Risk Analysis and Spatio-Temporal Modeling of Wildfires in Belgium

Arthur Depicker Bernard De Baets
Deze masterproef heeft als doel meer inzicht te krijgen in natuurbranden die voorkomen in België. De impact van dit fenomeen lijkt in eerste instantie eerder beperkt, maar in het licht van de klimaatverandering en de stijgende druk op de slinkende natuur, ontstond vanuit het Crisiscentrum van de Federale Overheidsdienst Binnenlandse Zaken de behoefte naar een wetenschappelijk onderbouwde risicokaart. Aan de hand van deze kaart kunnen de beschikbare middelen op een meer efficiënte manier verdeeld worden over het hele land. Voor de bestrijding van de natuurbranden zelf, worden een aantal brandverspreidingsmodellen opgesteld. Samengevat heeft deze thesis dus twee objectieven. Ten eerste wordt er aan de hand van de data van historische branden een risicokaart ontworpen voor België. De constructie van deze kaart wordt op meerdere manieren aangepakt, waarna de verschillende resultaten vergeleken en besproken worden. Het tweede objectief is het simuleren van de natuurbrand te Baelen, België, 2011. Hiervoor werden twee modellen aangewend, het internationaal geprezen FARSITE (Fire Area Simulator) en een cellulaire automaat.

Natuurbranden in België

Zie onder "eventuele bijlage bij artikel"

Bibliografie

Adab, H., Kanniah, K., and Solaimani, K. (2011). GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. International Proceedings of Chemical, Biological and Environmental Engineering, 19.

Ada ́mek, M., Bobek, P., Hadincova ́, V., Wild, J., and Kopecky ́, M. (2015). Forest fires within a temperate landscape: A decadal and millennial perspective from a sandstone region in Central Europe. Forest Ecology and Management, 336:81–90.

Alberta Government (2012). How different tree species impact the spread of wildfire. Alberta, Canada.

Albini, F. (1976). Estimating Wildfire Behavior and Effects. General Technical Report INT- 30, United States Department of Agriculture Forest Service, Washington, D.C., United States.

Alexander, M. (1985). Estimating the length-to-breadth ratio of elliptical forest fire pat- terns. In Proceedings of the 8th Conference on Fire and Forest Meteorology, pages 278–304, Montana, United States. American Meteorological Society.

Alexander, M. (1988). Help with making crown fire hazard assessments. In: Fischer, W.C. and S.F. Arno (compilers), Protecting people and homes from wildfire in the Interior West. General Technical Report INT-251, United States Department of Agriculture Forest Ser- vice, Washington, D.C., United States.

Alexandridis, A., Vakalis, D., Siettos, C., and Bafas, G. (2008). A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Applied Mathematics and Computation, 204:191–201.

Amatulli, G., Rodrigues, M., Trombetti, M., and Lovreglio, R. (2006). Assessing long-term fire risk at local scale by means of decision tree technique. Journal of Geophysical Research, 111:G04–S05.

ANB (2015). Kalmthoutse Heide. World Wide Web (consulted on October 10, 2015). (http: //www.natuurenbos.be/kalmthoutseheide).

Anderson, H. (1982). Aids to Determining Fuel Models for Estimating Fire Behavior. Gen- eral Technical Report INT-122, United States Department of Agriculture Forest Service, Intermountain Forest and Range Experiment Station, Ogden, United States.

Andreae, M. (2004). Assessment of global emissions from vegetation fires. International Forest Fire News, 31:112–121.

Anonymous (1911). Limburg. Gazet van Antwerpen. (March 19, 1911).

Anonymous (1913). Dilzen – De Bosbrand. Gazet van Antwerpen. (May 4, 1913).

Anonymous (1927). Rothem–Boschbrand. Gazet van Antwerpen. (May 12, 1927).

Anonymous (1933). Boschbrand te Elzenborn tengevolge van maneuvers. Gazet van Antwer- pen. (April 27, 1933).

Anonymous (2011). Hoe snel herstelt heide zich van brand? Het Belang van Limburg. (May 27, 2011).

Baker, B. and Copson, E. (2003). The Mathematical Theory of Huygens’ Principle. American Mathematical Society, Providence, United States. 193pp.

Bedia, J., Herrera, S., Guti ́errez, J. M., Benali, A., Brands, S., Mota, B., and Moreno, J. M. (2015). Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology, 214:369 – 379.

Belga (2011). Brand op Hoge Venen onder controle. Het Nieuwsblad. (April 26, 2011). Belgian Federal Government (2013). Statistics Belgium. World Wide Web (consulted on

October 28, 2015). (http://statbel.fgov.be/en/statistics/figures/).

Belgian Federal Government (2015). Minister Binnenlandse Zaken & Veiligheid ondertekent samenwerkingsakkoord met Nederland over uitlening blushelikopters. World Wide Web (consulted on October 14, 2015). (http://jambon.belgium.be/nl/minister- binnenlandse-zaken-veiligheid-ondertekent-samenwerkingsakkoord- met-nederland-over-uitlening).

Benndorf, A., Dimitrakopoulos, A., Ganz, D., Goldammer, J., A., H., Kondrashov, L., Manta Nolasco, M., Mart ́ınez, R., Mitsopoulos, I., Moore, P., Nikolov, N., Robbins, A., Shields, B., Smith, R., Stocks, B., Truesdale, D., and Vanha-Majamaa, I. (2007). Fire management - global assessment 2006. FAO Forestry Paper 151, Food and agriculture organisation of the United Nations, Rome, Italy.

Berec, L. (2002). Techniques of spatially explicit individual-based models: construction, simulation and mean-field analysis. Ecological Modelling, 150:55–81.

Berendsen, H. (2008). Landschap in Delen: Overzicht van de Geofactoren. Perspectef Uit- gevers.

Bogdos, N. and Manolakos, E. (2013). A tool for simulation and geo-animation of wildfires with fuel editing and hotspot monitoring capabilities. Environmental Modelling & Software, 46:182–195.

Boyer, L. (2006). De wetenschap van het vuur. de Wetenschappelijke Bibliotheek van Natu- urwetenschap & Techniek.

Buis, J. (1985). Historia Forest: Nederlandse bosgeschiedenis. HES Uitgevers, ’t Goy, the Netherlands.

Burgan, R. (1987). Concepts and interpreted examples in advanced fuel modeling. gen- eral Technical Report INT-238, United States Department of Agriculture Forest Service, Washington, D.C., United States.

Byram, G. (1959). Combustion of Forest Fuels. Pages 61-89 In: Davis, K. P., editor. Forest fire: control and use. New York, United States.

Cameron, I. and Hangos, K. (2001). Process Modelling and Model Analysis. Academic Press, San Diego, United States. 543pp.

Catry, F., Rego, F., Bacao, F., and Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18:1–11.

Coenen, L. (1999). Natuurreservaten staan droog - Burgemeester waarschuwt voor brandgevaar op Kruiskensberg en Kesselse Heide. Gazet van Antwerpen. (July 31, 1999).

Dale, L. (2009). The True Cost of Wildfire in the Western U.S. Western Forestry Leadership Coalition. Colorado, United States.

de Bree, F. (2009). Effecten luchtemissies houtkachels sfeerhaarden en vuurkorven. Buro Blauw B.V. Luchthygi ̈ene, onderzoek en advies, Wageningen, The Netherlands.

De Groot, W. (1998). Interpreting the Canadian Forest Fire Weather Index (FWI) System. In Proceeding of the Fourth Central Region Fire Weather Committee Scientific and Technical Seminar, Edmonton, Alberta, Canada.

de Groot, W., Goldammer, J., Keenan, T., Brady, M., Lynham, T., Justice, C., Csiszar, I., and O’Loughlin, K. (2006). Developing Global Early Warning System for Wildland Fire. In D.X.Viegas, editor, Proceedings of the 5th International Conference on Forest Fire Research, Coimbra, Portugal.

del Hoyo, L., Isabel, M., and Vega, F. (2011). Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. European Journal of Forest Research, 130(6):983–996.

den Ouden, J., Muys, B., Mohren, F., and Verheyen, K., editors (2010). Bosecologie en Bosbeheer. Acco, Leuven, Belgium.

Directorate-General Civil Security (2012). Brevetten opleiding “natuurbranden” voor Belgische bevelvoerders. World Wide Web (consulted on October 10, 2015). (http://www.civieleveiligheid.be/nl/news/protection-civile/ brevetten-opleiding-natuurbranden-voor-belgische-bevelvoerders).

Ehlers, E., Moss, C., and Kraft, T. (2006). Earth System Science in the Anthropocene: Emerging Issues and Problems. Springer Science & Business Media, New York, United States. 284pp.

Encinas, H., White, S., del Rey, A., and Sa ́nchez, G. (2007). Modelling forest fire spread using hexagonal cellular automata. Applied Mathematical Modelling, 31:1213–1227.

Environmental Protection Agency (2015). Corine Land Cover Mapping. World Wide Web (consulted on October 16, 2015). (http://www.epa.ie/soilandbiodiversity/ soils/land/corine/#.ViY55kvDpTB).

EU Joint Research Center (2002). Pilot projects on forest fires. World Wide Web (consulted October 20, 2015). (http://natural-hazards.aris.sai.jrc.it/fires/).

FAO (2003). Outcomes of the International Wildland Fire Summit Sydney, Australia, 8 October 2003. International Forest Fire News, 29.

Federal Public Service Internal Affairs (2013). Nationaal Actieplan Natuurbranden. Brussels, Belgium.

Finney, M. (1999). Spatial Modeling of Post-Frontal Fire Behavior. Final Report RMRS- 99557-RJVA. Systems for Environmental Management, Missoula, United States.

Finney, M. (2004). FARSITE: Fire Area Simulator - Model Development and Evaluation. Research Paper RMRS-RP-4, United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, United States.

Fiorucci, P., Gaetani, F., and Minciardi, R. (2004). An integrated system for static and dy- namic risk evaluation at a national level. In Proceedings of the 2nd International Symposium on Fire Economics, Planning and Policy: A Global View, Perugia, Italy.

Forestry Canada Fire Danger Group (1992). Development and structure of the Canadian Forest Fire Behavior Prediction System. Information report ST-X-3, Forestry Canada: Science and Sustainable Development Directorate, Hull, Canada.

Ganguly, N., Sikdar, B. K., Deutsch, A., Canright, G., and Chaudhuri, P. P. (2003). A Survey on Cellular Automata. Technical report, Centre for High Performance Computing, Dresden University of Technology, Dresden, Germany.

Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., and Lampin, C. (2013). A review of the main driving factors of forest fire ignition over Europe. Environmental Management, 51:651–662.

Ganz, D., Fisher, R., and Moore, P. (2003). Further defining community-based fire man- agement: Critical elements and rapid appraisal tools. In 3rd International Wildland Fire Conference, October, Sydney, Australia.

Ghisu, T., Bachisio, A., Pellizzaro, G., and Pierpaolo, D. (2015). An optimal cellular automata algorithm for simulating wildfire spread. Environmental Modelling & Software, 71:1–14.

Global Fire Monitoring Center (2006). Fire management: Review of international coopera- tion. Technical report, Food and Agriculture Organization of the United Nations, Rome, Italy.

Global Fire Monitoring Center (2015a). Outline of fire danger products in the global early warning system for wildland fire. World Wide Web (consulted on October 2, 2015). (http: //www.fire.uni-freiburg.de/gwfews/index.html).

Global Fire Monitoring Center (2015b). Overview of the global fire early warning system. World Wide Web (consulted on October 2, 2015). (http://www.fire.uni-freiburg. de/gwfews/overview.html).

Goldammer, J., editor (1990). Fire in the Tropical Biota. Springer-Verlag Berlin Heidelberg, New York, United States.

Gorte, R. (2013). The rising cost of wildfire protection. Published Online. Headwater Economics,Bozeman,United States.

Green, D. and Gill, A. (1989). Interactive bushfire simulation. In Green, D. and Gill, A., editors, Proceedings of the 8th Biennal Conference and Bushfire Dynamics Workshop, pages 573–578.

Hermy, M., de Blust, G., and Slootmaekers, M. (2004). Natuurbeheer. Davidsfonds (in cooperation with Argus vzw, Natuurpunt vzw), Leuven, Belgium.

Hosmer, D. and Lemeshow, S. (1989). Applied Logistic Regression. John Wiley & Sons, New York, United States.

Jacobs, A. (2013). Kolonisatie van afgebrande heide door grondbroedende vogels: Een studie op de Kalmthoutse Heide. Antwerp, Belgium.

Johnson, E. and Miyanishi, K., editors (2001). Forest Fires: Behavior and Ecological Effects. Academic Press, San Diego, United States.

Johnston, P., Milne, G., and Klemitz, D. (2005). Overview of bushfire spread simulation systems. Project progress report, School of Computer Science and Software Engineering, The University of Western Australia, Nedlands, Australia.

Karafyllidis, I. and Thanailakis, A. (1997). A model for predicting forest fire spread using cellullar automata. Ecological Modelling, 99:87–97.

Keeley, J., Pausas, J., Rundel, P., Bond, W., and Bradstock, R. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16:406–411.

Kessel, S. and Beck, J., editors (1991). Development and implementation of forest fire model- ing and decision support systems in Australia. GIS/LIS, volume 2, Atlanta, United States.

Lea-Langton, A., Baeza-Romero, M., Boman, G., Brooks, B., Wilson, A., Atika, F., Bartle, K., Jones, J., and Williams, A. (2015). A study of smoke formation from wood combustion. Fuel Processing Technology, 137:327–332.

Legendre, P. and Legendre, L. (1998). Numerical Ecology. Elsevier Science BV, Amsterdam, The Netherlands, 2nd edition.

Lilburne, L. and Tarantola, S. (2009). Sensitivity analysis of spatial models. International Journal of Geographical Information Science, 23(2):151–168.

Loos, J. (2011). Oernatuur tussen Ardennen en Eifel: De Hoge Venen. Boutersem, Belgium.

Maes, M. (1999). Nieuwe plannen bosbrand getest. Het Belang van Limburg. (April 24, 1999).

Mandel, J., L.S., B., Beezley, J., Coen, J., C.C., D., Kim, M., and Vodacek (2008). A wildland fire model with data assimilation. Mathematics and Computers in Simulation, 79(3):584–606.

Martinez, J., Chuvieco, E., Marti ́ın, P., and Gonza ́lez-Caba ́n, A. (2008). Proceedings of the Second International Symposium on Fire Economics, Planning and Policy: A Global View: Estimation of Risk Factors of Human Ignition of Fires in Spain by Means of Logistic Regres- sion. General technical Report PSW-GTR-208, United States Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, United States.

Massada, A., Syphard, A., Stewart, S., and Radeloff, V. (2012). Wildfire ignition-distribution modelling: A comparative study in the Huron-Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22(2):174–183.

McDonald, J. (2014). Handbook of Biological Statistics. Sparky House Publishing, Baltimore, Maryland, 3rd edition.

McKay, M., Beckman, R., and Conover, W. (1979). A comparison of three methods for select- ing values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245.

Moore, G. (1969). Automatic scanning and computer processes for the quantitative analysis of micrographs and equivalent subjects. Pattern Recognition: Pictorial Pattern Recognition, 1:275–326.

Moritz, M. (2012). Wildfire ignite debate on global warming. Nature, 487:273.
Muzy, A., Innocenti, E., Aiello, A., and Santucci, J. (2005). Specification of Discrete Event

Models for Fire Spreading. Simulation, 81(2):103–117.

National Association of State Foresters (2015). Wildfire Prevention. World Wide Web (consulted on October 6, 2015). (http://stateforesters.org/smokey-bear/ wildfire-prevention).

National Geographic Institute (2013). Digitale gegevens: digitaal terreinmodel. World Wide Web (consulted on October 28, 2015). (http://www.ngi.be/NL/NL1-5-5.shtm).

National Park Service (2008). The Yellowstone fires of 1988. United States Department of the Interior.

National Wildfire Coordinating Group (2002). Gaining A Basic Understanding of the Na- tional Fire Danger Rating System. National Office of Fire and Aviation, Bureau of Land Management, National Interagency Fire Center, Boise, United States.

Nopens, I. (2014). Modelleren en Simuleren van Biosystemen. Ghent University, Gent, Belgium.

Nunes, L., Matias, J., and Catala ̃o, J. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53:235–242.

Papadopoulos, G. (2011). A Comparative Review on Wildfire Simulators. IEEE Systems Journal, 5(2):233–243.

Pastor, E., Za ́rate, L., Planas, E., and Arnaldos, J. (2003). Mathematical models and calcu- lation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 29:139–153.

Perona, G. and Brebbia, C., editors (2010). Modelling, Monitoring and Management of Forest Fires II. WIT Press, Southampton, United Kingdom.

Peters, N. (2010). Combustion Theory. Rheinisch-Westfa ̈lische Technische Hochschule Aachen, Aachen, Germany.

Peterson, S., Morais, M., Carlson, J., Dennison, P., Roberts, D., Moritz, M., and Weise, D. (2009). Using HFire for Spatial ModeModel of Fire in Shrublands. General Technical Report PSW-RP-259, United States Department of Agriculture Forest Service. Pacific Southwest Research Station, Fresno, United States.

Preisler, H., Brillinger, D., Burgan, R., and Benoit, J. (2004). Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13:133–142.

Richards, G. (1990). An elliptical growth model of forest fire fronts and its numerical solution. International Journal for Numerical Methods in Engineering, 30:1163–1179.

Richards, G. (1995). A general mathematical framework for modeling two-dimensional wild- land fire spread. International Journal of Wildland Fire, 5(2):63–72.

Rodrigues, M. and de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurence. Environmental Modelling & Software, 57:192–201.

Rothermel, R. (1972). A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115, United States Department of Agriculture Forest Service, Inter- mountain Forest and Range Experiment Station, Fort Collins, United States.

Rothermel, R. (1991). Predicting behavior and size of crown fires in the north Rocky Moun- tains. Research Paper INT-483, United States Department of Agriculture, Washington, D.C., United States.

Saltelli, A., Chan, K., and Scott, E. (2000). Sensitivity Analysis. Wiley, Chichester, United Kingdom.

Saltelli, A., Tarantola, S., Campologno, F., and Ratto, M. (2004). Sensitivity Analysis in Practice. A guide to Assessing Scientific Models. John Wiley, Chichester, United Kingdom.

San-Miguel-Ayanz, J. and Camia, A. (2012). The European Forest Fire Information System (EFFIS): Towards a Global Wildfire Information System (GWIS). European Union Joint Research Center, Ispra, Italy.

San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P., McInerney, D., Withmore, C., Santos de Oliveira, S., Rodrigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., and Amatulli, G. (2012). Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). Technical report, European Commission, Joint Research Centre, Ispra, Italy.

Schiff, J. (2008). Cellular Automata. A Discrete View of the World. John Wiley & Sons, Hoboken, United States.

Schmitz, A., Oumara Fall, A., and Rouchiche, S. (1996). Contrˆole et utilisation du feu en zones arides et subhumides africaines. Food and Agriculture Organization of the United Nations, Rome, Italy.

Schmuck, G., San-Miguel-Ayanz, J., Camia, A., Durrant, T., Boca, R., Liberta`, G., Petro- liagkis, T., Di Leo, M., Rodrigues, D., Boccacci, F., and Schulte, E. (2014). Forest Fires in Europe Middle East and North Africa 2013. Technical report, European Comission, Joint Research Centre Institute for Environment and Sustainability, Ispra, Italy. 107pp.

Schmuck, G., San-Miguel-Ayanz, J., Camia, A., Durrant, T., Boca, R., Withmore, C., Lib- erta`, G., Corti, P., and Schulte, E. (2012). Forest Fires in Europe, Middle East and North Africa 2011. Technical report, European Comission, Joint Research Centre Institute for Environment and Sustainability, Ispra, Italy. 108pp.

Scholliers, P. and Zamagni, V., editors (1995). Labour’s Reward: Real Wages and Economic Change in 19th- and 20th-century Europe. Edwar Elgar Publishing, Cheltenham, United Kingdom.

Scott, J. and Reinhardt, E. (2001). Assessing crown fire potential by linking model of surface and crown fire behavior. Research Paper RMRS-RP-29, United States Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, United States.

Sobol’, I. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 1:407–414.

Stevens, M., Demolder, H., Jacobs, S., Michels, Schneiders, A., Simoens, I., Spanhove, T., Van Gossum, P., Van Reeth, W., and Peymen (2015). Flanders regional ecosystem assessment: State and trends of ecosystems and their services in flanders. synthesis. communications of the research institute for nature and forest. M.2015.7842756, Research Institute for Nature and Forest, Anderlecht, Belgium.

Sumner, T. (2010). Sensitivity Analysis in System Biology Modelling and its Application to a Multi-scale Model of Blood Glucose Homeostasis. PhD thesis, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London.

 

Sun, T., L., Z., Chen, W., Tang, X., and Qin, Q. (2013). Mountains forest fire spread simu- lator based on geo-cellular automaton combined with wang zhengfei velocity model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(4):1971– 1987.

Tarantola, S., Nardo, M., Saisana, M., and Gatelli, D. (2006). A new estimator for sensitivity analysis of model output: an application to the e-business readiness composite indicator. Reliability Engineering and System Safety, 91:1135–1141.

Timperman, B. and Willekens, G. (1999). Brandgevaar dreigt in bossen - Snel ingrijpen van Geelse, Molse en Grobbendonkse spuitgasten voorkomt erger. Gazet van Antwerpen. (July 30, 1999).

Trunfio, G., D’Ambrosio, D., Rongo, R., Spataro, W., and Di Gregorio, S. (2011). A new algorithm for simulating wildfire spread through cellular automata. ACM Transactions on Modelling and Computer Simulation, 22(1).

University of Freiburg (2015). Regression Models as a Tool in Medical Research - Interna- tional School of Quantitative Research. World Wide Web (consulted on January 14, 2016). (http://www.isqr.uni-freiburg.de/reginmed2011/logistic.pdf).

Van Eeckhoutte, B. (2012). Jaarverslag 2011. Transnational Park De Zoom-Kalmthoutse Heide, Kalmthout, Belgium.

van Riel (2006). Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Briefings in Bioinformatics, 7(4):364–374.

Van Wagner, C. (1977). Conditions for the start and spread of crownfire. Canadian Journal of Forest Research, 7:23–34.

Van Wagner, C. (1987). Development and Structure of the Canadian Forest Fire Weather Index System. Technical Report 35, Petawawa National Forestry Institute, Buchanan, Canada.

Van Wagner, C. (1989). Prediction of crown fire behaviour in conifer stands. In Proceedings of the 10th Conference on Fire and Forest Meteorology., Ottawa, Canada.

Van Wagner, C. (1993). Prediction of crown fire behaviour in two stands of jack pine. Cana- dian Journal of Forest Research, 23:442–449.

Verboom, W., Mulder, M., Bruijnooge, M., R., H., van Baardwijk, M., and Verhoogt, M. (2013). Landelijke Risico Index Natuurbranden. Landelijk Informatieknooppunt Natuur- branden, Arnhem, The Netherlands, 2nd edition.

von Neumann, J. (1966). Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, United States.

Walloon Government and the European Commission (2015). Programme Wallon de D ́eveloppement Rural 2007-2013.

Whelan, R. (1995). The Ecology of Fire. Cambridge University Press, New York, United States. 343pp.

Wijdeven, S., Schelhaas, M., Olsthoorn, A., Bijlsma, R., and Kramer, K. (2006). Bosbrand en terreinbeheer - een verkenning. Technical report, Alterra, Wageningen, the Netherlands.

Wilson, R. (1980). Reformulation of forest fire spread equations in SI units. Research Note INT-292, United States Department of Agriculture Forest Service, Intermountain Forest & Range Experiment Station, Ogden, United States.

Worland, J. (2015). This technology could help predict where wildfires strike next. World Wide Web (consulted on April 17, 2016). (http://time.com/3992447/technology- wildfire-predictions/).

Wyckmans, M., Van Eeckhoutte, B., de Blust, G., Vandamme, I., Vermeersch, G., Verpraet, P., Willaert, E., and Lambeets, K. (2011). Zwarte dagen voor het Grenspark: de vuurzee in ons Grenspark. Wissels, 49.

Yassemi, S., Dragi ́cevi ́c, S., and Schmidt, M. (2007). Design and implementation of an inte- grated GIS-based cellular automata model to characyerize forest fire behaviour. Ecological Modelling, 210:71–84.

Ziel, R. (2014). Fire Behavior Field Reference Guide. World Wide Web (con- sulted November 4, 2015). (http://www.fbfrg.org/fuel-moisture/1-hour- moisture-content).

Universiteit of Hogeschool
Master in de bio-ingenieurswetenschappen: bos- en natuurbeheer
Publicatiejaar
2016
Promotor(en)
Jan Baetens
Kernwoorden