Licht gevoelige osmotisch druk voor membraan-gebaseerde scheidingsprocessen

Jason Pascal-Claes
De ontwikkeling van een licht gevoelige osmotische druk op basis van titanium dioxide nanopartikels voor energie-efficiente ontzilting van zeewater, industriële separatie technologie en het opwekken van 'blauwe' hernieuwbare energie.

Ontzilting van zeewater met zonne-energie

De combinatie van nanotechnologie, geavanceerde membranen en zonne-energie heeft het potentieel om drinkbaar water te kunnen produceren uit zeewater.

door Jason Pascal-Claes (Faculteit bio-ingenieurswetenschapen, KU Leuven)

Bevolkingsexplosie en globale opwarming

Volgens de Verenigde Naties zal onze globale populatie 9 miljard bereiken tegen 2075, meer dan een verdubbeling t.o.v. de 4 miljard mensen die we in 1975 telden. Naast een uitbreidende bevolking zorgt ook de toenemende welvaart in groeilanden zoals India en China voor een steeds hogere consumptie. De landbouwgrond, energie, en het water die nodig zijn om deze consumptie te voeden zullen daarom beter benut moeten worden. Efficiënter met slinkende voorraden omgaan zal ook conflicten – zoals er nu al in o.a. het Midden-Oosten zijn - vermijden.

Vooral het acuut tekort aan water is problematisch, zoals op dit moment al duidelijk merkbaar is in verscheidene landen in o.a. Noord-Afrika en de Sahel. De opwarming van de aarde zal deze tendens enkel versnellen de komende jaren. In kwetsbare regio’s zoals het zuiden van Spanje en Californië zal de jaarlijkse hoeveelheid neerslag nog verminderen en zullen langere droogteperiodes nefast zijn voor zowel landbouw als drinkwatervoorraden.

Het potentieel van zeewater

Slechts 3% van al het water op aarde is zoet, de rest is zeewater. Indien dit zout water omgezet zou kunnen worden naar zoet water door ontziltingstechnologie, kunnen we deze quasi oneindige watervoorraad aanspreken om bijvoorbeeld in droge gebieden aan de kust landbouwgrond te irrigeren. Op die manier is er ook een kans dat klimaatvluchtelingen kunnen worden vermeden, met name door lokale gemeenschappen minder afhankelijk te maken van geïmporteerd voedsel en water.

Ontzilten: een kostelijke zaak

Ontziltingstechnologie bestaat al op grote schaal, vooral in de vorm van omgekeerde osmose (reverse osmosis). Hierbij wordt zeewater onder zeer hoge druk door een dunne ‘filter’ (een membraan) gepompt. Dit membraan houdt het zout tegen, terwijl het water erdoor passeert. Aan één kant van het membraan blijft er zout achter en aan de andere kant drinkbaar water. Werken met deze hoge druk heeft als nadeel dat dit veel - dure - energie vereist. De hoge energiekost zorgt ervoor dat deze ‘reverse osmosis’-technologie vooral wordt toegepast in rijke oliestaten zoals Qatar en Saudi-Arabië, waar andere vormen van drinkwaterbereiding niet haalbaar zijn en energie zeer goedkoop is.

Tabula rasa

In water opgeloste stoffen kunnen het water rond zich vasthouden als een spons, en elke stof heeft een verschillende aantrekkingskracht voor watermoleculen. Dit wil zeggen dat wanneer er een grotere aantrekkingskracht is tussen water en een stof, water eerder zal vastgehouden door deze stof dan door andere opgeloste stoffen waarmee er een lagere aantrekkingskracht is.

Deze kennis leidt ons naar de eerste stap van voorwaartse osmose (forward osmosis): het water in zeewater wordt doorheen een membraan getrokken door een andere stof die een hogere affiniteit voor water heeft, ook wel hogere hydrofiliciteit genoemd. Deze stof trekt het water dus aan als een spons, tot deze helemaal verzadigd is. Dit is een volledig andere aanpak dan de klassieke ontziltingsmethode die zoals gezegd hoge druk vereist.

De volgende uitdaging is dat het water dan nog gebonden is met de spons. Er wordt dus gezocht naar een stof die initieel een grote (hoge hydrofiliciteit) en daarna een lage aantrekking heeft op water (lagere hydrofiliciteit).

Eureka

Tijdens dit thesisonderzoek is aangetoond dat speciale nanopartikels van 25 nanometer groot (1 nanometer is 1 miljardste van een meter, dus met het blote oog onzichtbaar kleine deeltjes) een hogere hydrofiliciteit vertonen nadat er zonlicht op heeft ingestraald. Deze nanopartikels vormen dus een hele goede spons. Na een tijdje zijn de nanopartikels verzadigd en door ze uit het zonlicht te plaatsen verlaagt hun hydrofiliciteit weer. Beter nog, de nanopartikels vertonen dan meer affiniteit voor elkaar dan voor water, waardoor ze allemaal samenklitten en naar de bodem zakken, zoals wijndroesem in een karaf bezinkt. Hierdoor blijft het zuivere water over en kan men de nanopartikels, die op de bodem achter blijven, daarna recycleren. De zonne-energie wordt dus gebruikt om water efficiënt door het membraan te trekken met lichtgevoelige nanopartikels. Als dit effect uitgewerkt is, kunnen de nanopartikels efficiënt bezinken en krijgen we zoet water. Dit hele proces werkt zonder hoge druk en dus zonder de bijhorende energiekosten. Het volledige proces is schematisch samengevat in de onderstaande figuur.

Image removed.

Voorwaartse osmose: eerst wordt het water vanuit zeewater door het membraan getrokken door de hydrofiele nanopartikels (NP) in water die dienen als spons, het zout blijft achter. Vervolgens bezinken de NP in een donkere sedimentatietank en krijgen we zuiver water

Voorwaartse osmose: eerst wordt het water vanuit zeewater door het membraan getrokken door de hydrofiele nanopartikels (NP) in water die dienen als spons, het zout blijft achter. Vervolgens bezinken de NP in een donkere sedimentatietank en krijgen we zuiver water.

Toekomstdroom: energie opwekken uit ontzilting

Door de lagere energiekosten is het ontzilten van water via voorwaartse osmose tot 72% goedkoper dan via omgekeerde osmose. Sterker nog, het is mogelijk om zelfs hernieuwbare “blauwe” energie te halen uit het proces. In de eerste stap waarbij het water door de nanopartikels door het membraan wordt getrokken, vergroot het volume aan de kant van de nanopartikels. Als deze kant wordt aangesloten op een turbine, moet het mogelijk zijn hier elektriciteit uit te halen. Het vermogen dat eruit geproduceerd zou kunnen worden is indrukwekkend: 1 kubieke meter water produceren zou namelijk voldoende zijn om een LED lamp van 10 watt 42 uur te laten branden. De combinatie van membranen met nanopartikels en zonlicht zou dus niet alleen zeewater kunnen ontzilten maar ook hernieuwbare energie kunnen opwekken.

Conclusie

Nanopartikels die dienen als sponzen kunnen zeewater door een membraan trekken onder invloed van de zon terwijl het zout achterblijft. Zonder het zonlicht kunnen de nanopartikels het water niet meer vasthouden en bezinken ze door sedimentatie. Hierdoor wordt er drinkbaar water geproduceerd en kunnen de nanopartikels gerecycleerd worden. Doordat er bovendien geen hoge drukken gebruikt worden is dit proces minstens 72% goedkoper dan conventionele technologieën. In de toekomst zal het zelfs mogelijk zijn om uit de kracht waarmee de nanopartikels water door het membraan trekken elektriciteit op te wekken en zo op een volledig energie-neutrale en goedkope wijze water te ontzilten.

Bibliografie

Achilli, A., Cath, T. and Childress, A. E. (2010) 'Selection of inorganic-based draw solutions for forward osmosis applications', Journal Of Membrane Science, 364(1-2), pp. 233-241.

Achilli, A., Cath, T. Y. and Childress, A. E. (2009) 'Power generation with pressure retarded osmosis: An experimental and theoretical investigation', Journal of Membrane Science, 343(1–2), pp. 42-52.

Adamski, R. P. and Anderson, J. L. (1983) 'Solute concentration effect on osmotic reflection coefficient', Biophys J, 44(1), pp. 79-90.

Alsvik, I. L. and Hägg, M.-B. (2013) 'Pressure retarded osmosis and forward osmosis membranes: materials and methods', Polymers, 5(1), pp. 303-327.

Antony, A., Low, J. H., Gray, S., Childress, A. E., Le-Clech, P. and Leslie, G. (2011) 'Scale formation and control in high pressure membrane water treatment systems: a review', Journal of Membrane Science, 383(1), pp. 1-16.

Asahi, R. (2001) 'Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides', Science, 293(5528), pp. 269-271.

Baker, R. W. (2004) Membrane technology and applications. 2nd ed edn. Chichester: Chichester: Wiley, 2004.

Bayart, F. and Lesage, P. (1995) Modellering van omgekeerde osmose.

Berli, C. L. A., Deiber, J. A. and Quemada, D. (2005) 'On the viscosity of concentrated suspensions of charged colloids', Latin American applied research, 35(1), pp. 15-22.

Bilad, M. R., Arafat, H. A. and Vankelecom, I. F. J. (2014) 'Membrane technology in microalgae cultivation and harvesting: a review', Biotechnology advances, 32(7), pp. 1283-1300.

Boer, G. (2009) 'Changes in Interannual Variability and Decadal Potential Predictability under Global Warming', Journal Of Climate, 22(11), pp. 3098-3109.

Boo, C., Khalil, Y. F. and Elimelech, M. (2015) 'Performance evaluation of trimethylamine– carbon dioxide thermolytic draw solution for engineered osmosis', Journal of Membrane Science, 473, pp. 302-309.

Boo, C., Lee, S., Elimelech, M., Meng, Z. and Hong, S. (2012) 'Colloidal fouling in forward osmosis: Role of reverse salt diffusion', Journal Of Membrane Science, 390, pp. 277-284.

Brullot, W. and Verbiest, T. (2012) 'Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles', Journal of Magnetism and Magnetic Materials, 324(11), pp. 1919–1925.

Cai, Y., Shen, W., Loo, S. L., Krantz, W. B., Wang, R., Fane, A. G. and Hu, X. (2013) 'Towards temperature driven forward osmosis desalination using Semi-IPN hydrogels as reversible draw agents', Water Research, 47(11), pp. 3773-3781.

Charcosset, C. (2009) 'A review of membrane processes and renewable energies for desalination', Desalination, 245(1), pp. 214-231.

Chekli, L., Phuntsho, S., Shon, H. K., Vigneswaran, S., Kandasamy, J. and Chanan, A. (2012) 'A review of draw solutes in forward osmosis process and their use in modern applications', Desalination and Water Treatment, 43(1-3), pp. 167-184.

Chou, S., Shi, Lei, Fane, Anthony (2010) 'Characteristics and potential applications of a novel forward osmosis hollow fiber membrane', 261(3), pp. 365–372.

Creel, L. (2003) Ripple effects: Population and coastal regions. Population Reference Bureau Washington, DC.

Dachille, F., Simons, P. Y. and Roy, R. (1968) 'Pressure-temperature studies of anatase, brookite, rutile and TiO2-II', Am Mineral, 53, pp. 1929-1939.

Dendritech (2015) PAMAM Dendrimers. Available at: http://www.dendritech.com/pamam.html.

Eltaif, N. I., Gharaibeh, M. A. and Ababneh, Z. A. (2011) 'Changes in selected soil physical properties caused by sodicity of soil and irrigation water', Acta Agric. Scand. Sect. B-Soil Plant Sci., 61(1), pp. 84-91.

Evonik industries 2015. AEROXIDE®, AERODISP® and AEROPERL® Titanium Dioxide as Photocatalyst, Technical Information 1243. Hanau-Wolfgang, Germany: Evonik industries.

Farhat, M., Trouilhé, M. c., Briand, E., Moletta‐denat, M., Robine, E. and Frère, J. (2010) 'Development of a pilot‐scale 1 for Legionella elimination in biofilm in hot water network: heat shock treatment evaluation', Journal of Applied Microbiology, 108(3), pp. 1073-1082.

Fedele, L., Colla, L. and Bobbo, S. (2012) 'Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles', International journal of refrigeration, 35(5), pp. 1359-1366.

Flynn, M. T., Soler, M., Shull, S., Broyan, J., Chambliss, J., Scott Howe, S., Gormly, M., Hammoudeh, H., Shaw, K. and Howard, K. (2012) 'Forward osmosis cargo transfer bag'.

Fujishima, A. and Honda, K. (1972 ) 'Electrochemical Photolysis of Water at a Semiconductor Electrode', Nature, 238(5358), pp. 37.

Fujishima, A., Zhang, X. and Tryk, D. A. (2008) 'TiO 2 photocatalysis and related surface phenomena', Surface Science Reports, 63(12), pp. 515-582.

Gadelha, G., Nawaz, M. S., Hankins, N. P., Khan, S. J., Wang, R. and Tang, C. Y. (2014) 'Assessment of micellar solutions as draw solutions for forward osmosis', Desalination, 354, pp. 97-106.

Ganesan, V. and Walcarius, A. (2004) 'Surfactant templated sulfonic acid functionalized silica microspheres as new efficient ion exchangers and electrode modifiers', Langmuir, 20(9), pp. 3632-3640.

Gangadhar, P., Ilya, K. and Scott, B. (2015) NIPAM based Polymers: Aldrich Materials Science. Available at: http://www.sigmaaldrich.com/materials-science/polymer-science/nipam-pol….

Garcia-Castello, E. M., McCutcheon, J. R. and Elimelech, M. (2009) 'Performance evaluation of sucrose concentration using forward osmosis', Journal of Membrane Science, 338(1), pp. 61-66.

Ge, Q. and Chung, T. (2015) 'Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment', Chemical Communications, 51(23), pp. 4854-4857.

Ge, Q. and Chung, T.-s. (2013) 'Hydroacid complexes: a new class of draw solutes to promote forward osmosis ( FO) processes', Chem. Commun., 49(76), pp. 8471-8473.

Ge, Q., Fu, F. and Chung, T.-S. (2014) 'Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes', water research, 58, pp. 230-238.

Ge, Q., Ling, M. and Chung, T.-S. (2013) 'Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future', Journal of Membrane Science, 442, pp. 225-237.

Geise, G. M., Paul, D. R. and Freeman, B. D. (2014) 'Fundamental water and salt transport properties of polymeric materials', Progress in Polymer Science, 39(1), pp. 1-42.

Gethard, K. and Mitra, S. (2011) 'Membrane distillation as an online concentration technique: application to the determination of pharmaceutical residues in natural waters', Anal Bioanal Chem, 400(2), pp. 571-575.

Gleick, P. H. (1993) Water in crisis: a guide to the world's fresh water resources. New York: New York Oxford university press, 1993.

Gomes, G. d. A. and Boodts, J. F. C. (1999) 'Investigation of the surface properties of an oxide of interest in the field of a conductive oxide system: Influence of precursor and purification', Journal of the Brazilian Chemical Society, 10(2), pp. 92-96.

Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. and Moulin, P. (2009) 'Reverse osmosis desalination: Water sources, technology, and today's challenges', Water Research, 43(9), pp. 2317-2348.

Guo, C. X., Zhao, D., Zhao, Q., Wang, P. and Lu, X. (2014) 'Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination', Chemical Communications, 50(55), pp. 7318-7321.

Gupta, S. V. (2014) Viscometry for Liquids: Calibration of Viscometers. Viscometry for Liquids Cham: Cham : Springer.

Gwak, G., Jung, B., Han, S. and Hong, S. (2015) 'Evaluation of poly ( aspartic acid sodium salt) as a draw solute for forward osmosis', Water Research, 80, pp. 294-305.

Helfer, F., Lemckert, C. and Anissimov, Y. G. (2014) 'Osmotic power with pressure retarded osmosis: theory, performance and trends–a review', Journal of Membrane Science, 453, pp. 337-358.

Hickenbottom, K., Hancock, N. T., Hutchings, N., Appleton, E., Beaudry, E., Xu, P. and Cath, T. (2013) 'Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations', Desalination, 312, pp. 60-66.

Holloway, R. W., Maltos, R., Vanneste, J. and Cath, T. Y. (2015) 'Mixed draw solutions for improved forward osmosis performance', Journal of Membrane Science, 491, pp. 121-131.

Hu, Z.-A., Wu, H.-Y. and Gao, J.-Z. (1999) 'Calculation of osmotic pressure difference across membranes in hyperfiltration', Desalination, 121(2), pp. 131-137.

Irie, H., Washizuka, S., Yoshino, N. and Hashimoto, K. (2003) 'Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films', Chemical Communications, (11), pp. 1298-1299.

Jamil, S. (2013) 'Forward Osmosis for the Treatment of Reverse Osmosis Concentrate from Water Reclamation: Process Performance and Fouling Control'.

Johannsen, P., Karlapudi, R. and Reinhold, G. (2006) 'High pressure reverse osmosis for wastewater minimization and zero liquid discharge applications', Desalination, 199(1), pp. 84-85.

Johnson, A. M., Trakhtenberg, S., Cannon, A. S. and Warner, J. C. (2007) 'Effect of pH on the Viscosity of Titanium Dioxide Aqueous Dispersions with Carboxylic Acids', The Journal of Physical Chemistry A, 111(33), pp. 8139-8146.

Jung, S.-Y. and Paik, K.-W. 'Effects of film viscosity on electric field-induced alignment of graphene flakes in B-stage graphene-epoxy composite films'. IEEE, 1477-1482.

Karge, H. (2016) Verified Syntheses of Zeolitic Materials:  Characterization by IR spectroscopy. Berlin, Germany: Fritz-Haber-Institut der Max-Planck-Gesellschaft. Available at: http://www.iza-online.org/synthesis/VS_2ndEd/IR_Spectroscopy.htm.

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. (1999) 'Titania nanotubes prepared by chemical processing', Advanced Materials, 11(15), pp. 1307-1311.

Katebian, L. and Jiang, S. C. (2013) 'Marine bacterial biofilm formation and its responses to periodic hyperosmotic stress on a flat sheet membrane for seawater desalination pretreatment', Journal of Membrane Science, 425-426, pp. 182-189.

Kazner, C., Jamil, S., Phuntsho, S., Shon, H., Wintgens, T. and Vigneswaran, S. (2014) 'Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control', Water Science And Technology, 69(12), pp. 2431-2437.

Khoshgoftar, A. H., Shariatmadari, H., Karimian, N. and Khajehpour, M. R. (2006) 'Responses of wheat genotypes to zinc fertilization under saline soil conditions', J. Plant Nutr., 29(9), pp. 1543-1556.

Kim, J.-H., Choi, D.-C., Yeon, K.-M., Kim, S.-R. and Lee, C.-H. (2011) 'Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching', Environmental science & technology, 45(4), pp. 1601-1607.

Klaysom, C., Cath, T. Y., Depuydt, T. and Vankelecom, I. F. J. (2013) 'Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply', Chemical Society Reviews, 42(16), pp. 6959-6989.

Kwak, S. Y., Jung, S. G., Yoon, Y. S. and Ihm, D. W. (1999) 'Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy', Journal of Polymer Science Part B Polymer Physics, 37(13), pp. 1429-1440.

Lambert, J. B. (1987) Introduction to Organic Spectroscopy. Macmillan.

Lamberti, A., Chiodoni, A., Shahzad, N., Bianco, S., Quaglio, M. and Pirri, C. F. (2015) 'Ultrafast Room-Temperature Crystallization of TiO2 Nanotubes Exploiting Water-Vapor Treatment', Scientific Reports, 5, pp. 7808.

Lee, K., Mazare, A. and Schmuki, P. (2014) 'One-dimensional titanium dioxide nanomaterials: nanotubes', Chemical Reviews, 114(19), pp. 9385-9454.

Lee, K. P., Arnot, T. C. and Mattia, D. (2011) 'A review of reverse osmosis membrane materials for desalination—Development to date and future potential', Journal of Membrane Science, 370(1), pp. 1-22.

Li, D. and Wang, H. (2013) 'Smart draw agents for emerging forward osmosis application', Journal of Materials Chemistry A, 1(45), pp. 14049-14060.

Li, D., Zhang, X., Simon, G. P. and Wang, H. (2013) 'Forward osmosis desalination using polymer hydrogels as a draw agent: Influence of draw agent, feed solution and membrane on process performance', Water Research, 47(1), pp. 209-215.

Li, D., Zhang, X., Yao, J., Simon, G. P. and Wang, H. (2011) 'Stimuli- responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination', Chem. Commun., 47(6), pp. 1710-1712.

Li, Z., Valladares Linares, R., Bucs, S., Aubry, C., Ghaffour, N., Vrouwenvelder, J. S. and Amy, G. (2015) 'Calcium carbonate scaling in seawater desalination by ammonia–carbon dioxide forward osmosis: Mechanism and implications', Journal of Membrane Science, 481, pp. 36-43.

Li, Z., Valladares Linares, R., Muhannad, A., Amy, G. 'Comparative assessment of forward osmosis (FO) niches in desalination'. IDA World Congress, Tianjin, China.

Li, Z., Yangali-Quintanilla, V., Valladares-Linares, R., Li, Q., Zhan, T. and Amy, G. (2012) 'Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis', Water Research, 46(1), pp. 195-204.

Lin, S., Yip, N. Y., Cath, T. Y., Osuji, C. O. and Elimelech, M. (2014) 'Hybrid Pressure Retarded Osmosis–Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency', Environmental Science & Technology, 48(9), pp. 5306-5313.

Ling, M. M. and Chung, T.-S. (2011a) 'Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration', Desalination, 278(1-3), pp. 194-202.

Ling, M. M. and Chung, T.-S. (2011b) 'Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes', Journal of Membrane Science, 372(1), pp. 201-209.

Ling, M. M., Wang, K. Y. and Chung, T.-S. (2010) 'Highly water- soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse', Industrial and Engineering Chemistry Research, 49(12), pp. 5869-5876.

Liu, K., Cao, M., Fujishima, A. and Jiang, L. (2014) 'Bio-inspired titanium dioxide materials with special wettability and their applications', Chemical reviews, 114(19), pp. 10044-10094.

Loehe, J. R. and Donohue, M. D. (1997) 'Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems', AIChE Journal, 43(1), pp. 180-195.

Luo, H., Wang, Q., Tao, T., Zhang, T. and Zhou, A. (2014) 'Performance of Strong Ionic Hydrogels Based on 2-Acrylamido-2-Methylpropane Sulfonate as Draw Agents for Forward Osmosis', Journal of Environmental Engineering, 140(12), pp. 04014044.

Luo, W., Hai, F. I., Price, W. E. and Nghiem, L. D. (2015) 'Water extraction from mixed liquor of an aerobic bioreactor by forward osmosis: Membrane fouling and biomass characteristics assessment', Separation and Purification Technology, 145, pp. 56-62.

Lutchmiah, K., Lauber, L., Roest, K., Harmsen, D. J. H., Post, J. W., Rietveld, L. C., van Lier, J. B. and Cornelissen, E. R. (2014a) 'Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation', Journal of Membrane Science, 460, pp. 82-90.

Lutchmiah, K., Verliefde, A. R. D., Roest, K., Rietveld, L. C. and Cornelissen, E. R. (2014b) 'Forward osmosis for application in wastewater treatment: A review', Water Research, 58, pp. 179-197.

Martinetti, C. R., Childress, A. E. and Cath, T. Y. (2009) 'High recovery of concentrated RO brines using forward osmosis and membrane distillation', Journal of Membrane Science, 331(1), pp. 31-39.

Mattesini, M., de Almeida, J. S., Dubrovinsky, L., Dubrovinskaia, N., Johansson, B. and Ahuja, R. (2004) 'Cubic TiO 2 as a potential light absorber in solar-energy conversion', Physical Review B, 70(11), pp. 115101.

McCutcheon, Jr., McGinnis, R. and Elimelech, M. (2005) 'A novel ammonia- carbon dioxide forward ( direct) osmosis desalination process', Desalination, 174(1), pp. 1-11.

Mccutcheon, J. and Elimelech, M. (2007) 'Modeling water flux in forward osmosis: Implications for improved membrane design', AIChE journal, 53(7), pp. 1736-1744.

McGinnis, R. and Elimelech, M. (2007) 'Energy requirements of ammonia- carbon dioxide forward osmosis desalination', Desalination, 207(1-3), pp. 370-382.

Mertz, O., Halsnæs, K., Olesen, J. and Rasmussen, K. (2009) 'Adaptation to Climate Change in Developing Countries', Environmental Management, 43(5), pp. 743-52.

Mezher, T., Fath, H., Abbas, Z. and Khaled, A. (2011) 'Techno-economic assessment and environmental impacts of desalination technologies', Desalination, 266(1), pp. 263-273.

Mi, B. and Elimelech, M. (2010a) 'Gypsum Scaling and Cleaning in Forward Osmosis: Measurements and Mechanisms', Environmental Science & Technology, 44(6), pp. 2022-2028.

Mi, B. and Elimelech, M. (2010b) 'Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents', Journal of Membrane Science, 348(1), pp. 337-345.

Miyauchi, M., Kieda, N., Hishita, S., Mitsuhashi, T., Nakajima, A., Watanabe, T. and Hashimoto, K. (2002) 'Reversible wettability control of TiO2 surface by light irradiation', Surface Science, 511(1–3), pp. 401-407.

Murray, J. and Wriedt, H. (1987) 'The O− Ti (oxygen-titanium) system', Journal of Phase Equilibria, 8(2), pp. 148-165.

Mysen, B. O., Ryerson, F. J. and Virgo, D. (1980) 'The influence of TiO2 on the structure and derivative properties of silicate melts', American Mineralogist, 65(11-12), pp. 1150-1165.

Nanjwade, B. K., Bechra, H. M., Derkar, G. K., Manvi, F. V. and Nanjwade, V. K. (2009) 'Dendrimers: emerging polymers for drug- delivery systems', European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 38(3), pp. 185.

NanoH2O, L. (2012) NanoH2O New Technology Spotlight. CaribDA Newsletter. Available at: http://www.lgwatersolutions.com/company/news/2012/74 fall).

Neilly, A., Jegatheesan, V. and Shu, L. (2009) 'Evaluating the potential for zero discharge from reverse osmosis desalination using integrated processes – A review', Desalination and Water Treatment, 11(1-3), pp. 58-65.

Nguyen, H. T., Chen, S.-S., Nguyen, N. C., Ngo, H. H., Guo, W. and Li, C.-W. (2015) 'Exploring an innovative surfactant and phosphate-based draw solution for forward osmosis desalination', Journal of Membrane Science, 489, pp. 212-219.

Nguyen, N. C., Chen, S. S., Yang, H. and Hau, N. T. (2013) 'Application of forward osmosis on dewatering of high nutrient sludge', Bioresource Technology, 132, pp. 224-229.

Noh, M., Mok, Y., Lee, S., Kim, H., Lee, S. H., Jin, G.-W., Seo, J.-H., Koo, H., Park, T. H. and Lee, Y. (2012) 'Novel lower critical solution temperature phase transition materials effectively control osmosis by mild temperature changes', Chemical communications (Cambridge, England), 48(32), pp. 3845.

Pan, J. M., Maschhoff, B., Diebold, U. and Madey, T. (1992) 'Interaction of water, oxygen, and hydrogen with TiO2 (110) surfaces having different defect densities', Journal of Vacuum Science & Technology A, 10(4), pp. 2470-2476.

Peñate, B. and García-Rodríguez, L. (2012) 'Current trends and future prospects in the design of seawater reverse osmosis desalination technology', Desalination, 284, pp. 1-8.

Phan, L., Andreatta, J. R., Horvey, L. K., Edie, C. F., Luco, A.-L., Mirchandani, A., Darensbourg, D. J. and Jessop, P. G. (2008) 'Switchable- polarity solvents prepared with a single liquid component', The Journal of organic chemistry, 73(1), pp. 127.

Phuntsho, S., Shon, H. K., Hong, S., Lee, S. and Vigneswaran, S. (2011) 'A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions', Journal of Membrane Science, 375(1), pp. 172-181.

Pitzer, K. S. (1973) 'Thermodynamics of electrolytes. I. Theoretical basis and general equations', Journal of Physical Chemistry, 77(2), pp. 268-277.

Qiu, L., Wang, K., Yao, J., Li, D., Zeng, Y., Simon, G. P., Wang, R. and Wang, H. (2013) 'Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent', RSC ADV, 3(3), pp. 887-894.

Quist-Jensen, C., Macedonio, F. and Drioli, E. (2015) 'Membrane technology for water production in agriculture: Desalination and wastewater reuse', Desalination, 364, pp. 17-32.

Rastogi, N. (2014) 'Opportunities and challenges in application of forward osmosis in food processing', Critical Reviews in Food Science and Nutrition.

Razmjou, A., Simon, G. P. and Wang, H. (2013) 'Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent', Chemical Engineering Journal, 215, pp. 913-920.

Ren, J. and McCutcheon, J. R. (2014) 'A new commercial thin film composite membrane for forward osmosis', Desalination, 343, pp. 187-193.

Riesz, P., Berdahl, D. and Christman, C. L. (1985) 'Free radical generation by ultrasound in aqueous and nonaqueous solutions', Environmental Health Perspectives, 64, pp. 233-252.

S.n. (2003) Luzchem Photoreactors, Exposure tools for UV and visible irradiation. Ottawa: Luzchem research inc. Available at: http://www.luzchem.com/edu/docstore/LZC_MANUAL.pdf.

S.n. (2012a) 'Modern Water commissions Al Najdah FO plant', Membrane Technology, 2012(10), pp. 4-4.

S.n. (2012b) 'Oman: MODERN WATER concludes with the installation and commissioning of desalination unit in OMAN', Mena report.

S.n. (2014) 'Oasys Water; FO technology to treat Chinese power plant wastewater', Filtration and Separation, 51(5), pp. 6-6.

Safaei-Naeini, Y., Aminzare, M., Golestani-Fard, F., Khorasanizadeh, F. and Salahi, E. (2012) 'Suspension stability of titania nanoparticles studied by UV-VIS spectroscopy method', Journal of Materials Science and Engineering Iran, 9(1), pp. 62-68.

Sauvet-Goichon, B. (2007) 'Ashkelon desalination plant — A successful challenge', Desalination, 203(1), pp. 75-81.

Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S. and Elimelech, M. (2015) 'Forward osmosis: Where are we now?', Desalination, 356, pp. 271-284.

Shang, C., Zhao, W. N. and Liu, Z. P. (2015) 'Searching for new TiO(2) crystal phases with better photoactivity', J Phys Condens Matter, 27(13), pp. 134203.

Sharma, M. and Yashonath, S. (2007) 'Size dependence of solute diffusivity and Stokes-Einstein relationship: Effect of van der Waals interaction', Diffusion Fundamentals, 6, pp. 35-1.

Shi, H., Magaye, R., Castranova, V. and Zhao, J. (2013) 'Titanium dioxide nanoparticles: a review of current toxicological data', Particle and Fibre Toxicology, 10, pp. 15-15.

Siti Hajar, O., Suraya Abdul, R., Tinia Idaty Mohd, G. and Norhafizah, A. (2012) 'Dispersion and Stabilization of Photocatalytic TiO2 Nanoparticles in Aqueous Suspension for Coatings Applications', Journal of Nanomaterials, 2012 (2012).

Song, X., Liu, Z. and Sun, D. D. (2011) 'Nano Gives the Answer: Breaking the Bottleneck of Internal Concentration Polarization with a Nanofiber Composite Forward Osmosis Membrane for a High Water Production Rate', Advanced Materials, 23(29), pp. 3256-3260.

Spektor, K., Tran, D. T., Leinenweber, K. and Häussermann, U. (2013) 'Transformation of rutile to TiO2-II in a high pressure hydrothermal environment', Journal of Solid State Chemistry, 206, pp. 209-216.

Stache, K. (1989) Apparatus for transforming sea water, brackish water, polluted water or the like into a nutrious drink by means of osmosis. [Online]. Available at: https://www.google.com/patents/US4879030.

State of California Department of Water Resources (2013) California Water Plan. California. Available at: http://www.waterplan.water.ca.gov/.

Stone, M. L., Rae, C., Stewart, F. F. and Wilson, A. D. (2013) 'Switchable polarity solvents as draw solutes for forward osmosis', Desalination, 312, pp. 124-129.

Suresh, J. (2013) 'Nanoparticles And Reproductive Toxicity: An Overview', Research Journal of Pharmaceutical, Biological and Chemical

Sciences, 4, pp. 1396.

Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T. and Biswas, P. (2011) 'Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties', Nanoscale Res Lett, 6(1), pp. 1-8.

Tiraferri, A., Yip, N. Y., Straub, A. P., Romero-Vargas Castrillon, S. and Elimelech, M. (2013) 'A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes', Journal of Membrane Science, 444, pp. 523-538.

United Nations (2005) World population to 2300. New York: United Nations Department of economic and social affairs: Population division.

United Nations 2014. World Urbanization Prospects, the 2014 revision. United Nations: Department of Economic and Social Affairs, Population Division.

Valladares Linares, R., Li, Z., Sarp, S., Bucs, S. S., Amy, G. and Vrouwenvelder, J. S. (2014) 'Forward osmosis niches in seawater desalination and wastewater reuse', Water Research, 66, pp. 122-139.

Valladares Linares, R., Yangali-Quintanilla, V., Li, Z. and Amy, G. (2011) 'Rejection of micropollutants by clean and fouled forward osmosis membrane', Water Research, 45(20), pp. 6737-6744.

Valladares Linares, R., Yangali-Quintanilla, V., Li, Z. and Amy, G. (2012) 'NOM and TEP fouling of a forward osmosis (FO) membrane: Foulant identification and cleaning', Journal of Membrane Science, 421-422, pp. 217-224.

Van Gauwbergen, D. (1997) 'Modeling osmotic pressures for aqueous solutions for 2-1 and 2-2 electrolytes', Desalination, 109(1), pp. 57–65.

Walha, K., Amar, R. B., Firdaous, L., Quéméneur, F. and Jaouen, P. (2007) 'Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison', Desalination, 207(1), pp. 95-106.

Wang, G., Xu, L., Zhang, J., Yin, T. and Han, D. (2012) 'Enhanced Photocatalytic Activity of TiO2 Powders (P25) via Calcination Treatment', International Journal of Photoenergy, 2012, pp. 9.

Wang, H., Wei, J. and Simon, G. P. (2014) 'Response to osmotic pressure versus swelling pressure: comment on "bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy&quot', ENVIRON SCI TECHNOL, 48(7), pp. 4214-4215.

Wang, K. Y., Teoh, M. M., Nugroho, A. and Chung, T.-S. (2011) 'Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions', Chemical Engineering Science, 66(11), pp. 2421-2430.

Wang, R., Hashimoto, K., Fujishima, A. and Watanabe, T. (1997) 'Light-induced amphiphilic surfaces', Nature. New biology., 388(6641), pp. 431-432.

Wang, R., Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K. (1999) 'Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces', The Journal of Physical Chemistry B, 103(12), pp. 2188-2194.

Wilson, A. D. and Stewart, F. F. (2014) 'Structure-function study of tertiary amines as switchable polarity solvents', RSC Advances, 4(22), pp. 11039-11049.

Wj Wei Jen, L., Yip Wah, C. and Somorjai (1978) 'Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2(100) surfaces with varied stoichiometry: Evidence for the photogeneration of Ti+3 and for its importance in chemisorption', Surface science, 71(2), pp. 199-219.

Yen, S. K., Mehnas Haja N, F., Su, M., Wang, K. Y. and Chung, T.-S. (2010) 'Study of draw solutes using 2-methylimidazole- based compounds in forward osmosis', Journal of Membrane Science, 364(1), pp. 242-252.

Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tang, Q., Saito, F. and Sato, T. (2003) 'Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine', Journal of Materials Chemistry, 13(12), pp. 2996-3001.

Zeitler, V. A. and Brown, C. A. (1957) 'The infrared spectra of some Ti-O-Si, Ti-O-Ti and Si-O-Si compounds', Journal of Physical Chemistry, 61(9), pp. 1174-1177.

Zhang, H., Li, J., Cui, H., Li, H. and Yang, F. (2015) 'Forward osmosis using electric-responsive polymer hydrogels as draw agents: Influence of freezing–thawing cycles, voltage, feed solutions on process performance', Chemical Engineering Journal, 259, pp. 814-819.

Zhao, D., Chen, S., Wang, P., Zhao, Q. and Lu, X. (2014) 'A Dendrimer-Based Forward Osmosis Draw Solute for Seawater Desalination', Industrial & Engineering Chemistry Research, 53(42), pp. 16170-16175.

Zhao, D. and Yu, S. (2015) 'A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning', Desalination and Water Treatment, 55(4), pp. 870-891.

Zhao, S., Zou, L., Tang, C. Y. and Mulcahy, D. (2012) 'Recent developments in forward osmosis: Opportunities and challenges', Journal of Membrane Science, 396, pp. 1-21.

Universiteit of Hogeschool
Master of Science in the bio-science engineering: catalytic chemistry
Publicatiejaar
2016
Promotor(en)
Ivo Vankelecom
Kernwoorden
Share this on: