ubwayAPPS: Localisation on underground public transportation systems by using mobile air pressure sensors

Kris Van Erum
In deze thesis werd het SubwayAPPS algoritme geïntroduceerd. Dit algoritme laat gebruikers toe hun locatie te bepalen tijdens een metrorit door enkel gebruik te maken van een luchtdruksensor in een smartphone.

SubwayAPPS: locatiebepaling in de metro aan de hand van een luchtdruksensor in een smartphone

In grote steden is er een constante stroom van personen die niet vertrouwd zijn met de stad. Londen, bijvoorbeeld, ontving in 2014 28.8 miljoen toeristen. Dit is meer dan drie keer het bevolkingsaantal van Londen. Daarnaast waren er in Londen, in 2013, 50 180 migranten. Gelijkaardig aan Londen zijn er steeds meer en meer megasteden die met eenzelfde probleem kampen.

In de meeste gevallen vertrouwen deze personen op hun smartphone om te kunnen navigeren binnen deze, voor hun, onbekende stad. De meeste moderne smartphones beschikken over een GPS ontvanger. Daarnaast is locatiebepaling mogelijk aan de hand van Wi-Fi toegangspunten en het standaard mobiele netwerk.

Deze drie technologieën volstaan echter niet voor ondergrondse locatiebepaling. De signalen uitgezonden door GPS satellieten kunnen niet doorheen de grond verplaatsen. Hetzelfde geldt voor de Wi-Fi signalen. Er zijn onvoldoende Wi-Fi toegangspunten beschikbaar in de metro. Ook de signalen van het mobiele netwerk zijn niet beschikbaar ondergronds.

Bijgevolg kunnen personen niet vertrouwen op hun smartphone om hun locatie te bepalen terwijl ze gebruik maken van de metro. Dit is problematisch in grote steden. In Londen bijvoorbeeld, verliep 34% van al het openbaar vervoer in 2013 ondergronds. Onze verwachting is dat dit percentage in de toekomst verder gaat stijgen, onder meer door de toenemende verkeersdrukte en om ruimte te besparen.

Om dit probleem op te lossen is er reeds veel onderzoek uitgevoerd. Zo werd geprobeerd de accelerometer, magnetometer en gyroscoop sensors te gebruiken om locatiebepaling in de metro uit te voeren. In deze thesis gebruiken we hiervoor een luchtdruksensor in een smartphone. SubwayAPPS (Subway Air Pressure Positioning System) is een nieuwe methode die enkel gebruik maakt van een luchtdruksensor om de aankomst van een metrotrein in een station te bepalen.

Het algoritme maakt enkel gebruik van luchtdruk metingen. Voor de werking van het algoritme wordt gebruik gemaakt van twee eigenschappen van luchtdruk: de veranderende luchtdruk bij verschillende hoogtes en het piston effect.

Omdat lucht niet gewichtloos is, drukken de bovenste luchtlagen op de onderste luchtlagen. De gemeten luchtdruk is bijgevolg afhankelijk van de hoogte waarop gemeten wordt. In bovenste luchtlagen zal deze lager zijn dan in de onderste lagen. Dit verschil in luchtdruk tussen 2 hoogtes kan omgezet worden naar een verschil in meter door de hypsometrische formule. Wanneer een voertuig zich voortbeweegt, duwt het de lucht die zich voor het voertuig bevindt opzij. Deze weggeduwde lucht wordt gelijkmatig verdeeld rond het voertuig.

Wanneer het voertuig zich echter in een smalle tunnel voortbeweegt, kan de lucht niet gelijkmatig verdeeld worden. De lucht zal vooral voor het voertuig uit geduwd worden. Dit creëert een hogere druk voor het voertuig en een lagere druk in en achter het voertuig. Dit noemt men het piston effect.

De SubwayAPPS methode steunt op de hoogteverschillen tussen aangrenzende metrostations. Bijgevolg is het belangrijk dat er voldoende hoogteverschillen zijn tussen de opeenvolgende metrostations. Hiervoor werd een studie uitgevoerd die de dieptestructuur van metrolijnen analyseert in Londen, Moskou, Tokyo, Wenen en Brussel. Uit deze studie blijkt dat het gemiddelde hoogteverschil tussen twee aangrenzende stations meer dan 2 meter is. Dit terwijl de fabrikanten van de luchtdruksensors een precisie beloven van 1 meter. De kans dat het hoogteverschil tussen twee stations groter is dan 1 meter, bedraagt 82.11%. Indien we kijken naar het hoogteverschil bij een trip van twee stations, heeft 88% van deze trips een hoogteverschil groter dan 1 meter. Voor een trip van vier stations verhoogt deze kans verder naar 92%.

Het SubwayAPPS algoritme werd geïmplementeerd in de MetroNavigator+ applicatie op het Android platform. De originele MetroNavigator applicatie werd ontwikkeld door Thomas Stockx. Deze applicatie laat gebruikers toe de huidige status van hun metro reis te volgen. De gebruiker kan het aantal resterende stations bekijken, volgende station bekijken, alsook de reistijd tot het volgende station en de reistijd tot zijn bestemming.

De SubwayAPPS methode werd getest in de metronetwerken van Brussel en Londen. Voor de test in Brussel, werden de 4 lijnen van de metro volledig doorlopen. In totaal zijn er 20 testen gebeurd in Brussel. 88% van de stations werd correct gedetecteerd door het algoritme.

In Londen werden 20 ritten getest door het algoritme. Deze ritten hadden een gemiddelde duur van 9 minuten en werden willekeurig gekozen binnen zones 1 en 2 van het Londense metronetwerk. Het SubwayAPPS algoritme kon 62.50% van de bezochte stations correct detecteren. Dit is een beduidend slechter resultaat in vergelijking met de test in Brussel. Dit heeft twee mogelijke oorzaken. De diepte informatie van de stations in Londen is afkomstig uit een document vrijgegeven door TfL (de uitbater van het Londense metronetwerk) en dateert van 2011. De diepte informatie voor de stations in Brussel is afkomstig van zelf uitgevoerde metingen met een luchtdruksensor in een smartphone. Bijgevolg is de diepte informatie over de stations in Brussel accurater en stemt deze meer overeen met de hoogteverschillen die gemeten worden tijdens de uitvoering van het algoritme. Een tweede mogelijke oorzaak is de grootte en drukte van de stations. De stations in Londen zijn over het algemeen groter en drukker dan deze in Brussel. Vaak verbinden ze meerdere lijnen met elkaar. Bijgevolg is de kans groter dat er, terwijl de gebruiker stil staat in een station, er op een ander platform een trein vertrekt of aankomt. Dit zorgt ervoor dat de gemeten luchtdruk niet stabiel genoeg kan worden voor het SubwayAPPS algoritme.

In deze thesis werd het SubwayAPPS algoritme geïntroduceerd. Dit algoritme laat gebruikers toe hun locatie te bepalen tijdens een metrorit door enkel gebruik te maken van een luchtdruksensor in een smartphone. Er is geen externe infrastructuur vereist. Uit onze testen blijkt dat de accuraatheid van het SubwayAPPS algoritme 10% hoger ligt dan reeds bestaande methodes. Daarnaast werd er een analyse uitgevoerd van de dieptestructuur van metronetwerken en de accuraatheid van luchtdruksensoren in smartphones.

Bibliografie

[1] C. Ascher, C. Kessler, M. Wankerl, and G. Trommer. Using orthoslam and aiding techniques for precise pedestrian indoor navigation. In Proc. of ION GNSS ’09, pages 743–749, 2001.
[2] Michael Baron. Probability and Statistics for Computer Scientists, Second Edition. Chapman & Hall/CRC, 2nd edition, 2013.
[3] BIPT. Kadaster antennesites. http://www.sites.bipt.be. Consulted on May 11, 2016.
[4] Geoffrey Blewitt. Basics of the gps technique: observation equations. Geodetic applications of GPS, pages 10–54, 1997.
[5] SS Cross, RF Harrison, and RL Kennedy. Introduction to neural networks. The Lancet, 8982(346):1075–1079, 1995.
[6] Android Developers. Android api guide: Environment sensors. http://developer.android.com/guide/topics/sensors/sensors_environment.h…. Consulted on May 2, 2016.
[7] Google Developers. The google maps elevation api. https://developers.google.com/maps/documentation/elevation/intro. Consulted on April 16, 2016.
[8] C. Fischer, K. Muthukrishnan, M. Hazas, and H. Gellersen. Ultrasound-aided pedestrian dead reckoning for indoor navigation. In Proc. of MELT ’08, pages 31–36. ACM, 2008.
[9] Transport for London. Public transport journeys by type of transport. http://data.london.gov.uk/dataset/public-transport-journeys-type-transp…. Consulted on May 11, 2016.
[10] Transport for London. Tfl: Facts & figures. https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/fa…. Consulted on April 11, 2016.
[11] Alexey Goncharov. Transport schemes. http://www.alexeygoncharov.com/index1-eng.html. Consulted on November 25, 2015.
[12] The Guardian. Navigating decline: what happened to tom-tom? https://www.theguardian.com/business/2015/jul/21/navigating-decline-wha…. Consulted on May 11, 2016.
[13] Android Developer Guide. Android: Environment sensors. http://developer.android.com/guide/topics/sensors/sensors_environment.h…. Consulted onOctober 20, 2015.
[14] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous computing. Computer, (8):57–66, 2001.
[15] Takamasa Higuchi, Hirozumi Yamaguchi, and Teruo Higashino. Tracking motion context of railway passengers by fusion of low-power sensors in mobile devices. In Proceedings of the 2015 ACM International Symposium on Wearable Computers, pages 163–170. ACM, 2015.
[16] N. Kawaguchi, M. Yano, S. Ishida, T. Sasaki, Y. Iwasaki, K. Sugiki, and S. Matsubara. Underground positioning: Subway information system using wifi location technology. In Mobile Data Management: Systems, Services and Middleware, 2009. MDM ’09. Tenth International Conference on, pages 371–372, May 2009.
[17] Marian Mohr, Christopher Edwards, and Ben McCarthy. A study of lbs accuracy in the uk and a novel approach to inferring the positioning technology employed. Computer Communications, 31(6):1148–1159, 2008.
[18] Germain Moyon. Business insider: Moscow metro’s wi-fi revolution as city gets wired. http://www.businessinsider.com/afp-moscow-metros-wi-fi-revolution-as-ci…. Consulted on February 10, 2016.
[19] Song Pan, Li Fan, Jiaping Liu, Jingchao Xie, Yuying Sun, Na Cui, Lili Zhang, and Binyang Zheng. A review of the piston effect in subway stations. Advances in Mechanical Engineering, 5:950205, 2013.
[20] London & Partners. London tourism report 2014-2015. http://files.londonandpartners.com/l-and-p/assets/media/tourismannualre…. Consulted on May 6, 2016.
[21] Pressurenet. Pressurenet: The weather’s future. https://www.pressurenet.io/. Consulted on November 2, 2015.
[22] P. Robertson, M. Angermann, and B. Krach. Simultaneous localization and mapping for pedestrians using only foot-mounted inertial sensors. In Proc. of Ubicomp ’09, pages 93–96. ACM, 2009.
[23] A. Ruiz, F. Granja, J. Prieto Honorato, and J. Rosas. Accurate pedestrian indoor navigation by tightly coupling foot-mounted imu and rfid measurements. IEEE Transactions on Instrumentation and Measurement, 61(1):178–189, 2012.
[24] Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L Ananda, Mun Choon Chan, and Li-Shiuan Peh. Using mobile phone barometer for low-power transportation context detection. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pages 191–205. ACM, 2014.
[25] Bosch Sensortec. Restricted data sheet bmp180 digital pressure sensor. https://ae-bst.resource.bosch.com/media/products/dokumente/bmp180/BST-B…. Consulted on October 21, 2015.
[26] Portland State Aerospace Society. A quick derivation relating altitude to air pressure. http://psas.pdx.edu/RocketScience/PressureAltitude_Derived.pdf.Consulted on October 21, 2015.
[27] Henrik Stewenius, Christopher Engels, and David Nistér. Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 60(4):284–294, 2006.
[28] Thomas Stockx, Brent Hecht, and Johannes Schöning. Subwayps: towards smartphone positioning in underground public transportation systems. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 93–102. ACM, 2014.
[29] Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. Cooperative transit tracking using smart-phones. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pages 85–98. ACM, 2010.
[30] GLA Intelligence Unit. 2014 round population projections. http://data.london.gov.uk/dataset/2014-round-population-projections. Consulted on May 6, 2016.
[31] Evgeniy Varfolomeev. 3d-model of moscow metro. http://varf.ru/metro3d/?en=1&p=-90&t=45&d=41.05255888325765. Consulted on November 25, 2015.
[32] Takafumi Watanabe, Daisuke Kamisaka, Shigeki Muramatsu, and Hiroyuki Yokoyama. At which station am i?: Identifying subway stations using only a pressure sensor. In Wearable Computers (ISWC), 2012 16th International Symposium on, pages 110–111. IEEE, 2012.
[33] Wikipedia. List of metro systems — wikipedia, the free encyclopedia, 2016. [Online;accessed 8-June-2016].
[34] H.D. Young and R.A. Freedman. Sears and Zemansky’s University Physics. Addison-Wesley series in physics. Addison-Wesley, 2000.
[35] Paul A Zandbergen. Accuracy of iphone locations: A comparison of assisted gps, wifi and cellular positioning. Transactions in GIS, 13(s1):5–25, 2009.

Universiteit of Hogeschool
Informatica
Publicatiejaar
2016
Promotor(en)
Prof. dr. Johannes Schoning
Deel deze scriptie