Pt(II)-gekatalyseerde C-H hydroxylatie van n-alkanen in azijnzuur als solvent met het oog op verbeterde selectiviteit

Lisa Van Emelen
Deze masterproef focust op de selectieve, Pt(II)-gekatalyseerde hydroxylatie van langere alkanen in azijnzuur als reactiesolvent en dizuurstof als terminaal oxidans. Concreet werd het Pt-gebaseerde Shilovsysteem geïntroduceerd in azijnzuur als reactiemidden, om het substraatbereik uit te breiden naar niet-wateroplosbare substraten (m.n. langere alkanen). Uitzonderlijke positionele selectiviteiten werden waargenomen in de hydroxylatie van n-heptaan en dit bij vrij hoge conversie.

Activeer eens een C–H binding: de platina-gekatalyseerde vorming van eindstandige alcoholen uit alkanen in azijnzuur als reactiesolvent

De activatie van koolstof-waterstofbindingen (C–H) is een aangewezen methode voor de valorisatie van alkanen, omdat zij toelaat in één stap en met minder afval nuttige componenten te vormen uit deze doorgaans weinig reactieve verbindingen. In het bijzonder vormt de directe omzetting van alkanen tot lineaire, eindstandige alcoholen een aantrekkelijke route, maar vooralsnog bestaat zo’n proces niet op industriële schaal. In deze masterproef werd een proof of concept geleverd voor de platina-gekatalyseerde omzetting van langere alkanen (m.n. n-heptaan) tot het corresponderende alcohol in azijnzuur als reactiemidden.

De directe hydroxylatie van alkanen is een “schone” reactie …

Jaarlijks worden zo’n 330 miljoen ton chemicaliën geproduceerd, waarvan het grootste deel (ca. 280 miljoen ton) nog steeds van fossiele oorsprong is. In het bijzonder bestaan aardolie en aardgas voor een belangrijke fractie uit alkanen. Dankzij hun wereldwijde beschikbaarheid, gecombineerd met een gunstige prijs, vormen alkanen een aantrekkelijk uitgangsmateriaal voor de synthese van allerhande chemicaliën. Omdat ze al een alifatische keten bevatten (die enkel uit koolstof- en waterstofatomen opgebouwd is), zijn ze uitermate geschikt voor de synthese van lineaire, eindstandige alcoholen (waarbij op het uiteinde van de keten één waterstofatoom (H) door een zuurstofhoudende (O) hydroxylgroep (OH) vervangen is). Op basis van deze moleculen, met een jaarlijkse productie van 3,1 miljoen ton (2015), wordt een brede waaier aan detergenten, geurstoffen en weekmakers vervaardigd. Idealiter is het zuurstofatoom finaal afkomstig van moleculaire zuurstof (O2), omdat O2 goedkoop en abundant beschikbaar is en met het gebruik ervan als oxidans geen nevenproducten (m.u.v. water) gepaard gaan. Bovendien is de directe hydroxylatie thermodynamisch gunstig, daar ze exergonisch is (er komt energie vrij in de reactie).

… maar vereist een katalysator

Door de sterke koolstof-waterstofbindingen zijn alkanen echter weinig reactief en tot op heden ontbreekt een grootschalig proces voor de rechtstreekse hydroxylatie tot de gewenste alcoholen. Bijgevolg is de petrochemische industrie nog steeds aangewezen op energie- en kostenintensieve meerstapsprocessen. Als oplossing voor deze problematiek, wordt naarstig gezocht naar uiteenlopende methoden om de sterke C–H bindingen te activeren, d.w.z. ze te verzwakken om ze uiteindelijk te breken. Een veelbelovende strategie is activatie m.b.v. elektrofiele transitiemetalen, bijv. platina (Pt) of palladium (Pd). Deze metalen fungeren als katalysator in de reactie, d.w.z. dat ze de reactie versnellen, maar netto niet verbruikt worden. Elektrofiele transitiemetalen interageren bij voorkeur met de eindstandige C–H bindingen in het alkaan, omdat deze elektronrijk zijn en weinig ruimtelijke hinder ondervinden.

Het oudste voorbeeld hiervan is het Shilovsysteem, dat een homogene (in het reactiemidden opgeloste) Pt-katalysator (K2PtCl4, kaliumtetrachloroplatinaat) inzet voor de selectieve hydroxylatie van korte alkanen (zoals methaan) in waterig midden. De keuze van het solvent (water) beperkt de toepasbaarheid van dit systeem echter tot wateroplosbare moleculen; lange alkanen zijn daarentegen heel slecht oplosbaar in water.

Drie voordelen van azijnzuur

In deze masterproef werd het Shilovconcept geïntroduceerd in azijnzuur als reactiemidden, hetgeen drie belangrijke voordelen biedt. Allereerst wordt het substraatbereik uitgebreid naar wateronoplosbare substraten, met name langere alkanen. Daarenboven treedt verestering van de gewenste alcoholen op, wat hen resistenter maakt t.o.v. verdere oxidatie. Deze verestering werd nog begunstigd door het gebruik van een kleine hoeveelheid azijnzuuranhydride (dat meer reactief is in de verestering dan azijnzuur zelf). Ten slotte, laat de hogere oplosbaarheid van moleculaire zuurstof in azijnzuur toe om een milieuvriendelijk, abundant en goedkoop oxidans in te zetten.

Hoge selectiviteit voor het eindstandig alcohol

Als modelcomponent werd n-heptaan (Figuur 1) bestudeerd, een lineair alkaan met zeven koolstofatomen. Als eerste werd de omzetting van n-heptaan opgevolgd in functie van de tijd en de verschillende producten werden gekwantificeerd. Behalve het gewenste eindstandige alcohol (1-heptanol) werden door nevenreacties nog andere producten gevormd: zo kan ook op andere plaatsen in de koolwaterstofketen een OH-groep ingebouwd worden (dit geeft aanleiding tot 2-, 3- en 4-heptanol) en anderzijds kunnen de alcoholen zelf nog verder reageren tot ketonen, aldehyden, carbonzuren, kortere alcoholen en CO2. Niettemin werd na één uur bij 140 ºC een opmerkelijke positionele selectiviteit waargenomen: binnen de groep van de heptanolen (4 % opbrengst) gebeurde de hydroxylatie in 18 % van de gevallen op de eindstandige positie. Daarenboven werd deze waarde bereikt bij een relatief hoge omzettingsgraad (38 %) van n-heptaan. Dit staat in schril contrast met de lage positionele selectiviteit (< 2 %) en omzettingsgraad (< 5 %) die typisch bereikt worden in de conversie van alkanen onder klassieke, radicaal-gemedieerde condities.

Figuur 1. Belangrijke observaties in de Pt-gekatalyseerde hydroxylatie van n-heptaan. De alifatische keten van het alkaan en alcohol wordt voorgesteld door een zigzaglijn, waarbij elk hoekpunt een C-atoom (met het bijhorend aantal H-atomen) voorstelt. De eindstandige C–H binding wordt vervangen door een C–OH binding tijdens de hydroxylatie. Het aldus gevormde alcohol reageert echter snel met azijnzuuranhydride tot het overeenkomstige ester.

Figuur 1. Belangrijke observaties in de Pt-gekatalyseerde hydroxylatie van n-heptaan. De alifatische keten van het alkaan en alcohol wordt voorgesteld door een zigzaglijn, waarbij elk hoekpunt een C-atoom (met het bijhorend aantal H-atomen) voorstelt. De eindstandige C–H binding wordt vervangen door een C–OH binding tijdens de hydroxylatie. Het aldus gevormde alcohol reageert echter snel met azijnzuuranhydride tot het overeenkomstige ester.

In een tweede fase werd de activiteit van de Pt-katalysator bewezen. Enerzijds werd aangetoond dat het onwaarschijnlijk is dat K2PtCl4 de (radicaal-gemedieerde) nevenreacties versnelt. Zo verschilde het selectiviteitspatroon bekomen met een katalysator (kobaltdiacetaat), die de radicaal-gemedieerde reacties versnelt, zeer sterk van dat met K2PtCl4. Anderzijds werd m.b.v. een substraat dat ongevoelig is voor deze nevenreacties aangetoond dat K2PtCl4 daadwerkelijk eindstandige C–H bindingen kan functionaliseren en verantwoordelijk is voor de uitzonderlijke positionele selectiviteit.

Als laatste werd de stabiliteit van de in situ gevormde esters onderzocht. De vorming van talrijke nevenproducten gaf immers aan dat de esters onder de reactiecondities niet zo stabiel waren als initieel verondersteld werd. Mogelijk wordt de intrinsieke selectiviteit van het Shilovsysteem nog onderschat, doordat een deel van de gevormde alcoholen (beschermd als ester) in de loop van de reactie weer afgebroken wordt. Alternatieve beschermingsstrategieën werden geëvalueerd, maar verder onderzoek hieromtrent is vereist.

Toekomstperspectieven

In deze masterproef werd de toepasbaarheid van de Shilovchemie in azijnzuur voor het eerst aangetoond, waarbij een uitzonderlijke positionele selectiviteit geobserveerd werd en dit bij vrij hoge omzettingsgraad. Verdere optimalisatie van het systeem, wat betreft de productstabiliteit en reactiesnelheid, is gaande om deze vindingen te vertalen naar een directe, groene syntheseroute van eindstandige alcoholen uit langere alkanen op industriële schaal.

 

Dit onderzoek werd uitgevoerd aan de KU Leuven onder begeleiding van ir. Michiel Janssen en prof. dr. ir. Dirk De Vos.

Bibliografie
  • BP Statistical Review of World Energy June 2017. 2017, British Petroleum (BP). 52 p.

  • Moulijn, J.A., M. Makkee, en A.E. van Diepen, Chemical Process Technology. 2de editie 2013, Chichester: John Wiley & Sons Ltd. 580 p.

  • Gunnoe, T.B., Introduction: alkane C-H activation by single-site metal catalysis, in Alkane C-H activation by single-site metal catalysis, P.J. Pérez, editor. 2012, Springer: Dordrecht. p. 1-15.

  • Hermans, I., J. Peeters, en P.A. Jacobs, Autoxidation of ethylbenzene: The mechanism elucidated. Journal of Organic Chemistry, 2007. 72(8): p. 3057-3064.

  • Noweck, K. en W. Grafahrend, Fatty Alcohols, in Ullmann's Encyclopedia of Industrial Chemistry. 2006, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 117-141.

  • Schmidt, R., et al., Hydrocarbons, in Ullmann's Encyclopedia of Industrial Chemistry. 2014, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 1-74.

  • Ren, T., Petrochemicals from Oil, Natural Gas, Coal and Biomass. Energy use, Economics and Innovation, PhD thesis. 2009, Universiteit Utrecht. 229 p.

  • Speight, J.G., The Chemistry and Technology of Petroleum. 4de editie 2007, Boca Raton: CRC Press (Taylor & Francis Group). 954 p.

  • de Jong, E., et al., Bio-based chemicals. Value added products from biorefineries. 2012, IEA Bioenergy | Task 42 Biorefinery. 36 p.

  • Keim, W., Fossil Feedstocks–What Comes After?, in Methanol: The Basic Chemical and Energy Feedstock of the Future, M. Bertau, et al., editors. 2014, Springer: Berlin, Heidelberg. p. 23-37.

  • Capaldo, F. Petrochemical demand for oil set to hold through to 2021 - IEA. 2016 [geraadpleegd op 29/04/2018]; Beschikbaar op: https://www.icis.com/resources/news/2016/02/22/9972119/petrochemical-de…- for-oil-set-to-hold-through-to-2021-iea/.

  • Statista. Oil demand distribution by sector worldwide 2016 | Statistic. 2018 [geraadpleegd op 29/04/2018]; Beschikbaar op: https://www.statista.com/statistics/307194/top-oil-consuming-sectors-wo….

  • OPEC. Definitions. [geraadpleegd op 29/04/2018]; Beschikbaar op: http://www.opec.org/library/Annual Statistical Bulletin/interactive/2004/FileZ/definition.htm.

  • McKendry, P., Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 2002. 83(1): p. 37-46.

  • Raschka, A. en M. Carus, Industrial material use of biomass. Basic data for Germany, Europe and the World. 2012, nova-Institute: Hürth. p. 28.

  • Deneyer, A., et al., Alkane production from biomass: chemo-, bio- and integrated catalytic approaches. Current Opinion in Chemical Biology, 2015. 29: p. 40-48.

  • Shen, L., J. Haufe, en M.K. Patel, Product overview and market projection of emerging bio-based plastics. PRO-BIP 2009 final report June 2009. 2009, Universiteit Utrecht, in opdracht van de European Polysaccharide Network of Excellence (EPNOE) en European Bioplastics: Utrecht. 243 p.

  • Faramawy, S., T. Zaki, en A.A.E. Sakr, Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, 2016. 34: p. 34-54.

  • Snowdon, L.R., Natural gas composition in a geological environment and the implications for the processes of generation and preservation. Organic Geochemistry, 2001. 32(7): p. 913-931.

  • Rojey, A., et al., Natural gas. Production, processing, transport. 1997, Paris: Éditions Technip. 429 p.

  • Morse, E. en A. Turgeon. natural gas. 2012 2012-07-24 [geraadpleegd op 12/03/2018]; Beschikbaar op: http://www.nationalgeographic.org/encyclopedia/natural-gas/.

  • (EIA), E.I.A. Natural Gas Processing: The Crucial Link between Natural Gas Production and Its Transportation to Market. 2006 [geraadpleegd op 29/01/2018]; Beschikbaar op : http://www.dnr.louisiana.gov/assets/docs/oilgas/naturalgas/ngprocess_20….

  • Demirbas, A., Natural Gas, in Methane Gas Hydrate. 2010, Springer-Verlag London: London. p. 57-76.

  • Sibelga. Is de aardgasauto of CNG-wagen een volwaardig alternatief? 2018 [geraapleegd op 12/03/2018]; Beschikbaar op: https://www.energids.be/nl/vraag- antwoord/is-de-aardgasauto-of-cng-wagen-een-volwaardig-alternatief/198/.

  • Aasberg-Petersen, K., et al., Natural gas to synthesis gas - Catalysts and catalytic processes. Journal of Natural Gas Science and Engineering, 2011. 3(2): p. 423-459.

  • de Smit, E. en B.M. Weckhuysen, The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 2008. 37(12): p. 2758-2781.

  • Sauter, D.W., M. Taoufik, en C. Boisson, Polyolefins, a Success Story. Polymers, 2017. 9(6): p. 13.

  • Ren, T., M. Patel, en K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy, 2006. 31(4): p. 425- 451.

  • Zimmermann, H. en R. Walzl, Ethylene, in Ullmann's Encyclopedia of Industrial Chemistry. 2009, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 465-529.

  • Sadrameli, S.M., Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 2015. 140: p. 102- 115.

  • Matar, S. en L.F. Hatch, Crude oil processing and production of hydrocarbon intermediates, in Chemistry of Petrochemical Processes, S. Matar and L.F. Hatch, editors. 2001, Gulf Professional Publishing: Woburn. p. 91-110.

  • Weissermel, K. en H.-J. Arpe, Industrial Organic Chemistry. 4de editie. 2008, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

  • Naqvi, S., Process Economics Program. 2014, IHS Chemical. 7 p.

  • Mitchell, S.F., G.G. Juttu, en R.S. Smith, Process for alkane aromatization using platinum-zeolite catalyst. 2007, Saudi Basic Industries Corp.

  • Naqvi, S. Aromatics from Light Hydrocarbons. 2014 [geraadpleegd op 23/04/2018]; Beschikbaar op: https://ihsmarkit.com/products/chemical-technology-pep-light- hydrocarbons-2014.html.

  • Ono, Y., Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites. Catalysis Reviews, 1992. 34(3): p. 179–226.

  • Panchal, C.B. en E.P. Huangfu, Effects of mitigating fouling on the energy efficiency of crude-oil distillation. Heat Transfer Engineering, 2000. 21(3): p. 3-9.

  • Talmadge, M.S., et al., A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chemistry, 2014. 16(2): p. 407-453.

  • Mochida, I. en K.H. Choi, An overview of hydrodesulfurization and hydrodenitrogenation. Journal of the Japan Petroleum Institute, 2004. 47(3): p. 145- 163.

  • Valavarasu, G. en B. Sairam, Light Naphtha Isomerization Process: A Review. Petroleum Science and Technology, 2013. 31(6): p. 580-595.

  • Rahimpour, M.R., M. Jafari, en D. Iranshahi, Progress in catalytic naphtha reforming process: A review. Applied Energy, 2013. 109: p. 79-93.

  • Ward, J.W., Hydrocracking processes and catalysts. Fuel Processing Technology, 1993. 35(1-2): p. 55-85.

  • Vogt, E.T.C. en B.M. Weckhuysen, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 2015. 44(20): p. 7342-7370.

  • Thybaut, J.W. en G.B. Marin, Multiscale Aspects in Hydrocracking: From Reaction Mechanism Over Catalysts to Kinetics and Industrial Application, in Advances in Catalysis, Vol 59, C. Song, editor. 2016, Elsevier Academic Press Inc: San Diego. p. 109-238.

  • Ren, T., M. Patel, en K. Blok, Olefins form conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy, 2006. 31(4): p. 425- 451.

  • Crelling, J.C., et al., Coal, in Ullmann's Encyclopedia of Industrial Chemistry. 2010, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 259-310.

  • Williams, R.H. en E.D. Larson, A comparison of direct and indirect liquefaction technologies for making fluid fuels from coal. Energy for Sustainable Development, 2003. 7(4): p. 103-129.

  • Vasireddy, S., et al., Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy & Environmental Science, 2011. 4(2): p. 311-345.

  • Shui, H.F., Z.Y. Cai, en C.B. Xu, Recent Advances in Direct Coal Liquefaction. Energies, 2010. 3(2): p. 155-170.

  • Nishiyama, Y., Catalytic gasification of coals – features and possibilities. Fuel Processing Technology, 1991. 29(1-2): p. 31-42.

  • Mochida, I., O. Okuma, en S.H. Yoon, Chemicals from Direct Coal Liquefaction. Chemical Reviews, 2014. 114(3): p. 1637-1672.

  • EIA, Biomass Explained. 2017 16/05/2017 [geraadpleegd op 04/02/2018]; Beschikbaar op: https://www.eia.gov/energyexplained/?page=biomass_home.

  • Wu, L.P., et al., Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. Chem, 2016. 1(1): p. 32-58.

  • Linger, J.G., et al., Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(33): p. 12013-12018.

  • Huber, G.W., S. Iborra, en A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006. 106(9): p. 4044- 4098.

  • Van den Bosch, S., et al., Reductive lignocellulose fractionation into soluble lignin- derived phenolic monomers and dimers and processable carbohydrate pulps. Energy & Environmental Science, 2015. 8(6): p. 1748-1763.

  • Molino, A., S. Chianese, en D. Musmarra, Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 2016. 25(1): p. 10-25.

  • Gosselink, R.W., et al., Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. Chemsuschem, 2013. 6(9): p. 1576-1594.

  • Robota, H.J., J.C. Alger, en L. Shafer, Converting Algal Triglycerides to Diesel and HEFA Jet Fuel Fractions. Energy & Fuels, 2013. 27(2): p. 985-996.

  • de Beeck, B.O., et al., Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy & Environmental Science, 2015. 8(1): p. 230-240.

  • Zhao, C., D.M. Camaioni, en J.A. Lercher, Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. Journal of Catalysis, 2012. 288: p. 92-103.

  • Zhang, W., et al., Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Alkane Fuels over Bifunctional Zeolite-Supported Metal Catalysts. ACS Sustainable Chemistry & Engineering, 2014. 2(4): p. 683-691.

  • Zhao, C., et al., Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 2011. 280(1): p. 8-16.

  • Muzenda, E. Bio-methane Generation from Organic Waste: A Review. in World Congress on Engineering and Computer Science (WCECS). 2014. San Francisco, USA: Newswood Limited.

  • IUPAC. Compendium of Chemical Terminology (the "Gold Book"). 1997; 2006 (on- line versie) 2014 [geraadpleegd op 03/11/2017].

  • Luo, Y.-R., Comprehensive Handbook of Chemical Bond Energies. 2007, Boca Raton: CRC Press (Taylor & Francis Group). 1688 p.

  • Shilov, A.E. en G.B. Shulpin, Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. 2000, Dordrecht: Kluwer Academic Publishers. 536 p.

  • Blanksby, S.J. en G.B. Ellison, Bond dissociation energies of organic molecules. Accounts of Chemical Research, 2003. 36(4): p. 255-263.

  • Yoshizawa, K., Methane hydroxylation by first row transition metal oxides, in Computational Modeling for Homogeneous and Enzymatic Catalysis. A Knowledge- Base for Designing Efficient Catalysts K. Morokuma en D.G. Musaev, editors. 2008, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 317-337.

  • Shilov, A.E. en G.B. Shul'pin, Activation of C-H bonds by metal complexes. Chemical Reviews, 1997. 97(8): p. 2879-2932.

  • Teles, J.H., et al., Oxidation, in Ullmann's Encyclopedia of Industrial Chemistry. 2015, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 1-103.

  • Goosen, A. en D.H. Morgan, Autoxidation of nonane and decane - a product study. Journal of the Chemical Society-Perkin Transactions 2, 1994(3): p. 557-562.

  • Simic, M.G., Free-radical mechanisms in autoxidation processes. Journal of Chemical Education, 1981. 58(2): p. 125-131.

  • Sheldon, R.A. en J.K. Kochi, Oxidations with molecular oxygen, in Metal-catalyzed oxidations of organic compounds. Mechanistic principles and synthetic methodology including biochemical processes., R.A. Sheldon en J.K. Kochi, editors. 1981, Academic Press: New York. p. 18-33.

  • Howard, J.A. en K.U. Ingold, Self-reaction of sec-butylperoxyradicals. Confirmation of Russell mechanism. Journal of the American Chemical Society, 1968. 90(4): p. 1056-&.

  • Carey, F.A. en R.J. Sundberg, Advanced Organic Chemistry. Part A: Structure and Mechanisms. 5de editie 2008, New York: Springer. 1213 p.

  • De Feyter, S. en D. De Vos, Reactiemechanismen, cursus. 2014: Leuven. 98 p.

  • Smith, M.B. en J. March, March's Advanced Organic Chemistry. Reactions, Mechanisms, and Structure. 5de editie 2001, New York: Wiley-Interscience - John Wiley & Sons, Inc. 2083 p.

  • Lloyd, R., et al., Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis, 2011. 283(2): p. 161-167.

  • Huguet, E., Terminal oxidation of long linear alkanes in liquid phase, PhD thesis. 2009, University of Cardiff: Cardiff. p. 188.

  • Hermans, I., J. Peeters, en P.A. Jacobs, Autoxidation of Hydrocarbons: From Chemistry to Catalysis. Topics in Catalysis, 2008. 50(1-4): p. 124-132.

  • Roudesly, F., J. Oble, en G. Poli, Metal-catalyzed C-H activation/functionalization: The fundamentals. Journal of Molecular Catalysis a-Chemical, 2017. 426: p. 275-296.

  • Costas, M., Selective C-H oxidation catalyzed by metalloporphyrins. Coordination Chemistry Reviews, 2011. 255(23-24): p. 2912-2932.

  • Huang, X.Y. en J.T. Groves, Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. Journal of Biological Inorganic Chemistry, 2017. 22(2-3): p. 185-207.

  • Krest, C.M., et al., Reactive Intermediates in Cytochrome P450 Catalysis. Journal of Biological Chemistry, 2013. 288(24): p. 17074-17081.

  • Doyle, M.P., et al., Catalytic Carbene Insertion into C-H Bonds. Chemical Reviews, 2010. 110(2): p. 704-724.

  • Louillat, M.L. en F.W. Patureau, Oxidative C-H amination reactions. Chemical Society Reviews, 2014. 43(3): p. 901-910.

  • Shin, K., Y. Baek, en S. Chang, Direct CH Amination of Arenes with Alkyl Azides under Rhodium Catalysis. Angewandte Chemie-International Edition, 2013. 52(31): p. 8031-8036.

  • Conley, B.L., et al., Design and study of homogeneous catalysts for the selective, low temperature oxidation of hydrocarbons. Journal of Molecular Catalysis a-Chemical, 2006. 251(1-2): p. 8-23.

  • Ess, D.H., W.A. Goddard, en R.A. Periana, Electrophilic, Ambiphilic, and Nucleophilic C-H Bond Activation: Understanding the Electronic Continuum of C-H Bond Activation Through Transition-State and Reaction Pathway Interaction Energy Decompositions. Organometallics, 2010. 29(23): p. 6459-6472.

  • Stahl, S.S., J.A. Labinger, en J.E. Bercaw, Homogeneous oxidation of alkanes by electrophilic late transition metals. Angewandte Chemie-International Edition, 1998. 37(16): p. 2181-2192.

  • Labinger, J.A. en J.E. Bercaw, Understanding and exploiting C-H bond activation. Nature, 2002. 417(6888): p. 507-514.

  • Ackermann, L., Carboxylate-Assisted Transition-Metal-Catalyzed C−H Bond Functionalizations: Mechanism and Scope. Chemical Reviews, 2011. 111(3): p. 1315- 1345.

  • Lapointe, D. en K. Fagnou, Overview of the Mechanistic Work on the Concerted Metallation-Deprotonation Pathway. Chemistry Letters, 2010. 39(11): p. 1119-1126.

  • Periana, R.A. en R.G. Bergman, Isomerization of the hydridoalkylrhodium complexes formed on oxidative addition of rhodium to alkane C–H bonds – Evidence for the intermediacy of eta-2-alkane complexes. Journal of the American Chemical Society, 1986. 108(23): p. 7332-7346.

  • Janowicz, A.H., et al., Oxidative addition of soluble iridium and rhodium complexes to carbon-hydrogen bonds in methane and higher alkanes. Pure and Applied Chemistry, 1984. 56(1): p. 13-23.

  • Periana, R.A. en R.G. Bergman, Oxidative addition of rhodium to alkane C–H bonds – enhancement in selectivity and alkyl group functionalization. Organometallics, 1984. 3(3): p. 508-510.

  • Vastine, B.A. en M.B. Hall, The molecular and electronic structure of carbon- hydrogen bond activation and transition metal assisted hydrogen transfer. Coordination Chemistry Reviews, 2009. 253(7-8): p. 1202-1218.

  • Waterman, R., sigma-Bond Metathesis: A 30-Year Retrospective. Organometallics, 2013. 32(24): p. 7249-7263.

  • Cummins, C.C., S.M. Baxter, en P.T. Wolczanski, Methane and benzene activation via transient (tert-Bu3SiNH)2Zr=NSi-t-Bu3. Journal of the American Chemical Society, 1988. 110(26): p. 8731-8733.

  • Wayland, B.B., S. Ba, en A.E. Sherry, Activation of methane and toluene by rhodium(II) porphyrin complexes. Journal of the American Chemical Society, 1991. 113(14): p. 5305-5311.

  • Coleman, J., et al., Oil in the Sea III: Inputs, Fates, and Effects. 2003, Committee on Oil in the Sea: Inputs, Fates, and Effects, National Research Council: Washington, DC. 277 p.

  • Austin, R.N. en J.T. Groves, Alkane-oxidizing metalloenzymes in the carbon cycle. Metallomics, 2011. 3(8): p. 775-787.

  • Callaghan, A.V., Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Frontiers in Microbiology, 2013. 4: p. 9.

  • Singh, S.N., B. Kumari, en S. Mishra, Microbial degradation of alkanes, in Microbial degradation of xenobiotics, S.N. Singh, editor. 2012, Springer Verlag: Berlin- Heidelberg. p. 439-469.

  • Rojo, F., Enzymes for aerobic degradation of alkanes, in Handbook of hydrocarbon and lipid microbiology, K.N. Timmis, et al., editors. 2010, Springer Verlag: Berlin- Heidelberg. p. 781-797.

  • van Beilen, J.B. en E.G. Funhoff, Expanding the alkane oxygenase toolbox: new enzymes and applications. Current Opinion in Biotechnology, 2005. 16(3): p. 308- 314.

  • Bordeaux, M., A. Galarneau, en J. Drone, Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angewandte Chemie- International Edition, 2012. 51(43): p. 10712-10723.

  • Sluis, M.K., L.A. Sayavedra-Soto, en D.J. Arp, Molecular analysis of the soluble butane monooxygenase from 'Pseudomonas butanovora'. Microbiology-Sgm, 2002. 148: p. 3617-3629.

  • Wang, V.C.C., et al., Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chemical Reviews, 2017. 117(13): p. 8574-8621.

  • Dubbels, B.L., L.A. Sayavedra-Soto, en D.J. Arp, Butane monooxygenase of 'Pseudomonas butanovora': purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology-Sgm, 2007. 153: p. 1808-1816.

  • Bertrand, E., et al., Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. Journal of Inorganic Biochemistry, 2005. 99(10): p. 1998-2006.

  • Tsai, Y.F., et al., Electrochemical Hydroxylation of C3-C12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1. Scientific Reports, 2017. 7: p. 13.

  • Beauvais, L.G. en S.J. Lippard, Reactions of the diiron(IV) intermediate Q in soluble methane monooxygenase with fluoromethanes. Biochemical and Biophysical Research Communications, 2005. 338(1): p. 262-266.

  • Hammerer, L., C.K. Winkler, en W. Kroutil, Regioselective Biocatalytic Hydroxylation of Fatty Acids by Cytochrome P450s. Catalysis Letters, 2018. 148(3): p. 787-812.

  • Bordeaux, M., et al., A Regioselective Biocatalyst for Alkane Activation under Mild Conditions. Angewandte Chemie-International Edition, 2011. 50(9): p. 2075-2079.

  • Zedelius, J., et al., Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environmental Microbiology Reports, 2011. 3(1): p. 125-135.

  • Hoehler, T.M., et al., Field and laboratory studies of methane oxidation in an anoxic marine sediment - evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 1994. 8(4): p. 451-463.

  • Hallam, S.J., et al., Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science, 2004. 305(5689): p. 1457-1462.

  • Olmedo, A., et al., From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase. Angewandte Chemie-International Edition, 2016. 55(40): p. 12248-12251.

  • Bartoli, J.F., et al., Hydroxylation of linear alkanes catalyzed by iron porphyrins – particular efficacy and regioselectivity of perhalogenated porphyrins. Journal of the Chemical Society-Chemical Communications, 1991(6): p. 440-442.

  • Nappa, M.J. en C.A. Tolman, Steric and electronic control of iron porphyrin catalyzed hydrocarbon oxidations. Inorganic Chemistry, 1985. 24(26): p. 4711-4719.

  • Arends, I., et al., Oxidative transformations of organic compounds mediated by redox molecular sieves. Angewandte Chemie-International Edition, 1997. 36(11): p. 1144- 1163.

  • Arends, I. en R.A. Sheldon, Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis a-General, 2001. 212(1-2): p. 175-187.

  • Balkus, K.J., M. Eissa, en R. Levado, Oxidation of alkanes catalyzed by zeolite- encapsulated perfluorinated ruthenium phthalocyanines. Journal of the American Chemical Society, 1995. 117(43): p. 10753-10754.

  • Wang, Y.E., Selective oxidation of hydrocarbons catalyzed by iron-containing heterogeneous catalysts. Research on Chemical Intermediates, 2006. 32(3-4): p. 235- 251.

  • Corma, A., State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003. 216(1-2): p. 298-312.

  • Hartmann, M. en L. Kevan, Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis. Research on Chemical Intermediates, 2002. 28(7-9): p. 625-695.

  • Tatsumi, T., et al., Shape-selective oxidation of alkanes with H2O2 catalyzed by titanosilicate. Journal of the Chemical Society-Chemical Communications, 1990(6): p. 476-477.

  • Rao, P., A.V. Ramaswamy, en P. Ratnasamy, Studies on crystalline microporous vanadium silicalites. 3. Selective oxidation of n-alkanes and cyclohexane over VS-2. Journal of Catalysis, 1993. 141(2): p. 604-611.

  • Thomas, J.M., et al., Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature, 1999. 398(6724): p. 227-230.

  • Hartmann, M. en S. Ernst, Selective oxidations of linear alkanes with molecular oxygen on molecular sieve catalysts - A breakthrough? Angewandte Chemie- International Edition, 2000. 39(5): p. 888-890.

  • International Zeolite Association AFI: Type Material. 2018.

  • Zhan, B.Z., et al., Catalytic oxidation of n-hexane on Mn-exchanged zeolites: Turnover rates, regioselectivity, and spatial constraints. Journal of Catalysis, 2007. 245(2): p. 316-325.

  • Herron, N., The selective partial oxidation of alkanes using zeolite based catalysts – phthalocyanine (PC) ship-in-bottle species. Journal of Coordination Chemistry, 1988. 19(1-3): p. 25-38.

  • Hermans, I., et al., Selective Oxidation Catalysis: Opportunities and Challenges. Topics in Catalysis, 2009. 52(9): p. 1162-1174.

  • Hanotier, J., et al., Low-temperature oxidation of n-alkanes by cobaltic acetate activated by strong acids. Journal of the Chemical Society, Perkin Transactions 2, 1972. 0(15): p. 2247-2252.

  • Vanoppen, D.L., et al., Cobalt-containing molecular-sieves as catalysts for the low conversion autoxidation of pure cyclohexane. Angewandte Chemie-International Edition in English, 1995. 34(5): p. 560-563.

  • Matienko, L.I., L.A. Mosolova, en G.E. Zaikov, Selective catalytic oxidation of hydrocarbons. New prospects. Russian Chemical Reviews, 2009. 78(3): p. 211-230.

  • Herron, N. en C.A. Tolman, A highly selective zeolite catalyst for hydrocarbon oxidation – a completely inorganic mimic of the alkane omega-hydroxylases. Journal of the American Chemical Society, 1987. 109(9): p. 2837-2839.

  • Spinace, E.V., D. Cardoso, en U. Schuchardt, Incorporation of iron(III) and chromium(III) in SAPO-37. Zeolites, 1997. 19(1): p. 6-12.

  • Jones, S.R. en J.M. Mellor, Mechanism of oxidation of saturated hydrocarbons by cobalt(III), manganese(III), and lead(IV) trifluoroacetates. Journal of the Chemical Society-Perkin Transactions 2, 1977(4): p. 511-517.

  • Gretz, E., T.F. Oliver, en A. Sen, Carbon-hydrogen bond activation by electrophilic transition metal compounds – Palladium(II)-mediated oxidation of arenes and alkanes including methane. Journal of the American Chemical Society, 1987. 109(26): p. 8109-8111.

  • Burger, P. en R.G. Bergman, Facile intermolecular activation of C–H bonds in methane and other hydrocarbons and Si–H bonds in silanes with the Ir(III) complex Cp*(PMe3)Ir(CH3)(OTf). Journal of the American Chemical Society, 1993. 115(22): p. 10462-10463.

  • Jones, C.J., et al., Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold. Angewandte Chemie-International Edition, 2004. 43(35): p. 4626-4629.

  • Kitajima, N. en J. Schwartz, Activation of methane by supported rhodium complexes. Journal of the American Chemical Society, 1984. 106(7): p. 2220-2222.

  • Periana, R.A., et al., A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science, 1993. 259(5093): p. 340-343.

  • Periana, R.A., et al., Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science, 1998. 280(5363): p. 560-564.

  • Goldshleger, N.F., et al., Activation of saturated hydrocarbons – deuterium-hydrogen exchange in solutions of transition metal complexes. Russian Journal of Physical Chemistry, 1969. 43(8): p. 1222.

  • Sen, A., et al., Activation of methane and ethane and their selective oxidation to the alcohols in protic media. Journal of the American Chemical Society, 1994. 116(3): p. 998-1003.

  • Labinger, J.A., Alkane Functionalization via Electrophilic Activation, in Alkane C-H activation by single-site metal catalysis. P.J. Pérez, editor. 2012, Springer: Dordrecht. p. 17-71.

  • Stahl, S.S., J.A. Labinger, en J.E. Bercaw, Exploring the mechanism of aqueous C-H activation by Pt(II) through model chemistry: Evidence for the intermediacy of alkylhydridoplatinum(IV) and alkane sigma-adducts. Journal of the American Chemical Society, 1996. 118(25): p. 5961-5976.

  • Luinstra, G.A., et al., C–H activation by aqueous platinum complexes – a mechanistic study. Journal of Organometallic Chemistry, 1995. 504(1-2): p. 75-91.

  • Lersch, M. en M. Tilset, Mechanistic aspects of C-H activation by Pt complexes. Chemical Reviews, 2005. 105(6): p. 2471-2526.

  • Weinberg, D.R., J.A. Labinger, en J.E. Bercaw, Competitive oxidation and protonation of aqueous monomethylplatinum(II) complexes: A comparison of oxidants. Organometallics, 2007. 26(1): p. 167-172.

  • Zhu, H.J. en T. Ziegler, A theoretical study of the original Shilov reaction involving methane activation by platinum tetrachloride (PtCl42-) in an acidic aqueous solution. Journal of Organometallic Chemistry, 2006. 691(21): p. 4486-4497.

  • Scollard, J.D., et al., Preparation of dimethyl and chloro/methyl complexes of platinum(II) supported by alpha-diimine ligands: Trends in the ease of oxidation to platinum(IV). Helvetica Chimica Acta, 2001. 84(10): p. 3247-3268.

  • Wang, L., et al., (Alkyl)platinum(II) intermediates in C-H activation by platinum complexes in aqueous solution. Journal of Molecular Catalysis a-Chemical, 1997. 116(1-2): p. 269-275.

  • Lin, M.R., et al., Catalytic Shilov chemistry: Platinum chloride-catalyzed oxidation of terminal methyl groups by dioxygen. Journal of the American Chemical Society, 2001. 123(5): p. 1000-1001.

  • Basickes, N. en A. Sen, Platinum(II) mediated oxidation of remote C–H bonds in functionalized organic molecules. Polyhedron, 1995. 14(1): p. 197-202.

  • Liang, Y.F. en N. Jiao, Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen. Accounts of Chemical Research, 2017. 50(7): p. 1640-1653.

  • Wencel-Delord, J., et al., Towards mild metal-catalyzed C-H bond activation. Chemical Society Reviews, 2011. 40(9): p. 4740-4761.

  • Gunsalus, N.J., et al., Discrete Molecular Catalysts for Methane Functionalization. Israel Journal of Chemistry, 2014. 54(10): p. 1467-1480.

  • Sen, A.M. en M.R. Lin, A novel hybrid system for the direct oxidation of ethane to acetic and glycolic acids in aqueous medium. Journal of the Chemical Society- Chemical Communications, 1992(6): p. 508-510.

  • Horvath, I.T., et al., Low-temperature methane chlorination with aqueous platinum chlorides in the presence of chlorine. Organometallics, 1993. 12(1): p. 8-10.

  • Chepaikin, E.G., Homogeneous catalysis in the oxidative functionalization of alkanes in protic media. Russian Chemical Reviews, 2011. 80(4): p. 363-396.

  • Chepaikin, E.G., Oxidative functionalization of alkanes under dioxygen in the presence of homogeneous noble metal catalysts. Journal of Molecular Catalysis a- Chemical, 2014. 385: p. 160-174.

  • Kreutz, J.E., et al., Evolution of Catalysts Directed by Genetic Algorithms in a Plug- Based Microfluidic Device Tested with Oxidation of Methane by Oxygen. Journal of the American Chemical Society, 2010. 132(9): p. 3128-3132.

  • Freund, M.S., et al., Electrocatalytic functionalization of alkanes using aqueous platinum salts. Journal of Molecular Catalysis, 1994. 87(1): p. L11-L15.

  • Garnett, J.L. en R.J. Hodges, Homogeneous metal-catalyzed exchange of aromatic compounds. A new general isotopic hydrogen labeling procedure. Journal of the American Chemical Society, 1967. 89(17): p. 4546-&.

  • Guo, Z., et al., Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chemical Society Reviews, 2014. 43(10): p. 3480-3524.

  • Xu, X., et al., Structure, bonding, and stability of a catalytica platinum(II) catalyst: A computational study. Organometallics, 2003. 22(10): p. 2057-2068.

  • Mironov, O.A., et al., Using Reduced Catalysts for Oxidation Reactions: Mechanistic Studies of the "Periana-Catalytica" System for CH4 Oxidation. Journal of the American Chemical Society, 2013. 135(39): p. 14644-14658.

  • Labinger, J.A., Selective alkane oxidation: hot and cold approaches to a hot problem. Journal of Molecular Catalysis a-Chemical, 2004. 220(1): p. 27-35.

  • Sanchez, M.A., et al., Selective hydrogenation of fatty acids and methyl esters of fatty acids to obtain fatty alcohols-a review. Journal of Chemical Technology and Biotechnology, 2017. 92(1): p. 27-42.

  • Knaut, J. en H.J. Richtler, Trends in industrial uses of palm and lauric oils. Journal of the American Oil Chemists Society, 1985. 62(2): p. 317-327.

  • Kralova, I. en J. Sjoblom, Surfactants Used in Food Industry: A Review. Journal of Dispersion Science and Technology, 2009. 30(9): p. 1363-1383.

  • Geetha, D. en R. Tyagi, Alkyl Poly Glucosides (APGs) Surfactants and Their Properties: A Review. Tenside Surfactants Detergents, 2012. 49(5): p. 417-427.

  • Zoller, U. en P. Sosis, Handbook of detergents, part F: production. 2008, Boca Raton: CRC Press. 593 p.

  • Panten, J. en H. Surburg, Flavors and Fragrances, 2. Aliphatic Compounds, in Ullmann's Encyclopedia of Industrial Chemistry. 2015, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 55.

  • Monick, J.A., Fatty alcohols. Journal of the American Oil Chemists Society, 1979. 56: p. A853-A860.

  • Anneken, D.J., et al., Fatty acids, in Ullmann's encyclopedia of industrial chemistry. 2006, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. p. 73-116.

  • Kenneally, C.J., Alcohols, higher aliphatic, survey, in Kirk-Othmer Encyclopedia of Chemical Technology. 2000, John Wiley & Sons, Inc.

  • Rieke, R.D., et al., Fatty methyl ester hydrogenation to fatty alcohol. 2. Process issues. Journal of the American Oil Chemists Society, 1997. 74(4): p. 341-345.

  • Richter, J.D. en Van den berg P.J., Hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols. I. Study of Cu and Cd oleates as catalysts. Journal of the American Oil Chemists Society, 1969. 46(3): p. 155-&.

  • Sanchez, M.A., et al., Influence of the Support Material on the Activity and Selectivity of Ru-Sn-B Catalysts for the Selective Hydrogenation of Methyl Oleate. Industrial & Engineering Chemistry Research, 2015. 54(27): p. 6845-6854.

  • Hill, E.F., G.R. Wilson, en E.C. Steinle Jr., Production, properties, and uses of fatty alcohols. Industrial and Engineering Chemistry, 1954(46): p. 1917-1921.

  • Khadzhiev, S.N., M.V. Magomedova, en E.G. Peresypkina, Mechanism of olefin synthesis from methanol and dimethyl ether over zeolite catalysts: A review. Petroleum Chemistry, 2014. 54(4): p. 245-269.

  • Shul'pin, G.B., New Trends in Oxidative Functionalization of Carbon-Hydrogen Bonds: A Review. Catalysts, 2016. 6(4): p. 40.

  • Truesdale, G.A. en A.L. Downing, Solubility of Oxygen in Water. Nature, 1954. 173(4417): p. 1236.

  • Wu, X.K., et al., Experimental Investigation on the Solubility of Oxygen in Toluene and Acetic Acid. Industrial & Engineering Chemistry Research, 2014. 53(23): p. 9932- 9937.

  • Pubchem. Heptane. 2018 [geraadpleegd op 16/04/2018]; Beschikbaar op: https://www.ncbi.nlm.nih.gov/pubmed/.

  • Orlando, J.J., G.S. Tyndall, en T.J. Wallington, The atmospheric chemistry of alkoxy radicals. Chemical Reviews, 2003. 103(12): p. 4657-4689.

  • Partenheimer, W., Chemistry of the oxidation of acetic acid during the homogeneous metal-catalyzed aerobic oxidation of alkylaromatic compounds. Applied Catalysis a- General, 2011. 409: p. 48-54.

  • Cox, R.A., K.F. Patrick, en S.A. Chant, Mechanism of atmospheric photo-oxidation of organic compounds – reactions of alkoxy radicals in oxidation of normal-butane and simple ketones. Environmental Science & Technology, 1981. 15(5): p. 587-592.

  • Atkinson, R., E.C. Tuazon, en S.M. Aschmann, Atmospheric chemistry of 2-pentanone and 2-heptanone. Environmental Science & Technology, 2000. 34(4): p. 623-631.

  • Yaremenko, I.A., et al., Rearrangements of organic peroxides and related processes. Beilstein Journal of Organic Chemistry, 2016. 12: p. 1647-1748.

  • Moden, B., et al., Reactant selectivity and regiospecificity in the catalytic oxidation of alkanes on metal-substituted aluminophosphates. Journal of Physical Chemistry C, 2007. 111(3): p. 1402-1411.

  • Gammons, C.H., Experimental investigations of the hydrothermal geochemistry of platinum and palladium. 5. Equilibria between platinum metal, Pt(II), and Pt(IV) chloride complexes at 25 to 300 degrees oC. Geochimica Et Cosmochimica Acta, 1996. 60(10): p. 1683-1694.

  • Carrondo, M. en A.C. Skapski, X-ray crystal-structure of tetrameric platinum(II) acetate – square-cluster complex with short Pt-Pt bonds and octahedral coordination geometry. Journal of the Chemical Society-Chemical Communications, 1976(11): p. 410-411.

  • Yamaguchi, T., et al., Facile regioselective ligand substitution for the inplane bridging acetates in octakis(μ-acetato-O,O')tetraplatinum(II). Inorganic Chemistry, 1989. 28(24): p. 4311-4312.

  • Yamaguchi, T. en T. Ito, Tetra- and trinuclear platinum(II) cluster complexes. Advances in Inorganic Chemistry, Vol 52, 2001. 52: p. 205-248.

  • National Institute of Advanced Industrial Science and Technology, Japan. Spectral Database for Organic Compounds, SDBS. [geraadpleegd op 01/05/2018]; Beschikbaar op: http://sdbs.db.aist.go.jp.

  • Allen, A.D. en T. Theophanides, Platinum(II) complexes – infrared spectra in 300- 800 cm-1 region. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1964. 42(7): p. 1551-&.

  • Nakamura, Y. en K. Nakamoto, Infrared spectra and bonding of metal-complexes of platinum-carbon bonded acetylacetone complexes. Inorganic Chemistry, 1975. 14(1): p. 63-67.

  • Moldoveanu, G.A. en G.P. Demopoulos, Organic solvent-assisted crystallization of inorganic salts from acidic media. Journal of Chemical Technology and Biotechnology, 2015. 90(4): p. 686-692.

  • Alfassi, Z.B. en S. Mosseri, Solventing out of electrolytes from their aqueous solution. Aiche Journal, 1984. 30(5): p. 874-876.

  • Gmelin, L. en R.J. Meyer, Gmelins Handbuch der Anorganischen Chemie. Vol. 68. 1962: Springer Verlag.

  • Wagner, A.M., A.J. Hickman, en M.S. Sanford, Platinum-Catalyzed C-H Arylation of Simple Arenes. Journal of the American Chemical Society, 2013. 135(42): p. 15710- 15713.

  • Voskressensky, L.G., N.E. Golantsov, en A.M. Maharramov, Recent Advances in Bromination of Aromatic and Heteroaromatic Compounds. Synthesis-Stuttgart, 2016. 48(5): p. 615-643.

  • Sloan, N.L. en A. Sutherland, Recent Advances in Transition-Metal-Catalyzed Iodination of Arenes. Synthesis-Stuttgart, 2016. 48(18): p. 2969-2980.

  • Pande, M.A. en S.D. Samant, Amberlyst-15 catalyzed acetylation of phenols and alcohols under solvent free conditions. Recyclable Catalysis, 2012. 1: p. 6-9.

  • Chatgilialoglu, C., et al., Chemistry of acyl radicals. Chemical Reviews, 1999. 99(8): p. 1991-2069.

  • Smith, J.R.L., E. Nagatomi, en D.J. Waddington, The autoxidation of simple esters: Towards an understanding of the chemistry of degradation of polyol esters used as lubricants. Journal of the Japan Petroleum Institute, 2003. 46(1): p. 1-14.

  • Pubchem. Trifluoroacetic anhydride. 2018 [geraadpleegd op 21/04/2018]; Beschikbaar op: https://www.ncbi.nlm.nih.gov/pubmed/.

  • Auclair, K., et al., Revisiting the mechanism of P450 enzymes with the radical clocks norcarane and spiro 2,5 octane. Journal of the American Chemical Society, 2002. 124(21): p. 6020-6027.

  • Newcomb, M., Radical kinetics and clocks. Basic concepts and methodologies., in Encyclopedia of radicals in chemistry, biology and materials, C. Chatgilialoglu and A. Studer, editors. 2012, John Wiley & Sons Ltd: Hoboken. 2324 p.

  • Griller, D. en K.U. Ingold, Free-radical clocks. Accounts of Chemical Research, 1980. 13(9): p. 317-323.

  • Woods, W.G. en R.J. Brotherton, Oxidation of organic substrates in the presence of boron compounds, in Progress in boron chemistry, R.J. Brotherton and H. Steinberg, editors. 1970, Pergamon Press, Inc.: Oxford. p. 1-116.

  • Feng, L., et al., Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(13): p. 5602-5607.

  • Li, L., et al., Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: Unveiling the long-chain alkane hydroxylase. Journal of Molecular Biology, 2008. 376(2): p. 453-465.

  • Wang, W.P. en Z.Z. Shao, Enzymes and genes involved in aerobic alkane degradation. Frontiers in Microbiology, 2013. 4: p. 7.

  • Bosmans, H., et al., Instrumentele analytische chemie (I0T53): practicum. 2014, Leuven: Expertisecel Onderwijsverstrekking en -Ondersteuning Faculteit Bio- ingenieurswetenschappen. 66.

  • Babij, N.R., et al., NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Organic Process Research & Development, 2016. 20(3): p. 661-667.

Universiteit of Hogeschool
Master in de Bio-ingenieurswetenschappen: Katalytische Technologie
Publicatiejaar
2018
Promotor(en)
prof. dr. ir. Dirk De Vos
Kernwoorden
Deel deze scriptie