Ontwikkeling van humane T cellen met gemodificeerde T-celreceptor en karakterisering van hun antitumoractiviteit

Gils Roex
Deze scriptie beschrijft een effectieve elektroporatietechniek om CD4 T-cellen te modificeren met een WT1-specifieke TCR en de CD8 co-receptor. Tegelijkertijd wordt de endogene TCR onderdrukt via silencing RNA om mismatching te voorkomen. Via de nieuwe TCR+CD8 combinatie kunnen de CD4 T-cellen geactiveerd worden en lytische activiteit vertonen bij de specifieke herkenning van WT1-geladen tumor cellen.

Er was eens… de geherprogrammeerde T-cel

Er was eens… het leven! Begin jaren 2000 keken vele kinderen gefascineerd naar de televisiereeks op Ketnet waarin de werking van het lichaam werd uitgelegd. Uiteraard was het afweersysteem hier ook een onderdeel van. De witte bloedcellen patrouilleren door ons lichaam om ons niet alleen vrij te houden van infecties, maar ook om erop toe te zien dat elke cel zijn normale functie blijft vervullen. Maar niets is perfect. Kwaadaardige cellen kunnen ontstaan door verstoringen in hun genetische code. Eens de patrouilles omzeild, kunnen ze uitgroeien tot kankercellen.

Een grote variatie aan tumoren wordt vaak onder de overkoepelende term ‘kanker’ geplaatst. Ze kunnen nog verder opgedeeld worden op basis van weefsel of orgaan tot het type cel. Bij elke nieuwe ontdekking weten de verschillende soorten kanker zich verder van elkaar te onderscheiden, wat zowel de ziekte als de behandeling alleen maar complexer maakt. Leukemie is een zeldzame bloedkanker die ontstaat uit voorlopercellen in het beenmerg. Het zijn deze cellen die zich continu delen tot verschillende gespecialiseerde bloedcellen. Bij leukemie is de specialisatie onvolledig en voeren de bloedcellen hun taak niet naar behoren uit. In sommige gevallen kunnen tumorcellen van gezonde cellen onderscheiden worden door de productie van eiwitten in abnormale hoeveelheid of vorm. Zo produceren leukemiecellen in vergelijking met gezonde cellen een immense hoeveelheid van het Wilms’ tumor 1-eiwit of kortweg WT1. Zoals alle eiwitten, wordt WT1 in kleine stukjes geknipt, peptiden genaamd, en op het oppervlak van de cel tentoongesteld.

De soldaten van het afweersysteem die instaan voor het uitschakelen van kwaadaardige indringers, zijn de T-cellen. Tijdens hun training ontwikkelen ze twee delen van een T-celreceptor die samen zorgen voor de herkenning van een specifiek peptide op het oppervlak van een cel. T-cellen die met hun receptor lichaamseigen peptiden herkennen en hiertegen reageren, worden ontslagen uit hun functie. Het nadeel hiervan is dat tumorcellen die te herkennen zijn aan een hoge productie van een lichaamseigen eiwit op deze manier vaak ontsnappen aan de screening van de T-cellen. Bovendien is er ook een hulpreceptor nodig om een verbinding te garanderen die de T-cel zal alarmeren. De aanwezigheid van één van twee hulpreceptoren, CD4 en CD8 genaamd, maakt het onderscheid tussen de twee grote groepen CD4 T-cellen en CD8 T-cellen. T-cellen met CD8 worden aanzien als de echte killers, terwijl deze met CD4 gekend zijn een ondersteunende rol te spelen voor de CD8 T-cellen. Onderzoek heeft echter aangetoond dat CD4 T-cellen ook over de capaciteit beschikken om cellen af te doden. De combinatie van killer- en helperkwaliteiten maakt de CD4 T-cel een interessante kandidaat om te bewapenen tegen leukemie via een genetische herprogrammering met een specifieke T-celreceptor dat het WT1-eiwit kan herkennen.

Doorgaans worden T-cellen geherprogrammeerd met behulp van virussen die de bouwplannen voor een T-celreceptor tegen een eiwit, zoals WT1, bevatten. De virussen infecteren de T-cellen en nestelen zich in de genetische code van hun gastheer waardoor de nieuwe T-celreceptor permanent geproduceerd wordt. Het werken met virussen brengt echter veiligheidsrisico’s met zich mee. Daarom ontwikkelden wij de techniek van elektroporatie om cellen te herprogrammeren, waarbij de celwand tijdelijk gaatjes krijgt door middel van een elektrische schok. Langs deze gaatjes kan vervolgens genetisch materiaal naar binnen stromen met bijna hetzelfde resultaat als bij de virussen: de aanmaak van de nieuwe T-celreceptor, maar dan tijdelijk. Tegelijkertijd wordt ook het bouwplan binnengebracht voor de CD8 hulpreceptor, die ontbreekt in CD4 T-cellen, maar die wel nodig is om de nieuwe T-celreceptor naar behoren te laten werken. Via een tweede elektrische schok wordt ook een stuk genetische code in de T-cel gebracht om de bouwplannen van de reeds aanwezig T-celreceptor te verstoppen. Dit is belangrijk voor de veiligheid, want een combinatie van bouwplannen voor twee T-celreceptoren zou kunnen zorgen voor een receptor met een onbekend doelwit, wat heel wat schade zou kunnen toebrengen in het lichaam.

Na de herprogrammering door middel van twee elektroporaties worden er gekleurde vlaggetjes aan de nieuwe T-celreceptor en CD8 hulpreceptor gehangen. Met een lasertoestel worden dan de hoeveelheid vlaggetjes op de T-cellen gemeten. CD4 T-cellen staan bekend als moeilijk te herprogrammeren cellen. Het aantonen van grote hoeveelheden van beide receptoren bewijst dat onze elektroporatiemethode toch een uitstekende manier is om dit type van T-cellen te herprogrammeren. De aanwezigheid van beide receptoren alleen is echter geen bewijs dat de CD4 T-cellen ook werkzaam zijn. Om dit te bevestigen, brengen we de geherprogrammeerde T-cellen samen in een proefbuis met leukemiecellen waarvan het oppervlak vol staat met stukjes WT1-eiwit waarvoor de T-cellen gevoelig zijn. Bij herkenning van de peptiden kunnen we aanmaak van het celdodende molecule granzyme B door de CD4 T-cellen meten. Hiermee tonen we aan dat onze CD4 T-cellen over de capaciteit beschikken om leukemiecellen schade toe te brengen. Een volgende reeks experimenten moet bevestigen of de leukemiecellen daadwerkelijk ten onder gaan na de CD4 T-celaanval.

Het ultieme doel is om deze geherprogrammeerde T-cellen als behandeling te gebruiken voor leukemie en hopelijk ook voor andere kankers. De T-cellen van een patiënt worden uit het bloed gehaald, alvorens een kuur van chemotherapie te starten. Terwijl de chemotherapie het grootste deel van de leukemiecellen afdoodt, worden de T-cellen in het labo geherprogrammeerd. Vervolgens worden ze terug geïnjecteerd teruggegeven aan dezelfde patiënt om de achtergebleven tumorcellen, die de chemotherapie overleven, op te sporen en te doden. De bevindingen van deze scriptie vormen de basis voor een meer uitgebreid onderzoek naar de ontwikkeling van deze nieuwe T-celtherapie die aanvullend gebruikt kan worden om de effectiviteit van de huidige therapieën te vergroten. Het klinkt misschien wat stroef, maar wie weet krijgen we ooit een aflevering van Er was eens… de geherprogrammeerde T-cel te zien.

Overzichtsfiguur van het volledige proces van herprogammering van de T-cellen.

 

Bibliografie

1.         Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-74

2.         Vandenberghe P, Tousseyn T, Menu E. 2011. Kanker, een ziekte van de celcyclus. In Kanker biomedisch bekeken, ed. M Bracke, F Lardon, P Vandenberghe, K Vanderkerken, pp. 118-27. Antwerpen: Standaard Uitgeverij

3.         Vanderkerken K, De Raeve H, Vandenberghe P. 2011. Wat is kanker? In Kanker biomedisch bekeken, ed. M Bracke, F Lardon, P Vandenberghe, K Vanderkerken, pp. 42-53. Antwerpen: Standaard Uitgeverij

4.         Talmadge JE, Fidler IJ. 2010. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70: 5649-69

5.         Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100: 57-70

6.         Dvorak HF. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650-9

7.         Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell 140: 883-99

8.         Krawczyk J, O’Dwyer M, Swords R, Freeman C, Giles FJ. 2014. The Role of Inflammation in Leukaemia. In Inflammation and Cancer, ed. BB Aggarwal, B Sung, SC Gupta, pp. 335-60. Basel: Springer Basel

9.         Deshpande A, Sicinski P, Hinds PW. 2005. Cyclins and cdks in development and cancer: a perspective. Oncogene 24: 2909-15

10.       Sherr CJ, McCormick F. 2002. The RB and p53 pathways in cancer. Cancer Cell 2: 103-12

11.       Junttila MR, Evan GI. 2009. p53 - a Jack of all trades but master of none. Nat Rev Cancer 9: 821-9

12.       Adams JM, Cory S. 2007. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324-37

13.       Blasco MA. 2005. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6: 611-22

14.       Neumann A, R Reddel R. 2002. Telomere maintenance and cancer? Look, no telomerase. Nat Rev Cancer 2: 879-84

15.       Hanahan D, Folkman J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-64

16.       Baeriswyl V, Christofori G. 2009. The angiogenic switch in carcinogenesis. Semin Cancer Biol 19: 329-37

17.       Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP. 1990. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87: 6624-8

18.       Paget S. 1989. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8: 98-101

19.       Fidler IJ. 2003. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3: 453-8

20.       Poste G, Fidler IJ. 1980. The pathogenesis of cancer metastasis. Nature 283: 139-46

21.       Nicolson GL. 1988. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 948: 175-224

22.       Aerts J, Van Tendeloo VF, Vanderkerken K, Thielemans K, Lardon F. 2011. Tumorimmunologie. In Kanker biomedisch bekeken, ed. M Bracke, F Lardon, P Vandenberghe, K Vanderkerken, pp. 259-80: Standaard Uitgeverij

23.       Dunn GP, Old LJ, Schreiber RD. 2004. The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity 21: 137-48

24.       Van den Eynde BJ, van der Bruggen P. 1997. T cell defined tumor antigens. Curr Opin Immunol 9: 684-93

25.       Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D. 1995. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269: 1281-4

26.       National Cancer Institute. 2013. What You Need To Know About Leukemia. pp. 50

27.       Berger DP, Engelhardt M, Henß H, Mertelmann R, Andreeff MK, B., Messner H, Thatcher N. 2008. Concise Manual of Hematology and Oncology. Heidelberg: Springer-Verlag. 1002 pp.

28.       Seiter K, Talavera F, Sacher RA, Besa EC, Sarkodee-Adoo C. 2017. Acute Myeloid Leukemia (AML). Cited on 02/11/2017. Available from: https://emedicine.medscape.com/article/197802-overview

29.       Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. 2016. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127: 2391-405

30.       Wang P, Liu H, Jiang T, Yang J. 2015. Cigarette Smoking and the Risk of Adult Myeloid Disease: A Meta-Analysis. PLoS One 10: e0137300

31.       Morton LM, Dores GM, Tucker MA, Kim CJ, Onel K, Gilbert ES, Fraumeni JF, Jr., Curtis RE. 2013. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975-2008. Blood 121: 2996-3004

32.       Smith RE, Bryant J, DeCillis A, Anderson S. 2003. Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol 21: 1195-204

33.       Besa EC, Krishnan K, Buehler B, Markman M, Sacher RA, Sarkodee-Adoo C, Talavera F, Windle ML. 2017. Chronic Myelogenous Leukemia (CML). Cited on 05/11/2017. Available from: https://emedicine.medscape.com/article/199425-overview

34.       Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M. 2001. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038-42

35.       Jabbour E, Kantarjian H. 2016. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol 91: 252-65

36.       Deininger MW. 2015. Diagnosing and managing advanced chronic myeloid leukemia. Am Soc Clin Oncol Educ Book: e381-8

37.       Bitencourt R, Zalcberg I, Louro ID. 2011. Imatinib resistance: a review of alternative inhibitors in chronic myeloid leukemia. Rev Bras Hematol Hemoter 33: 470-5

38.       Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, McCastlain K, Ding L, Lu C, Song G, Ma J, Becksfort J, Rusch M, Chen SC, Easton J, Cheng J, Boggs K, Santiago-Morales N, Iacobucci I, Fulton RS, Wen J, Valentine M, Cheng C, Paugh SW, Devidas M, Chen IM, Reshmi S, Smith A, Hedlund E, Gupta P, Nagahawatte P, Wu G, Chen X, Yergeau D, Vadodaria B, Mulder H, Winick NJ, Larsen EC, Carroll WL, Heerema NA, Carroll AJ, Grayson G, Tasian SK, Moore AS, Keller F, Frei-Jones M, Whitlock JA, Raetz EA, White DL, Hughes TP, Guidry Auvil JM, Smith MA, Marcucci G, Bloomfield CD, Mrozek K, Kohlschmidt J, Stock W, Kornblau SM, Konopleva M, Paietta E, Pui CH, Jeha S, Relling MV, Evans WE, Gerhard DS, Gastier-Foster JM, Mardis E, Wilson RK, Loh ML, Downing JR, Hunger SP, Willman CL, Zhang J, Mullighan CG. 2014. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371: 1005-15

39.       Mullighan CG. 2013. Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol 50: 314-24

40.       Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian HM. 1999. The biology of chronic myeloid leukemia. N Engl J Med 341: 164-72

41.       Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, Chen SC, Payne-Turner D, Churchman ML, Harvey RC, Chen X, Kasap C, Yan C, Becksfort J, Finney RP, Teachey DT, Maude SL, Tse K, Moore R, Jones S, Mungall K, Birol I, Edmonson MN, Hu Y, Buetow KE, Chen IM, Carroll WL, Wei L, Ma J, Kleppe M, Levine RL, Garcia-Manero G, Larsen E, Shah NP, Devidas M, Reaman G, Smith M, Paugh SW, Evans WE, Grupp SA, Jeha S, Pui CH, Gerhard DS, Downing JR, Willman CL, Loh M, Hunger SP, Marra MA, Mullighan CG. 2012. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22: 153-66

42.       Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, Saha V, Biondi A, Greaves MF. 1999. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354: 1499-503

43.       Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, O'Brien S, Gribben J, Rai K. 2017. Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3: 16096

44.       Murphy K, Travers P, Walport M, Janeway C. 2012. Janeway's immunobiology. New York: Garland Science

45.       Kipps TJ, Tomhave E, Pratt LF, Duffy S, Chen PP, Carson DA. 1989. Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 86: 5913-7

46.       Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, Hofmann D, Surova E, Follo M, Kohler F, Wardemann H, Zirlik K, Veelken H, Jumaa H. 2012. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489: 309-12

47.       Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, Dalla-Favera R. 2010. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17: 28-40

48.       Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P. 2000. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343: 1910-6

49.       Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. 2002. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99: 15524-9

50.       Belgian Cancer Registry. 2015. Haematological malignancies in Belgium. ed. K Henau, M Vanspauwen, M Slabbaert, K Emmerechts, L Van Eycken, Y Beguin, D Bron, T Kerre, A Kornreich, R Schots, D Selleslag, P Zachée, pp. 123. Brussels

51.       National Cancer Institute. NCI Dictionary of Cancer Terms. Cited on 21/11/2017. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms

52.       Sweet K, Lancet J. 2017. State of the Art Update and Next Questions: Acute Myeloid Leukemia. Clin Lymphoma Myeloma Leuk 17: 703-9

53.       Saussele S, Richter J, Hochhaus A, Mahon FX. 2016. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia 30: 1638-47

54.       Nabhan C, Rosen ST. 2014. Chronic lymphocytic leukemia: a clinical review. JAMA 312: 2265-76

55.       Inaba H, Greaves M, Mullighan CG. 2013. Acute lymphoblastic leukaemia. Lancet 381: 1943-55

56.       Blazar BR, Murphy WJ. 2005. Bone marrow transplantation and approaches to avoid graft-versus-host disease (GVHD). Philos Trans R Soc Lond B Biol Sci 360: 1747-67

57.       Welniak LA, Blazar BR, Murphy WJ. 2007. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 25: 139-70

58.       Majhail NS, Farnia SH, Carpenter PA, Champlin RE, Crawford S, Marks DI, Omel JL, Orchard PJ, Palmer J, Saber W, Savani BN, Veys PA, Bredeson CN, Giralt SA, LeMaistre CF. 2015. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 21: 1863-9

59.       Cioch M, Jawniak D, Wach M, Manko J, Radomska K, Borowska H, Szczepanek A, Hus M. 2016. Autologous Hematopoietic Stem Cell Transplantation for Adults With Acute Myeloid Leukemia. Transplant Proc 48: 1814-7

60.       FDA (U.S. Food and Drug Administration). 2018. The Drug Development Process. Cited on 11/01/2018. Available from: https://www.fda.gov/ForPatients/Approvals/Drugs/default.htm

61.       Coloma P. 2013. Phase 0 clinical trials: theoretical and practical implications in oncologic drug development. Open Access Journal of Clinical Trials: 119

62.       Genentech. 2016. Oncology Endpoints in a Changing Landscape. Managed Care 2016

63.       American Cancer Society. 2016. How Do You Know If Treatment for Chronic Myeloid Leukemia Is Working? Cited on 11/01/2018. Available from: https://www.cancer.org/cancer/chronic-myeloid-leukemia/treating/is-trea…

64.       Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H, Rahbarnia L. 2017. Immunotoxins in cancer therapy: Review and update. Int Rev Immunol 36: 207-19

65.       Hughes TP, Ross DM. 2016. Moving treatment-free remission into mainstream clinical practice in CML. Blood 128: 17-23

66.       Stone RM, Mandrekar S, Sanford BL, Geyer S, Bloomfield CD, Dohner K, Thiede C, Marcucci G, Lo-Coco F, Klisovic RB, Wei A, Sierra J, Sanz MA, Brandwein JM, de Witte T, Niederwieser D, Appelbaum FR, Medeiros BC, Tallman MS, Krauter J, Schlenk RF, Ganser A, Serve H, Ehninger G, Amadori S, Larson RA, Dohner H. 2015. The Multi-Kinase Inhibitor Midostaurin (M) Prolongs Survival Compared with Placebo (P) in Combination with Daunorubicin (D)/Cytarabine (C) Induction (ind), High-Dose C Consolidation (consol), and As Maintenance (maint) Therapy in Newly Diagnosed Acute Myeloid Leukemia (AML) Patients (pts) Age 18-60 with FLT3 Mutations (muts): An International Prospective Randomized (rand) P-Controlled Double-Blind Trial (CALGB 10603/RATIFY [Alliance]). Blood 126: 6

67.       Talpaz M, Mercer J, Hehlmann R. 2015. The interferon-alpha revival in CML. Ann Hematol 94 Suppl 2: S195-207

68.       O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ, Investigators I. 2003. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348: 994-1004

69.       Branford S, Seymour JF, Grigg A, Arthur C, Rudzki Z, Lynch K, Hughes T. 2007. BCR-ABL Messenger RNA Levels Continue to Decline in Patients with Chronic Phase Chronic Myeloid Leukemia Treated with Imatinib for More Than 5 Years and Approximately Half of All First-Line Treated Patients Have Stable Undetectable BCR-ABL Using Strict Sensitivity Criteria. Clin Cancer Res 13: 7080-5

70.       Keating MJ, O'Brien S, Albitar M, Lerner S, Plunkett W, Giles F, Andreeff M, Cortes J, Faderl S, Thomas D, Koller C, Wierda W, Detry MA, Lynn A, Kantarjian H. 2005. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 23: 4079-88

71.       Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, von Grunhagen U, Bergmann M, Catalano J, Zinzani PL, Caligaris-Cappio F, Seymour JF, Berrebi A, Jager U, Cazin B, Trneny M, Westermann A, Wendtner CM, Eichhorst BF, Staib P, Buhler A, Winkler D, Zenz T, Bottcher S, Ritgen M, Mendila M, Kneba M, Dohner H, Stilgenbauer S. 2010. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376: 1164-74

72.       Morabito F, Gentile M, Seymour JF, Polliack A. 2015. Ibrutinib, idelalisib and obinutuzumab for the treatment of patients with chronic lymphocytic leukemia: three new arrows aiming at the target. Leuk Lymphoma 56: 3250-6

73.       Rothschild SI, Thommen DS, Moersig W, Muller P, Zippelius A. 2015. Cancer immunology - development of novel anti-cancer therapies. Swiss Med Wkly 145: w14066

74.       Duong CP, Yong CS, Kershaw MH, Slaney CY, Darcy PK. 2015. Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol 67: 46-57

75.       Palucka K, Banchereau J. 2012. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12: 265-77

76.       Lagisetty KH, Morgan RA. 2012. Cancer therapy with genetically-modified T cells for the treatment of melanoma. J Gene Med 14: 400-4

77.       Ascierto PA, Stroncek DF, Wang E. 2015. Developments in T Cell Based Cancer Immunotherapies. Cham, Switzerland: Springer International Publishing

78.       Call ME, Wucherpfennig KW. 2005. The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu Rev Immunol 23: 101-25

79.       Xing Y, Hogquist KA. 2012. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4: 10.1101/cshperspect.a006957 a

80.       Sharpe M, Mount N. 2015. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 8: 337-50

81.       Morris EC, Stauss HJ. 2016. Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood 127: 3305-11

82.       Eberlein TJ, Rosenstein M, Rosenberg SA. 1982. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J Exp Med 156: 385-97

83.       Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al. 1988. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319: 1676-80

84.       Bonini C, Mondino A. 2015. Adoptive T-cell therapy for cancer: The era of engineered T cells. Eur J Immunol 45: 2457-69

85.       Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME. 2011. Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T Cell Transfer Immunotherapy. Clin Cancer Res 17: 4550-7

86.       Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA. 2005. Adoptive Cell Transfer Therapy Following Non-Myeloablative but Lymphodepleting Chemotherapy for the Treatment of Patients With Refractory Metastatic Melanoma. J Clin Oncol 23: 2346-57

87.       Hinrichs CS, Rosenberg SA. 2014. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 257: 56-71

88.       Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. 2017. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget 8: 90521-31

89.       Grosso DA, Hess RC, Weiss MA. 2015. Immunotherapy in acute myeloid leukemia. Cancer 121: 2689-704

90.       Sadelain M, Brentjens R, Riviere I. 2013. The basic principles of chimeric antigen receptor (CAR) design. Cancer Discov 3: 388-98

91.       Irving BA, Weiss A. 1991. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64: 891-901

92.       Romeo C, Seed B. 1991. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64: 1037-46

93.       Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA. 2014. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med 371: 1507-17

94.       Mullard A. 2017. FDA approves first CAR T therapy. Nat Rev Drug Discov 16: 669

95.       2017. FDA Approves Second CAR T-cell Therapy. Cancer Discov

96.       Buckley SA, Walter RB. 2015. Antigen-specific immunotherapies for acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2015: 584-95

97.       Johnson LA, Heemskerk B, Powell DJ, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA. 2006. Gene Transfer of Tumor-Reactive TCR Confers Both High Avidity and Tumor Reactivity to Nonreactive Peripheral Blood Mononuclear Cells and Tumor-Infiltrating Lymphocytes. J Immunol 177: 6548-59

98.       Stanislawski T, Voss R-H, Lotz C, Sadovnikova E, Willemsen RA, Kuball J, Ruppert T, Bolhuis RLH, Melief CJ, Huber C, Stauss HJ, Theobald M. 2001. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2: 962

99.       Malecek K, Zhong S, McGary K, Yu C, Huang K, Johnson LA, Rosenberg SA, Krogsgaard M. 2013. Engineering improved T cell receptors using an alanine-scan guided T cell display selection system. J Immunol Methods 392: 1-11

100.     Dunn SM, Rizkallah PJ, Baston E, Mahon T, Cameron B, Moysey R, Gao F, Sami M, Boulter J, Li Y, Jakobsen BK. 2006. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity. Protein Sci 15: 710-21

101.     Li Y, Moysey R, Molloy PE, Vuidepot AL, Mahon T, Baston E, Dunn S, Liddy N, Jacob J, Jakobsen BK, Boulter JM. 2005. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 23: 349-54

102.     Tang S, Cornetta K. 2013. Gene Therapy: Vector Technology and Clinical Applications. In Molecular Genetic Pathology, ed. L Cheng, DY Zhang, JN Eble, pp. 399-412. Boston, MA: Springer US

103.     Kurian KM, Watson CJ, Wyllie AH. 2000. Retroviral vectors. Mol Pathol 53: 173-6

104.     Suerth JD, Schambach A, Baum C. 2012. Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 24: 598-608

105.     Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. 2017. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 52: 355-80

106.     Hackett PB, Largaespada DA, Cooper LJN. 2010. A Transposon and Transposase System for Human Application. Mol Ther 18: 674-83

107.     Ivics Z, Hackett PB, Plasterk RH, Izsvak Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91: 501-10

108.     Hackett PB, Aronovich EL, Hunter D, Urness M, Bell JB, Kass SJ, Cooper LJN, McIvor RS. 2011. Efficacy and Safety of Sleeping Beauty Transposon-Mediated Gene Transfer in Preclinical Animal Studies. Curr Gene Ther 11: 341-9

109.     Harrer DC, Simon B, Fujii S-i, Shimizu K, Uslu U, Schuler G, Gerer KF, Hoyer S, Dörrie J, Schaft N. 2017. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma. BMC Cancer 17: 551

110.     Ye B, Stary CM, Gao Q, Wang Q, Zeng Z, Jian Z, Gu L, Xiong X. 2017. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies. J Immunol Res 2017: 5210459

111.     Kim TK, Eberwine JH. 2010. Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397: 3173-8

112.     Dullaers M, Breckpot K, Van Meirvenne S, Bonehill A, Tuyaerts S, Michiels A, Straetman L, Heirman C, De Greef C, Van Der Bruggen P, Thielemans K. 2004. Side-by-Side Comparison of Lentivirally Transduced and mRNA-Electroporated Dendritic Cells: Implications for Cancer Immunotherapy Protocols. Mol Ther 10: 768-79

113.     Thomas S, Stauss HJ, Morris EC. 2010. Molecular immunology lessons from therapeutic T-cell receptor gene transfer. Immunology 129: 170-7

114.     Osborn MJ, Webber BR, Knipping F, Lonetree C-l, Tennis N, DeFeo AP, McElroy AN, Starker CG, Lee C, Merkel S, Lund TC, Kelly-Spratt KS, Jensen MC, Voytas DF, von Kalle C, Schmidt M, Gabriel R, Hippen KL, Miller JS, Scharenberg AM, Tolar J, Blazar BR. 2016. Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol Ther 24: 570-81

115.     Berdien B, Mock U, Atanackovic D, Fehse B. 2014. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther 21: 539-48

116.     Provasi E, Genovese P, Lombardo A, Magnani Z, Liu P-Q, Reik A, Chu V, Paschon DE, Zhang L, Kuball J, Camisa B, Bondanza A, Casorati G, Ponzoni M, Ciceri F, Bordignon C, Greenberg PD, Holmes MC, Gregory PD, Naldini L, Bonini C. 2012. Editing T cell specificity towards leukemia by zinc-finger nucleases and lentiviral gene transfer. Nat Med 18: 807-15

117.     Gupta RM, Musunuru K. 2014. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124: 4154-61

118.     Yu K-R, Natanson H, Dunbar CE. 2016. Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles. Hum Gene Ther 27: 729-40

119.     Kim H, Kim JS. 2014. A guide to genome engineering with programmable nucleases. Nat Rev Genet 15: 321-34

120.     Ochi T, Fujiwara H, Okamoto S, An J, Nagai K, Shirakata T, Mineno J, Kuzushima K, Shiku H, Yasukawa M. 2011. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118: 1495-503

121.     Rose SD, Behlke MA. 2013. Synthetic Dicer-Substrate siRNAs as Triggers of RNA Interference. In RNA Interference from Biology to Therapeutics, ed. KA Howard, pp. 31-56. Boston, MA: Springer US

122.     Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-8

123.     Rose SD, Kim D-H, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, Behlke MA. 2005. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33: 4140-56

124.     Hefner E, Clark K, Whitman C, Behlke MA, Rose SD, Peek AS, Rubio T. 2008. Increased Potency and Longevity of Gene Silencing Using Validated Dicer Substrates. J Biomol Tech 19: 231-7

125.     Bunse M, Bendle GM, Linnemann C, Bies L, Schulz S, Schumacher TN, Uckert W. 2014. RNAi-mediated TCR Knockdown Prevents Autoimmunity in Mice Caused by Mixed TCR Dimers Following TCR Gene Transfer. Mol Ther 22: 1983-91

126.     Freeley M, Long A. 2013. Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 455: 133-47

127.     Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, Kim M-K, Shin BA, Choi S-Y. 2011. High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice. PLoS One 6: e18556

128.     Szymczak AL, Vignali DA. 2005. Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther 5: 627-38

129.     Donnelly MLL, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD. 2001. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82: 1013-25

130.     Scholten KBJ, Kramer D, Kueter EWM, Graf M, Schoedl T, Meijer CJLM, Schreurs MWJ, Hooijberg E. 2006. Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119: 135-45

131.     Daniel-Meshulam I, Ya'akobi S, Ankri C, Cohen CJ. 2012. How (specific) would like your T-cells today? Generating T-cell therapeutic function through TCR-gene transfer. Front Immunol 3: 186

132.     Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA. 2006. Enhanced Antitumor Activity of Murine-Human Hybrid T-Cell Receptor (TCR) in Human Lymphocytes Is Associated with Improved Pairing and TCR/CD3 Stability. Cancer Res 66: 8878-86

133.     Wieczorek A, Uharek L. 2013. Genetically Modified T Cells for the Treatment of Malignant Disease. Transfus Med Hemother 40: 388-402

134.     Wu R, Forget M-A, Chacon J, Bernatchez C, Haymaker C, Chen JQ, Hwu P, Radvanyi L. 2012. Adoptive T-cell Therapy Using Autologous Tumor-infiltrating Lymphocytes for Metastatic Melanoma: Current Status and Future Outlook. Cancer J 18: 160-75

135.     Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, Klatt NR, Brenchley JM, Vaccari M, Gostick E, Price DA, Waldmann TA, Restifo NP, Franchini G, Roederer M. 2013. Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 123: 594-9

136.     Klebanoff CA, Gattinoni L, Restifo NP. 2012. Sorting through subsets: Which T cell populations mediate highly effective adoptive immunotherapy? J Immunother 35: 651-60

137.     Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126-9

138.     Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA. 2011. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29: 917-24

139.     Höfflin S, Prommersberger S, Uslu U, Schuler G, Schmidt CW, Lennerz V, Dörrie J, Schaft N. 2015. Generation of CD8(+) T cells expressing two additional T-cell receptors (TETARs) for personalised melanoma therapy. Cancer Biol Ther 16: 1323-31

140.     Karpanen T, Olweus J. 2015. T-cell receptor gene therapy--ready to go viral? Mol Oncol 9: 2019-42

141.     Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD. 2015. New Strategies in Engineering T-Cell Receptor Gene-Modified T Cells to More Effectively Target Malignancies. Clin Cancer Res 21: 5191-7

142.     Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO, Omholt H, Munthe LA, Dembic Z, Corthay A, Bogen B. 2014. How Do CD4(+) T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules? Front Immunol 5: 174

143.     Ghorashian S, Veliça P, Chua I, McNicol A-M, Carpenter B, Holler A, Nicholson E, Ahmadi M, Zech M, Xue S-A, Uckert W, Morris E, Chakraverty R, Stauss HJ. 2015. CD8 T Cell Tolerance to a Tumor-Associated Self-Antigen Is Reversed by CD4 T Cells Engineered To Express the Same T Cell Receptor. J Immunol 194: 1080-9

144.     Willemsen R, Ronteltap C, Heuveling M, Debets R, Bolhuis R. 2005. Redirecting human CD4+ T lymphocytes to the MHC class I-restricted melanoma antigen MAGE-A1 by TCR alphabeta gene transfer requires CD8alpha. Gene Ther 12: 140-6

145.     Tan MP, Dolton GM, Gerry AB, Brewer JE, Bennett AD, Pumphrey NJ, Jakobsen BK, Sewell AK. 2017. Human leucocyte antigen class I-redirected anti-tumour CD4(+) T cells require a higher T cell receptor binding affinity for optimal activity than CD8(+) T cells. Clin Exp Immunol 187: 124-37

146.     Anguille S, Van Tendeloo VF, Berneman ZN. 2012. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 26: 2186-96

147.     Campillo-Davo D. 2018. A novel non-viral platform using RNA interference and mRNA for efficient TCR engineering enhances T cell antigen-specific functionality. University of Antwerp

148.     Ledderose C, Heyn J, Limbeck E, Kreth S. 2011. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils. BMC Res Notes 4: 427-

149.     Bacher P, Scheffold A. 2013. Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 83: 692-701

150.     Jeurink PV, Vissers YM, Rappard B, Savelkoul HF. 2008. T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 57: 91-103

151.     Weinberg A, Song LY, Wilkening C, Sevin A, Blais B, Louzao R, Stein D, Defechereux P, Durand D, Riedel E, Raftery N, Jesser R, Brown B, Keller MF, Dickover R, McFarland E, Fenton T, Pediatric ACWG. 2009. Optimization and limitations of use of cryopreserved peripheral blood mononuclear cells for functional and phenotypic T-cell characterization. Clin Vaccine Immunol 16: 1176-86

152.     Mazur P. 1984. Freezing of living cells: mechanisms and implications. Am J Physiol 247: C125-42

153.     Stone JD, Chervin AS, Kranz DM. 2009. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126: 165-76

154.     Campillo-Davo D, Fujiki F, Van den Bergh JMJ, Smits EL, Sugiyama H, Van Tendeloo VFI, Berneman ZN. 2016. Electroporation of Dicer-Substrate siRNA Duplexes Targeting Endogenous TCR Enhance Tumor Killing Activity of Wilms' Tumor 1 (WT1)-Specific TCR-Redirected Cytotoxic T Cells. Blood 128: 813-

155.     Smits E, Ponsaerts P, Lenjou M, Nijs G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VF. 2004. RNA-based gene transfer for adult stem cells and T cells. Leukemia 18: 1898-902

156.     Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA. 2006. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 13: 151-9

157.     De Vita M, Catzola V, Buzzonetti A, Fossati M, Battaglia A, Zamai L, Fattorossi A. 2015. Unexpected interference in cell surface staining by monoclonal antibodies to unrelated antigens. Cytometry B Clin Cytom 88: 352-4

158.     University of Utah Flow Cytometry Facility. Fluorochrome Options for Antibody Conjugation. Cited on 29/04/2018. Available from: https://utahflowcytometry.files.wordpress.com/2011/09/fluorochrome.pdf

159.     Brown DM. 2010. Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell Immunol 262: 89-95

Universiteit of Hogeschool
Bio-ingenieurswetenschappen: cel- en gentechnologie
Publicatiejaar
2018
Promotor(en)
Prof. Viggo Van Tendeloo, Prof. Jan Paeshuyse
Kernwoorden
Share this on: