De aard van het beestje: speelt persoonlijkheid een rol bij de predatorgeïnduceerde stressrespons?

Sarah Princen
De aard van het beestje: persoonlijkheid bij insectenDierlijke persoonlijkheidDoorheen de geschiedenis werden dieren gezien als wezens die in de meeste opzichten primitiever zijn dan de mens. Er werd zelfs getwijfeld of ze pijn kunnen voelen en of ze emoties bezitten, laat staan dat ze een persoonlijkheid zouden hebben. De laatste 20 jaar wordt echter alsmaar duidelijker dat dieren wel degelijk een persoonlijkheid kunnen hebben en is er meer en meer belangstelling voor dergelijk persoonlijkheidsonderzoek.

De aard van het beestje: speelt persoonlijkheid een rol bij de predatorgeïnduceerde stressrespons?

De aard van het beestje: persoonlijkheid bij insecten

Dierlijke persoonlijkheidDoorheen de geschiedenis werden dieren gezien als wezens die in de meeste opzichten primitiever zijn dan de mens. Er werd zelfs getwijfeld of ze pijn kunnen voelen en of ze emoties bezitten, laat staan dat ze een persoonlijkheid zouden hebben. De laatste 20 jaar wordt echter alsmaar duidelijker dat dieren wel degelijk een persoonlijkheid kunnen hebben en is er meer en meer belangstelling voor dergelijk persoonlijkheidsonderzoek. Het bestaan van dierlijke persoonlijkheid, ook 'gedragssyndromen' genoemd, betekent dat net zoals bij menselijke persoonlijkheid, een dier zijn eigen, individuele gedrag heeft. Dit gedrag blijft dan ook onveranderd doorheen de tijd en overheen verschillende situaties.

Invloed van stoerheid op het lichaamZoals iemand zowel tijdens een feestje als in familiale kring een verlegen persoon kan zijn, kan ook een dier schuw zijn zowel in aanwezigheid als in afwezigheid van een roofdier. Andere dieren zijn dan weer stoerder in beide gevallen. Een stoerheidsyndroom houdt dus in dat er in een diersoort of populatie individuen zijn die iets schuwer zijn, en andere die stoerder zijn. De theorie is dat persoonlijkheid (en gedrag in het algemeen) samenhangt met zenuw- en hormonale activiteit in het lichaam (fysiologie). In aanwezigheid van een roofdier gaat het lichaam zich in een staat van stress bevinden. Schuwe dieren zouden een verschillende stressreactie ondergaan dan stoere. Hier is echter nog niet veel over geweten, vooral niet bij insecten. Alsmaar vaker onderstrepen wetenschappers het belang van dierlijke persoonlijkheid, omdat het invloed uitoefent op ieder ecologisch of medisch onderzoek dat op dieren wordt uitgevoerd.

Het karakter van waterjufferlarvenIn dit thesisproject werd het stoerheidsyndroom in twee soorten van waterjufferlarven onderzocht: de Watersnuffel (Enallagma cyathigerum) en het Lantaarntje (Ischnura elegans). Dit werd gedaan door specifiek hun antiroofdier gedrag te bekijken: zijn ze eerder schuw en gaan ze zich dus lang stilhouden, of zijn ze stoer en blijven ze actief naar eten zoeken ook in aanwezigheid van een roofdier? Daarbij werden de groei van de larven en hun zwemsnelheid onderzocht, om de invloed van persoonlijkheid op deze factoren eveneens in rekening te brengen. Bovendien werd de link tussen het stoerheidsyndroom en de onderliggende lichamelijke processen van de larven blootgelegd. Suikergehalte, eiwitgehalte en vetgehalte werden gebruikt om de fysiologische stressreactie te bekijken.

Stoere Lantaarntjes en schuwe WatersnuffelsDit onderzoek kon het bestaan van een stoerheidsyndroom bij twee soorten waterjufferlarven bevestigen. Het Lantaarntje bleek veel stoerder dan de Watersnuffel, zowel in aanwezigheid van predatordreiging, als in afwezigheid ervan. Bovendien groeien Lantaarntjes sneller en worden ze dus sneller volwassen. Op die manier kunnen ze zich sneller voortplanten, voordat het roofdier hen opmerkt en opeet. Bovendien is er een verband tussen stoerheid en de fysiologie, want de schuwere soort reageert lichamelijk gezien anders op stress dan de stoerdere soort. Ook binnen de soorten blijkt dat de individuen ieder hun eigen karakter hebben. Kortom, er zijn dus inderdaad persoonlijkheidsverschillen tussen individuen en soorten, zelfs bij insecten. Uit het onderzoek blijkt dat persoonlijkheid bij dieren zeker niet te verwaarlozen is en in rekening moet gebracht worden in allerhande onderzoeken op dieren.

Primitief?Het is duidelijk dat zelfs bij insecten persoonlijkheid bestaat en een invloed uitoefent op hun lichaam en leven. Het negeren van dierlijke persoonlijkheid bij ogenschijnlijk primitieve dieren als insecten kan in ecologisch onderzoek onvolledigheden opleveren en zo heel wat verwarring teweeg brengen. Onder andere in natuurbehoud is het van belang rekening te houden met persoonlijkheid, aangezien het een kenmerk is dat een grote invloed uitoefent op de natuurlijke gemeenschap. Mede hierom is het aan te raden te leren uit de geschiedenis en dieren in hun wezen niet te onderschatten, anders gaat er een schat aan informatie verloren.

Bibliografie

Adamo, S. A., & Baker, J. L. (2011). Conserved features of chronic stress across phyla: the effects of long-term stress on behavior and the concentration of the neurohormone octopamine in the cricket, Gryllus texensis. Hormones and Behavior, 60, 478–483. doi:10.1016/j.yhbeh.2011.07.015

Adamo, S. A., Kovalko, I., & Mosher, B. (2013). The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response. The Journal of Experimental Biology, 216, 4608–4614. doi:10.1242/jeb.094482

Adamo, S. A., & Parsons, N. (2006). The emergency life-history stage and immunity in the cricket, Gryllus texensis. Animal Behaviour, 72, 235–244. doi:10.1016/j.anbehav.2006.01.011

Alcock, J. (2013). Animal Behavior. (S. Carroll, Ed.) (10th ed., p. 522). Sunderland, MA: Sinauer Associates, Inc.

Baugh, A. T., Schaper, S. V, Hau, M., Cockrem, J. F., de Goede, P., & van Oers, K. (2012). Corticosterone responses differ between lines of great tits (Parus major) selected for divergent personalities. General and Comparative Endocrinology, 175, 488–494. doi:10.1016/j.ygcen.2011.12.012

Bell, A. M. (2007). Animal personalities. Nature, 447, 539–540.

Bell, A. M., & Stamps, J. A. (2004). Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Animal Behaviour, 68, 1339–1348. doi:10.1016/j.anbehav.2004.05.007

Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Glucose can be synthesized from noncarbohydrate precursors. In Biochemistry (5th ed., p. 1050). New York, NY: W. H. Freeman.

Biro, P. A., Adriaenssens, B., & Sampson, P. (2014). Individual and sex-specific differences in intrinsic growth rate covary with consistent individual differences in behaviour. The Journal of Animal Ecology, 83, 1186–1195. doi:10.1111/1365-2656.12210

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

Bonga, S. E. W. (1997). The stress response in fish. Physiological Reviews, 77, 591–625.

Brackenbury, J. (2002). Kinematics and hydrodynamics of an invertebrate undulatory swimmer: the damselfly larva. The Journal of Experimental Biology, 205, 627–639.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1006/abio.1976.9999

Brodie III, E. D. (1989). Genetic correlations between morphology and antipredator behaviour in natural populations of the garter snake Thamnophis ordinoides. Nature, 342, 542–543.

Brodin, T. (2009). Behavioral syndrome over the boundaries of life--carryovers from larvae to adult damselfly. Behavioral Ecology, 20, 30–37. doi:10.1093/beheco/arn111

Cannon, W. B. (1915). Bodily changes in pain, hunger, fear and rage (1st ed., p. 311). New York, NY: D. Appleton and Company.

Carazo, P., Noble, D. W. A., Chandrasoma, D., & Whiting, M. J. (2014). Sex and boldness explain individual differences in spatial learning in a lizard. Proceedings of the Royal Society B, 281, 1–9.

Careau, V., Réale, D., Humphries, M. M., & Thomas, D. W. (2010). The pace of life under artificial selection: personality, energy expenditure, and longevity are correlated in domestic dogs. The American Naturalist, 175, 753–758. doi:10.1086/652435

Carere, C., Caramaschi, D., & Fawcett, T. W. (2010). Covariation between personalities and individual differences in coping with stress: converging evidence and hypotheses. Current Zoology, 56, 728–740.

Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders - overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267, 1244–1252.

Clary, D., Skyner, L. J., Ryan, C. P., Gardiner, L. E., Anderson, W. G., & Hare, J. F. (2014). Shyness-boldness, but not exploration, predicts glucocorticoid stress response in Richardson’s ground squirrels (Urocitellus richardsonii). Ethology, 120, 1–9. doi:10.1111/eth.12283

Cooper, W. E. (2014). Antipredatory behavior. Indiana University - Purdue University.

Costello, D. M., & Michel, M. J. (2013). Predator-induced defenses in tadpoles confound body stoichiometry predictions of the general stress paradigm, 94, 2229–2236.

Cote, J., Fogarty, S., Weinersmith, K., Brodin, T., & Sih, A. (2010). Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proceedings of the Royal Society B, 277, 1571–1579. doi:10.1098/rspb.2009.2128

Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecology Letters, 7, 734–739. doi:10.1111/j.1461-0248.2004.00618.x

David, M., Auclair, Y., Giraldeau, L.-A., & Cézilly, F. (2012). Personality and body condition have additive effects on motivation to feed in zebra finches Taeniopygia guttata. Ibis, 154, 372–378.

David, M., Salignon, M., & Perrot-Minnot, M.-J. (2014). Shaping the antipredator strategy: flexibility, consistency, and behavioral correlations under varying predation threat. Behavioral Ecology, 25, 1148–1156. doi:10.1093/beheco/aru101

De Block, M., & Stoks, R. (2008). Compensatory growth and oxidative stress in a damselfly. Proceedings. Biological Sciences / The Royal Society, 275, 781–785. doi:10.1098/rspb.2007.1515

De Souza, E. B., & Nemeroff, C. B. (1990). Corticotropin-releasing factor: basic and clinical studies of a neuropeptide (1st ed., p. 367). Boca Raton, FL: CRC Press, Inc.

Dewitt, T. J., Sih, A., & Hucko, J. A. (1999). Trait compensation and cospecialization in a freshwater snail: size, shape and antipredator behaviour. Animal Behaviour, 58, 397–407.

Dingemanse, N., & Réale, D. (2005). Natural selection and animal personality. Behaviour, 142, 1165–1190. doi:10.1163/156853905774539445

Edmunds, M. (n.d.). Animal defences. Retrieved March 27, 2015, from http://malcolmedmunds.co.uk/animal-defences/

Edmunds, M. (1974). Defence in animals: a survey of anti-predator defences (1st ed., p. 357). Harlow: Longman.

Fields, P. E., & Woodring, J. P. (1991). Octopamine mobilization of lipids and carbohydrates in the house cricket, Acheta domesticus. Journal of Insect Physiology, 37, 193–199.

Flenner, I., Olne, K., Suhling, F., & Sahlén, G. (2009). Predator-induced spine length and exocuticle thickness in Leucorrhinia dubia (Insecta: Odonata): a simple physiological trade-off? Ecological Entomology, 34, 735–740. doi:10.1111/j.1365-2311.2009.01129.x

Fuiman, L. A., Meekan, M. G., & McCormick, M. I. (2010). Maladaptive behavior reinforces a recruitment bottleneck in newly settled fishes. Oecologia, 164, 99–108. doi:10.1007/s00442-010-1712-3

Garamszegi, L. Z., Rosivall, B., Rettenbacher, S., Markó, G., Zsebők, S., Szöllősi, E., … Török, J. (2012). Corticosterone, avoidance of novelty, risk-taking and aggression in a wild bird: no evidence for pleiotropic effects. Ethology, 118, 621–635. doi:10.1111/j.1439-0310.2012.02049.x

Garrett, R. H., & Grisham, C. M. (2010). Biochemistry (4th ed., p. 1059). Boston, MA: Brooks/Cole.

Godin, J.-G. J., & Sproul, C. D. (1988). Risk taking in parasitized sticklebacks under threat of predation: effects of energetic need and food availability. Canadian Journal of Zoology, 66, 2360–2367. doi:10.1139/z88-350

Goligorsky, M. S. (2001). The concept of cellular “fight-or-flight” reaction to stress. American Journal of Renal Physiology, 280, 551–561.

Gosling, S. D. (2001). From mice to men: what can we learn about personality from animal research? Psychological Bulletin, 127, 45–86.

Gosling, S. D. (2008). Personality in non-human animals. Social and Personality Psychology Compass, 2, 985–1001. doi:10.1111/j.1751-9004.2008.00087.x

Guzik, S. (n.d.). The puffer fish voucher library. Retrieved March 28, 2015, from http://vertebrates.si.edu/fishes/fugu_highlight/fugu.html

Gyssels, F. G. M., & Stoks, R. (2005). Threat-sensitive responses to predator attacks in a damselfly. Ethology, 111, 411–423. doi:10.1111/j.1439-0310.2005.01076.x

Hawlena, D., Kress, H., Dufresne, E. R., & Schmitz, O. J. (2011). Grasshoppers alter jumping biomechanics to enhance escape performance under chronic risk of spider predation. Functional Ecology, 25, 279–288. doi:10.1111/j.1365-2435.2010.01767.x

Hawlena, D., & Schmitz, O. J. (2010). Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. The American Naturalist, 176, 537–556. doi:10.1086/656495

Hebert, O. L., Lavin, L. E., Marks, J. M., & Dzieweczynski, T. L. (2014). The effects of 17α-ethinyloestradiol on boldness and its relationship to decision making in male Siamese fighting fish. Animal Behaviour, 87, 203–212. doi:10.1016/j.anbehav.2013.10.032

Hulthén, K., Chapman, B. B., Nilsson, P. A., Hollander, J., & Brönmark, C. (2014). Express yourself: bold individuals induce enhanced morphological defences. Proceedings of the Royal Society B, 281, 1–8.

Janssens, L., & Stoks, R. (2014). Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response. PloS One, 9, 1–6. doi:10.1371/journal.pone.0101273

Johnson, D. M. (1991). Behavioral ecology of larval dragonflies and damselflies. Trends in Ecology & Evolution, 6, 8–13.

Jones, T. C., Akoury, T. S., Hauser, C. K., Neblett II, M. F., Linville, B. J., Edge, A. A., & Weber, N. O. (2011). Octopamine and serotonin have opposite effects on antipredator behavior in the orb-weaving spider, Larinioides cornutus. Journal of Comparative Physiology A, 197, 819–825. doi:10.1007/s00359-011-0644-7

Kiørboe, T. (2008). Optimal swimming strategies in mate-searching pelagic copepods. Oecologia, 155, 179–192. doi:10.1007/s00442-007-0893-x

 

Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M., … Fuchs, E. (2011). Stress revisited: a critical evaluation of the stress concept. Neuroscience and Biobehavioral Reviews, 35, 1291–1301. doi:10.1016/j.neubiorev.2011.02.003

Koolhaas, J. M., de Boer, S. F., Coppens, C. M., & Buwalda, B. (2010). Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Frontiers in Neuroendocrinology, 31, 307–321. doi:10.1016/j.yfrne.2010.04.001

Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., … Blokhuis, H. J. (1999). Coping styles in animals: current status in behavior and stress-physiology. Neuroscience & Biobehavioral Reviews, 23, 925–935. doi:10.1016/S0149-7634(99)00026-3

Korte, S. M., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience and Biobehavioral Reviews, 29, 3–38. doi:10.1016/j.neubiorev.2004.08.009

Kralj-Fišer, S., & Schuett, W. (2014). Studying personality variation in invertebrates: why bother? Animal Behaviour, 91, 41–52. doi:10.1016/j.anbehav.2014.02.016

Kralj-Fišer, S., Weiß, B. M., & Kotrschal, K. (2010). Behavioural and physiological correlates of personality in greylag geese (Anser anser). Journal of Ethology, 28, 363–370. doi:10.1007/s10164-009-0197-1

Lee, W.-S., Monaghan, P., & Metcalfe, N. B. (2010). The trade-off between growth rate and locomotor performance varies with perceived time until breeding. The Journal of Experimental Biology, 213, 3289–3298. doi:10.1242/jeb.043083

Li, B., Belasen, A., Pafilis, P., Bednekoff, P., & Foufopoulos, J. (2014). Effects of feral cats on the evolution of anti-predator behaviours in island reptiles: insights from an ancient introduction. Proceedings of the Royal Society B, 281, 1–6. doi:10.1098/rspb.2014.0339

Lima, S. L. (1998). Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. In Stress and Behavior (1st ed., pp. 215–290). San Diego, CA: Academic Press, Inc. doi:10.1016/S0065-3454(08)60366-6

Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 68, 619–640.

Maginnis, T. L. (2006). The costs of autotomy and regeneration in animals: a review and framework for future research. Behavioral Ecology, 17, 857–872. doi:10.1093/beheco/arl010

McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 2–15. doi:10.1016/S0018-506X(02)00024-7

McPeek, M. A. (1990). Behavioral differences between Enallagma species (Odonata) influencing differential vulnerability to predators. Ecology, 71, 1714–1726.

McPeek, M. A. (1996). Trade-offs, food web structure, and the coexistence of habitat specialists and generalists, 148, S124–S138.

McPeek, M. A. (1998). The consequences of changing the top predator in a food web: a comparative experimental approach. Ecological Monographs, 68, 1–23.

McPeek, M. A. (2004). The growth/predation risk trade-off: so what is the mechanism? The American Naturalist, 163, E88–E111.

McPeek, M. A., Grace, M., & Richardson, J. M. L. (2001). Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies, 82, 1535–1545.

McPeek, M. A., & Peckarsky, B. L. (1998). Life histories and the strengths of species interactions: combining mortality, growth, and fecundity effects. Ecology, 79, 867–879.

Mittelbach, G. G., Ballew, N. G., & Kjelvik, M. K. (2014). Fish behavioral types and their ecological consequences. Canadian Journal of Fisheries and Aquatic Sciences, 71, 927–944.

Niemelä, P. T., DiRienzo, N., & Hedrick, A. V. (2012). Predator-induced changes in the boldness of naïve field crickets, Gryllus integer, depends on behavioural type. Animal Behaviour, 84, 129–135. doi:10.1016/j.anbehav.2012.04.019

Nyqvist, M. J., Gozlan, R. E., Cucherousset, J., & Britton, J. R. (2013). Absence of a context-general behavioural syndrome in a solitary predator. Ethology, 119, 156–166. doi:10.1111/eth.12049

Omar, H. E. M. (2013). The biological and medical significance of poisonous animals. Journal of Biology and Earth Sciences, 3, M25–M41.

Perez, K. O., & Munch, S. B. (2015). Sustained costs of growth and the trajectory of recovery. Functional Ecology, 29, 393–403. doi:10.1111/1365-2435.12343

Pilakouta, N., & Alonzo, S. H. (2014). Predator exposure leads to a short-term reversal in female mate preferences in the green swordtail, Xiphophorus helleri. Behavioral Ecology, 25, 306–312. doi:10.1093/beheco/art120

Rabus, M., Söllradl, T., Clausen-Schaumann, H., & Laforsch, C. (2013). Uncovering ultrastructural defences in Daphnia magna--an interdisciplinary approach to assess the predator-induced fortification of the carapace. PloS One, 8, 1–10. doi:10.1371/journal.pone.0067856

 

Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P.-O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 4051–4063. doi:10.1098/rstb.2010.0208

Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82, 291–318. doi:10.1111/j.1469-185X.2007.00010.x

Rennie, M. D., Collins, N. C., Shuter, B. J., Rajotte, J. W., & Couture, P. (2005). A comparison of methods for estimating activity costs of wild fish populations: more active fish observed to grow slower. Canadian Journal of Fisheries and Aquatic Sciences, 62, 767–780. doi:10.1139/f05-052

Rich, E. L., & Romero, L. M. (2005). Exposure to chronic stress downregulates corticosterone responses to acute stressors. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288, R1628–1636. doi:10.1152/ajpregu.00484.2004

Robinson, J. V, Hayworth, D. A., & Harvey, M. B. (1991). The effect of caudal lamellae loss on swimming speed of the damselfly Argia moesta (Hagen) (Odonata: Coenagrionidae). American Midland Naturalist, 125, 240–244. doi:10.2307/2426228

Sepp, T., Männiste, M., Kaasik, A., & Hõrak, P. (2014). Multidimensionality of fear in captive greenfinches (Carduelis chloris). Behavioral Ecology and Sociobiology, 68, 1173–1181. doi:10.1007/s00265-014-1728-5

Siepielski, A. M., Mertens, A. N., Wilkinson, B. L., & McPeek, M. A. (2011). Signature of ecological partitioning in the maintenance of damselfly diversity. The Journal of Animal Ecology, 80, 1163–1173. doi:10.1111/j.1365-2656.2011.01863.x

Sih, A. (1986). Antipredator responses and the perception of danger by mosquito larvae. Ecology, 67, 434–441.

Sih, A. (1987). Prey refuges and predator-prey stability. Theoretical Population Biology, 31, 1–12.

Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology & Evolution, 19, 372–378. doi:10.1016/j.tree.2004.04.009

Sih, A., Kats, L. B., & Maurer, E. F. (2003). Behavioural correlations across situations and the evolution of antipredator behaviour in a sunfish–salamander system. Animal Behaviour, 65, 29–44. doi:10.1006/anbe.2002.2025

Sinn, D. L., Gosling, S. D., & Moltschaniwskyj, N. A. (2008). Development of shy/bold behaviour in squid: context-specific phenotypes associated with developmental plasticity. Animal Behaviour, 75, 433–442. doi:10.1016/j.anbehav.2007.05.008

Slos, S., Meester, L. D., & Stoks, R. (2009). Behavioural activity levels and expression of stress proteins under predation risk in two damselfly species. Ecological Entomology, 34, 297–303. doi:10.1111/j.1365-2311.2008.01077.x

Slos, S., & Stoks, R. (2008). Predation risk induces stress proteins and reduces antioxidant defense. Functional Ecology, 22, 637–642. doi:10.1111/j.1365-2435.2008.01424.x

Smith, B. R., & Blumstein, D. T. (2008). Fitness consequences of personality: a meta-analysis. Behavioral Ecology, 19, 448–455. doi:10.1093/beheco/arm144

Sørensen, J. G., Kristensen, T. N., & Loeschcke, V. (2003). The evolutionary and ecological role of heat shock proteins. Ecology Letters, 6, 1025–1037. doi:10.1046/j.1461-0248.2003.00528.x

Spanier, E., Weihs, D., & Almog-Shtayer, G. (1991). Swimming of the Mediterranean slipper lobster. Journal of Experimental Marine Biology and Ecology, 145, 15–31. doi:10.1016/0022-0981(91)90003-F

Steiner, U. K., & Van Buskirk, J. (2009). Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PloS One, 4, 1–4. doi:10.1371/journal.pone.0006160

Stevens, M., & Merilaita, S. (2009). Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423–427. doi:10.1098/rstb.2008.0217

Stoks, R. (1999). The effect of lamellae autotomy and sexual size dimorphism on startle-response performance in larvae of a lestid damselfly (Odonata). Journal of Zoology, 247, 269–273.

Stoks, R., De Block, M., & McPeek, M. A. (2005). Alternative growth and energy storage responses to mortality threats in damselflies. Ecology Letters, 8, 1307–1316. doi:10.1111/j.1461-0248.2005.00840.x

Stoks, R., De Block, M., & McPeek, M. A. (2006). Physiological costs of compensatory growth in a damselfly. Ecology, 87, 1566–1574.

Stoks, R., & McPeek, M. A. (2006). A tale of two diversifications : reciprocal habitat shifts to fill ecological space along the pond permanence gradient, 168, S50–S72.

Strobbe, F., McPeek, M. A., De Block, M., De Meester, L., & Stoks, R. (2009). Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. Journal of Evolutionary Biology, 22, 1172–1182. doi:10.1111/j.1420-9101.2009.01733.x

Strobbe, F., McPeek, M. A., De Block, M., & Stoks, R. (2010). Survival selection imposed by predation on a physiological trait underlying escape speed. Functional Ecology, 24, 1306–1312. doi:10.1111/j.1365-2435.2010.01752.x

Strobbe, F., McPeek, M. A., De Block, M., & Stoks, R. (2011). Fish predation selects for reduced foraging activity. Behavioral Ecology and Sociobiology, 65, 241–247. doi:10.1007/s00265-010-1032-y

Suhling, F., Sahlén, G., Gorb, S., Kalkman, V. J., Dijkstra, K.-D. B., & van Tol, J. (2015). Order Odonata. In J. H. Thorp & D. C. Rogers (Eds.), Ecology and general biology: Thorp and Covich’s freshwater invertebrates (4th ed., Vol. 1, pp. 893–932). Academic Press.

Sunardi, Asaeda, T., & Manatunge, J. (2007). Physiological responses of topmouth gudgeon, Pseudorasbora parva, to predator cues and variation of current velocity. Aquatic Ecology, 41, 111–118. doi:10.1007/s10452-006-9048-0

Teyssier, A., Bestion, E., Richard, M., & Cote, J. (2014). Partners’ personality types and mate preferences: predation risk matters. Behavioral Ecology, 25, 723–733. doi:10.1093/beheco/aru049

Thomson, J. S., Watts, P. C., Pottinger, T. G., & Sneddon, L. U. (2011). Physiological and genetic correlates of boldness: characterising the mechanisms of behavioural variation in rainbow trout, Oncorhynchus mykiss. Hormones and Behavior, 59, 67–74. doi:10.1016/j.yhbeh.2010.10.010

Tollrian, R., & Harvell, C. D. (1990). The evolution of inducible defenses: current ideas. In R. Tollrian & C. D. Harvell (Eds.), The Ecology and Evolution of Inducible Defenses. (1st ed., p. 383). Princeton, New Jersey: Princeton University Press.

Trewin, S. A. (2007). History of Psychology: Robert Yerkes’ multiple-choice apparatus, 1913-1939. American Journal of Psychology, 120, 645–660.

Wibe, A. E., Nordtug, T., & Jenssen, B. M. (2001). Effects of bis(tributyltin)oxide on antipredator behavior in threespine stickleback Gasterosteus aculeatus L . Chemosphere, 44, 475–481.

Wingfield, J. C., Maney, D. L., Breuner, C. W., Jacobs, J. D., Lynn, S., Ramenofsky, M., & Richardson, R. D. (1998). Ecological bases of hormone—behavior interactions: the “emergency life history stage.” American Zoology, 38, 191–206. doi:10.1093/icb/38.1.191

Wolf, M., van Doorn, G. S., Leimar, O., & Weissing, F. J. (2007). Life-history trade-offs favour the evolution of animal personalities. Nature, 447, 581–584. doi:10.1038/nature05835

Wolf, M., van Doorn, G. S., & Weissing, F. J. (2008). Evolutionary emergence of responsive and unresponsive personalities. Proceedings of the National Academy of Sciences, 105, 15825–15830. doi:10.1073/pnas.0805473105

Wong, M. Y. L., Medina, A., Uppaluri, C., Arnold, S., Seymour, J. R., & Buston, P. M. (2013). Consistent behavioural traits and behavioural syndromes in pairs of the false clown anemonefish Amphiprion ocellaris. Journal of Fish Biology, 83, 207–213. doi:10.1111/jfb.12133

Zhao, W.-W., Pang, X., Peng, J.-L., Cao, Z.-D., & Fu, S.-J. (2012). The effects of hypoxia acclimation, exercise training and fasting on swimming performance in juvenile qingbo (Spinibarbus sinensis). Fish Physiology and Biochemistry, 38, 1367–1377. doi:10.1007/s10695-012-9624-2

Universiteit of Hogeschool
Master in de Biologie
Publicatiejaar
2015
Kernwoorden