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Summary 

 

Mathematical skills are crucial abilities in modern western society, so it is 

important to uncover the cognitive processes underlying children’s achievement in 

mathematics. Why are some children very good in doing calculations and do others 

experience life-long difficulties with this basic competency? Most research in the 

last decade has identified the ability to process numerical magnitudes as a core 

determinant of these individual differences in mathematics achievement. However, 

this exclusive focus on one core domain-specific cognitive factor for explaining 

mathematical (dis)abilities has been recently criticized because it ignores the 

involvement of other critical cognitive functions and processes that might play a 

role in the development of mathematical skills.  

This study explores the role of inhibition in arithmetic fact retrieval. 

Specifically, we examined if inhibition is associated with arithmetic fact retrieval, 

and we investigated the unique role of inhibition in determining individual 

differences in arithmetic fact retrieval, above numerical magnitude processing. 

Inhibition might play a role in fact retrieval, because when we retrieve arithmetic 

facts from memory, incorrect (related) answers need to be inhibited. On the other 

hand, we focussed on arithmetic fact retrieval because this is a major building 

block for further mathematical development, and it is a characteristic deficit in 

children with mathematical disabilities. We used a correlational analysis, 

regression analysis, and cluster analysis to examine the association between 

measures of inhibition and arithmetic fact retrieval.  

Our study failed to observe a significant association between inhibition and 

arithmetic fact retrieval. Consequently, our results did not reveal a unique 

contribution of inhibition to arithmetic fact retrieval above numerical magnitude 

processing. Symbolic numerical magnitude processing was significantly associated 

with arithmetic fact retrieval. Future studies should further analyse the association 

between arithmetic fact retrieval and inhibition, for example by considering 

strategy use when solving arithmetic problems, by providing a more careful 

characterization of the inhibitory processes involved in arithmetic fact retrieval 

through the use of tasks that tap into different components of inhibition, by 

examining these associations in older children and in atypically developing groups 

(e.g., ADHD), and by investigating this association at the neural level. 





 
 



iv 
 

 





iv 
 

Content 

 

Abstract ___________________________________________________________________ 1 

Introduction _______________________________________________________________ 2 

Numerical magnitude processing ___________________________________________________ 4 

Inhibition ______________________________________________________________________ 5 

The current study ________________________________________________________________ 7 

Method ___________________________________________________________________ 9 

Participants ____________________________________________________________________ 9 

Materials ______________________________________________________________________ 9 

Numerical magnitude processing. __________________________________________________________ 10 

Inhibition. _____________________________________________________________________________ 10 

Stroop tasks. __________________________________________________________________________ 10 

BRIEF. _______________________________________________________________________________ 11 

Arithmetic fact retrieval. __________________________________________________________________ 11 

Verification tasks. ______________________________________________________________________ 11 

Tempo Test Arithmetic. _________________________________________________________________ 12 

General mathematics achievement. ________________________________________________________ 12 

Reading ability. _________________________________________________________________________ 13 

Control measures. _______________________________________________________________________ 13 

Intellectual ability. _____________________________________________________________________ 13 

Motor reaction time. ___________________________________________________________________ 13 

Procedure _____________________________________________________________________ 14 

Results ___________________________________________________________________ 14 

Descriptive analyses ____________________________________________________________ 15 

Correlational analyses ___________________________________________________________ 16 

Regression analyses _____________________________________________________________ 17 

Cluster analyses ________________________________________________________________ 19 

Discussion ________________________________________________________________ 23 

Limitations and future directions __________________________________________________ 27 



v 
 

References ________________________________________________________________ 31 

Appendix _________________________________________________________________ 47 

1. List of problems administered in the arithmetic verification tasks ___________________ 48 

2. Missing data ______________________________________________________________ 50 

3. Supplementary results ______________________________________________________ 51 

Accuracy data. __________________________________________________________________________ 51 

Sex differences. _________________________________________________________________________ 52 

Assumptions regression analysis. ___________________________________________________________ 53 

Assumptions ANOVA. ____________________________________________________________________ 60 

Assumptions ANCOVA. ___________________________________________________________________ 61 

 

 





1 
 

Abstract 

Although it has been proposed that inhibition is related to individual 

differences in mathematical achievement, it is not clear how it is related to specific 

aspects of mathematical skills, such as arithmetic fact retrieval. The present study 

therefore investigated the association between inhibition and arithmetic fact 

retrieval and further examined the unique role of inhibition in individual differences 

in arithmetic fact retrieval, above numerical magnitude processing. We 

administered measures of inhibition (i.e., stroop tasks and a teacher 

questionnaire) and arithmetic fact retrieval (i.e., a production and two verification 

tasks) in 95 typically developing third graders. We used a correlation, regression, 

and cluster analysis. This study failed to observe a significant association between 

inhibition and arithmetic fact retrieval. Consequently, our results did not reveal a 

unique contribution of inhibition to arithmetic fact retrieval above numerical 

magnitude processing. However, the significant unique contribution of symbolic 

numerical magnitude processing to arithmetic fact retrieval was confirmed. Several 

directions for further research are discussed. 

Keywords: mathematical competencies, individual differences, arithmetic fact 

retrieval, inhibition, numerical magnitude processing, third grade. 
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Introduction 

There are large individual differences in the way children acquire 

mathematical competencies (e.g., Dowker, 2005). Mathematical skills are crucial 

abilities in modern western society (e.g., Ancker & Kaufman, 2007; Finnie & Meng, 

2001). Our daily life is permeated by numbers and one’s success in dealing with 

numbers and quantities is related to job prospects, income and quality of life (e.g., 

poor mathematical competencies lead to greater risk of underemployment) 

(Parsons & Bynner, 2005). Early mathematical skills predict later adult 

socioeconomic status (Ritchie & Bates, 2013). As a result, it is important to 

understand these individual differences and the cognitive processes underlying 

children’s achievement in mathematics. This understanding can contribute to 

designing scientifically validated diagnostic tests and remediation programs for 

children at risk for or with difficulties in mathematical achievement.  

The successful learning and performance of mathematics relies on a range of 

social (e.g., Byrnes & Wasik, 2009), educational (e.g., Opdenakker & Van Damme, 

2007) and individual factors (Cragg & Gilmore, 2014). Individual factors 

contributing to differences in mathematics achievement include non-cognitive 

factors, such as attitudes (Ma, 1999) or motivation (Steinmayr & Spinath, 2009) 

as well as cognitive factors, such as numerical knowledge (De Smedt, Noël, 

Gilmore, & Ansari, 2013; Jordan, Glutting, & Ramineni, 2010), working memory 

and executive function (Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 

2013), language (Donlan, Cowan, Newton, & Lloyd, 2007) and intellectual ability 

(Mayes, Calhoun, Bixler, & Zimmerman, 2009).  

In this study, we focussed on the cognitive determinants of these individual 

differences in mathematical skills. There are two dominant ways to study these 

cognitive determinants, i.e. a domain-specific and a domain-general approach 

(e.g., Fias, Menon, & Szucs, 2013). Domain-specific approaches investigate the 

role of number-specific processes, such as the representation of numerical 

magnitudes in individual differences in mathematics achievement (e.g., De Smedt 

et al., 2013). Domain-general approaches focus on the influence of non-numerical 

cognitive skills, such as phonological skills (Hecht, Torgesen, Wagner, & Rashotte, 

2001), inhibition (Allan, Hume, Allan, Farrington, & Lonigan, 2014; Bull & Scerif, 

2001; Gilmore et al., 2013), working memory (De Smedt, Verschaffel, & 
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Ghesquière, 2009; Raghubar, Barnes, & Hecht, 2010), retrieval from long-term 

memory (Dowker, 2005) and visuo-spatial processing (Geary, 1993) on 

mathematical performance. 

Recently research has mainly focussed on domain-specific factors, thereby 

ignoring more domain-general factors, and only a few studies focussed on both 

domain-specific and domain-general factors. Also, most research mainly 

investigated mathematics performance with broad general standardized 

achievement tests, which typically assess a wide variety of mathematical skills 

(e.g., arithmetic, problem solving, geometry) and yield a total score that reflects 

performance averaged across various mathematical domains. This does not allow 

to carefully pinpoint the associations with different mathematical skills. The current 

study extends abovementioned research by examining the association between 

one specific mathematical skill (i.e., arithmetic fact retrieval) and a specific 

domain-general cognitive skill (i.e., inhibition), taking into account the influence 

of a domain-specific skill (i.e., numerical magnitude processing). Such research is 

needed, in order to more carefully pinpoint associations between cognitive and 

mathematical skills.  

There are several important reasons for focussing on arithmetic fact retrieval. 

Firstly, mathematics is a cumulative skill. Being skilful at single-digit arithmetic 

and fact retrieval is a major building block for further mathematical development 

(e.g., Campbell & Xue, 2001; Kilpatrick, Swafford, & Findell, 2001; Koponen, 

Salmi, Eklund, & Aro, 2013; Vanbinst, Ceulemans, Ghesquière, & De Smedt, 

2015). Secondly, children with mathematical learning difficulties consistently show 

deficits in arithmetic, namely in executing procedures and in fact retrieval (e.g., 

Barouillet & Lépine, 2005; Geary, 2004; Geary, Hoard, & Bailey, 2012; Jordan, 

Hanich & Kaplan, 2003; Landerl, Bevan, & Butterworth, 2004).  

In the remainder of the Introduction, we first review the available evidence 

on the association between numerical magnitude processing and arithmetic fact 

retrieval. Next, we review the studies that have examined the association between 

inhibition and individual differences in mathematical skills. Finally, we present the 

specific aims of our study. 
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Numerical magnitude processing 

Numerical magnitude processing, or people’s elementary intuitions about 

quantity and their ability to understand the meaning of symbolic numbers 

(Vanbinst, Ceulemans, et al., 2015, p. 30), is one major determinant of individual 

differences in mathematical performance on which research over the last five years 

has intensively focussed (De Smedt et al., 2013, for a review). Various studies 

have shown that performance on numerical magnitude comparison tasks – often 

used as a measure of numerical magnitude processing – is correlated with (e.g., 

Durand, Hulme, Larkin, & Snowling, 2005; Holloway & Ansari, 2009; Sasanguie, 

Gobel, Moll, Smets, & Reynvoet, 2013) and even predicts (De Smedt, Verschaffel, 

et al., 2009; Halberda, Mazzocco, & Feigenson, 2008; Vanbinst, Ghesquière, & De 

Smedt, 2015) individual differences in mathematical achievement. This association 

is observed  on both symbolic comparison tasks, consisting of Arabic digits stimuli  

(De Smedt et al., 2013; De Smedt, Verschaffel, et al., 2009; Durand et al., 2005; 

Holloway & Ansari, 2009; Sasanguie et al., 2013) and non-symbolic comparison 

tasks, consisting of dot arrays (Halberda et al., 2008; Mundy & Gilmore, 2009). 

Also, children with mathematical difficulties have particular impairments in 

understanding and processing numerical magnitudes (De Smedt et al., 2013, for 

a review). 

Numerical magnitude processing has also been associated with specific 

mathematical skills, such as arithmetic fact retrieval (De Smedt & Gilmore, 2011; 

Geary, 2010; Robinson, Menchetti, & Torgesen, 2002; Vanbinst, Ceulemans, et 

al., 2015; Vanbinst, Ghesquière, & De Smedt, 2012; Vanbinst, Ghesquière, et al., 

2015). Vanbinst and colleagues (2012) found that children who had better 

symbolic magnitude representations retrieved more facts from their memory. 

Moreover, Vanbinst, Ghesquière and De Smedt (2015) found that children’s 

numerical magnitude processing skills even predict individual differences in 

arithmetic. On the other hand, impairments in numerical magnitude representation 

are directly related to poor performance in single-digit arithmetic (De Smedt, 

Reynvoet, et al., 2009). There is also neural evidence for the importance of 

numerical magnitude processing for higher level mathematical tasks such as 

arithmetic. For example, cognitive neuroimaging studies have shown that the 

intraparietal sulcus – dedicated to the processing of magnitudes (Ansari, 2008, for 
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a review) – appears to be consistently active during arithmetic tasks (Menon, 

2015, for a review). 

However, this recent exclusive focus on one domain-specific cognitive factor 

for explaining individual differences in mathematical performance has been 

recently criticized (e.g., Fias et al., 2013; Szucs, Devine, Soltesz, Nobes, & Gabriel, 

2013), as it leads to ignoring other critical cognitive functions and processes that 

might play a role, such as working memory and executive functioning, including 

inhibition (Friso-van den Bos et al., 2013) and phonological skills (e.g., Hecht et 

al., 2001). Moreover, it is not unlikely that numerical magnitude processing 

performance itself is also determined by domain-general processes such as 

inhibition (Fuhs & McNeil, 2013; Gilmore et al., 2013).  

 

Inhibition 

There is substantial evidence that executive functioning plays a major role in 

learning during childhood (Cragg & Gilmore, 2014; St Clair-Thompson & 

Gathercole, 2006), also in mathematics. One executive function that has recently 

gained attention in the field of mathematics learning is inhibition (e.g., Gilmore et 

al., 2013; Szucs et al., 2013). Inhibition is an executive function that refers to 

one’s ability to control one’s attention, behaviour, thoughts to override a strong 

internal predisposition or external lure and instead do what’s more appropriate or 

needed (Diamond, 2013, p. 137). It is an important factor, since inhibition is a 

domain-general skill associated with all learning-related activities (Allan et al., 

2014) and inhibitory control early in life appears to be predictive of several 

outcomes throughout life (Moffitt et al., 2011). Children with better inhibitory 

control grow up to have better physical and mental health and are happier as 

adults (Moffitt et al., 2011). Various models of inhibition have been proposed 

(Diamond, 2013; Nigg, 2000). One often-used way to distinguish between 

different types of inhibition is by using the distinction between behavioural 

inhibition or response inhibition (often measured with go/no-go tasks or stop-

signal tasks) and cognitive inhibition or interference control (often measured by 

means of stroop tasks) (Diamond, 2013).  

There are several reasons to assume that inhibition is an important factor in 

mathematical skills. On empirical ground Koontz and Berch (1996) were the first 
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to suggest the idea that children with mathematical difficulties might have an 

inhibition impairment. Since then, various studies suggested that inhibitory control 

abilities are associated with performance in mathematics (e.g., Blair & Razza, 

2007; Brock, Rimm-Kaufman, Nathanson, & Grimm, 2009; Bull & Scerif, 2001; 

Espy et al., 2004; Gilmore et al., 2013; Kroesbergen, Van Luit, Van Lieshout, Van 

Loosbroek, & Van der Rijt, 2009; Lee et al., 2010; St Clair-Thompson & Gathercole, 

2006; Thorell, 2007; see Allan et al., 2014, for a meta-analysis). Also, various 

studies point to poor inhibition skills as a key process in developmental dyscalculia 

(e.g., Bull & Scerif, 2001; De Visscher and Noël, 2013; Passolunghi & Siegel, 2004; 

Szucs et al., 2013), and attentional deficit hyperactivity disorder (ADHD) – which 

is characterized inter alia by poor response inhibition – has also been reported to 

be associated with arithmetic deficits (Kaufmann & Nuerk, 2006). On the other 

hand, on the neural level it has also been suggested that inhibition is associated 

with mathematical skills given the presumed role of the prefrontal cortex in 

inhibition and in mathematics (e.g., Allan et al., 2014; Willoughby, Kupersmidt, & 

Voegler-Lee, 2012).  

The association between inhibition and mathematical skills is likely to vary 

depending on the mathematical skill under investigation (Cragg & Gilmore, 2014). 

It might be particularly prominent in arithmetic fact retrieval (Verguts & Fias, 

2005), since incorrect but competing answers have to be inhibited as arithmetic 

facts are stored in an associative network (e.g., Ashcraft, 1987; Campbell, 1995; 

Jackson & Coney, 2007; McCloskey & Lindemann, 1992; Stazyk, Ashcraft, & 

Hamann, 1982; Verguts & Fias, 2005; Winkelman & Schmidt, 1974). Namely, 

when learning arithmetic facts there is considerable overlap between previously 

encoded items and new ones. The feature overlap between items to be 

remembered determines the quality of their memory trace (De Visscher & Noël, 

2014b). Because of the number of features they share, arithmetic facts are 

particularly prone to interference (De Visscher & Noël, 2013). Thus, if a particular 

problem is presented, a number of neighbouring nodes in a semantic associative 

network are activated and have to be inhibited. For example, when retrieving the 

answer to 6 x 3, the incorrect but competing answers to 6 x 2 and 6 x 4, and 5 x 

3 and 4 x 3 have to be inhibited. This associative confusion effect is commonly 

assumed to reflect interference effects (Censabella & Noël, 2007). Therefore, a 

lack of inhibition skills can lead to making specific errors when solving these 
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problems by arithmetic fact retrieval (e.g., 6 x 3 = 24). With good inhibitory 

processes children are able to inhibit irrelevant associations more quickly and thus 

be less likely to develop incorrect associations as they acquire additional arithmetic 

operations (LeFevre et al., 2013). Retrieval difficulties of children with 

mathematical disorders could therefore be related to inefficient inhibition of 

irrelevant associations (Geary, Hamson, & Hoard, 2000). Connectionist models 

highlight this interference in arithmetic fact retrieval caused by a densely 

interconnected memory structure of associations among numerical problems, 

operands and answers (Campbell, 1995; Verguts & Fias, 2005). The similarity of 

associations provokes interference and disrupts recollection (De Visscher & Noël, 

2013).  

Thus, based on theoretical, behavioural and neural arguments, the 

association between inhibition and mathematical skills and in specific arithmetic 

fact retrieval seemed appealing. To the best of our knowledge there are no studies 

examining this specific relationship. 

 

The current study 

The current study aimed to extend the abovementioned studies by focusing 

on one particular mathematical skill, i.e. arithmetic fact retrieval, and by 

investigating the unique role of inhibition (above numerical magnitude processing) 

in determining individual differences in arithmetic fact retrieval. By focussing on 

one particular mathematical skill (i.e., arithmetic fact retrieval) we aimed to extend 

existing research by pinpointing more carefully the association between inhibition 

and mathematical achievement.  

A second limitation of the existing studies investigating associations between 

inhibition and mathematics achievement tackled by this study, is that none of 

these studies has included both measures of inhibition and numerical magnitude 

processing to explain variability in mathematical performance. As such, it remains 

to be determined to what extent inhibition explains additional variance in individual 

differences in mathematics achievement beyond what is explained by numerical 

magnitude processing.  
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To measure numerical magnitude processing, we used both symbolic and 

non-symbolic numerical magnitude comparison tasks, thereby enabling us to 

compare performance on numerical tasks with and without symbolic processing 

requirement (De Smedt & Gilmore, 2011). To measure inhibition skills, we used 

both cognitive tasks and a questionnaire, to compensate for shortcomings of both 

methods. More specifically, questionnaires are hampered by rater subjectivity, as 

opposed to cognitive tasks which are assumed to measure children’s inhibition 

objectively and assess cognitive process involved in inhibition (Allan et al., 2014). 

But because cognitive tasks are administered at a single time, patterns cannot be 

captured and factors related but not central to inhibition (e.g., processing speed) 

and unrelated factors (e.g., time of testing, child fatigue) may influence results 

(Allan et al., 2014). Important information regarding the relation between 

inhibition and mathematical skills can be obtained using both cognitive or 

behavioural tasks and teacher reports (Allan et al., 2014), since both type of 

measures capture unique and important aspects of inhibition (e.g., Allan, 

Loningan, & Wilson, 2013; Valiente, Lemery-Chalfant, & Swanson, 2010). We used 

teacher ratings because teacher ratings of inhibition are more associated with 

measures of academic skills than parent ratings, given that teachers observe 

children’s behaviour in relation to academic tasks (e.g., Blair & Razza, 2007). We 

also administered tasks to measure potentially confounding variables (i.e., 

intellectual ability and reading), that could explain an association between 

inhibition and mathematics. We assessed children in the third grade, because we 

wanted to study the association between arithmetic fact retrieval and inhibition 

with children who had already acquired a considerable number of arithmetic facts.  

To examine to what extend there is an association between arithmetic fact 

retrieval and inhibition skills, we ran a correlation and a regression analysis. 

Subsequently we performed a cluster analysis, which allowed us to form subgroups 

based on empirically derived differences in parameters of arithmetic fact retrieval, 

and compare these profiles on various cognitive skills that have been associated 

with individual differences in arithmetic fact retrieval (e.g., inhibition, numerical 

magnitude processing). We examined the differences between these clusters by 

using an analysis of (co)variance. 

Drawing on previous work, we expected that measures of inhibition skills and 

arithmetic fact retrieval skills would be positively correlated (the better the 
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inhibition skills, the better the arithmetic fact retrieval skills), even after controlling 

for intellectual ability. Furthermore, we expected that there would be group 

differences in inhibition skills between the profiles of arithmetic fact retrieval 

obtained by the cluster analysis. We expected that these group differences would 

remain significant, even after controlling for intellectual ability, numerical 

magnitude processing and reading, thus showing a unique role of inhibition in 

arithmetic fact retrieval. 

Method 

Participants 

Initially, 102 children were invited to participate, yet the parents of seven 

children did not give consent. The final sample comprised 95 typically developing 

third-graders (51 boys, 44 girls) between 8 years 2 months and 9 years 2 months 

(M = 8 years 8 months; SD = 4 months). For all participants, written informed 

parental consent was obtained. The children were recruited from four elementary 

schools located in provincial towns in the middle of Flanders, Belgium and had 

dominantly middle- to high socio-economic background. None of them had a 

developmental disorder or mental retardation, nor repeated a grade. 

 

Materials 

Materials consisted of standardized tests, paper-and-pencil tasks and 

computer tasks designed with E-Prime 2.0 (Schneider, Eschmann, & Zuccolotto, 

2002). All computer tasks were conducted on a 17-inch notebook computer. 

Stimuli occurred in white on a black background (Arial font, 72-point 

size). Response keys were always “d” (left response; labelled with a green sticker) 

and “k” (right response; labelled with a red sticker). The children were instructed 

to keep their index fingers on both keys during the task and to perform both 

accurately and fast. Both accuracy and reaction time (ms) were registered by the 

computer. 
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Numerical magnitude processing. 

To assess children’s numerical magnitude processing we used a symbolic and 

a non-symbolic numerical magnitude comparison task consisting of Arabic digits 

and dot arrays, respectively. These tasks were the same as in De Smedt and 

Gilmore (2011).  

The tasks consisted of comparing two simultaneously presented numerical 

magnitudes arranged on either side of the centre of the screen. The children had 

to select the numerically larger magnitude by pressing the key on the side of the 

larger numerical magnitude. The stimuli in both tasks comprised all combinations 

of numerosities 1 to 9, yielding 72 trials for each task. Three practice trials were 

presented for each task. Per task, the stimuli were randomly divided into two 

blocks and children were given short breaks between blocks. Each trial started with 

a 200ms fixation point in the centre of the screen and after 1000ms the stimulus 

appeared. In the symbolic task, stimuli remained visible until response. In the non-

symbolic task, stimuli disappeared after 840ms in order to avoid counting of the 

dots. The position of the largest numerosity was counterbalanced. The non-

symbolic stimuli were generated with the MATLAB script provided by Piazza, Izard, 

Pinel, Le Bihan and Dehaene (2004) and were controlled for non-numerical 

parameters (i.e., density, dot size and total occupied area). On half of the trials 

dot size, array size and density were positively correlated with number, and on the 

other half they were negatively correlated. These visual parameters were 

manipulated to ensure that children could not reliably use these non-numerical 

cues or perceptual features to make a correct decision. 

 

Inhibition. 

To assess children’s inhibition skills, we conducted both cognitive tasks (i.e., 

stroop tasks) and a questionnaire for the teacher.  

 

Stroop tasks. To assess children’s inhibition skills at the cognitive level, we 

used two measures of interference control, i.e. Stroop tasks (MacLeod, 1991), in 

which the processing of possibly interfering information has to be inhibited. We 

administered a numerical (counting) and a non-numerical (colour-word) variant of 

the Stroop task (van der Sluis, de Jong, & van der Leij, 2004). Both tasks involved 

a baseline and an interference condition and both conditions were preceded by 16 
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practice trials to ensure that the children understood the task. In the baseline 

condition the children had to name the number of objects in the numerical version 

(e.g., how many in ∆∆∆) and name colours (i.e., coloured rectangles) in the non-

numerical version. In the interference condition, the children had to name the 

number of objects (e.g., how many digits in 222) in the numerical version and 

name the ink of a colour word (e.g., blue written in red ink) in the non-numerical 

version. Each task included four stimuli that were repeated 10 times. All stimuli 

were presented on a paper, with five lines of eight stimuli. Task administration was 

the same in both conditions. The child had to name all the stimuli, while the 

experimenter registered accuracy and time to name the entire sheet.  

 

BRIEF. The inhibition subscale of the Behavior Rating Inventory of Executive 

Function or BRIEF (Smidts & Huizinga, 2009) version for teachers was used to 

collect behavioural data of children’s inhibition skills. The BRIEF is a standardized 

questionnaire that consists of 75 items that describe executive functioning 

behaviour, divided in eight subscales (e.g., inhibition, cognitive flexibility, working 

memory). We used the 10 items of the inhibition subscale (Cronbach α = .94) as 

a behavioural measure of inhibition (e.g., ‘Has difficulties controlling his/her 

behaviour’). The teacher rated every item for every child on a 3-point scale (never 

– sometimes – always). The answer ‘never’ scored 1 point, ‘sometimes’ 2 points 

and ‘always’ 3 points. The score consisted of the sum of the points on the 10 items 

(max = 30). Higher scores indicated more teacher-reported difficulties in 

inhibition. 

 

Arithmetic fact retrieval. 

Arithmetic fact retrieval was assessed by means of two verification tasks and 

the Tempo Test Arithmetic (de Vos, 1992). 

Verification tasks. The children conducted two single-digit arithmetic 

verification tasks on the computer: one addition task and one multiplication task. 

Stimuli were selected from a standard set of single-digit arithmetic problems 

(LeFevre, Sadesky, & Bisanz, 1996), which excludes tie problems (e.g., 4 + 4) and 

problems containing 0 and 1 as an operand or answer. The addition items 

comprised all combinations of the numbers 2 to 9 (n = 28) and each item was 

once presented with the correct answer, once with an incorrect answer, yielding 
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56 trials. The multiplication items consisted of all items with a product smaller or 

equal to 25 (n = 30), because these small problems are more likely to be solved 

by direct retrieval from long-term memory (e.g., Campbell & Xue, 2001). Each 

item was once presented with the correct answer, once with an incorrect answer, 

yielding 60 trials. The position of the numerically largest operand was 

counterbalanced. An equal number of false and correct items was presented. The 

false solutions in the addition task were created by adding or subtracting 1 or 2 to 

the solution. The false solutions in the multiplication task were table related (n = 

10; e.g., 6 x 3 = 24), the answer of the corresponding addition (n = 10; e.g., 8 x 

2 = 10) or unrelated (n = 10; e.g., 8 x 3 = 25). Half of the false solutions were 

numerically larger than the correct answer. Each task was preceded by eight 

practice trials to familiarize the child with the task requirements. A list of the items 

can be found in the Appendix. Each trial started with a 250ms fixation point in the 

centre of the screen and after 750ms the stimulus appeared. The stimuli remained 

visible until response. The children had to indicate if the presented solution for the 

problem was correct (by pressing the left response key, labelled with a green 

sticker) or false (by pressing the right response key, labelled with a red sticker). 

For each task, stimuli were presented randomly divided into two blocks and 

children were given short breaks between blocks.  

  

Tempo Test Arithmetic. The Tempo Test Arithmetic (Tempo Test 

Rekenen, TTR; de Vos, 1992) is a standardized, paper-and-pencil test that 

measures speeded arithmetic. Four mathematical operations are tested: addition, 

subtraction, multiplication, and division. For each operation 40 problems of 

increasing difficulty were presented in one column. In one additional column 40 

problems with mixed operations were presented. This resulted in a set of 200 basic 

arithmetic problems presented in five columns. For each column the children were 

instructed to solve as many problems as possible within a one-minute period. The 

number of correctly solved problems within the time-limit constituted their score. 

Their total score (i.e., the sum of all columns) was calculated. 

 

General mathematics achievement. 

Children’s general mathematics achievement was assessed using a 

curriculum-based standardized achievement test for mathematics from the 
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Flemish Student Monitoring System (Leerlingvolgsysteem, LVS; Dudal, 2000). We 

used the test for the Middle Third Grade (Cronbach α =.90). This untimed test 

consists of 60 items covering various aspects of mathematics such as number 

knowledge, understanding of operations, simple arithmetic, multi-digit calculation, 

word problem solving, measurement and geometry. The score on this test was the 

number of correctly solved problems. 

 

Reading ability. 

Reading ability was assessed by the standardised Dutch One-Minute Test 

(Eén-Minuut Test, EMT), Version A (Brus & Voeten, 1995), which measures word 

decoding, and the Klepel, version A (van den Bos, Spelberg, Scheepstra, & de 

Vries, 1994), which measured pseudoword decoding. For the EMT, children were 

given a list of 116 unrelated words of increasing difficulty. Within a time-period of 

one minute they had to read them as accurately and quickly as possible. For the 

Klepel a list of 116 nonwords of increasing difficulty was presented. The children 

were given two minutes to read them as accurately and quickly as possible. Both 

tests combined speed and accuracy into one index score. The total score was the 

number of words read correctly within the time-limit across the two tests. 

 

Control measures. 

Intellectual ability. Raven’s Standard Progressive Matrices (Raven, Court, 

& Raven 1992) was used as a measure of intellectual ability (Cronbach α =.88). 

The children were administered 60 multiple-choice items where they had to 

complete a pattern. The raw score was the number of correct answers within 40 

minutes. For each child a standardized score (M = 100, SD = 15) was calculated.  

 

Motor reaction time. A motor reaction time task was included as a control 

for children’s response speed on the keyboard. This task was the same as in De 

Smedt and Boets (2010). Two shapes, one of which was filled, were simultaneously 

displayed, one on the left and one on the right of the computer screen. The children 

had to press the key corresponding to the side of the filled figure. All shapes were 

similar in size. The administered shapes were circle, triangle, square, star and 

heart. Each shape occurred four times filled and four times non-filled. This resulted 
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in 20 trials. Three practice trials were included to familiarize the child with the task. 

The position of the correct answer (filled shape) was counterbalanced. Each trial 

started with a 200ms fixation point in the centre of the screen and after 1000ms 

the stimulus appeared. The stimuli remained visible until response. 

 

Procedure 

All children were tested at their own school during regular school hours. They 

all completed three sessions: an individual session (20 minutes), a session in small 

groups of four children (45 minutes) and a group-administered session (60 

minutes). The individual session and small group session with the computer took 

place in a quiet room. All children were tested in the middle of the third grade. 

They all completed the tasks in the same order. The children first completed the 

numerical and non-numerical stroop tasks and then the EMT and Klepel. After that 

they completed the computer tasks: first the motor reaction task, then the addition 

verification task and multiplication verification task, and finally the symbolic and 

non-symbolic comparison tasks. In the last session they completed the Tempo Test 

Arithmetic and the Raven's Standard Progressive Matrices. 

 

Results 

In the stroop and computerized tasks, accuracy was very high (see 

Appendix). We therefore combined for all these tasks the accuracy and response 

times into one score, by dividing response time by the accuracy. This index was 

included in all subsequent analyses.  

We verified if the task design of the stroop task had worked by comparing 

the baseline and interference condition. The interference condition was executed 

significantly more slowly than the baseline condition for the numerical (t(94) = -

30.53, p < .01) and non-numerical (t(92)= -23.92, p < .01) task, which indicates 

that the task manipulation worked.  
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Descriptive analyses 

The means, standard deviations and ranges for all administered measures 

are displayed in Table 1. The data were well distributed and there were no floor- 

or ceiling effects. 
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Correlational analyses 

Pearson correlation coefficients were calculated to examine the associations 

between the different variables under study. Table 2 shows partial correlation 

coefficients, controlled for intellectual ability. Some correlations were controlled 

for additional variables (see note). Correlations with computerized tasks were 

controlled for motor reaction time, and correlations with the stroop tasks were 

controlled for the baseline conditions.  

 

 

All experimental measures that were thought to measure the same underlying 

component – i.e. the numerical magnitude processing tasks, the inhibition tasks 

and the arithmetic fact retrieval tasks – were significantly correlated with each 

other, except for the behavioural measure of inhibition (i.e., BRIEF questionnaire), 

which was not significantly correlated with the two cognitive measures of inhibition 
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(i.e., Stroop tasks). Because of the significant correlations between the arithmetic 

fact measures (all |rs| > .45, ps < .01), we combined these scores (i.e., Tempo 

Test Arithmetic and both verification tasks) into one composite score (i.e., fact 

retrieval; consisting of the mean of all arithmetic fact retrieval tasks scores) to 

improve clarity. This score was included in all subsequent analyses. It is important 

to point out that when the pattern of correlations was investigated for each 

arithmetic fact measure separately, results were very similar. 

Symbolic numerical magnitude processing was significantly correlated with 

fact retrieval, indicating that children with better symbolic numerical magnitude 

processing skills showed better arithmetic fact retrieval performance. There was 

no significant association between non-symbolic numerical magnitude processing 

and arithmetic fact retrieval. 

There was no significant correlation of the behavioural measure of inhibition 

(BRIEF) with any other measure. We found no significant correlations between the 

stroop tasks and arithmetic fact retrieval. 

Arithmetic fact retrieval was significantly correlated with general mathematics 

achievement and with reading.  

 

Regression analyses 

Regression analyses were calculated to assess the amount of unique variance 

in arithmetic fact retrieval that was explained by inhibition and numerical 

magnitude processing. The assumptions for the analysis were met (see Appendix).  

We tested four models: two models, one with the numerical stroop task and 

one with the non-numerical stroop task, for each measure of numerical magnitude 

processing. The results of the four regression models are presented in Table 3. 

Model 1 and Model 2 indicated that symbolic numerical magnitude processing 

significantly predicted fact retrieval (ps < .05), even when controlling for each 

inhibition task. Inhibition skills did not significantly predict arithmetic fact retrieval 

above symbolic numerical magnitude processing (ps > .05). Model 3 and 4 

indicated that neither non-symbolic numerical magnitude processing, nor inhibition 

significantly predicted arithmetic fact retrieval (ps > .05). 
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Cluster analyses 

It is possible that inhibition does not show a continuous association with 

arithmetic fact retrieval, but that it has a different role in different subgroups of 

arithmetic fact retrieval skills. We therefore distinguished such subgroups in our 

data and examined their differences on inhibition, numerical magnitude 

processing, general mathematics achievement and reading. Different from a 

theory-driven top-down approach with a priori cut-off criteria to define subgroups, 

we used a data-driven bottom-up approach by using a K-means clustering 

approach (Wu, 2012) to delineate groups of participants in terms of their 

arithmetic fact retrieval skills.  

We used the scores on the Tempo Test Arithmetic and both verification tasks 

to delineate clusters based on arithmetic fact retrieval skills. Children who lacked 

one of the arithmetic fact retrieval scores were not included in the cluster analysis, 

so in total 91 participants were included. Three groups were obtained, respectively 

with children that could be characterized the lowest (n = 14), medium (n = 39) 

and highest (n = 38) achievers on arithmetic fact retrieval. The arithmetic fact 

retrieval profiles of the obtained clusters are displayed in Figure 1, Figure 2 and 

Figure 3. The means and standard deviations of the clusters for the administered 

measures are displayed in Table 4. 
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The clusters did not differ in terms of age, F(2, 88) = 0.88, p = .42, sex, 

χ²(1) = 1.18, p = .56, or intellectual ability, F(2, 87) = 1.23, p = .30.  

To check whether the differences between the clusters on the administered 

variables were significant, we ran an analysis of variance (ANOVA) with the 

obtained clusters as a between-subjects factor and numerical magnitude 

processing, inhibition, general mathematics achievement and reading as 

dependent variables. Bonferroni adjustments were used for post hoc t-tests. Partial 

eta-squared (ηp²) values were calculated as a measure of effect size.  

The analysis of variance revealed a significant effect of cluster on numerical 

magnitude processing, general mathematics achievement and reading (Table 5). 

There were no other significant differences (Fs < 1.21). 

 

 

 

Post-hoc analyses demonstrated that on the symbolic numerical magnitude 

comparison task the lowest achievers significantly differed from the medium and 

high achievers (ps < .001), but the high and medium achievers did not significantly 
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differed from each other (p = .14). Although the analysis of variance showed 

cluster differences in non-symbolic numerical magnitude comparison skills, they 

did not differ when compared pairwise (low versus medium, p = 1.00, low versus 

high, p = .11, medium versus high, p = .10). On general mathematics achievement 

high and medium achievers differed significantly (p < .05), but there were no 

significant differences between the low and high (p = .17) and low and medium (p 

= 1.00) achievers. On reading the low and high achievers, and medium and high 

achievers differed significantly (ps = .02), in contrast with the low and medium 

achievers who did not differ significantly (p = 1.00). 

To answer our second research question, i.e. to check whether the differences 

between the clusters on numerical magnitude processing and inhibition remained 

significant after controlling for each other, we conducted an analysis of covariance 

(ANCOVA). This analysis showed that the difference between the clusters on 

symbolic numerical magnitude processing remained significant, even after 

controlling for the numerical stroop task (F(2,84) = 21.56, p < .001) and for the 

non-numerical stroop task (F(2,82) = 20.83, p < .001). The difference also 

remained significant after controlling for reading and general mathematics 

achievement (F(2,83) = 18.29, p < .001), on which the clusters differed 

significantly.   

The differences between the clusters on non-symbolic numerical magnitude 

processing did not remain significant after controlling for the numerical stroop task 

(F(2,84) = 2.66, p = .076). However, they remained significant after controlling 

for the non-numerical stroop task (F(2,82) = 3.72, p = .028) and for reading and 

general mathematics achievement (F(2,83) = 3.81, p = .026).  

The differences between the clusters on inhibition were not significant (ps > 

.05) when controlling for numerical magnitude processing. 

Discussion 

Understanding which cognitive processes underlie individual differences in 

mathematical skills is a necessary prerequisite to design validated diagnostic tests 

and appropriate interventions. Numerical magnitude processing has been pointed 

out as an important factor of these individual differences (De Smedt et al., 2013), 

but the predominant focus on numerical magnitude processing has recently been 
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criticized (Fias et al., 2013). On the other hand, several studies provided evidence 

for an association between inhibition and individual differences in mathematics 

achievement (Allan et al., 2014, for a meta-analysis). However, it is currently not 

clear how this association with inhibition occurs in specific aspects of mathematical 

achievement, such as arithmetic fact retrieval. Importantly, it needs to be verified 

whether the association between inhibition and mathematics achievement remains 

when other crucial factors, that have been shown to contribute to individual 

differences in mathematical competence (e.g., numerical magnitude processing), 

are controlled for. This study tried to address these questions by examining the 

association between inhibition and arithmetic fact retrieval and by investigating 

the unique contribution of inhibition to arithmetic fact retrieval above numerical 

magnitude processing. We used a correlational design and a clustering approach. 

Based on previous findings, we hypothesized that inhibition and arithmetic fact 

retrieval skills would correlate positively. We further verified if there was a unique 

contribution of inhibition in arithmetic fact retrieval after controlling for numerical 

magnitude processing. 

The present study failed to observe a significant association between 

inhibition and arithmetic fact retrieval. Consequently, our results did not reveal a 

unique contribution of inhibition to arithmetic fact retrieval above numerical 

magnitude processing. These findings are not in line with the theoretically 

postulated association between arithmetic fact retrieval and inhibition (e.g., 

Barrouillet, Fayol, & Lathulière, 1997; Geary, 2010; Geary et al., 2000; Geary et 

al., 2012; Verguts & Fias, 2005) and contradict previous studies that showed an 

association between inhibition and mathematics achievement (e.g., Bull & Scerif, 

2001; LeFevre et al., 2013; Szucs et al., 2013).  

This inconsistency can be explained by various factors. Firstly, it could be due 

to differences in the measurement of inhibition. LeFevre and colleagues (2013) 

used the broad concept executive attention, which they defined as the common 

aspects of executive function and working memory that are necessary in many 

complex cognitive tasks, including inhibition of competing responses, goal 

maintenance, and response selection. These authors used span tasks and a colour 

trail test to measure executive attention. These measures tap into broader 

executive functions rather than inhibition per se, which might explain the 

differences between their findings and the current study. Geary and colleagues 
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(2012) measured inhibition by counting the number of intrusion errors on an 

arithmetic task. As a result, these authors derived an index of inhibition from the 

mathematical task under study, but they did not use an independent measure of 

inhibition as in the current study. This measurement difference might again explain 

differences in results.  

Secondly, the inconsistency might be due to the differences in samples that 

were used. Szucs and colleagues (2013) showed that children with dyscalculia 

performed significantly more poorly on several inhibition measures (including the 

number stroop), pointing to an inhibition deficit in these children. However, the 

current sample comprised typically developing children. Indeed, it is possible that 

inhibition has a specific role in arithmetic fact retrieval in children with 

mathematical disabilities but not in typically developing children, which could 

explain the different results between Szucs and colleagues (2013) and the current 

study.  

The present findings are in agreement with the study of van der Sluis and 

colleagues (2004), who found that children with mathematical disabilities did not 

differ from the control group on the same inhibition tasks as in our study. Our 

results also converge with Censabella and Noël (2007), who found no significant 

differences in inhibition between children with mathematical disabilities and 

controls. However, as noted, it is not clear whether inhibition plays a 

(dis)continuous role in typically and atypically developing children. The current 

data therefore extend those of van der Sluis and colleagues (2004) and Censabella 

and Noël (2007) by showing no significant association in typically developing 

children. Importantly, it is unclear whether the children with mathematical 

disabilities in van der Sluis and colleagues (2004) and Censabella and Noël (2007) 

had specific problems with arithmetic fact retrieval. For example, Censabella and 

Noël (2007) stated that, although assumed, their sample of children with 

mathematical disabilities did not have difficulties in arithmetic fact retrieval per se. 

Therefore, these studies should be replicated in samples of children with specific 

difficulties in arithmetic fact retrieval. In the present study, we delineated different 

clusters based on measures of fact retrieval, including a poor fact retrieval cluster, 

to verify this hypothesis. Our results did not reveal poorer inhibition in this poor 

fact retrieval cluster. However, the children in this cluster might not be sufficiently 
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low achieving to detect an association between inhibition and difficulties in 

arithmetic fact retrieval. Further research should examine this hypothesis. 

The present study also investigated the association between numerical 

magnitude processing and arithmetic fact retrieval. We used both symbolic and 

non-symbolic tasks to verify whether the access to numerical magnitudes from 

symbolic digits or numerical magnitude processing per se is related to arithmetic 

fact retrieval (see De Smedt et al., 2013, for a discussion). In line with De Smedt 

et al. (2013) and Vanbinst et al. (2012), Vanbinst, Ceulemans, et al. (2015) and 

Vanbinst, Ghesquière, et al. (2015), the importance of symbolic numerical 

magnitude processing in arithmetic fact retrieval was supported by our results. 

More specifically, we found a unique association between symbolic numerical 

magnitude processing and fact retrieval. The cluster analysis revealed that the 

three arithmetic fact retrieval clusters differed in symbolic numerical magnitude 

processing and this difference remained significant, even after controlling for 

inhibition, reading and general mathematics achievement. Thus, children with 

better symbolic numerical magnitude processing skills showed better arithmetic 

fact retrieval performance.  

The results on the association between arithmetic fact retrieval and non-

symbolic numerical magnitude processing were not so univocal, which is in line 

with De Smedt and colleagues (2013) who concluded that the data on the 

association between non-symbolic numerical magnitude processing and 

mathematics achievement have been inconclusive so far. We observed no 

significant correlation between non-symbolic numerical magnitude processing and 

arithmetic fact retrieval, which is in line with Holloway and Ansari (2009), 

Sasanguie et al. (2013), Vanbinst et al. (2012). However, our cluster analysis 

showed differences between the arithmetic fact retrieval clusters on the non-

symbolic comparison tasks, but these differences were not significant in the post 

hoc analysis, suggesting that the effect of non-symbolic magnitude processing on 

arithmetic fact retrieval is only weak.  

Recently, Gilmore and colleagues (2013), and Fuhs and McNeil (2013) 

suggested that performance on the non-symbolic numerical magnitude processing 

task is determined by domain-general processes such as inhibition. We also 

explored this issue in our data. However, we failed to observe an association 
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between our measures of inhibition and non-symbolic numerical magnitude 

processing.   

Limitations and future directions 

There are a number of limitations of the present study that should be kept in 

mind when evaluating its findings. Firstly, our measure of arithmetic fact retrieval 

might have been too coarse. We used single-digit arithmetic tasks, but we did not 

directly examine the strategies that children applied during the administration of 

our tasks. Therefore, our measure of arithmetic fact retrieval might have included 

not only retrieval but also procedural strategies. Future studies should take into 

account the different strategies children apply during arithmetic problem solving. 

This could be done by asking them on a trial-by-trial basis to verbally report how 

they solved the problem (e.g., Geary et al., 2012; Siegler, 1987; Vanbinst et al., 

2012; Vanbinst, Ghesquière, et al., 2015;). Another option would be to administer 

a forced retrieval task (e.g., De Visscher & Noël, 2014b; Geary et al., 2012), for 

example by reducing the presentation time and restricting the response interval, 

in which children are forced to use retrieval strategies. Such a forced retrieval task 

also increases the likelihood of errors, some of which might be an indicator of 

difficulties in inhibitory control (e.g., table-related errors; e.g., Barrouillet et al., 

1997; Geary et al., 2012) 

Secondly, the present study only included one specific measure of inhibition, 

i.e. Stroop tasks, yet inhibition is not a unitary construct, but a family of functions 

(Censabella & Noël, 2007; Dempster & Corkill, 1999; Harnishfeger, 1995; Hasher, 

Zacks, & May, 1999; Nigg, 2000; Shilling, Chetwynd, & Rabbitt, 2002). Different 

aspects of inhibitory control are dissociable from each other at both the 

behavioural and the neural level (Diamond, 2013). One often-used distinction 

between different types of inhibition is between behavioural inhibition and 

cognitive control (Diamond, 2013). Different tasks (e.g., Stroop tasks, Flanker 

task, go/no-go task, stop-signal task) are used to measure these different types 

of inhibition, and their association with arithmetic fact retrieval might be different. 

Future studies should therefore use a combination of different measurements of 

inhibition. It is important to note that we also included a teacher questionnaire, 

the BRIEF (Smidts & Huizinga, 2009) to measure inhibition skills in children, but 

this measure was not associated with arithmetic fact retrieval. Although the 

inhibition subscale of the BRIEF is known to be reliable, the use of 10 items might 
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have been limited to capture sufficient intersubject variability. On the other hand, 

the current data are in line with several studies who failed to observe a significant 

correlation between ratings (e.g., BRIEF questionnaire) and performance-based 

measures (e.g., stroop tasks), suggesting these measures assess different aspects 

of the same underlying construct (Mahone et al., 2002; McAuley, Chen, Goos, 

Schachar, & Crosbie, 2010; Toplak, West, & Stanovich, 2013).  

Thirdly, there are several versions of the Stroop task (e.g., animal stroop 

(Szucs et al., 2013), spatial stroop (Diamond, 2013), numerical stroop (Bull & 

Scerif, 2001)), and, in particular, of the numerical stroop task. We used a counting 

stroop task as numerical stroop task. The difference between the different versions 

of the tasks lies in the information that has to be inhibited. In our numerical stroop 

task (i.e., Counting Stroop Task), the number represented by the digits had to be 

inhibited in favour of the quantity of digits in the array. On the other hand, in the 

Number Stroop (e.g., Kaufmann & Nuerk, 2006) magnitudes of two one-digit 

numbers who differ in physical size are compared and participants have to inhibit 

the irrelevant physical size in favour of the numerical magnitude of the digits (or 

vice versa). Because these tasks contain different kinds of numerical information 

that needs to be inhibited, they may be differently related to arithmetic fact 

retrieval. 

Fourthly, Censabella and Noël (2007) stated that active inhibition processes 

might not be involved in arithmetic fact retrieval. This is because the activation-

based interference does not necessarily require active inhibitory mechanisms, as 

the reduced associative strength of the correct answer is sufficient to account for 

weaker performances. This interference is of a passive kind due to the 

‘overfacilitation’ of competitors. This is in line with De Visscher and Noël’s (2014a; 

2014b) notion of hypersensitivity-to-interference, which states that the similarity 

between arithmetic facts provokes interference, and learners who are 

hypersensitive to interference will therefore encounter difficulties in storing 

arithmetic facts in long-term memory. De Visscher and Noël (2014b) found clear 

detrimental effects of interference in multiplication facts storing. For example, the 

degree of interference influences the performance across multiplications and 

determines part of the individual differences in multiplication. De Visscher and Noël 

(2014a) found that children with low arithmetic fluencies experience 

hypersensitivity-to-interference in memory compared to children with typical 
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arithmetic fluencies. It turns out that this sensitivity-to-interference-parameter 

does not correlate with inhibition (i.e., Colour-Word Stroop task) (De Visscher and 

Noël, 2014b), suggesting that sensitivity to interference does not correspond to 

dominant response inhibition capacities. We did not include such tasks of passive 

inhibition in our study, an issue that should be considered in future research. 

Fifthly, we only investigated children in third grade, which might explain why 

we did not find an association between inhibition skills and arithmetic fact retrieval. 

Although children in third grade have already acquired a considerable number of 

arithmetic facts, there is still room for improvement in automatizing these facts. 

Over time, children rely less on effortful and time-consuming procedural strategies 

(e.g., finger counting, decomposition), but they increasingly use direct and fast 

retrieval of arithmetic facts (e.g., Bailey, Littlefield, & Geary, 2012; Barrouillet, 

Mignon, & Thevenot, 2008; Geary, 2013; Siegler, 1996; Vanbinst, Ceulemans, et 

al., 2015). Through the course of primary school, problem-answer associations 

become stronger, and more efficient arithmetic fact retrieval arises (Vanbinst, 

Ceulemans, et al., 2015). On the other hand, inhibitory control also continues to 

mature through the course of primary school (Luna, 2009; Luna, Garver, Urban, 

Lazar, & Sweeney, 2004). Therefore, it would be interesting for future studies to 

investigate the association between inhibition and fact retrieval in older children.  

Sixthly, the present study only comprised typically developing children. It 

might be that the association between inhibition and arithmetic fact retrieval only 

is observed in the context of atypical development of arithmetic fact retrieval 

and/or of atypical development of inhibition. Future studies should examine the 

association between inhibition and arithmetic fact retrieval skills in atypical groups, 

such as children with arithmetic fact retrieval deficits and children with ADHD – 

who are known to have deficits in (response) inhibition (e.g., Bayliss & Roodenrys, 

2000; Kaufmann & Nuerk, 2006).  

Seventhly, the use of k-means cluster analysis in the present study is not 

without limitation. The lack of significant differences between the low and medium 

achieving groups on the Tempo Test Arithmetic and the combined fact retrieval 

score suggests that our clusters were somewhat overlapping. Future studies 

should use a model-based clustering approach, which is preferred over heuristic 

clustering methods, as in the current study, because it provides a principled 

statistical approach (Banfield & Raftery, 1993). The use of model-based clustering 
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also allows one to use the Bayesian information criterion (BIC), which weighs 

model fit and model complexity, to decide how many clusters are needed to 

adequately describe the data. 

The association between inhibition and mathematics observed in previous 

studies might also be explained by other factors that are associated with both 

individual differences in mathematics and inhibition. Potential examples include 

socio-economic status and home environment (Dilwordt-Bart, 2012; Sarsour et 

al., 2011). These factors should be considered in future studies.  

Future studies should also examine the association between inhibition and 

arithmetic fact retrieval at the neural level. Even though this association might not 

be detectable at the behaviour level, it might be that it can be observed at the 

neural level. Indeed, neuroimaging data might generate findings that cannot be 

detected by behavioural data alone (De Smedt et al., 2010). Brain areas associated 

with inhibition (e.g., prefrontal cortex) are often found to be activated during 

mathematical tasks (e.g., Menon, 2015, for a review). Although many fMRI studies 

have pointed to prefrontal cortex control processes during arithmetic fact retrieval 

(Menon, 2015), there is no study that has directly investigated the overlap 

between these control networks and arithmetic fact retrieval. Cho and colleagues 

(2012) found that increased retrieval use was correlated with the dorsolateral and 

ventrolateral prefrontal cortex, areas that are also known to show increased 

activity during inhibition. The authors suggested that this increase in the lateral 

prefrontal cortex suggested the involvement of inhibitory processes, yet they did 

not directly test this hypothesis. Future studies should investigate this hypothesis 

with imaging studies, for example by investigating the neural overlap between an 

arithmetic task and an inhibition localizer task. 
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1. List of problems administered in the arithmetic verification 

tasks  

 

Addition Multiplication 

  

Practice list Practice list 

  

2 + 2 = 4 4 x 4 = 16 

5 + 1 = 7 6 x 3 = 17 

7 + 3 = 10 4 x 3 = 12 

5 + 9 = 14 8 x 2 = 16 

8 + 7 = 17 2 x 7 = 13 

2 + 6 = 10 6 x 2 = 18 

6 + 5 = 9 4 x 5 = 20 

8 + 4 = 12 7 x 3 = 24 

  

Test list 1 Test list 1 

3 + 2 = 6 6 x 2 = 14 

2 + 6 = 10 3 x 5 = 15 

8 + 4 = 12 7 x 2 = 14 

3 + 9 = 11 6 x 3 = 18 

5 + 4 = 7 2 x 4 = 8 

8 + 2 = 10 7 x 3 = 24 

4 + 5 = 9 6 x 2 = 13 

4 + 7 = 11 4 x 3 = 12 

6 + 9 = 15 6 x 4 = 24 

9 + 2 = 12 2 x 3 = 9 

2 + 8 = 9 5 x 4 = 20 

8 + 3 = 13 6 x 2 = 12 

5 + 3 = 8 3 x 8 = 32 

9 + 5 = 14 5 x 3 = 20 

6 + 4 = 10 4 x 6 = 10 

2 + 5 = 7 3 x 7 = 21 

9 + 8 = 15 2 x 5 = 10 

7 + 3 = 10 8 x 3 = 24 

9 + 4 = 15 3 x 2 = 5 

5 + 7 = 13 5 x 2 = 15 

6 + 2 = 8 2 x 8 = 17 

4 + 3 = 6 6 x 2 = 13 

8 + 7 = 13 2 x 5 = 10 

3 + 5 = 9 2 x 3 = 6 

7 + 6 = 11 2 x 9 = 18 

9 + 3 = 12 5 x 4 = 15 

4 + 8 = 14 3 x 8 = 24 

6 + 3 = 8 4 x 3 = 7 
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Test list 2 Test list 2 

9 + 7 = 16 6 x 2 = 12 

2 + 3 = 5 5 x 3 = 15 

6 + 5 = 9 8 x 2 = 10 

4 + 2 = 6 6 x 3 = 24 

8 + 5 = 12 4 x 2 = 8 

6 + 7 = 13 8 x 3 = 25 

7 + 2 = 11 4 x 6 = 24 

6 + 8 = 15 2 x 7 = 9 

5 + 9 = 16 3 x 4 = 12 

2 + 4 = 7 9 x 2 = 18 

3 + 8 = 11 6 x 4 = 10 

4 + 7 = 10 3 x 7 = 20 

8 + 6 =14 4 x 5 = 25 

7 + 9 = 14 8 x 2 = 16 

5 + 6 = 11 3 x 6 = 18 

7 + 8 = 15 4 x 3 = 12 

4 + 6 = 11 7 x 2 = 13 

2 + 9 = 11 2 x 9 = 11 

3 + 7 = 12 6 x 2 = 12 

8 + 9 = 17 4 x 3 = 13 

3 + 6 = 9 2 x 8 = 16 

7 + 5 = 12 3 x 4 = 13 

4 + 9 = 13 5 x 2 = 10 

2 + 7 = 9 3 x 6 = 9 

5 + 2 = 6 4 x 5 = 20 

3 + 4 = 7 7 x 3 = 21 

9 + 7 = 16 3 x 2 = 6 

5 + 9 = 16 2 x 4 = 6 

 3 x 5 = 18 

 4 x 2 = 6 

 2 x 7 =14 

 9 x 2 = 16 
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2. Missing data 

In general, the data of 95 children were analysed, but in some tasks, there were 

missing data. These include the following. On the symbolic numerical magnitude 

comparison task, data of one child were lost due to technical problems. One child 

switched the keys on the non-symbolic numerical magnitude comparison task, so 

the child’s data of this task were excluded from the analyses. Due to technical 

problems the data of three children on the multiplication verification task were 

lost. The non-numerical stroop task was not administered in two boys, because of 

colour blindness. The teacher did not fill out the BRIEF questionnaire for one absent 

child. One child was absent during administration of the Tempo Test Arithmetic. 

One child was absent during administration of the general mathematics 

achievement test. Two children did not complete the test of intellectual ability. 
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3. Supplementary results 

 

Accuracy data. 

For the stroop tasks and computer tasks a combined score of response time and 

accuracy was computed by dividing the response time by accuracy. This is 

legitimated because of high accuracy values (Table A1). 
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Sex differences. 

To examine potential sex differences in our sample, we administered an 

independent t-test (Table A2). Our results show sex differences on the BRIEF 

questionnaire, the addition verification task and the general mathematics 

achievement test.  
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Assumptions regression analysis. 

There was no multicollinearity between the independent variables (Table A3), and 

the assumption of homoscedasticity was met (Figures A1, A2, A3, and A4). The 

figures show a random array of dots evenly dispersed around zero. They show that 

at each level of the predictor variables (i.e., symbolic numerical magnitude 

processing, non-symbolic numerical magnitude processing, numerical stroop task, 

and non-numerical stroop task), the variance of the residuals is constant. There 

was no autocorrelation (Durbin-Watson = 1.86; Figure A5) and the errors were 

normally distributed (Figures A6 and A7). The independent variables included in 

the regression analysis were linearly related to the dependent variable fact 

retrieval (Figures A8, A9, A10 and A11). 
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Assumptions ANOVA. 

The homogeneity of variance assumption was met for all variables (Table A4), yet 

not all variables in this study were normally distributed (Table A5). We therefore 

repeated the analyses with a non-parametric test, i.e. Kruskall-Wallis test. The 

results of these analyses were entirely similar to those of the ANOVA. 
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Assumptions ANCOVA. 

We also tested the two additional assumptions of the analysis of covariance above 

the assumptions of the analysis of variance. The assumption of independence of 

the covariate and group was violated (Table A6). However, the assumption of 

homogeneity of regression slopes was met (Table A7). Since we did not draw 

conclusions on explained variance or effect size, violation of the assumptions does 

not influence our interpretations. 
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