Unraveling the in vivo role of MMP-2 and MT1-MMP in mammalian axonal regeneration

Lien Andries
Het herstellen van het centraal zenuwstelsel,vandaag en morgen De ziekte van Alzheimer, de ziekte van Parkinson, de ziekte van Huntington, multiple sclerose, glaucoom, het zijn maar enkele van de meer dan 600 neurodegeneratieve aandoeningen waarbij na verloop van tijd zenuwcellen afsterven. Dit laatste is onomkeerbaar en leidt tot symptomen als dementie, slikproblemen, bewegings-, loop-, of spraakstoornissen. Wat is nu de exacte oorzaak waardoor het centraal zenuwstelsel (CZS) van de mens zich niet spontaan kan herstellen?

Unraveling the in vivo role of MMP-2 and MT1-MMP in mammalian axonal regeneration

Het herstellen van het centraal zenuwstelsel,

vandaag en morgen

 

De ziekte van Alzheimer, de ziekte van Parkinson, de ziekte van Huntington, multiple sclerose, glaucoom, het zijn maar enkele van de meer dan 600 neurodegeneratieve aandoeningen waarbij na verloop van tijd zenuwcellen afsterven. Dit laatste is onomkeerbaar en leidt tot symptomen als dementie, slikproblemen, bewegings-, loop-, of spraakstoornissen. Wat is nu de exacte oorzaak waardoor het centraal zenuwstelsel (CZS) van de mens zich niet spontaan kan herstellen? Rond deze vraag gebeurt heel wat onderzoek waaronder deze studie die specifiek de focus legt op matrix metalloproteinases (MMP’s), meer bepaald MMP-2 en MT1-MMP. Dit zijn eiwitten die een invloed kunnen hebben op de capaciteit om axonen (uitlopers van de zenuwcellen) in het CZS te regenereren.

Het belang van neurobiologisch onderzoek!

Neurodegeneratieve aandoeningen vormen een uitdaging voor de gezondheidszorg. Enerzijds blijft de vraag: ‘Wat is de oorzaak van neurodegeneratieve ziekten?’ onbeantwoord. Op een paar uitzonderingen na is de oorzaak van degeneratie van zenuwcellen bij deze ziekten niet gekend en zijn er nog geen geneesmiddelen of behandelingen die het ziekteproces kunnen vertragen of verhinderen. Momenteel zijn er enkel therapieën beschikbaar die de symptomen (tijdelijk) kunnen verlichten, zonder de vooruitgang van de ziekte te stoppen. Anderzijds komen deze aandoeningen meestal voor op latere leeftijd en treffen, met de toenemende vergrijzing, een steeds groter wordende groep mensen. De Wereldgezondheidsorganisatie voorspelt dat in 2040 neurodegeneratieve aandoeningen, kanker zullen inhalen en de tweede belangrijkste doodsoorzaak zullen worden na hart- en vaatziekten. Daarom is fundamenteel neurobiologisch onderzoek, dat de ziektemechanismen probeert te ontrafelen en gevonden inzichten vertaalt naar nieuwe behandelingen voor deze aandoeningen, van zeer groot belang.

Regeneratiemogelijkheid

In de embryonale en postnatale fase van de ontwikkeling van zoogdieren kan regeneratie van beschadigde zenuwbanen optreden in het CZS. Volwassen zoogdieren verliezen echter deze capaciteit. Na beschadiging, treedt er een beperkte periode van axonuitgroei op, maar zonder verlenging, wat uiteindelijk leidt tot axonale degeneratie en celdood. Wat stopt het axonale regeneratieproces? Welke factoren ontbreken ten opzichte van het embryo? Onderzoek naar deze mechanismen kan nieuwe inzichten leveren in hoe regeneratie in het CZS van volwassen zoogdieren kan geïnduceerd worden.

Hulp uit ‘onverwachte’ hoek

Ondanks intensieve onderzoeksinspanningen blijft de volledige regeneratie van axonen en het functioneel herstel van het beschadigde CZS van zoogdieren een uitdaging. Dit maakt het zoeken naar nieuwe moleculen die betrokken zijn bij het herstellen van axonen onmisbaar. Het gebruik van de oogzenuw als een model voor axonale regeneratie in het CZS, heeft aanzienlijke vooruitgang geboekt in het identificeren van de oorzaken van de beperkte regeneratie in het CZS van volwassen zoogdieren. Een belangrijk modelorganisme in neurobiologisch onderzoek is de muis. Het feit dat het genoom van de muis 95% gelijkenis vertoont met dat van de mens maakt deze nieuwe inzichten bijzonder vertaalbaar naar humane ziekten. Daarenboven zijn er al heel wat onderzoeksmethodes in de muis geoptimaliseerd. De oogzenuw wordt vaak gebruikt in het onderzoek naar axonale regeneratie in het CZS. Hierbij worden de muizen onderworpen aan het RONC (regenerative optic nerve crush) model waarbij eerst de oogzenuw beschadigd wordt gevolgd door inductie van regeneratie in het CZS.

MMP’s als oplossing?

In dit project wordt gezocht naar de rol van MMP’s als regeneratie-inducerende moleculen. MMP’s kennen vele functies en worden vergeleken met het Chinese concept, yin en yang. Enerzijds zijn ze van essentieel belang voor de ontwikkeling en het behoud van het CZS, anderzijds wordt een MMP overmaat vaak geassocieerd met neurologische ziektebeelden. MMP activiteit moet dus gebalanceerd zijn. Uit recente ex vivo (experimenten op weefsel in een externe omgeving) studies blijkt dat MMP-2 en MT1-MMP een positieve rol spelen in het ontwikkelen en herstellen van axonen. Een volgende stap is om deze data te bevestigen in vivo (experimenten op weefsel binnen het lichaam) via het gebruik van het RONC model.

De knock-out van MMP-2 of MT1-MMP

Zorgt de aanwezigheid van MMP-2 of MT1-MMP voor een betere regeneratie van de axonen na het beschadigen van de oogzenuw? Om deze vraag te beantwoorden, wordt onderzocht of het uitschakelen van het Mmp‑2 of het Mt1-mmp gen een effect heeft op de axonale regeneratie in de oogzenuw van volwassen muizen. De axonale regeneratie in muizen waarvan het Mmp‑2 of het Mt1-mmp gen al dan niet uitgeschakeld is, wordt vergeleken op verschillende afstanden na beschadiging.

Na analyse van de onderzoeksresultaten wordt vastgesteld dat er significant minder regeneratie zichtbaar is bij muizen waar het gen voor MMP-2 uitgeschakeld is (Mmp-2-/- muizen) ten opzichte van muizen waar het gen voor MMP-2 niet uitgeschakeld is (wild-type muizen). Het aantal regenererende axonen in Mmp-2-/- muizen is, op elke afstand gemeten, tussen 40-50% lager dan in wild-type muizen (figuur bijlage). Er zijn minder en kortere axonen in Mmp-2-/- muizen. MMP-2 is dus noodzakelijk voor succesvolle regeneratie van axonen in de oogzenuw.

Het uitschakelen van het Mt1-mmp gen vertoont een trend naar een verminderde regeneratie in het CZS hoewel deze resultaten niet statistisch significant zijn. Daarnaast heeft MT1-MMP een subtieler effect op de regeneratie dan MMP-2.

Er kan geconcludeerd worden dat MMP-2, en mogelijk ook MT1-MMP, een belangrijke rol spelen bij het induceren van regeneratie na beschadiging van het CZS in volwassen zoogdieren.

En nu?

Samengevat, de huidige in vivo studie levert het bewijs voor de betrokkenheid van MMP-2 en MT1-MMP in axonale regeneratie wat overeenkomt met eerdere ex vivo studies.

De huidige studie maakt gebruik van genetisch gemanipuleerde muizen. Verder onderzoek kan gebruikmaken van farmacologische methodes zoals het toedienen van extra MMP’s of van MMP inhibitoren. Het uiteindelijke doel van dit fundamenteel onderzoek is inzicht te verwerven in de moleculen en hun werkingsmechanismen die een invloed hebben op de regeneratie van de axonen. Op lange termijn kan dit leiden tot de identificatie van nieuwe, MMP-gebaseerde benaderingen voor het induceren van axonale regeneratie en, meer algemeen, herstel van het CZS. De nieuwe inzichten kunnen bijdragen tot het ontwikkelen van behandelingen voor o.a. de ziekte van Alzheimer, de ziekte van Parkinson, de ziekte van Huntington, multiple sclerose, glaucoom en andere neurodegeneratieve aandoeningen.

 

‘Neurology takes us right to the heart of the question of who we are’

Vilayanur S. Ramachandran

Bibliografie

Agapova O a, Kaufman PL, Lucarelli MJ, Gabelt BT & Hernandez MR (2003) Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res. 967: 132–43

Agapova O a, Ricard CS, Salvador-Silva M & Hernandez MR (2001) Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes. Glia 33: 205–16

Agrawal SM, Lau L & Yong VW (2008) MMPs in the central nervous system: where the good guys go bad. Semin. Cell Dev. Biol. 19: 42–51

Ahmed Z, Aslam M, Lorber B, Suggate EL, Berry M & Logan A (2010) Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic. Neurobiol. Dis. 37: 441–54

Ahmed Z, Dent RG, Leadbeater WE, Smith C, Berry M & Logan A (2005) Matrix metalloproteases: degradation of the inhibitory environment of the transected optic nerve and the scar by regenerating axons. Mol. Cell. Neurosci. 28: 64–78

Ali S, Driscoll HE, Newton VL & Gardiner NJ (2014) Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration. Exp. Neurol. 261: 654–65

Bähr M (2000) Live or let die – retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci. 23: 483–90

Baker AH, Edwards DR & Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115: 3719–27

Baldwin KT, Carbajal KS, Segal BM & Giger RJ (2015) Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration. Proc. Natl. Acad. Sci. U. S. A. 112: 2581–6

Bear MF, Connors BW & Paradiso MA (2006) Neuroscience, Exploring the Brain

Bein K & Simons M (2000) Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J. Biol. Chem. 275: 32167–73

Benowitz L & Yin Y (2007) Combinatorial Treatments for Promoting Axon Regeneration in the CNS: Strategies for Overcoming Inhibitory Signals and Activating Neurons’ Intrinsic Growth State. Dev. Neurobiol.: 1148–1165

Benowitz L & Yin Y (2008) Rewiring the injured CNS: lessons from the optic nerve. Exp. Neurol. 209: 389–98

Benowitz L & Yin Y (2010) Optic Nerve Regeneration. Arch. Ophtalmol. 128: 1059–1064

Benowitz LI & Popovich PG (2011) Inflammation and axon regeneration. Curr. Opin. Neurol. 24: 577–83

Berry M, Ahmed Z, Lorber B, Douglas M & Logan A (2008) Regeneration of axons in the visual system. Restor. Neurol. Neurosci. 26: 147–74

Boenisch T (2001) Immunochemical Staining Methods

Cai D, Qiu J, Cao Z, McAtee M, Bregman BS & Filbin MT (2001) Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21: 4731–9

Caterina JJ, Yamada S, Caterina NC, Longenecker G, Holmbäck K, Shi J, Yermovsky a E, Engler J a & Birkedal-Hansen H (2000) Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation. J. Biol. Chem. 275: 26416–22

Charalambous P, Hurst LA & Thanos S (2008) Engrafted chicken neural tube-derived stem cells support the innate propensity for axonal regeneration within the rat optic nerve. Invest. Ophthalmol. Vis. Sci. 49: 3513–24

Chen MS, Huber AB, Van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F & Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Lett. to Nat. 403: 434–9

Chilton JK (2006) Molecular mechanisms of axon guidance. Dev. Biol. 292: 13–24

Chintala SK, Zhang X, Austin JS & Fini ME (2002) Deficiency in matrix metalloproteinase gelatinase B (MMP-9) protects against retinal ganglion cell death after optic nerve ligation. J. Biol. Chem. 277: 47461–8

Chiu K, Chang RC-C & So K-F (2007) Intravitreous injection for establishing ocular diseases model. J. Vis. Exp. 41: 313

Chiu Y-C, Hua T-E, Fu Y-Y, Pasricha PJ & Tang S-C (2012) 3-D imaging and illustration of the perfusive mouse islet sympathetic innervation and its remodelling in injury. Diabetologia 55: 3252–3261

Chung K, Wallace J, Kim S, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V & Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497: 332–337

Cui Q, Yin Y & Benowitz LI (2009) The role of macrophages in optic nerve regeneration. Neuroscience 158: 1039–48

Curcio C & Allen KA (1990) Topography of Ganglion Cells in Human Retina. J. Comp. Neurol. 300: 5–25

Czaja K, Fornaro M & Geuna S (2012) Neurogenesis in the adult peripheral nervous system. Neural Regen. Res. 7: 1047–54

Dallimore EJ, Cui Q, Beazley LD & Harvey AR (2002) Postnatal innervation of the rat superior colliculus by axons of late-born retinal ganglion cells. Eur. J. Neurosci. 16: 1295–1304

Deister C & Schmidt CE (2006) Optimizing neurotrophic factor combinations for neurite outgrowth. J. Neural Eng. 3: 172–9

Dent EW & Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40: 209–27

Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R, Smith JW & Strongin a Y (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp. Cell Res. 263: 209–23

Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298: 1959–64

Diekmann H, Kalbhen P & Fischer D (2015) Characterization of optic nerve regeneration using transgenic zebrafish. Front. Cell. Neurosci. 9: 1–11

Dittrich F, Theonen H & Sendtner M (1994) Ciliary neurotrophic factor: pharmacokinetics and acute-phase response in rat. Ann. Neurol. 35: 151–63

Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang KC, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin MT, Avenue P & York N (2002) Myelin-Associated Glycoprotein Interacts with the Nogo66 Receptor to Inhibit Neurite Outgrowth. Neuron 35: 283–290

Duchossoy Y, Horvat JC & Stettler O (2001) MMP-related gelatinase activity is strongly induced in scar tissue of injured adult spinal cord and forms pathways for ingrowing neurites. Mol. Cell. Neurosci. 17: 945–56

Erskine L & Herrera E (2007) The retinal ganglion cell axon’s journey: insights into molecular mechanisms of axon guidance. Dev. Biol. 308: 1–14

Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, Hellal F, Bradke F, Sheng M & Dodt H (2012a) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7: 1983–1995

Ertürk A, Mauch CP, Hellal F, Förstner F, Keck T, Becker K, Jährling N, Steffens H, Richter M, Hübener M, Kramer E, Kirchhoff F, Dodt HU & Bradke F (2012b) Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat. Med. 18: 166–71

Esparza BJ, Vilardell C, Calvo J, Juan M, Vives J, Yagu J & Cid MC (2015) Fibronectin Upregulates Gelatinase B (MMP-9) and Induces Coordinated Expression of Gelatinase A (MMP-2) and Its Activator MT1-MMP (MMP-14) by Human T Lymphocyte Cell Lines. A Process Repressed Through RAS/MAP Kinase Signaling Pathways. Blood 94: 2754–66

Ethell IM & Ethell DW (2007) Review Matrix Metalloproteinases in Brain Development and Remodeling : Synaptic Functions and Targets. J. Neurosci. Res. 85: 2813–23

Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4: 703–13

Fischer D, He Z & Benowitz LI (2004a) Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24: 1646–51

Fischer D, Petkova V, Thanos S & Benowitz LI (2004b) Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24: 8726–40

Fitch MT & Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 209: 294–301

Fournier AE, Grandpre T & Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409: 341–6

Fu Y-Y, Lu C-H, Lin C-W, Juang J-H, Enikolopov G, Sibley E, Chiang A-S & Tang S-C (2010) Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. J. Biomed. Opt. 15: 046018

Fu Y-Y, Peng S-J, Lin H-Y, Pasricha PJ & Tang S-C (2013) 3-D imaging and illustration of mouse intestinal neurovascular complex. Am. J. Physiol. Gastrointest. Liver Physiol. 304: G1–11

Galis ZS, Kranzhofer R, Fenton JW & Libby P (1997) Thrombin Promotes Activation of Matrix Metalloproteinase-2 Produced by Cultured Vascular Smooth Muscle Cells. Arterioscler. Thromb. Vasc. Biol. 17: 483–489

Gaublomme D, Buyens T, De Groef L, Stakenborg M, Janssens E, Ingvarsen S, Porse A, Behrendt N & Moons L (2014) Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells. J. Neurochem. 129: 966–79

Geerearts E, Dekeyster E & Moons L Automated neuronal counting in retinal whole mounts: ImageJ as a free-to-use tool for retinal ganglion cell quantification.

Goldberg JL, Klassen MP, Hua Y & Barres B a (2002) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296: 1860–4

Grandpré T, Nakamura F, Vartanian T & Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Lett. to Nat. 403: 439–44

De Groef L, Gaublomme D, Janssens E, Dekeyster E & Moons L (2012) Retinal MMP expression is upregulated in an excitotoxic mouse model of glaucoma. Acta Ophthalmol. 11: 4657 x

De Groef L, Van Hove I, Dekeyster E, Stalmans I & Moons L (2014) MMPs in the neuroretina and optic nerve: modulators of glaucoma pathogenesis and repair? Invest. Ophthalmol. Vis. Sci. 55: 1953–64

De Groef L, Lemmens K, Van Hove I & Moons L Matrix metalloproteinases in the mouse retina: a comparative study of expression patterns and MMP-2 antibodies. J. Histochem. Cytochem.

Gross J & Lapiere CM (1962) brane model in which such a phenomenon might be observed , and that thus far the binding energies agree satisfactorily with those calculated from in vivo experiments only when the model contains lipid . In so far as we understand the behavior of the tial. Proc. Natl. Acad. Sci. U. S. A. 48: 1014–1022

Haenold R, Weih F, Herrmann K-H, Schmidt K-F, Krempler K, Engelmann C, Nave K-A, Reichenbach JR, Löwel S, Löwel S, Witte OW & Kretz A (2014) NF-κB controls axonal regeneration and degeneration through cell-specific balance of RelA and p50 in the adult CNS. J. Cell Sci. 127: 3052–65

Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A & Miyawaki A (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14: 1481–8

Haupt C & Huber AB (2008) How axons see their way-axonal guidance in the visual system. Front. Biosci. 13: 3136–3149

Hehr CL, Hocking JC & McFarlane S (2005) Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points. Development 132: 3371–9

Hernandez-Barrantes S, Toth M, Bernardo M, Yurkova M, Gervasi DC, Raz Y, Sang QA & Fridman R (2000) Binding of Active (57 kDa) Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) to Tissue Inhibitor of Metalloproteinase (TIMP)-2 Regulates MT1-MMP Processing and Pro-MMP-2 Activation. J. Biol. Chem. 275: 12080–9

Herrera E, Brown L, Aruga J, Rachel R a, Dolen G, Mikoshiba K, Brown S & Mason C a (2003) Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114: 545–57

Hildebrand GD & Fielder AR (2011) Anatomy and Physiology of the Retina. In Pediatric Retina, Reynolds J & Olitsky S (eds) pp 39–65. Berlin, Heidelberg: Springer Berlin Heidelberg

Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal-hansen H, Sapienza U La, Aquila U & Aquila L (1999) MT1-MMP-Deficient Mice Develop Dwarfism , Osteopenia , Arthritis , and Connective Tissue Disease due to Inadequate Collagen Turnover. Cell 99: 81–92

Hübener M (2003) Mouse visual cortex. Curr. Opin. Neurobiol. 13: 413–420

Huber AB, Kolodkin AL, Ginty DD & Cloutier J-F (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26: 509–63

Huber AB, Weinmann O, Bro C, Oertle T & Schwab ME (2002) Patterns of Nogo mRNA and Protein Expression in the Developing and Adult Rat and After CNS Lesions. J. fo Neurosci. 22: 3553–67

Imayoshi I, Sakamoto M & Kageyama R (2011) Genetic methods to identify and manipulate newly born neurons in the adult brain. Front. Neurosci. 5: 64

Ingvarsen S, Porse A, Erpicum C, Maertens L, Jürgensen HJ, Madsen DH, Melander MC, Gårdsvoll H, Høyer-Hansen G, Noel A, Holmbeck K, Engelholm LH & Behrendt N (2013) Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP: impact on lymphangiogenesis. J. Biol. Chem. 288: 10195–204

Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Kawaguchi T, Hama M, Sakamoto S, Shinozaki K, Eisenmenger W & Kondo T (2015) Immunohistochemical analysis on MMP-2 and MMP-9 for wound age determination. Int. J. Legal Med. March: 1–6

Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T & Itohara S (1997) Unaltered Secretion of -Amyloid Precursor Protein in Gelatinase A (Matrix Metalloproteinase 2)-deficient Mice. J. Biol. Chem. 272: 22389–22392

Janssens E, Gaublomme D, De Groef L, Darras VM, Arckens L, Delorme N, Claes F, Van Hove I & Moons L (2013) Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development. PLoS One 8: e52915

Jeon C, Strettoi E & Masland RH (1998) The Major Cell Populations of the Mouse Retina. Jounal Neurosci. 18: 8936–46

Jiang LI, Sternweis PC & Wang JE (2013) Zymosan activates protein kinase A via adenylyl cyclase VII to modulate innate immune responses during inflammation. Mol. Immunol. 54: 14–22

Jin G, Zhang F, Chan KM, Xavier Wong HL, Liu B, Cheah KSE, Liu X, Mauch C, Liu D & Zhou Z (2011) MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development. EMBO J. 30: 2281–93

Ke M, Fujimoto S & Imai T (2013) SeeDB : a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci.: 1–9

Klimczak RR, Koerber JT, Dalkara D, Flannery JG & Schaffer D V (2009) A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLoS One 4: e7467

Kurimoto T, Yin Y, Habboub G, Gilbert H-Y, Li Y, Nakao S, Hafezi-Moghadam A & Benowitz LI (2013) Neutrophils express oncomodulin and promote optic nerve regeneration. J. Neurosci. 33: 14816–24

Kurimoto T, Yin Y, Omura K, Gilbert H, Kim D, Cen L-P, Moko L, Kügler S & Benowitz LI (2010) Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J. Neurosci. 30: 15654–63

Kvanta A, Sarman S, Fagerholm P, Seregard S & Steen B (2000) Expression of Matrix Metalloproteinase-2 ( MMP-2 ) and Vascular Endothelial Growth Factor ( VEGF ) in Inflammation-associated. Exp. Eye Res. 70: 419–428

Lambot M-A, Depasse F, Noel J-C & Vanderhaeghen P (2005) Mapping labels in the human developing visual system and the evolution of binocular vision. J. Neurosci. 25: 7232–7

Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J & Harvey a R (2006) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther. 13: 1328–41

Leibinger M, Müller A, Andreadaki A, Hauk TG, Kirsch M & Fischer D (2009) Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J. Neurosci. 29: 14334–41

Lemmens K, De Groef L, Van Hove I, Dekeyster E & Moons L (2015) Biphasic expression pattern of MMP-14 in the zebrafish retina during optic nerve regeneration. Prep.

Leon S, Yin Y, Nguyen J, Irwin N & Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20: 4615–26

Leone DP, Genoud S téphan., Atanasoski S, Grausenburger R, Berger P, Metzger D, Macklin WB, Chambon P & Suter U (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell. Neurosci. 22: 430–440

Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye (Lond). 18: 1066–74

De Lima S, Habboub G & Benowitz LI (2012) Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. Int. Rev. Neurobiol. 106: 153–72

Limb GA, Daniels JT, Pleass R, Charteris DG, Luthert PJ & Khaw PT (2002) Differential Expression of Matrix Metalloproteinases 2 and 9 by Glial Müller Cells. Am. J. Pathol. 160: 1847–1855

Liu BP, Fournier A, GrandPré T & Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297: 1190–3

Loers G, Makhina T, Bork U, Dörner A, Schachner M & Kleene R (2012) The interaction between cell adhesion molecule L1, matrix metalloproteinase 14, and adenine nucleotide translocator at the plasma membrane regulates L1-mediated neurite outgrowth of murine cerebellar neurons. J. Neurosci. 32: 3917–30

Lorber B, Berry M, Douglas MR, Nakazawa T & Logan A (2009) Activated retinal glia promote neurite outgrowth of retinal ganglion cells via apolipoprotein E. J. Neurosci. Res. 87: 2645–52

Lorber B, Berry M & Logan A (2005) Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur. J. Neurosci. 21: 2029–34

Lorber B, Guidi A, Fawcett JW & Martin KR (2012) Activated retinal glia mediated axon regeneration in experimental glaucoma. Neurobiol. Dis. 45: 243–52

Lowery LA & Van Vactor D (2009) The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10: 332–43

Luo X, Salgueiro Y, Beckerman SR, Lemmon VP, Tsoulfas P & Park KK (2013) Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Exp. Neurol. 247: 653–62

Luttun A, Lutgens E, Manderveld A, Maris K, Collen D, Carmeliet P & Moons L (2004) Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 109: 1408–14

Martini FH, Nath JL & Bartholomew EF (2014) Fundamentals of Anatomy and Physiology Tenth. Pearson

Mccurley AT & Callard G V (2010) Time Course Analysis of Gene Expression Patterns in Zebrafish Eye During Optic Nerve Regeneration. J. Exp. Neurosci. 2010: 17–33

Mori T, Tanaka K, Buffo A & Wurst W (2006) Inducible Gene Deletion in Astroglia and Radial Glia — A Valuable Tool for Functional and Lineage Analysis Generation of Mice. Glia 54: 21–34

Morrison CJ, Butler GS, Bigg HF, Roberts CR, Soloway PD & Overall CM (2001) Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J. Biol. Chem. 276: 47402–10

Moy AJ, Wiersma MP & Choi B (2013) Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain. PLoS One 8: e53753

Nadal-Nicolás FM, Jiménez-López M, Sobrado-Calvo P, Nieto-López L, Cánovas-Martínez I, Salinas-Navarro M, Vidal-Sanz M & Agudo M (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest. Ophthalmol. Vis. Sci. 50: 3860–8

Nadal-Nicolás FM, Salinas-Navarro M, Vidal-Sanz M & Agudo-Barriuso M (2015) Two methods to trace retinal ganglion cells with fluorogold: from the intact optic nerve or by stereotactic injection into the optic tract. Exp. Eye Res. 131: 12–9

Nagase H, Visse R & Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69: 562–73

Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26: 99–109

Nakagawa S, Brennan C, Johnson KG, Shewan D, Harris W a & Holt CE (2000) Ephrin-B regulates the Ipsilateral routing of retinal axons at the optic chiasm. Neuron 25: 599–610

Nguyen M (2000) Activated Protein C Directly Activates Human Endothelial Gelatinase A. J. Biol. Chem. 275: 9095–9098

Okada T, Ichikawa M, Tokita Y, Horie H, Saito K, Yoshida J & Watanabe M (2005) Intravitreal macrophage activation enables cat retinal ganglion cells to regenerate injured axons into the mature optic nerve. Exp. Neurol. 196: 153–63

Overall CM, Tam E, McQuibban G a, Morrison C, Wallon UM, Bigg HF, King a E & Roberts CR (2000) Domain interactions in the gelatinase A.TIMP-2.MT1-MMP activation complex. The ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation. J. Biol. Chem. 275: 39497–506

Overall CM, Wranag L & Sodek J (1991) Transcriptional and Post-transcriptional Regulation of 72-kDa Gelatinase / Type IV Collagenase by Transforming Growth Factor-beta1 in Human Fibroblasts. J. Biol. Chem. 266: 14064–71

Page-McCaw A, Ewald AJ & Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8: 221–33

Park K, Liu K, Hu Y, Smith P, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M & He Z (2008) Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science (80-. ). 322: 963–66

Park KK, Liu K, Hu Y, Kanter JL & He Z (2010) PTEN/mTOR and axon regeneration. Exp. Neurol. 223: 45–50

Pastrana E, Moreno-Flores MT, Gurzov EN, Avila J, Wandosell F & Diaz-Nido J (2006) Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J. Neurosci. 26: 5347–59

Pernet V, Joly S, Dalkara D, Jordi N, Schwarz O, Christ F, Schaffer D V, Flannery JG & Schwab ME (2013a) Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve. Neurobiol. Dis. 51: 202–13

Pernet V, Joly S, Jordi N, Dalkara D, Guzik-Kornacka A, Flannery JG & Schwab ME (2013b) Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death Dis. 4: e734

Pernet V & Polo A Di (2006) Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival , but leads to optic nerve dystrophy in vivo. Brain 129: 1014–26

Perry VH (1981) Evidence for an Amacrine Cell System in the Ganglion Cell Layer of the Rat Retina. Neuroscience 6: 931–44

Prinjha R, Moore S, Vinson M, Blake S, Morrow R, Christie G & Michalovich D (2000) Inhibitor of neurite outgrowth in humans. Nature 403: 383–384

Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO & Williams SM (2004) Neuroscience

Remington LA (2011) Clinical Anatomy of the Visual System

Rivera S, Khrestchatisky M, Kaczmarek L, Rosenberg G a & Jaworski DM (2010) Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J. Neurosci. 30: 15337–57

Rodriguez AR, Müller LP & Brecha NC (2014) The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J. Comp. Neurol. 522: 1411–43

Sakamoto T & Seiki M (2009) Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity. Genes Cells 14: 617–26

Salinas-Navarro M, Jiménez-López M, Valiente-Soriano FJ, Alarcón-Martínez L, Avilés-Trigueros M, Mayor S, Holmes T, Lund RD, Villegas-Pérez MP & Vidal-Sanz M (2009) Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vision Res. 49: 637–47

Santi PA (2011) Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59: 129–38

Schwab ME (2010) Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11: 799–811

Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat. Rec. 269: 33–49

Sernagor E, Eglen SJ & Wong RO. (2001) Development of Retinal Ganglion Cell Structure and Function. Prog. Retin. Eye Res. 20: 139–174

Silver J & Miller JH (2004) Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5: 146–56

Slezak M, Oritz CG, Niemiec A, En JF, Chambon P, Metzger D & Pfrieger FW (2007) Transgenic Mice for Conditional Gene Manipulation in Astroglial Cells. Glia 55: 1565–76

Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez-Carrasco I, Connolly L & He Z (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64: 617–23

Sperry RW (1963) Chemoaffinity in the Orderly Growth of Nerve Fiver Patterns and Connections. Proc. Natl. Acad. Sci. 50: 703–10

Standring S (2008) Gray ’s Anatomy

Sternlicht MD & Werb Z (2001) How Matrix Metalloproteinases Regulate Cell Behaviour. Annu. Rev. Cell Dev. Biol. 17: 463–516

Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA & Goldberg GI (1995) Mechanism of Cell Surface Activation of 72-kDa Type IV Collagenase. J. Biol. Chem. 270: 5331–8

Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner B a & He Z (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480: 372–5

Sung M, Wei E, Chavez E, Jain N, Levano S, Binkert L, Ramseier A, Setz C, Bodmer D, Ryan AF & Brand Y (2014) Inhibition of MMP-2 but not MMP-9 influences inner ear spiral ganglion neurons in vitro. Cell. Mol. Neurobiol. 34: 1011–21

Susaki EA, Tainaka K, Perrin D, Kishino F & Tawara T (2014) Resource Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis. Cell 157: 726–739

Tang S-C, Chiu Y-C, Hsu C-T, Peng S-J & Fu Y-Y (2013) Plasticity of Schwann cells and pericytes in response to islet injury in mice. Diabetologia 56: 2424–2434

Templeton JP & Geisert EE (2012) A practical approach to optic nerve crush in the mouse. Mol. Vis. 18: 2147–52

Teng FYH & Tang BL (2006) Axonal regeneration in adult CNS neurons--signaling molecules and pathways. J. Neurochem. 96: 1501–8

Thanos S, Böhm MRR, Schallenberg M & Oellers P (2012) Traumatology of the optic nerve and contribution of crystallins to axonal regeneration. Cell Tissue Res. 349: 49–69

Tkatchenko T V, Shen Y & Tkatchenko A V (2010) Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 51: 21–7

Toth M, Osenkowski P, Hesek D, Brown S, Meroueh S, Sakr W, Mobashery S & Fridman, R (2005) Cleavage at the stem region releases an active ectodomain of the membrane type 1 matrix metalloproteinase. Biochem. J. 387: 497–506

Toth M, Sohail A & Fridman R (2012) Assessment of Gelatinases (MMP-2 and MMP-9) by gelatin zymography. In Metastasis Research Protocols, Dwek M Brooks SA & Schumacher U (eds) pp 121–135. Totowa, NJ: Humana Press

Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman B a, Mage R, Rader C & Giger RJ (2005) The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J. Neurosci. 25: 808–22

Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T-T, D’Hooge R, Arckens L & Moons L (2014) MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct. Funct.

Verslegers M, Lemmens K, Van Hove I & Moons L (2013) Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog. Neurobiol. 105: 60–78

Visse R & Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92: 827–39

Wang KC, Kim JA & Sivasankaran R (2002) p75 interacts with the Nogo receptor as a co-receptor for Nogo , MAG and OMgp. Nature 420: 97–101

Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–62

Webber C a, Hocking JC, Yong VW, Stange CL & McFarlane S (2002) Metalloproteases and guidance of retinal axons in the developing visual system. J. Neurosci. 22: 8091–100

Wehrle R, Camand E, Chedotal A, Sotelo C & Dusart I (2005) Expression of netrin-1, slit-1 and slit-3 but not of slit-2 after cerebellar and spinal cord lesions. Eur. J. Neurosci. 22: 2134–44

Yamashita T & Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci. 6: 461–7

Yan C & Boyd DD (2006) Regulation of Matrix Metalloproteinase Gene. Cell. Physiol.: 19–26

Yin Y, Cui Q, Gilbert H, Yang Y, Yang Z, Berlinicke C & Li Z (2009) Oncomodulin links inflammation to optic. Proc. Natl. Acad. Sci. U. S. A. 106: 19587–92

Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR & Benowitz LI (2003) Macrophage-Derived Factors Stimulate Optic Nerve Regeneration. J. Neurosci. 23: 2284–93

Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R & Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9: 843–52

Yong VW, Power C, Forsyth P & Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat. Rev. Neurosci. 2: 502–11

Young P, Qiu L, Wang D, Zhao S, Gross J & Feng G (2008) Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat. Neurosci. 11: 721–8

Zhang X (2004) Kainic Acid-Mediated Upregulation of Matrix Metalloproteinase-9 Promotes Retinal Degeneration. Invest. Ophthalmol. Vis. Sci. 45: 2374–2383

Zhang Y, Klassen HJ, Tucker BA, Perez M-TR & Young MJ (2007) CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism. J. Neurosci. 27: 4499–506

Zheng B, Atwal J, Ho C, Case L, He X, Garcia KC, Steward O & Tessier-lavigne M (2005) Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc. Natl. Acad. Sci. U. S. A. 102: 1205–1210

Zucker S, Drews M, Foda HD, Declerck YA, Langley KE, Bahou WF, Andrew J, Docherty P, Cao J, Conner C & Docherty AJP (1998) Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) Binds to the Catalytic Domain of the Cell Surface Receptor, Membrane Type 1-Matrix Metalloproteinase 1 (MT1-MMP). J. Biol. Chem. 273: 1216–22

Universiteit of Hogeschool
Biochemie en biotechnologie
Publicatiejaar
2015
Kernwoorden