Evolutionary diversity and distribution of arenaviruses in Tanzania

Laura Cuypers Joëlle Goüy de Bellocq
In West-Afrika bezwijken elk jaar zo’n vijfduizend mensen aan Lassakoorts. Ik bestudeerde de verspreiding, genetische structuur en specificiteit van nauwverwante, maar veilige virussen. Zo komen we hopelijk meer te weten over hun gevaarlijke, maar mysterieuze broertje.

Geven ongevaarlijke broertjes geheimen prijs van gevaarlijke Lassavirus?

Heeft u al gehoord van het Lassavirus? Waarschijnlijk niet. Nochtans raken in West-Afrika elk jaar honderdduizenden mensen besmet. Hoe? Door contact met besmette veeltepelmuizen of hun uitwerpselen. Voor de meeste mensen verloopt de ziekte als een eenvoudig griepje: ze weten vaak zelfs niet dat ze Lassa opliepen. Een kleine groep krijgt echter ernstige bloedingen en Ebola-achtige symptomen. Waarschijnlijk bezwijken zo’n vijfduizend mensen elk jaar aan deze ‘Lassakoorts’. Dit zijn echter ruwe schattingen: eigenlijk is nog weinig geweten over dit gevaarlijke virus.

Net omdat het virus zo gevaarlijk is, moet het bestudeerd worden onder strikte bioveiligheidsnormen: het is dus een hele uitdaging om Lassa te bestuderen. Om dit te omzeilen, pasten we een slimme truc toe in mijn masterthesis. Ik bestudeerde het Lassavirus niet direct, maar ging op onderzoek naar Oost-Afrikaanse virussen die niet gevaarlijk zijn voor de mens. Waarom is dat zo slim? Deze arenavirussen komen voor in dezelfde gastheermuis en zijn nauwverwant aan het Lassa arenavirus. Door de veiligere virussen te bestuderen, kunnen we op een eenvoudigere manier veel meer te weten komen over hun gevaarlijke broertje.

 

Zo muis, zo virus

Het is best merkwaardig: de veeltepelmuis komt in bijna heel Afrika ten zuiden van de Saharawoestijn voor, maar draagt verschillende arenavirussen in verschillende regio’s. Zo komt het Lassavirus bijvoorbeeld enkel voor in West-Afrika, terwijl een ander virus, het Morogorovirus, enkel in het oosten van Tanzania wordt aangetroffen. De onderzoeksgroep Evolutionaire Ecologie van de Universiteit Antwerpen, waar ik mijn thesis uitvoerde, toonde eerder mee aan dat er verschillende groepen of ‘genetische lijnen’ veeltepelmuizen zijn. Het zou dus kunnen dat elk arenavirus specifiek is voor een bepaalde genetische veeltepelmuislijn.

Om dit beter in kaart te brengen, nam ik in mijn masterthesis deze specificiteit van verschillende Tanzaniaanse arenavirussen nader onder de loep. Ik kon gebruik maken van nier- en bloedstalen verzameld door Tsjechische onderzoekers van het ‘Institute of Vertebrate Biology’ van de ‘Czech Academy of Sciences’ en Tanzaniaanse onderzoekers van de ‘Sokoine University of Agriculture’. Zelf reisde ik ook naar Tanzania om veeltepelmuizen te vangen voor extra stalen. Zo kon ik in een zeer groot deel van Tanzania gedetailleerd op zoek naar arenavirussen.

De genetische lijn in het noorden van Tanzania bleek enkel het Gairovirus te dragen, die in het oosten het Morogorovirus en die in het zuidwesten het Lunavirus. Mijn resultaten bevestigen dus dat elk virus enkel in een bepaalde veeltepelmuislijn voorkomt. Bovendien was ik de eerste die het Lunavirus aantrof in Tanzania. Het werd eerder enkel aangetroffen in buurland Zambia.

 

Dynamische virussen en muizen?

Waarom welk virus nu net in welke muizenlijn voorkomt, is op dit ogenblik nog erg onduidelijk. Ook het antwoord op vele andere vragen blijft voorlopig nog een mysterie. Zoals: waarom vond ik geen arenavirussen in centraal Tanzania? En waarom kwam het Morogorovirus minder voor dan het Gairovirus? Mogelijk zijn er kleine verschillen in virus- of gastheerdynamiek. Is het ene virus soms besmettelijker dan het andere? Of heeft het eerder te maken met de migratiepatronen van de muizen?

Zulke verschillen in dynamiek kunnen nu onderzocht worden. We kunnen dus een volgende stap zetten en uitzoeken welk ongevaarlijk arenavirus in Tanzania het best geschikt is als model voor het gevaarlijke Lassavirus. Op die manier vormt mijn masterthesis een belangrijke schakel in een beter begrip van het gevaarlijke Lassavirus. Zijn ongevaarlijke broertjes vormen immers mogelijk een belangrijke bron van informatie over hoe het gevaarlijke virus zich gedraagt. Dankzij mijn masterthesis hebben we een betere basis om het beste tweelingbroertje op te sporen.

Bibliografie

Andersen K.G. et al. (2015). Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell. 162:738-750. DOI: 10.1016/j.cell.2015.07.020.

Armstrong C. and Wooley J.G. (1935). Studies on the Origin of a Newly Discovered Virus Which causes Lymphocytic Choriomeningitis in Experimental Animals. Public Health Reports. 50:537-541.

Borremans B. (2015). Transmission ecology of Morogoro arenavirus in the Multimammate Mouse Mastomys natalensis in Tanzania. PhD Thesis. University of Antwerp, Belgium. 223 pp.

Borremans B. (2014). Ammonium improves elution of fixed dried blood spots without affecting immunofluorescence assay quality. Tropical Medicine and International Health. 19:413-416. DOI: 10.1111/tmi.12259.

Borremans B., Hughes N.K., Reijniers J., Sluydts V., Katakweba A.A.S., Mulungu L.S., Sabuni C.A., Makundi R.H. and Leirs H. (2013). Happily together forever: temporal variation in spatial patterns and complete lack of territoriality in a promiscuous rodent. Population Ecology. 56:109-118. DOI: 10.1007/s10144-013-0393-2.

Borremans B., Leirs H., Gryseels S., Günther S., Makundi R. and Goüy de Bellocq, J. (2011). Presence of Mopeia Virus, an African Arenavirus, Related to Biotope and Individual Rodent Host Characteristics: Implications for Virus Transmission. Vector Borne and Zoonotic Diseases. 11:1125-1131. DOI: 10.1089/vbz.2010.0010.

Borremans B., Vossen R., Becker-Ziaja B., Gryseels S., Hughes N., Van Gestel M., Van Houtte N., Günther S. and Leirs H. (2015). Shedding dynamics of Morogoro virus, an African arenavirus closely related to Lassa virus, in its natural reservoir host Mastomys natalensis. Scientific Reports. 5:10445. DOI: 10.1038/srep10445.

Bowen M.D., Peters C.J. and Nichol S.T. (1997). Phylogenetic Analysis of the Arenaviridae: Patterns of Virus Evolution and Evidence for Cospeciation between Arenaviruses and Their Rodent Hosts. Molecular Phylogenetics and Evolution. 8: 301-316. DOI: 10.1006/mpev.1997.0436.

Briese T. et al. (2009). Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever-Associated Arenavirus from Southern Africa. PLoS Pathogens. 5:e1000455. DOI: 10.1371/journal.ppat.1000455.

Bryja J. et al. (2014). Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evolutionary Biology. 14:256. DOI: 10.1186/s12862-014-0256-2.

Cajimat M.N.B., Milazzo M.L., Haynie M.L., Hanson J.D., Bradley R.D. and Fulhorst C.F. (2011). Diversity and phylogenetic relationships among the North American Tacaribe serocomplex viruses (Family Arenaviridae). Virology. 421:87-95. DOI: 10.1016/j.virol.2011.09.013.

CDC. (2015). Lassa Fever. Retrieved from https://www.cdc.gov/vhf/lassa/index.html.

Charrel R.N. and de Lamballerie X. (2002). Chapter 16: Molecular Epidemiology of Arenaviruses. In: The Molecular Epidemiology of Human Viruses (ed.: Leitner T.). New York, USA: Springer Science+Business Media. Pp. 385-404.

Coetzee C.G. (1975). The Biology, Behaviour, and Ecology of Mastomys Natalensis in Southern Africa. Bulletin of the World Health Organization. 52:637-644.

Colangelo P., Verheyen E., Leirs H., Tatard C., Denys C., Dobigny G., Duplantier J.M., Brouat C., Granjon L. and Lecompte E. (2013). A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys Natalensis. Biological Journal of the Linnean Society. 108:901-916. DOI: 10.1111/bij.12013.

Coulibaly-N’Golo D. et al. (2011). Novel Arenavirus Sequences in Hylomyscus Sp. and Mus (Nannomys) setulosus from Côte d’Ivoire: Implications for Evolution of Arenaviruses in Africa. PLoS ONE. 6:e20893. DOI: 10.1371/journal.pone.0020893.

Darriba D., Taboada G.L., Doallo R. and Posada D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods. 9:772. DOI: 10.1038/nmeth.2109.

Delany M.J. (1964). A study of the ecology and breeding of small mammals in Uganda. Journal of Zoology. 142:347-370. DOI: 10.1111/j.1469-7998.1964.tb04627.x.

Demby A.H. et al. (2001). Lassa Fever in Guinea: II. Distribution and Prevalence of Lassa Virus Infection in Small Mammals. Vector Borne and Zoonotic Diseases. 1:283-297. DOI: 10.1089/15303660160025912.

Duchêne S., Holmes E.C. and Ho S.Y.W. (2014). Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proceedings of the Royal Society of London B: Biological Sciences. 281:20140732. DOI: 10.1098/rspb.2014.0732.

Dzotsi E.K. et al. (2012). The first cases of Lassa Fever in Ghana. Ghana Medical Journal. 46:166-170.

Ehichioya D.U. et al. (2011). Current Molecular Epidemiology of Lassa Virus in Nigeria. Journal of Clinical Microbiology. 49:1157-1161. DOI: 10.1128/JCM.01891-10.

Eichler R., Lenz O., Strecker T., Eickmann M., Klenk H.-D. and Garten W. (2003). Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Reports. 4:1084-1088. DOI: 10.1038/sj.embor.7400002.

Emmerich P., Günther S. and Schmitz H. (2008). Strain-specific antibody response to Lassa virus in the local population of West Africa. Journal of Clinical Virology. 42:40-44. DOI: 10.1016/j.jcv.2007.11.019.

Fehling S.K., Lennartz F. and Strecker T. (2012). Multifunctional nature of the arenavirus RING finger protein Z. Viruses. 4:2973-3011. DOI: 10.3390/v4112973.

Fichet-Calvet E., Becker-Ziaja B., Koivogui L. and Günther S. (2014). Lassa Serology in Natural Populations of Rodents and Horizontal Transmission. Vector-Borne and Zoonotic Diseases. 14:665-674. DOI: 10.1089/vbz.2013.1484.

Fichet-Calvet E., Lecompte E., Koivogui L., Soropogui B., Doré A., Kourouma F., Sylla O., Daffis S., Koulémou K. and Ter Meulen J. (2007). Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne and Zoonotic Diseases. 7:119-128. DOI: 10.1089/vbz.2006.0520.

Fichet-calvet E., Ölschläger S., Strecker T., Koivogui L., Becker-Ziaja B., Bongo Camara A., Soropogui B. and Magassouba N.F. (2016). Spatial and temporal evolution of Lassa virus in the natural host population in Upper Guinea. Scientific Reports. 6:21977. DOI: 10.1038/srep21977.

Frame J.D., Baldwin J.M.Jr., Gocke D.J. and Troup J.M. (1970). Lassa Fever, a new virus disease of man from West Africa. American Journal of Tropical Medicine and Hygiene. 19:670-676.

Fulhorst C.F. et al. (1999). Natural rodent host associations of Guanarito and Pirital viruses (family Arenaviridae) in central Venezuela. American Journal of Tropical Medicine and Hygiene. 61:325-330.

Fulhorst C.F., Milazzo M.L., Carroll D.S., Charrel R.N. and Bradley R.D. (2002). Natural host relationships and genetic diversity of Whitewater Arroyo virus in southern Texas. American Journal of Tropical Medicine and Hygiene. 67:114-118.

Gonzalez J.P., McCormick J.B., Georges A.J. and Kiley M.P. (1984). Mobala virus: Biological and physicochemical properties of a new arenavirus isolated in the Central African Republic. Annual Review of Virology. 135:145-158.

Goüy de Bellocq J., Borremans B., Katakweba A., Makundi R., Baird S.J.E., Becker-Ziaja B., Günther S., and Leirs H. (2010). Sympatric Occurrence of 3 Arenaviruses, Tanzania. Emerging Infectious Diseases. 16:692-695. DOI: 10.3201/eid1604.091721.

Goyens J., Reijniers J., Borremans B. and Leirs H. (2013). Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis. Journal of Theoretical Biology. 317: 55-61. DOI: 10.1016/j.jtbi.2012.09.039.

Gray R.H. et al. (2001). Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet. 357: 1149-1153. DOI: 10.1016/S0140-6736(00)04331-2.

Gryseels S. (2015). Evolutionary relationships between arenaviruses and their rodent hosts. PhD Thesis. University of Antwerp, Belgium. 205 pp.

Gryseels S., Goüy de Bellocq J., Makundi R., Vanmechelen K., Broeckhove J., Mazoch V., Šumbera R., Zima J., Leirs H. and Baird S.J.E. (2016). Genetic distinction between contiguous urban and rural multimammate mice in Tanzania despite gene flow. Journal of Evolutionary Biology. 29:1952-1967. DOI: 10.1111/jeb.12919.

Gryseels S., Baird S.J.E., Borremans B., Makundi R., Leirs H. and Goüy de Bellocq J. (2017). When Viruses Don’t Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLOS Pathogens. 13:e1006073. DOI: 10.1371/journal.ppat.1006073.

Gryseels S., Rieger T., Oestereich L., Cuypers B., Borremans B., Makundi, R., Leirs H., Günther S. and Goüy de Bellocq J. (2015). Gairo virus, a novel arenavirus of the widespread Mastomys natalensis: Genetically divergent, but ecologically similar to Lassa and Morogoro viruses. Virology. 476:249-256. DOI: 10.1016/j.virol.2014.12.011.

Guindon S. and Gascuel O. (2003). A simple, fast and accurate method to estimate large phylogenies by Maximum-Likelihood. Systematic Biology. 52:696-704.

Günther S. et al. (2009). Mopeia Virus-related Arenavirus in Natal Multimammate Mice, Morogoro, Tanzania. Emerging Infectious Diseases. 15:2008-2012. DOI: 10.3201/eid1512.090864.

Günther S. and Lenz O. (2004). Lassa Virus. Critical Reviews in Clinical Laboratory Sciences. 41:339-390. DOI: 10.1080/10408360490497456.

Hervé M. (2017). Package ‘RVAideMemoire’ v0.9-65. Retrieved from https://cran.r-project.org/web/packages/RVAideMemoire/RVAideMemoire.pdf.

Holmes E.C. (2003). Molecular Clocks and the Puzzle of RNA Virus Origins. Journal of Virology. 77:3893-3897. DOI: 10.1128/JVI.77.7.3893-3897.2003.

Irwin N.R., Bayerlová M., Missa O. and Martínková N. (2012). Complex patterns of host switching in New World arenaviruses. Molecular Ecology. 21:4137-4150. DOI: 10.1111/j.1365-294X.2012.05663.x.

Ishii A., Thomas Y., Moonga L., Nakamura I., Ohnuma A., Hang’ombe B.M., Takada A., Mweene A.S. and Sawa H. (2012). Molecular surveillance and phylogenetic analysis of Old World Arenaviruses in Zambia. Journal of General Virology. 93:2247-2251. DOI: 10.1099/vir.0.044099-0.

Ishii A., Thomas Y., Moonga L., Nakamura I., Ohnuma A., Hang’ombe B., Takada A., Mweene A. and Sawa H. (2011). Novel Arenavirus, Zambia. Emerging Infectious Diseases. 17:1921-1924. DOI: 10.3201/eid1710.10452.

Johnson K.M., Kuns M.L., Mackenzie R.B., Webb P.A. and Yunker C.E. (1966). Isolation of Machupo Virus from Wild Rodent Calomys Callosus. American Journal of Tropical Medicine and Hygiene. 15:103-106. DOI: 10.4269/ajtmh.1966.15.103.

Johnson K.M., Taylor P., Elliott L.H. and Tomori O. (1981). Recovery of a Lassa-related arenavirus in Zimbabwe. American Journal of Tropical Medicine and Hygiene. 30: 1291-1293. DOI: 10.4269/ajtmh.1981.30.1291.

Kouadio L., Nowak K., Akoua-Koffi C., Weiss S., Allali B.K., Witkowski P.T., Krüger D.H., Couacy-Hymann E., Calvignac-Spencer S. and Leendertz F.H. (2015). Lassa Virus in Multimammate Rats, Côte d’Ivoire, 2013. Emerging Infectious Diseases. 21:1481-1483. DOI: 10.3201/eid2108.150312.

Kranzusch P.J. and Whelan S.P.J. (2012). Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biology. 9: 941-948. DOI: 10.4161/rna.20345.

Kronmann K.C., Nimo-Paintsil S., Obiri-danso K., Ampofo W. and Fichet-Calvet E. (2013). Arenaviruses Detected in Pygmy Mice, Ghana. Emerging Infectious Diseases. 19:1832-1835. DOI: 10.3201/eid1911.121491.

Lecompte E., ter Meulen J., Emonet S., Daffis S. and Charrel R. N. (2007). Genetic identification of Kodoko virus, a novel arenavirus of the African Pigmy Mouse (Mus Nannomys minutoides) in West Africa. Virology. 364:178-183. DOI: 10.1016/j.virol.2007.02.008.

Leirs H., Verhagen R. and Verheyen W. (1993). Productivity of different generations in a population of Mastomys natalensis rats in Tanzania. Oikos. 68:53-60. DOI: 10.2307/3545308.

Leski T.A., Stockelman M.G., Moses L.M., Park M., Stenger D.A., Ansumana R., Bausch D.G. and Lin B. (2015). Sequence Variability and Geographic Distribution of Lassa Virus, Sierra Leone. Emerging Infectious Diseases. 21:609-618. DOI: http://dx.doi.org/10.3201/eid2104.141469.

Locus T. (2016). Landscape genetics of Mastomys natalensis-borne arenaviruses in Tanzania. Master thesis. University of Antwerp, Belgium. 53 pp.

Makundi R.H., Massawe A.W. and Mulungu L.S. (2005). Rodent population fluctuations in three ecologically heterogeneous locations in northeast, central and southwest Tanzania. Belgian Journal of Zoology. 135:159-165.

Makundi R.H., Massawe A.W. and Mulungu L.S. (2007). Reproduction and population dynamics of Mastomys natalensis Smith, 1834 in an agricultural landscape in the Western Usambara Mountains, Tanzania. Integrative Zoology. 2:233-238. DOI: 10.1111/j.1749-4877.2007.00063.x.

Mariën J. et al. (2017). No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasites & Vectors. 10:210. DOI: 10.1186/s13071-017-2146-0.

Messina E.L., York J. and Nunberg J.H. (2012). Dissection of the Role of the Stable Signal Peptide of the Arenavirus Envelope Glycoprotein in Membrane Fusion. Journal of Virology. 86:6138-6145. DOI: 10.1128/JVI.07241-11.

Milazzo M.L., Campbell G.L. and Fulhorst C.F. 2011. Novel arenavirus infection in humans, United States. Emerging Infectious Diseases. 17:1417-1420. DOI: 10.3201/eid1708.110285.

Miller M.A., Pfeiffer W. and Schwartz T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, USA. pp. 1-8.

Mills J.N., Ellis B.A., Childs J.E., McKee K.T.Jr., Maiztegui J.I., Peters C.J., Ksiazek T.G. and Jahrling P.B. (1994). Prevalence of infection with Junin virus in rodent populations in the epidemic area of Argentine hemorrhagic fever. American Journal of Tropical Medicine and Hygiene. 51:554-562.

Mylne A.Q.N., Pigott D.M., Longbottom J., Shearer F., Duda K.A., Messina J.P., Weiss D.J., Moyes C.L., Golding N. and Hay S.I. (2015). Mapping the zoonotic niche of Lassa Fever in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene. 109:483-492. DOI: 10.1093/trstmh/trv047.

N’koué Sambiéni E., Danko N. and Ridde V. (2015). La Fièvre Hémorragique à Virus Lassa Au Bénin en 2014 en Contexte d’Ebola: une épidémie révélatrice de la faiblesse du système sanitaire. Anthropologie & Santé [En ligne]. 11. DOI: 10.4000/anthropologiesante.1772.

N′Dilimabaka N. et al. (2015) Evidence of Lymphocytic Choriomeningitis Virus (LCMV) in Domestic Mice in Gabon: Risk of Emergence of LCMV Encephalitis in Central Africa. Journal of Virology. 89:1456-1460. DOI: 10.1128/JVI.01009-14.

Olayemi A. et al. (2016a). Arenavirus Diversity and Phylogeography of Mastomys natalensis Rodents, Nigeria. Emerging Infectious Diseases. 22:694-697. DOI: 10.3201/eid2204.150155.

Olayemi A. et al. (2016b). New Hosts of The Lassa Virus. Scientific Reports. 6:25280. DOI: 10.1038/srep25280.

Perez M. and de la Torre J.C. (2003). Characterization of the Genomic Promoter of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus. Journal of Virology. 77:1184-1194. DOI: 10.1128/JVI.77.2.1184.

Peterson A.T., Moses L.M. and Bausch D.G. (2014). Mapping Transmission Risk of Lassa Fever in West Africa: The Importance of Quality Control, Sampling Bias, and Error Weighting. PloS One. 9: e100711. DOI: 10.1371/journal.pone.0100711.

Pinschewer D.D., Perez M. and de la Torre J.C. (2003). Role of the Virus Nucleoprotein in the Regulation of Lymphocytic Choriomeningitis Virus Transcription and RNA Replication. Journal of Virology. 77:3882-3887. DOI: 10.1128/JVI.77.6.3882.

R Development Core Team. (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from http://www.r-project.org.

Radoshitzky S.R. et al. (2015). Past, present, and future of arenavirus taxonomy. Archives of Virology. 160:1851-1874. DOI: 10.1007/s00705-015-2418-y.

Rambaut A. (2012). FigTree v1.4. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology. Retrieved from http://tree.bio.ed.ac.uk/software/figtree/.

Rambaut A., Suchard M.A., Xie D. and Drummond A.J. (2014). Tracer v1.6. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology. Retrieved from http://beast.bio.ed.ac.uk/Tracer.

Rapp F. and Buckley S.M. (1962). Studies with the etiologic agent of Argentinian epidemic hemorrhagic fever (Junín virus). American Journal of Pathology. 40:63-75.

Ronquist F. and Huelsenbeck J.P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572-1574.

Russo I.-R.M., Sole C.L., Barbato M., von Bramann U. and Bruford M.W. (2016). Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa). Scientific Reports. 6:29168. DOI: 10.1038/srep29168.

Safronetz D. et al. (2010). Detection of Lassa Virus, Mali. Emerging Infectious Diseases. 16:1123-1126. DOI: 10.3201/eid1607.100146.

Safronetz D. et al. (2013). Geographic Distribution and Genetic Characterization of Lassa Virus in Sub-Saharan Mali. PLoS Neglected Tropical Diseases. 7:4-12. DOI: 10.1371/journal.pntd.0002582.

Salazar-Bravo J., Ruedas L.A. and Yates T.L. (2002). Mammalian reservoirs of arenaviruses. In: Arenaviruses. I. The Epidemiology, Molecular and Cell Biology of Arenaviruses. (ed.: Oldstone M.B.A.). Current Topics in Microbiology and Immunology. Heidelberg, Germany: Springer-Verlag. 262:25–64.

Salvato M., Shimomaye E. and Oldstone M.B. (1989). The Primary Structure of the Lymphocytic Choriomeningitis Virus L Gene Encodes a Putative RNA Polymerase. Virology. 169:377-384.

Singh M.K., Fuller-Pace F.V., Buchmeier M.J. and Southern P.J. (1987). Analysis of the Genomic L RNA Segment from Lymphocytic Choriomeningitis Virus. Virology. 161:448-456. DOI: 10.1016/0042-6822(87)90138-3.

Sogoba N., Feldmann H. and Safronetz D. (2012). Lassa Fever in West Africa: Evidence for an Expanded Region of Endemicity. Zoonoses and Public Health. 59:43-47. DOI: 10.1111/j.1863-2378.2012.01469.x.

Sogoba N. et al. (2016) Lassa Virus Seroprevalence in Sibirilia Commune, Bougouni District, Southern Mali. Emerging Infectious Diseases. 22:657-663. DOI: 10.3201/eid2204.151814.

Stamatakis A. (2014). RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics. 30:1312-1313. DOI: 10.1093/bioinformatics/btu033.

Stamatakis A. (2016). The RAxML v8.2.X Manual. Retrieved from https://sco.h-its.org/exelixis/resource/download/NewManual.pdf.

Stenglein M.D. et al. (2015). Widespread Recombination, Reassortment, and Transmission of Unbalanced Compound Viral Genotypes in Natural Arenavirus Infections. PLoS Pathogens. 11:e1004900. DOI: 10.1371/journal.ppat.1004900.

Stenglein M.D., Sanders C., Kistler A.L., Ruby J.G., Franco J.Y., Reavill D.R., Dunker F. and DeRisi J.L. (2012). Identification, Characterization, and In Vitro Culture of Highly Divergent Arenaviruses from Boa Constrictors and Annulated Tree Boas: Candidate Etiological Agents for Snake Inclusion Body Disease. mBio. 3:e00180-12: DOI: 10.1128/mBio.00180-12.

Tavare S. (1986). Some probabilistic and statistical problems on the analysis of DNA sequences. In: Lectures on Mathematics in the Life Sciences (ed.: Miura R.M.). Providence: American Mathematical Society. 17:57-86.

The Field Museum, Chicago, USA. (2016). Mammals of Tanzania: Rodentia Skin Key. Retrieved from http://archive.fieldmuseum.org/tanzania/SkinKey.asp?ID=336.

Vieth S. et al. (2007). RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Transactions of the Royal Society of Tropical Medicine and Hygiene. 101:1253-1264. DOI: 10.1016/j.trstmh.2005.03.018.

Walker D.H., Wulff H., Lange J.V, and Murphy F.A. (1975). Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bulletin of the World Health Organization. 52:523-534.

Woolf B. (1957). The Log Likelihood Ratio Test (the G-Test): Methods and tables for tests of heterogeneity in contingency tables. Annals of Human Genetics. 21:397-409. DOI: 10.1111/j.1469-1809.1972.tb00293.x.

Wulff H., McIntosh B.M., Hamner D.B. and Johnson. K.M. (1977). Isolation of an arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa. Bulletin of the World Health Organization. 55:441-444.

Yang Z. (1993). Maximum-Likelihood Estimation of Phylogeny from DNA Sequences When Substitution Rates Differ over Sites. Molecular Biology and Evolution. 10:1396-1401.

Zapata J.C. and Salvato M.S. (2013). Arenavirus variations due to host-specific adaptation. Viruses. 5:241-278. DOI: 10.3390/v5010241.

Universiteit of Hogeschool
Master in de biologie: evolutie- en gedragsbiologie
Publicatiejaar
2017
Promotor(en)
Prof. Dr. Herwig Leirs
Kernwoorden