As above, so below? Influence of overstory-induced acidification on the soil carbon sequestration dynamics in the Gaume forest.

Ellen Desie
Persbericht

De donkere kant van het bos: hoe beïnvloedt een omvorming naar Fijnspar de koolstofvastlegging in het ondergrondse bosecosysteem van de Gaume?

De donkere kant van het bos: hoe beïnvloedt een omvorming naar Fijnspar de koolstofvastlegging in het ondergrondse bosecosysteem van de Gaume?

Thesis van Ellen Desie onder begeleiding van professor Bart Muys (KU Leuven – Departement Aard- en Omgevingswetenschappen, Afdeling Bos, Natuur en Landschap) en professor Karen Vancampenhout (KU Leuven – technologiecluster Bio-engineering Technologie)

 

Bos als strategie tegen de klimaatsverandering

Bosbodems hebben het potentieel om te fungeren als een natuurlijke opslagplaats voor atmosferische koolstof, meer bepaald CO2. Bijgevolg kwam koolstofopslag onder bos op de politieke agenda als een mogelijke strategie voor het tegengaan van de klimaatverandering. Naast het opslaan en vasthouden van voor ons ongewenste CO2, heeft deze koolstofopslag ook verschillende positieve effecten op de bodemvruchtbaarheid. Willen we deze strategieën verder optimaliseren is een beter begrip van de koolstofopslag en stabiliteit in functie van bosbeheer essentieel. Het effect van boomsoortkeuze, een belangrijk onderdeel van bosbeheer, op de koolstofvastlegging in het ondergrondse ecosysteem is specifiek van belang in dit onderzoek.

Omvorming naar productiegericht bos

Voor houtproductiedoeleinden werd er in het verleden vaak gekozen voor een omvorming van oud loofbos naar monoculturen van naaldboomsoorten. Deze naaldbomen werden geprefereerd omwille van hun snelle groei en degelijke houtkwaliteit. Momenteel bestaan de bossen in Wallonië voor 37% uit Fijnspar, een aanzienlijk percentage wetende dat de soort er natuurlijk niet zou voorkomen. Onderzoek heeft echter aangetoond dat dergelijke monoculturen de verzuring van de bodem versnellen. Dit door middel van hun verzurende naalden en omdat ze meer zure regen opvangen en doorsturen naar de bodem. Hun effect op de hoeveelheid en stabiliteit van organische koolstof in de bodem is echter nog ongekend. In dit onderzoek werd dan ook gepoogd om het effect van een omvorming van oud bos naar monoculturen van Fijnspar (Picea abies) te evalueren.

Studieopzet

Deze studie werd uitgevoerd met behulp van een unieke "twin-plot" set-up in de Gaume-streek (zuid België). Twin-plots zijn aangrenzende stukken loof- en sparbos die toelaten het effect van boomsoort te vergelijken zonder invloed van geologie, klimaat of topografie. In deze twin-plots werden bodemstalen genomen die vervolgens werden geanalyseerd in het lab. Met behulp van een koolstof-fractionering, dit is het het splitsen van de koolstof aanwezig in de bodem op basis van chemische stabiliteit, werden de bodemstalen gesplitst over twee labiele en twee stabiele koolstoffracties. Koolstof in een stabiele fractie wordt minder snel afgebroken door bodemfauna en is minder gevoelig aan temperatuursveranderingen. Dit is omdat de koolstof chemisch meer wordt beschermd in zulke stabiele fracties. Labiele fracties daarentegen worden snel afgebroken en zijn erg gevoelig aan veranderingen. De verdeling van koolstof over deze fracties is een belangrijke indicator voor de totale stabiliteit van organische koolstof in de bodem. Omdat de twin-plots verspreid liggen over een gebied met twee geologische onderlagen bevat de studiesite heel wat natuurlijke variatie. Aan de hand van gemeten bodemeigenschappen, bodemfauna en de geologische kaart van de regio werd deze natuurlijke variatie beschreven. Zo kan met behulp van een statistische analyse onderscheid gemaakt worden tussen het boomsoorteffect en het omgevingseffect.

Image removed.   Image removed.

Figuur 1: een twin-plot bestaande uit een plot met gemengd loofhout (links) en een plot met monocultuur van Fijnspar (rechts).

Boomsoort als trigger naar armer systeem

Uit de analyses blijkt dat de meeste variatie binnen de studiesite kan verklaard worden door geologie en pH, waarvan pH de verzuring door de naaldbomen weergeeft. In dit onderzoek zijn aanwijzingen gevonden dat twee alternatieve stabiele toestanden in het ondergrondse ecosysteem bestaan voor een specifieke set van condities: geologie en klimaat. Met andere woorden kan men voor twee bossen met eenzelfde geologische ondergrond en klimaat toch twee verschillende toestanden waarnemen: een rijk en complex systeem met veel bodemfauna en veel basische nutriënten of een primair systeem met lage kwaliteit van humus, minder bodemfauna en de aanwezigheid van het toxische aluminium en ijzer door de bodemverzuring.  Dit model van alternatieve stabiele toestanden is lang aanvaard in aquatische ecologie maar relatief nieuw voor de bodemkunde. In het conceptueel model is de omvorming naar Fijnspar een trigger die een verschuiving veroorzaakt van het rijke systeem naar het arme systeem. Zelfs de rijkste bossen van onze studie, met de beste kwaliteit in geologische ondergrond vervallen naar de lagere alternatieve toestand wanneer hun loofhout wordt vervangen door Fijnspar. Wanneer ijzer en aluminium de bodemprocessen domineren verdwijnen basische kationen (de nutriënten nodig voor groei) uit de bodem en treedt er bij verschillende soorten aluminium toxiciteit op. De terugval in variabiliteit van bodemeigenschappen gemeten in het lab, werd veroorzaakt door de omvorming naar Fijnspar. Deze afname in variabiliteit komt overeen met de afname in biodiversiteit eerder gerapporteerd bij monoculturen van Fijnspar.

Image removed.

Figuur 2: Schematische weergave van alternatieve stabiele toestanden in de staat van het ecosysteem voor bepaalde condities (van geologie en klimaat). Een omvorming naar Fijnspar (zwarte pijl) duwt het systeem over de grens naar een armer bosecosysteem. Deze figuur is gebaseerd op de theorie van Martin Scheffer.

Meer koolstof, Minder stabiel

Omdat de decompositie (de afbraak van organische koolstof door bodemfauna) vertraagt door de bodemverzuring kan er onder Fijnspar meer koolstof accumuleren. Maar de studie toont aan dat hoewel een omvorming naar Fijnspar de totale koolstofopslag verhoogt, de extra koolstof wordt opgeslagen in labiele pools.

Image removed.

Figuur 3: Gemiddelde koolstof opgeslagen in toplaag voor en na omvorming naar monocultuur van fijnspar (links) en gemiddelde stabiliteit van de opgeslagen koolstof voor en na omvorming naar Fijnspar (rechts).

Vandaar dat we kunnen besluiten dat de koolstof-stabiliteit in de toplaag afneemt. Dit suggereert dat door de omvorming naar Fijnspar, een groter aandeel koolstof in de toplaag kwetsbaar wordt voor veranderingen van het klimaat en onder extreme omstandigheden zulke bosbodems zelfs een emissiebron van CO2 kunnen worden.

Bibliografie

Alriksson, A. and Eriksson, H.M., 1998. Variations in mineral nutrient and C distribution in the soil and vegetation compartments of five temperate tree species in NE Sweden. Forest Ecology Management 108, 261–73.

Anderson, J.M., 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications 1, 326-347.

 

Andreetta, A., Macci, C., Ceccherini, M.T., Cecchini, G., Masciandaro, G., Pietramellara, G., Carnicelli, S., 2012. Microbial dynamics in Mediterranean Moder humus. Biology and Fertility of Soils 48, 259–270.

Ash, J.E. and Barkham, J.P., 1976. Changes and variability in the field layer of a coppiced woodland in Norfolk, England. Journal of Ecology 64, 697–712.

 

Aubert, M., Margerie, P., Trap, J. and Bureau, F., 2010. Aboveground-belowground relationships in temperate forests: plant litter composes and microbiota orchestrates. Forest Ecology and Management 259, 563–572.

 

Augusto, L., Bonnaud, P. and Ranger, J., 1998. Impact of tree species on forest soil acidification. Forest Ecology and Management 105, 67-78.

 

Augusto, L., Ranger, J., Binkley, D. and Rothe, A., 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of  Forest Science 59, 233–253.

 

Bache, W.B., 2008. Base saturation. In: Encyclopedia of Soil Science. Chesworth W. (Editor), Springer Netherlands: Dordrecht.

 

Baldock, J.A. and Skjemstad, J.O., 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry 31, 697–710.

Baldock, J.A., Masiello, C.A., Gelinas, Y. and Hedges, J.I., 2004. Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry 92, 39-64.

 

Balesdent, J., Mariotti, A. and Guillet, B. 1987. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry, 19, 25–30.

Barbier, S., Gosselin, F. and Balandier, P., 2008. Influence of tree species on understory vegetation diversity and mechanisms involved: a critical review for temperate and boreal forests. Forest Ecology and Management 254, 1-15.

 

Bardgett, R. D., Wardle, D. A. and Yeates, G. W., 1998. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry 30, 1867–1878.

Beisner, B.E., Haydon, D.T. and Cuddington, K., 2003. Alternative stable states in ecology. Frontiers in Ecology and the Environment 1, 376–382.

 

Belote, R.T. and Jones, H.R., 2008. Tree leaf litter composition and non-native earthworms influence plant invasion in experimental forest floor mesocosms. Biological Invasions 11(4), 1045-1052.

Berg, B., 1986. Nutrient Release from Litter and Humus in Coniferous Forest Soils-a Mini Review. Scandinavian Journal of Forest Research 1, 359-369.

 

Biniu, C. and Bresolin, F., 1998. Soil acidification by acid rain in forest ecosystems: A case study in northern Italy. The Science of the Total Environment 222, 1-15.

Binkley, D., and Giardina, C., 1998. Why do tree species affect soils? The warp and woof of tree–soil interactions. Biogeochemistry 42, 89–106.

 

Binkley, D., Valentine, D., 1991. Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology Management 40, 13–25.

Blanchart, E., Albrecht, A., Alegre, J., Duboisset, A., Gilot, C., Pashanasi, B., Lavelle, P. and Brussaard, L. , 1999. Effects of earthworms on soil structure and physical properties. In: Lavelle, P;, Brussaard, L., Hendrix, P. (editors) Earthworm management in tropical agroecosystems. CAB International, Wallingford, 149–171.

 

Bolan, N.S., Rowarth, J., de la Luz Mora, M., Adriano, D. and Curtin, D., 2008. Chapter 17 Biological transformation and bioavailability of nutrient elements in acid soils as affected by liming. In: Chemical Bioavailability in Terrestrial Environment (Edited by A.E. Hartemink, A.B. McBratney and Ravendra Naidu),Developments in soils 32, 413-446.

Bouezmarni, M., Denne, P., Debbaut, V., 2009. Carte hydrologique Meix-devant-Virton Virton. Université de Liège, Campus d'Arlon, Belgique.

Bowman, W.D., Cleveland, C.C., Halada, L., Hresko, J. and Baron, J.S., 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience 1, 767-771.

Brock O., 2015. The relative importance of above and below ground litter input on SOM composition and carbon storage under spruce (Picea abies) and beech (Fagus sylvatica) dominated forests along a geological gradient in Luxembourg and Belgium. University of Amsterdam.

 

Bryan, W.H. and Teakle, L.J.H., 1949. Pedogenic inertia: a concept in soil science. Nature 164, 969.

Buelens, J., 2014. De donkere kant van het bos: effecten van conversie naar Fijnspar op het ondergrondse ecosysteem. KULeuven University press.

Buol, S. and Eswaran, H., 2000. Oxisols. Advances in Agronomy 68, 151–195.

Camarsa, G., Toland, J. and Hudson, T., 2015. Life and climate change mitigation. Luxembourg: publications office of the European Union.

Carnol, M. and Bazgir, M., 2013. Nutrient return to forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce. Forest ecology and Management, 309, 66-75.

 

Carnol, M. and Bazgir, M., 2013. Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce. Forest Ecology and Management 309, 66-75.

Carpenter, S.R., 2001. Alternate states of ecosystems: evidence and some implications. in Press, M. C., Huntly, N. & Levin, S., (editors), Ecology: Achievement and Challenge. Blackwell, London, 357-381.

 

Chadwick, O.A. and Chorover, J., 2001. The chemistry of pedogenic thresholds. Geoderma 100, 321-353.

 

Chapin III, S.F., Matson, P.A., MooneyH, A., 2002. Principles of Terrestrial Ecosystem Ecology. Springer, New York.

Christensen, B.T., 1996. Carbon in primary and secondary organomineral complexes. In: Carter, M.R. and Stewart D.A. (editors), Structure and Organic Matter Storage in Agricultural Soils. Lewis Publishers, CRC Press, Boca Raton, Florida, 97-165.

 

Ciesielski, H., Sterckeman, T., Santerne, M., Willery, Jp., 1997. Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie, EDP Sciences 17 (1), 1-7.

 

Coleman, K. and Jenkinson, D.S., 1999. RothC-26.3 - A Model for the turnover of carbon in soil : Model description and windows users guide : November 1999 issue. Lawes Agricultural Trust Harpenden. ISBN 0 951 4456 8 5.

 

Cornelissen, J.H.C., 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology 84 (4), 573-582.

 

Cross, W.F., Wallace, J.B. and Rosemond, A.D., 2007. Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88 (10), 2563-2575.

 

Crowther, T.W., Thomas, S.M. Maynarda,Petr Baldrianc, D.S. Coveya, K., Freyd, S.D., van Diepend L.T.A. and Bradford M.A., 2015. Biotic interactions mediate soil microbial feedbacks to climate change. PNAS 112, 7033-7038.

Davidson, E.A. and Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173.

 

De Clercq, T., Heiling, M., Dercon, G., Resch, C., Aigner, M., Mayer, L., Mao, Y., Elsen, A., Steier, P., Leifeld, J. and Merckx, R., 2015. Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes. Soil Biology & Biochemistry 88, 29-38.

 

De Deyn, G.B., Cornelissen, J.H.C. and Bardgett R.D., (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11, 516-531.

 

de Schrijver, A., De Frenne, P., Staelens, J., Verstraeten, G., Muys, B., Vesterdal, L., Wuyts, K., Van Nevel, L., Schelfhout, S., De Neve, S. and Verheyen, K., 2012. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Global Change Biology 18, 1127-1140.

 

de Schrijver, A., Geudens, G., Augusto, L., Staelens, J., Mertens, J., Wuyts, K., Gielis, L. and Verheyen, K., 2007. The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153, 663–674.

 

de Schrijver, A., Wuyts, K., Van Nevel, L. and Mohren, F., 2010. Nutriëntenbeheer. In: Den Ouden, J., Muys, B., Mohren, F., Verheyen, K., Bosecologie en bosbeheer. Acco, Leuven, Belgie, 403-416.

de Vries, W. and Breeuwsma, A., 1985. De invloed van natuurlijke zuurbronnen, afvoer van biomassa en zure regen op de verzuring van Nederlandse bosgronden. Nederlands Bosbouwtijdschrift, 111-117.

 

de Vries, W., Dobbertin, M. H., Solberg, S., van Dobben, H.F. and Schaub, M., 2014. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant Soil 380, 1–45.

 

de Vries, W., Reinds, G.J.  and Vel, E., 2003. Intensive monitoring of forest ecosystems in Europe: Atmospheric deposition and its impacts on soil solution chemistry.  Forest Ecology and Management 174(1), 97-115.

 

Den Ouden, J., Mohren, F., de Waal, R. and de Schrijver, A., 2010. Groeiplaats en bodem. In Den Ouden, J., Muys, B., Mohren, F., Verheyen, K., Bosecologie en bosbeheer. Acco, Leuven, Belgie, 133-150.

 

Devliegher, W. and Verstraete, W., 1997. The effect of Lumbricus terrestris on soil in relation to plant growth: effects of nutrientenrichment processes (NEP) and gut-associated processes (GAP). Soil Biology and Biochemistry 29, 341–346.

 

Diaz-Pines, E., Rubio, A., Van Miegroet, H., Montes, F. and Benito, M., 2011. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? Forest Ecology and Management 262, 1895–1904.

Dixon, G.R. and Tilston, E.L., 2010. Soil microbiology and sustainable crop production. Springer Verlag, London.

Dixon, R.K., Solomon, M., Brown, S., Houghton, R., Trexier, M.C. and Wisniewski, J., 1994. Carbon pools and flux of global forest ecosystems. Science (New York, N.Y.) 263, 158-190.

Dunn, R.M., Mikola, J., Bol, R., Bardgett, R.D., 2006. Influence of microbial activity on plant-microbial competition for organic and inorganic nitrogen. Plant and Soil, 289, 321–334.

Edwards, C.A. (Editor), 1998. Earthworm Ecology. St Lucie Press, New York, NY.

Eggleton, P., Inward, K., Smith, J., Jones, D. and Sherlock, E., 2009. A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biology & Biochemistry 41, 1857-1865.

Ekschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M., Gleixner, G., Hartmann, A., Kästner, M., Marhan, S., Miltner, A., Scheu, S. and Wolters, V.,2008. Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition Soil Science 171, 27–35.

Elliot, E.T. and Paustian, K., 1996. Why site networks? In: Powlson, D.S., Smith, P. and Smith, J.U. (Editors), Evaluation of Soil Organic Matter Models Using Existing Long-Term Datasets. Series Global Environmental Change, NATO ASI Series 38, 27-36.

 

Emmer, I. M., Fanta, J., Kobus, A. Th., Kooijman, A. and Sevink, J., 1998. Reversed borealization as means to restore biodiversity in Central-European mountain forests – an example from Krkonose Mountains, Czech Republik. Biodiversity and Conservation 7, 229-247.

Ewing, S.A., Sandermann, J., Baisden, W.T., Wang, Y. and Amundson, R., 2006. Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. Journal of Geophysical Research 111, G03012.

 

Falloon, P. and Smith, P., 2003. Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use Manage 19, 265–269.

 

Falloon, P. and Smith, P., 2009. Modelling soil carbon dynamics. In: Kutsch, W.L., Bahn, M., Heinemeyer, A. (editors) Soil carbon Dynamics: An Integrated Methodology. Cambridge Univ. Press, 2009, 221–244.

 

Falloon, P., Smith, P., Coleman, K., Marshall, S., 2000. How important is inert organic matter for predictive soil carbon modelling using the Rothamsted carbon model? Soil Biology and Biochemistry 32(3), 433-436.

Finzi, A.C., Van Breemen, N. and Canham, C.D., 1998. Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological Applications 8, 440–6.

Fowler, D., Smith, R., Muller, J., Cape, J.N., Sutton, M., Erisman, J.W. and Fagerli, H., 2007. Long Term Trends in Sulphur and Nitrogen Deposition in Europe and the Cause of Non-linearities. Water, Air & Soil Pollution 7, 41–47.

 

Fuji, K., 2014. Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecological research 29, 371-381.

Galloway, J., 2001. Acidification of the World: Natural and Anthropogenic. Water, Air, and Soil Pollution 130(1), 17-24.

Galloway, J.N., Likens, G.E., Keene, W.C. and Miller, J.M., 1982. The composition of precipitation in remote areas of the world. Journal of Geophysical Research 87, 8771.

Giardina, C.P., Ryan, M.G., Hubbard, R.M. and Binkley, D., 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Scientific Society of  America Journal 65,1272–9.

Grossi, J. and Brun, J., 1997. Effect of climate and plant succession on Lumbricid populations in the French Alps. Soil Biology & Biochemistry 29, 329-333.

Guckland, A., Jacob, M., Flessa, H., Thomas, F.M. and Leuschner, C., 2009. Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). Journal of Plant Nutrition and Soil Science 172, 500–511.

Hagen-Thorn, A., Callesen, I., Armolaitis, K. and Nihlgårda, B., 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management 195, 373–384.

Hamer, U., Marschner, B., Brodowski, S. and Amelung, W., 2004. Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry 35 (7), 823-830.

 

Hansen, K., Vesterdal, L., Schmidt, I.K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L.B. and Bille-Hansen, J., 2009. Litterfall and nutrient return in five tree species in a common garden experiment. Forest, Ecology and Management 257, 2133–2144.

 

Hansson, K., Olsson, B.A., Olsson, M., Johansson and U., Kleja, D.B., 2011. Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. Forest Ecology and Management 262, 522–530.

Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kögel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W. and  Rullötte, J., 2000. The molecularly uncharacterized component of non-living organic matter in natural environments. Organic Geochemistry, 31, 945–958.

Heimann, M. and Reichstein, M., 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289-292.

 

Hendriksen, N.B.,1990. Leaf litter selection by detritivore and geophagous earthworms. Biology and Fertility of Soils 10, 17–21.

Hendrix, P.F., Callaham, M.A. Jr, Lachnicht, S.L., Blair, J.M., James, S.W. and Zou, X., 1999. Stable isotopic studies of resource utilization by nearctic earthworms (Diplocardia, Oligochaeta) in subtropical savanna and forest ecosystems. Pedobiologia 43, 818–823.

Hessen, D.O., Agren, G.I., Anderson, T.R., Elser, J.J. and De Ruiter, P.C., 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85 (5), 1179-1192.

 

Hobbie, S.E., 1992. Effects of plant species on nutrient cycling. Trends in Ecology & Evolution 7, 336–339.

 

Hobbie, S.E., Reich, P.B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C. and Karolewski, P., 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9), 2288-2297.

 

Hooper, D. U., Bignell, D. E., Brown, V. K. et al., 2000. Interactions between above- and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms and feedbacks. BioScience 50, 1049–1061.

 

Hooper, D.U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J. and Wardle, D. A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75, 3-35.

 

IPCC, 2007. Summary for policymakers. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (editors) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

Jabiol, B., Brêthes, A., Ponge, J.F., Toutain, F. and Brun, J.J., 1995. l' Humus sous toutes ses formes, Ecole nationale du génie rural, des eaux et des forêts, Nancy, 60.

 

Jackson, M.L. and Sherman, G.D., 1953. Chemical weathering of minerals in soils. Advances in Agronomy 5, 219–318.

 

Jackson, M.L., 1965. Clay transformations in soil genesis during the quaternary. Soil Science 99, 15–22.

 

Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F. and Byrne, K., 2007. How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253-268.

Jenny, H., 1994. Factors of Soil Formation. A System of Quantitative Pedology. Dover Publications Inc, New York, NY.

 

Johnson, D.W. and Reuss J. O., 1984. Soil-mediated effects of atmospherically deposited sulphur and nitrogen. Philosophical Transactions of the Royal Society of London. B, 305, 383– 392.

 

Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G. and KögelKnabner, I., 2002. Stabilization of organic matter by soil minerals – investigations of density and particle-size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science 165, 451–459.

Kardol, P., Cregger, M.A., Campany, C.E. and Classen, A.T., 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91(3), 767-781. 

 

Kauppi, P., Kamari, J., Posch, M., Kauppi, L. and Matzner, E., 1986. Acidification of forest soils - model development and application for analyzing impacts of acidic deposition in Europe. Ecological Modelling 33, 231-253.

 

Kauppi, P., Zuimari, J., POSCH, M. and Kauppi, L., 1986. Acidification of forest soils: Model development and application for analysing impacts of acidic deposition in Europe. Ecological Modelling, 33 (1986) 231-253.

Kavdir Y. and I’lay R., 2011. Earthworms and Soil Structure. In: Ayten Karaca (editor),  biology of earthworms. Springer-Verlag, Berlin, 39-50.

Kelleher, B.P. and Simpson, A.J., 2006. Humic substances in soils: Are they really chemically distinct? Environmental Science & Technology  40, 4605-4611.

Kiem, R. and Kögel-Knabner, I., 2003. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology & Biochemistry 35 (1), 101–118.

 

Kiikkila, O., Kitunen, V., Spetz, P. and Smolander, A., 2012. Characterization of dissolved organic matter in decomposing Norway spruce and silver birch litter. European  Journal of Soil Science 63, 476–486.

Kirschbaum, M.U.F., 2006. The temperature dependence of organic-matter decomposition — still a topic of debate. Soil Biology & Biochemistry 38, 2510–2518.

 

Kleber, M., Mertz, C., Zikeli, S., Knicker, H. and Jahn, R., 2004. Changes in surface reactivity and organic matter composition of clay subfractions with duration of fertilizer deprivation. European Journal of Soil Science 55, 381–391.

Kleber, M., Nico, P.S., Plante, A., Filley, T., Kramer, M., Swanston, C. and Sollins, P., 2011. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modelling concepts and temperature sensitivity. Global Change Biology 17(2), 1097-1107.

Klimo, E., Hagar, H. and Kulhavý, J., 2000. Spruce monocultures in Central Europe - problems and prospects. European Forest Institute, Joensuu, Finland.

 

Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B. and von Luetzow, M., 2008.  An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. Journal of Plant Nutrition and Soil Science-Zeitschrift für Pflanzenernährung und Bodenkunde 171, 5-13.

Kondras, M., Czepinska-Kaminska, D., Sienicka, P., Otreba, A., Torzewski, K. and Oktaba, L., 2012. The stock of organic carbon in forest soils in phytocenosis of the continental mixed coniferous forest in Kampinos National Park. Soil Science Annual - Roczniki Gleboznawcze 63 (4), 26–33.

 

Kooijman, A.M. and Cammeraat, E., 2010. Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH and soil moisture characteristics. Functional Ecology 24(2), 469-477.

 

Kooijman, A.M. and Martinez-Hernandez, G., 2009. Effects of litter quality and parent material on organic matter characteristics and N-dynamics in Luxembourg beech and hornbeam forests. Forest Ecology and Management 257(8), 1732-1739.

 

Kooijman, A.M., Kalbitz, K. and Smit, A., 2014. Nitrogen and Phosphorus dynamics in Luxembourg Gutland forests over geological gradients.

 

Kooijman, A.M., Kooijman-Schouten, M. and Martinez-Hernandez, G., 2008. Alternative strategies to sustain N-fertility in acid and calcaric beech forests: Low microbial N-demand versus high biological activity. Basic and Applied Ecology 9(4), 410-421.

 

Kopáček, J., Cosby, B.J., Evans, C.D., Hruška, J., Moldan, F., Oulehle, F., 2013. Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry 115, 33–51.

Kumar, D. and Shivay, Y.S., 2008. Definitional glossary of agricultural terms, volume I.  I.K. International publishing house Pvt, Ltd, New Dehli, India, p26.

Laganière, J., Angers, D.A., Paré, D., Bergeron, Y. and Chen, H.Y.H., 2011. Black spruce soils accumulate more uncomplexed organic matter than aspen soils. Soil Scientific Society of America Journal 75, 1125–1132.

Laganière, J., Paré, D. and Bradley, R.L., 2009. Linking the abundance of aspen with soil faunal communities and rates of belowground processes within single stands of mixed aspen-black spruce. Applied Soil Ecology 41, 19–28.

Laganière, J., Paré, D. and Bradley, R.L., 2010. How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions. Canadian Journal of Forest Research 40, 465–75.

Laganière, J., Paré, D., Bergeron, Y., Chen, H.Y.H., Brassard, B.W. and Cavard, X., 2013. Stability of Soil Carbon Stocks Varies with Forest Composition in the Canadian Boreal Biome. Ecosystems 16, 852–865.

Lal, R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220(1), 242-258.

Lal, R., 2005. Soil erosion and  carbon dynamics. Soil & Tillage Research 81(2), 137-142.

Lal, R., 2008. Sequestration of atmospheric CO2 in global carbon pools. Energy Environmental  Science 1, 86–100.

Lal, R. and Pimentel, R., 2008. Soil erosion: a carbon sink or source? Science (New York, N.Y.) 22, 319(5866), 1040-2.

Lammel, R., 1984. Endgültige Ergebnisse und bundesweite Kartierung der Waldschadenserhebung. AFZ-Der Wald 39, 340–344.

Landmann, G. and Bonneau, M. (Editors), 1995. Forest decline and atmospheric deposition effects in the French mountains. Springer Verlag, Berlin

Lavelle, P., 1997. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in ecological research 27, 93–132.

Lerman, A., 1990. Transport and kinetics in surficial processes. In: Stumm, W. (editor), Aquatic Chemical Kinetics, Wiley, NY, 505–534.

 

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolstrom, M., Lexer, M.J. and Marchetti, M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259, 698–709

Liu, K.H., Fang, Y.T., Yu, F.M., Liu, Q., Li, F.R. and Peng, S.L., 2010. Soil acidification in response to acid deposition in three subtropical forests of subtropical China. Pedosphere 20(3), 399–408.

Lorenz, K. and Lal, R., 2010. Carbon sequestration in forest ecosystems. Springer Netherlands: Dordrecht.

Ludwig, B., John, B., Ellerbrock, R., Kaiser, M. and Flessa, H., 2003. Stabilization of carbon from maize in a sandy soil in a long-term experiment. European Journal of Soil Science 54, 117–126.

Macias, F. Camps Arbestain, M., 2010. Soil carbon sequestration in a changing global environment. Mitigation and Adaptation Strategies for Global Change 15, 511-529.

Mantau, U., Saal, U., Prins, K., Steierer, F., Lindner, M., Verkerk, H. and Asikainen, A., 2010. Final report real potential for changes in growth and use of EU forests. EUwood, 106p.

Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P.M., Hamer, U., Heim, A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethemeyer, J., Schaeffer, A., Schmidt, M.W.I., Schwark, L. and Wiesenberg, G.L.B., 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science (Zeitschrift für Pflanzenernährung und Bodenkunde) 171 (1), 91-110.

 

Marzloff, M.P., Dambacher, J.M., Johnsona, C.R., Little, L.R. and Frusher, S.D., 2011. Exploring alternative states in ecological systems with a qualitative analysis of community feedback. Ecological Modelling 222 (2011) 2651–2662.

Matzner, E., 1989. Acid precipitation: case study: Solling, West Germany. In: Adriano, D.C., Havas, M. (editors). Acid precipitation. Springer-Verlag, NY, 39-83.

Melillo, J.M., Aber, J.D. and Muratore, J.F., 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621–626.

 

Miechówka, A., Józefowska, A., Gasiorek, M. and Zadrozny, P., 2011. Organic carbon stocks in differently used agricultural soils of Ciezkowickie foothills. Polish Journal of Soil Science 44, 11–17.

Mitchell, P.L. and Kirby, K.J., 1989. Ecological effects of forestry practices on long-established woodland and their implication for nature conservation. OFI Occasional papers 39, 172p.

Mori, K., Bernier, N., Kosaki, T. and Ponge, J., 2009. Tree influence on soil biological activity: What can be inferred from the optical examination of humus profiles? European Journal of Soil Biology 45, 290–300.

Mueller, K.E., Eissenstat, D.M., Hobbie, S.E., Oleksyn, J., Jagodzinski, A.M., Reich, P.B., Chadwick, O.A. and Chorover, J., 2012. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111, 601–614.

 

Muhs, D.R., 1984. Intrinsic thresholds in soil systems. Physical  Geography 5, 99–110.

Muys, B. and Granval, P., 1997. Earthworms as bio-indicators of forest site quality. Soil, Biology & Biochemistry 29, 323-328.

 

Muys, B. and Lust, N., 1992. Inventory of the earthworm communities and the state of litter decomposition in the forests of Flanders, Belgium, and its implications for forest management. Soil Biology & Biochemistry 24, 1677-1681.

 

Muys, B., 1989. Evaluation of conversion of tree species and liming as measures to decrease soil compaction in a beech forest on loamy soil. Proceedings of the Seminar on the 18 Impact of mechanization of forest operations to the soil, Joint FAO/ECE/ILO Committee on Forest Technology, Management and Training, Brussels.

Nair, P.K.R., Nair, V.D., Kumar, B.M., Showalter, J.M., 2010. Carbon sequestration in agroforestry systems. Advances in Agronomy 108, 237–307.

 

Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J. and Luyssaert, S., 2016. Europe’s forest management did not mitigate climate warming. Science 351, 597-600.

Nordén, U., 1994. Influence of tree species on acidification and mineral pools in deciduous forest soils of South Sweden. Water, Air & Soil Pollution 76, 363–381.

Nordström, S. and Rundgren, S., 1974.  Environmental factors and lumbricid associations in southern Sweden. Pedobiologica 14, 1-27.

Nystrom, M., Folke, C. and Moberg, F., 2000. Coral reef disturbance and resilience in a human-dominated environment. Trends in Ecology & Evolution 15, 413-417.

 

Oades, J.M., 1984. Soil organic matter and structural stability, mechanisms and implications for management. Plant Soil 76, 319–337.

Oades, J.M. 1988. The retention of organic matter in soils. Biogeochemistry, 5, 35–70.

Osman, K.T., 2013. Chemical properties of soil, in book: Forest Soils, 97-112.

Patrick, W.H. and Henderson, R.E., 1981. Reduction and reoxidation cycles of manganese and iron in flooded soil and water solution. Soil Scientific Society of  America Journal 45, 855–859.

 

Patrick, W.H. and Jugsujinda, A., 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese and iron in a flooded soil. Soil Scientific Society of  America Journal 56, 1071–1073.

 

Peterken, G.F., 1981. Woodland Conservation and Management. Chapman and Hall, London.

 

Piccolo, A., 2001. The supramolecular structure of humic substances. Soil Science 166, 810- 832.

Piearce, T.G., 1972. The calcium relations of selected Lumbricidae. Journal of Animal Ecology 41, 167–188.

Polyakova, O. and Billor, N., 2007. Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management 253 (1-3), 11-18.

 

Ponge, J.F., Patzel, N., Delhaye, L., Devigne, E., Levieux, C., Béros, P., 1999. Interactions between earthworms, litter and trees in an old-growth beech forest. Biology and Fertility of Soils 29, 360–370.

Ponge, J., 2003. Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology & Biochemistry 35, 935–945.

Ponge, J.F. and Chevalier, R., 2006. Humus Index as an indicator of forest stand and soil properties. Forest Ecology and Management 233 (1), 165-175.

 

Ponge, J.F., 2003. Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology & Biochemistry 35, 935–945.

 

Ponge, J., Jabiol, B. and Gégout,  J., 2011. Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 162, 187–195.

 

Ponge, J., 2013. Plant-soil feedbacks mediated by humus forms: A review. Soil Biology & Biochemistry 57, 1048-1060.

Prescott, C.E., 2002. The influence of the forest canopy on nutrient cycling. Tree Physiology 22, 1193–1200.

 

Prescott, C.E., 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149.

Prescott, C.E. and Grayston, S.J., 2013. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. Forest Ecology and Management 309, 19-27.

Pulleman, M.M., Six, J., Uyl, A., Marinissen, J.C.Y., Jongmans, A.G., 2005. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Applied Soil Ecology 29, 1–15.

 

Ranger, J., Nys, C., 1994. The effect of spruce (Picea abies Karst.) on soil development - an analytical and experimental approach. European Journal of Soil Science 45, 193-204.

 

Reich, P.B., Walters, M.B., Tjoelker, M.G., Vanderklein, D., and Buschena, C., 1998. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology 12, 395–405.

 

Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O.A., Hale, C.M. and Tjoelker, M.G., 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters 8, 811–818.

 

Reynolds, H.L. et al., 2003. Ecology 84, 2281-2291.

Rothe, A., Huber, C., Kreutzer, K. and Weis, W., 2002. Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Hoglwald research in comparison with other European case studies. Plant and Soil 240, 33-45.

Sausen, T.L., de Paula Schaefer, G.F., Tomazi, M., Scheunemann dos Santos, L , Bayer, C. and Gonçalves Rosa, L.M., 2013. Clay content drives carbon stocks in soils under a plantation of Eucalyptus saligna Labill. in southern Brazil. Acta Botanica Brasilica 28(2), 266-273.

Schachtschabel, P. and Renger, M., 1966. Beziehung zwischen V‐ und pH‐Wert von Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 112, 238–248.

 

Scheffer, M., Hosper, S.H., Meijer, M.L. and Moss, B., 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8, 275-279.

 

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. and Walker, B., 2001. Catastrophic shifts in ecosystems. Nature 413, 591–596.

 

Schelfhout, S., 2010. Tree species effect on earthworm communities in Danish and Flemish forests. KULeuven university press.

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. and Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49-56.

Schnitzer, S.A., Klironomos, J.N., Hillerislambers, J., Kinkel, L.L., Reich, P.B., Xiao, K. and Mangan, S.A., 2014. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92(2), 296-303.

Schöpp, W., Posch, M., Mylona, S. and Johansson, M., 2003. Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences 7(4), 436–446.

Schroder, A., Persson, L., De Roos, A.M., 2005. Direct experimental evidence for alternative stable states: a review. Oikos 110, 3–19.

 

Schulp C.J.E., Nabulars, G.J., Verburg, P.H. and de Waal, R.W., 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management 256, 482–490.

Schütt, P., Blaschke, H., Hoque, E., Koch, W., Lang, K.J. and Schuck, H.J., 1983. Erste Ergebnisse einer botanischen Inventur des ‘Fichtensterbens’. Forstw Cbl 102(1), 177–186.

Shibu, M.E., Leffelaar, P.A., Van Keulen, H. and Aggarwal, P.K., 2006. Quantitative description of soil organic matter dynamics—a review of approaches with reference to rice-based cropping systems. Geoderma 137, 1–18.

 

Six, J., Schultz, P.A., Jastrow, J.D. and Merckx, R., 1999. Recycling of sodium polytungstate used in soil organic matter studies, Soil Biology and Biochemistry 31(8), 1193-1196.

Six, J., Conant, R.T., Paul, E.A. and Paustian, K., 2002a. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil 241, 155–176.

Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes Sa, J.C. and Albrecht, A. 2002b. Soil organic matter, biota and aggregation in temperate and tropical soils – effects of no-tillage. Agronomic 22, 755–775.

Skjemstad, J.O., Spouncer, L.R., Cowie, B. and Swift, R.S., 2004. Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools, Australian Journal of Soil Research 42, 79 – 88.

Smith, P. and Fang, C., 2010. A warm response by soils: the flux of carbon from soils to the atmosphere has apparently increased with climate warming. But does this reflect a net loss of carbon to the atmosphere that could exacerbate climate change? Nature 464(7288), p.499(2).

Sohi, S.P., Mahieu, N., Arah, J.R.M., Powlson, D.S., Madari, B. and Gaunt, J.L., 2001. A Procedure for Isolating Soil Organic Matter Fractions Suitable for Modelling. Soil Scientific Society of America Journal 65, 1121–1128.

Sollins, P., Homann, P. and Caldwell, B.A., 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74 (1–2), 65–105.

 

Spiecker, H., 2003. Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. Journal of Environmental Management 67, 55-65.

 

Spiecker, H., Hansen, J., Klimo, E., Skovsgaard, J.P., Sterba, H. and von Teuffel, K., 2004. Norway spruce conversion - options and consequences. Brill Academic Publishers, Leiden-Boston.

 

Suseela, V., Tharayil, N., Xing, B. and Dukes, J.S., 2013. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytologist 200,  122–133.

Sydes, C. and Grime, J.P., 1981. Effects of tree leaf litter on herbaceous vegetation in deciduous woodland: I. Field investigations. Journal of  Ecology 69, 237–248.

Trumbore S., 2006. Carbon respired by terrestrial ecosystems-recent progress and challenges. Global Change Biology 12, 141-153.

Tesař, V., 2000. The impact of air pollution and strategies for spruce monoculture conversion in central Europe. Mendel University of Agriculture and Forestry press, Brno, Czech Republic.

Tian, D., Peng Y., Yan W., Fang X., Kang, W., Wang, G. and Chen, X., 2010. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in masson pine plantations. Pedosphere 20(4), 486–493.

 

Toutain, F., 1981. Les humus forestiers; structures et modes de fonctionnement. Revue Forestière Française 33, 449-477.

 

Ulrich, B. and Sumner, M.E., 1991. An ecosystem approach to soil acidification. In: Ulrich, B. (Editor), Soil acidity. Springer-Verlag GmbH & Co., Berlin, Germany, 28-79.

 

Ulrich, B., 1983. A concept of forest ecosystem destabilization and of acid deposition as driving force for destabilization. In: B. Ulrich and J. Pankrath (Editors), Effects of Accumulation of Air Pollutants in Forest Ecosystems. Proc. Workshop. 16-19 May 1982, Göttingen. Reidel, Dordrecht, The Netherlands,. I 29.

Ulrich., B., 1983. Soil acidity and its relation to acid deposition. In: B. Ulrich and J. Pankrath (Editors), Effects of Accumulation of Air Pollutants in Forest Ecosystems. Proc. Workshop, 16-19 May, 1982, Göttingen. Reidel, Dordrecht, The Netherlands, 127-146.

Ulrich, B., 1986. Natural and anthropogenic components of soil acidification. Zeitung für  Pflanzenernährung und Bodenkunde 149, 702–717.

Ulrich, B., 1992. Forest ecosystem theory based on material balance. Ecological Modelling, 63, 163-183.

Van Breemen, N., Mulder, J., Driscoll, C.T., 1983. Acidification and alkalization of soils. Plant Soil 75, 283–308.

Van Breemen, N., Mulder, J. and Van Grinsven, J.J.M., 1987. Impacts of acid atmospheric deposition on woodland soils in the Netherlands. II. Nitrogen transformations. Soil Scientific Society of America  Journal 51, 1634-1640.

Van Breemen, N., Boderie P.M.A. and Booltink, H.W.G., 1989. Influence of airborne ammonium sulfate on soil of an oak woodland ecosystem in the Netherlands: seasonal dynamics of solute fluxes. In: Adriano, D.C., Havas, H. (Editors). Acid precipitation. NY: Springer-Verlag, 209-235.

Van Calster, H., 2008. Effects of changing management regimes on understorey plant communities in former coppice systems KULeuven University press.

 

Van Calster, H., Baeten, L., de Schrijver, A., De Keersmaecker, L., Rogister, J.E., Verheyen, K. and Hermy, M., 2007. Management driven changes (1997-2005) in soil acidity and the understory plant community following conversion of a coppice-with-standards forest. Forest Ecology and Management 214, 258-271.

Van Calster, H., Baeten, L., Verheyen, K., De Keersmaeker, L., Dekeyser, S., Rogister, J.E. and Hermy, M., 2008. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecology and Management 256, 519-528.

 

Van de Koppel, J., Rietkerk, M.  and Weissing, F. J., 1997. Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends in Ecology & Evolution 12, 352-356.

 

Van der Putten, W. H., Vet, L. E. M., Harvey, J. A. et al., 2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens and their antagonists. Trends in Ecology and  Evolution 16: 547–554.

van Gestel, C.A.M. and Hoogerwerf, G., 2001. Influence of soil pH on the toxicity of aluminium for Eisenia andrei (Oligochaeta: Lumbricidae) in an artificial soil substrate. Pedobiologia 45, 385-395.

Van Miegroet, H. and Cole, D.W., 1984. The impact of nitrification on soil acidification and cation leaching in a red alder ecosystem. Journal of Environmental Quality 13, 586.

 

van Oijen, D., Feijen, M., Hommel, P., den Ouden, J. and deWaal, R., 2005. Effects of tree species composition on within-forest distribution of understorey species. Applied Vegetation Science 8, 155–166.

 

Van Praag, H. J. and Weissen, F., 1985. Aluminum effects on spruce and beech seedling; I Preliminary observations on plant and soil. Plant and Soil 83, 331-338.

Van Praag, H.J., Weissen, F., Sougnez-Remy, S. and Carletti, G., 1985. Aluminium effects on spruce and beech seedlings. II. Statistical analysis of sand culture experiments. Plant Soil 83, 339-356.

Vancampenhout, K., Wouters, K., Caus, A., Buurman, P., Swennen, R. and Deckers, J., 2008. Fingerprinting of soil organic matter as a proxy for assessing climate and vegetation changes in last interglacial palaeosols (Veldwezelt, Belgium). Quaternary Research 69(1), 145-162.

 

Vancampenhout, K., Wouters, K., De Vos, B., Buurman, P., Swennen, R. and Deckers, J., 2009. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions: a pyrolysis-GC/MS study. Soil Biology and Biochemistry 41, 568-579.

 

Vancampenhout, K., De Vos, B., Wouters, K., Van Calster, H., Swennen, R., Buurman, P. and Deckers, J., 2010. Determinants of soil organic matter chemistry in maritime temperate forest ecosystems. Soil Biology and Biochemistry 42(2), 220-233.

 

Vancampenhout, K., De Vos, B., Wouters, K., Swennen, R., Buurman, P. and Deckers, J., 2012. Organic matter of subsoil horizons under broadleaved forest: Highly processed or labile and plant-derived? Soil Biology and Biochemistry 50, 40-46.

 

Vancampenhout, K., Muys, B., Somer, B., Honnay, O., Briones, M., Frey B., Janssen B., Bakker, M., 2015. Alternative steady states in forest soil communities: driving forces and effects on ecosystem services (StableSoil). Project proposal Biodiversa call 2015.

 

Vandekerkhove K., De Keersmaeker L., Demolder H., Esprit M., Thomaes A., Van Daele T., Van der Aa B. (2014). Hoofdstuk 13- Ecosysteemdienst houtproductie. (INBO.R.2014. 1993289). In Stevens, M. et al. (editors), Natuurrapport - Toestand en trend van ecosystemen en ecosysteemdiensten in Vlaanderen. Technisch rapport. Mededelingen van het Instituut voor Natuur- en Bosonderzoek, INBO.M.2014. 1988582, Brussel.

Verstraeten, G., 2013. Conversion of deciduous forests to spruce plantations and back: evaluation of interacting effects on soil, forest floor, earthworm and understorey communities. KU Leuven university press.

Verstraeten, G., Baeten, L., Den Broeck, T., Frenne, P., Demey, A., Tack, W., Muys, B. and Verheyen, K., 2013. Temporal changes in forest plant communities at different site types. Applied Vegetation Science, 16(2), 237-247.

Vesterdal, L., Ritter, E. and Gundersen, P., 2002. Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management 169, 137–147.

Vesterdal, L., Schmidt, I., Callesen, I., Nilsson, L. and Gundersen, P., 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255, 35-48.

 

Vesterdal, L., Clarke, N., Sigurdsson, B.D. and Gundersen, P., 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management 309, 4-18.

Vidya Suseela, V., Tharayil, N., Xing, B. and Dukes, J.S., 2013. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytologist 200, 122–133.

Vitousek, P.M. and Chadwick, O.A., 2013. Pedogenic thresholds and soil process domains in basalt-derived soils. Ecosystems 16, 1379-1395.

 

Vivanco, L. and Austin, A.T., 2008. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology 96, 727-736.

 

von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B. and Flessa, H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science 57, 426– 445.

 

Wall, D.H., 2012. Soil Ecology and Ecosystem Services. Oxford University Press, p. 241-255.

Walse, C., Berg, B. and Sverdrup, H., 1998. Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environmental Reviews 6(1), 25-40.

Walse, C., Berg, B. and Sverdrup, H., 1998. Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environmental Reviews 6(1),  25-40.

Wardle, D.A., Zackrisson, O., Hörnberg, G. and Gallet, C., 1997. The influence of island area on ecosystem properties. Science 277,1296–1299.

Wardle, D. A., Bonner, K. I., Barker, G. M. et al., 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity and ecosystem properties. Ecological Monographs 69, 535–568.

Wardle, D. A., 2002. Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press.

Wardle, D. A., Yeates, G. W., Williamson, W. and Bonner, K. I., 2003. The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 102, 45–56.

Wardle, D. A., Yeates, G. W., Williamson, W. and Bonner, K. I., 2003. The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 102, 45–56.

Wever, L.A., Lysyk, T.J. and Clapperton, M.J., 2001. The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia 45, 121-133.

Woldeselassie M., Van Miegroet H., Gruselle, M. and Hambly, N., 2012. Storage and Stability of Soil Organic Carbon in Aspen and Conifer Forest Soils of Northern Utah. Soil Scientific Society of  America Journal 76, 2230–2240.

 

Zanella, A., Jabiol, B., Ponge, J.-F., Sartori, G., De Waal, R., Van Delft, B., Graefe, U., Cools, N., Katzensteiner, K., Hager, H., Englisch, M., Brethes, A., Broll, G., Gobat, J.M., Brun, J.J., Milbert, G., Kolb, E., Wolf, U., Frizzera, L., Galvan, P., Kolli, R., Baritz, R., Kemmers, R., Vacca, A., Serra, G., Banas, D., Garlato, A., Chersich, S., Klimo, E. and Langohr, R., 2011. European humus forms reference base. http://hal.archives-ouvertes.fr/hal-00541496/. Accessed 2 mei 2016.

Zimmermann, M., Leifeld, J., Schmidt, M., Smith, P. and Fuhrer, J., 2007. Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science, 58, 658–667.

 

Universiteit of Hogeschool
Bioscience engineering landmanagement: Soil- and Water Management
Publicatiejaar
2016
Promotor(en)
Bart Muys
Kernwoorden
Share this on: