Intra-articular Pressure Measurement of the Tibiofemoral Knee Joint

Stijn Herregodts
Persbericht

Intra-articular Pressure Measurement of the Tibiofemoral Knee Joint

Intra-articulaire Drukmeting van het Tibiofemorale Kniegewricht

Het aantal operaties waarbij een totale knieprothese wordt geplaatst, stijgt jaarlijks. Ondanks het feit dat deze chirurgische ingreep de levenskwaliteit van de meeste patiënten verbetert, blijft een significant aantal patiënten toch ontevreden. Oorzaken voor deze ontevredenheid zijn onder andere blijvende kniepijn en een slechte stabiliteit van het kniegewricht. De positionering van de prothese wordt aanzien als de sleutelfactor om de volledige kniefunctie te herstellen en patiënttevredenheid op lange termijn te garanderen.

1. Stand van zaken

De huidige kennis over de invloed van een totale knievervanging op de kniekinematica en -kinetica is nog steeds beperkt. Toch is die kennis essentieel om de positionering van protheses te kunnen optimaliseren. Om de hiaat te vullen, zijn in-vitrotesten de aangewezen onderzoeksmethode. In zulke testen wordt de totale knievervanging uitgevoerd op een kadaver. De in-vitrotesten bieden de mogelijkheid om de kinematica en kinetica van de knie zowel voor als na de operatie grondig te bestuderen en beide situaties te vergelijken. Om de complexe werking van het kniegewricht goed te kunnen begrijpen, is het van cruciaal belang om een betrouwbaar beeld te bekomen van de contactdrukverdeling in het gewricht. Een meettechniek die wereldwijd vaak wordt toegepast voor dit soort onderzoek, is een contactdrukmeting met behulp van een drukgevoelige meetfilm van het merk Tekscan. Niettegenstaande het wijdverspreide gebruik van deze meettechniek zijn de nauwkeurigheid en betrouwbaarheid van de meetresultaten tot op heden eerder beperkt. De voornaamste oorzaak voor de weinig bevredigende meetresultaten is, dat de complexiteit van de sensoreigenschappen nog niet ontrafeld is. Ondanks herhaaldelijke pogingen om de nauwkeurigheid van de sensor te valideren, zijn studies die deze materie op een kritische en fundamentele manier benaderen zeer schaars.

2. Onderzoeksproject

2.1. Ontwikkeling proefmachine

In dit project worden voor het eerst alle sensoreigenschappen die een effect hebben op de meetnauwkeurigheid grondig onderzocht. Om dit onderzoek mogelijk te kunnen maken, diende er eerst een speciale meerassige proefstand ontwikkeld en gebouwd  te worden (Figuur 1). De modulaire opbouw van de proefmachine maakt het mogelijk om een grote diversiteit aan proeven uit te voeren op dezelfde machine. De proefstand waarin verschillende sensoren zijn geïntegreerd, werkt volledig computergestuurd, wat een online-evaluatie van de testen mogelijk maakt. Testen met deze proefmachine maakten al snel duidelijk dat de tot vandaag gebruikte implementatie- en kalibratietechnieken van de Tekscandruksensoren verre van optimaal zijn. Dat resulteert uiteraard in een slechte nauwkeurigheid; meetfouten van meer dan 50% zijn geen uitzondering.

2.2. Ontwikkeling methode voor kalibratie en dataverwerking

Door alle relevante Tekscansensoreigenschappen te analyseren en te testen, kon een innovatieve methode ontwikkeld worden voor de sensorkalibratie en voor de  post-processing van de meetdata. De methode behelst speciaal ontwikkelde kalibratieproeven (uitgevoerd in de eerder vermeldde proefmachine) in combinatie met een doorgedreven meetdataverwerkingsalgoritme (geprogrammeerd in Matlab). De nieuwe methode verhoogt de nauwkeurigheid en betrouwbaarheid van de contactdrukmetingen aanzienlijk. Testen in realistische testomstandigheden tonen aan dat de nauwkeurigheidsgraad stijgt met een factor 5 door het gebruik van deze techniek. De voordelen zijn aanzienlijk. Een concreet – enkel in technische termen te verwoorden – voorbeeld kan dit illustreren: de voor de nauwkeurigheid erg nadelige ‘tijdsafhankelijke sensordrift’ is tot op heden het grootste struikelblok bij het gebruik van de Tekscansensor. Bovenvermelde methode maakt het nu mogelijk om die ‘sensordrift’ te ‘compenseren’ (te filteren uit de resultaten). Naast het verhogen van de nauwkeurigheid van de sensor zorgt de nieuwe methode ook voor een volledige automatisatie van de kalibratiecyclus die de tijdrovende traditionele kalibratieprocedure vervangt. Dit vereenvoudigt het gebruik van de sensoren en verhoogt de efficiëntie van de hele procedure aanzienlijk. Er werd ook in de reële laboratoriumpraktijk onderzocht hoe de mogelijkheden van de Tekscansensor het best kunnen worden ingezet. Het resultaat van die studie is een reeks richtlijnen die orthopedische onderzoekers moet helpen om de intra-articulaire drukmetingen met de hoogst mogelijke nauwkeurigheid uit te voeren.

2.3. Visualisatiemethode van de drukmeting

Om de nauwkeurigere en betrouwbare meetresultaten correct te kunnen interpreteren, is een accurate voorstelling ervan uiteraard van cruciaal belang. Tot op heden werden observaties van drukverdelingen niet gelinkt aan hun corresponderende geometrische locatie op de prothese in kwestie. Hierdoor wordt het potentieel van deze drukmetingen slechts deels benut. Dit project komt tegemoet aan deze lacune door ook een meettechniek te ontwikkelen om de geometrische positie van de sensor op de prothese precies te kunnen definiëren. Door speciaal voor dit doel ontworpen 3D-geprinte kalibratieblokken te gebruiken in combinatie met een volautomatisch verwerkingsalgoritme, gebeurt de positiebepaling op een eenvoudige en snelle manier. Om een efficiënte en correcte interpretatie van de meetresultaten mogelijk te maken, werd samen met de techniek voor de sensorpositiebepaling ook een nieuwe methode ontwikkeld om de metingen te visualiseren. Die methode bestaat erin dat geobserveerde drukverdelingen synchroon worden gevisualiseerd op een waarheidsgetrouwe representatie van het contactoppervlak van de prothese.

3. Slot

Dit project biedt een totaaloplossing voor het verbeteren van intra-articulaire drukmetingen in het kniegewricht. Enerzijds verhogen de ontwikkelde technologische innovaties de nauwkeurigheid en het gebruiksgemak van het Tekscan-contactdrukmeetsysteem aanzienlijk. Anderzijds zijn deze technieken in een gebruiksvriendelijk product gegoten zodat de praktische toepassing ervan door orthopedische onderzoekers is gegarandeerd. Door op die manier bij te dragen aan een beter begrip van het kniegewricht, belooft het project onrechtstreeks ook te leiden tot een hogere tevredenheidsgraad bij toekomstige patiënten.

Bibliografie

Abreu, E., Ngo, H., Bellare, A., 2014. Characterization of network parameters for UHMWPE by plane strain compression. Journal of the mechanical behavior of biomedical materials 32, 1–7.Adams, G., Nosonovsky, M., 2000. Contact modeling—forces. Tribology International 33, 431–442.Agins, H.J., Harder, V.S., Lautenschlager, E.P., Kudrna, J.C., 2003. Effects of sterilization on the Tekscan digital pressure sensor. Medical engineering \& physics 25, 775–780.Anderson, D.D., Goldsworthy, J.K., Li, W., James Rudert, M., Tochigi, Y., Brown, T.D., 2007. Physical validation of a patient-specific contact finite element model of the ankle. Journal of biomechanics 40, 1662–1669.Anselmi, R., 2003. I-Scan Equilibration and Calibration Practical Suggestions.Anselmi, R., 2013. I-Scan® &  High Speed I-Scan® User Manual.Arnout, N., Vanlommel, L., Vanlommel, J., Luyckx, J., Labey, L., Innocenti, B., Victor, J., Bellemans, J., 2014. Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surgery, Sports Traumatology, Arthroscopy 1–11.Ateshian, G., Kwak, S., Soslowsky, L.J., Mow, V., 1994. A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. Journal of biomechanics 27, 111–124.Bachus, K.N., DeMarco, A.L., Judd, K.T., Horwitz, D.S., Brodke, D.S., 2006. Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems. Medical engineering and physics 28, 483–488.Becher, C., Heyse, T.J., Kron, N., Ostermeier, S., Hurschler, C., Schofer, M.D., Fuchs-Winkelmann, S., Tibesku, C.O., 2009. Posterior stabilized TKA reduce patellofemoral contact pressure compared with cruciate retaining TKA in vitro. Knee Surgery, Sports Traumatology, Arthroscopy 17, 1159–1165.Becher, C., Huber, R., Thermann, H., Paessler, H.H., Skrbensky, G., 2008. Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study. Knee Surgery, Sports Traumatology, Arthroscopy 16, 56–63.Beck, P.R., Thomas, A.L., Farr, J., Lewis, P.B., Cole, B.J., 2005. Trochlear contact pressures after anteromedialization of the tibial tubercle. The American journal of sports medicine 33, 1710–1715.Becker, R., Wirz, D., Wolf, C., Gӧpfert, B., Nebelung, W., Friederich, N., 2005. Measurement of meniscofemoral contact pressure after repair of bucket-handle tears with biodegradable implants. Archives of orthopaedic and trauma surgery 125, 254–260.Bergstrӧm, J., Kurtz, S., Rimnac, C., Edidin, A., 2002. Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials 23, 2329–2343.Bicos, J., Carofino, B., M., A., Schepsis, A., Fulkerson, J., Mazzocca, A., 2006. Patellofemoral Forces After Medial Patellofemoral Ligament Reconstruction. The journal of knee surgery 19.Bohnsack, M., Halcour, A., Klages, P., Wilharm, A., Ostermeier, S., Rühmann, O., Hurschler, C., 2008. The influence of patellar bracing on patellar and knee load-distribution and kinematics: an experimental cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy 16, 135–141.Bohnsack, M., Klages, P., Hurschler, C., Halcour, A., Wilharm, A., Ostermeier, S., Rühmann, O., Wirth, C.-J., 2009. Influence of an infrapatellar fat pad edema on patellofemoral biomechanics and knee kinematics: a possible relation to the anterior knee pain syndrome. Archives of orthopaedic and trauma surgery 129, 1025–1030.Boyd, B.S., Puttlitz, C., Noble-Haeusslein, L.J., John, C.M., Trivedi, A., Topp, K.S., 2007. Deviations in gait pattern in experimental models of hindlimb paresis shown by a novel pressure mapping system. Journal of neuroscience research 85, 2272–2283.Brassart, N., Sanghavi, S., Hansen, U.N., Emery, R.J., Amis, A.A., 2008. Loss of rotator cuff tendon-to-bone interface pressure after reattachment using a suture anchor. Journal of Shoulder and Elbow Surgery 17, 784–789.Brimacombe, J.M., Wilson, D.R., Hodgson, A.J., Ho, K.C., Anglin, C., 2009. Effect of calibration method on Tekscan sensor accuracy. Journal of biomechanical engineering 131, 034503.Brimacombe, M., Anglin, C., J., H., Wilson, R., 2009. Validation of calibration techniques for tekscan pressure sensors. ASB 29th Annual Meeting.Cailletaud, G., Basseville, S., Yastrebov, V.A., 2010. Contact mechanics I: basics. WEMESURF short course on contact mechanics and tribology, Paris, France 21–24.Chapman-Sheath, P., Bruce, W., Chung, W., Morberg, P., Gillies, R., Walsh, W., 2003. In vitro assessment of proximal polyethylene contact surface areas and stresses in mobile bearing knees. Medical engineering \& physics 25, 437–443.Chatterjee, B., Sahoo, P., 2012. Finite-element-based multiple normal loading-unloading of an elastic-plastic spherical stick contact. ISRN Tribology 2013.Cheema, T., Salas, C., Morrell, N., Lansing, L., Reda Taha, M.M., Mercer, D., 2012. Opening wedge trapezial osteotomy as possible treatment for early trapeziometacarpal osteoarthritis: a biomechanical investigation of radial subluxation, contact area, and contact pressure. The Journal of hand surgery 37, 699–705.Conditt, M., Thompson, M., Wenk, T., Holden, C., Huang, E., Ismaily, S., Noble, P., 2006. Knee kinematics and medial lift-off during high flexion activities. Trans Orthop Res Soc 31, 251.Creighton, R.A., Cole, B.J., Nicholson, G.P., Romeo, A.A., Lorenz, E.P., 2007. Effect of lateral meniscus allograft on shoulder articular contact areas and pressures. Journal of Shoulder and Elbow Surgery 16, 367–372.DeMarco, A., Rust, D., Bachus, K., 2000. Measuring contact pressure and contact area in orthopedic applications: Fuji film vs. Tekscan. Trans Orthop Res Soc 25, 518.Deseri, L., Zingales, M., Pollaci, P., 2014. The state of fractional hereditary materials (FHM). Discret Contin Dyn Syst B 19, 2065–2089.Di Paola, M., Zingales, M., 2012. Exact mechanical models of fractional hereditary materials. Journal of Rheology (1978-present) 56, 983–1004.Dini, D., Sackfield, A., Hills, D., 2008. An axi-symmetric Hertzian Contact subject to cyclic shear and severe wear. Wear 265, 1918–1922.Drewniak, E.I., Crisco, J.J., Spenciner, D.B., Fleming, B.C., 2007. Accuracy of circular contact area measurements with thin-film pressure sensors. J Biomech 40, 2569–72. doi:10.1016/j.jbiomech.2006.12.002Dumbleton, T., Buis, A., McFadyen, A., McHugh, B.F., McKay, G., Murray, K.D., Sexton, S., 2009. Dynamic interface pressure distributions of two transtibial prosthetic socket concepts. J Rehabil Res Dev 46, 405–15.Elbert, K., Bartel, D., Wright, T., 1995. The effect of conformity on stresses in dome-shaped polyethylene patellar components. Clinical orthopaedics and related research 317, 71–75.Elguizaoui, S., Flanigan, D.C., Harris, J.D., Parsons, E., Litsky, A.S., Siston, R.A., 2012. Proud osteochondral autograft versus synthetic plugs-Contact pressures with cyclical loading in a bovine knee model. The Knee 19, 812–817.El-Hawary, R., Roth, S.E., King, G.J., Chess, D.G., Johnson, J.A., 2006. Load balance in total knee arthroplasty: an in vitro analysis. The International Journal of Medical Robotics and Computer Assisted Surgery 2, 251–255.Elias, J.J., Saranathan, A., 2013. Discrete element analysis for characterizing the patellofemoral pressure distribution: model evaluation. Journal of biomechanical engineering 135, 081011.Estivalet, M., Brisson, P., 2008. The Engineering of Sport 7. Springer.Festo, Proportional directional control valves MPYE, 2014.Films, D.T., 2003. Mylar, Physical-Thermal Properties.Fischer, K.J., Johnson, J.E., Waller, A.J., McIff, T.E., Toby, E.B., Bilgen, M., 2011. MRI-based modeling for radiocarpal joint mechanics: validation criteria and results for four specimen-specific models. Journal of biomechanical engineering 133, 101004.Flanigan, D.C., Harris, J.D., Brockmeier, P.M., Lathrop, R.L., Siston, R.A., 2014. The effects of defect size, orientation, and location on subchondral bone contact in oval-shaped experimental articular cartilage defects in a bovine knee model. Knee Surgery, Sports Traumatology, Arthroscopy 22, 174–180.Fregly, B.J., Sawyer, W.G., 2003. Estimation of discretization errors in contact pressure measurements. Journal of biomechanics 36, 609–613.Fukuda, T., Haddad, S.L., Ren, Y., Zhang, L.-Q., 2010. Impact of talar component rotation on contact pressure after total ankle arthroplasty: a cadaveric study. Foot \& Ankle International 31, 404–411.Gadikota, H.R., Kikuta, S., Qi, W., Nolan, D., Gill IV, T.J., Li, G., 2013. Effect of Increased Iliotibial Band Load on Tibiofemoral Kinematics and Force Distributions: A Direct Measurement in Cadaveric Knees. journal of orthopaedic & sports physical therapy 43, 478–485.Gardner, M.J., Kendoff, D., Ostermeier, S., Citak, M., Hüfner, T., Krettek, C., Nork, S.E., 2007. Sacroiliac joint compression using an anterior pelvic compressor: a mechanical study in synthetic bone. Journal of orthopaedic trauma 21, 435–441.Giacomozzi, C., 2010. Appropriateness of plantar pressure measurement devices: A comparative technical assessment. Gait and posture 32, 141–144.Greis, P.E., Scuderi, M.G., Mohr, A., Bachus, K.N., Burks, R.T., 2002. Glenohumeral articular contact areas and pressures following labral and osseous injury to the anteroinferior quadrant of the glenoid. Journal of shoulder and elbow surgery 11, 442–451.Guettler, J.H., Demetropoulos, C.K., Yang, K.H., Jurist, K.A., 2004. Osteochondral Defects in the Human Knee Influence of Defect Size on Cartilage Rim Stress and Load Redistribution to Surrounding Cartilage. The American journal of sports medicine 32, 1451–1458.Gutierrez-Lemini, D., 2014. Constitutive Equations in Hereditary Integral Form, in: Engineering Viscoelasticity. Springer, pp. 23–52.Hamilton, G., 1983. Explicit equations for the stresses beneath a sliding spherical contact. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 197, 53–59.Hammond, G., Tibone, J.E., McGarry, M.H., Jun, B.-J., Lee, T.Q., 2012. Biomechanical comparison of anatomic humeral head resurfacing and hemiarthroplasty in functional glenohumeral positions. The Journal of Bone \& Joint Surgery 94, 68–76.Harris, M., Morberg, P., Bruce, W., Walsh, W., 1999. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. Journal of biomechanics 32, 951–958.Heyse, T.J., Becher, C., Kron, N., Ostermeier, S., Hurschler, C., Schofer, M.D., Tibesku, C.O., Fuchs-Winkelmann, S., 2010. Patellofemoral pressure after TKA in vitro: highly conforming vs. posterior stabilized inlays. Archives of orthopaedic and trauma surgery 130, 191–196.Hills, D.A., Nowel, D., Sackfield, A., 1993. Mechanics of Elastic Contacts. Butterworth-Heinemann Ltd.Hintermann, B., Valderrabano, V., Nigg, B., 2002. Influence of screw type on obtained contact area and contact force in a cadaveric subtalar arthrodesis model. Foot \& ankle international 23, 986–991.Hiwin, 2008. Linear Guideway Technical Information.Hunt, K.J., Lee, A.T., Lindsey, D.P., Slikker, W., Chou, L.B., 2012. Osteochondral Lesions of the Talus Effect of Defect Size and Plantarflexion Angle on Ankle Joint Stresses. The American journal of sports medicine 40, 895–901.Jansson, K.S., Michalski, M.P., Smith, S.D., LaPrade, R.F., Wijdicks, C.A., 2013. Tekscan pressure sensor output changes in the presence of liquid exposure. Journal of biomechanics 46, 612–614.Jason, K., Ryuichi, G., Michelle, H., and Thay, Q., 2012. Effects of Kneeling on Tibiofemoral Contact Pressure and Area in Posterior Cruciate-Retaining and Posterior Cruciate-Sacrificing Total Knee Arthroplasty. The Journal of Arthroplasty 27.Kdolsky, R.K., Al Arabid, B., Fuchs, M., Schabus, R., Vécsei, V., 2004. Measuring the pressure pattern of the joint surface in the uninjured knee. Wiener Klinische Wochenschrift 116, 196–200.Knupp, M., Stufkens, S.A., van Bergen, C.J., Blankevoort, L., Bolliger, L., Van Dijk, C., Hintermann, B., 2011. Effect of supramalleolar varus and valgus deformities on the tibiotalar joint: a cadaveric study. Foot \& ankle international 32, 609–615.Kock, N.B., Smolders, J.M., Van Susante, J.L., Buma, P., Van Kampen, A., Verdonschot, N., 2008. A cadaveric analysis of contact stress restoration after osteochondral transplantation of a cylindrical cartilage defect. Knee Surgery, Sports Traumatology, Arthroscopy 16, 461–468.Krause, F., Blatter, S., Waehnert, D., Windolf, M., Weber, M., 2012. Hindfoot joint pressure in supination sprains. The American journal of sports medicine 40, 902–908.Krause, F.G., Sutter, D., Waehnert, D., Windolf, M., Schwieger, K., Weber, M., 2010. Ankle joint pressure changes in a pes cavovarus model after lateralizing calcaneal osteotomies. Foot \& Ankle International 31, 741–746.Krause, H., Poll, G., 1983. The influence of tangential tractions at the surface on the stresses in contacting bodies during rolling-sliding contact. Wear 88, 221–232.Kurtz, S., Villarraga, M., Herr, M., Bergstrӧm, J., Rimnac, C., Edidin, A., 2002. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 23, 3681–3697.Kurtz, S.M., 2009. UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Academic Press.Kurtz, S.M., Pruitt, L., Jewett, C.W., Crawford, R.P., Crane, D.J., Edidin, A.A., 1998a. The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 19, 1989–2003.Kurtz, S.M., Rimnac, C.M., Bartel, D.L., 1998b. Predictive model for tensile true stress-strain behavior of chemically and mechanically degraded ultrahigh molecular weight polyethylene. Journal of biomedical materials research 43, 241–248.Lakes, R., Vanderby, R., 1999. Interrelation of creep and relaxation: a modeling approach for ligaments. Journal of biomechanical engineering 121, 612–615.Latt, L.D., Glisson, R.R., Montijo, H.E., Usuelli, F.G., Easley, M.E., 2011. Effect of graft height mismatch on contact pressures with osteochondral grafting of the talus. The American journal of sports medicine 39, 2662–2669.Lee, S.J., Aadalen, K.J., Malaviya, P., Lorenz, E.P., Hayden, J.K., Farr, J., Kang, R.W., Cole, B.J., 2006. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. The American journal of sports medicine 34, 1334–1344.Leichtle, U.G., Wünschel, M., Leichtle, C.I., Müller, O., Kohler, P., Wülker, N., Lorenz, A., 2014. Increased patellofemoral pressure after TKA: an in vitro study. Knee surgery, sports traumatology, arthroscopy 22, 500–508.Lemire, M., Boni, L., Furish, B., 2007. The Straight Story on Linear Actuators, Parker.Li, G., DeFrate, L., Zayontz, S., Park, S., Gill, T., 2004. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. Journal of orthopaedic research 22, 801–806.Limpisvasti, O., Yang, B.Y., Hosseinzadeh, P., Leba, T., Tibone, J.E., Lee, T.Q., 2008. The effect of glenohumeral position on the shoulder after traumatic anterior dislocation. The American journal of sports medicine 36, 775–780.Long, J., Wang, G., 2013. Effects of surface tension on axisymmetric Hertzian contact problem. Mechanics of Materials 56, 65–70.Macintyre, L., 2011. New calibration method for I-scan sensors to enable the precise measurement of pressures delivered by “pressure garments”. Burns 37, 1174–1181.Maouche, N., Maitournam, M., Van, K.D., 1997. On a new method of evaluation of the inelastic state due to moving contacts. Wear 203, 139–147.Martinelli, L., Hurschler, C., Rosenbaum, D., 2006. Comparison of capacitive versus resistive joint contact stress sensors. Clinical orthopaedics and related research 447, 214–220.Matsuda, S., White, S.E., Williams II, V.G., McCarthy, D.S., Whiteside, L.A., 1998. Contact stress analysis in meniscal bearing total knee arthroplasty. The Journal of arthroplasty 13, 699–706.Most, E., Sultan, P.G., Park, S.E., Papannagari, R., Li, G., 2006. Tibiofemoral contact behavior is improved in high-flexion cruciate retaining TKA. Clinical orthopaedics and related research 452, 59–64.Nagura, T., Dyrby, C.O., Alexander, E.J., Andriacchi, T.P., 2002. Mechanical loads at the knee joint during deep flexion. Journal of Orthopaedic Research 20, 881–886.Nagura, T., Matsumoto, H., Kiriyama, Y., Chaudhari, A., Andriacchi, T.P., 2006. Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement. Journal of applied biomechanics 22, 305.Ng, T.S., McKinley, G.H., 2007. Power law gels at finite strains. J Rheol 52.Nielsen, L.F., 2006. Power-Law creep as related to adapted Burgers creep representation: an incremental analysis.Niosi, C.A., Wilson, D.C., Zhu, Q., Keynan, O., Wilson, D.R., Oxland, T.R., 2008. The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine 33, 19–26.Ode, G.E., Van Thiel, G.S., McArthur, S.A., Dishkin-Paset, J., Leurgans, S.E., Shewman, E.F., Wang, V.M., Cole, B.J., 2012. Effects of serial sectioning and repair of radial tears in the lateral meniscus. The American journal of sports medicine 40, 1863–1870.Ostermeier, S., Holst, M., Bohnsack, M., Hurschler, C., Stukenborg-Colsman, C., Wirth, C.-J., 2007a. Dynamic measurement of patellofemoral contact pressure following reconstruction of the medial patellofemoral ligament: An in vitro study. Clinical Biomechanics 22, 327–335.Ostermeier, S., Holst, M., Hurschler, C., Windhagen, H., Stukenborg-Colsman, C., 2007b. Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study. Knee Surgery, Sports Traumatology, Arthroscopy 15, 547–554.Ostermeier, S., Nowakowski, A., Stukenborg-Colsman, C., 2003. Dynamische In-vitro-Druck-und Bewegungsmessung des LCS-Prothesensystems. Der Orthopäde 32, 292–295.Otto, J., Brown, T., Callaghan, J., 1999. Static and dynamic response of a multiplexed-array piezoresistive contact sensor. Experimental Mechanics 39, 317–323.Paci, J.M., Scuderi, M.G., Werner, F.W., Sutton, L.G., Rosenbaum, P.F., John, P., 2009. Knee Medial Compartment Contact Pressure Increases With Release of the Type I Anterior Intermeniscal Ligament. Medicine The American Journal of Sports.Padalecki, J.R., Jansson, K.S., Smith, S.D., Dornan, G.J., Pierce, C.M., Wijdicks, C.A., LaPrade, R.F., 2014. Biomechanical Consequences of a Complete Radial Tear Adjacent to the Medial Meniscus Posterior Root Attachment Site In Situ Pull-out Repair Restores Derangement of Joint Mechanics. The American journal of sports medicine 42, 699–707.Papaioannou, G., Nianios, G., Mitrogiannis, C., Fyhrie, D., Tashman, S., Yang, K., 2008. Patient-specific knee joint finite element model validation with high-accuracy kinematics from biplane dynamic Roentgen stereogrammetric analysis. Journal of Biomechanics 41, 2633–2638.Papaioannou, G., Protopappas, V.C., Panagiotis, T., Mitrogiannis, C., Nianios, G., Tashman, S., Papaioannou, G., 2008. A new method for pressure sensor equilibration and conditioning. Brazilian Journal of Biomotricity 2, 176–195.Park, M.C., Pirolo, J.M., Park, C.J., Tibone, J.E., McGarry, M.H., Lee, T.Q., 2009. The effect of abduction and rotation on footprint contact for single-row, double-row, and modified double-row rotator cuff repair techniques. The American journal of sports medicine 37, 1599–1608.Pattavilakom, A., Seex, K.A., 2010. Comparison of retraction pressure between novel and conventional retractor systems-a cadaver study: Laboratory investigation. Journal of Neurosurgery: Spine 12, 552–559.Peltier, K.E., McGarry, M.H., Tibone, J.E., Lee, T.Q., 2012. Effects of combined anterior and posterior plication of the glenohumeral ligament complex for the repair of anterior glenohumeral instability: a biomechanical study. Journal of Shoulder and Elbow Surgery 21, 902–909.Pham, A., Hull, M., 2007. Dehydration rates of meniscus and articular cartilage in vitro using a fast and accurate laser-based coordinate digitizing system. Journal of biomechanics 40, 3223–3229.Poon, S., 1967. An experimental study of the shear traction distribution in rolling with spin. Wear 10, 61–69.Popov, V.L., 2010. Rigorous Treatment of Contact Problems-Hertzian Contact, in: Contact Mechanics and Friction. Springer, pp. 55–70.Pruitt, L.A., 2005. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26, 905–915.Quinci, F., Dressler, M., Strickland, A.M., Limbert, G., 2014. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants. journal of the mechanical behavior of biomedical materials 32, 62–75.Ramruttun, A., Wong, H., Goh, J., Ruiz, J., 2009. An Improved Methodology for Measuring Facet Contact Forces in the Lumbar Spine, in: 13th International Conference on Biomedical Engineering. pp. 1805–1808.Schrand, D., n.d. Cross-Talk Compensation Using Matrix Methods.Schwarzer, N., Richter, F., Hecht, G., 1999. The elastic field in a coated half-space under Hertzian pressure distribution. Surface and Coatings Technology 114, 292–303.Scott, A.T., Hendry, T.M., Iaquinto, J.M., Owen, J.R., Wayne, J.S., Adelaar, R.S., 2007. Plantar pressure analysis in cadaver feet after bony procedures commonly used in the treatment of stage II posterior tibial tendon insufficiency. Foot \& Ankle International 28, 1143–1153.Sharma, A., Komistek, R.D., Scuderi, G.R., Cates Jr, H.E., 2007. High-flexion TKA designs: what are their in vivo contact mechanics? Clinical orthopaedics and related research 464, 117–126.Sran, M.M., Khan, K.M., Zhu, Q., McKay, H.A., Oxland, T.R., 2004. Failure characteristics of the thoracic spine with a posteroanterior load: investigating the safety of spinal mobilization. Spine 29, 2382–2388.Steinbrück, A., Schrӧder, C., Woiczinski, M., Fottner, A., Müller, P.E., Jansson, V., 2013. Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomedical engineering online 12, 58.Steinbrück, A., Woiczinski, M., Weber, P., Müller, P.E., Jansson, V., Schrӧder, C., 2014. Posterior cruciate ligament balancing in total knee arthroplasty: a numerical study with a dynamic force controlled knee model. Biomedical engineering online 13, 91.Stephen, J.M., Kaider, D., Lumpaopong, P., Deehan, D.J., Amis, A.A., 2013. The Effect of Femoral Tunnel Position and Graft Tension on Patellar Contact Mechanics and Kinematics After Medial Patellofemoral Ligament Reconstruction. The American journal of sports medicine 0363546513509230.Svoboda, M.S.J., McHale, C.K., Belkoff, S.M., Cohen, K.S., Klemme, L.W.R., 2002. The effects of tibial malrotation on the biomechanics of the tibiotalar joint. Foot \& ankle international 23, 102–106.Tekscan, 2003a. Tekscan I-Scan System Start-Up.Tekscan, 2003b. Tekscan: Medical sensor catalog.Tekscan, 2015. Pressure Mapping Sensor 4000.Tekscan equilibration devices, https://www.tekscan.com/products-solutions/equilibrators/pb100e-equilib…, [WWW Document], n.d. URL https://www.tekscan.com/products-solutions/equilibrators/pb100e-equilib… [Accessed May 2014].Teoh, S., Chan, W., Thampuran, R., 2002. An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. Journal of Biomechanics 35, 323–330.Trepczynski, A., Kutzner, I., Kornaropoulos, E., Taylor, W.R., Duda, G.N., Bergmann, G., Heller, M.O., 2012. Patellofemoral joint contact forces during activities with high knee flexion. Journal of Orthopaedic Research 30, 408–415.Upadhyay, N., Vollans, S.R., Seedhom, B.B., Soames, R.W., 2005. Effect of patellar tendon shortening on tracking of the patella. The American journal of sports medicine 33, 1565–1574.Van Beek, A., 2012. Advanced engineering design: lifetime performance and reliability. TU Delft.Varghese, A.G., Turner, J.L., Way, T.R., Johnson, C.E., Dorfi, H.R., 2012. Traction Prediction of a Smooth Rigid Wheel in Soil using Coupled Eulerian-Lagrangian Analysis, in: SIMULIA Community Conference.Vigdorchik, J.M., Esquivel, A.O., Jin, X., Yang, K.H., Vaidya, R., 2013. Anterior internal fixator versus a femoral distractor and external fixation for sacroiliac joint compression and single stance gait testing: a mechanical study in synthetic bone. International orthopaedics 37, 1341–1346.Von Lewinski, G., Hurschler, C., Allmann, C., Wirth, C., 2006a. The influence of pre-tensioning of meniscal transplants on the tibiofemoral contact area. Knee Surgery, Sports Traumatology, Arthroscopy 14, 425–436.Von Lewinski, G., Stukenborg-Colsman, C., Ostermeier, S., Hurschler, C., 2006b. Experimental measurement of tibiofemoral contact area in a meniscectomized ovine model using a resistive pressure measuring sensor. Annals of biomedical engineering 34, 1607–1614.Wallace, A.L., Harris, M.L., Walsh, W.R., Bruce, W.J., 1998. Intraoperative assessment of tibiofemoral contact stresses in total knee arthroplasty. The Journal of arthroplasty 13, 923–927.Wilharm, A., Hurschler, C., Dermitas, T., Bohnsack, M., 2013. Use of Tekscan K-Scan Sensors for Retropatellar Pressure Measurement Avoiding Errors during Implantation and the Effects of Shear Forces on the Measurement Precision. BioMed research international 2013.Willam, K., 2000. Constitutive models for engineering materials. Encyclopedia of physical science and technology 3, 603–633.Wilson, D., Apreleva, M.V., Eichler, M.J., Harrold, F.R., 2003. Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. Journal of biomechanics 36, 1909–1915.Wilson, D.C., Niosi, C.A., Zhu, Q.A., Oxland, T.R., Wilson, D.R., 2006. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. Journal of biomechanics 39, 348–353.Wirz, D., Becker, R., Feng Li, S., Friedrich, N., Müller, W., 2002. Die Validierung des Tekscan-Systems für statische und dynamische Druckmessungen am humanen Femorotibialgelenk. Validation of the Tekscan System for Static and Dynamic Pressure Measurements in the Human Femorotibial Joint. Biomedizinische Technik/Biomedical Engineering 47, 195–201.Wu, A., Shi, X., Polycarpou, A.A., 2012. An elastic-plastic spherical contact model under combined normal and tangential loading. Journal of Applied Mechanics 79, 051001.Wu, J., Herzog, W., Epstein, M., 1998. Effects of inserting a pressensor film into articular joints on the actual contact mechanics. Journal of biomechanical engineering 120, 655–659.Yamamoto, A., Massimini, D.F., DiStefano, J., Higgins, L.D., 2014. Glenohumeral Contact Pressure With Simulated Anterior Labral and Osseous Defects in Cadaveric Shoulders Before and After Soft Tissue Repair. The American journal of sports medicine 42.Yildirim, G., Walker, P.S., Sussman-Fort, J., Aggarwal, G., White, B., Klein, G.R., 2007. The contact locations in the knee during high flexion. The Knee 14, 379–384.Zhu, Q., Park, Y., Sjovold, S., Niosi, C., Wilson, D., Cripton, P., Oxland, T., 2008. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 222, 171–184. 

Universiteit of Hogeschool
Master of Science in Electromechanical Engineering
Publicatiejaar
2015
Kernwoorden
Share this on: