table>
<thead>
<tr>
<th>Type PHC</th>
<th>Adsorbens</th>
<th>Freundlich</th>
<th>Langmuir</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K_f (mg L$^{-1}$)</td>
<td>n</td>
<td>R^2</td>
</tr>
<tr>
<td>Cisplatine</td>
<td>Chitosan</td>
<td>0,10 ± 0,02</td>
<td>1,3 ± 0,2</td>
<td>0,9862</td>
</tr>
<tr>
<td></td>
<td>Actieve kool</td>
<td>0,18 ± 0,01</td>
<td>1,07 ± 0,02</td>
<td>0,997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,9905</td>
</tr>
<tr>
<td>Carboplatine</td>
<td>Chitosan</td>
<td>(0,3 ± 0,3)10$^{-3}$</td>
<td>0,42 ± 0,07</td>
<td>0,9905</td>
</tr>
<tr>
<td></td>
<td>Actieve kool</td>
<td>0,066 ± 0,002</td>
<td>1,11 ± 0,02</td>
<td>0,9998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
4.6. Kolomadsorptie van PHC op actieve kool

In Figuur 31 wordt van het experiment met cisplatine de influent- en effluentconcentratie weergegeven in functie van het aantal kolomvolumes dat over de kolom is gelopen. De verwijderingsefficiëntie bedraagt 96 % na 1,8 kolomvolumes. Deze efficiëntie daalt geleidelijk tot 90 % na 5,4 kolomvolumes. Bij overschakeling naar de volgende batch blijft de effluentconcentratie redelijk constant en vanaf de derde batch ligt de effluentconcentratie bijna steeds boven de influentconcentratie. In totaal werd er 12 mg platina verwijderd, wat overeenkomt met 64 % van de oorspronkelijke massa uitgescheiden door de patiënt. De belading van de kolom op het einde van het experiment bedroeg 0,26 mg Pt g⁻¹ actieve kool.

Analoog zijn de resultaten voor de verwijdering van platina uit urine van de patiënt die carboplatine toegediend kreeg, te vinden in Figuur 32. Hier is de verwijderingsefficiëntie tijdens doorloop van de eerst uitgescheiden urine lager: na 1,9 kolomvolumes is er nog maar 64 % verwijdering. Daarna zien we dezelfde trend als bij cisplatine-adsorptie: vanaf de derde batch blijft de effluentconcentratie groter dan de influentconcentratie. In totaal werd er 42 mg op de kolom weerhouden, wat neerkomt op een globale verwijderingsefficiëntie van 52 %. De belading van de kolom bedroeg 0,69 mg Pt g⁻¹ actieve kool op het einde van het experiment. De urine met carboplatine lijkt op basis van de hogere concentraties anionen, creatinine, albumine en de donkerdere kleur een hogere concentratie van verschillende stoffen te bevatten dan de urine met cisplatine, doordat hier geen hyperhydratatie werd toegepast. De kleur van de urine van beide patiënten nam af in intensiteit nadat het door de kolom was gelopen.

Figuur 31. Platinaconcentratie in het influent en effluent tijdens kolomadsorptie op actieve kool met urine van een patiënt die een cisplatine-behandeling onderging. Één kolomvolume is gelijk aan 84 mL.
4.7. Desorptie van PHC door urine

Omdat in het adsorptie-experiment de effluentconcentratie na een tijd groter wordt dan de influentconcentratie, rijst het vermoeden dat platina weer loskomt van het adsorbens. Deze hypothese werd geverifieerd door urine van een gezonde persoon, dus zonder PHC en met de karakteristieken in Tabel 15, over de kolom te laten lopen. Na een transiënte periode bleef het debiet constant: bij de kolom met cisplatine 30 mL min⁻¹ en bij de kolom met carboplatine 16 mL min⁻¹, wat neerkomt op een contacttijd van respectievelijk 2,2 min en 5,9 min als wordt aangenomen dat 80 % van het kolomvolume door vloeistof wordt ingenomen (Mosselmans, 2015). Bij de kolom met cisplatine werd in totaal 0,05 mg, oftewel 0,4 % van de geadsorbeerde hoeveelheid, uitgeloogd. Bij de andere kolom was dit 2,55 mg oftewel 6 %. De effluentconcentratie is in Figuur 33 weergegeven in functie van het aantal kolomvolumes dat over de kolom is gelopen.

Tabel 15. Karacterisatie van de urine die gebruikt werd voor het desorptie-experiment.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde bij de kolom met cisplatine</th>
<th>Waarde bij de kolom met carboplatine</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6,15</td>
<td>6,55</td>
</tr>
<tr>
<td>Chloride (mg L⁻¹)</td>
<td>690</td>
<td>2192</td>
</tr>
<tr>
<td>Fosfaat (mg L⁻¹)</td>
<td>308</td>
<td>1207</td>
</tr>
<tr>
<td>Sulfaat (mg L⁻¹)</td>
<td>184</td>
<td>1199</td>
</tr>
</tbody>
</table>
Figuur 33. Platinaconcentratie in het effluent tijdens het desorptie-experiment met urine zonder PHC, voor de kolom met cisplatine (linkse as) en met carboplatine (rechtse as).
5. **Discussie**

5.1. **PHC in de WZI van een ziekenhuis**

De hoge concentratie platina in het influent rond 11 h komt overeen met de piek die in andere studies wordt waargenomen rond dit tijdstip (Kümmerer et al. 1999). Uit de statistieken van het UZ Gent blijkt dat PHC-infusen gemiddeld rond 11 h starten. Dit doet vermoeden dat een piek in de platinalozing in de late voormiddag vrij universeel is. De platinaconcentraties in het influent en effluent liggen allemaal in het interval 0,1 – 0,5 µg L⁻¹, in overeenstemming met eerder onderzoek (zie paragraaf 2.2.2). De resultaten bevestigen nogmaals dat platina vooral in opgeloste vorm voorkomt in het afvalwater van ziekenhuizen (Vyas et al. 2014). Uit de analyse van het effluent blijkt dat platina niet kwantitatief verwijderd wordt door de WZI. Uit het gemiddelde debiet en de concentratie in het effluent wordt geschat dat 31 ± 4 mg Pt d⁻¹ wordt geloosd. Rekening houdend met de 554 bedden in het AZ resulteert dit in 20 ± 2 mg per bed per jaar, binnen de range voorspeld in eerder onderzoek (Kümmerer et al., 1999). De platinaconcentratie in het slib bedraagt 0,9 mg kg⁻¹ DS, wat hoger is dan de maximale waarde van 0,21 mg kg⁻¹ die in Tsjechisch afvalwaterzuiveringsslub van een ziekenhuis werd gevonden (Zimova et al. 2012). Opvallend is dat de concentratie in het slib in hetzelfde bereik ligt als de concentratie PGM in de mineralen waaruit platina momenteel wordt gewonnen, van enkele honderden µg kg⁻¹ tot maximaal 100 mg kg⁻¹ (Gunn, Benham 2009).

5.2. **Speciatie van platina in urine en water**

Cisplatine vertoont in water een zeer trage afbraak naar slechts één species. Dat de hydrolysetraag verloopt, valt te verklaren doordat de testoplossing nog 53 mg L⁻¹ Cl⁻ bevatte, omdat in de stockoplossing zout werd toegevoegd ter stabilisatie. In eerder onderzoek werd echter zelfs bij 100 mg L⁻¹ Cl⁻ binnen de 50 h nog de helft gehydrolyseerd naar de mono- en diaquavorm (Hann et al. 2003). Mogelijke oorzaken voor deze tegenstrijdige resultaten zijn de verschillende reactietemperatuur (25 °C vs. 37 °C in dit werk) en initiële concentratie cisplatine (1,3 mg Pt L⁻¹ vs. 0,40 mg Pt L⁻¹ in dit werk) (Hann et al. 2003). Gezien het aanzienlijke verschil in de resultaten ligt mogelijk een afwijkende chlorideconcentratie of een onverwacht effect van het invriezen hier aan de basis. Het reactieproduct dat wordt waargenomen elueert vóór cisplatine, terwijl de hydrolyseproducten normaal elueren ná cisplatine (Hann et al. 2005). Dit kan te wijten zijn aan de licht verschillende chromatografische condities (Tabel 5). Carboplatine vertoont in water één duidelijk afbraakproduct dat voor de intacte vorm elueert. Dit is in overeenstemming met eerder onderzoek, maar de evenwichtstoestand wordt in het eigen experiment sneller bereikt (Hann et al. 2003). Dit verschil kan te wijten zijn aan de hogere reactietemperatuur in het huidige onderzoek of een onvolledige remming van de reacties bij -20 °C. Voor oxaliplatine wordt in de literatuur een halfwaardetijd van 16 min gevonden in een basische oplossing bij 37 °C voor de eerste hydrolysestep (ring opening). De tweede hydrolysestep die zorgt voor vrijstelling van oxalaat vertoont een halfwaardetijd van 92 min. Het kleine piekje dat bij het begin van de monitoring wordt waargenomen, is waarschijnlijk de monoaquavorm. Net zoals in de paper die basische hydrolyse beschrijft, stijgt de concentratie van deze vorm tot een maximum en daalt deze daarna weer door de vrijstelling van oxalaat (Jerremalm et al. 2002). Na 69 h blijft enkel de diaquavorm van oxaliplatine over. In een neutrale waterige oplossing, zoals hier onderzocht wordt, verloopt de hydrolyse veel trager dan bij basische pH (Hann et al. 2005).

Op basis van de afbraakconstanten in urine kunnen we concluderen dat oxaliplatine het snelst wordt afgebroken. Cisplatine vertoont een grotere afbraakconstant dan carboplatine. Beiden werden wel met een ander model beschreven omdat carboplatine ook op latere tijdstippen nog afbraak vertoont, terwijl cisplatine een schijnbaar evenwicht bereikt. Voor carboplatine lijkt een eerste orde model het minst goed de data te beschrijven (Figuur 16). Dit is mogelijk te wijten aan de problemen met de instrumentatie die werden ondervonden tijdens de analyse van
deze stalen, maar kan evengoed veroorzaakt worden door een complexer reactiemecanisme. Het aantal afbraakproducten stijgt in de volgorde carboplatine, cisplatine en tot slot oxaliplatine. De vastgestelde halfwaardetijd van carboplatine van 2,6 dagen is kleiner dan de elders gerapporteerde 6,7 dagen, die in urine met 10 mg Pt L⁻¹ bij kamertemperatuur werd waargenomen (Elferink et al. 1987). Dit valt te verklaren door de andere samenstelling van de gebruikte urine, de hogere reactietemperatuur en de lagere initiële concentratie carboplatine. De resultaten bevestigen dus de bevindingen uit andere stabilitaatsstudies (zie paragraaf 2.4.3), maar carboplatine vertoont in urine toch onverwacht veel afbraak op lange termijn, tussen 24 h en 69 h, in vergelijking met cisplatine.

In een eerder onderzoek werd een speciatie-analyse uitgevoerd op een urinestaal van een patiënt die oxaliplatine toegediend kreeg. Doordat veel verschillende afbraakproducten werden waargenomen, werd geconcludeerd dat voor de studie naar verwijderingstechnieken en de (eco)toxicologie van oxaliplatine, urine van patiënten gebruikt dient te worden. Men beweert hier dat in synthetische waterige oplossingen de speciatie niet representatief is voor reële situaties (Hann et al. 2005). De snelle afbraak van oxaliplatine naar vele producten, die in de huidige studie wordt waargenomen, geeft aan dat gespikte urine mogelijk ook kan dienen. Daar vindt, net zoals in het lichaam gebeurt, een volledige afbraak van oxaliplatine plaats. Of ook dezelfde species in dezelfde hoeveelheden worden teruggevonden, dient echter geverifieerd te worden door vergelijking van de chromatogrammen van urinestalen van behandelde patiënten en gespikte urine van gezonde personen, geanalyseerd met dezelfde analysemethode.

In de chromatogrammen van patiëntenurine hebben de meeste pieken een retentietijd die overeenkomt met een van de pieken die werden waargenomen in het degradatie-experiment met cisplatine. Een uitzondering hierop vormt de component met tᵢ = 7,9 min die in de urine van sommige patiënten terug te vinden was. Ook de kleine piekjes die later dan 10 min elueren, komen niet overeen qua retentietijd. Het is echter te verwachten dat er variatie is in de speciatie aangezien ook de samenstelling van urine zeer variabel is. De overeenkomst tussen de chromatogrammen van de degradatie-experimenten en van patiëntenurine bevestigt nogmaals dat de afbraak van PHC in het lichaam zuiver chemisch verloopt en niet gekatalyseerd wordt door enzymen (Graham et al. 2000; Andersson et al. 1996). Indien wordt aangenomen dat de gevoeligheid van de methode gelijkwaardig is voor elk species, is het procentuele aandeel van de cisplatinepiek tot de totale piekopervlakte gelijk aan het aandeel van platina in de vorm van cisplatine tot de totale concentratie platina. Aangezien uit de simulaties blijkt dat gedurende de eerste uren de excretiesnelheid het grootst is en uit de speciatie-analyse dat gedurende de eerste uren de intacte vorm dominant is, wordt massagewijs het meeste platina als cisplatine uitgescheiden tijdens de eerste 24 h. De hoeveelheid afbraakproducten wordt bovendien eerder overschat dan onderschat omdat tijdens de staalbewaring de reacties nog traag verder gaan (Lenz et al. 2007b).

5.3. Platina-excretie via urine na een behandeling met PHC

5.3.1. Kalibratie van de modelparameters

Voor de simulaties is het twee compartimenteel model uitgesloten door de grote onzekerheid op de parameters. Dit kon niet worden verholpen door de afgeleide van Uᵣₑᵳ te fitten of door een log-transformatie. Het is echter opmerkelijk dat we visueel, na de initiële snelle stijging in Uᵣₑᵳ, nog een tragere stijging zien die niet wordt voorgeplaat door het model met de FP uit de literatuur. Dit wijst erop dat een drie compartimenteel model mogelijk beter geschikt is om urine-excretie te modelleren. Deze hypothese kan alleen geverifieerd worden indien er in de eerste minuten én op langere termijn (> 24 h) genoeg stalen worden genomen om alle parameters nauwkeurig te bepalen. Afname van meerdere urinestalen binnen de eerste minuten is echter zeer moeilijk in de praktijk. Een studie die platina-excretie bestudeert vanaf 150 dagen na een cisplatinatiebehandeling toonde aan dat er mogelijk zelfs 4 compartimenten te onderscheiden zijn op zeer lange termijn (Schierl et al. 1995). Dat het
tweecompartmenteel model uit de literatuur voorspelt dat U sneller een maximale waarde bereikt dan wordt waargenomen heeft twee mogelijk verklaringen. Ten eerste werd in de studie van Pt$_{UF}$ (Tabel 7) enkel een tweecompartmenteel model gefit. Indien men een drie compartimenteel model had proberen fitten, had men mogelijk ook een derde compartiment met langere halfwaardetijd kunnen onderscheiden. Ten tweede is het mogelijk dat de excretie op lange termijn overeenkomt met proteïnegebonden platina dat traag wordt vrijgesteld, wat dus niet wordt voorspeld door een model dat enkel de concentratie Pt$_{UF}$ beschrijft. Vergelijking van de gemeten concentraties Pt$_{UF}$ en Pt$_{tot}$ in urine lijken dit niet te bevestigen (zie paragraaf 4.4.1). Dat de gemiddelde concentratie Pt$_{UF}$ hoger ligt dan die van Pt$_{tot}$ wijst er echter op dat er in de ultrafiltratieprocedure of bewaring iets mis is gelopen. Er kan dus nog niet definitief worden uitgemaakt of proteïnegebonden platina een belangrijke bijdrage levert. Het één compartimenteel model en tweecompartmenteel model met FP uit de literatuur vertonen een even goede overeenstemming met de data. Er werd gekozen voor het één compartimenteel model voor de eenvoud en omdat er geen conclusie kan getrokken worden over de proteïnegebonden fractie in urine. Het model voorspelt dat na 24 h 26 % van de platinadosis wordt uitgescheiden. Dit is in overeenstemming met de waarde van 28 ± 4 % uit de literatuur (Graham et al. 2000).

5.3.2. Scenario- en onzekerheidsanalyse van de platina-excretie

De simulaties dient men voorzichtig te interpreteren. Eerst en vooral zijn er de beperkingen van de gebruikte farmacokinetische modellen. Voor beide modellen zijn er een beperkt aantal onderzochte patiënten terwijl de biologische variatie groot is. Er is geen validatie gebeurd met een onafhankelijke dataset. De tragere excretie op lange termijn wordt niet beschreven door het model voor cisplatine (Figuur 18). Ten tweede wordt er lineariteit verondersteld bij elke dosis en infusietijd. Lineariteit van de renale klaring van cisplatine is volgens één studie niet bij alle patiënten geldig door het complexe excretiemechanisme, dat mogelijk verzadiging vertoont (Reece et al. 1987). Ten derde zijn de gebruikte inputvariabelen afgeleid uit statistieken van slechts één jaar uit één ziekenhuis. Ten vierde is er voor de simulaties van C$_{U}$ een constant debiet verondersteld. In realiteit zal na een tijd het debiet afnemen tot het een normale gemiddelde van 1,5 L d$^{-1}$ weer wordt bereikt. Men dient ook in gedachte te houden dat urine-excretie in realiteit een discontine proces is, terwijl het hier als continu wordt gemodelleerd.

Ondanks de beperkingen kunnen de simulaties dienen om rudimentaire schattingen te maken. De simulaties van de platina-excretie U tonen hoeveel platina er per patiënt gewonnen kan worden wanneer de urine, die binnen een bepaalde tijd na de start van het infuus wordt uitgescheiden, wordt behandeld. Het overige deel van de dosis platina komt zeer traag, gedurende jaren, via urine en feces in de riolering terecht (Schierl et al. 1995). De simulaties van de concentratie C$_{U}$ zijn van belang omdat de meeste verwijderingstechnieken een zekere concentratie-afhankelijkheid kennen. Zo is de capaciteit van actieve kool groter bij hogere concentraties, dus is er minder adsorbens nodig om dezelfde hoeveelheid platina te weerhouden. Dit maakt recyclage van het metaal economisch interessanter. Door vergelijking van de simulaties van C$_{U}$ en U wordt duidelijk dat er vanaf een bepaald tijdstip een trade-off ontstaat: hoe langer men na een infuus de urine blijft collecteren en behandelen, hoe meer platina men kan recupereren, maar hoe lager de concentratie. Bovendien blijkt uit de resultaten van het kolomadsorptie- en desorptie-experiment dat er bij lage concentraties weer verlies kan optreden van reeds geadsorbeerde platina.

5.4. Batchadsorptie van PHC op actieve kool en chitosan

Bij batchadsorptie van cisplatine op chitosan gaf het Langmuirmodel de beste overeenkomst met de data. Dit is een aanwijzing voor monolaag adsorptie (Nikoloski, Ang 2013). Alle andere isothermen werden beter met de empirische Freundlichvergelijking beschreven, wat wijst op een heterogeen oppervlak. Door vergelijking van de
adsorptie-isothermen kan besloten worden dat cisplatine beter geadsorbeerd wordt op actieve kool dan carboplatine. In een eerdere studie werden de Freundlichconstanten uit Tabel 16 gevonden voor initiële concentraties lager dan 0,5 mg L\(^{-1}\). De resultaten komen voor cisplatine binnen de fout op de parameters overeen met die uit Tabel 14. Voor carboplatine daarentegen worden adsorptiecapaciteiten \(q_e\) gezien die, ondanks de hogere initiële concentraties, lager zijn dan werd waargenomen in de eerdere studie. Dit doet vermoeden dat er tijdens één van beide experimenten een fout is gebeurd, b.v. een verkeerde massa adsorbens, een afwijkende samenstelling van de synthetische urine etc.

Tabel 16. Freundlichconstanten, afgeleid uit batchadsorptie-experimenten met initiële concentraties platina tussen 1 µg L\(^{-1}\) en 0,5 mg L\(^{-1}\) (Abebe 2014).

<table>
<thead>
<tr>
<th>Type PHC</th>
<th>Adsorbens</th>
<th>Freundlichconstanten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(K_f) (mg(^{2-\alpha}) g(^{-1}) L(^{-\alpha}))</td>
</tr>
<tr>
<td>Cisplatine</td>
<td>Chitosan</td>
<td>0,08 ± 0,02</td>
</tr>
<tr>
<td></td>
<td>Actieve kool</td>
<td>0,14 ± 0,05</td>
</tr>
<tr>
<td>Carboplatine</td>
<td>Chitosan</td>
<td>0,14 ± 0,08</td>
</tr>
<tr>
<td></td>
<td>Actieve kool</td>
<td>0,11 ± 0,01</td>
</tr>
</tbody>
</table>

In een onderzoek naar de adsorptie van zuiver platina op actieve kool in een oplossing bij pH 2, werden consequent hogere adsorptiecapaciteiten waargenomen dan voor PHC bij pH 6 in dit werk (Shariffard et al. 2012). Op gemodificeerd chitosan werd er over het volledige concentratiebereik ook meer adsorptie waargenomen dan in de huidige studie voor beide adsorbentia (Guibal et al. 2000). In een onderzoek naar de adsorptie van platina in een zure oplossing op gemodificeerde biomassa, doet de maximale adsorptiecapaciteit van 108,8 mg g\(^{-1}\) ook een betere verwijdering vermoeden dan bij PHC op de onderzochte adsorbentia in deze masterproef, maar er werden veel hogere concentraties bestudeerd. Wanneer de Langmuirconstanten uit de paper gebruikt worden, vinden we bij een evenwichtsconcentratie van 57 mg L\(^{-1}\) (de hoogste evenwichtsconcentratie in Figuur 27) een capaciteit van 8 ± 2 mg g\(^{-1}\). Dit komt overeen met de experimentele bevindingen voor cisplatine op actieve kool. In dezelfde publicatie werd ook voor niet-gemodificeerde biomassa een adsorptie-isotherm opgesteld. Hiermee wordt een capaciteit van 0,27 ± 0,07 mg g\(^{-1}\) berekend bij een evenwichtsconcentratie van 8,1 mg L\(^{-1}\) (Won et al. 2010). Dit is lager dan de capaciteit van actieve kool om carboplatine te adsorberen bij die concentratie (Figuur 29). Dit wijst erop dat de resultaten voor actieve kool binnen de range liggen van eerdere onderzoeken naar de adsorptie van platina, maar wel eerder aan de lage kant. De verwijdering van carboplatine door chitosan is wel uitzonderlijk laag.

In een onderzoek naar de adsorptie van PHC in concentraties tussen 16 en 1950 µg Pt L\(^{-1}\) op actief slib, werden hogere adsorptiecapaciteiten gevonden dan voor de adsorbentia die in dit werk bestudeerd werden in hetzelfde concentratiebereik. Zoals in paragraaf 2.5.1 reeds aangehaald, is de onvolledige verwijdering van PHC tijdens waterzuivering eerder te wijten aan kinetische dan thermodynamische limitaties. Aangezien er geen hogere initiële concentraties werden onderzocht bij de adsorptie-experimenten met actief slib is het niet uit te sluiten dat hier vroeger verzadiging optreedt dan bij actieve kool. In het artikel werd geen Langmuirvergelijking gefit, maar er is wel een duidelijker afgbuiging te zien die mogelijk wijst op verzadiging. Uit dit onderzoek blijkt ook dat carboplatine minder goed adsorbeert op slib dan cisplatine (Lenz et al. 2007b). Uit de batchadsorptie-experimenten met actieve kool blijkt dat ook hier carboplatine minder goed wordt verwijderd uit de waterfase dan cisplatine.

5.5. Kolomadsorptie van PHC op actieve kool

Tijdens de kolomadsorptie-experimenten werden 64 % van het platina afkomstig van cisplatine en 53 % van het platina afkomstig van carboplatine verwijderd. Voor deze onvolledige verwijdering van platina zijn verschillende verklaringen. Ten eerste werd als vuistregel een factor 2 gebruikt om te corrigeren voor een onvolledige kinetiek
in de kolom, maar dit kan onvoldoende geweest zijn door trage adsorptie. Zeker bij de hoge concentraties zoals in de urine met carboplatine, kan onvoldoende contacttijd zorgen voor onvolledige adsorptie. Ten tweede zijn er mogelijk in de reële urine stoffen aanwezig die zorgen voor competitie om actieve plaatsen, die in de synthetische urine niet of minder voorkomen. Dit kunnen biomoleculen of medicijnen zijn die tijdens de kuur worden toegediend. Dat de kleur van de urine in intensiteit was afgenomen na doorloop wijst op dit soort concurrerende stoffen. Stoffen die zorgen voor de gele en in één fles zelfs rode - van een patiënt met blaskanker - kleur bleven achter op de kolom. Ten derde waren er wat luchtbellen in de kolom. Hierdoor kan niet de volledige capaciteit benut worden. In de reële toepassing zou de kolom echter ook luchtbellen bevatten indien de urine van elke plasbeurt discontinu over een kolom stroomt.

Een vierde mogelijke oorzaak is dat er bij de dimensionering wordt uitgegaan van irreversible binding van PHC. In realiteit kunnen er verdringingseffecten optreden. Deze kunnen ervoor zorgen dat de effluentconcentratie groter is dan de influentconcentratie, zoals werd waargenomen in beide experimenten (BBT-kenniscentrum 2012). Om de hypothese van de irreversible binding te verifiëren werden de desorptie-experimenten uitgevoerd. Hieruit bleek dat urine inderdaad in staat is om de PHC terug te lossen van het adsorben. Bij de kolom met carboplatine was er meer desorptie, maar dit valt niet te veralgemenen omdat de samenstelling van de urine, de tijd na adsorptie en het debiet verschillen. Ten vijfde is er bij de dimensionering van de kolom voor carboplatine een extrapolatie van de isotherm naar hogere platinaconzentraties gebeurd. Ten zesdaal is de speciatie van de PHC in de reële urine mogelijk verschillend door een verschillende samenstelling en een verschillende ouderdom. Dat de ouderdom van een platinaconcentratie is dus onvoldoende nauwkeurig. Om de benodigde massa actieve kool beter te kunnen schatten, is een gedetailleerdere modellering nodig, die kinetische processen includeert.

Tabel 17. Schatting van de winst door de recuperatie van platina afkomstig van cisplatine ($D_P = 66,11 \text{ mg}, T= 1 \text{ H}, \text{collectieperiode} = 11 \text{ h})$ en carboplatine ($D_P = 124,73 \text{ mg}, T = 0,5 \text{ H}, \text{collectieperiode} = 16 \text{ h})$ uit urine van telkens één patiënt, d.m.v. adsorptie op actieve kool.

<table>
<thead>
<tr>
<th></th>
<th>Cisplatine</th>
<th>Carboplatine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actieve kool ($€ 0,003 \text{ g}^{-1}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massa (g)</td>
<td>46</td>
<td>61</td>
</tr>
<tr>
<td>Kost (€)</td>
<td>0,14</td>
<td>0,18</td>
</tr>
<tr>
<td>Platina ($€ 0,038 \text{ mg}^{-1}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massa (mg)</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>Opbrengst (€)</td>
<td>0,46</td>
<td>1,60</td>
</tr>
<tr>
<td>Winst (€)</td>
<td>0,32</td>
<td>1,42</td>
</tr>
</tbody>
</table>
5.6. Beoordeling van potentiële technieken om PHC-fluxen naar het milieu te beperken

Voor de recuperatie van platina uit urine is niet enkel een technologische optimalisatie van de verwijderingstechnieken nodig. Een van de grootste uitdagingen is het realiseren van een comfortabel en veilig collectiesysteem, waarbij patiënten, medisch personeel en afvalverwerkers elk een rol spelen. Deze uitdaging wordt vergroot doordat patiënten steeds sneller naar huis gaan na hun behandeling en mogelijk in de toekomst zelfs thuis behandeld worden (Lenz et al. 2007b; Eckert 2015; Zimova et al. 2012). In een studie in het Verenigd Koninkrijk werd daarom maar 22 % van de totale hoeveelheid platina die werd toegediend, in het afvalwater van het ziekenhuis teruggevonden (Vyas et al. 2014). In een ziekenhuis in Wenen was dit 27 % tot 34 % (Lenz et al. 2007a). Er werd voor het onderzoek naar de platina-excretie getracht om urinestalen van patiënten uit de dagkliniek te verkrijgen (Bijlage 9.8). Dit voorstel werd afgekeurd uit veiligheidsoverwegingen. De patiënten krijgen een folder mee met strenge veiligheidsmaatregelen om zichzelf en familieleden te beschermen tegen de schadelijke restproducten in urine. Hiervan wou men niet afwijken. Dit toont aan dat het moeilijk wordt om de urine op een aanvaardbare manier te behandelen.

De beschrijving van de excretiekinetiek van platina in deze thesis kan dienen om een geschikt verwerkingsysteem te selecteren en om de economische haalbaarheid van de recyclage in te schatten. Enkele systemen die in overweging genomen kunnen worden zijn opgezien in Tabel 18. Bij de laatste optie, collectie uit afvalwater, wordt de voorkeur gegeven aan meer geconcentreerde stromen, zoals het gescheiden afvalwater van een oncologisch centrum of urine die in een aparte leiding wordt gecollecteerd. Voor elk ziekenhuis kan men in theorie a.d.h.v. cijfers over het aantal PHC-behandelingen per dag en de gemiddelde duur van hun verblijf d.m.v. de hier voorgestelde modellen voor platina-excretie schatten in welke range de grootte van de platinastromen in zulke leidingen zou liggen. De concentratie in deze leidingen kan men schatten door rekening te houden met het waterverbruik of het gemiddeld aantal personen dat in het ziekenhuis verblijft en urine produceert (bij gescheiden urinecollectie). Zo kan op voorhand bepaald worden of het installeren van een zuiveringsstap voor PHC economisch interessant kan zijn.

Wanneer de focus ligt op recyclage van het platina, volgt uit de statistieken van het UZ Gent dat de optimalisatie van de verwijderingstechnieken zich best focust op carboplatine, aangezien dit type PHC twee derde van de toegediende hoeveelheid platina voorstelt. Bovendien volgt uit de simulaties dat bij carboplatinebehandelingen op korte termijn een grotere fractie en een grotere absolute hoeveelheid platina wordt uitgescheiden via urine dan bij cisplatine-infusen en dat de concentratie in urine hoger ligt. Hiertegenover staat dat cisplatine vaker met hospitalisatie gepaard gaat, wat de collectie van urine gedurende een langere tijd eenvoudiger maakt. Cisplatine is de meest toxische component, maar wanneer de focus ligt op het minimaliseren van de milieu-impact van PHC, is er geen duidelijke aanwijzing om de optimalisatie hierop te focussen aangezien de effecten van PHC in het milieu nog weinig gekend zijn.

Via de apothekers van het UZ Gent werd vernomen dat er nauwelijks cisplatine ongebruikt wordt weggegooid. Dit wil zeggen dat er vóór het gebruik waarschijnlijk weinig verlies van waardevol platina is. Om met zekerheid te kunnen uitsluiten dat hier recuperatiemogelijkheden zijn, zou best ook bij kleinere ziekenhuizen nagevraagd worden of er verliezen zijn. Indien PHC in de toekomst rechtstreeks uit urine worden verwijderd, zal er nog steeds een deel in de riolering terechtkomen wegens de trage excretiekinetiek op lange termijn. Hieruit volgt dat optimalisatie van de platinaverwijdering in WZI’s relevant blijft om de fluxen naar het milieu te beperken en eventueel inkomen te genereren. In gemeentelijke WZI’s is een groot deel van het platina afkomstig van autokalysatoren.
Tabel 18. Opties om PHC te verwijderen vooraleer ze in het rioleringsstelsel terechtkomen met een aantal voordelen en uitdagingen die ermee gepaard gaan.

<table>
<thead>
<tr>
<th>Systeem</th>
<th>Voordelen</th>
<th>Uitdagingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patiënten krijgen een aangepaste adsorptiekolom mee naar huis waarover men urineert. Het adsorbens wordt terug meegenomen naar het ziekenhuis bij een volgende consultatie en wordt centraal verwerkt.</td>
<td>Er is potentieel om ook een deel van het traag uitgescheiden platina op lange termijn (zie paragraaf 5.3.1) te verwijderen.</td>
<td>Er is ongemak en er zijn veiligheidsrisico’s voor de patiënt en zijn/haar huisgenoten. Er is ook nood aan goede educatie over het gebruik en het terugbrengen van de kolom.</td>
</tr>
<tr>
<td>Aparte collectie en behandeling van de urine met PHC in het ziekenhuis b.v. door een speciaal hiervoor ontworpen toilet.</td>
<td>Centrale concentratietechnieken kennen schaalvoordelen en het is eenvoudig om ook andere technieken dan adsorptie te gebruiken (zie paragraaf 2.5.2).</td>
<td>De recente trend van een steeds kortere verblijftijd in het ziekenhuis zorgt ervoor dat een steeds kleiner deel van de massa PHC kan worden gecollecteerd, zoals men kan zien aan de simulaties van de platina-excretie.</td>
</tr>
<tr>
<td>Verwijdering uit afvalwater.</td>
<td>Geen nood aan een managementsysteem voor een veilige en comfortabele inzameling van urine.</td>
<td>De platinaconcentraties zijn lager en de matrix is mogelijk nog complexer door verdunning met andere waterige afvalstromen.</td>
</tr>
</tbody>
</table>
6. Conclusie

De analyse van afvalwater van het AZ Maria Middelares toont aan dat platinahoudende cytostatica (PHC) niet volledig worden verwijderd door een klassieke WZI. De stroom naar het aquatisch milieu veroorzaakt potentiële schade en betekent een verlies van waardevol platina. In 2014 werden in het UZ Gent 2482 infusen met een PHC gegeven, equivalent aan 11 467 € zuiver platina. De uitscheiding van platina via urine na een infuus met cisplatine kon beschreven worden door een ééncompartimenteel model met een gemiddelde renale excretiesnelheidsconstante $k_r = 0,26 \pm 0,05$ h$^{-1}$ en eliminatieconstante $k_{el} = 1,0 \pm 0,2$ h$^{-1}$. Uit de scenario-analyse van de urinaire platina-excretie blijkt dat er na een infuus met carboplatine een grotere hoeveelheid platina wordt uitgescheiden en dat de concentratie in urine hoger ligt dan bij cisplatine. Daarom spitst de optimalisatie van de verwijdering van PHC uit urine of afvalwater zich best toe op carboplatine, indien de recuperatie van platina het hoofddoel is.

Tijdens de eerste plasbeurt na de start van het infuus was intact cisplatine altijd het dominante species van platina. Nadien steg de concentratie van de afbraakproducten in verhouding met de intacte vorm. Speciatie-analyse van het uitgescheide platina na een infuus met carboplatine bevestigt dat dit PHC stabielere is in het lichaam. Er is een goede overeenkomst tussen de speciatie van cisplatine en carboplatine in urine van patiënten die een infuus met het PHC kregen en de speciatie in urine van een gezonde persoon die gespikete werd met het PHC. Dit bevestigt dat de afbraak in het menselijk lichaam zuiver chemisch verloopt en suggereert dat gespikete urine kan dienen voor onderzoek naar de verwijdering en ecotoxicologie van deze PHC.

Uit batchadsorptie-experimenten volgt dat actieve kool meer geschikt is dan chitosan voor PHC-verwijdering. De Freundlichconstanten tonen aan dat cisplatine beter aan actieve kool adsorbeerder dan carboplatine. De verwijderings-efficiëntie van een kolom met actieve kool, die werd gedimensioneerd op basis van de batchadsorptie-experimenten, bedroeg 64 % bij urine van een patiënt die cisplatine toegediend kreeg en 52 % bij een patiënt die een carboplatinekuur volgde. De onvolledige verwijdering toont aan dat de kinetiek van de adsorptie een belangrijke rol speelt in de kolommen. Bij lage platinaconzentraties in het influent kan platina weer desorberen. Uit een eenvoudige economische analyse van dit experiment blijkt dat, ondanks de beperkte verwijdering, recuperatie van platina op deze manier winstgevend kan zijn. Dit maakt verder onderzoek en optimalisatie van de techniek zeer relevant.
7. Ideeën voor verder onderzoek

Voor deze thesis werden de toegediende hoeveelheden PHC in het UZ Gent opgevraagd. Om een beter beeld te krijgen van de verliezen van platina is een verdere inventarisatie van PHC-stromen in de Belgische (of Europese) economie noodzakelijk. Hiervoor zijn gegevens nodig van de productie, de verkoop, de toegediende hoeveelheden in verschillende ziekenhuizen en de fluxen naar het aquatisch milieu en waterzuiveringsslib. Dit kan helpen om in de hele keten, van productie tot en met lozing of concentratie in slib, interessante plaatsen voor de recuperatie van platina te achterhalen en de economische haalbaarheid hiervan in te schatten.

Er werd een model opgesteld voor de platina-excretie via urine na een cisplatine-infuus. De belangrijkste nadelen van het model zijn het beperkt aantal onderzochte patiënten en de slechte beschrijving van langetermijnexcretie. Van carboplatine werden modelparameters uit een oud artikel gebruikt bij gebrek aan recente studies waarin een grote populatie werd onderzocht. Van oxaliplatine zijn momenteel geen bruikbare excretiemodellen voorhanden. Dit gebrek aan modellen kan verklaard worden door de beperkte relevantie van excretie uit een medisch oogpunt, t.o.v. de kinetiek in het lichaam. Aangezien platina nu een kritisch materiaal is en de fluxen van PHC naar het milieu toenemen, neemt de relevantie van modellen voor excretie toe uit een economisch en ecologisch oogpunt. Omdat staalname van urine moeilijk en duur is, stel ik een iteratieve aanpak voor om de excretiemodellen te verbeteren. Wanneer een techniek voor de verwijdering van PHC in de toekomst beter beschreven en geoptimaliseerd is, kunnen de huidige modellen voor cisplatine en carboplatine dienen om de economische haalbaarheid van de techniek in een ziekenhuis te schatten. Wanneer hieruit blijkt dat de verwijdering mogelijk economisch interessant is, kan een gedetailleerder excretiemodel worden opgesteld dat bijvoorbeeld gedurende 48 h geldt of de variatie in de urineproductie mee in rekening brengt. A.d.h.v. dit nieuwe model kan dan een meer uitgebreide economische analyse gemaakt worden.

De resolutie van de HPLC-methode was niet voldoende hoog om alle species apart te kunnen kwantificeren. In reële urine van patiënten overlapte de cisplatinepiek soms volledig met de pieken afbraakproducten. Om het effect van de speciatie van platina op de verwijdering en ecotoxicologie van PHC verder te onderzoeken dient de Methode verder geoptimaliseerd te worden.

Gezien de lage verwijderingsefficiëntie tijdens de kolomadsorptie-experimenten is er nood aan een beter begrip van het adsorptie-mechanisme van PHC. Studie van de kinetiek van de adsorptie en desorptie van PHC kan een eerste stap zijn. Er kan ook onderzocht worden of desorptie bij lage concentraties PHC te voorkomen is d.m.v. andere adsorbentia of modificatie van het adsorbens. Ook kunnen er andere verwijderingstechnieken zoals electrodepositie worden onderzocht om dit probleem van irreversibele adsorptie te overbruggen. Doormiddel van HPLC-ICP-MS kan de verwijdering van aparte species onderzocht worden i.p.v. enkel Ptot. Op die manier kan achterhaald worden welke species goed adsorberen en kan eventueel de speciatie gericht gewijzigd worden door rijping van de urine of door toevoeging van chemicaliën zoals zuren.

Indien verder onderzoek de bevindingen uit deze thesis bevestigen, namelijk dat de recuperatie van platina uit urine met PHC economisch rendabel kan zijn, is de volgende stap een pilootproject. Men kan bijvoorbeeld gedurende een jaar een speciaal toilet met een adsorbens installeren op een oncologische dienst van een ziekenhuis. Op die manier kunnen ook de bijkomende kosten geschat worden. Ook kan dan naar de opinie van de patiënten en het medisch personeel gepeild worden.
8. Referenties

Kümmerer, Klaus; Helmers, Eckard; Hubner, Peter; Mascart, Georges; Milandi, Milena; Reithaler, Franz; Zwakenberg, Mirriam (1999): European hospitals as a source for platinum in the environment in comparison with other sources. In Science of The Total Environment 225 (1-2), pp. 155–165.

Lenz, Katharina; Hann, Stephan; Koellensperger, Gunda; Stefanka, Zsolt; Stingeder, Gerhard; Weissenbacher, Norbert et al. (2005): Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge. In The Science of the total environment 345 (1-3), pp. 141–152.

Lenz, Katharina; Koellensperger, Gunda; Hann, Stephan; Weissenbacher, Norbert; Mahnik, Susanne N.; Fuerhacker, Maria (2007b): Fate of cancerostatic platinum compounds in biological wastewater treatment of hospital effluents. In Chemosphere 69 (11), pp. 1765–1774.

9. Bijlagen

9.1. Goedkeuring van de studie door het Ethisch Comité UZ Gent

<table>
<thead>
<tr>
<th>CONTACT</th>
<th>TELEFOON</th>
<th>FAX</th>
<th>E-MAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secretariaat</td>
<td>+32 (0)9 332 56 13</td>
<td>+32 (0)9 332 49 62</td>
<td>ethisch.comite@ugent.be</td>
</tr>
<tr>
<td>UW KENMERK</td>
<td>ONS KENMERK</td>
<td>DATUM</td>
<td>KOPIE</td>
</tr>
<tr>
<td>2014/1001</td>
<td>20-okt-14</td>
<td>Zie "CC"</td>
<td></td>
</tr>
</tbody>
</table>

BELTREFF

Advies voor monocentrische studie met als titel:
Verwijdering van platinumhoudende cystostatica uit afvalwater en de recuperatie van het edelmetaal. (scriptie Janis Baeten)

Belgisch Registratienummer: B670201422304

* Adviesaanvraagformulier dd. 14/10/2014 (volledig ontvangen dd. 15/10/2014)
* (Patienten)informatie- en toestemmingsformulier dd. 6/08/2014
* Protocol dd. 8/10/2014
* Begeleidende brief dd. 6/10/2014
* Informatie- en waarschuwingnota over de verwerking van informatie voor medisch-wetenschappelijk onderzoek
 Ondertekend door Janis Baeten dd. 14/10/2014

Advies werd gevraagd door:
Prof. dr. S. VAN BELLE; Hoofdonderzoeker

BOVENVERMELDE DOCUMENTEN WERDEN DOOR HET ETHISCH COMITÉ BEORDEELD, ER WERD EEN POSITIEF ADVIES GEGEVEN OVER DIT PROTOCOL OP 20/10/2014, INDIEN DE STUDIE NIET WORDT OPGESTART VOOR 2010/2015, VERVALT HET ADVIES EN MOET HET PROJECT TERUG INGEDIEN WORDEN.

Voorlees het onderzoek te starten dient contact te worden genomen met Bimeta Clinics (09/332 05 00).

THE ABOVE MENTIONED DOCUMENTS HAVE BEEN REVIEWED BY THE ETHICS COMMITTEE. A POSITIVE ADVICE WAS GIVEN FOR THIS PROTOCOL ON 20/10/2014, IN CASE THIS STUDY IS NOT STARTED BY 20/10/2015, THIS ADVICE WILL BE NO LONGER VALID AND THE PROJECT MUST BE RESUBMITTED.

Before initiating the study, please contact Bimeta Clinics (09/332 05 00).

DIT ADVIES WORDT OPGENOMEN IN HET VERSLAG VAN DE VERGADERING VAN HET ETHISCH COMITÉ VAN 21/10/2014

** Het Ethisch Comité werkt volgens 'ICH Good Clinical Practice' - regels
** Het Ethisch Comité beklemmend dat een gunstig advies niet betekent dat het Comité de verantwoordelijkheid voor het onderzoek op zich neemt. Bovendien dient U er over te waken dat Uw mening als betrokken onderzoeker wordt weergegeven in publicaties, rapporten voor de overheid enz., die het resultaat zijn van dit onderzoek.
** In het kader van 'Good Clinical Practice' moet de mogelijkheid bestaan dat het farmaceutisch bedrijf en de autoriteiten inzage krijgen van de originele data. In dit verband dienen de onderzoekers erover te waken dat dit gebeurt zonder schending van de privacy van de proefpersonen.
** Het Ethisch Comité benadrukt dat het de promoter is die garant dient te staan voor de conformiteit van de onderstaande informatie- en toestemmingsformulieren met de nederlands-talige documenten.
** Geen enkele onderzoeker betrokken bij deze studie is lid van het Ethisch Comité.
** Alle leden van het Ethisch Comité hebben dit project beoordeeld. (De ledenlijst is bijgevoegd)

Universitair Ziekenhuis Gent
De Pinteelaan 185-B - 9000 Gent
www.uzgent.be

Wendy Van de Velde
09/332 56 13
wendy.vandevelde@uzgent.be

J.
9.2. Informatie- en goedkeuringsformulier voor de deelnemende patiënten

Informatie voor de patiënt:

Project:
Verwijdering van platinumhoudende cytostatica uit afvalwater en de recuperatie van het edelmetaal.

Beschrijving en doel van het project.
U zal binnenkort een behandeling met platinumhoudende cytostatica ondergaan. De dienst medische oncologie voert een onderzoek uit naar de behandeling van platinum bevattend afvalwater van ziekenhuizen. Wij vragen u vriendelijk of u de tijd zou willen nemen om deel te nemen aan dit onderzoek door een aantal stalen urine af te staan gedurende 24 uur na het begin van de behandeling.

Deze studie werd goedgekeurd door een onafhankelijke Commissie voor Medische Ethiek verbonden aan dit ziekenhuis, en zal worden uitgevoerd volgens de richtlijnen van ICH/GCP opgesteld in de verklaring van Helsinki opgesteld ter bescherming van individuen deelnemend aan klinische studies. Deze verzameling wordt uitgevoerd onder supervisie van Prof. Dr. Van Belle.

Toestemming en weigering
Het staat u volkomen vrij om deel te nemen of niet. U kunt weigeren de urine af te staan zonder dat u hiervoor een reden moet opgeven en zonder dat dit op enigerlei wijze een invloed zal hebben op uw verdere behandeling en de relatie met de behandelende artsen.
Als u toestemt, wordt u gevraagd het toestemmingsformulier te tekenen.

Voordelen
Deze studie biedt geen medisch of ander voordeel voor uzelf, maar de bekomen resultaten kunnen leiden tot nieuwe en meer efficiënte methodes voor de behandeling van het afvalwater van ziekenhuizen en het ontwikkelen van een techniek voor de recyclage van platinum.

Kosten
Uw deelname aan de studie brengt geen bijkomende kosten mee voor u, maar biedt ook geen financieel voordeel.

Vertrouwelijkheid
Als u akkoord gaat om aan deze studie deel te nemen, zullen uw persoonlijke en klinische gegevens tijdens deze studie worden geanonymiseerd (hierbij is er totaal geen terugkoppeling meer mogelijk naar uw persoonlijke dossier). In overeenstemming met de Belgische wet van 8 december 1992 en de Belgische wet van 22 augustus 2002, zal uw persoonlijke levenssfeer worden gerespecteerd. Als de resultaten van de studie worden gepubliceerd, zal uw anonimiteit aldus verzekerd zijn.

Verzekering:
De experimentenwet van 7/05/2004 verplicht ons om deelnemers aan wetenschappelijke
projecten te verzekeren voor de deelname en het risico (hoe klein ook) dat men loopt. De
waarschijnlijkheid dat u door deelname aan deze studie enige schade ondervindt, is extreem
laag. Indien dit toch zou voorkomen, wat echter zeer zeldzaam is, werd er een verzekering
afgesloten conform de Belgische wet van 7 mei 2004, die deze mogelijkheid dekt.

Toestemmingsverklaring

Ik verklaar hierbij op een voor mij begrijpelijke wijze mondeling en schriftelijk te zijn ingelicht
over de aard, de methode en het doel van deze studies.

Ik stem erin toe deel te nemen aan het wetenschappelijk onderzoek.

Ik ben er mij van bewust dat dit project ter beoordeling en controle aan het Ethisch Comité van
het UZ Gent werd voorgelegd en ik deze goedkeuring niet moet beschouwen als een motivatie
tot deelname aan deze studie.

Ik ben ervan op de hoogte dat deelname aan deze studies geen bijkomende kosten meebrengen
en dat er geen financieel voordeel aan verbonden is.

De patiënt kan zich op elk moment terugtrekken tot op het ogenblik dat de gegevens in de
database worden bewaard zonder hiervoor een verklaring te hoeven afleggen en zonder dat dit
op enigerlei wijze invloed zal hebben op de verdere behandeling en de relatie met de arts.

Gelezen en goedgekeurd,

Naam arts/onderzoeker:

Naam Patiënt

Datum:

Datum:

Handtekening

Handtekening
9.3. Protocol voor de deelnemende patiënten

HANDLEIDING: staalname urine

Janis Baeten, o.b.v. Karel Folens
Laboratorium voor Analytische en Toegepaste Ecochemie

Beste,

Om te beginnen willen we jullie bedanken om ons te helpen met het onderzoek naar de recuperatie van platina!

Deze brief bevat een gedetailleerde uitleg om de staalname vlot te laten verlopen.

1. Er wordt een nachtstoel voorzien om in te plassen.
2. Telkens wanneer je plast doe je dit in de nachtstoel.
3. Daarna bel je de verpleging om te melden dat je hebt geplast.
4. De verpleger/ster zal de opvangbak met de urine meenemen, wegen en er een kleine hoeveelheid uitnemen die verder wordt geanalyseerd in het laboratorium.
5. Dit doe je elke keer wanneer je hebt geplast tot 24 uur na het begin van de chemotherapie.
6. Indien er iets anders verloopt meld je dit aan de verpleging bv je bent vergeten te melden dat je hebt geplast of je plast per ongeluk in het toilet in plaats van in de nachtstoel.

Bedankt voor je deelname aan het onderzoek en veel beterschap!

Voor vragen in verband met het onderzoek kan je me steeds contacteren via: 0497 66 13 58 of janis.baeten@ugent.be.
9.4. Protocol voor de verpleegkundigen die de staalname begeleiden

HANDLEIDING: staalname urine

Janis Baeten, o.b.v. Karel Folens
Laboratorium voor Analytische en Toegepaste Ecochemie

Beste,

Om te beginnen willen we jullie bedanken om ons te helpen met het onderzoek naar de recuperatie van platina!
Het begeleiden van de staalname van de urine gebeurt als volgt.

7. Er wordt een nachtstoel voorzien om in te plassen.
 8.1. Noteer het tijdstip waarop werd geplast op het label.
 8.2. Weeg de opvangbak met de urine en zonder deksel op de weegschaal en trek het gewicht van de opvangbak dat op de onderkant staat genoteerd eraf. Zo bekom je het gewicht urine. Noteer dit gewicht op het label.
 8.3. Neem uit de urine een staal van 10 mL met de urinespuit (Monovette®).
 8.4. Vul het label aan met de datum.
 8.5. Vul het label aan met het nummer van de deelnemer.
 8.6. Plak het label op de spuit.
 8.7. Steek de spuit met de urine in de voorziene diepvrijezer in het spoellokaal.
 8.8. De overschot van de urine in de opvangbak mag weg.
 8.9. Neem een propere opvangbak om in de nachtstoel te steken.
9. Deze procedure wordt gevolgd tot 24 uur na het begin van de infuus.

Nogmaals BEDANKT!

Voor vragen kan je me steeds contacteren via: 0497 66 13 58 of janis.baeten@ugent.be.
Figuur 1. De labels voor de stalen.

Figuur 2. Voorbeeld van een ingevuld label.
9.5. Template voor de patiënteninformatie

PATIËNTENINFORMATIE: staalname urine

Janis Baeten, o.b.v. Karel Folens

Laboratorium voor Analytische en Toegepaste Ecochemie

<table>
<thead>
<tr>
<th>Nummer deelnemer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijdstip van het begin van het infuus</td>
</tr>
<tr>
<td>Duur van het infuus</td>
</tr>
<tr>
<td>Type cytostaticum dat werd toegediend</td>
</tr>
<tr>
<td>De totale toegediende dosis in mg</td>
</tr>
<tr>
<td>De totale toegediende dosis in mg/m²</td>
</tr>
<tr>
<td>Gewicht van de patiënt</td>
</tr>
<tr>
<td>Geslacht van de patiënt</td>
</tr>
<tr>
<td>Creatinineklaring</td>
</tr>
<tr>
<td>Andere medicatie waarvan mogelijks nog sporen te vinden zijn in de urine</td>
</tr>
<tr>
<td>Eventuele afwijkingen van het protocol die zijn voorgevallen (bv een staal vergeten)</td>
</tr>
</tbody>
</table>
9.6. Analytische oplossing van het stelsel differentiaalvergelijkingen van een compartimenteel model met twee compartimenten

Om een uitdrukking voor de uitgescheiden hoeveelheid U in functie van de tijd te vinden, worden vergelijking 1 tot en met 3 opgelost. De input F bestaat uit een dosis D_{Pt} die met een constant snelheid vanaf tijdstip 0 tot T wordt toegediend. Dit wordt wiskundig genoteerd a.d.h.v. de stapfunctie H_{T}.

Toepassing van de Laplacetransformatie op de drie differentiaalvergelijkingen resulteert in drie vergelijkingen met als onbekenden de Laplacetransformaties van X_{1}, X_{2} en U, genoteerd als $x_{1}(s), x_{2}(s)$ en $u(s)$ (vergelijking 26 tot en met 28). Oplossen van dit stelsel naar $u(s)$ resulteert in uitdrukking 28.

Om de uitdrukking voor $u(s)$ te vereenvoudigen worden de snelheidsconstanten in de noemer gesubstitueerd volgens de vergelijkingen 9 en 10 in paragraaf 2.3.4.

Om de uitdrukking voor $u(s)$ te berekenen worden de relatieve uitgescheiden massa U_{rel} berekend te worden. Beide leden door de dosis D_{Pt} delen geeft de relatieve uitgescheiden massa U_{rel}.

De afgeleide hiervan is de relatieve urine-excretiesnelheid (vergelijking 31). Aan deze uitdrukking valt te zien waarom compartimentele modellen ook exponentiële modellen worden genoemd: na de infusietijd T daalt de excretiesnelheid, die evenredig is met de plasmaconcentratie (zie vergelijking 3), volgens een som 2 exponentiële functies.
\[
\frac{dU_{rel}}{dt} = \begin{cases}
 & \frac{k_r}{T} \left[\frac{\alpha-k_{21}}{\alpha(\alpha-\beta)} \left(1-e^{-\alpha t}\right) + \frac{\beta-k_{21}}{\beta(\beta-\alpha)} \left(1-e^{-\beta t}\right) \right] \quad \text{als } t<T \\
 & \frac{k_r}{T} \left[\frac{\alpha-k_{21}}{\alpha(\alpha-\beta)} \left(e^{\alpha(T-t)}-1\right)e^{-\alpha t} + \frac{\beta-k_{21}}{\beta(\beta-\alpha)} \left(e^{\beta(T-t)}-1\right)e^{-\beta t} \right] \quad \text{als } t \geq T
\end{cases}
\] (31)
9.7. Protocol voor de verpleegkundigen die de collectie van de volledige hoeveelheid urine begeleiden

HANDLEIDING: staalname urine

Janis Baeten, o.b.v. Karel Folens
Laboratorium voor Analytische en Toegepaste Ecochemie

Beste,

Om te beginnen willen we jullie bedanken om ons te helpen met het onderzoek naar de recuperatie van platina!

Het begeleiden van de staalname van de urine gebeurt als volgt.

10. Er wordt een nachtstoel voorzien om in te plassen.

11.1. Noteer het tijdstip waarop werd geplast op het label.

11.2. Weeg de opvangbak met de urine en zonder deksel op de weegschaal en trek het gewicht van de opvangbak dat op de onderkant staat genoteerd eraf. Zo bekom je het gewicht urine. Noteer dit gewicht op het label.

11.3. Breng m.b.v. de 100 mL spuit de volledige hoeveelheid urine over in een de hiervoor voorziene fles.

11.4. Vul het label aan met de datum.

11.5. Vul het label aan met het nummer van de deelnemer.

11.6. Plak het label op de fles.

11.7. Steek de fles in de voorziene diepvriezer in het spoellokaal.

11.8. Neem een propere opvangbak om in de nachtstoel te steken.

12. Deze procedure wordt gevolgd tot 24 uur na het begin van de infuus.

Nogmaals BEDANKT!

Voor vragen kan je me steeds contacteren via: 0497 66 13 58 of janis.baeten@ugent.be.
9.8. Voorgesteld protocol voor de staalname bij patiënten van de dagkliniek

HANDLEIDING: staalname urine

Janis Baeten, o.b.v. Karel Folens. Laboratorium voor Analytische en Toegepaste Ecochemie

Beste,

Deze brief bevat een gedetailleerde uitleg om de staalname vlot en veilig te laten verlopen. Je krijgt een 500 mL opvangbeker, een 3L container, een aantal 10 mL spuiten, stickers en een plastic zakje en een doos mee naar huis. Gedurende **24 uur** na de chemotherapie volg je de volgende stappen telkens wanneer je moet plassen. Probeer hierbij spatten van de urine te voorkomen, laat de voorwerpen die met de urine in contact zijn gekomen op het toilet staan waar niemand anders komt tijdens je behandeling en was steeds grondig je handen na het plassen.

1. **Telkens wanneer je plast** doe je dit **in de opvangbeker**.
 2. Daarna **neem je uit de opvangbeker 10 mL urine met de spuit**.
 3. Doe **de overgebleven hoeveelheid urine in de 3 L container om het volume af te lezen**.
 4. **Giet** daarna deze hoeveelheid voorzichtig **in het toilet**.
 5. **Noteer nu op de sticker het tijdstip, het totale volume urine en de datum**
 6. **Plak de sticker op de 10 mL spuit** met urine.
 7. **Spoel de 3 L container 3x** met water.
 8. Na je handen te wassen doe je de **10 mL spuit in het plastic zakje**, steek deze **in de doos** en leg deze doos **in de diepvriezer**.
10. **Bij je volgende ziekenhuisbezoek neem je de doos met de stalen mee en geef je ze af**.
11. **Indien er iets anders verloopt meld je dit** bij je volgende bezoek in het ziekenhuis.

Bedankt voor je deelname aan het onderzoek en veel beterschap!
Een voorbeeld van een ingevuld label:

Heb je vragen over het onderzoek? Dan kan je me steeds contacteren via 0497 66 13 58 of janis.baeten@ugent.be.
PROCEDURE: MEDICAL HAZARDOUS WASTE DISPOSAL

Expired medication, used and unused vials of investigational medicinal products are all considered as medical hazardous waste. Medical hazardous waste is removed in UN-approved yellow polyethylene containers with self-sealing lid or cardboard boxes containing a yellow plastic bag. Each waste recipient is labelled with the coordinates of UZ Gent, the transporter and the mention "Risicohoudend medisch afval- Déchets hospitaliers dangereux, Infectieux/te verbran- deaux infectieux/ à incinérer". The waste containers are transferred daily to a disposal facility located on the UZ Gent site where they are stored until pick-up for incineration. Once a week the waste containers are collected by Van Gansewinkel, an approved transporter of medical hazardous waste, and transported directly to one of the approved incinerators in Belgium, e.g. Machiels (Leuven) or Indaver (Antwerp), which one, is up to the transporter’s choice.