Validatie van een meetinstrument voor interesseontwikkeling in onderwijs

Mark Willems

Afstudeerscriptie voorgelegd met het oog op het behalen van de graad van master in de Opleidings- en Onderwijswetenschappen

Promotor: prof. dr. V. Donche
Samenvatting

Dankwoord

Het schrijven van deze masterscriptie beschouw ik als een rijke leerervaring. Het was een uitdaging die me toeliet de geleerde competenties uit deze opleiding te bundelen. Het was een uitgelezen kans om mijn eigen visie en overtuigingen omtrent onderwijs te toetsen aan de realiteit. Het kiezen van een onderwerp had dan ook de nodige voeten in de aarde. Alle professoren die daar een rol in speelden, wil ik graag bedanken: prof. Will Meeus, prof. David Gijbels, Prof. Piet Van den Bossche en mijn promoter Prof. Vincent Donche. Tijdens het schrijven van deze scriptie had ik soms nood aan een ‘sparring’-partner. Ik wil graag mijn medestudenten Jerich Faddar, Sofie Laureyssens en mijn vriend Jan Laurijssen bedanken voor hun kritische geest en reflectie. De tweede lezer, Anke Franquet wil ik uitdrukkelijk bedanken voor de feedback die zij gaf op basis van een versie waar nog veel werk aan was. Deze feedback heeft me goed geholpen om dit werk af te werken. Ook mijn promoter, professor dr. Vincent Donche wil ik uitdrukkelijk bedanken voor de voortreffelijke begeleiding, die hij mij bood. Hij liet me de ruimte om mijn eigen onderwerp op mijn eigen wijze te exploreren. Hij plaatste hier de kritische vragen bij die me hielpen in het ontwikkelingsproces van deze scriptie. Mijn procesmatige aanpak vroeg daarin niet enkel veel tijd van mezelf. Ook voor mijn promoter vroeg dit wellicht de nodige flexibiliteit en inspanning. Deze flexibiliteit werd mij schijnbaar moeiteloos geboden. Dankjewel Vincent! Agnes ’t Sijen wil ik bedanken voor de heldere reflectie op de inhoud en het schrijfproces van dit werk. Het schrijven van deze scriptie was een uitdaging, die zowel van mezelf als van mensen in mijn omgeving inspanningen heeft gevraagd. Het zal ook mijn naaste omgeving niet ontgaan zijn, dat ik met het schrijven van een masterscriptie bezig was. Mijn ouders en schoonouders zorgden vaak voor extra ondersteuning in de opvang van de kinderen. Dankjewel Danny, Karel, Ludo en Nelly! Het aanhoren van een student, die de eenzaamheid van zijn schrijfwerk wil doorbreken, vraagt enige sociale flexibiliteit. Alle collega’s en vrienden die dit moesten ondergaan, verdienen een woord van dank. Bij mijn vrouw en kinderen kwam daar een tweede ongemak bovenop. De tijd, die voor het gezinsleven overbleef, werd gereduceerd tot een absoluut minimum. Mijn vier zonen Toom, Aaron, Ever en Obe wil ik daarom met heel mijn hart bedanken. Ik hoop hen ook getoond te hebben, dat doorzetten de moeite loont. Mijn vrouw An-Rose Vandewinckele wil ik tenslotte in de bloemen zetten voor de liefde, de ondersteuning, de flexibiliteit, het begrip, de kritische geest en de aanmoediging, die ik van haar kreeg. Naast de extra’s voor de vier zonen, doorstond zij het samenleven met een man, die voor drie jaar terug student was. Dat deed ze met verve. Dankjewel Roosje!
Inhoud

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Inhoud</td>
</tr>
<tr>
<td>2.</td>
<td>Inleiding</td>
</tr>
<tr>
<td>3.</td>
<td>Leeswijzer</td>
</tr>
<tr>
<td>4.</td>
<td>Theoretisch kader</td>
</tr>
<tr>
<td>5.</td>
<td>Methode</td>
</tr>
<tr>
<td>6.</td>
<td>Resultaten</td>
</tr>
<tr>
<td>7.</td>
<td>Conclusie</td>
</tr>
<tr>
<td>8.</td>
<td>Bibliografie</td>
</tr>
<tr>
<td>9.</td>
<td>Bijlagen</td>
</tr>
</tbody>
</table>

Samenvatting

Dankwoord
2. **Inleiding**

\(^1\) Frenzel et al. menen dat de leermotivatie van leerlingen afneemt door schoolse restricties zoals: verplichte vakken, toenemende taakcomplexiteit, en academische prestatie-eisen (Frenzel et al., 2010).

We kunnen nagaan of de verwachte positieve samenhang met autonome motivatie sterker wordt naarmate we spreken over meer ontwikkelde interesse. Anders dan motivatieconstructen is interesse een construct, dat expliciet de link met leerinhouden legt (Hidi, 2006; Krapp, 2007). Interesse en motivatie staan in wisselwerking met elkaar. "The state of interest brings together motivation in the form of prior goals and interests and focuses them into on-task behavior" (Ainley, 2006). We betrekken in deze studie motivatie vanuit het perspectief van de zelfdeterminatietheorie (ZDT). Interesse ontwikkelen biedt niet alleen een link met het streven naar gemotiveerde leerlingen. Het vindt tegelijkertijd aansluiting bij bredere onderwijsgerelateerde doelen zoals Vlaamse (VLOR, 2010) en Europese
(Europese Commissie, Europese Unie, 2011) economische doelstellingen gericht op onderwijs. Mensen met sterke interesses hebben een hogere employability (Commissie et al., 2011). Opmerkelijk is dat reeds in de eerste wetenschappelijke bronnen omtrent interesse in onderwijs dit zeer treffend werd verwoord.

"Interest must not only be regarded as a desirable motivational condition of learning but also as an important goal or outcome of education."

(herbart 1776–1841, uit krapp & prenzel, 2011, p.29)

3. Leeswijzer

Drie elementen ondersteunen het goed begrip van deze masterscriptie. Als eerste worden de begrippen van het basisconcept interesseontwikkeling (linnenbrink-garcia et al., 2010) kort geschetst en grafisch voorgesteld (figuur 1). In een tweede alinea worden deze begrippen aan de hand van een voorbeeld verduidelijkt. In een derde alinea wordt de basisstructuur van dit werk uiteengezet.

Interesseontwikkeling is een trapsgewijs proces (figuur 1). Conceptueel worden hierin twee hoofddimensies onderscheiden (Hidi & Renninger, 2006; Krapp, 2007; Linnenbrink-garcia et al., 2010; Mitchell, 1993): situationele interesse (SI) en persoonlijke interesse (PI). Situationele interesse bestaat op zijn beurt uit drie subdimensies. Daarin onderscheiden we volgens Linnenbrink et al. (2010) als eerste ontwikkelingstrap triggered situational interest (TSI), als tweede ontwikkelingstrap maintained situational interest -feeling related (MSIF) en als derde ontwikkelingstrap maintained situational interest -value related (MSIV). Naar deze rangorde wordt verder verwezen als de rangorde van de onderliggende structuur van SI. TSI is erg kortstondig en engageert leerlingen tot oppervlakkige verkenning van interessegebieden. Maintained situational interest (MSI) is duurzamer en engageert leerlingen tot diepere verkenning van meer gedetailleerde inhouden. MSI bestaat uit een gevoelscomponent (MSI-feeling) en een waardencomponent (MSI-value). De drie subdimensies zijn situationeel. Dat wil zeggen dat ze voor hun ontwikkeling afhankelijk zijn van de situatie of context waarin ze worden opgewekt. Dit maakt meteen het onderscheid met persoonlijke interesse (PI) duidelijk. PI is een vorm van interesse die ook onafhankelijk van de omgeving leerlingen engageert tot interactie met het interessegebied. Dit wil zeggen dat leerlingen op eigen initiatief en in verschillende omgevingen hun interesse zullen voeden.
Figuur 1: Hoofddimensies (SI, PI) en subdimesnies (TSI, MSI-feeling, MSI-value) van interesseontwikkeling.

Als voorbeeld nemen we een leerling die tijdens een wiskundeles voor het eerst in aanraking komt met de werking van de beurs. Zijn interesse wordt opgewekt (TSI), maar er zijn die dag nog vele andere zaken, die met elkaar concurreerden voor zijn aandacht. Daags nadien wordt via een simulatiespel in groepen gewerkt. Het feit dat de simulatie met een virtuele portefeuille, gebaseerd is op werkelijke beurskoersen werkt opnieuw als een trigger (TSI). De leerlingen vinden het spannend en leuk om te zien welk effect hun acties hebben op de simulatie. Het groepswerk is aangenaam (MSI-feeling) en de competitiegeest (MSI-value) zet hen aan om zichzelf verder in het cursusmateriaal te verdiepen (MSI). Ze vinden dit leuk (MSI-feeling) en ze willen winnen (MSI-value). Twee weken na deze activiteit blijken de andere groepsgenoten hun interesse verloren te hebben. Onze leerling in kwestie heeft onder impuls van deze les een virtuele beleggersportfolio geopend op http://google.finance.com. Zijn interesse is verder ontwikkeld buiten de onderwijscontext (PI). Ook al heeft hij nog eens raad gevraagd aan zijn leerkracht, regelmatig gaat hij thuis verder op zoek naar informatie en kennis waarom hij zijn virtuele prestaties kan verbeteren. Hij vindt het leuk en spannend om mee bezig te zijn (gevoelseigenschappen van PI) en denkt meer en meer aan een toekomst in de financiële sector (de waardeneigenschappen van PI). Aan de hand van dit voorbeeld zien we dat we deze fases niet arbitrair in de tijd moeten opdelen, maar dat interesseontwikkeling een proces is dat zich kan herhalen volgens een bepaald patroon. Over dit patroon bestaat echter discussie. We situeren dit instrument daarom nauwgezet binnen gangbaar interesseonderzoek.

Deze scriptie hanteert daarin de volgende structuur. Eerst wordt in het theoretisch kader de dimensionaliteit van interesse benaderd. Dit gebeurt vanuit een beschrijving van de uitersten van het ontwikkellingscontinuüm, met name situationele- en persoonlijke interesse (4.1). Vanuit dit kader wordt het bestaande onderzoek naar invloedsfactoren verkend. Problemen voor een transparante interpretatie van onderzoek naar invloedsfactoren worden hierin gesitueerd (4.2). Vervolgens worden twee onderzoekskaders ter validatie
voorgesteld (4.3 & 4.4), die elk eindigen op hypothesen. Het onderdeel 4.3 omvat de conceptualisering en validatie van SI, zoals gehanteerd door Linnenbrink et al. (2010). In 4.4 wordt de link met motivationele constructen in functie van een verdere verhoging van de inhoudelijke- en constructvaliditeit van het instrument benaderd. Kort gesteld gaat het in 4.3 over de dimensies van interesseontwikkeling en in 4.4 twee over de relaties van die dimensies met motivatie (ZDT) en zelf-effectiviteit. Aan 4.4 en 4.3 worden hypothesen gekoppeld aan het einde van het theoretisch kader (4.5). De structuur van deze twee onderdelen wordt ook doortrokken naar de analyses (6.1 & 6.2) en het discussieluik (7.1 & 7.2) van deze scriptie.

4. **Theoretisch kader**

Er is een aanzienlijke hoeveelheid onderzoek gericht op interesse in onderwijs. Deze kunnen we indelen naar: onderzoek gericht op het determineren van verschillen in initiële interesses volgens persoonskenmerken zoals leeftijd, geslacht, afkomst (Frenzel et al., 2010; Olsen et al., 2010; Wersch, Trew, & Turner, 1992); onderzoek gericht op specifieke invloedsfactoren van interesse (U. Schiefele, 1999; Schraw et al., 2001; Schraw & Lehman, 2001); onderzoek gericht op de rol van interesse in gemotiveerd leren (Ainley, Hidi, & Berndorff, 2002a; Deci, 1992; Prenzel, 1992; Renninger et al., 1992; Ulrich Schiefele, 2001; Tsai, Kunter, Lüdtke, Trautwein, & Ryan, 2008); onderzoek gericht op de conceptualisering van interesse (Ainley, 2006; Hidi & Renninger, 2006; Krapp, 2007; Mitchell, 1993; Schraw & Lehman, 2001; Trend, 2009); en tot slot onderzoek gericht op het meten van interesse (Ang Chen, Darst, & Pangrazi, 2000; Linnenbrink-Garcia et al., 2010; Mitchell, 1993). Opvallend is het ontbreken van een multidimensionaal referentiekader doorheen dit onderzoek. In Bijlage 1 wordt hieraan de nodige aandacht besteed. Interesseonderzoek lijkt op dat vlak minder uitgewerkt dan bijvoorbeeld het motivatieonderzoek van de zelfdeterminatietheorie (Deci & Ryan, 1985). Het cognitivisme heeft interesseonderzoek jarenlang onderdrukt, omdat interesse toen meer benaderd werd in termen van propositionele netwerken (Schraw & Lehman, 2001). Daardoor is het concept interesse in vergelijking met motivatie minder geconceptualiseerd, geoperationaliseerd (Hidi, 2006; Krapp, 2007) en meetbaar gevalideerd.

2 Doorheen het theoretisch kader wordt naar deze hypotheses verwezen (vb. H1, H2).
4.1. **Situationele- en persoonlijke interesse**

In dit onderdeel staan we stil bij de hoofddimensies van interesseontwikkeling. In een eerste alinea wordt ingegaan op gangbare benaderingen op interesseontwikkeling vanuit een ééndimensioneel of multidimensioneel perspectief. In de tweede alinea gaan we verder in op PI. Een derde alinea verduidelijkt SI, om aansluitend in een vierde alinea het hoofd te bieden aan de discrimineerbaarheid tussen SI en PI. Een vijfde alinea schetst tot slot een voorbeeld aan de hand van de weergegeven begrippen.

Gangbare benaderingen van interesse - ééndimensioneel of multidimensioneel?

Persoonlijke interesse

Wat is persoonlijke interesse (PI)? In verschillende onderzoeken (Hidi & Renninger, 2006; Krapp, 2007; Linnenbrink-Garcia et al., 2010; Schraw, Flowerday, & Lehman, 2001) worden zowel de termen persoonlijke als individuele interesse gebruikt. PI is geen eindhalte voor interesseontwikkeling. PI kan op een autonome wijze steeds verder ontwikkelen en heeft daardoor een meer duurzaam karakter (Schraw & Lehman, 2001). De groei van PI wordt o.a. gekarakteriseerd door een toename van kennis en persoonlijke waarden met betrekking tot het interessegebied (Renninger, 2000). PI groeit doorheen interacties met het interessegebied die kunnen plaatsvinden in verschillende contexten (Linnenbrink, 2010). Bij PI zal meestal de persoon zelf een initiatief nemen in deze interactie (Krapp, 2007). PI impliceert een bereidheid om zich doorheen de tijd regelmatig te engageren met het interessegebied (Alexander, Johnson, Leibham, & Kelley, 2008; Hidi, 2006; Renninger et al., 1992; U. Schiefele, 1999). PI is met andere woorden meer zelfsturend en leunt meer aan bij concepten als autonome motivatie (Deci, 1992), omdat het ook aanzet tot zelfgestuurde (Renninger & Su, 2011) en doelgerichte interactie met het interessegebied (Harackiewicz et al., 2008). “Individual interest refers to an ongoing and deepening relation of a person to particular subject content that does, in fact, have qualities of full engagement and task orientation.” (Renninger, 2000). PI wordt geassocieerd met een psychologische staat van positieve gevoelens (Rathunde & Csikszentmihalyi, 1993) en verdiept daarbij het leerengagement (Renninger, 2000, p. 373), het doorzettingsvermogen, het leervermogen (Ainley, Hidi, & Berndorff, 2002b) en retentie met de leerinhouden (K. Ann Renninger & Wozniak, 1985). PI heeft dus net als situational interest (SI) zowel affectieve als cognitieve kenmerken (Ainley, 2006; Suzanne Hidi et al., 2004).

Situationele interesse

Daar tegenover staat dat SI een vorm van interesse is die in hoofdzaak (maar niet exclusief) geïnitieerd wordt door kenmerken die zich in de omgeving voordoen (Hidi, 2006; Hidi & Baird, 1986; Hidi & Renninger, 2006; Krapp, 2002; Linnenbrink-Garcia et al., 2010; Renninger & Su, 2011; Schraw & Lehman, 2001). Voor dit onderzoek is die omgeving een educatieve- of schoolomgeving. Hoewel SI zich in iedere context kan ontsluiten, spitst deze

3 In dit onderzoek wordt gekozen voor de term persoonlijke interesse omdat de afkorting daarvan (PI) duidelijker is dan II, wat met het romeinse cijfer verward kan worden.
scriptie zich louter toe op SI in een onderwijscontext. SI is afhankelijk van die omgeving om verder te kunnen ontwikkelen (Schraw et al., 2001). Hidi en Renninger onderscheiden 4 fasen in interesseontwikkeling. Twee fasen voor SI, met name TSI en MSI welke overeenkomen met het hier gebruikte model. Maar ook twee fasen voor PI waarnaar ze verwijzen met de begrippen *emerging individual interest* en *well-developed individual interest* (Hidi & Renninger, 2006). Dit onderzoek maakt geen gebruik van het concept *emerging individual interest*. Dit heeft te maken met de discrimineerbaarheid tussen PI en SI. We gaan hier in de volgende alinea op in.

De discrimineerbaarheid van SI en PI.

Waar precies de grens ligt tussen PI en SI is vatbaar voor discussie. Het instrument dat in deze studie vertaald wordt (Linnenbrink et al., 2010), wijkt af van het theoretische onderscheid tussen SI en PI dat initieel door Hidi en Renninger werd gemaakt (2006). Omdat minder ontwikkelde persoonlijke interesse of *emerging individual interest* (Hidi & Renninger, 2006) nog steeds een afhankelijkheid van de omgeving inhoudt, categoriseert Linnenbrink et al. (2010) dit als een situationele vorm van interesse. Voor Linnenbrink’s SIS-instrument wordt dan ook een striktere afbakening van PI gehanteerd, waardoor een meer gearticuleerde benadering van SI ontstaat. Er is enkel sprake van PI wanneer het gaat over een stabiel, autonome en situatieonafhankelijke vorm van interesse. In onderwijskundige zin zouden we kunnen spreken van PI, wanneer het gaat om een sterk ontwikkelde interesse die onafhankelijk van een leeromgeving, een leerling aanzet tot autonome leeractiviteiten (zie voorbeeld in volgende alinea). De ontwikkeling van SI valt zo binnen één duidelijker situatieafhankelijk continuüm. We hebben nu een continuüm met een grotere relevantie voor educatieve contexten. Ook in dit situationele continuüm van interesseontwikkeling vullen affectieve en cognitieve kenmerken elkaar aan (Ainley, 2006), maar door de benadering van Linnenbrink kunnen we ze meer vanuit geïsoleerde constructen begrijpen. SI en PI vormen de logische hoofddimensies van interesseontwikkeling. Zo kunnen we het mechanisme van interesseontwikkeling duidelijker blootleggen. Vooral de aanwezigheid van de affectieve karakteristieken van SI en PI kan het onderscheid tussen beide bemeiijken. Daarom worden aan het eind van dit kader hypotheses (H1, H2, H3) opgenomen omtrent de validiteit van de hoofddimensies SI en PI.
Een voorbeeld ter verduidelijking.

We nemen als voorbeeld een leerling die leerinhouden van wiskundelessen gaat opzoeken op www.khanacademy.org en voor zichzelf op basis daarvan nieuwe oefeningen uitwerkt. Zulke ontwikkelde interesse kan als controlevariabele op het opwekken van interesse worden gebruikt. Een onderzoek dat nagaat of bepaalde methods interesse opwekken (TSI) of voortzetten (MSI) kan door de aanwezigheid van PI in dit instrument controleren of reeds intrinsieke interesse voor bijvoorbeeld wiskunde aanwezig was. Het zijn immers de niet- en laaggeinteresseerden op wie men het grootste effect kan genereren. Toch lijkt het ook belangrijk om personen met reeds PI voor een bepaalde leerinhoud te ondersteunen. Zij kunnen immers vanuit hun interessegebied doelgericht bouwen aan het verder ontwikkelen van hun competenties.

4.2. Een kader voor interesseontwikkeling.

In dit onderdeel verantwoorden we in een eerste alinea het beschrijven van invloedsfactoren van SI. Een tweede alinea beschrijft invloedsfactoren van SI en PI. Er is vanuit unidimensioneel interesseonderzoek een brede kennisbasis. In een derde alinea omschrijven we de implicaties hiervan in functie van een transparant onderwijskundig begrip op interesseontwikkeling. In de vierde alinea wordt van daaruit de link gelegd naar de oorspronkelijke validatiestudie van Linnenbrink et al (2010). We belichten daarin ook recente onderzoeksresultaten en leggen van daaruit links met de bestaande kennisbasis.

Waarom invloedsfactoren van interesse?

Situationele factoren zijn kritisch in het ontwikkelen van individuele interesse (Hidi & Baird, 1986; Krapp, 2007; Tauer et al., 2000). Zijn deze factoren verschillend naargelang het ontwikkelingsstadium van interesse? Kunnen leerlingen met een PI voor wiskunde op dezelfde wijze gestimuleerd en ondersteund worden als leerlingen met slechts een prille TSI voor wiskunde? Dit soort vragen is met het huidige wetenschappelijke instrumentarium moeilijk te beantwoorden. Wel weten we uit de literatuur, dat het voeden van interesse, naargelang de ontwikkelingsfase, effectief andere invloedsfactoren heeft.
Invloedsfactoren van situationele- en persoonlijke interesse.

Implicaties van interesse-invloedsfactoren voor de gehanteerde conceptualisering

Uit deze uiteenlopende kwalitatieve en kwantitatieve studies kunnen slechts moeizaam generieke inzichten worden afgeleid. Weinig is geweten over hoe deze invloedsfactoren samenhangen met ontwikkelingsfasen van interesse. Er is geen theoretische eensgezindheid over welke invloedsfactoren spelen op welke fase van interesseontwikkeling. Deze inzichten zouden nochtans een betere ondersteuning van interesseontwikkeling mogelijk maken. Wel is al duidelijk dat die ondersteuning van interesseontwikkeling verandert naargelang de fase (Hidi & Baird, 1986; Hidi & Renninger, 2006; Krapp, 2007; Krapp & Prenzel, 2011; Renninger & Su, 2011). Oriënterende workshops tijdens een projectweek in een school kunnen bijvoorbeeld interests van leerlingen prikkelen (TSI). Een verdiepende individuele opdracht kan de interesse vanuit individuele beleving met de inhouden van potentiële interessegebieden in beweging brengen (MSI). Men zou kunnen vragen aan
leerlingen uit al deze ervaringen van de projectweek een thema te kiezen dat hen boeide, daar bijkomende informatie over op te zoeken en nadien een podcast, blog of powerpoint te maken over dit thema. Wanneer in een vervolgweek meer individuele leertrajecten of geclusterde groepswerken op basis hiervan worden aangeboden, ontstaat mogelijk verdere ontwikkeling van PI. In dergelijk geval wordt gestreefd naar PI als een uitkomstvariabele. Dit ligt in lijn met bewustere studiekeuzes (Bandura & Schunk, 1981), ontwikkelen van een zelfbeeld (Krapp, 2002) en zelfwaardengevoel (McKenna & Hallahan, 2010). De specifieke aard van deze onderzoeken verhoogt echter ook het risico op een geringe inhoudelijke- en constructvaliditeit. Een goed meetbaar instrument voor het meten van interesseontwikkeling kan specifieke karakteristieken transparant en vergelijkbaar maken.

Empirische bevestiging van invloedsfactoren via het SIS-instrument

Het instrument van Linnenbrink et al. (2010) is zoals reeds aangehaald, bedoeld voor een globale en vergelijkbare meting van SI. In de validatie van Linnenbrink et al. (2010) werden twee bevragingsrondes uitgevoerd om na te gaan of SI effectief kan bijdragen aan de groei van PI. Zo bleek dat SI een significante voorspeller is voor PI. Dit houdt in dat SI na controle voor reeds aanwezige PI een unieke voorspeller is voor PI. Vervolgstudies op basis van Linnenbrink’s SIS-instrument-validatie bevestigen ondermeer empirisch dat *keuzemogelijkheden*, en de *benaderbaarheid* van instructeurs significante voorspellers zijn voor TSI en MSI-feeling en dat *bruikbaarheid* van cursussen in het echte leven een significante voorspeller is voor MSI-value (Linnenbrink-Garcia & Patall, under review).

4.3. **Intern perspectief op de validiteit van situationele interesse**

Dit onderdeel van de scriptie omschrijft de conceptualisering van SI, zoals gehanteerd door Linnenbrink et al.(2010). In die zin spreken we van een intern perspectief. Dit doen we omdat in 4.4 externe constructen in de validatie worden betrokken. De eerste alinea situeert de toepassing en verantwoording, gehanteerd door Linnenbrink et al (2010). De tweede alinea zoomt in op triggered situational interest (TSI) en plaatst een kanttekening bij het ontbreken van een cognitief deelconstruct hiervan (TSI-value). In de derde alinea wordt een beschrijving gemaakt van MSI. De vierde alinea biedt inzicht op de operationalisering van interesseontwikkeling. Deze alinea licht eveneens zes verschillende factormodellen met alternatieve verklaringen toe. We ronden af met een omkadering van genderverschillen. Deze structuur wordt ook in de analyses in deze scriptie gehanteerd.
Situering van Linnenbrink’s studie

Triggered Situational Interest (TSI).

We kunnen SI meer in detail definiëren door het op te delen in opgewekte situationele interesse (TSI) en voortgezette situationele interesse (MSI) (Dewey, 1913; S Hidi & Baird, 1986; Hidi & Renninger, 2006; Krapp, 2002). Opgewekte situationele interesse of triggered situational interest (TSI) verwijst specifiek naar initiëren van interesse in een specifieke context (Linnenbrink et al, 2010). TSI omvat dus het grijpen van aandacht en het initiëren van interesse in een leeromgeving (S Hidi & Harackiewicz, 2000; Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010). Dit verankert de positie van TSI vanuit de theorie. Het plaatst TSI in de onderliggende structuur duidelijk op een eerste positie. Het is in het kader van de validatie van de Nederlandstalige vragenlijst dan ook noodzakelijk dat de data dit zal
ondersteunen. TSI is sterk vergelijkbaar met het concept ‘catch’ (Mitchell, 1993). TSI gaat volgens Linnenbrink et al. (2010) net zoals ‘catch’ vooral om affectieve reacties op de presentatie van cursusmateriaal (lezing, tekstboek, powerpoint, case,...). Daarin stellen de auteurs dat de presentatie van inhouden leuk en engagerend moet zijn. Dit wordt sterk verwerkt in de vier vragenlijst-items voor het meten van TSI van het SIS-instrument door vragen (4) als: “My math teacher is exciting.” en “This year, my math class is often entertaining” (Linnenbrink-Garcia et al., 2010). Opvallend is dat, ondanks de constante wisselwerking tussen affectieve en cognitieve processen in interesseontwikkeling (Hidi et al., 2004), in het construct TSI geen opdeling in een cognitief en affectief deelconstruct wordt gemaakt. Het aansluiten bij voorkennis en eerdere ervaring is nochtans vrij gemeengoed als didactisch principe. Dit kan vrij logisch als cognitief kenmerk voor TSI worden geschetst. Bovendien heeft dit ook binnen interesseonderzoek een plaats gekregen. Tobias benadrukt de relatie tussen interesse en eerdere kennis en beschrijft effecten als diepere cognitieve verwerking, betere alertheid, een bredere emotioneel- en meer persoonlijke associatief netwerk, en een beter verbeeldingsvermogen (1994). We moeten evenwel nuanceren dat ook hier geen multidimensionale benadering van interesse werd gehanteerd. Het aansluiten bij voorkennis maakt de associatie met TSI evenwel logischer dan die met MSI. Noch in eerder onderzoek, noch in het huidige wordt een construct voor een cognitieve trigger van interesse geoperationaliseerd.

Maintained Situational Interest (MSI).
Een cognitieve subdimensie voor TSI blijft voorlopig erg vatbaar voor discussie. Doorgaans wordt interesse immers meer als affectief, dan als cognitief begrip gezien (Hidi, 2006). Nochtans is de rol van cognitie betekensvol in het ontwikkelingsproces van interesse (Ainley, 2006). De meeste aandacht in onderwijscontexten gaat naar het winnen van TSI vanuit een affectieve benadering. Dit heeft volgens Hidi ook te maken met het feit dat interesse lang als ééndimensioneel werd gezien: ‘It seems to me that if we only consider the moment in which the psychological state of interest is triggered, interest may be appropriately considered as an emotion. However, as interest develops and is maintained, both affect and cognition contribute to the experience.’ (2006). TSI is mogelijk van erg korte duur (Hidi & Renninger, 2006; Krapp, 2007) wat het belang van een overgang naar maintained situational interest (MSI) (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010) onderlijnt. MSI is een meer duurzame en verdiepende vorm van SI die Mitchell omschrijft als ‘hold’, vergelijkbaar met MSI (1993). Daarin beklemttoont hij dat leerlingen een zinvolle
verbinding met de leerinhouden kunnen maken vanuit een grotere betrokkenheid. Hidi en Renninger benadrukken de aanwezigheid van focus en aandacht in deze fase (2006). Zij stellen dat MSI volgt op TSI en dat dit eveneens een situatieafhankelijke vorm van interesse is. De auteurs geven ook aan dat MSI een voorloper kan zijn van meer ontwikkelde individuele interesse die ook situatie-onafhankelijk kan zijn. Leeromgevingen kunnen de doorgroei van TSI tot MSI bevorderen wanneer ze leerlingen een gevoel van bekrachtiging (empowerment) bezorgen (Dewey, 1913; S Hidi & Harackiewicz, 2000; Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Rathunde & Csikszentmihalyi, 1993). MSI speelt een rol in het faciliteren van leren en bevordert het begrip, leerengagement en persoonlijke betrokkenheid (Hidi, 2006). Toch wordt in deze benadering vooral een affectieve bekrachtiging van MSI in de verf gezet. In het SIS-instrument worden ze echter wel opgedeeld. Linnenbrink et al. hanteren respectievelijk een affectieve en een cognitieve component voor MSI, met name MSI-feeling en MSI-value (2010). MSI-feeling drukt de mate uit waarmee inhouden als aangenaam worden gezien. MSI-value drukt uit in welke mate die inhouden als belangrijk worden gezien (Linnenbrink et al., 2010). Een vraag, die bijvoorbeeld naar het MSI-feeling verwijst is; ‘I like what we are learning in math this year.’ Een vraag, die bijvoorbeeld naar het MSI-value verwijst, is; ‘What we are studying in math class this year is useful for me to know.’ Het plezier waarnaar verwezen wordt in MSI-feeling is meer gerelateerd met inhouden dan wel op de vorm of wijze van presentatie ervan. Dit is een belangrijk onderscheid. In de review van Schraw en Lehman wordt op basis van interesseonderzoek op teksten gesteld dat, een attractieve vormgeving wel effect heeft op het opwekken van interesse, maar dat dit net contraproducentief is voor het voortzetten van interesse in het ontwikkelen van een dieper begrip (Schraw & Lehman, 2001). Concreet zou je kunnen zeggen dat het aanbieden van cursusmateriaal door mooi vormgegeven thema’s in PAV, of door gebruik te maken van iPads, kan leiden tot het opwekken van MSI. Voor MSI is meer vakinhoudelijke betrokkenheid met het leermateriaal noodzakelijk. In zulke fase primeert een meer cognitief aangedreven ontwikkeling van interesse waarbij o.a. coherentie, duidelijkheid en structuur stimulerende factoren zijn (Schraw et al., 2001). Linnenbrink et al. bouwen voort op Hidi en Renninger (2006), die aangaven dat door verdieping in een interessegebied, leerlingen dit interessegebied gaan waarderen. Daarom plaatsen zij MSI-value als derde subdimensie van SI. Over deze derde positie kan echter ook vanuit de theorie discussie worden gevoerd. Krapp (2007) haalt bijvoorbeeld aan dat net veranderingen in cognitie en perceptie omtrent een interessegebied, een verdieping in dit interessegebied mogelijk maken. Daarin ziet Krapp (2007) de waardecomponent meer als
identificatieproces van een persoon met een interessegebied. Deze identificatie is volgens Krapp eerder voorwaardelijk voor- dan een gevolg van- de affectieve intensifiëring met het interessegebied. We kunnen ook stellen dat het verderzetten van interesse een sterkere bereidheid vraagt om het interessegebied dieper te verkennen. In dat geval zouden we MSI-value als tweede ontwikkelings stap in interesse vóór MSI-feeling moeten plaatsen. In Linnenbrink's (2010) studie wordt in het discussie luik ook aandacht besteed aan de hoge correlaties tussen MSI-feeling en MSI-value. TSI en PI zijn theoretisch aan de eerste en de laatste positie in de rangorde van interesseontwikkeling verankerd. Voor de validiteit van dit instrument is het van groot belang dat TSI en MSI-feeling voldoende discriminant zijn. Hypothese 4 en 5 aan het einde van dit theoretisch kader zoeken hieromtrent uitsluitsel. Ook de discrimineerbaarheid van de twee MSI dimenties is erg belangrijk. In Linnenbrink's (2010) studie was discussie over de discrimineerbaarheid van MSI-feeling en MSI-value.

Operationalisering van interesseontwikkeling.

De vragenlijst die we in deze scriptie valideren werd van het SIS-instrument (Linnenbrink et al., 2010) vertaald uit het Engels naar het Nederlands. We stellen de operationalisering van interesseontwikkeling voor aan de hand van figuur 2. De originele Engels vragen zijn terug te vinden in Bijlage 2. Linnenbrink's (2010) studie gebruikte drie opeenvolgende onderzoeken in twee verschillende contexten (psychologie in HO, wiskunde in het SO). Dit resulteerde in empirisch onderbouwde validiteit van het SIS-instrument (Linnenbrink-Garcia et al., 2010). De opeenvolgende studies lieten de ontwikkeling van een compacte vragenlijst met een beperkt aantal items toe (20). Zo haalde bijvoorbeeld geen enkel negatief geformuleerd item de finale vragenlijst. Om de afleiding van latente constructen uit deze vragenlijst af te toetsen werden vijf hypothetische modellen (A,B,C,D,E) vooropgesteld. Deze modellen zullen ook in deze studie een analytische leidraad vormen. In wat volgt stellen we enkele inzichten voor omtrent de verwachte dimensionaliteit op basis van voorgaand onderzoek. Het onderzoek van Linnenbrink (2010) onderzocht de factorstructuren aan de hand van verschillende modellen. Ook in dit model worden ter validatie deze verschillende factormodellen uitgebouwd en afgetoetst. De drie studies ondersteunden via confirmatieve factoranalyse een drie-factoroplossing voor situationele interesse (TSI, MSI-feeling, MSI-value) (figuur 2, model B). Ook de discrimineerbaarheid tussen situationele (SI) en persoonlijke interesse (PI) kan worden aangetoond (model D') (H1, H2). Daarnaast werden bijkomende alternatieve modellen afgetoetst: Model D gaat uit van één dimensie voor SI. In dit model kan geen onderscheid worden gemaakt tussen de
Figuur 2: Vertaalde items en constructen voor SI en PI op basis van het SIS-instrument (Linnenbrink-Garcia et al., 2010).

<table>
<thead>
<tr>
<th>Items</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D, D'</th>
<th>Model E</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>TSI</td>
<td>TSI</td>
<td>SI</td>
<td>TSI</td>
<td>MSI, MSI</td>
</tr>
<tr>
<td>6. Tijdens de lessen wiskunde doet mijn leerkracht dingen die mijn aandacht grijpen.</td>
<td>TSI</td>
<td>SI-feeling</td>
<td>SI</td>
<td>TSI</td>
<td>MSI, MSI</td>
</tr>
<tr>
<td>7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/kan mij sterk boeien.</td>
<td>MSI</td>
<td>MSI-feeling</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>12. Ik vind de wiskunde die we dit jaar in de klas doen interessant.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>13. Ik vind wat we voor wiskunde studeren nuttig voor mij.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>14. Wat we dit jaar voor wiskunde studeren is belangrijk voor mij.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>18. Wiskunde helpt me in het dagelijks leven buiten de school.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>21. Ik vind wiskunde leuk.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>22. Ik doe graag wiskunde.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>24. Wiskunde is boeiend voor mij.</td>
<td>MSI</td>
<td>MSI</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
</tbody>
</table>

Model E bouwt verder op model B, maar voegt er PI aan toe (TSI, MSI-value en MSI-feeling, PI). Het stelt met andere woorden twee correlerende hoofddimensies voor (PI, SI), waarvan de laatste is opgedeeld in de drie subdimensies van situationele interesse. Zowel model B als dit laatste model gaven in de Linnenbrink’s (2010) publicatie een aanvaardbare model-FIT. Model E is het meest volledige model gezien hiermee het hele ontwikkelingspectrum van interesse wordt omvat. Het werd niet weerhouden omwille van bijkomende striktere analyses (4). Het model toont wel voldoende discriminateerbaarheid tussen SI en PI aan (Linnenbrink-Garcia et al., 2010). De modellen (A,B,C,D,E) dienen in dit werk als leidraad voor het opstellen van validatiehypotheses welke op het einde van het theoretisch kader worden uitgewerkt. Het ontbreken van PI als gevalideerde dimensie in eerder werk, geeft

4 Model E did not quite meet the stricter cut-off values of the two-index strategy. Nevertheless, given the greater complexity of this model, it seems reasonable to suggest that situational interest can be differentiated from individual interest (Linnenbrink et al., 2010, P.662)
een beperkt intern perspectief op de onderliggende structuur van SI. Het kleine verschil in beta-waarden en het ontbreken van significantie voor MSI-value maakt dat Linnenbrink's (2010) studie geen uitspraak over de rangorde van SI-subdimensies kon geven. We pogen daarom PI in deze studie mee te valideren om ook correlaties vanuit een verbreed intern perspectief meer in rekenschap te kunnen brengen. Daarvoor is het belangrijk dat de twee hoofddimensies van interesseontwikkeling (PI en SI) én drie subdimensies van situationele interesse goed discrimineerbaar zijn. Hypothese 7 vormt daarom een centrale toets van dit instrument (H7). We verwachten dan ook dat interesseontwikkeling bestaande uit TSI, MSI-feeling, MSI-value en PI de sterkste FIT met de data demonstreren. Na het behandelen van de genderverschillen komen we terug op de rangorde in de onderliggende structuur.

Genderverschillen en interesseontwikkeling?

Indien we een valide en betrouwbare model voor het meten van interresseontwikkeling willen aantonen, moet dit ook bestaande kennis omtrent genderverschillen kunnen bevestigen. Mogelijk leveren ook genderverschillen significante verklaringen in de verschillende fases van interresseontwikkeling? Daardoor kunnen we uitspraken doen over de vraag of jongens op eenzelfde wijze scoren op de dimensies van interresseontwikkeling als meisjes. Slechts één onderzoek benadert dit vanuit een multidimensionale conceptualisering van interesse. Dit is een onderzoek op basis van publieke PISA-data, waarin vooral cultureel verklaarbare genderverschillen in wetenschappelijke interesse werden vastgesteld (Olsen et al., 2010). De conceptualisering hiervan gaat echter niet uit van SI & PI. Er worden in de literatuur vooral genderverschillen opgemeten in interesse als ééndimensioneel begrip. Jongens tonen daarin minder interesse in lichamelijke opvoeding dan meisjes (Wersch et al., 1992). Kijken we naar het vak ICT dan blijkt dat jongens ICT vanuit een andere perceptie (male oriented) benaderen dan meisjes (female oriented) (Williams & Ogletree, 1992). De initiële interesse voor wiskunde bij meisjes is lager dan die van jongens, maar het ontwikkelingstraject doorheen de tijd (5e tot 9e graad in de USA) blijkt gelijk (Frenzel et al., 2010). In deze onderzoeken wordt geen rekening gehouden met concepten als TSI, MSI, hold of maintained situational interest. Daardoor kan geen uitsluitend gegeven worden over mogelijke genderverschillen in de aard van het ontwikkelingsproces van interesse (H9). Deze studie kan Frenzel's verstelling van initiële genderverschillen mogelijk bevestigen (H8), maar ook nuanceren (H9). Het is immers aannemelijk dat de verschillen in interesse tussen jongens en meisjes niet voor alle subdimensies opgaat. Mogelijk manifesteren ze zich minder in lagere ontwikkelingstrappen van SI. Aan de hand
van hypothese 9 kunnen we nagaan of jongens en meisjes verschillend scoren in respectievelijke ontwikkelingsstadia van interesseontwikkeling.

4.4. Dimensionaliteit van SI in verhouding tot PI, autonome motivatie, zelf-effectiviteit en uitkomst-effectiviteit

De rangorde van de dimensies van interesseontwikkeling staat centraal in dit deel. We benaderen dit eerst vanuit een construct intern perspectief. Hiermee willen we verder de inhoudelijke validiteit van het instrument uitbouwen. Vervolgens benaderen we interesseontwikkeling vanuit vergelijkbare constructen (motivatie (ZDT), zelf-effectiviteit). Hiermee willen we verder de constructvaliditeit van deze vragenlijst onderbouwen. Daartoe worden aansluitend de constructen motivatie (ZDT) en zelf-effectiviteit in aparte alinea’s omschreven en gerelateerd aan de dimensies van interesseontwikkeling. In 4.5. worden deze eveneens als hypotheses en onderzoeksvragen opgesomd.

Construct-interne benadering van de rangorde van SI-dimensies

De correlatie tussen subdimensies van SI en PI is betekenisvol voor de onderliggende structuur van SI. De samenhang van deze factoren hoort toe te nemen naarmate interesse ontwikkelt. We hebben intussen een duidelijk beeld van situationele- en persoonlijke interresse. We beschreven de subdimensies van SI. Toch geeft het bestaande onderzoek empirisch geen duidelijkheid over de rangorde in onderliggende structuur van deze subdimensies. Een valide en betrouwbare meting van interesseontwikkeling kan verbeterd worden door ook enige zeggingskracht te hebben over de rangorde van de onderliggende structuur van interesseontwikkeling. In Linnenbrink’s (2010) werk wordt consequent volgende volgorde gehanteerd voor SI: TSI, MSI-feeling, MSI-value. PI bekleedt logischerwijs de vierde positie. We overlopen empirische elementen die deze rangorde aangaven. Voor het SIS-instrument werden correlaties tussen de subdimensies van SI onderling gerapporteerd. Zo bleek dat TSI sterk gerelateerd kon worden aan MSI-feeling ($r = .81$, $p<.001$) en MSI-value ($r = .67$, $p<.001$). Maar ook dat MSI-feeling en MSI-value onderling sterk associeerbaar waren ($r = .75$, $p<.001$). In het rapport van Linnenbrink et al. (2010) worden SI-subdimensies ook als voorspeller voor PI ingezet. Dit kon worden uitgevoerd, gezien zij in twee bevragingsrondes werkten. Daaruit bleek dat MSI-feeling ($\beta = .25$, $p<.001$) en TSI ($\beta=.23$, $p<.001$) als significante voorspellers voor PI kunnen benoemd worden. MSI-value bleek als voorspeller niet significant. Voor de vaststellen van de onderliggende structuur gaan we uit van de hypothese dat de rangorde die Linnenbrink et al (2010) hanteert ook in
deze studie zal worden gedemonstreerd. Het kleine verschil in beita-waarden en het ontbreken van significatie voor MSI-value maakt dat deze studie geen uitspraak over de rangorde van SI-subdimensies kan geven. Daarom worden verder twee hypotheses opgenomen in functie van de samenhang van de respectievelijke SI-dimensies met PI. H10 ondersteunt de gehanteerde volgorde van Linnenbrink. H11 hanteert een alternatieve volgorde op basis van bevindingen die we eerder in dit theoretisch kader hebben gemaakt. Daarin haalden we aan dat MSI-value mogelijk als een tweede in plaats van als een derde fase van interesseontwikkeling moet gezien worden.

Benadering van de rangorde van interestedimensies vanuit aanverwante constructen

Om naast de inhoudelijke ook de constructvaliditeit te verhogen, betrekken we in een volgende stap de externe constructen _autonome motivatie, gecontroleerde motivatie, amotivatie_ (Deci & Ryan, 1985, 2002), _self-effectiviteit en uitkomst-effectiviteit_ (Bandura & Schunk, 1981; Ryan & Deci, 2000). Daartoe moeten zowel de verenigbaarheid van deze constructen, als de verwachte samenhang met de dimensies van interesseontwikkeling worden omschreven. We behandelen als eerste de verenigbaarheid van deze constructen. Het in de vragenlijst opnemen van items voor het meten van _motivatie, gecontroleerde motivatie, autonome motivatie_ (Cuyvers, 2011; Donche et al., 2010; Sierens & Van Steenkiste, 2009), laat toe de onderliggende structuur van interesseontwikkeling vanuit extern perspectief te benaderen. Voor de drie vormen van motivatie dienen verbanden te worden gelegd die de verenigbaarheid van interesse en motivatie kunnen expliciteren (H12, H13, H14). Wanneer de data dit toelaat, kan ook naar de rangorde van interestedimensies worden gekeken vanuit motivationeel (ZDT) standpunt. Dit laat toe interne en externe rangorde te vergelijken. Wanneer deze vergelijkbaar zijn, bieden we argumenten voor een verhoogde constructvaliditeit van dit meetinstrument voor interesseontwikkeling. We verwachten immers dat dit patroon erg vergelijkbaar is met het interne patroon dat zich ten opzichte van PI manifesteert (TSI, MSI-feeling, MSI-value) (H15). De verenigbaarheid tussen motivatie en self-effectiviteit indachtig (Bandura & Schunk, 1981), zoeken we nogmaals bevestiging voor deze vaststelling ten opzichte van self-effectiviteit als tweede extern construct (H16). We wezen al op de onderlinge samenhang tussen de concepten self-effectiviteit, motivatie en interesse. Daarom mag worden verwacht, dat ook ten opzichte van _self-effectiviteit en uitkomst-effectiviteit_, vergelijkbare bevindingen kunnen worden gerapporteerd, waarin opnieuw gradueel stijgende correlaties (TSI, MSI-feeling, MSI-value) optreden (H16). We behandelen dit hieronder meer in detail.
In de ZDT drukt motivatie vooral een kwaliteit van motivatie uit (Deci & Ryan, 1985, 2002; Sierens & Van Steenkiste, 2009). Deze auteurs beklemt en dat we vooral voor de kwaliteit van motivatie oog moeten hebben in plaats van voor de hoeveelheid van motivatie. Het soort motivatie heeft een groter effect op *self-effectiviteit* dan een hoeveelheid motivatie (Bandura & Schunk, 1981; Cuyvers, 2011; Donche et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012). We nemen drie dimensies van *motivatie* mee vanuit de zelfdeterminatietheorie (ZDT) met name: *autonome motivatie, gecontroleerde motivatie en amotivatie* (Deci & Ryan, 1985, 2002). Bij een _gecontroleerde motivatie_ ligt de reden tot handelen niet bij de activiteit zelf, maar buiten de activiteit (Deci & Ryan, 1985, 2002; Sierens & Van Steenkiste, 2009). We kunnen dit in het kader van dit onderzoek relateren aan interesse. We kunnen bijvoorbeeld stellen dat interesse in wiskunde geen voorwaarde is om te kunnen spreken van gecontroleerde motivatie. In dat geval is het een externe sturing (punten, straf), die de motivatie aanstuurt. We verwachten dan ook in de samenhang tussen interesse en gecontroleerde motivatie een zwakke tot negatieve correlatie. Te veel controle op motivatie van leerlingen uitoefenen heeft in dat geval een negatief effect op hun interesse en de ontwikkeling daarvan. We verwachten dan ook een sterkere negatieve correlatie naarmate we over een hogere ontwikkelingsdimensie van interesse spreken (H13). Een tweede dimensie die we uit de ZDT meenemen is _autonome motivatie_. De ZDT beschrijft drie psychologische behoeften voor autonome motivatie: de behoefte aan autonomie, competentie en relationele verbondenheid (Cuyvers, 2011; Deci & Ryan, 2002; Sierens, 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012). Een leerling, die tijdens een les aardrijkskunde in het hoekenwerk kan kiezen hoe hij participeert, zich sociaal aanvaard voelt en voldoende competent acht om te participeren, zal gemiddeld hoger scoren op autonome motivatie. Autonomie ervaren of kunnen kiezen is dus een belangrijk kenmerk van autonome motivatie. Ook in interesseonderzoek wordt keuzevrijheid als kenmerk onderkend (Linnenbrink-Garcia & Patall, 2012). Dit wijst nogmaals op de samenhang tussen interesse en _autonome motivatie_ (H14). Omgekeerd, wanneer bij leerlingen _autonome motivatie_ of _zelfs gjamotivatie_ ontbreekt, kunnen we spreken van *amotivatie_. Amotivatie hangt ook negatief samen met _self-effectiviteit_ (Cuyvers, 2011). We verwachten dan ook dat leerlingen die niet gemotiveerd zijn, negatief zullen scoren op interesse (H12). Ten opzichte van gecontroleerde motivatie verwachten we een nog sterkere negatieve correlatie met de interestedimensies.
Verwachte samenhang tussen interesse en zelf-effectiviteit

In deze alinea omkaderen we respectievelijk de begrippen: zelf-effectiviteit, uitkomst-effectiviteit. Deze constructen hebben een grote interafhankelijkheid ten opzichte van elkaar, maar ook ten opzichte van interesse (Vanhoof et al., 2012). We mogen aannemen, dat ontwikkelingen in interesse zich ook in deze constructen manifesteren. Als eerste beschrijven we *zelf-effectiviteit*. We kunnen dit begrip beschouwen als de mate waarin iemand zich bekwaam acht om te handelen binnen een bepaald domein (Bandura & Schunk, 1981; Ryan & Deci, 2000). Mensen hun overtuigingen omtrent hun effectiviteit beïnvloedt hoe ze denken, voelen en zichzelf motiveren in hun handelen (Bandura & Schunk, 1981). Ook een wisselwerking met interesse wordt in de literatuur gevonden. Vanhoof en co (2012) onderlijnen dat zelf-effectiviteit naast interesse en context een bepalende factor is. Wat we technisch zouden kunnen omschrijven als een doelmatigheidsverwachting klinkt volgens deze auteurs in een voorbeeld als volgt: *'Als iets mij interesseert, ben ik pas gemotiveerd om actie te ondernemen in een bepaalde context, als ik geloof dat ik daartoe bekwaam ben en als ik inschat dat mijn inspanningen in redelijke verhouding staan tot wat het mij zal opleveren'* (Vanhoof et al., 2012). Zelf-effectiviteit blijkt dan ook zowel een voorspeller als een uitkomst van motivatie. Zelf-effectiviteit is een subjectief beeld gebaseerd op gevoelens, verwachtingen en overtuigingen. Daardoor is het ook vatbaar voor veranderingen. Dit kunnen veranderingen zijn in de positieve zin. Er wordt echter eveneens een daling van autonome motivatie beschreven, wanneer leerlingen een vermindering van schoolse competentie aanvoelen. De samenhang tussen interesse en zelf-effectiviteit kunnen we erg concreet uitdrukken. Het is immers belangrijk voldoende haalbare tussendoelen voor ogen te houden om leerlingen voldoende te motiveren en interesseren (Vanhoof et al., 2012). Zelf-effectiviteit als concept kan objectievere worden door gebruik te maken van een ander meetconcept. Een tweede construct dat wordt meegenomen in deze studie is *uitkomst-effectiviteit*. Het is van belang dat leerlingen zichzelf niet over- of onderschatten. Het overschatten kan bijvoorbeeld leiden tot een demotiverende confrontatie met eigen prestaties (Vanhoof et al., 2012). We kunnen uitkomst-effectiviteit als een meer objectiever uiting van zelf-effectiviteit beschouwen, omdat we het klasgemiddelde in rekenschap brengen. Het werd in eerdere studies gebruikt voor het bepalen van de verwachte resultaat van een leerling. Voor deze studie vormt het een extra bevestiging op de samenhang ten opzichte van zelf-effectiviteit (H16).
4.5. Hypotheses en onderzoeksvragen

We sluiten dit luik af met het afleiden van hypotheses uit het hoger beschreven theoretisch kader. Een eerste reeks hypotheses wordt analoog aan 4.3 geformuleerd. Het betreft hypotheses voor de validatie van de hoofddimensies (OV1:H1,H2) en subdimensies (OV2:H3 tot H7) van interesseontwikkeling. We benaderen de externe validiteit door het instrument te toetsen aan bestaande kennis over genderverschillen (OV3:H8,H9). Daaruit volgt een argument voor een verhoogde inhoudelijke validiteit. Die wordt bekomen door het vastleggen van de rangorde in dimensies van interesseontwikkeling. Dat doen we in eerste instantie vanuit een construct-intern perspectief. We doen dit door de samenhang van de afzonderlijke SI-dimensies ten opzichte van PI te omschrijven in hypotheses (OV4: H10, H11). Vervolgens gaan we na via convergente en divergente hypotheses of het interesseconstruct ook empirisch mag vergeleken worden met motivatieconstructen (OV5: H12,H13,H14). De antwoorden op OV4 en OV5 vormen de bouwstenen om de constructvaliditeit verder uit te bouwen. Omdat we pogen ook PI mee te valideren, kunnen we voor dit instrument niet meer spreken van Situational Interest Survey (SIS). Daarom stellen we voor te spreken over de interesseontwikkelings-vragenlijst of IO-vragenlijst. Dit onder voorbehoud van de nog aan te tonen validiteit en betrouwbaarheid.
Hypotheses in functie van de betrouwbaarheid en validiteit van de IO-vragenlijst (i.o.m. 4.3).

Teneinde de betrouwbaarheid en validiteit van de IO-vragenlijst nader te onderzoeken verwachten we

Hoofdschaalniveau:

• H1: Op hoofdschaalniveau kunnen we twee dimensies onderscheiden met name: situationele interesse (SI) en persoonlijke interesse (PI) (Figuur 2: model D, D’) (Hidi & Renninger, 2006).

• H2: Alle manifeste interesse-items van de IO-vragenlijst laden voldoende op hun respectievelijke latente kenmerken van situationele- en persoonlijke interesse (Figuur 2: Model D en D’) (Linnenbrink-Garcia et al., 2010)

OV1: Kan zowel SI als PI door de vertaalde interesseontwikkelingsvragenlijst (SI-vragenlijst) betrouwbaar en valide worden gemeten?

Subschaalniveau:

• H3: De IO-vragenlijst meet geen subdimensies van situationele- en persoonlijke interesse (figuur 2: Model D, D’) (Linnenbrink-Garcia et al., 2010).

• H4: De IO-vragenlijst demonstreert voldoende discrimineerbaarheid tussen triggered situational interest (TSI) en maintained situational interest (MSI) (Model A,C) (Linnenbrink-Garcia et al., 2010).

• H5: De IO-vragenlijst demonstreert voldoende discrimineerbaarheid tussen situational interest-feeling (TSI) en situational interest-value (MSI) (Model A,C) (Linnenbrink-Garcia et al., 2010).

• H6: De IO-vragenlijst meet drie subdimensies voor situationele interesse: triggered situational interest (TSI), maintained situational interest feeling (MSI-feeling), en maintained situational interest value (MSI-value) (figuur 2: Model B) (Linnenbrink-Garcia et al., 2010).

• H7: De IO-vragenlijst demonstreert goede discrimineerbaarheid tussen twee hoofddimensies van interesseontwikkeling (PI en SI) én drie subdimensies van situationele interesse (TSI, MSI-feeling, MSI-value) (figuur 2: Model E) (Linnenbrink-Garcia et al., 2010).

OV2: Kan de IO-vragenlijst twee hoofddimensies (SI & PI) en drie SI-subdimensies valide en betrouwbaar meten? (Model E)

Genderhypothese:

• H8: Jongens scoren significant hoger op TSI, MSI-feeling, MSI-value en PI voor wiskunde dan meisjes (Frenzel, 2010).

• H9: Voortbouwend op H7 stellen we dat de verschillen tussen jongens en meisjes niet voor alle SI-subdimensies significant zijn.

OV3: Bevestigt de IO-vragenlijst bestaande genderverschillen in interesse voor wiskunde en zijn deze ook meetbaar in verschillende fases van interesseontwikkeling?
Hypothesen in functie van de betrouwbaarheid en validiteit van de IO-vragenlijst (i.o.m. 4.4)

Teneinde de betrouwbaarheid en validiteit van de IO-vragenlijst nader te onderzoeken verwachten we

Inhoudelijke validiteit:
- H10: TSI, MSI-feeling en MSI-value correleren in stijgende rangorde met PI (Linnenbrink-Garcia et al., 2010)
- H11: TSI, MSI-value en MSI-feeling correleren in stijgende rangorde met PI (Linnenbrink-Garcia et al., 2010)

OV4: Bevestigt de IO-vragenlijst, de rangorde in de onderliggende structuur volgens de volgorde: TSI, MSI-feeling, MSI-value?

Verenigbaarheid van interne en externe constructen:
- H12: Amotivatie correleert het sterkst negatief met ontwikkelingsdimensies van SI en PI (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012).
- H13: Gecontroleerde motivatie correleert negatief met ontwikkelingsdimensies van SI en PI (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012).
- H14: PI correleert sterk met autonome motivatie (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012).

OV5: Zijn correlaties tussen interessedimensies (TSI, MSI-value, MSI-feeling, PI) enerzijds en motivatiedimensies anderzijds (ZDT: autonome motivatie, gecontroleerde motivatie en amotivatie) consistent in lijn met de theoretische verwachtingen (respectievelijk: positief, negatief en afwezig)?

Constructvaliditeit:
- H15: SI-subdimensies verhouden zich in vergelijkbare rangorde én consistent tot zowel autonome motivatie als tot PI. (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012).
- H16: SI-subdimensies verhouden zich in vergelijkbare én consistente rangorde tot zowel zelf-effectiviteit, uitkomst-effectiviteit als tot autonome motivatie en PI. (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012)

OV6: Is de onderliggende rangorde in de structuur van SI subdimensies ten opzichte van persoonlijke interesse conform het antwoord op OV4, vergelijkbaar en consistent met autonome motivatie en zelf-effectiviteit?
5. **Methode**

In dit gedeelte wordt de keuze voor achtereenvolgens de onderzoekscontext, de vertaling, de respondenten, de toegepaste procedures, de operationalisering en de analyses toegelicht. Daarna worden, voortbouwend op de hypotheses en onderzoeksvragen, de toegepaste analyses opgelijst. Deze leidraad wordt in het resultaatsgedeelte doorgetrokken.

5.1. **Operationalisering van de constructen.**

Zowel interesse-items als motivatie effectiviteitskenmerken werden voor de IO-vragenlijst geoperationaliseerd. In de eerste alinea wordt de operationalisering van de externe constructen toegelicht. In de tweede alinea wordt de operationalisering van de interesse-items uitgewerkt.

Operationalisering van de externe constructen.

Alle motivationele items werden overgenomen van de Nederlandse zelfregulatie vragenlijst –secundair onderwijs (Donche, Van Petegem & Vansteenkiste, 2007). Wat betreft motivatie biedt dit instrument 3 hoofddimensies en 5 subdimensies, die meetbaar worden gemaakt aan de hand van 15 items. Enkel de hoofddimensies autonome motivatie (6), gecontroleerde motivatie (6) en amotivatie (3) zijn relevant voor dit onderzoek. Een voorbeeld van een item dat gecontroleerde motivatie meet, is: “Gewoonlijk studeer ik/maak ik taken voor wiskunde, omdat anderen dit van mij verwachten”. Een voorbeeld van een item dat autonome motivatie meet, is: “Als ik me inzet voor wiskunde is dat, omdat ik daar zelf voor kies”. Met een andere schaal voor “zelf-effectiviteit” wordt de gepercipeerde bekwaamheid inzake studeren gemeten. Deze items zijn afkomstig van de LEMO-vragenlijst (Donche et al., 2010). Deze vragenlijst werd gevalideerd voor de derde graad secundair onderwijs en het hoger onderwijs. Deze items worden aan bijkomende exploratieve factoranalyses onderworpen in functie van hun valide bijdrage in deze vragenlijst, gericht op de tweede graad. De schaal voor zelf-effectiviteit bestaat uit vier items waarvan het volgende een voorbeeld is: “Ik heb vertrouwen in de manier waarop ik studeer voor wiskunde.”. Zoals uit alle voorbeeldvragen blijkt, werden alle items voor het geheel van de vragenlijst afgestemd op het vak wiskunde. Alle items met betrekking tot zowel SI, PI, motivatie en zelf-effectiviteit worden gescoord op een Likert-schaal van 1 (volledig oneens) naar 5 (volledig eens).
In Linnenbrink's (2010) studie werden voor ieder SI-construct 4 vragen weerhouden en voor PI 8 vragen, wat een vragenlijst van 20 items oplevert (TSI (4), MSI-feeling (4), MSI-value (4), PI (8)). Opvallend is, dat daarin alle items positief geformuleerd zijn. Twee negatief geformuleerde items voor TSI en MSI-feeling werden, vanwege te lage factorladingen op hun latente kenmerken, geweerd (Linnenbrink-Garcia et al., 2010). Triggered situational interest (TSI) wordt gemeten aan de hand van items zoals: “My math teacher is exciting”, “When we do math, my teacher does things that grab my attention”. Een voorbeeld van een item voor maintained situational interest value (MSI-feeling) is: “I like what we are learning in math this year”. Een voorbeeld van een item voor het meten van maintained situational interest value (MSI-value) is: “What we are studying in math class is useful for me to know” (Linnenbrink-Garcia et al., 2010). De 8 items voor PI slagen zowel op waarde- als gevoelgebaseerde persoonlijke interessebeleving. Respectievelijke voorbeelden hiervan zijn: “It is important to me to be a person who reasons mathematically” en “I enjoy the subject of math”. In sommige vragen lijken zowel affectieve als cognitieve aspecten aan bod te komen: “Thinking mathematically is an important part of who I am”. Het belangrijk inhoudelijke verschil tussen PI-items met een affectieve inslag en MSI-feeling is dat de items van MSI-feeling situationeel zijn en verwijzen naar de wiskunde van dit jaar. Dit wordt bijvoorbeeld duidelijk in volgend item: “I like what we are learning in math this year”. In de vertaling (5.3) wordt het globale karakter van de vragenlijst gerespecteerd. De vertaling van alle Engelse items naar het Nederlands staan in bijlage 2. De scoring van deze items werden in bijlage 4 opgenomen waar het gebruik van de vertaalde vragenlijst wordt toegelicht.

5.2. Vertaling

In de vertaalde vragenlijst (figuur 2) werden alle items voor SI (12) en PI (8) van het gevalideerde SIS-instrument overgenomen. De vragenlijst voor SI bestaat uit vier items voor triggered situational interest (TSI), vier items maintained situational interest feeling (MSI-feeling) en 4 items maintained situational interest value (MSI-value). De items werden voor deze masterscriptie in 3 ronden naar het Nederlands vertaald. Items als “My math teacher is exciting”, “my math class is often entertaining” en “I’m excited about what we a learning in math” zijn zowel taalkundig als cultureel moeilijk te vertalen naar de Vlaamse context. Een forward-backward-procedure werd aangewend om er voor te zorgen dat de vragenlijst zowel semantisch als conceptueel vergelijkbaar is met het origineel (Beaton, Bombardier, Guillemin, & Ferraz, 2000). In eerste instantie (ronde 1) werden de items vertaald door één
persoon met Nederlands als moedertaal en een goede beheersing van het Engels. Deze persoon was op de hoogte van de concepten, die we beoogden te meten. Deze vertaling werd in een eerste ronde op kleine schaal omgezet naar een overzichtelijke lay-out. Daarop werd een beperkte pre-run gehouden bij 6 jongeren van de beoogde doelgroep. Hen werd gevraagd de vragenlijst onder begeleiding in te vullen en alle vragen en onduidelijkheden onmiddellijk te melden. Deze opmerkingen werden genoteerd en gebruikt voor het verbeteren van lay-out en formuleringen. Onduidelijkheden, die mogelijk betrekking hadden op vertalingsproblemen, werden naar een tweede vertaalconde meegenomen en genoteerd in een excelbestand met alle vragen. De eerste Nederlandse vertaling werd opnieuw voorgelegd aan een vertaler met een goede beheersing van het Engels. Deze persoon had geen voorkennis van de te meten concepten en vertaalde de tekst opnieuw naar het Engels. Discrepancies tussen deze Engelse versie en de originele werden eveneens genoteerd in hetzelfde excelbestand. In een volgende ronde werden 4 vertalers uit diverse achtergronden (leerkracht, leerling leeftijdsgroep, trainer coach, leerkracht Engels) gevraagd de originele vragenlijst opnieuw te vertalen via een web-based survey (www.webservy.com). Ook deze resultaten werden opgenomen in het excelbestand. Zo ontstond een duidelijk overzicht van discrepanties en alternatieven, dat als basis voor een selectie werd gehanteerd. Dit overzicht leidde tot een bruikbare vertaling voor een pre-run op grotere schaal (n=140). Deze pre-run werd voor de helft digitaal (71), voor de helft analoog gevoerd (69). Bedoeling was een indicatie te krijgen voor de betrouwbaarheid. Wanneer, ondanks de bevragingsvorm geen significante verschillen optreden, geeft dit een indicatie voor de betrouwbaarheid van de vragenlijst. Somscores op de voorziene constructen van SI en PI gaven in een onafhankelijke t-test geen significante afwijkingen op de gemiddelden tussen de papieren en digitale bevragingsmethode (CI 95%, TSI mean difference=.32, d=.009, MSI-Feeling mean difference=.36, d=.019, MSI-value mean difference=.19, d=.212). Ook de gecombineerde (papier & digitaal) betrouwbaarheidsanalyses van PI en de subschalen voor SI scoorden een sterke Crombach’s Alpha voor: TSI, MSI-feeling, MSI-value en PI: 0,805; 0,932; 0,860; 0,909. Feedback van leerlingen en leerkrachten tijdens de bevraging van pre-run 2, leverde toch nog enkele opmerkingen naar leesbaarheid, alsook enkele spellingsfouten op. Over de formulering van één item bestond nog twijfel. “Thinking mathematically is an important part of who I am”, was oorspronkelijk vertaald als “Wiskundig denken is een belangrijke eigenschap voor mij”. Dit werd voor de volgende pre-run “Wiskundig denken is een belangrijk deel van wie ik ben”, wat als een cultureel accuratere vertaling kan worden beschouwd. Dit leidde na analyse van de tweede pre-run uiteindelijk niet tot een verbetering, maar ook niet
tot een verslechtering van de schaalbetrouwbaarheid (Crombach's Alpha indien het item wordt verwijderd was in beide gevallen +/- 0,10 minder dan de totale Crombach's Alpha voor deze schaal). Duidelijk was, dat de vertaling niet meer verbeterd kon worden, waardoor de vragenlijst klaar bleek voor een bredere validatie.

5.3. Onderzoekscontext

Als studievak voor het opstellen van de vragenlijst werd gekozen voor het vak wiskunde. Dit is in overeenstemming met studie 2 & 3 van de Linnenbrink's (2010) validatiestudie (Linnenbrink-Garcia et al., 2010). De focus van dit onderzoek lag in eerste instantie op de vertaling, wat de keuze voor één vak (wiskunde) verantwoordt. Mogelijke anomalieën in de resultaten kunnen zodoende niet worden toegewezen aan vakhoudelijke verschillen, maar wijzen op problemen in functie van de vertaling. Er werd geen onderscheid gemaakt tussen de Vlaamse onderwijsnetten in de selectie van scholen uit een volledige lijst van Vlaamse scholen voor secundair onderwijs. Scholen werden na willekeurige selectie gevraagd om deel te nemen. Wanneer antwoorden negatief waren, werden nieuwe scholen willekeurig geselecteerd. Uit een lijst van 19 systematisch willekeurig geselecteerde scholen gingen slechts vier scholen in op het aanbod om deel te nemen aan het onderzoek.

5.4. Respondenten

De respondentengroep bestaat uit leerlingen van het secundair onderwijs tussen 13 en 18 jaar (M=13,86, SD=0,78). De sample bestaat uit 41% jongens en 59% meisjes, ingeschreven in het derde (52%) en het vierde (48%) jaar ASO (58%) en TSO (42%). Respondenten waren in meerderheid, 15 (48%), 14 (34%) en 16 (16%) jaar oud. Het originele SIS-instrument is bedoeld voor zowel: lager, secundair als hoger onderwijs. Omwille van het beperkte opzet van een masterproef werd dit onderzoek afgebakend op de tweede graad van het secundair onderwijs. Het kiezen voor een beperkte leeftijdsgroep laat eveneens toe relaties tussen interesse en motivatie vanuit een afgebakende doelgroep te bestuderen, zodat ook hier zo veel mogelijk onverklaarbare variatie wordt uitgesloten. De dataverzameling gebeurde tijdens structurele lesmomenten, zodat geen extra tijdsinvestering van respondenten werd gevraagd. In pre-run 1 (n=140) en pre-run 2 (n=145) werden samen 285 respondenten bevraagd. In de definitieve bevraging waren er dat 558. De totale groep respondenten voor dit onderzoek bedraagt 760 personen. In principe konden respondenten van pre-run 2 worden meegenomen in de definitieve validatie-analyses. Toch werd er voor gekozen dit niet te doen om twee redenen. Een eerste reden is dat pre-run 2 op basis van vrijwillige sampling werd afgenomen. Een tweede reden
is dat pre-run deels 2 web-based werd afgenomen. Gezien de IO-vragenlijst uiteindelijk bedoeld is om om vak- en contextoverschrijdende interesseontwikkeling te meten, werden geen verdere exclusiecriteria gehanteerd. Enkel volledigheid van de data gold als criterium voor inclusie. Onvolledige vragenlijsten werden niet in verdere analyses betrokken. Van de 558 respondenten hadden 544 een volledig ingevulde vragenlijst. Deze werden behouden voor de validatie van de IO-vragenlijst.

5.5. **Procedure**

De vragenlijsten werden allen op papier afgenomen in de periode februari 2012. De vragenlijsten werden door één persoon afgenomen door gebruik te maken van identieke introducties. Daarin werd getracht op identieke wijze, de leerlingen op het belang van oprechte reacties te wijzen en werd waardering voor hun inspanning en concentratie uitgesproken. Ook werd er op gewezen dat vragen soms op elkaar gelijken, maar dat iedere vraag uniek is en dat er nuanceverschillen zijn. Een ander element van de introductie was de opmerking, dat indien correcties op antwoorden worden aangebracht, deze duidelijk aan de hand van een pijltje dienden te worden aangegeven. Het afnemen van de vragenlijst duurde meestal niet meer dan 10 minuten. Bij afronding werd gevraagd de vragenlijst op volledigheid te controleren en in stilte te wachten met het ophalen tot iedereen klaar was. In één school werd één bevragingsmoment voor alle derdejaars en één bevragingsmoment voor alle vierdejaars georganiseerd in de schoolrefter. Hiervoor werd extra toezicht georganiseerd om een serene sfeer te bewaren. Ook daar werd dezelfde introductie en begeleiding gegeven als in de kleinere klasgroepen. Alle vragenlijsten werden genummerd met referentie naar de persoon, die de invoer deed en het record in de dataset. Controle van de invoer leverde geen fouten op.

5.6. **Analyses**

Alle analyses werden uitgevoerd in PASW 18.0 aan de hand van de hypotheses uit 4.5. Deze zijn ingedeeld in een validatie van de hoofd- en subdimensies enerzijds en een inhoudelijke validatie en externe validatie van de onderliggende structuur van SI anderzijds. Na Chi-kwadraatstest, die geschiktheid van de data voor facoranalyses controleren, volgen deze factoranalyses 5. In een eerste reeks hypotheses en onderzoeksvragen (4.3) worden

5 Aan de hand van de Kaiser-Meyer-Olkin Measure (KMO) of Sampling Adequacy test. Een Kaiser-Meyer Olkin-parameter van meer dan .6 geeft aan dat de steekproef geschikt is voor een factoranalyse.
verschillende modellen (figuur 2) gebruikt om het aantal factoren te bepalen (H1 tot H9). De hoger gestelde hypotheses vormden de structuur voor de verschillende analyses. Eigenwaardes en screeplots werden met elkaar vergeleken en tegen achtergronden van de theorie en de onderzoekscontext gehouden. Om na te gaan of op het hoofdschaalniveau effectief twee dimensies te onderscheiden zijn (OV1), werd net zoals in Linnenbrink’s (2010) studie een exploratieve factoranalyse uitgevoerd. Gebruik makend van principal-axis factoring werd vanwege sterke correlaties tussen de componenten (Dean, 2009) geopteerd voor Oblimin-rotatie (Oblimin, δ=0). We streefden hierbij op een datagedreven manier naar inzicht in de dimensionaliteit van interesseontwikkeling. In de geroteerde oplossingen werden items gesorteerd op ladinggrootte en ladingen kleiner dan .4 werden onderdrukt (Costello & Osborne, 2005). Alle modellen van figuur 2 werden via hypotheses systematisch in exploratieve factoranalyses afgetoetst. Tot slot werden betrouwbaarheidsanalyses op de weerhouden schalen uitgevoerd. In functie van genderverschillen werd via onafhankelijke t-test nagegaan in welke mate interesseontwikkelingsprocessen tussen jongens en meisjes significant van elkaar verschillen.

6. **Resultaten**

In 6.1. primeert de betrouwbaarheid van de data. Daarbij wordt eerst de geschiktheid van de data in functie van de uit te voeren analyses behandeld. Vanaf 6.2 volgen de analyses de structuur van hypotheses en onderzoeksvragen. Daarin wordt steeds verwezen naar de modellen van figuur 2. De analyses van 6.2 resulteren in het behoud van één van deze modellen. In 6.3 toetsen we in functie van de externe validiteit, de hoofd- en subdimensies van interesseontwikkeling aan bestaande kennis over genderverschillen in interesse. De rangorde van de dimensies van interesseontwikkeling vormt in 6.4 het onderwerp van een verhoogde inhoudelijke- en constructvaliditeit.

6.1. **Geschiktheid van de data**

Geschiktheid voor factoranalyse

Na exclusie van onvolledige responsen (14) wordt in eerste instantie nagegaan of alle items in aanmerking komen voor factoranalyse. We voeren een verkennende exploratieve factoranalyse met alle IO-vragenlijst items uit. Deze toont een Kaiser-Meyer Olkin-parametervoor alle interesse-items samen (PI en SI) en geeft aan dat de steekproef voldoende groot was voor de factoranalyse (KMO=.943)⁶. Bartlett's Test of Sphericity geeft een X² van 8496,524 (P<.001) wat aantoont dat de correlaties tussen de items voldoende groot zijn. Voor alle items van voorziene latente kenmerken TSI, MSI-value, MSI-feeling en PI werd een aparte factoriële verkenning uitgevoerd in functie van KMO en Bartlett's Test of Sphericity. Deze geven aan dat er voor elk latent aspect voldoende gemeenschappelijkheid in manifeste variabelen is (TSI (KMO=0,801) X² = 937,88, p < 0,001; MSI-feeling (KMO= .853) X²= 1694,30, p < 0,001; MSI-value (KMO= .819) X² =1085,95, p < 0,001; PI (KMO= .899) X²= 3400, p < 0,001). Deze vaststellingen bieden een voldoende basis om een factoranalyse te kunnen uitvoeren (Tabachnick & Fidell, 2001).

⁶ Een Kaiser-Meyer Olkin-parameter van meer dan .5, geeft aan dat de steekproef geschikt is voor een factoranalyse (Fens, 2011).
Betrouwbaarheid van de schalen.

Figuur 3. Overzicht Crombach’s Alpha en beschrijvende resultaten voor alle IO-vragenlijst items.

<table>
<thead>
<tr>
<th>hoofdimensie</th>
<th>subdimensie</th>
<th>N items</th>
<th>α</th>
<th>GEM</th>
<th>SD</th>
<th>Scheefheid</th>
<th>platheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>TSI</td>
<td>4</td>
<td>0,853</td>
<td>3,154</td>
<td>0,890</td>
<td>-0,970</td>
<td>-0,492</td>
</tr>
<tr>
<td></td>
<td>MSI-feeling</td>
<td>4</td>
<td>0,927</td>
<td>2,808</td>
<td>0,954</td>
<td>-0,018</td>
<td>-0,607</td>
</tr>
<tr>
<td></td>
<td>MSI-value</td>
<td>4</td>
<td>0,873</td>
<td>3,082</td>
<td>0,969</td>
<td>-0,165</td>
<td>-0,615</td>
</tr>
<tr>
<td>PI</td>
<td>7</td>
<td>0,923</td>
<td>2,882</td>
<td>0,957</td>
<td>-0,036</td>
<td>-0,841</td>
<td></td>
</tr>
</tbody>
</table>

We onderzochten de interne consistentie van alle schalen en subschalen. Figuur 3 geeft om de betrouwbaarheid aan te tonen een overzicht van beschrijvende resultaten (gemiddelde, standaardafwijking, scheefheid en platheid, Crombach’s Alpha) van de verschillende de subschalen van SI en de hoofdschaal PI. Om de interne consistentie te interpreteren, hanteren we de vuistregel van Crombach’s Alpha. Een waarde tussen .6 en .8 is redelijk consistent. Een waarde hoger dan .8 duidt op een goede consistentie (De Maeyer & Kavadias, 2007). Alle schalen (TSI, MSI-feeling, MSI-value, PI) scoren sterk (0,853; 0,927; 0,873; 0,923). Geen van de schalen kan worden verbeterd door het wegnemen van een item. Bij PI werd desondanks één item (vraag 18) wegenomen (zie verdere analyses). Een overzicht van de betrouwbaarheidsanalyses wordt gevonden in bijlage 3 (analyse 13).

Verdeling van de schalen

Figuur 3 leert dat TSI zich als SI-subdimensie in de populatie het meest manifesteert (GEM=3,154). Het verder ontwikkelen van interesse in MSI-feeling (GEM=2,808) of PI (GEM=2,882) lijkt minder frequent voor te komen. MSI-value heeft een gemiddelde van 3,082 en sluit meer aan bij TSI. Uit de standaardafwijkingen leren we dat de verschillen tussen leerlingen het kleinst zijn bij TSI (SD = .890). Bij MSI-value zijn deze verschillen het grootst (SD = .969). Tot slot geeft de verhouding tussen de schatting van het kengetal en de standaardfout voor scheefheid en platheid een beeld op de vorm van verdeling van de schaalscores. Deze moet zo veel mogelijk de normaalverdeling benaderen om clusteranalyses uit te kunnen voeren (Curran et al., 1996; Muthén & Kaplan, 1985). Deze verhouding geeft aan of de scheefheid en platheid significant afwijken van nul. Indien dit zo is, moeten we aangeven dat de variabele niet symetrisch verdeeld is. We stellen vast dat MSI-feeling en MSI-value symetrisch verdeeld zijn. TSI is linksscheef (-9,23). PI is licht platokurtic (-4,02). Mogelijke anomalieën voor TSI en PI zullen met deze kennis indachtig worden geïnterpreteerd. Desgevallend kunnen bijkomende confirmatieve analyses worden overwogen (West, Finch, & Curran, 1995).
De zeggingskracht van individuele vragen uit de vragenlijst.

In een verkennende analyse gaan we na of alle items voldoende communaliteit hebben om in verdere analyses betrokken te worden (Bijlage 3, analyse 1). De communaliteit van een manifeste variabele geeft het deel van de variantie weer, dat door de factor wordt voorspeld. Het is een proportie van de totale variantie (tussen 0 en 1) waarbij .40 als minimum richtcijfer wordt gehanteerd voor inclusie van een item in een latent construct (Costello & Osborne, 2005). Als dit richtcijfer wordt gehaald voor een manifest item, dan kan worden gesteld, dat dit item voldoende laadt op het latente kenmerk. Een voordeel van dit richtcijfer is dat, indien de waarde groter is dan 1, indicatie wordt gevonden met betrekking tot een beperkte betrouwbaarheid van de data (Heywoodssituatie), waardoor de factoroplossing problematisch wordt (Costello & Osborne, 2005). In de spontane EFA met alle interesse-items heeft geen enkel item een waarde hoger dan 1. Er is wel één item met een waarde lager dan .40, met name PL_2 (.391) (Bijlage 3, analyse 1). Dit wil zeggen dat van dit item slechts 39 % van de eigen variantie kan verklaard worden door de aanwezige factoren uit deze spontane EFA. Het gaat om vraag 18, “Wiskunde helpt me in het dagelijks leven buiten de school.”, een item dat tot PI behoort. Ook in de verkennende EFA met enkel PI-items scoort PL_2 (vraag 18) te laag (H2=.295). Uit de geroteerde oplossing blijkt de correlatiecoëfficiënt matig te laden op het latente kenmerk PI (R=.544). Het eerstvolgend hoger scorende item in volgorde PL_1 (vraag 17), laadt beduidend sterker (R=.690). We besluiten een nieuwe verkennende analyse uit te voeren zonder vraag 18. De totaal verklaarde variantie stijgt hierdoor van 66,5 % tot 68 %. Op basis van bovenstaande overwegingen werpt zich de vraag op of PL_2 (vraag 18) uit de verdere analyses moet geweerd worden. We besluiten de analyse nogmaals uit te voeren zonder vraag 18.

De IO-vragenlijst met of zonder vraag 18?

Het effect van het weglaten van vraag 18 blijkt fundamenteel. Deze analyse toont immers spontaan een bevestiging van het te valideren model E (bijlage 3: analyse 6, tabel 3). Afgezien van enkele kruisladingen7, blijkt dat de factoren TSI en MSI-value goed discrimineerbaar zijn met respectievelijke eigenwaardes van 1,68 en 1,09. Communaleiten van verschillende items (TSI, MSI-value & PI-items) vallen boven de grenswaarde van .40 (4). Het onderscheiden tussen PI en SI lijkt nog enigszins te worden bemoeilijkt door deze kruisladingen. We zullen in het behandelen van H1 (OV1) hier meer aandacht aan besteden. Model E wordt in detail behandeld aan de hand van H7 (OV2). Zonder vraag 18 wordt

7 Drie items van PI (21,22,23) tonen respectievelijk kruisladingen aan met MSI-feeling (.408; .422; .416) (bijlage 3: analyse 6, tabel 3).
spontaan een correcte clustering van het te valideren model bekomen. De oorzaak hiervan kan te maken hebben met de onderzoekscontext (wiskunde). In het geval een ander interessegebied zou worden gebruikt zoals Engels zou deze vraag wellicht sterker scoren. “Wiskunde/Engels helpt me in het dagelijks leven buiten de school”. Om de validiteit van het instrument niet in het gedrang te brengen, besluiten we vraag 18, definitief uit de analyses te halen.

6.2. **Validatie van de hoofd- en subdimensies van interesseontwikkeling**

6.2.1. **Hoofdschaalniveau.**

OV1: Kan zowel SI als PI door de vertaalde interesseontwikkelingstest (SI-vragenlijst) betrouwbaar en valide worden gemeten? (Model D, D’)

H1: Twee dimensies op hoofdschaalniveau?

In H1 stelden we dat we op hoofdschaalniveau zowel SI als PI kunnen onderscheiden. Uit analyse 7 (Bijlage 3) blijkt dat, indien we alle interesse-items (zonder vraag 18) via exploratieve factoranalyse in 2 factoren forceren, SI- en PI-items niet zoals verwacht worden geclusterd. Dit levert een beeld van twee factoren (f1 EW=9,373; f2 EW=1,504). Deze analyse toont wel twee componenten, maar SI-items worden verdeeld over de twee factoren. Kruisladingen vertroebelen het onderscheid tussen affectieve items van PI (21, 22, 23) en MSI-feeling (11, 12). Ondanks het feit dat in een totale analyse met alle items (SI & PI) vooral kruisladingen optreden met affectief associeerbare items van PI, blijkt de factor PI op zichzelf wel degelijk één latent kenmerk uit te drukken. Dit kan pleiten voor het behoud van PI in de IO-vragenlijst.

Om na te gaan of de items van PI resulteren in een één-factor model, voerden we een andere analyse uit (Bijlage 3: analyse 5). Hieruit blijkt dat alle manifeste PI-items voldoende laden (van .47 tot .86) op het latente kenmerk PI (Model D’). PI bestaat uit vragen die zowel affectieve als cognitieve connotaties hebben. Alle items worden in één factor geassocieerd (EW 4,477) met een totaal verklaarde variantie van 64%. PI items laten zich met andere woorden goed als één latent kenmerk groeperen. Voor de SI-items ligt dat anders.

8 H1: Op hoofdschaalniveau kunnen we twee dimensies onderscheiden met name: situationele interesse (SI) en persoonlijke interesse (PI) (Figuur 2: model D,D’) (Hidi & Renninger, 2006)
H2: Laden alle items op hun voorziene latente kenmerken?

Uit de factoroplossing van analyse 10 (bijlage 3), waarin alle SI-items in één factor worden gedwongen (Model D), blijkt dat alle items voldoende op SI-laden (van .48 tot .82). Geen enkel item scoort onder de grenswaarde van .40. H2 wordt met andere woorden niet verworpen. Anderzijds stellen we vast dat de verklaarde variantie van deze één-factoroplossing (Model D: SI 46,5 %), lager is dan in analyse 8, waar SI zich spontaan in de drie voorziene subdimensies clustert (Model B: MSI-feeling 48,06 %; TSI 12,47 %; MSI-value 7,18 ; totale verklaarde variantie 67,73 %). Alle manifeste items laden voldoende op de hoofddimensies. Hieruit maken we op dat SI zich enkel laat onderscheiden van PI, wanneer rekening wordt gehouden met de SI-subdimensies. H1 kan worden genuanceerd in die zin dat de hoofddimensies SI en PI enkel onderscheiden kunnen worden, indien de SI-subdimensies in rekening worden genomen.

6.2.2. Subschaalniveau.

OV2: Kan de IO-vragenlijst hoofddimensies (SI & PI) en drie SI-subdimensies valide en betrouwbaar meten? (Model B, E)

H3: Zijn er geen subdimensies van persoonlijke interesse?

We volgen de leidraad van de hypotheses. Uit het antwoord op OV1 weten we reeds dat SI zich spontaan in de voorziene latente kenmerken opdeelt. Dit impliceert, dat we H3 mogen verwerpen. De IO-vragenlijst meet namelijk wel degelijk subdimensies van situationele interesse. Model D, dat één latent kenmerk voor SI voorstelde, mag definitief van de checklist worden geschrapt. We willen ook nagaan of alle items van situationele interesse niet als een twee-factoroplossing kunnen worden voorgesteld (Model A & C).

9 H2: Alle manifeste interesse-items van de IO-vragenlijst laden voldoende op hun respectievelijke latente kenmerken van situationele- en persoonlijke interesse (Figuur 2: Model D en D’) (Linnenbrink-Garcia et al., 2010)

10 H3: De IO-vragenlijst meet geen subdimensies van situationele- en persoonlijke interesse (figuur 2: Model D, D’) (Linnenbrink-Garcia et al., 2010).
H4: Voldoende discriminateerbaarheid tussen TSI en MSI

H4 is niet fundamenteel voor de validiteit, maar duidt wel op de theoretische consistentie van het concept MSI. Indien H4 behouden blijft, is MSI zowel theoretisch als empirisch een omliggend concept. Hiervoor voeren we een EFA van alle SI-items uit, die in 2 factoren gedwongen wordt (bijlage 3: analyse 9). We stellen een totaal verklaarde variantie van 59,26 vast (KMO .906, \(P < .001 \); fc1 EW =5.68; fc2 EW = 1,42). Alle SI-items tonen voldoende communaliteit (> .40) en laden voldoende (tussen .460 en .825). We zijn vooral geïnteresseerd in de discriminateerbaarheid tussen TSI en MSI. We zijn daarin benieuwd of MSI-feeling en MSI-value zich spontaan groeperen als één dimensie. Een bedreiging daarin is dat zowel TSI als MSI-feeling erg affectief laden. In het geval dit onderscheid niet duidelijk zou zijn (model A), moeten we mogelijk spreken van twee subdimensies van SI, met name SI-feeling en SI-value (Model C). Het resultaat van de geroteerde oplossing is verrassend. De twee factoren groeperen zich in grote lijnen volgens de theorie. In factor 1 treffen we MSI-value (4) en MSI-feeling (3) items aan. In factor 2 treffen we alle TSI items (4) en het resterende MSI-feeling item. Het gewenste onderscheid wordt enigszins bevestigd, maar vertroebeld door kruisladingen op vraag 11 en 12. De kruisladingen worden in de synthese van de analyses besproken. Het groeperen van 7 van de 8 MSI vormde een eerste bevestiging van de conceptuele afbakening van MSI. H4 wordt niet verworpen wat er op wijst dat TSI en MSI voldoende discriminateerbaar zijn. Ook de theoretische en empirische consistentie van het begrip MSI bestaande uit MSI-feeling en MSI-value wordt enigszins aangetoond. Dit kan nog worden verbeterd door de vragen 11 en 12 nog meer op hun respectievelijke concepten af te stemmen.

H5: Voldoende discriminateerbaarheid MSI-feeling en TSI

We zoeken verder bevestiging voor deze vaststelling aan de hand van H5. Theoretische discussies omtrent affectieve en cognitieve kenmerken van SI (Ainley, 2006; Suzanne Hidi et al., 2004; Krapp, 2007) noodzaken ons na te gaan of we niet eerder moeten spreken van SI-feeling en SI-value. We exploreren verder dezelfde analyse (Bijlage 3: Analyse 9) als in de vorige alinea. Kijken we vanuit het perspectief van één value factor dan moeten we vaststellen, dat deze zich niet voordoet. Hoewel SI-value-items zich duidelijk onderscheiden als items met de sterkste factorladingen (van .733 tot .825) worden ook drie MSI-feeling.

11 H4: De IO-vragenlijst demonstreert voldoende discriminateerbaarheid tussen triggered situational interest (TSI) en maintained situational interest (MSI) (Model A,C) (Linnenbrink-Garcia et al., 2010).

12 H5: De IO-vragenlijst demonstreert voldoende discriminateerbaarheid tussen situational interest-feeling (TSI) en situational interest-value (MSI) (Model A,C) (Linnenbrink-Garcia et al., 2010).

H6: Validatie van SI bestaande uit TSI, MSI-feeling & MSI-value

Het draaien van een spontane EFA met enkel SI-items (Bijlage 3, analyse 8) levert indertijd drie factoren op (KMO=.906, P<.001; MSI-feeling EW=5,768; TSI EW= 1,497 ; MSI-value = 0,862) die overeenstemmen met drie theoretische constructen voor SI-subdimensies (Linnenbrink-Garcia et al., 2010). Hoewel MSI-value minder variantie verklaart dan de eigen variantie (.862), pleiten vijf argumenten voor het behouden van MSI-value. Een eerste argument wordt, zoals bij H5 aangehaald, gevormd door het screeplot dat duidelijk 3 factoren onderscheidt. Als tweede argument geldt de discrimineerbaarheid van TSI en MSI-value die ook al uit de vorige analyse bleek. MSI manifesteert zich in een 2 factormodel duidelijk (sterkste factorladingen in geroteerde oplossing). Een derde argument is theoretisch en beklemttoent de duidelijk theoretische verschillen van beide concepten (Linnenbrink-Garcia et al., 2010). Als vierde argument wijzen we er op dat alle MSI-value items sterk laden op hun voorziene latent kenmerk (van .700 tot .829). Tot slot constateren we een totaal verklaarde variantie van 68%, wat wijst op een behoorlijke interne consistentie waarin bovendien de voorziene SI items zoals voorzien worden geclusterd. H6 kan dan ook duidelijk positief worden beantwoord. We weerhouden H6 en kunnen stellen dat SI bestaat uit drie subdimensies, met name: MSI-feeling, TSI en MSI-value. De IO-vragenlijst meet voldoende valide situationele interesse, bestaande uit drie subdimensies (TSI, MSI-feeling, MSI-value).

H7: Validatie van interesseontwikkeling bestaande uit SI (TSI, MSI-feeling, MSI-value) en PI

De IO-vragenlijst wil echter naast het meten van SI ook het meten van PI valideren. H7 stelde dat samen met de SI-subdimensies ook PI als hoofddimensie duidelijk te onderscheiden moet zijn (Model E). Uit de analyse 6 (Bijlage 3) blijkt een sterke
accurateheid van model E (KMO .942 p < .001). Dit is een verbetering ten opzichte van model B (KMO .906; p < .001). Alle voorziene items worden met hun overeenstemmende latente kenmerken geassocieerd (Figuur 3) (MSI-feeling EW=9,472; TSI EW=1,624; MSI-value EW=1,089; PI EW=0,727) en demonstreren factorladingen boven de .40 (Model E). De respectievelijke factoren zijn duidelijk te onderscheiden van elkaar. Ook in deze analyse neemt de MSI-feeling het grootste deel van de verklaarde variantie voor zich (49,85%), gevolgd door TSI, MSI-value en PI. Opvallend is dat zowel TSI, MSI-feeling als MSI-value in dit model meer variantie verklaren dan in het vorige. Daarbij vinden we in dit model een betere verklaring voor MSI-value (EW 1,624), die in het vorige model (B) nog onder de grenswaarde van het Kaiser Kriterium viel (EW 0,862). Dit vormt een argument voor het behouden van model E boven model B. Toch is ook model E niet kristalhelder. We wezen reeds op de kruisladingen tussen PI en MSI-feeling (item 21, 22, 24 ; .516, .516, .522) bij het beargumenteren van het weglaten van een vraag (vraag 18). We kunnen dit echter ook als een indicatie voor de rangorde van SI-subdimensies interpreteren. Deze kruisladingen duiden er mogelijk op dat MSI-feeling sterker zal correleren met PI dan MSI-value. Dit zou evenwel betekenen dat de rangorde uit deze studie afwijkt van de idee dat er rond bestaat (Linnenbrink-Garcia et al., 2010). Hier komen we later op terug. Hoewel de eigenwaarden van SI allemaal sterker uit de verf komen, blijkt echter ook dat de eigenwaarde van PI lager is dan het Kaiser Kriterium voorschrijft (.727). Daardoor moet een zuiver datagedreven onderscheid tussen SI en PI nog steeds worden genuanceerd. Dit kan vanuit vier argumenten. Als eerste kunnen we verwachten dat nog een deel van de PI-variantie op de eerste factor laadt vanwege de dominantie van MSI-feeling. Een tweede meer inhoudelijk argument is dat wiskunde niet het meest populaire vak kan genoemd worden, waardoor PI mogelijk te weinig variantie kan verklaren. Wanneer deze vragenlijst voor het vak Engels of ICT heraald wordt, kan mogelijk de grenswaarde van 1 (Kaiser Kriterium) wel overschreden worden. Als derde wijst het screeplot duidelijk op het behoud van de vierde factor met 7 PI-items. Een laatste argument vormt zich in een spanningsveld tussen het theoretisch concept en de onderzoekscontext. Theoretisch kan immers een duidelijk onderscheid tussen beide hoofddimensies gemaakt worden. De schoolse onderzoekscontext (klaslokalen), alsook de volgorde waarin de vragen werden gesteld (PI items kwamen verder in de vragenlijst dan SI items), kunnen dit onderscheid hebben vertroebeld. Leerlingen kregen eerst vragen over SI en pas daarna vragen over PI. Daardoor wordt de perceptie al vroeg gekleurd, waardoor vertekening kan optreden (Cohen & Manion, 2007). De nodige aandacht aan de volgorde van de vragen kan dit probleem verhelpen (PI items eerst).
Figuur 4: Geroteerde factoroplossing (Model E)

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIF_5</td>
<td>11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_6</td>
<td>12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_1</td>
<td>9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_2</td>
<td>10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_1</td>
<td>15. Mijn leerkraft wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_2</td>
<td>6. Tijdens de les wiskunde doet mijn leerkraft dingen die mijn aandacht te grijpen.</td>
<td>.757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_3</td>
<td>7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_5</td>
<td>8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_2</td>
<td>14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_4</td>
<td>15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_1</td>
<td>13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI_3</td>
<td>19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td></td>
<td></td>
<td>.740</td>
</tr>
<tr>
<td>PI_4</td>
<td>20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td></td>
<td>.710</td>
<td></td>
</tr>
<tr>
<td>PI_6</td>
<td>22. Ik doe graag wiskunde.</td>
<td>.516</td>
<td>.550</td>
<td></td>
</tr>
<tr>
<td>PI_5</td>
<td>21. Ik vind wiskunde leuk.</td>
<td>.522</td>
<td>.535</td>
<td></td>
</tr>
<tr>
<td>PI_7</td>
<td>23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td></td>
<td>.509</td>
<td></td>
</tr>
<tr>
<td>PI_8</td>
<td>24. Wiskunde is boeiend voor mij.</td>
<td>.433</td>
<td>.457</td>
<td></td>
</tr>
<tr>
<td>PI_1</td>
<td>17. Voor mij is het handig dat ik wiskunde kan.</td>
<td></td>
<td></td>
<td>.450</td>
</tr>
</tbody>
</table>

We vormen aan de hand van alle conclusies uit hypotheses H3 tot H7 een antwoord op OV2:

SI bestaat uit 3 subdimensies H3, waarin affectieve en cognitieve kenmerken zich voldoende onderscheiden (H4, H5). Deze subdimensies worden benoemd als triggered situational interest (TSI), maintained situational interest feeling (MSI-feeling) en maintained situational interest value (MSI-value) (H6). Ook persoonlijke interesse laat zich voldoende duidelijk opmeten (H7), waardoor een breed perspectief op interesseontwikkeling meetbaar wordt gemaakt. Een aanbeveling om de volgorde van de vragen aan te passen, verdient evenwel de nodige aandacht voor gebruik in de toekomst.
6.3. Genderhypothese.

OV3: Bevestigt de IO-vragenlijst bestaande genderverschillen in interesse voor wiskunde en zijn deze ook meetbaar in verschillende fases van interesseontwikkeling?

H8, H9 Zijn genderverschillen consistent in alle lagen van interesseontwikkeling?

H8 stelt dat jongens een sterkere interesse voor wiskunde tonen dan meisjes. H9 stelt de vraag of dat ook opgaat voor alle dimensies van interesseontwikkeling? We voeren onafhankelijke t-tests uit, waarin we onze vier interessedimensies afzetten tegen de variabele geslacht (bijlage 3: analyse 14, waarde 1= meisje).

Figuur 5: Betrouwbaarheidsintervallen voor genderverschillen in interesse voor wiskunde.

Het is duidelijk dat deze vragenlijst ook verschillen tussen jongens en meisjes in interesse voor wiskunde vaststeld. Figuur 5 toont bij twee van de vier interessedimensies duidelijke verschillen tussen jongens en meisjes. Jongens scoren respectievelijk hoger op MSI-value dan meisjes (Links onder, 3,29 t.o.v 2,93; d=0,38). Ook op PI scoren jongens gemiddeld

15 H8: Jongens scoren significant hoger op TSI, MSI-feeling, MSI-value en PI voor wiskunde dan meisjes (Frenzel, 2010).

H9: Voortbouwend op H7 stellen we dat de verschillen tussen jongens en meisjes niet voor alle SI-subdimensies significant zijn.
hoger dan meisjes (rechts onder, 3.03 t.o.v. 2.77, d=0,28). Het 95% betrouwbaarheidsinterval voor het geschatte verschil in de populatie ligt voor MSI-value tussen 0,52 en 0,19. Voor PI ligt dit tussen 0,42 en 0,10. Voor zowel MSI-value, als PI tonen de onafhankelijke t-tests respectievelijk dat, indien er geen verschil is in de populatie, dit vastgestelde verschil in de steekproeven wel zeer onwaarschijnlijk zou zijn (MWI-value t=4,26 df=541, p<0,001; PI t=3,18 df=541, p<0,005). Dit laat ons toe de nullhypothese te verwerpen en te concluderen dat er sprake is van een duidelijk effect van geslacht op interesse voor wiskunde. In die zin wordt hypothese 8 ondersteund. Anderzijds echter kunnen we deze verschillen nu ook meer nuanceren. In die zin kan ook hypothese 9 worden bevestigd. De verschillen zijn inderdaad niet voor alle subdimensies significant. TSI en MSI value (Figuur 5, links boven en rechts boven) hebben overlappende betrouwbaarheidsintervallen. Wat onderscheidt de significante subdimensies van de niet significante? De significante subdimensies (MSI-value, PI) laden zoals hoger aangehaald ook cognitief. MSI-value doet dat expliciet. PI doet dat aan de hand van 4 items. De niet significante items hebben uitsluitend affectieve vragen. We kunnen dan ook concluderen dat de verschillen in interesseontwikkeling tussen jongens en meisjes waarschijnlijk cognitief van aard zijn. Hoewel deze studie niet tot doel heeft genderverschillen op interesseontwikkeling te verklaren, kunnen we stellen dat enkel subdimensies waarin duidelijk cognitieve items aanwezig zijn, duidelijke verschillen in interesse voor wiskunde aantonen. Globaal genomen kunnen we OV 3 beantwoorden door te stellen dat H8 en H9 worden bevestigd. Dit betekent ook, dat de externe validiteit van de IO-vragenlijst aan de hand van deze genderverschillen kan worden bevestigd. Aan de hand van ons antwoord op H9 nuanceren we evenwel dat deze verschillen zich eerder in cognitieve kenmerken van interesseontwikkeling manifesteren.

6.4. Inhoudelijke - en constructvaliditeit van de interesse-ontwikkelingsvragenlijst

Hoewel door de genderhypothese de externe validiteit enigszins verhoogt, kunnen we geen uitspraken doen over genderverschillen in de rangorde van deze subdimensies. Hoewel theoretisch duidelijk verwezen wordt naar de positie van TSI als eerste ontwikkelingsstap, is er geen uitsluitsover de verdere rangorde van TSI ten opzichte MSI-feeling en MSI-value. Deze rangorde kennen én kunnen meten zou de inhoudelijke validiteit van het instrument verhogen (OV4). Daartoe worden de analyses in deel 2 aangewend. Indien een rangorde kan worden bevestigd, laat dit toe de constructvaliditeit van de IO-vragenlijst verder te onderzoeken (OV5). In figuur 5 werd een correlatiematrix opgenomen van alle
somscores van interesseontwikkeling, motivatie (ZDT), zelf-effectiviteit en uitkomsteffectiviteit16.

6.4.1. **Inhoudelijke validiteit**

OV4: Bevestigt de IO-vragenlijst de rangorde in de onderliggende structuur in de volgorde: TSI, MSI-feeling, MSI-value?

H10, H11: Rangorde van interesseontwikkeling17

H10 en H11 stellen de twee resterende alternatieve verklaringen voor. H10 vanuit intern perspectief. H11 vanuit een extern perspectief. We hanteren daarbij vanuit de theorie de assumptie dat TSI en PI respectievelijk eerst en laatst in de ontwikkelingsrangorde van interesse staan (Hidi & Renninger, 2006; Linnenbrink et al., 2010). Figuur 6 toont een correlatietabel van alle somscores van interesseontwikkeling volgens model E. Ook motivatiesomscores (autonome motivatie, gecontroleerde motivatie en amotivatie), uitkomst- en zelf-effectiviteit werden in deze analyse opgenomen. Alle kenmerken werden in volgorde van verwachte correlatiesterkte met PI geplaatst. Een meerderheid van alle correlaties zijn significant (P < .01). TSI is effectief de zwakste correlatie, wat de theoretische positie van TSI als eerste vorm van opkomende situationele interesse bevestigt (.521). Toch is dit op zichzelf een sterke correlatie, waardoor de inhoudelijke consistentie met PI en het interesseconstruct wordt beklemtood. Verrassend genoeg is de tweede subdimensie in de rangorde tot PI niet MSI-feeling, maar MSI-value (.614; \(P < .01\)). Voor het vak wiskunde in de tweede graad zorgt na TSI, de waarde die gehecht wordt aan het interessegebied wiskunde (MSI-value) voor een sterkere samenhang met PI.

16 Voor alle externe constructen werden betrouwbaarheidsanalyses uitgevoerd, die eveneens resulteerden in sterke alphawaarden (autonome motivatie \(\alpha = 0.839\), gecontroleerde motivatie \(\alpha = 0.752\), amotivatie \(\alpha = 0.818\), zelf-effectiviteit \(\alpha = 0.877\)).

17 H10: TSI, MSI-feeling en MSI-value correleren in stijgende rangorde met PI (Linnenbrink-Garcia et al., 2010)

H11: TSI, MSI-value en MSI-feeling correleren in stijgende rangorde met PI (Linnenbrink-Garcia et al., 2010)
Figuur 6: Correlatiertabel van interessedimensies en aanverwante constructen.

<table>
<thead>
<tr>
<th>correlaties</th>
<th>PI</th>
<th>Mot_auto</th>
<th>ZelfEff</th>
<th>UitEff</th>
<th>MSI_f</th>
<th>MSI_v</th>
<th>TSI</th>
<th>Mot_gecnrl</th>
<th>amot</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Pearson Correlation</td>
<td>1,000</td>
<td>.697**</td>
<td>.606**</td>
<td>.537**</td>
<td>.764**</td>
<td>.614**</td>
<td>.521**</td>
<td>-.139**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>Mot_auto</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.430**</td>
<td>.327**</td>
<td>.618**</td>
<td>.458**</td>
<td>.473**</td>
<td>-.210**</td>
<td>-.215**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ZelfEff</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.721**</td>
<td>.534**</td>
<td>.351**</td>
<td>.368**</td>
<td>-.115**</td>
<td>-0,044</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,007</td>
<td>0,308</td>
<td></td>
</tr>
<tr>
<td>UitEff</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.494**</td>
<td>.316**</td>
<td>.374**</td>
<td>-.094*</td>
<td>-.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,029</td>
<td>0,201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI_f</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.585**</td>
<td>.554**</td>
<td>-.124**</td>
<td>-.111**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,004</td>
<td>0,010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSI_v</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.354**</td>
<td>-.109*</td>
<td>-.130**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,000</td>
<td>0,011</td>
<td>0,002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>-.103*</td>
<td>-.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,016</td>
<td>0,246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mot_gecnrl</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.117**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>0,007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** correlatie is significant op het 0.01 niveau. * correlatie is significant op het 0.05 niveau.

De sterkste construct-interne correlatie is die tussen MSI-feeling en PI (MSI-feeling .764; p<.01). De uitgesproken sterke correlatie toont aan dat leerlingen met een sterke score op PI voor het interessegebied wiskunde bovenal vanuit gevoel bekrachtigd worden voor de beleving van hun interessegebied. Deze volgorde wijkt af van Linnenbrinks studie. H10 wordt verworpen en H11 wordt bevestigd.

Omdat ook PI in het voorgaande deel gevalideerd werd, kunnen we OV4 met enige zekerheid beantwoorden als volgt: De rangorde in interesseontwikkeling in wiskunde bij leerlingen van de tweede graad TSO en ASO is de volgende: TSI (0, 521, P<.001), MSI-value (0,614, P<.001), MSI-feeling (0,764, P<.001) (H11). Dit verhoogt de inhoudelijke validiteit van deze vragenlijst. Toch zoeken we voor deze vaststelling verder ondersteuning aan de hand van externe constructen (6.4.3). Daarvoor dient eerst de verenigbaarheid met deze constructen te worden nagegaan (6.4.2).
6.4.2. Verenigbaarheid van interne en externe constructen

OV5: Zijn correlaties tussen interessedimensies (TSI, MSI-value, MSI-feeling, PI) enerzijds en motivatiendimensies anderzijds (ZDT: autonome motivatie, gecontroleerde motivatie en amotivatie) consistent in lijn met de theoretische verwachtingen (respectievelijk: positief, negatief en afwezig)?

H12, H13, H14 Vereenigbaarheid van de constructen interesse en motivatie (ZDT)\(^{18}\)

We gaan via de convergente en divergente hypotheses na (OV5: H12,H13,H14) of het interesseconstruct ook empirisch mag vergeleken worden met motivatieconstructen. In H12 stellen we dat amotivatie negatief correleert met de ontwikkelingsdimensies van interesseontwikkeling. Figuur 6 toont dat amotivatie significant (P<.05) negatief correleert met MSI-value en MSI-feeling en PI (-.130; -.111; -.140; P<.05). Wie geen motivatie heeft, heeft ook geen interesse voor wiskunde. TSI toont geen significante samenhang met amotivatie. H12 kan in grote lijnen worden bevestigd behalve voor TSI gezien alle andere SI-subdimensies negatief correleren met amotivatie. Gecontroleerde motivatie correleert zoals verwacht negatief (P<.05) met ontwikkelingsdimensies van SI, MSI-value en TSI (-.109; -.103; P<.05) (H13), maar ook met MSI-feeling en PI (-.124; -139, p<.01). De rangorde varieert weinig, maar PI heeft, zoals kon worden verwacht, de sterkst negatieve correlatie. De rangorde toont een positieverschuiving voor MSI-value. Dit kan als een eerste empirische indicatie voor de onderliggende structuur van SI en PI worden gezien. H12 kan ten dele worden bevestigd, omdat gecontroleerde motivatie negatief correleert, maar enkel met PI in de verwachte rangorde en niet met de SI-subdimensies (TSI, MSI-feeling & MSI-value). H13 kan eveneens worden bevestigd gezien alle subdimensies van gecontroleerde motivatie significant negatief correleren met SI-dimensies. PI is, zoals theoreisch mocht worden verwacht, significant en sterk associeerbaar met autonome motivatie (.697; P<.01) (H14). Iemand met een persoonlijke interesse voor wiskunde zal een duidelijke tendens tot autonome motivatie voor wiskunde vertonen. H14 wordt bevestigd.

\(^{18}\) H12: Amotivatie correleert het sterkst negatief met ontwikkelingsdimensies van SI en PI (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012)

H13: Gecontroleerde motivatie correleert negatief met ontwikkelingsdimensies van SI en PI (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012)

H14: PI correleert sterk met autonome motivatie (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012).
De meeste opvallende implicatie uit deze analyse is dat zowel gecontroleerde motivatie als amotivatie een negatieve samenhang met de interestedimensies tonen. We zouden verwachten dat bij amotivatie de negatieve samenhang op interesse aanzienlijk groter is. Ook dat blijkt niet het geval. Een gecontroleerde motivatiestijl blijkt dus opvallend slecht te scoren op interesse. Dit kan aanwijzing geven om aan te nemen dat scholen, leerkrachten of ouders die te veel druk op leerlingen uitoefenen hierdoor een negatieve invloed op hun interesse kunnen uitoefenen. We nemen dit mee in de implicaties van deze scriptie.

OV5 wordt als volgt beantwoord. Correlaties tussen enerzijds SI-dimensies (TSI, MSI-value, MSI-feeling, PI) en anderzijds autonome motivatie, gecontroleerde motivatie en amotivatie zijn consistent en respectievelijk positief (TSI), negatief (MSI-value) en afwezig (amotivatie). Dit onderbouwt de uitgangspunten die voor verdere constructvalidatie kunnen worden gehanteerd, met name dat autonome motivatie en dus ook self-effectiviteit goede constructen zijn om de interne consistentie van de rangorde van interesseontwikkeling na te gaan.

6.4.3. Constructvaliditeit

OV6: Is de onderliggende rangorde in de structuur van SI subdimensies ten opzichte van persoonlijke interesse conform het antwoord op OV4, vergelijkbaar en consistent met autonome motivatie en zelf-effectiviteit?

H15: Vergelijkbaarheid én consistentie van interesseontwikkeling t.o.v. autonome motivatie (19).

Op basis van de ZDT en algemeen theoretische inzichten uit interesseonderzoek, kunnen we verwachten dat correlationele verhoudingen van subdimensies van SI tot PI vergelijkbaar zijn met verhoudingen van diezelfde subdimensies van SI tot autonome motivatie. TSI, MSI-value, MSI-feeling en PI correleren in grote lijnen volgens de verwachte rangorde met autonome motivatie (.473; .458; .618 ; .697, p<.01). Een lichte afwijking doet zich voor, omdat MSI-value t.o.v. autonome motivatie iets lager scoort dan verwacht. Inhoudelijk kan dit logisch worden geïnterpreteerd, daar een overmaat aan waardegebaseerde belangen kunnen wegen op de intrinsieke motivatie. Bijvoorbeeld kan een te hoge druk (punten, prestatie) de zin om zichzelf in te zetten onderdrukken. Dit bleek ook uit een extra EFA analyse waar de 4 PI-items met kruisladingen op MSI-feeling werden weggelaten. Deze

19 H15: SI-subdimensies verhouden zich in vergelijkbare rangorde én consistent tot zowel autonome motivatie als tot PI. (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012).
analyse gaf een zeer verrassend resultaat. MSI-feeling werd van de troon gesetnet als dominante component en vervangen door MSI-value (volgorde: MSI-value, TSI, MSI-feeling, PI). Opvallender nog was, dat alle MSI-feeling items plots negatief laadden op het gehele model (-.885; -.792; -.774; -.773) (Bijlage 3, analyse 15). Dit houdt in dat wanneer het plezier, of de aangename aspecten van interesseontwikkeling worden weggeneome, eerder negatieve gevoelens ten opzichte van het interesteondomein kunnen gaan prevaleren. Eenvoudiger gesteld kunnen we zeggen, dat wanneer geen rekening wordt gehouden met de affectieve beleving van PI en met andere woorden te veel het belang van interessegebied wordt benadrukt (MSI-value), het plezier er uit gaat en de zin tot verdere exploratie van het interessegebied afneemt. Dit argument lijkt de lichte verschuiving ten opzichte van het PI construct te nuanceren. Het loont dan ook de moeite in verder onderzoek deze waardecomponent nader te onderzoeken, gezien een zekere balans van het belang hechten aan, of druk zetten op een interessegebied aangewezen lijkt. Dit lijkt sterk associëerbaar met gecontroleerde motivatie, waar externe controle leer gedrag van leerlingen beïnvloedt. Er is geen doorslaggevend argument om H15 te verwerpen. De constructvaliditeit ten opzichte van de ZDT wordt in grote lijnen empirisch onderbouwd.

H16: Vergelijkbaarheid én consistentie van interesseontwikkeling t.o.v. self-effectiviteit

We werken nog steeds vanuit de correlatietabel van figuur 6. We verwachten, dat ook TSI de laagste correlatie met self-effectiviteit vertoont. TSI correleert echter sterker met self-effectiviteit dan MSI-value (.368; .351, p<.01). Het verschil is klein. Wel duidelijk is weer de dominante positie van MSI-feeling en PI (.534; .606; p<.01) ten opzichte van self-effectiviteit. Dit beeld herhaalt zich, maar minder uitgesproken voor uitkomst-effectiviteit (MSI-value .351; TSI .368; MSI-feeling .551; PI .606, p<.01). Hoewel het verschil weerom klein is, wijkt ook hier de positie van MSI-value af. De consistentie van MSI-value lijkt problematisch.

Een andere rangorde voor interesseontwikkeling?

Om een antwoord te geven op OV6 kan dan ook worden gesteld, dat de hoofddimensies van interesseontwikkeling in grote lijnen parallelen vertonen met de externe constructen autonome motivatie en self-effectiviteit, maar dat de constructvaliditeit van dit instrument hierdoor wel voorzien moet worden van een kanttekening. Wel tonen we consequent aan,

20 H16: Si-subdimensies verhouden zich in vergelijkbare én consistente rangorde tot zowel self-effectiviteit, uitkomst-effectiviteit als tot autonome motivatie en PI. (Hidi & Renninger, 2006; Linnenbrink-Garcia et al., 2010; Sierens & Van Steenkiste, 2009; Vanhoof et al., 2012)
dat MSI-value in tegenstelling tot de originele studie van Linnenbrink et al. (2010), niet overgewaardeerd mag worden in zijn rangorde van interesseontwikkeling. Ten opzichte van externe constructen autonome motivatie, self-effectiviteit en uitkomst-effectiviteit lijkt het gewicht van MSI-value te worden gereduceerd tot een tweede positie in interesseontwikkeling na TSI (Figuur 7). MSI-feeling blijkt zowel intern (t.o.v. PI) als extern (t.o.v. autonome motivatie en self-effectiviteit) stabiel op de derde plaats. Algemeen kan worden gesteld, dat het opwekken van interesse en het voeden van het belang van een interessegebied, de interesse in eerste instantie opwekken. Wanneer leerlingen zich er daadwerkelijk goed bij voelen, is interesse sterker ontwikkeld en zal ze meer aanleiding geven tot PI. Dit lijkt te bevestigen wat Andreas Krapp (2007) hierover zegt, met name dat het net de veranderingen in cognitie/perceptie naar het interessedomein zijn die toelaten dat leerlingen zich sterker met het interessegebied willen bezig houden. We komen hier in de conclusie op terug. Theoretisch staat TSI op de eerste plaats in de rangorde van interesseontwikkeling. Dit wordt echter niet door associaties met externe constructen ondersteund. MSI-feeling is empirisch wel duidelijk de sterkste ontwikkelingstrap van SI. We kunnen vanuit de theorie en vanuit de construct-interne analyses (OV4) de positie van TSI als eerste ontwikkelingstrap bevestigen. Over de positie van MSI-feeling wordt theoretisch geen uitsluitssl gegeven. De data onderlijnen de derde positie voor deze dimensie. De tweede positie van MSI-value kan vanuit het antwoord op OV4 (construct-intern perspectief) worden beargumenteerd. Gezien MSI-feeling duidelijk de derde positie heeft en TSI duidelijk de eerste kan MSI-value dus enkel de tweede positie bekleden. Tot slot kunnen we deze vraag ook vanuit discriminatief standpunt benaderen. Ten opzichte van gecontroleerde motivatie wordt immers de rangorde, zoals we ze weerhouden, volledig gerespecteerd. Hoe meer interesse ontwikkelt, hoe minder de samenhang met gecontroleerde motivatie (TSI -.103; MSI-value -.109; MSI-feeling -.124; PI -.139).

Figuur 7: Rangordes van interesseontwikkeling t.o.v. interne en externe constructen.

<table>
<thead>
<tr>
<th>TSI</th>
<th>MSI-value</th>
<th>MSI-feeling</th>
<th>t.o.v. construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>PI</td>
</tr>
<tr>
<td>2 (> .016)</td>
<td>1 (> .016)</td>
<td>3</td>
<td>autonome motivatie</td>
</tr>
<tr>
<td>2 (> .018)</td>
<td>1 (> .018)</td>
<td>3</td>
<td>self-effectiviteit</td>
</tr>
<tr>
<td>2 (> .059)</td>
<td>1 (> .059)</td>
<td>3</td>
<td>uitkomst-effectiviteit</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>gecontroleerde motivatie</td>
</tr>
</tbody>
</table>

< afwijking t.o.v. de verwachte samenhang.

Ons antwoord op OV6 luidt als volgt: De onderliggende rangorde in de structuur van
Interesseontwikkeling ten opzichte van zowel PI als externe motivatieconstructen is vergelijkbaar, maar niet consistent. Voorgaande analyses en theoretische afbakeningen voor TSI en MSI-value duiden echter een duidelijke volgorde in dimensies van interesseontwikkeling aan, met name: TSI, MSI-value, MSI-feeling en PI. De constructvaliditeit van ons instrument wordt met klem bevestigd voor TSI, MSI-feeling en PI. Die van MSI-value vraagt verdere nuancering.
Een rangorde voor interesseontwikkeling in mensentaal.

Wat betekent deze conclusie nu in mensentaal? We nemen als voorbeeld een leerling die tijdens een geanimeerde les voor het eerst iets over kansberekening leerde (TSI). Een volgende les blijkt, tijdens het tonen van een videofragment, dat zij deze kennis kan gebruiken om meer kaartspelletjes in haar voordeel te laten uitdraaien (MSI-value). Zij ontdekt tijdens deze les welke kennis hiervoor specifiek van toepassing is, waardoor zij nog verder geïnteresseerd raakt (MSI-feeling). Zij vertaalt wat begrippen, die zij leerde, en zoekt nadien specifieke info op via google met de zoekwoorden “probability calculation card games” (PI).

7. Conclusie

Rekening houdend met de beperkingen van dit onderzoek (7.1) formuleren we een synthese van alle onderzoeksvragen in 7.2. Deze worden aan de literatuur teruggekoppeld (7.3), waaruit nadien een aantal implicaties van deze studie voor onderzoek en onderwijs kunnen worden afgeleid (7.4). Een slotwoord rond deze thesis af (7.5).

7.1. Beperkingen

Dit onderzoek werd uitgevoerd aan de hand van één bevragingsronde. We kunnen hierdoor geen uitspraken doen over de predictieve validiteit van het instrument. De constructvaliditeit werd enkel vanuit samenhang met autonome motivatie opgebouwd, maar bijkomende constructen (zelf-effectiviteit, uitkomst-effectiviteit) werden gehanteerd om het referentiekader te verruimen. Tijdens het voorbereiden van de data bleek dat TSI scheef verdeeld is en PI licht platokurtic is. Dit kan voor enige vertekening van de resultaten hebben gezorgd. Anderzijds is de consistentie in de onderzoeksresultaten hoog en werd voldoende aandacht aan de theoretische verankering van empirische resultaten besteed. Dit onderzoek beperkte zich tot één onderzoekcontext (wiskunde, 2e graad ASO, TSO). Strikt genomen dient de studie te worden herhaald voor andere vakgebieden. Het gevalideerde model E is voor verdere verbetering vatbaar. De eigenwaarde van PI in dit model is lager dan het Kaiser Kriterium voorschrijft (.727). We wezen reeds op de kruisladingen tussen PI en MSI-feeling (item 21, 22, 24 ; .516, .516, .522) bij het beargumenteren van het weglaten van één vraag (vraag 18). De nodige aandacht aan de volgorde van de vragen kan dit probleem verhelpen (PI items eerst). Toch blijft het noodzakelijk vervolgonderzoek in andere contexten uit te voeren. Strikt genomen geldt deze validatie enkel voor wiskunde. Toch hebben we vertrouwen, dat analoog aan Linnenbrink’s (2010) studie, zal blijken dat
ook andere interessegebieden en onderzoekscontexten vanuit dit model kunnen worden gemeten. Daarbij dient voldoende aandacht te worden besteed aan de contextgevoeligheid van cognitief gerelateerde items. We besteden hier aandacht aan in bijlage 4 (toelichting bij het gebruik van de vragenlijst). Rekening houdend met deze beperkingen doen we uitspraak over de validiteit van de IO-vragenlijst. Tot slot situeert zich nog een beperking in het feit dat voor dit onderzoek geen confirmatieve factoranalyses werden uitgevoerd, maar enkel exploratieve factoranalyses. Het lijkt opportuun om naar analogie met Linnenbrink’s studie, meer onderzoekscontexten in een contextoverschrijdende validatie te betrekken. Daarbij verdienen aanvullende confirmatorische analyses aanbeveling.

Interpretatie van de resultaten vanuit de beperkingen van dit onderzoek.

De onderzoekscontext impliceert een aantal beperkingen in verband met de zeggingskracht van de uitspraken die we kunnen doen. Deze beperkingen scheppen een kader voor de validiteit van dit instrument. De studie kan gezien worden als een eerste Nederlandstalige validatie van interesseontwikkeling (wiskunde, 2e graad ASO, TSO). Het biedt aanvullende externe, inhoudelijke en constructvaliditeit ten opzichte van het Engelstalig instrument. We zouden kunnen stellen dat vanuit dit argument, de vragenlijst ook als Nederlandstalig instrument contextoverschrijdend kan worden gebruikt. Anderzijds stellen we vast dat vooral cognitieve items context-gevoelig zijn. Ze verdienen daarom extra aandacht in het gebruik van de vragenlijst. We menen dan ook dat, naar analogie met de drie studies die Linnenbrink (2010) uitvoerde, bijkomende studies voor verdere validatie aangewezen zijn. Daarbij kan rekening gehouden worden met de onderzoeksresultaten, theoretische teruggouding en implicaties van dit onderzoek.

7.2. **Synthese van antwoorden op onderzoeksvragen**

De validiteit van de IO-vragenlijst werd aan de hand van een eerste reeks hypotheses (H1,2,3,4,5,6,7) en onderzoeksvragen (OV1,2) systematisch aangetoond. De IO-vragenlijst toont de betrouwbaarheid van alle SI-meetschalen en PI aan (Model E): TSI (4 items, \(\alpha = .853 \)), MSI-value (4 items, \(\alpha = .873 \)), MSI-feeling (4 items, \(\alpha = .927 \)) en PI (7 items, \(\alpha = .923 \)). Een achtste PI item kan afhankelijk van de context worden ingezet\(^{21}\). Net zoals in de Linnenbrink’s studie (2010) ondersteunen de analyses zowel model B (KMO .906, \(p < .001 \); TSI EW=1,49; MSI-value EW= 0.86; MSI-feeling EW=5.76; cumulatieve variantie 67.73) als model E (KMO .942, \(p < .001 \); TSI EW = 1,62; MSI-value EW=1,08; MSI-feeling EW= 9,42; PI

\(^{21}\) Vraag achtien bleek niet geschikt voor het vak wiskunde.
EW= 0,727; cumulatieve variantie 67,96). De KMO van model E duidt echter op een betere FIT met de data dan model B (KMO = .942 t.o.v. KMO = .906). Model E verklaart bovendien meer variantie dan model B. Tot slot geeft model E, in tegenstelling tot model B een voldoende EW voor MSI-value. Dit vormde het laatste en doorslaggevend argument voor het behouden van model E.

De validiteit van de IO-vragenlijst werd systematisch aangetoond en uitgebreid met aandacht voor de externe-, inhoudelijke- en constructvaliditeit. De externe validiteit werd aangetoond, gezien de IO-vragenlijst bestaande kennis over genderverschillen (Frenzel, 2010) bevestigt voor twee van de vier dimensies van interesseontwikkeling. De verschillen tussen jongens en meisjes blijken zich vooral te situeren in de cognitieve beleving van interesse. Op vlak van genderverschillen kunnen we stellen dat affectieve items stabiel zijn dan cognitieve. Jongens tonen gemiddeld een hogere waarde voor MSI-value en PI dan meisjes. Verschillen tussen TSI en MSI-feeling zijn kleiner en niet significant (OV3). De inhoudelijke validiteit van het instrument werd uitgebreid door het vaststellen van een rangorde (OV4) in interesseontwikkeling (TSI, MSI-value, MSI-feeling). Deze rangorde in interesseontwikkeling in wiskunde bij leerlingen van de tweede graad TSO en ASO is de volgende: TSI (0, 521, P<.001), MSI-value (0,614, P<.001), MSI-feeling (0,764, P<.001). De constructvaliditeit werd voor drie van de vier dimensies bevestigd (TSI, MSI-feeling en PI) vanuit aanverwante concepten (autonome motivatie, zelf-effectiviteit, uitkomst-effectiviteit). Voor MSI-value werd deze vanuit intern perspectief én vanuit het perspectief van gecontroleerde motivatie bevestigd (figuur 6). We koppelen deze vaststellingen terug aan de literatuur.

7.3. **Discussie van onderzoeksresultaten en terugkoppeling naar de literatuur**

De waardecomponent zorgt in heel wat interesse-onderzoek voor discussie. Ook in dit onderzoek kunnen, ondanks de relatief duidelijke discrimineerbaarheid van MSI-feeling en MSI-value (OV2), bijkomende vragen gesteld worden. Deze discrimineerbaarheid van MSI-feeling en MSI-value was een discussiepunt in de Linnenbrink's studie (2010) van Linnenbrink (2010). Voor dit discussieluik werd daarom een bijkomende EFA uitgevoerd met enkel MSI (KMO .895, P<.001; MSI-feeling EW = 4,63; MSI-value EW=.995; cumulatieve variantie 70,36)\(^{22}\). Hoewel door het specifieker verwoorden van items (vraag 11,12) voor MSI-value nog verbetering mogelijk is, situeert de discussie zich nu vooral op het vlak van de

\(^{22}\) Dit model staat niet in het overzicht van figuur 2. De analyse werd in het kader van dit discussieluik uitgevoerd.
constructvaliditeit. Het probleem is mogelijk inherent aan het feit dat cognitieve subdimensies zich minder sterk manifesteren (Krapp, 2007; Linnenbrink-Garcia et al., 2010). Wellicht wegen affectieve bekwaamheden van interesse meer door dan cognitieve (Krapp, 2007), maar blijft de wisselwerking van beide kenmerken existentieel voor de ontwikkeling van interesse (Ainley, 2006; Suzanne Hidi et al., 2004). Dit onderzoek plaatst MSI-value op de tweede plaats, vóór MSI-feeling. Dit lijkt te bevestigen wat Andreas Krapp (2007) hierover zegt, met name dat net een verandering in cognitie een intensere affectieve interessebeleving vooraf gaat. Dit kan als bijkomend theoretisch argument voor de hier voorgestelde rangorde van interesseontwikkeling worden beschouwd.

7.4. **Implicaties**

We bespreken de implicaties met betrekking tot de IO-vragenlijst en de theorie. Tot slot leggen we van daaruit een link naar de onderwijspraktijk.

Vooral cognitieve items van interesseontwikkeling tonen een hogere contextafhankelijkheid. Zowel met betrekking tot genderverschillen als vanuit het bestuderen van de constructvaliditeit. Ze zijn mogelijk hierdoor moeilijker te meten. Ze tonen meer contextafhankelijkheid (vraag 18) dan de affectieve items. De discussie omtrent cognitieve dimensies van interesseontwikkeling leert ons ook, dat cognitieve kenmerken van interesseontwikkeling mogelijk te weinig aandacht kregen in bestaand onderzoek. Ze zijn empirisch minder manifest, moeten specifieker omschreven worden naargelang de fase van interesseontwikkeling én ze zijn theoretisch gezien aanwezig in alle dimensies van interesseontwikkeling (TSI, MSI, PI). Toch wordt in het onderzoek van Linnenbrink (2010) en het huidig onderzoek enkel voor MSI een opdeling gemaakt. Zo blijkt deze discussie er één te zijn met opportuniteiten voor vervolgonderzoek. Dit biedt de opportuniteit om hoofd- en subdimensies van interesseontwikkeling anders te structureren. We maken deze oefening in bijlage 5. Deze oefening onderbouwt de mogelijkheid tot het ontwikkelen van een cognitieve dimensie voor TSI. Ook verdere specificering van cognitieve items kan de vragenlijst verbeteren. In bijlage 6 wordt daarom vanuit de invloedsfactoren, die in eerder onderzoek werden gevonden, een kader geboden om cognitieve dimensies van interesseontwikkeling te verbeteren. Voor TSI zoeken we bijvoorbeeld aansluiting bij het onderzoek van Tobias (1994), waarin het ‘aansluiten bij voorkennis’ een trigger voor interesse kan zijn (Bijlage 6). Ook sluiten we voor een cognitive component van TSI aan bij de review van Shraw en Lehman (2001), waaruit blijkt, dat inspanningen voor het triggeren
van interesse (vormgeving, gebruik van beelden) contraproductief kunnen zijn voor een diepere ontwikkeling van interesse (volledigheid, consistentie, duidelijkheid). Dit kan betekenen dat bijvoorbeeld het gebruik van PAV-thema's en iPads vooral inspelen op TSI, maar weinig of geen garanties bieden voor MSI. We stellen dan ook voor vervolgonderzoek op deze probleemstelling af te stemmen. Ook toonden we aan dat een gecontroleerde motivatiestijl negatief samenhangt met de interestedimensies. Dit wijkt niet af van de verwachtingen uit de hypotheses, maar heeft wel implicaties voor de onderwijspraktijk.

Daarnaast bleken de correlaties tussen interesse en verwante constructen (motivatie (ZDT), self-effectiviteit) ook richtinggevend voor vervolgonderzoek. We verwoorden daarom enkele algemene implicaties die uit de correlatiertabel (figuur 6) worden afgeleid. Deze tabel geeft indicatie voor: een groeiende autonome motivatie naarmate interesse ontwikkeld (autonome motivatie met-: MSI-value .473; -TSI .458; -MSI-feeling .618), een groeiende effectiviteit naarmate interesse ontwikkeld (self-effectiviteit met-: MSI-value .368; TSI .103; MSI-feeling .534), maar ook een dalende interesse bij een gecontroleerde motivatiestijl (gecontroleerde motivatie met-: TSI = .103; MSI-value = -.109; MSI-feeling = -.130). Deze laatste indicatie heeft, iedien ze ook longitudonaal kan worden onderbouwd, sterke implicaties voor onderwijs. Het betekent immers dat leerlingen hun interesse kan afnemen, wanneer we te veel druk uitoefenen om leerlingen op gecontroleerde wijze te motiveren (punten, straf). Het lijkt zinvol hier vervolgonderzoek aan te koppelen. Dat kan in combinatie met een verdere contextoverschrijdende validatie van de IO-vragenlijst.

We wezen in de inleiding al op leemtes in didactisch handelen omtrent interesseontwikkeling. Een erg belangrijke toepassing is dat de vragenlijst vergelijkbaar onderzoek op interesseontwikkeling mogelijk maakt. We kunnen ongeacht de gehanteerde: onderwijsvorm (klassiek, ervaringsgericht,...), didactiek (doceren, onderwijsleergesprek,...) technologie (smartboards, iPads, smartschool,...) dragers van leerinhouden (digitaal, papier, beeld), stijl van deze dragers (themagericht, associatief, lineair) nagaan welke effecten deze onderwijsomgeving heeft op de ontwikkeling van interesse. We kunnen nagaan of bijvoorbeeld het gebruik van PAV- thema’s of iPads een positief effect hebben op alle fases van interesseontwikkeling. Dit kan de vinger aan de pols houden voor scholen die willen meten hoe hun innovaties inwerken op de interesse en motivatie van leerlingen. Daarnaast kunnen de inzichten die we vanuit dit instrument opbouwen ondersteuning bieden in de kennis en begeleiding van studiekeuzes. We wezen er reeds op dat we er alle
belang bij hebben dat leerlingen vanuit een bewuste interesse kijken naar hun studiekeuze. Vaak zijn leerlingen zich in geringe mate bewust van hun interesses.

7.5. **Slotwoord**

Deze validatie geldt als een eerste stap in het contextonafhankelijk meten van interesseontwikkeling voor onderwijs. Gezien de beperkingen, die deze masterscriptie met zich meebrengt, is de betrouwbaarheid en validiteit van de IO-vragenlijst in eerste instantie nog contextafhankelijk (wiskunde, 2e graad ASO, TSO). Bijkomend onderzoek is nodig om de vragenlijst ook zeggingskracht omtrent andere vakken en andere contexten (lager en hoger onderwijs) te geven. Daarbij verdient het aanbeveling te kiezen voor uiteenlopende contexten, uiteenlopende vakken en uiteenlopende onderwijsmethodieken. Dit onderzoek was gefocust op de vertaling vanuit één afgebakende context. Veel aandacht werd besteed aan de theoretische implicaties van dit onderzoek, in functie van vervolgonderzoek om dit instrument ook contextonafhankelijk te maken. Om dit laatste hoofdstuk niet te veel te beladen, werden daartoe enkele bijlagen toegevoegd. We onderlijnen het belang van deze bijlagen (Bijlage 5,6) voor vervolgonderzoek. Wanneer voortgebouwd wordt op deze lijnen, kan dit model een omvattend kader bieden om het effect van pedagogische en didactische inspanningen helder en transparant te vergelijken over diverse onderwijscontexten en interessegebieden heen. Tot slot onderlijnen we ook het belang van interesse als onderzoeksdomein voor onderwijs. Het kan duidelijk de effecten van een vak als PAV of het gebruik van iPads op de leermotivatie van leerlingen in kaart brengen. Het kan een aanzet geven om de leemte tussen didactische methodieken ten opzichte van interesse in te vullen. Ook voor het maken van studiekeuzes is het meten van interesse een mogelijke toepassing. Afrondend willen we beklemtonen dat we met dit instrument het professioneel bewustzijn omtrent interesse, het stimuleren van interesse en het cultiveren van interesse bij leerlingen willen aanmoedigen. Het uitgangspunt voor het schrijven van dit werk kwam voort uit de wens om bewuster interesse van leerlingen in beweging te brengen. We ronden dan ook graag af met Herpart’s citaat.

“*Interest must not only be regarded as a desirable motivational condition of learning but also as an important goal or outcome of education.*”

(Herbart 1776–1841, uit Krapp & Prenzel, 2011, p.29).
8. Bibliografie

Fens, H. (2011). Factoriële validiteit van de Nederlandse vertaling van de Growth Motivation Index Factoriële validiteit van de Nederlandse vertaling van de Growth Motivation Index.

9. **Bijlagen**

9.1. **Bijlage 1: Conceptualiseringen van interesse in ontwikkelingsdimensies.**

Figuur 8. Vergelijking van verschillende benaderingen op interesseontwikkeling vanuit twee perspectieven.

<table>
<thead>
<tr>
<th>Unidimensioneel</th>
<th>Multidimensioneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persoon-object benadering (Autonome interesseontwikkeling)</td>
<td>Inhoud specifieke benadering interesse-ontwikkeling. (Gecontroleerde interesse ontwikkeling)</td>
</tr>
<tr>
<td>Tekst based Task Based Knowledge based SI</td>
<td>(Catch) First accuracy of situational interest</td>
</tr>
<tr>
<td>Triggered situational interest</td>
<td>Triggered situational interest (TSI)</td>
</tr>
<tr>
<td>(Hold) Stabilized situational interest</td>
<td>Maintained situational interest</td>
</tr>
<tr>
<td>Maintained SI-feeling (MSI-feeling)</td>
<td>Emerging individual interest</td>
</tr>
<tr>
<td>Maintained SI-value (MSI-value)</td>
<td>Well-developed individual interest</td>
</tr>
<tr>
<td>Latent personal interest Feeling related PI</td>
<td>individual interest / personal interest</td>
</tr>
<tr>
<td>Value related Actualised interest</td>
<td>individual interest</td>
</tr>
</tbody>
</table>

9.2. **Bijlage 2: Vertaling Engelse items van het SIS-instrument voor SI en PI >>**

Hoe werden de constructen van SI in de originele studie geoperationaliseerd? Voor ieder SI-construct werden uiteindelijk 4 vragen weerhouden. Opvallend is, dat daarin alle items positief geformuleerd zijn. Twee negatief geformuleerde items voor TSI en MSI-feeling werden vanwege te lage factorladingen op hun latente kenmerken geweerd (Linnenbrink-Garcia et al., 2010). Triggered situational interest (TSI) wordt gemeten aan de hand van volgende items: "My math teacher is exciting", "When we do math, my teacher does things that grab my attention", "This year, my math class is often entertaining", "My math class is so exciting it's easy to pay attention". Maintained situational interest value (MSI-feeling) bestaat uit volgende vier items: "What we are learning in math class this year is fascinating to me", "I am excited about what we are learning in math class this year", "I like what we are learning in math this year", "I find the math we do in class this year interesting". Als derde factor worden voor maintained situational interest value (MSI-value) volgende items weerhouden: "What we are studying in math class is useful for me to know ", "The things we are studying in math this year are important to me", "What we are learning in math this year can be applied to real life", "We are learning valuable things in math class this year" (Linnenbrink-Garcia et al., 2010). De 8 Items voor PI lijken zowel op waarde als gevoelgebaseerde zelfbeoordeling van interessebeleving terug te slaan. De vier items, die eerder een waarde-gebaseerde appreciatie van PI benaderen, zijn: "Math is practical for me to know.", "Math helps me in my daily life outside of school.", "It is important to me to be a person who reasons mathematically", "Thinking mathematically is an important part of who I am". De vier items, die eerder een affectieve appreciatie van een interessegebied benaderen, zijn: "I enjoy the subject of math", "I like math", "I enjoy doing math", "Math is exciting to me". Het enige inhoudelijke verschil tussen de laatste vier items en MSI-feeling is, dat de items van MSI-feeling situationeel zijn en verwijzen naar de wiskunde van dit jaar. Dit wordt bijvoorbeeld duidelijk in volgend item: "I like what we are learning in math this year". In de vertaling wordt het globale karakter van de vragenlijst gerespecteerd.
9.3. **Bijlage 3: Analyses OV1 & OV2**

Analyse 1: EFA Alle interesse-items (incl. vraag 18)

<table>
<thead>
<tr>
<th>Tabel 1: Communaliteiten</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.527</td>
<td>.654</td>
</tr>
<tr>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen, die mijn aandacht te grijpen.</td>
<td>.496</td>
<td>.563</td>
</tr>
<tr>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.616</td>
<td>.687</td>
</tr>
<tr>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.563</td>
<td>.599</td>
</tr>
<tr>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.707</td>
<td>.717</td>
</tr>
<tr>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.725</td>
<td>.734</td>
</tr>
<tr>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.743</td>
<td>.761</td>
</tr>
<tr>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.729</td>
<td>.750</td>
</tr>
<tr>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.589</td>
<td>.617</td>
</tr>
<tr>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.595</td>
<td>.647</td>
</tr>
<tr>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.564</td>
<td>.621</td>
</tr>
<tr>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.614</td>
<td>.662</td>
</tr>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.510</td>
<td>.519</td>
</tr>
<tr>
<td>PI_2 18. Wiskunde helpt me in het dagelijks leven buiten de school.</td>
<td>.394</td>
<td>.391</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.613</td>
<td>.663</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.602</td>
<td>.606</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.848</td>
<td>.810</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.861</td>
<td>.820</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.710</td>
<td>.704</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.775</td>
<td>.776</td>
</tr>
</tbody>
</table>

| Tabel 2: Verklaarde variantie | Initial Eigenva
<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>10,049</td>
<td>50,243</td>
<td>50,243</td>
</tr>
<tr>
<td>2</td>
<td>2,061</td>
<td>10,303</td>
<td>60,546</td>
</tr>
<tr>
<td>3</td>
<td>1,417</td>
<td>7,084</td>
<td>67,629</td>
</tr>
<tr>
<td>4</td>
<td>1,139</td>
<td>5,697</td>
<td>73,326</td>
</tr>
<tr>
<td>5</td>
<td>.649</td>
<td>3,246</td>
<td>76,572</td>
</tr>
<tr>
<td>... >20</td>
<td>.088</td>
<td>.440</td>
<td>100,000</td>
</tr>
</tbody>
</table>
Tabel 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th>Item</th>
<th>Factor Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.032</td>
</tr>
<tr>
<td></td>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.767</td>
</tr>
<tr>
<td></td>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.737</td>
</tr>
<tr>
<td></td>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.734</td>
</tr>
<tr>
<td></td>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.659</td>
</tr>
<tr>
<td></td>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.655</td>
</tr>
<tr>
<td></td>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.541</td>
</tr>
<tr>
<td></td>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.458</td>
</tr>
<tr>
<td></td>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.865</td>
</tr>
<tr>
<td></td>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.755</td>
</tr>
<tr>
<td></td>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.713</td>
</tr>
<tr>
<td></td>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.596</td>
</tr>
<tr>
<td></td>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.763</td>
</tr>
<tr>
<td></td>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.742</td>
</tr>
<tr>
<td></td>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.701</td>
</tr>
<tr>
<td></td>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.638</td>
</tr>
<tr>
<td></td>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.750</td>
</tr>
<tr>
<td></td>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.668</td>
</tr>
<tr>
<td></td>
<td>PI_2 18. Wiskunde helpt me in het dagelijks leven buiten de school.</td>
<td>.471</td>
</tr>
<tr>
<td></td>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.467</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser Normalization.
a. Rotation converged in 13 iterations.
Analyse 2 EFA TSI items

Tabel 1: Communaliteiten

<table>
<thead>
<tr>
<th>Item</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.497</td>
<td>.594</td>
</tr>
<tr>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.459</td>
<td>.538</td>
</tr>
<tr>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.556</td>
<td>.679</td>
</tr>
<tr>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.490</td>
<td>.562</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 2: Verklaarde variantie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
</tr>
<tr>
<td>1</td>
<td>2,776</td>
<td>69,396</td>
</tr>
<tr>
<td>2</td>
<td>.530</td>
<td>13,241</td>
</tr>
<tr>
<td>3</td>
<td>.377</td>
<td>9,426</td>
</tr>
<tr>
<td>4</td>
<td>.317</td>
<td>7,937</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
</tr>
<tr>
<td>1</td>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
</tr>
<tr>
<td>1</td>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
</tr>
<tr>
<td>1</td>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

a. 1 factors extracted. 6 iterations required.

Scree Plot
Analyse 3 EFA MSI-feeling (Model B,E)

Tabel 1: Communaliteiten

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIF_1</td>
<td>.675</td>
<td>.738</td>
</tr>
<tr>
<td>MSIF_2</td>
<td>.689</td>
<td>.756</td>
</tr>
<tr>
<td>MSIF_5</td>
<td>.718</td>
<td>.780</td>
</tr>
<tr>
<td>MSIF_6</td>
<td>.698</td>
<td>.760</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 2: Verklaarde variantie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
</tr>
<tr>
<td>1</td>
<td>3,282</td>
<td>82,041</td>
</tr>
<tr>
<td>2</td>
<td>.292</td>
<td>7,308</td>
</tr>
<tr>
<td>3</td>
<td>.227</td>
<td>5,671</td>
</tr>
<tr>
<td>4</td>
<td>.199</td>
<td>4,980</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.872</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.869</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.859</td>
<td></td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

a. 1 factors extracted. 5 iterations required.
Analyse 4 EFA MSI-value (Model B,E)

Table 1: Communalities

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.527</td>
<td>.605</td>
</tr>
<tr>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.567</td>
<td>.647</td>
</tr>
<tr>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.542</td>
<td>.630</td>
</tr>
<tr>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.552</td>
<td>.643</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Table 2: Verklaarde variantie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvales</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
</tr>
<tr>
<td>1</td>
<td>2,909</td>
<td>72,722</td>
</tr>
<tr>
<td>2</td>
<td>.453</td>
<td>11,321</td>
</tr>
<tr>
<td>3</td>
<td>.337</td>
<td>8,414</td>
</tr>
<tr>
<td>4</td>
<td>.302</td>
<td>7,543</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Table 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</th>
<th>.817</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.802</td>
</tr>
<tr>
<td></td>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.794</td>
</tr>
<tr>
<td></td>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.778</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.
a. 1 factors extracted. 5 iterations required.
Tabel 1: Communiteiten

<table>
<thead>
<tr>
<th>Item</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.430</td>
<td>.442</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.581</td>
<td>.460</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.582</td>
<td>.493</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.841</td>
<td>.791</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.836</td>
<td>.813</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.685</td>
<td>.705</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.731</td>
<td>.772</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 2: Verklaarde variantie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total % of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>4,805</td>
<td>68,647</td>
</tr>
<tr>
<td>2</td>
<td>.846</td>
<td>12,083</td>
</tr>
<tr>
<td>3</td>
<td>.519</td>
<td>7,408</td>
</tr>
<tr>
<td>4</td>
<td>.279</td>
<td>3,900</td>
</tr>
<tr>
<td>5</td>
<td>.247</td>
<td>3,533</td>
</tr>
<tr>
<td>6</td>
<td>.213</td>
<td>3,039</td>
</tr>
<tr>
<td>7</td>
<td>.091</td>
<td>1,299</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 3: Factoroplossing

<table>
<thead>
<tr>
<th>Item</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.902</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.890</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.878</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.840</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.702</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.678</td>
</tr>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.665</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.902</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

a. 1 factors extracted. 5 iterations required.
Analyse 6: EFA Model E (excl. vraag 18)

Tabel 1: Communaliteiten

<table>
<thead>
<tr>
<th>Item</th>
<th>Initial Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.526 .653</td>
</tr>
<tr>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.496 .566</td>
</tr>
<tr>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.616 .687</td>
</tr>
<tr>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.563 .600</td>
</tr>
<tr>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij/ kan mij sterk boeien.</td>
<td>.707 .720</td>
</tr>
<tr>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.724 .738</td>
</tr>
<tr>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.743 .772</td>
</tr>
<tr>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.729 .757</td>
</tr>
<tr>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.589 .623</td>
</tr>
<tr>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.589 .669</td>
</tr>
<tr>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.557 .612</td>
</tr>
<tr>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.610 .655</td>
</tr>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.479 .493</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.601 .632</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.601 .606</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.848 .815</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.861 .826</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.710 .710</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.774 .779</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 2: Verklaarde variantie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Loadingsa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>9,771</td>
<td>51,427</td>
<td>51,427</td>
</tr>
<tr>
<td>2</td>
<td>1,988</td>
<td>10,465</td>
<td>61,892</td>
</tr>
<tr>
<td>3</td>
<td>1,412</td>
<td>7,430</td>
<td>69,322</td>
</tr>
<tr>
<td>4</td>
<td>1,058</td>
<td>5,570</td>
<td>74,892</td>
</tr>
<tr>
<td>5</td>
<td>.618</td>
<td>3,250</td>
<td>78,142</td>
</tr>
<tr>
<td>6</td>
<td>.517</td>
<td>2,723</td>
<td>80,865</td>
</tr>
<tr>
<td>7</td>
<td>.452</td>
<td>2,378</td>
<td>83,243</td>
</tr>
<tr>
<td>8</td>
<td>.423</td>
<td>2,226</td>
<td>85,469</td>
</tr>
<tr>
<td>9</td>
<td>.405</td>
<td>2,130</td>
<td>87,598</td>
</tr>
<tr>
<td>10</td>
<td>.334</td>
<td>1,760</td>
<td>89,359</td>
</tr>
<tr>
<td>11</td>
<td>.319</td>
<td>1,680</td>
<td>91,039</td>
</tr>
<tr>
<td>12</td>
<td>.288</td>
<td>1,517</td>
<td>92,556</td>
</tr>
<tr>
<td>13</td>
<td>.281</td>
<td>1,479</td>
<td>94,035</td>
</tr>
<tr>
<td>14</td>
<td>.242</td>
<td>1,273</td>
<td>95,308</td>
</tr>
<tr>
<td>15</td>
<td>.233</td>
<td>1,224</td>
<td>96,532</td>
</tr>
<tr>
<td>16</td>
<td>.226</td>
<td>1,188</td>
<td>97,721</td>
</tr>
<tr>
<td>17</td>
<td>.181</td>
<td>.954</td>
<td>98,675</td>
</tr>
<tr>
<td>18</td>
<td>.164</td>
<td>.862</td>
<td>99,537</td>
</tr>
<tr>
<td>19</td>
<td>.088</td>
<td>.463</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.
Tabel 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIF_5</td>
<td>11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_6</td>
<td>12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_1</td>
<td>9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_2</td>
<td>10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_1</td>
<td>5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_2</td>
<td>6. Tijdens de le wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_3</td>
<td>7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_5</td>
<td>8. Omdat mijn wiskunde lessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_2</td>
<td>14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_4</td>
<td>15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_5</td>
<td>16. We leren waardevolle dingen in de wiskunde lessen dit jaar.</td>
<td>.713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_1</td>
<td>13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI_3</td>
<td>19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI_4</td>
<td>20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI_6</td>
<td>22. Ik doe graag wiskunde.</td>
<td>.516</td>
<td>.550</td>
<td></td>
</tr>
<tr>
<td>PI_5</td>
<td>21. Ik vind wiskunde leuk.</td>
<td>.522</td>
<td>.535</td>
<td></td>
</tr>
<tr>
<td>PI_7</td>
<td>23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.509</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI_8</td>
<td>24. Wiskunde is boeiend voor mij.</td>
<td>.433</td>
<td>.457</td>
<td></td>
</tr>
<tr>
<td>PI_1</td>
<td>17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.450</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.
Rotation Method: Oblimin with Kaiser Normalization.

a. Rotation converged in 15 iterations.

![Scree Plot](image-url)
Analyse 7: EFA Model D, D’ (Alle IO-items in twee factoren)

<table>
<thead>
<tr>
<th>Tabel 1: Communaliteiten</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.526</td>
<td>.433</td>
</tr>
<tr>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.496</td>
<td>.380</td>
</tr>
<tr>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.616</td>
<td>.667</td>
</tr>
<tr>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.563</td>
<td>.565</td>
</tr>
<tr>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.707</td>
<td>.635</td>
</tr>
<tr>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.724</td>
<td>.656</td>
</tr>
<tr>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.743</td>
<td>.638</td>
</tr>
<tr>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.729</td>
<td>.645</td>
</tr>
<tr>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.589</td>
<td>.572</td>
</tr>
<tr>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.589</td>
<td>.531</td>
</tr>
<tr>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.557</td>
<td>.449</td>
</tr>
<tr>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.610</td>
<td>.528</td>
</tr>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.479</td>
<td>.463</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.601</td>
<td>.449</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.601</td>
<td>.469</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.848</td>
<td>.692</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.861</td>
<td>.700</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.710</td>
<td>.658</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.774</td>
<td>.747</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

<table>
<thead>
<tr>
<th>Tabel 2: Verklaarde variatie</th>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>9,771</td>
<td>51,427</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,988</td>
<td>10,465</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,412</td>
<td>7,430</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1,058</td>
<td>5,570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>.088</td>
<td>.463</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.

<table>
<thead>
<tr>
<th>Tabel 3: Geroteerde oplossing</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.802</td>
</tr>
<tr>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.801</td>
</tr>
<tr>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.742</td>
</tr>
<tr>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.720</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.672</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.660</td>
</tr>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.627</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.613</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.578</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.559</td>
</tr>
<tr>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.544</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.544</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.511</td>
</tr>
<tr>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.503</td>
</tr>
<tr>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.818</td>
</tr>
<tr>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.693</td>
</tr>
<tr>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.605</td>
</tr>
<tr>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.460</td>
</tr>
</tbody>
</table>
Analyse 8: EFA Model B (alle SI-items)

Tabel 1: Communaliteiten

<table>
<thead>
<tr>
<th>Item</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1 5</td>
<td>.513</td>
<td>.648</td>
</tr>
<tr>
<td>TSI_2 6</td>
<td>.485</td>
<td>.564</td>
</tr>
<tr>
<td>TSI_3 7</td>
<td>.599</td>
<td>.678</td>
</tr>
<tr>
<td>TSI_5 8</td>
<td>.556</td>
<td>.598</td>
</tr>
<tr>
<td>MSIF_1 9</td>
<td>.693</td>
<td>.741</td>
</tr>
<tr>
<td>MSIF_5 10</td>
<td>.708</td>
<td>.757</td>
</tr>
<tr>
<td>MSIF_6 12</td>
<td>.735</td>
<td>.803</td>
</tr>
<tr>
<td>MSIV_1 13</td>
<td>.578</td>
<td>.671</td>
</tr>
<tr>
<td>MSIV_2 14</td>
<td>.570</td>
<td>.622</td>
</tr>
<tr>
<td>MSIV_5 16</td>
<td>.597</td>
<td>.659</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 2: Verklaarde variatie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation ... Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total % of Variance</td>
<td>Cumulative %</td>
<td>Total % of Variance</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>6,075</td>
<td>50,626</td>
<td>48,069</td>
</tr>
<tr>
<td>2</td>
<td>1,859</td>
<td>15,493</td>
<td>12,479</td>
</tr>
<tr>
<td>3</td>
<td>1,166</td>
<td>9,717</td>
<td>7,184</td>
</tr>
<tr>
<td>4</td>
<td>.462</td>
<td>3,850</td>
<td>78,685</td>
</tr>
<tr>
<td>5</td>
<td>.445</td>
<td>3,712</td>
<td>83,397</td>
</tr>
<tr>
<td>>12</td>
<td>.180</td>
<td>1,503</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Tabel 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Item</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIF_5 11</td>
<td>.918</td>
</tr>
<tr>
<td>MSIF_2 10</td>
<td>.811</td>
</tr>
<tr>
<td>MSIF_6 12</td>
<td>.798</td>
</tr>
<tr>
<td>MSIF_1 9</td>
<td>.796</td>
</tr>
<tr>
<td>TSI_1 5</td>
<td>.849</td>
</tr>
<tr>
<td>TSI_2 6</td>
<td>.747</td>
</tr>
<tr>
<td>TSI_3 7</td>
<td>.698</td>
</tr>
<tr>
<td>TSI_5 8</td>
<td>.574</td>
</tr>
<tr>
<td>MSIV_2 14</td>
<td>.829</td>
</tr>
<tr>
<td>MSIV_4 15</td>
<td>.822</td>
</tr>
<tr>
<td>MSIV_5 16</td>
<td>.741</td>
</tr>
<tr>
<td>MSIV_1 13</td>
<td>.700</td>
</tr>
</tbody>
</table>

Scree Plot

Table and graph details are transcribed here for analysis and comprehension.
Analyse 9: EFA Model A, C (alle SI-items in 2 factoren)

Tabel 1: Communaliteiten

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Extraction</th>
<th>Extraction</th>
<th>Rotation... Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sums of Squared Loadings</td>
<td>a</td>
</tr>
<tr>
<td>TSI_1 5</td>
<td>Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.513</td>
<td>.495</td>
</tr>
<tr>
<td>TSI_2 6</td>
<td>Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.485</td>
<td>.433</td>
</tr>
<tr>
<td>TSI_3 7</td>
<td>Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.599</td>
<td>.691</td>
</tr>
<tr>
<td>TSI_5 8</td>
<td>Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.556</td>
<td>.610</td>
</tr>
<tr>
<td>MSIF_1 9</td>
<td>Wat we dit jaar leren in de lessen wiskunde boeit mij sterk! kan mij sterk boeien.</td>
<td>.633</td>
<td>.639</td>
</tr>
<tr>
<td>MSIF_2 10</td>
<td>Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.708</td>
<td>.646</td>
</tr>
<tr>
<td>MSIF_5 11</td>
<td>Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.735</td>
<td>.616</td>
</tr>
<tr>
<td>MSIV_6 12</td>
<td>Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.717</td>
<td>.658</td>
</tr>
<tr>
<td>MSIV_1 13</td>
<td>Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.570</td>
<td>.614</td>
</tr>
<tr>
<td>MSIV_2 14</td>
<td>Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.578</td>
<td>.602</td>
</tr>
<tr>
<td>MSIV_4 15</td>
<td>Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.549</td>
<td>.503</td>
</tr>
<tr>
<td>MSIV_5 16</td>
<td>We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.597</td>
<td>.603</td>
</tr>
</tbody>
</table>

Tabel 2: Verklaarde variantie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation... Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total % of Variance</td>
<td>Cumulative %</td>
<td>Total % of Variance</td>
</tr>
<tr>
<td>1</td>
<td>6,075</td>
<td>50,626</td>
<td>50,626</td>
</tr>
<tr>
<td>2</td>
<td>1,859</td>
<td>15,493</td>
<td>66,119</td>
</tr>
<tr>
<td>3</td>
<td>1,166</td>
<td>9,717</td>
<td>75,835</td>
</tr>
<tr>
<td>>12</td>
<td>.180</td>
<td>1,503</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Tabel 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIV_2 14</td>
<td>.825</td>
<td>.804</td>
</tr>
<tr>
<td>MSIV_1 13</td>
<td>.767</td>
<td>.733</td>
</tr>
<tr>
<td>MSIV_5 16</td>
<td>.859</td>
<td>.545</td>
</tr>
<tr>
<td>MSIV_4 15</td>
<td>.521</td>
<td>.433</td>
</tr>
<tr>
<td>MSIF_6 12</td>
<td>.840</td>
<td>.751</td>
</tr>
<tr>
<td>TSI_3 7</td>
<td>.721</td>
<td>.656</td>
</tr>
<tr>
<td>TSI_5 8</td>
<td>.460</td>
<td>.464</td>
</tr>
</tbody>
</table>
Analyse 10: EFA Model D (alle SI-items in één factor)

Tabel 1: Communaliteiten

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1</td>
<td>.513</td>
<td>.225</td>
</tr>
<tr>
<td>TSI_2</td>
<td>.485</td>
<td>.273</td>
</tr>
<tr>
<td>TSI_3</td>
<td>.599</td>
<td>.402</td>
</tr>
<tr>
<td>TSI_5</td>
<td>.693</td>
<td>.657</td>
</tr>
<tr>
<td>MSIF_1</td>
<td>.708</td>
<td>.662</td>
</tr>
<tr>
<td>MSIF_2</td>
<td>.735</td>
<td>.631</td>
</tr>
<tr>
<td>MSIF_6</td>
<td>.717</td>
<td>.676</td>
</tr>
<tr>
<td>MSIF_1</td>
<td>.570</td>
<td>.429</td>
</tr>
<tr>
<td>MSIF_2</td>
<td>.578</td>
<td>.361</td>
</tr>
<tr>
<td>MSIF_4</td>
<td>.549</td>
<td>.345</td>
</tr>
<tr>
<td>MSIF_5</td>
<td>.597</td>
<td>.467</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 2: Verklaarde variatie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total % of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td></td>
<td>Total % of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>6,075</td>
<td>50,626</td>
</tr>
<tr>
<td></td>
<td>50,626</td>
<td>50,626</td>
</tr>
<tr>
<td>2</td>
<td>1,859</td>
<td>31,493</td>
</tr>
<tr>
<td></td>
<td>46,541</td>
<td>46,541</td>
</tr>
<tr>
<td>3</td>
<td>1,166</td>
<td>21,717</td>
</tr>
<tr>
<td></td>
<td>75,835</td>
<td>75,835</td>
</tr>
<tr>
<td>4</td>
<td>.462</td>
<td>3,850</td>
</tr>
<tr>
<td></td>
<td>79,685</td>
<td>79,685</td>
</tr>
<tr>
<td>5</td>
<td>.445</td>
<td>3,712</td>
</tr>
<tr>
<td></td>
<td>83,397</td>
<td>83,397</td>
</tr>
<tr>
<td>6</td>
<td>.397</td>
<td>3,312</td>
</tr>
<tr>
<td></td>
<td>86,709</td>
<td>86,709</td>
</tr>
<tr>
<td>7</td>
<td>.341</td>
<td>2,844</td>
</tr>
<tr>
<td></td>
<td>89,553</td>
<td>89,553</td>
</tr>
<tr>
<td>8</td>
<td>.311</td>
<td>2,591</td>
</tr>
<tr>
<td></td>
<td>92,145</td>
<td>92,145</td>
</tr>
<tr>
<td>9</td>
<td>.280</td>
<td>2,333</td>
</tr>
<tr>
<td></td>
<td>94,477</td>
<td>94,477</td>
</tr>
<tr>
<td>10</td>
<td>.266</td>
<td>2,216</td>
</tr>
<tr>
<td></td>
<td>96,693</td>
<td>96,693</td>
</tr>
<tr>
<td>11</td>
<td>.217</td>
<td>1,805</td>
</tr>
<tr>
<td></td>
<td>98,497</td>
<td>98,497</td>
</tr>
<tr>
<td>12</td>
<td>.180</td>
<td>1,503</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.
Tabel 3: Factoroplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th>Item</th>
<th>Factor Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.822</td>
</tr>
<tr>
<td>1</td>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.814</td>
</tr>
<tr>
<td>1</td>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.810</td>
</tr>
<tr>
<td>1</td>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.794</td>
</tr>
<tr>
<td>1</td>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.684</td>
</tr>
<tr>
<td>1</td>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>.675</td>
</tr>
<tr>
<td>1</td>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.655</td>
</tr>
<tr>
<td>1</td>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>.634</td>
</tr>
<tr>
<td>1</td>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.601</td>
</tr>
<tr>
<td>1</td>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.587</td>
</tr>
<tr>
<td>1</td>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>.523</td>
</tr>
<tr>
<td>1</td>
<td>TSI_1 15. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>.474</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

a. 1 factors extracted. 4 iterations required.

![Scree Plot](image-url)

Scree Plot

- **Eigenva
 lue**
 - 6
 - 4
 - 2
 - 0
- **Factor Number**
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12

81
Analyse 11: EFA PI-items (- vraag 18) (Model D’, E)

<table>
<thead>
<tr>
<th>Tabel 1: Communaliteiten</th>
<th>Initial Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.430</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.581</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.582</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.841</td>
</tr>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>.896</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.685</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.731</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

<table>
<thead>
<tr>
<th>Tabel 2: Verklarde variantie</th>
<th>Initial Eigenvalues Extraction Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>4.805</td>
</tr>
<tr>
<td>2</td>
<td>.846</td>
</tr>
<tr>
<td>3</td>
<td>.519</td>
</tr>
<tr>
<td>4</td>
<td>.279</td>
</tr>
<tr>
<td>5</td>
<td>.247</td>
</tr>
<tr>
<td>6</td>
<td>.213</td>
</tr>
<tr>
<td>7</td>
<td>.091</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

<table>
<thead>
<tr>
<th>Tabel 3: Geroteerde oplossing</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI_6 22. Ik doe graag wiskunde.</td>
<td>1.902</td>
</tr>
<tr>
<td>PI_5 21. Ik vind wiskunde leuk.</td>
<td>.890</td>
</tr>
<tr>
<td>PI_8 24. Wiskunde is boeiend voor mij.</td>
<td>.878</td>
</tr>
<tr>
<td>PI_7 23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td>.840</td>
</tr>
<tr>
<td>PI_4 20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td>.702</td>
</tr>
<tr>
<td>PI_3 19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td>.678</td>
</tr>
<tr>
<td>PI_1 17. Voor mij is het handig dat ik wiskunde kan.</td>
<td>.665</td>
</tr>
</tbody>
</table>

Scree Plot
Analyse 12: EFA MSI-feeling/MSI-value (Model B,E)

Tabel 1: Communaliteiten

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>.687 .739</td>
</tr>
<tr>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>.703 .759</td>
</tr>
<tr>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>.721 .799</td>
</tr>
<tr>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>.709 .762</td>
</tr>
<tr>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>.569 .620</td>
</tr>
<tr>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>.570 .664</td>
</tr>
<tr>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>.545 .633</td>
</tr>
<tr>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>.590 .654</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Axis Factoring.

Tabel 2: Verklaarde variantie

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>4.924</td>
<td>61.547</td>
<td>61.547</td>
</tr>
<tr>
<td>2</td>
<td>1.296</td>
<td>16.197</td>
<td>77.744</td>
</tr>
<tr>
<td>3</td>
<td>.453</td>
<td>5.667</td>
<td>83.411</td>
</tr>
<tr>
<td>4</td>
<td>.342</td>
<td>4.279</td>
<td>87.691</td>
</tr>
<tr>
<td>5</td>
<td>.299</td>
<td>3.739</td>
<td>91.430</td>
</tr>
<tr>
<td>6</td>
<td>.273</td>
<td>3.408</td>
<td>94.838</td>
</tr>
<tr>
<td>7</td>
<td>.224</td>
<td>2.800</td>
<td>97.638</td>
</tr>
<tr>
<td>8</td>
<td>.189</td>
<td>2.362</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Tabel 3: Geroteerde oplossing

<table>
<thead>
<tr>
<th>Factor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.949</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.853</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.826</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.820</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.843</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.836</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.744</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.704</td>
<td></td>
</tr>
</tbody>
</table>
Triggered situational interest (TSI)

Tabel 1: schaal betrouwbaarheid

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.853</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 2: schaal-item statistieken

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>3,40</td>
<td>1,040</td>
<td>543</td>
</tr>
<tr>
<td>TSI_3 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>3,22</td>
<td>1,086</td>
<td>543</td>
</tr>
<tr>
<td>TSI_7 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>3,02</td>
<td>1,077</td>
<td>543</td>
</tr>
<tr>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>2,98</td>
<td>1,074</td>
<td>543</td>
</tr>
</tbody>
</table>

Tabel 3: schaal-item betrouwbaarheid

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item Total Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI_1 5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td>9,22</td>
<td>7,605</td>
<td>.697</td>
<td>.811</td>
</tr>
<tr>
<td>TSI_2 6. Tijdens de les wiskunde doet mijn leerkracht dingen die mijn aandacht te grijpen.</td>
<td>9,40</td>
<td>7,536</td>
<td>.666</td>
<td>.824</td>
</tr>
<tr>
<td>TSI_3 7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>9,59</td>
<td>7,256</td>
<td>.735</td>
<td>.795</td>
</tr>
<tr>
<td>TSI_5 8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>9,64</td>
<td>7,541</td>
<td>.676</td>
<td>.820</td>
</tr>
</tbody>
</table>

Tabel 4: schaal statistieken

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,62</td>
<td>12,683</td>
<td>3,561</td>
<td>4</td>
</tr>
</tbody>
</table>
Maintained situational interest – feeling (MSI-feeling)

Tabel 1: schaal betrouwbaarheid

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.927</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 2: schaal-item statistieken

<table>
<thead>
<tr>
<th>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>2.89</td>
<td>1.053</td>
<td>543</td>
</tr>
<tr>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>2.71</td>
<td>1.040</td>
<td>543</td>
</tr>
<tr>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>2.90</td>
<td>1.084</td>
<td>543</td>
</tr>
</tbody>
</table>

Tabel 3: schaal-item betrouwbaarheid

<table>
<thead>
<tr>
<th>Corrected Item-Total Correlation</th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIF_1 9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/ kan mij sterk boeien.</td>
<td>8.35</td>
<td>8.444</td>
<td>.819</td>
</tr>
<tr>
<td>MSIF_2 10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td>8.50</td>
<td>8.494</td>
<td>.828</td>
</tr>
<tr>
<td>MSIF_5 11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td>8.52</td>
<td>8.394</td>
<td>.844</td>
</tr>
<tr>
<td>MSIF_6 12. Ik vind de wiskunde dit we dit jaar in de klas doen interessant.</td>
<td>8.34</td>
<td>8.231</td>
<td>.829</td>
</tr>
</tbody>
</table>

Tabel 4: schaal statistieken

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.23</td>
<td>14.562</td>
<td>3.816</td>
<td>4</td>
</tr>
</tbody>
</table>
Maintained situational interest – value (MSI-value)

Tabel 1: schaal betrouwbaarheid

<table>
<thead>
<tr>
<th></th>
<th>Cronbach’s Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.873</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 2: schaal-item statistieken

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIV_1 13.</td>
<td>3.07</td>
<td>1.198</td>
<td>543</td>
</tr>
<tr>
<td>MSIV_2 14.</td>
<td>3.05</td>
<td>1.134</td>
<td>543</td>
</tr>
<tr>
<td>MSIV_4 15.</td>
<td>3.13</td>
<td>1.215</td>
<td>543</td>
</tr>
<tr>
<td>MSIV_5 16.</td>
<td>3.08</td>
<td>1.002</td>
<td>543</td>
</tr>
</tbody>
</table>

Tabel 3: schaal-item betrouwbaarheid

<table>
<thead>
<tr>
<th>Item</th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Cronbach’s Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIV_1 13. Ik vind wat we voor wiskunde studeren dit jaar nuttig voor mij.</td>
<td>9.26</td>
<td>8.585</td>
<td>.716</td>
<td>.842</td>
</tr>
<tr>
<td>MSIV_2 14. Wat we dit jaar voor wiskunde studeren is eerder belangrijk voor mij.</td>
<td>9.28</td>
<td>8.749</td>
<td>.747</td>
<td>.829</td>
</tr>
<tr>
<td>MSIV_4 15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td>9.20</td>
<td>8.451</td>
<td>.725</td>
<td>.839</td>
</tr>
<tr>
<td>MSIV_5 16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td>9.24</td>
<td>9.503</td>
<td>.735</td>
<td>.838</td>
</tr>
</tbody>
</table>

Tabel 4: schaal statistieken

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.33</td>
<td>15,044</td>
<td>3.879</td>
<td>4</td>
</tr>
</tbody>
</table>
Tabel 1: schaal betrouwbaarheid

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.921</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabel 2: schaal-item statistieken

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI_1</td>
<td>3.78</td>
<td>1.002</td>
<td>543</td>
</tr>
<tr>
<td>PI_3</td>
<td>2.75</td>
<td>1.128</td>
<td>543</td>
</tr>
<tr>
<td>PI_4</td>
<td>2.50</td>
<td>1.113</td>
<td>543</td>
</tr>
<tr>
<td>PI_5</td>
<td>2.88</td>
<td>1.265</td>
<td>543</td>
</tr>
<tr>
<td>PI_6</td>
<td>2.92</td>
<td>1.291</td>
<td>543</td>
</tr>
<tr>
<td>PI_7</td>
<td>2.49</td>
<td>1.113</td>
<td>543</td>
</tr>
<tr>
<td>PI_8</td>
<td>2.85</td>
<td>1.163</td>
<td>543</td>
</tr>
</tbody>
</table>

Tabel 3: schaal-item betrouwbaarheid

<table>
<thead>
<tr>
<th>Item</th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI_1</td>
<td>13.64</td>
<td>27.319</td>
<td>.624</td>
<td>.925</td>
</tr>
<tr>
<td>PI_3</td>
<td>14.92</td>
<td>26.450</td>
<td>.626</td>
<td>.926</td>
</tr>
<tr>
<td>PI_4</td>
<td>14.55</td>
<td>22.772</td>
<td>.869</td>
<td>.893</td>
</tr>
<tr>
<td>PI_5</td>
<td>14.51</td>
<td>22.431</td>
<td>.880</td>
<td>.891</td>
</tr>
<tr>
<td>PI_6</td>
<td>14.94</td>
<td>24.659</td>
<td>.810</td>
<td>.902</td>
</tr>
<tr>
<td>PI_7</td>
<td>14.57</td>
<td>23.902</td>
<td>.844</td>
<td>.897</td>
</tr>
<tr>
<td>PI_8</td>
<td>13.64</td>
<td>27.319</td>
<td>.624</td>
<td>.925</td>
</tr>
</tbody>
</table>

Tabel 4: schaal statistieken

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
<th>Std. Deviation</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.21</td>
<td>54.154</td>
<td>7.359</td>
<td>8</td>
</tr>
</tbody>
</table>
Analyse 14: Genderverschillen via t-test

Tabel 1: Group statistics

<table>
<thead>
<tr>
<th></th>
<th>meisje_1</th>
<th>meisje_1</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI TSI somscore</td>
<td>1,00</td>
<td>320</td>
<td>223</td>
<td>3,2534</td>
<td>.87201</td>
<td>.06839</td>
</tr>
<tr>
<td>TSI somscore</td>
<td>.00</td>
<td>223</td>
<td></td>
<td>3,0859</td>
<td>.89781</td>
<td>.05019</td>
</tr>
<tr>
<td>MSI_f MSI_f somscore</td>
<td>.00</td>
<td>223</td>
<td>3,9002</td>
<td>.97049</td>
<td>.06499</td>
<td></td>
</tr>
<tr>
<td>MSI_f somscore</td>
<td>1,00</td>
<td>320</td>
<td>2,7438</td>
<td>.93853</td>
<td>.05247</td>
<td></td>
</tr>
<tr>
<td>MSI_v MSI_v somscore</td>
<td>.00</td>
<td>223</td>
<td>3,2915</td>
<td>.93765</td>
<td>.06279</td>
<td></td>
</tr>
<tr>
<td>MSI_v somscore</td>
<td>1,00</td>
<td>320</td>
<td>2,9367</td>
<td>.96637</td>
<td>.05402</td>
<td></td>
</tr>
<tr>
<td>PI PI somscore</td>
<td>.00</td>
<td>223</td>
<td></td>
<td>3,0378</td>
<td>.94534</td>
<td>.06330</td>
</tr>
<tr>
<td>PI somscore</td>
<td>1,00</td>
<td>320</td>
<td>2,7741</td>
<td>.95259</td>
<td>.05325</td>
<td></td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Levene's</th>
<th>t-test</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
<td>df</td>
<td>Mean Difference</td>
<td>Std. E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>1,295</td>
<td>.256</td>
<td>2,193</td>
<td>541</td>
<td>.031</td>
<td>.10743</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>2,174</td>
<td>.017</td>
<td>486</td>
<td>41</td>
<td>.000</td>
<td>.10743</td>
</tr>
<tr>
<td>MSI_f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.003</td>
<td>.955</td>
<td>1,885</td>
<td>541</td>
<td>.000</td>
<td>.15647</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>1,873</td>
<td>.062</td>
<td>467</td>
<td>47</td>
<td>.000</td>
<td>.15647</td>
</tr>
<tr>
<td>MSI_v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.063</td>
<td>.327</td>
<td>4,280</td>
<td>541</td>
<td>.000</td>
<td>.15475</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>4,283</td>
<td>.000</td>
<td>486</td>
<td>709</td>
<td>.000</td>
<td>.15475</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.167</td>
<td>.683</td>
<td>3,183</td>
<td>541</td>
<td>.002</td>
<td>.26369</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>3,186</td>
<td>.002</td>
<td>480</td>
<td>054</td>
<td>.002</td>
<td>.26369</td>
</tr>
</tbody>
</table>
Analyse 15: EFA zonder de items met kruisladingen

Tabel 1: geroteerde oplossing zonder PI (gevoelgerelateerde items)

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIV_4</td>
<td>0.817</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_2</td>
<td>0.800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_5</td>
<td>0.734</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIV_1</td>
<td>0.648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_1</td>
<td>0.849</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_2</td>
<td>0.737</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_3</td>
<td>0.700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSI_5</td>
<td>0.577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_5</td>
<td></td>
<td>-0.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_6</td>
<td></td>
<td>-0.792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_1</td>
<td></td>
<td>-0.774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSIF_2</td>
<td></td>
<td>-0.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI_3</td>
<td></td>
<td></td>
<td>0.922</td>
<td></td>
</tr>
<tr>
<td>PI_4</td>
<td></td>
<td></td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td>PI_2</td>
<td></td>
<td></td>
<td>0.503</td>
<td></td>
</tr>
<tr>
<td>PI_1</td>
<td></td>
<td></td>
<td></td>
<td>0.455</td>
</tr>
</tbody>
</table>
9.4. **Bijlage 4: Toelichting bij het gebruik van de IO-vragenlijst.**

Figuur 9: IO-vragenlijst.

<table>
<thead>
<tr>
<th>Items</th>
<th>Model</th>
<th>Scoresleutel</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Mijn leerkracht wiskunde geeft wiskunde op een boeiende manier.</td>
<td></td>
<td>(5+6+7+8)/4</td>
</tr>
<tr>
<td>6. Tijdens de lessen wiskunde doet mijn leerkracht dingen die mijn aandacht grijpen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Dit jaar zijn de lessen wiskunde vaak leuk.</td>
<td>TSI</td>
<td>(5+6+7+8)/4</td>
</tr>
<tr>
<td>8. Omdat mijn wiskundelessen dit jaar interessant zijn, kan ik er goed mijn aandacht bijhouden.</td>
<td>MSI-feeling</td>
<td>(9+10+11+12)/4</td>
</tr>
<tr>
<td>9. Wat we dit jaar leren in de lessen wiskunde boeit mij sterk/kan mij sterk boeien.</td>
<td>MSI-value</td>
<td>(13+14+15+16)/4</td>
</tr>
<tr>
<td>10. Ik ben enthousiast over wat we dit jaar voor wiskunde leren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Ik vind wat we voor wiskunde leren dit jaar leuk.</td>
<td></td>
<td>(9+10+11+12)/4</td>
</tr>
<tr>
<td>12. Ik vind de wiskunde die we dit jaar in de klas doen interessant.</td>
<td></td>
<td>(9+10+11+12)/4</td>
</tr>
<tr>
<td>13. Ik vind wat we voor wiskunde studeren nuttig voor mij.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Wat we dit jaar voor wiskunde studeren is belangrijk voor mij.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Het wiskundig denken dat ik dit jaar leer, kan ik later gebruiken in het echte leven.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. We leren waardevolle dingen in de wiskundelessen dit jaar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Voor mij is het handig dat ik wiskunde kan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.* Wiskunde helpt me in het dagelijks leven buiten de school.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Voor mij is het belangrijk iemand te zijn die wiskundig denkt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Wiskundig denken is een belangrijke eigenschap van mij.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Ik doe graag wiskunde.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Ik geniet van het werk dat ik doe tijdens wiskunde.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Wiskunde is boeiend voor mij.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In figuur 9 staan alle items van de IO-vragenlijst. De vragenlijst kan worden aangepast voor andere vakken door het woord wiskunde te vervangen door het betreffende vak (vb. Engels, ICT,...). Alle items met betrekking tot zowel TSI, MSI-value, MSI-feeling en PI, worden gescoord op een Likert-schaal van 1 (volledig oneens) naar 5 (volledig eens). Het verdient sterke aanbeveling PI-items vooraan in de vragenlijst op te nemen. De vragenlijst kan zowel electronisch als via schriftelijke vragenlijsten worden opgevraagd.

23 **(vraag 11 (alt.) ik vind de onderwerpen die we voor wiskunde leren dit jaar leuk.)**

24 **(vraag 12 (alt.) Ik vind de onderwerpen die we dit in de klas voor wiskunde krijgen interessant)**
9.5. **Bijlage 5: Een verruimde conceptualisering van interesseontwikkeling.**

Figuur 10: Theoretische voorstelling van ontwikkelingsrangorde van subdimensies van interesseontwikkeling.

<table>
<thead>
<tr>
<th>TSI (Triggerd Situational Interest)</th>
<th>MSI (Maintained situational interest)</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>cognitief</td>
<td>affectief</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>cognitief</td>
<td>affectief</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In figuur 10 wordt een uitbreiding van de conceptualisering van interesseontwikkeling voorgesteld aan de hand van de theoretische en empirische inzichten uit deze studie. Dit doet geen afbreuk aan de validiteit en betrouwbaarheid van de hier gevalideerde factoren van interesseontwikkeling. Het laat eventueel wel verdere verfijning van interesseontwikkeling toe. De resultaten van deze validatie doen uitschijnen dat voor de componenten TSI en MSI-value, verdere uitbouw van het instrument mogelijk is. Deze blijkt zich vooral te situeren in het specificeren en uitbouwen van cognitieve subdimensies van interesseontwikkeling. Hidi, Renninger en Krapp (2004) beklemtonen, dat het onderscheid tussen cognitieve en affectieve componenten van interesseontwikkeling eerder artificieel is vanwege de constante interactie tussen cognitieve en affectieve aspecten. Toch kunnen we MSI-value valide en betrouwbaar meten. Bovendien hebben we redenen om aan te nemen dat vooral cognitieve kenmerken meer contextafhankelijk zijn. Het loont dan ook de moeite om in vervolgonderzoek extra aandacht te besteden aan de operasionalisering van cognitief gerelateerde constructen en vragen. De uitbouw van een cognitieve TSI component kan de articulatie van het model verhogen. We menen dat de cognitieve subdimensies ondanks het feit dat ze zich minder manifesteren in eigenwaardes een belangrijke rol spelen in interesseontwikkeling. Hierbij sluiten we ons aan bij Krapp (2007), door te stellen dat cognitieve kenmerken van interesseontwikkeling eerder als een vorm van identificatieproces moeten worden gezien. Zaken als ‘aansluiten bij voorkennts’ (‘TSI-cognitief’), ‘kennis als nuttig en bruikbaar achten’ (MSI-value) zijn daar mogelijk mee te associëren. Ook de aanwezigheid van zowel cognitieve als affectieve kenmerken in PI blijkt uit de kruisladingen en de grootte van de factorladingen die we in het resultaatsgedeelte aanhaalden (OV1). Dit maakt dat we vanuit theoretisch oogpunt interesseontwikkeling ook volgens figuur 10 kunnen voorstellen.
9.6. Bijlage 6: Fases van interesseontwikkeling en invloedsfactoren van interesse

In deze bijlage trachten we bestaand onderzoek over invloedsfactoren van interesse te koppelen aan cognitieve en affectieve subdimensies van interesseontwikkeling. Daarbij komt een nog bredere waaier aan invloedsfactoren voor het voetlicht zoals: coherentie, identificatiemogelijkheden, spanning,...(Hidi & Renninger, 2006; Andreas Krapp, 2007; Andreas Krapp & Prenzel, 2011; Mitchell, 1993; Schraw et al., 2001); het aansluiten bij eerdere kennis, verwevenheid en volledigheid van informatie, concreetheid, levendigheid, spanning, engagerend vermogen, beeldrijkheid, waardering (Schraw & Lehman, 2001); ervaring, gewenste emoties (Deci, 1992; K.A. Renninger et al., 1992; Ulrich Schiefele, 1991); metacognities (Renninger & Su, 2011); aansluiten bij voorkennis (Tobias, 1994); bieden van keuzemogelijkheden en de benaderbaarheid van leerkrachten (Linnenbrink & Patall, 2012).

In het ontwikkelen van interesse staat de wisselwerking tussen affectieve en cognitieve processen centraal (Ainley, 2006; Suzanne Hidi et al., 2004; Hildyard et al., 1982; Linnenbrink, 2004). We kunnen deze invloedsfactoren trachten onder te brengen naargelang we ze meer met bepaalde fases van interesseontwikkeling kunnen associëren (Figuur 11). Dit kan een basis zijn voor een mixed method onderzoek, waarin vooral wordt gefocused op de cognitieve kenmerken van interesseontwikkeling. In figuur 11 doen we deze oefening voor TSI en MSI.

Figuur 11. Richtingen voor het uitbreiden van de SI-vragenlijst.

<table>
<thead>
<tr>
<th>Affectief</th>
<th>Cognitief</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI</td>
<td></td>
</tr>
<tr>
<td>TSI-feeling</td>
<td>TSI-predisposition</td>
</tr>
<tr>
<td>Vragenlijst Linnenbrink (2010): leerkracht = boeiend, kan aandacht grijpen, is leuk, brengt het interessant aan</td>
<td>Mogelijk in te bouwen vanuit: Leerkracht sluit aan bij: eerdere kennis (Frenzel, 2011); eerdere ervaring (Deci, 1992; K.A. Renninger et al., 1992; Ulrich Schiefele, 1991); Het cursusmateriaal is beeldrijk (Schraw & Lehman, 2001)</td>
</tr>
<tr>
<td>Mogelijk uit te breiden met: Cursusmateriaal wordt aangeboden op een wijze die: uitdaging is, engagerend is (Schraw & Lehman, 2001)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI-feeling</td>
<td>MSI-value</td>
</tr>
<tr>
<td>Mogelijk uit te breiden met: Cursusmateriaal wordt verwerkt op een wijze die: uitdaging is, engagerend is (Schraw & Lehman, 2001)</td>
<td>Mogelijk uit te breiden met: Interessegebied dit jaar = coherent, consistent, overzichtelijk, volledig (Schraw et al., 2001), biedt identificatiemogelijkheden (Krapp, 2007)</td>
</tr>
</tbody>
</table>

92