Terraforming Mars: The Role of Pioneer Organisms and the Possibility of a Biologically Driven Nitrogen Cycle

Paulus Laanen
Persbericht

Mars, een tweede thuis?

De toenemende spanningen in het geopolitiek landschap en de steeds zichtbaardere gevolgen van klimaatsverandering, laten zien dat ons leven op aarde eigenlijk erg fragiel is en dat er een oplossing moet worden gevonden.

Met de huidige renaissance rond bemande Mars missies, de toenemende discussies rond Mars kolonisatie en het toenemend advies om de mens een multi-planetaire soort te maken, zal Mars in de toekomst waarschijnlijk een tweede thuisplaneet worden voor de mensheid. De grote vraag is dan, hoe zullen mensen op Mars leven? In dit onderzoek hebben we de optie van terravormen bekeken.

De transitie van Mars doorheen het terravorming proces.Terravormen?

In het proces van terravormen wordt de planeet zodanig aangepast zodat deze leven kan ondersteunen, met als ultieme doel om de planeet leefbaar te maken voor mensen.

Op het moment is Mars zo koud (gemiddeld -63°C) dat op de poolkappen bevroren CO2 ligt, dit zijn restanten van de vroegere atmosfeer toen Mars een warmer klimaat had. Als gevolg is de huidige atmosfeer van Mars zo ijl dat er vrijwel geen broeikaseffect is en dat de atmosferische druk zo laag is dat vloeibaar water spontaan zou verdampen. Ook bestaat de atmosfeer van Mars voornamelijk uit CO2 en deze is dus nog niet compatibel met onze vereisten. Het gebrek van een dikke atmosfeer (en het gebrek van een sterk magnetisch veld) zorgt er ook voor dat veel straling het Mars oppervlak bereikt.

Om Mars te terravormen moeten daarom de temperatuur en atmosferische druk worden verhoogd. Ook zal de samenstelling van de atmosfeer zodanig moeten worden aangepast. Daarnaast zal de schadelijke straling op Mars moet worden verminderd.

In de afgelopen tientallen jaren zijn er echter al een aantal technieken beschreven, die dit theoretisch gezien voor elkaar zouden kunnen krijgen. Ironisch genoeg speelt het broeikaseffect een grote rol in elk van deze technieken.

 

Het eerste idee zou zijn om de zogenaamde albedo, of reflectie van het zonlicht, van de poolkappen te verlagen. Dit kan je vergelijken met het verschil tussen in een wit t-shirt in de zon zitten of een zwart t-shirt. Doordat een donker oppervlak meer zonlicht zal opnemen en zo warmer wordt zal de temperatuur van de poolkappen stijgen, waardoor de CO2 verdampt en zo voor een sterker broeikaseffect zorgt, alsook voor een dikkere atmosfeer die meer bescherming biedt tegen straling. Hetzelfde kan bereikt worden door grote spiegels in een baan rond Mars te brengen die meer zonlicht naar het oppervlak kunnen reflecteren waardoor de temperatuur ook zal stijgen en voor CO2 verdamping zal zorgen. Daarnaast hebben we ook nog de optie om sterke broeikasgassen (die we op aarde hebben verboden) in de atmosfeer van Mars te brengen. Een combinatie van deze technieken zou Mars theoretisch gezien kunnen opwarmen tot temperaturen boven de 0°C en zou voor een atmosferische druk kunnen zorgen van rond de 400 mbar, wat vergelijkbaar is met de druk op 7000 meter hoogte hier op aarde. Ook al zijn dit nog niet echt optimale condities voor ons mensen (aangezien er nog nauwelijks zuurstof is), andere levensvormen zullen hier al kunnen floreren en dit is precies wat we gaan gebruiken om de planeet leefbaar te maken voor de mens.

(N2)u leven?

Maar los van deze bovengenoemde vereisten zijn er ook andere eisen voor leven, zoals bijvoorbeeld de aanwezigheid van voldoende stikstof. Stikstof is een van de meest belangrijke elementen voor leven, het maakt deel uit van de meeste biologische producten zoals hormonen, eiwitten, genetisch materiaal etc.

Ook al beschikt Mars over een relatief beperkte hoeveelheid stikstof, blijkt uit onze berekeningen dat er toch voldoende aanwezig is om een kleine biosfeer te kunnen onderhouden. We stellen voor om deze biosfeer (vergelijkbaar met 0.02% van al het leven op aarde) tot een oppervlakte van maximaal 30% van het Mars oppervlak te beperken. Dit omdat er maar voldoende stikstof aanwezig is om een beperkt oppervlak te bemesten. Door het ecosysteem gelokaliseerd te houden, zal er betere interactie zijn en dus zal het stabieler worden. Helaas is er niet genoeg stikstof om de atmosfeer voldoende te verbeteren voor mensen. Daarom zal er waarschijnlijk stikstof moeten worden geïmporteerd om Mars volledig te terravormen.

Ons onderzoek heeft daarnaast een aantal verschillende organismen ontdekt die op aarde in de meest barre omstandigheden kunnen overleven. Deze organismen vormen goeie kandidaten om al eerste Mars te gaan koloniseren nadat de temperatuur en atmosferische druk zijn verhoogd. In deze groep organismen zitten bacteriën, planten en algen die een stikstofcyclus kunnen opzetten op de rode planeet, wat essentieel zal zijn om een ecosysteem te vormen. Daarnaast zijn er bacteriën die toxische stoffen in de grond kunnen afbreken. Ook zullen er verschillende organismen beginnen met het produceren van zuurstof om zo de atmosfeer te verbeteren voor leven. Op deze manier zal biologie ons helpen om met relatief weinig inspanning Mars te terravormen.

Goed! Wanneer beginnen we?

Voordat terravormen kan worden gestart zijn er veel technologische ontwikkelingen nodig. Ook is er een nood aan sterke internationale samenwerking, aangezien het een erg duur proces zal zijn. Ook zal zo een project voor extra internationale spanningen zorgen. Daarom zal er een samenwerking in de vorm van een wereld ruimtevaart agentschap nodig zijn.

Afgezien van de technologische en wetenschappelijke aspecten, zijn er ook vereisten op het gebied van legaliteit en ethiek. Er zullen wetten moeten worden geschreven rond terravormen, zodat dit proces ordelijk kan worden uitgevoerd. Ook zal de vraag gesteld moeten worden of de mensheid dit zomaar mag/moet doen.

Hierdoor schatten wij dat we binnen 100 jaar de eerste stappen kunnen zetten, hierna zal het nog een 100 jaar duren voordat Mars voldoende is opgewarmd zodat het eerste leven op de planeet kan worden vrijgelaten. Daarom schatten we dat in 200 jaar tijd, de eerste organismen Mars kunnen koloniseren. Het zal echter waarschijnlijk nog vele duizenden jaren duren voordat mensen er vrij kunnen leven.

Desalniettemin is terravormen geen alles-of-niets proces en elke stap zal de planeet leefbaarder maken. Daarom is het niet ondenkbaar dat Mars al gekoloniseerd zal zijn lang voordat het terravormen klaar is.

Illustratie geleverd door Ballard, D. (2006) Mars TransitionV [Online] https://en.wikipedia.org/wiki/User:Ittiz#/media/File:MarsTransitionV.jpg [bezocht op 30 september 2017]

 

Bibliografie

References

AlgaeBase (2017) Chroococcidiopsis Geitler, 1933. [Online] Available http//www.algaebase.org/search/genus/detail/?genus_id=44945 [Accessed 28 May 2017]

Allen CC, Morris R V, Karen M, Golden DC, Lindstrom DJ, Lindstrom MM & Lockwood JP (1997) Martian Regolith Simulant JSC Mars-1. Lunar Planet. Sci.: 4–5

Andrews-Hanna JC, Zuber MT & Banerdt WB (2008) The Borealis basin and the origin of the martian crustal dichotomy. Nature 453: 1212–1216

Australian Government Department of Health and Ageing (2013) The Biology of Lupinus L . (lupin or lupine ). : 66

Averner MM & MacElroy RD (1976) On The Habitability of Mars: An Approach to Planetary Ecosynthesis

Bain JT & Proctor MCF (1980) The Requirement of Aquatic Bryophytes for Free Co2 as an Inorganic Carbon Source: Some Experimental Evidence. New Phytol. 86: 393–400

Banerjee M & Verma V (2009) Nitrogen fixation in endolithic cyanobacterial communities of the McMurdo Dry Valley, Antarctica. ScienceAsia 35: 215–219

Bardiya N & Bae JH (2011) Dissimilatory perchlorate reduction: A review. Microbiol. Res. 166: 237–254

Barlow N (2008) Mars: An Introduction to its Interior Surface and Atmosphere

Basu P (2010) Biomass Gasification and Pyrolysis

Beech M (2009) Terraforming The Creating of Habitable Worlds

Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD & Achenbach LA (2005) Identification, Characterization, and Classification of Genes Encoding Perchlorate Reductase. J. Bacteriol. 187: 5090–5096

Bierwirth PN (2017) Carbon dioxide toxicity and climate change : a major unapprehended risk for human health. : 1–17

Billi D, Baqué M, Smith HD & Mckay CP (2013) Cyanobacteria from Extreme Deserts to Space. Adv. Microbiol.: 80–86

Billi D & Caiola MG (1996) Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol. 133: 563–571

Billi D, Friedmann EI, Hofer KG, Caiola MG & Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66: 1489–1492

Birch P (1992) Terraforming Mars quickly. J. Br. Interplanet. Soc. 45: 331–340

Bishop JL, Dyar MD, Lane MD & Banfield JF (2004) Spectral Identification of Hydrated Sulfates on Mars and Comparison with Acidic Environments on Earth. Int. J. Astrobiol. 3: 275–285

Botanical Society of Britain & Ireland (2017) Lupinus Polyphyllus. [Online] Available http//www.brc.ac.uk/plantatlas/index.php?q=node/1427 [Accessed 16 April 2017]

Bothe H, Schmitz O, Yates MG & Newton WE (2010) Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol. Mol. Biol. Rev. 74: 529–551

Boynton W V., Taylor GJ, Evans LG, Reedy RC, Starr R, Janes DM, Kerry KE, Drake DM, Kim KJ, Williams RMS, Crombie MK, Dohm JM, Metzger AE, Karunatillake S, Keller JM, Newsom HE, Arnold JR, Brückner J, Englert PAJ, Gasnault O, et al (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. E Planets 112: 1–15

Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP & Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat. Biotechnol. 18: 85–90

Brown L (1993) The New Shorter Oxford English Dictionary 4th Edition, Vol. 2 (N-Z)

Burns JA & Harwit M (1973) Towards a More Habitable Mars - or - the Coming Martian Spring. Icarus 19: 126–130

Caldeira K & Kasting JF (1992) The life span of the biosphere revisited. Nature 360: 721–723

Carey FA & Giuliano RM (2011) Organic Chemistry 8th ed.

Carr MH & Head JW (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res.  108: 5042

CERN (2015) A Superconducting Shield to Protect Astronauts. [Online] Available http//cds.cern.ch/journal/CERNBulletin/2015/32/News%20Articles/2038160?ln=en [Accessed 27 Febr. 2017]

Clark IC, Youngblut M, Jacobsen G, Wetmore KM, Deutschbauer A, Lucas L & Coates JD (2016) Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. Environ. Microbiol. 18: 3342–3354

Coe KK, Belnap J, Grote EE & Sparks JP (2012) Physiological ecology of desert biocrust moss following 10 years exposure to elevated CO2: Evidence for enhanced photosynthetic thermotolerance. Physiol. Plant. 144: 346–356

Coe KK & Sparks JP (2014) Chapter 16 Photosynthesis in Bryophytes and Early Land Plants. In Photosynthesis in Bryophytes and Early Land Plants pp 291–308.

Committee on the Peaceful Uses of Outer Space (2016) Status of International Agreements relating to activities in outer space as at 1 January 2016.

COSPAR (2002) Cospar planetary protection policy. COSPAR: 1–10

Cumbers J & Rothschild LJ (2014) Salt tolerance and polyphyly in the cyanobacterium Chroococcidiopsis (Pleurocapsales). J. Phycol. 50: 472–482

Darling D (2016) Polar Caps of Mars. [Online] Available http//www.daviddarling.info/encyclopedia/M/Marspoles.html [Accessed 23 Febr. 2017]

Deguchi S, Shimoshige H, Tsudome M, Mukai S -a., Corkery RW, Ito S & Horikoshi K (2011) Microbial growth at hyperaccelerations up to 403,627 x g. Proc. Natl. Acad. Sci. 108: 7997–8002

Deng B, Fu L, Zhang X, Zheng J, Peng L, Sun J, Zhu H, Wang Y, Li W, Wu X & Wu D (2014) The Denitrification Characteristics of Pseudomonas stutzeri SC221-M and Its Application to Water Quality Control in Grass Carp Aquaculture. PLoS One 9:

Diaz B & Schulze-makuch D (2006) Microbial Survival Rates of Escherichia coli and Deinococcus radiodurancs Under Low Temperature, Low Pressure and UV-Irradiation Conditions, and Their Relevance to Possible Martian Life. Astrobiology 6: 332–347

Dole S (1964) Habitable Planets for Man

Douglas I & Lawson N (2001) The Human Dimensions of Geomorphological Work in Britain. J. Ind. Ecol. 4: 9–33

Dugan NR, Williams DJ, Meyer M, Schneider RR, Speth TF & Metz DH (2009) The impact of temperature on the performance of anaerobic biological treatment of perchlorate in drinking water. Water Res. 43: 1867–1878

Duval B, Duval E & Hoham RW (1999) Snow algae of the sierra nevada, spain, and high atlas mountains of Morocco. Int. Microbiol. 2: 39–42

Duval B, Shetty K & Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J. Appl. Phycol. 11: 559–566

Emsley J (1998) The Elements 3rd Edition

Encyclopaedia Britannica (2017) Great Wall of China. [Online] Available https//www.britannica.com/topic/Great-Wall-of-China [Accessed 12 June 2017]

ESA (2005) Water Ice in Crater at Martian North Pole. [Online] Available http//www.esa.int/Our_Activities/Space_Science/Mars_Express/Water_ice_in_crat… [Accessed 20 April 2017]

ESA (2015) Cappuccino Swirls at Mars’ South Pole. [Online] Available http//m.esa.int/spaceinimages/Images/2015/02/Cappuccino_swirls_at_Mars_south_pole [Accessed 2 March 2017]

ESA (2016) Mars’ Ionosphere Shaped By Crustal Magnetic Fields. [Online] Available https//nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html [Accessed 5 Febr. 2017]

Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543–548

European Space Agency (2005) Convention of The European Space Agency

Fanale FP & Jakosky BM (1982) Regolith-atmosphere exchange of water and carbon dioxide on Mars: Effects on atmospheric history and climate change. Planet. Space Sci. 30: 819–831

Faure G & Mensing TM (2007) Introduction to planetary science: The geological perspective

Fishbaugh KE & Head JWI (2001) Comparison of the North and South Polar Caps of Mars: New Observations from MOLA Data and Discussion of Some Outstanding Questions. Icarus 154: 145–161

Fogg MJ (1989) The creation of an artificial dense martian atmosphere: A major obstacle to the terraforming of mars. J. Br. Interplanet. Soc. 42: 577–582

Fogg MJ (1992) A synergic approach to terraforming Mars. Br. Interplanet. Soc. 45: 315–329

Fogg MJ (1998) Terraforming Mars: A review of current research. Adv. Sp. Res. 22: 415–420

Fogg MJ (2000) The ethical dimensions of space settlement. Space Policy 16: 205–211

Fogg MJ (2013a) Ch.1 Introduction. In Terraforming: Engineering Planetary Environments pp 1–27.

Fogg MJ (2013b) Ch.5 The Ecopoiesis of Mars. In Terraforming: Engineering Planetary Environments pp 1–54.

Fogg MJ (2013c) Terraforming: Engineering Planetary Environments

Genova A, Goossens S, Lemoine FG, Mazarico E, Neumann GA, Smith DE & Zuber MT (2016) Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272: 228–245

Gibson DG, Benders G a, Andrews-Pfannkoch C, Denisova E a, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire M a, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison C a & Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319: 1215–1220

Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi Z-Q, Segall-Shapiro TH, Calvey CH, et al (2010) Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science (80-. ). 329: 52–56

Global CCS Institute (1999) Appendix A-1: CO2 Thermodynamics. [Online] Available https//hub.globalccsinstitute.com/publications/co2-liquid-logistics-shipping-concept-llsc-%E2%80%93-business-model-report/appendix-1-co2 [Accessed 1 March 2017]

Goudie A (2013) The Human Impact on the Natural Environment: Past, Present and Future 7th Edition

Green JL, Hol-Lingsworth J, Brain D, Airapetian V, Glocer A, Pulkkinen A, Dong C & Bamford R (2017) A Future Mars Environment for Science and Exploration. Planet. Sci. Vis. 2050 Work. 2017: 4–5

Greenwood JP, Blake RE, Barron V & Torrent T (2013) Phosphorus Geochemistry of Mars: Evidence for an Early Acidic Hydrosphere. Lunar Planet. Sci. Conf. 44: 29–30

Gros C (2016) Developing Ecospheres on Transiently Habitable Planets: The Genesis Project. Astrophys. Space Sci.: 1–15

Hand E (2015) ‘Fixed’ nitrogen found in martian soil. Science 347: 1403

Hawking S (2017) Stephen Hawking: Expedition New Earth BBC Documentary

Haynes RH (1990) Ecce Ecopoiesis: Playing God on Mars. Moral Expert.: 184–197

Herdewijn P & Marliere P (2009) Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Chem. Biodivers. 6: 791–808

Hoham RW, Marcarelli AM, Rogers HS, Ragan MD, Petre BM, Ungerer MD, Barnes JM & Francis DO (2000) The importance of light and photoperiod in sexual reproduction and geographical distribution in the green snow alga, Chloromonas sp.-D (Chlorophyseae, Volvocales). Hydrol. Process. 14: 3309–3321

Houghton JT, Ding Y, Griggs DJ, Nogeur M, van der Linden PJ, Dai X, Maskell K & Johnson CA (2001) Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on climate Change (IPCC). Cambridge Univ. Press: 83

Hutchison III CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi Z-Q, Richter RA, Strychalski EA, Sun L, Suzuki YY, Tsvetanova B, Kim SW, Smith HO, Glass JI, et al (2016) Design and synthesis of a minimal bacterial genome. Science (80-. ). 351: aad6253-(1-11)

Hviid SF, Madsen MB, Gunnlaugsson HP, Goetz W, Knudsen JM, Hargraves RB, Smith P, Britt D, Dinesen AR, Mogensen CT, Olsen M, Pedersen CT & Vistisen L (1997) Magnetic properties experiments on the Mars Path Finder Lander, Preliminary results. Science (80-. ). 278: 1768–1770

Jakosky BM & Phillips RJ (2001) Mars’ volatile and climate history. Nature 412: 237–244

Jaumann RJ & DLR (2017) Mars’ North Pole – Chronicle of the Martian Climate. [Online] Available http//www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-20844/#/gall… [Accessed 2 March 2017]

Jet Propulsion Laboratory (2011) NASA Mars Rover Finds Mineral Vein Deposited By Water. [Online] Available https//mars.nasa.gov/mer/newsroom/pressreleases/20111207a.html [Accessed 16 April 2017]

Jet Propulsion Laboratory (2016) Mars Ice Deposit Holds as Much Water as Lake Superior. [Online] Available https//www.jpl.nasa.gov/news/news.php?feature=6680 [Accessed 18 April 2017]

John P & Whatley FR (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254: 495–498

Jones HG, Pomeroy JW, Walker DA, Hoham RW & Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Snow Ecology pp 168–228.

Kampman C, Piai L, Hendrickx TL, Zeeman G & J BC (2014) Effect of temperature on denitrifying methanotrophic activity of ’Candidatus Methylomirabilis oxyfera. Water Sci. Technol. 70: 1683–1689

Ke Y & Solomatov VS (2006) Early transient superplumes and the origin of the Martian crustal dichotomy. J. Geophys. Res. 111: 1–12

Kieffer HH, Titus TN, Mullins KF, Becker K, Johnson J & Christensen PR (1999) TES and IRTM Observations of the low albedo region on the Martian seasonal south polar cap. EOS, Trans. Am. Geophys. Union 80: 609

Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, et al (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nat. Lett. 390: 364–70

Klopfer FD & Quist JA (1955) Reactions of the mealworm, honeybee, and cockroach to some carbon dioxide concentrations. J. Comp. Physioloogical Psychol. 48: 69–72

Kminek G, Rummel JD, Cockell CS, Atlas R, Barlow N, Beaty D, Boynton W, Carr M, Clifford S, Conley CA, Davila AF, Debus A, Doran P, Hecht M, Heldmann J, Helbert J, Hipkin V, Horneck G, Kieft TL, Klingelhoefer G, et al (2010) Report of the COSPAR mars special regions colloquium. Adv. Sp. Res. 46: 811–829

Krivushin K V., Shcherbakova VA, Petrovskaya LE & Rivkina EM (2010) Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Syst. Evol. Microbiol. 60: 455–459

Laanen PJPM (2015) Phage Display as a Tool for Molecular Evolution of Polymerase Substrate Specificity (Unpublished Master’s thesis). KU Leuven Fac. Sci.: 1–73

Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E & Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev. 70: 510–547

Lanza NL, Ollila AM, Cousin A, Hardgrove C, Wiens RC, Mangold N, Fabre C, Bridges NT, Johnson J, Le Mouélic S, Cooper D, Schmidt M, Berger J, Bell J, Arvidson R, Mezzacappa A, Jackson R, Clegg S, Clark B, Forni O, et al (2014) Manganese trends with depth on rock surfaces in Gale Crater, Mars. 45th Lunar Planet. Sci. Conf.: 2

Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K, Saltzman MR & Porada P (2016) Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl. Acad. Sci. 113: 9704–9709

Lewis SL & Maslin MA (2015) Defining the Anthropocene. Nature 519: 171–180

Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM & Lomans BP (2013) Archaeal (Per)Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions. Science (80-. ). 340: 85–87

Losos JB, Mason KA, Singer SR, Raven PH & Johnson GB (2008) Biology 8th Edition

Magana-Arachchi DN & Wanigatunge RP (2013) First report of genus Chroococcidiopsis (cyanobacteria) from Sri Lanka: A potential threat to human health. J. Natl. Sci. Found. Sri Lanka 41: 65–68

Mancinelli RL & Banin A (2003) Where is the nitrogen on Mars? Int. J. Astrobiol. 2: 217–225

Mangold N (2005) High latitude patterned grounds on Mars: Classification, distribution and climatic control. Icarus 174: 336–359

Marinova MM, Aharonson O & Asphaug E (2008) Mega-impact formation of the Mars hemispheric dichotomy. Nature 453: 1216–1219

Marinova MM, McKay CP & Hashimoto H (2005) Radiative-convective model of warming Mars with artificial greenhouse gases. J. Geophys. Res. E Planets 110: 1–15

Mautner MN (1979) Directed Panspermia: A Technical and Ethical Evaluation of Seeding Nearby Solar Systems. J. Br. Interplanet. Soc. 32: 419–423

Mautner MN (2010) Seeding the Universe with Life: Securing Our Cosmological Future. J. Cosmol. 5: 982–994

Mcewen A (2014) Recurring Slope Lineae in Coprates Chasma. [Online] Available http//hirise.lpl.arizona.edu/ESP_034830_1670 [Accessed 11 June 2017]

McGill GE & Squyres SW (1991) Origin of the Martian crustal dichotomy: Evaluating hypotheses. Icarus 93: 386–393

Mckay CP & Stoker CR (1989) The early environment and its evolution on Mars. Rev. Geophys. 27: 189–214

McKay CP, Toon OB & Kasting JF (1991) Making Mars habitable. Nature 352: 489–496

Mckay CP & Zubrin R (2002) On to Mars: Colonizing a New World

Mickey S, Kelly S & Robbert A (2017) The Variety of Integral Ecologies: Nature, Culture, and Knowledge in the Planetary Era

Mickol RL & Kral TA (2016) Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars. Orig. Life Evol. Biosph.: 1–22

Motojima O & Yanagi N (2008) Feasibility of Artificial Geomagnetic Field Generation by a Superconducting Ring Network. Natl. Inst. Fusion Sci. Japan

Mustroph A & Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol. Plant. 117: 508–520

NASA (2010) North Polar Layers of Mars. [Online] Available https//www.nasa.gov/multimedia/imagegallery/image_feature_1731.html [Accessed 3 March 2017]

NASA (2012) NASA Orbiter Observations Point to ‘Dry Ice’ Snowfall on Mars. [Online] Available https//www.nasa.gov/mission_pages/MRO/news/mro20120911.html [Accessed 28 Febr. 2017]

NASA (2015a) Mars24 Sunclock - Time on Mars. [Online] Available https//www.giss.nasa.gov/tools/mars24/help/notes.html [Accessed 5 Febr. 2017]

NASA (2015b) NASA Confirms Evidence That Liquid Water Flows on Today’s Mars. [Online] Available https//www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flo… [Accessed 20 April 2017]

NASA (2015c) NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere. [Online] Available Https//www.nasa.gov/press-release/nasa-mission-reveals-speed-of-solar-wind-str…. [Accessed 5 April 2017]

NASA (2016a) Mars Fact Sheet. [Online] Available https//nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html [Accessed 5 Febr. 2017]

NASA (2016b) Earth Fact Sheet. [Online] Available https//nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html [Accessed 11 June 2017

NASA (2016c) New Gravity Map Gives Best View Yet Inside Mars. [Online] Available https//www.nasa.gov/feature/goddard/2016/mars-gravity-map [Accessed 2 March 2017]

NASA (2017a) Mars: By the Numbers. [Online] Available http//solarsystem.nasa.gov/planets/mars/facts [Accessed 11 June 2017]

NASA (2017b) Mars Polar Lander Science Goals. [Online] Available https//marsprogram.jpl.nasa.gov/msp98/lander/science.html [Accessed 25 Febr. 2017]

NASA (2017c) Terrain: Southern Hemisphere Polygonal Pattern Ground. [Online] Available https//mars.jpl.nasa.gov/gallery/martianterrain/MOC2-315_release.html [Accessed 23 April 2017]

NASA (2017d) NASA’s MAVEN Reveals Most of Mars’ Atmosphere Was Lost to Space. [Online] Available Https//www.nasa.gov/press-release/nasas-maven-reveals-most-of-mars-atmosphere-…. [Accessed 20 April 2017]

NASA (2017e) Asteroid Redirect Mission. [Online] Available https//www.nasa.gov/mission_pages/asteroids/initiative/index.html [Accessed 11 June 2017]

NASA (2017f) Interactive Mars Data Maps. [Online] Available https//marsoweb.nas.nasa.gov/globalData/ [Accessed 11 June 2017]

Nikita D (2016) Steps Involved in Nitrogen Cycle Ecology. [Online] Available http//www.biologydiscussion.com/plant-physiology-2/nitrogen-cycle/steps-invol… [Accessed 11 June 2017]

Nimmo F & Tanaka K (2005) Early Crustal Evolution of Mars. Annu. Rev. Earth Planet. Sci. 33: 133–161

Nokhal TH & Schlegel HG (1983) Taxonomic Study of Paracoccus denitrificans. Int. J. Syst. Bacteriol. 33: 26–37

O’Rourke JG & Korenaga J (2012) Terrestrial planet evolution in the stagnant-lid regime: Size effects and the formation of self-destabilizing crust. Icarus 221: 1043–1060

Ojha L, Wilhelm MB, Murchie SL, Mcewen AS, Wray JJ, Hanley J, Massé M & Chojnacki M (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8: 1–5

Oxford University Press (2017) Oxford Dictionary: Weapon. [Online] Available https//en.oxforddictionaries.com/definition/weapon [Accessed 12 June 2017]

Pidwirny M (2006) Periglacial Processes and Landforms. [Online] Available http//www.physicalgeography.net/fundamentals/10ag.html [Accessed 11 June 2017]

Pielou EC (2012) A Naturalist’s Guide to the Arctic

Plant & Soil Sciences (2017) Soils - Part 5: Nitrogen as a Nutrient. [Online] Available http//passel.unl.edu/pages/informationmodule.php?idinformationmodule=1130447042&topicorder=2&maxto=8 [Accessed 15 May 2017]

Plaut JJ, Picardi G, Safaeinili A, Ivanov AB, Milkovich SM, Cicchetti A, Kofman W, Mouginot J, Farrell WM, Phillips RJ, Clifford SM, Frigeri A, Orosei R, Federico C, Williams IP, Gurnett DA, Nielsen E, Hagfors T, Heggy E, Stofan ER, et al (2007) Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science (80-. ). 316: 92–95

Pollack JB & Sagan C (1991) Planetary Engineering. Resour. Near Earth Sp.: 921–950

Popa C, Carrozzo FG, Di Achille G, Silvestro S, Esposito F & Mennella V (2014) Evidences for copper bearing minerals in Shalbatana Valley, Mars. 45th Lunar Planet. Sci. Conf.

Pope KO, D’Hondt SL & Marshall CR (1998) Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary. Proc. Natl. Acad. Sci. 95:

Putzig NE, Phillips RJ, Campbell BA, Holt JW, Plaut JJ, Carter LM, Egan AF, Bernardini F, Safaeinili A & Seu R (2009) Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings. Icarus 204: 443–457

Quesnel E (2013) Smells Like Watermelon. [Online] Available http//www.moonshineink.com/mountain-life/smells-watermelon [Accessed 11 June 2017]

Remias D, Lütz-Meindl U & Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40: 259–268

Rice S a (2003) Health Effects of Acute and Prolonged Co 2 Exposure in Normal and Sensitive Populations. Second Anu. Conf. Carbon Sequestration

Roberts JH & Zhong S (2006) Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. 111: 1–18

Sa̧dej W & Przekwas K (2008) Fluctuations of nitrogen levels in soil profile under conditions of a long-term fertilization experiment. Plant, Soil Environ. 54: 197–203

Sagan C (1961) The Planet Venus. Science (80-. ). 133: 849–858

Sagan C (1971) The long winter model of Martian biology: A speculation. Icarus 15: 511–514

Sagan C (1973) Planetary engineering on Mars. Icarus 20: 513–514

Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G & Lapidus A (2009) Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BioMed Cent. Genomics 10:

Sand-Jensen K, Riis T, Markager S & Vincent WF (1999) Slow growth and decomposition of mosses in Arctic lakes. Can. J. Fish. Aquat. Sci. 56: 388–393

Schaffner I, Hofbauer S, Krutzler M, Pirker KF, Furtmüller PG & Obinger C (2015) Mechanism of chlorite degradation to chloride and dioxygen by the enzyme chlorite dismutase. Arch. Biochem. Biophys. 574: 18–26

Schröder K-P & Smith RC (2008) Distant future of the Sun and Earth revisited. Mon. Not. R. Astron. Soc. 386: 155–163

Shcherbakova V, Oshurkova V & Yoshimura Y (2015) The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars. Microorganisms 3: 518–534

Shcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N & Gilichinsky D (2011) Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int. J. Syst. Evol. Microbiol. 61: 144–147

Sigurdsson H, Houghton B, McNutt S, Rymer H & Stix J (2000) The Encyclopedia of Volcanoes

Slade D & Radman M (2011) Oxidative Stress Resistance in Deinococcus radiodurans

Smith HD, Baqué M, Duncan AG, Lloyd CR, McKay CP & Billi D (2014) Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue. Int. J. Astrobiol.: 1–7

Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, Dombard AJ, Frey H V., Golombek MP, Hauck SAI, Head JWI, Jakosky BM, Johnson CL, McGovern PJ, Neumann GA, Phillips RJ, Smith DE & Zuber MT (2005) New Perspectives on Ancient Mars. Science (80-. ). 307: 1214–1220

Space Frontier (1999) Znamya 2.5: The World’s First Prototype Solar Power Satellite. [Online] Available http//www.edu.pe.ca/gray/class_pages/krcutcliffe/physics521/17reflection/arti… [Accessed 20 Febr. 2017]

SpaceX (2017) Making Humans a Multiplanetary Species. [Online] Available http//www.spacex.com/mars [Accessed 11 June 2017]

SR2S (2015) EU Space Project Will Allow Astronauts to Undergo Deep Space Travel. [Online] Available http//www.sr2s.eu/project-news/19-eu-space-project-will-allow-astronauts-to-u… [Accessed 9 April 2017]

Stanley S, Elkins-Tanton L, Zuber MT & Parmentier EM (2008) Mars’ Paleomagnetic Field as the Result of a Single-Hemisphere Dynamo. Science (80-. ). 321: 1822–1825

Steele FR & Gold L (2012) The sweet allure of XNA. Nat. Biotechnol. 30: 624–5

Stern JC, Sutter B, Navarro-gonzález R, Mckay CP, Jr PDA, Buch A, Brunner AE, Eigenbrode JL, Fairen AG, Franz HB, Glavin DP, Kashyap S, Mcadam AC, Douglas W, Steele A, Szopa C, Wray JJ, Javier F, Zorzano M, Conrad PG, et al (2015) Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl. Acad. Sci. 112: 4245–4250

Stewart AJ, Schmidt MW, van Westrenen W & Liebske C (2007) Mars: A New Core-Crystallization Regime. Science (80-. ). 316: 1323–1325

Strizzi JD, Kutrieb JM, Damphousse PE & Carrico JP (2001) Sun-Mars Libration Points and Mars Mission Simulations. AAS 01327: 1–17

Sun H, Xu G, Zhan H, Chen H, Sun Z, Tian B & Hua Y (2010) Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans. BMC Microbiol. 10: 319

Takács Z, Ötvös E, Lichtenhaler HK & Tuba Z (2004) Chlorophyll fluorescence and CO2 exchange of the heavy metal-treated moss, Tortula ruralis under elevated CO2 concentration. Physiol. Mol. Biol. Plants 10: 291–296

The Watershed Nursery (2017) Lupinus arboreus. [Online] Available http//www.watershednursery.com/nursery/plant-finder/lupinus-arboreus/ [Accessed 11 June 2017]

Thomson BJ & Head JWI (2001) Utopia Basin, Mars: Characterization of topography and morphology and assessment of the origin and evolution of basin internal structure. J. Geophys. Res. 106: 1–22

Trail D, Watson EB & Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480: 79–82

Tuba Z, Csintalan Z, Szente K, Nagy Z & Grace J (1998) Carbon gains by desiccation-tolerant plant at elevated CO2. Funct. Ecol. 12: 39–44

Tuba Z, Slack NG & Lloyd RS (2011) Bryophyte Ecology and Climate Change

UC Davis (2017) Amino Acids. [Online] Available https//bio.libretexts.org/LibreTexts/University_of_California_Davis/BIS_2A%3A_Introductory_Biology_(Easlon)/Readings/04.3%3A_Amino_Acids [Accessed 10 June 2017]

UCMP (2004) The Tundra Biome. [Online] Available http//www.ucmp.berkeley.edu/exhibits/biomes/tundra.php [Accessed 12 June 2017]

Ueno T, Osono T & Kanda H (2009) Inter- and intraspecific variations of the chemical properties of high-Arctic mosses along water-regime gradients. Polar Sci. 3: 134–138

Ulrich M (2011) Permafrost landform studies on Earth: Implications for periglacial landscape evolution and habitability on Mars.

United Nation Office for Outer Space Affairs (2008) Treaties and Principles on Outer Space Treaties and Principles and related General Assembly resolutions

United Nations Office for Disarmament Affairs (1970) Treaty on the Non-Proliferation of Nuclear Weapons.

Urbansky ET, Brown SK, Magnuson ML & Kelty CA (2001) Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut. 112: 299–302

US Geological Survey (2016) How much water is there on, in and above the Earth? [Online] Available https//water.usgs.gov/edu/earthhowmuch.html [Accessed 20 April 2017]

Valenzuela DP & Myers AL (1989) Adsorption Equilibrium Data Handbook (Prentice Hall Advanced Reference Series)

Vartapetian BB, Dolgikh YI, Polyakova LI, Chichkova N V. & Vartapetian AB (2014) Biotechnological approaches to creation of hypoxia and anoxia tolerant plants. Acta Naturae 6: 19–30

Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Galuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, deB. Richter D, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science (80-. ). 351: aad2622 1-10

Watters TR (2005) Lithospheric flexure and the origin of the dichotomy boundary on Mars. Geophys. Res. Lett. 33: 271–274

Watters TR, McGovern PJ & Irwin III RP (2007) Hemispheres Apart: The Crustal Dichotomy on Mars. Annu. Rev. Earth Planet. Sci. 35: 621–652

Williams WE, Gorton HL & Vogelmann TC (2003) Surface gas-exchange processes of snow algae. Proc. Natl. Acad. Sci. U. S. A. 100: 562–566

Williamson J (1942) Collision Orbit. Astounding Sci. Fict. 29: 80–107

Winterberg F (1981) The Physical Principles Of Thermonuclear Explosive Devices

Wise DU, Golombek MP & McGill GE (1979) Tharsis province of Mars: Geologic Sequence, Geometry, and a Deformation Mechanism. Icarus 38: 456–472

Wong T & Solomatov VS (2015) Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations

World Aluminium (2017) Alumina Production. [Online] Available http//www.world-aluminium.org/statistics/alumina-production/ [Accessed 30 May 2017]

Wray J, Archer Jr. PD, Brinckerhoff WB, Eigenbrode JL, Franz HB, Freissinet C, Glavin DP, Mahaffy PR, Mckay CP, Navarro-González R, Steele A, Stern JC & Webster CR (2013) The Search for Ammonia in Martian Soils with Curiosity’s SAM Instrument. 44th Lunar Planet. Sci. Conf.

Wu ML, Van Teeseling MCF, Willems MJR, Van Donselaar EG, Klingl A, Rachel R, Geerts WJC, Jetten MSM, Strous M & Van Niftrik L (2012) Ultrastructure of the denitrifying methanotroph ‘Candidatus methylomirabilis oxyfera,’ a novel polygon-shaped bacterium. J. Bacteriol. 194: 284–291

York P (2002) The Ethics of Terraforming. [Online] Available https//philosophynow.org/issues/38/The_Ethics_of_Terraforming [Accessed 20 Febr. 2017]

Zubrin RM (1996) The Case for Mars: The Plan to Settle the Red Planet and Why We Must

Zubrin RM & McKay CP (1993) Technological Requirements for Terraforming Mars. J. Br. Interplanet. Soc.: 83–92

Zubrin RM, Muscatello AC & Berggren M (2013) Integrated Mars In Situ Propellant Production System. J. Aerosp. Eng. 26: 43–56

Universiteit of Hogeschool
Master of Space Studies
Publicatiejaar
2017
Promotor(en)
Professor Christoffel Waelkens & professor Patrick Van Oostveldt
Kernwoorden
Share this on: