The study of specific metabolic processes as innovative targets for combating bacterial biofilm

Md. Mizanur Rahman Prof. Dr. Jozef Vanderleyden Dr. Hans Steenackers Anna Elizabeth Johanna Yssel
Persbericht

The study of specific metabolic processes as innovative targets for combating bacterial biofilm

Het bestuderen van specifieke metabole processen en innovatieve doelstellingen ter bestrijding biofilms

 

Md. Mizanur Rahman

IPMB, Vrije Universiteit Brussle, CMPG Lab, KU Leuven

Dit proefschrift richt zich op innovatieve experimentele opstellingen gebaseerd op tijdsafhankelijke biofilm ontwikkeling analyse om biofilm ontwikkeling te begrijpen en de manieren om eventuele biofilm remming. Hoewel er vele technieken beschikbaar voor biofilm studie, zoals transcriptomics en proteomics, ze zijn nog steeds duur. We gebruikten promoter GFP-fusie bibliotheek met 45 belangrijke E. coli biofilm genen genexpressiepatronen studeren in de biofilm ontwikkelingsproces omdat deze bibliotheek snel, goedkoop en makkelijk te gebruiken hulpmiddel voor experimenten in tijdsafhankelijk

 

Inleiding:

De bestrijding van infectieziekten, met name in het ontwikkelingsland, wordt ernstig bedreigd door de gestage toename van het aantal micro-organismen die resistent zijn tegen antimicrobiële middelen zijn. In de ontwikkelingslanden (zoals Bangladesh), waar patiënten met een resistente infectie minder waarschijnlijk in staat zijn om dure behandelingen met antibiotica veroorloven. Echter, volgens het International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), de zorgaanbieders in Bangladesh zijn geïsoleerd op een aantal ziekteverwekkers die multi-drug resistente stammen zijn en zijn niet makkelijk uit te roeien met behulp van conventionele antibiotica.

Resistente bacteriën brengen een aanzienlijke hoeveelheid van hun leven van complexe meercellige gemeenschappen genoemd biofilms. Deze biofilm biedt bescherming tegen milieu-invloeden en een behandeling met antibiotica. Biofilms zijn niet alleen samengesteld uit meerdere cellen, maar ook van extracellulaire polymeren die een sterk hechtende matrix, waardoor ze zeer moeilijk uit te roeien. Momenteel wordt geschat dat biofilms zijn bij ongeveer 80% van alle bacteriële infecties, met name in cystic fibrosis en ziekenhuisinfecties (Steenackers et al. 2012).

 

 

Image removed.

 

[Figuur 1: Biofilm ontwikkelingscyclus]

Bepaalde metabole processen zijn belangrijk in de vorming van biofilms. In dit proefschrift de nucleotide biosynthese route en hypothese dat veranderingen in de nucleotide pools kunnen leiden tot wijzigingen in de reservoirs van nucleotide afgeleide secundaire signaalmoleculen (zoals c-di-GMP) en daardoor wijzigen / remt de biofilm vormingsproces.

Materialen en Methoden:

We gebruikten reporter genen van Uri-Alone collectie in verschillende stammen met exogeen toegevoegde purines en pyrimidines te kijken naar de veranderingen in de transcriptie patronen van meerdere biofilm genen. PCR product gemedieerde knockout mutanten werden gemaakt met behulp Datsenko en Wanner (PNAS, 2000) protocol. We bestudeerden 45 biofilm genen voor E. coli K12-stam MG1655 en het experiment werd uitgevoerd in een multi-well fluorimeter met time-lapse fluorescentie genexpressie in individuele levende cellen te meten.

Resultaten en discussie:

In de biofilm ontwikkelingsproces, flagella ontwikkeling belangrijk voor de initiële bevestiging. Sinds csgC gen betrokken bij flagellen ontwikkeling, wordt dit gen tot in eerste instantie tot dan 6u beneden geregeld want na bevestiging fagellar synthese zijn niet zo belangrijk geregeld. Hoewel, in het begin lsrA en soxs genen worden gereguleerd beneden in vergelijking met WT, later zijn ze op gereglementeerde die Curli productie gestimuleerd.

 

        Image removed. Image removed.  Image removed.  

 

 

 

 

 

 

 

 

 

 

[Figuur: Flagella en Curli gen expressies in verschillende omstandigheden]

 

Biofilm experiment:

Biofilm experiment werd uitgevoerd middels verscheidene knockout mutante stammen te gaan of zij kunnen biofilm vormen. Dit experiment was gebaseerd op de ontwikkeling van biofilm op pinnen van de 96 wells plaat deksel. Tijdens biofilm ontwikkelingsprocessen, werden de mutante stammen aangevuld met een concentratiebereik van nucleotiden.

 

Image removed.

a

Image removed.

b

[Figuur 2: Het effect van adenine op biofilmvorming verschillende E. coli BW25113 mutante stammen in vergelijking met E. coli BW25113 WT]

purF gen gecodeerde eiwit paly een belangrijke rol om de synthese 5-phosporibosyl deel uit PRPP. Daarom is het duidelijk dat als deze purF gen wordt uitgeschakeld een deletie mutant ΔpurF maken, zal er geen groei zonder aanvulling van nucleotide zijn. Deze biofilm experiment toont aan dat er geen groei en biofilmvorming zonder adenine suppletie (zie Fig. 2 a). Bovendien planktonische groei herstel vereiste lage concentratie van adenine, terwijl biofilmvorming vereiste hogere concentratie aangeeft dat adenine nodig is voor biofilmvorming. Soortgelijke resultaten waargenomen in het ΔpurN mutante stam.

 

Fenotypische experiment:

Zwemmen test:

Image removed.

Figuur. 3 Zwemmen assay van Salmonella ATCC14028 wild-type en mutante stammen aangevuld met purine en pyrimidinebasen

Alle deletiemutanten konden zwemmen op plaat zonder verbinding (zie Fig. 3) want in feite konden niet groeien als gevolg van een gebrek aan nucleotiden, waardoor DNA-replicatie en celdeling echter onmogelijk WT toont zwemmen fenotype.

Onder hypothese-gedreven aanpak voerden wij cyclische-di-GMP extractie experimenten en kwantificering van de metabolieten werden gedaan door LC-MS.MS in samenwerking met het lab van Volkhard Kaever, Duitsland. Het verkregen resultaat toont aan dat cyclisch-di-GMP concentratie in de WT WT planktonische en biofilm levensstadia vrijwel gelijk (zie figuur 3.).

Image removed.

[Figuur: Concentratie van c-di-GMP in E. coli-stammen BW25113]

De meest interessante bevinding van dit experiment is E. coli stam BW25113 ΔcarA heeft een verrassend hoog niveau van c-di-GMP productie die biofilmvorming beïnvloed.

 

Conclusie:

Dit proefschrift succesvol richten onze hypothese van veranderingen in de nucleotide pools kunnen leiden tot wijzigingen in de reservoirs van nucleotide afgeleide secundaire signaalmoleculen (zoals c-di-GMP) en daardoor wijzigen / remt de biofilm vormingsproces. Bovendien heeft deze studie aangetoond dat antibioticaresistente bacteriën die in biofilm kan worden uitgeroeid door verstoring van nucleotide biosynthese route. Aangezien mutante stammen (bijvoorbeeld ΔpurF) desondanks biofilm ontwikkelen, dan kan dat gen gecodeerde eiwitten betrokken bij de nucleotide biosynthese route naar biofilmvorming inhiberen richten.

Bibliografie

Reference:

 

 Ahmed Dilruba, Liton T. D'CostaKhorshed AlamG. Balakrish Nair, and M. Anowar Hossain, Multidrug-Resistant Salmonella enterica Serovar Typhi Isolates with High-Level Resistance to Ciprofloxacin in Dhaka, Bangladesh, Antimicrob Agents Chemother. Oct 2006; 50(10): 3516–3517.

An, D. and Parsek, M.R. 2007. The promise and peril of transcriptional profiling in biofilm communities. Curr. Opin.Microbiol. 10: 292–296

Andreas Reisner, Janus A. J. Haagensen, Mark A. Schembri, Ellen L. Zechner and Søren Molin, Development and maturation of Escherichia coli K-12 biofilms, Molecular Microbiology (2003) 48 (4), 933–946

Anwar H, Strap JL, CostertonJW. 1992. Susceptibility of biofilm cells of  Pseudomonas aerugillosa to bactericidal actions of whole blood and serum. FEMS Microbiol. Leu. 92:235-42

Austin JW, Sanders G, Kay WW, Collinson SK. 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol. Lett. 162:295–301

Baba Tomoya, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenk, Masaru Tomita, Barry L Wanner, and Hirotada Mori, 2006 Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Molecular Systems Biology (2006), Article number: 2006.0008

Barak, J. D., Jahn, C. E., Gibson, D. L., & Charkowski, A. O. (2007). The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Molecular Plant–Microbe Interactions, 20(9), 1083−1091

Barnhart MM, Sauer FG, Pinkner JS, Hultgren SJ (2003). "Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly." J Bacteriol 185(9);2723-30.

Barnhart, M. M., & Chapman, M. R. (2006). Curli biosynthesis and function. Annual Review of Microbiology, 60, 131−147

Berg HC (2003). "The rotary motor of bacterial flagella." Annu Rev Biochem 72;19-54.

Boddicker, J. D., Ledeboer, N. A., Jagnow, J., Jones, B. D., & Clegg, S. (2002). Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Molecular Microbiology, 45(5), 1255−1265.

Brown MRW, Williams P. 1985. The influence of the environment on envelope properties affecting survival of bacteria in infections. Amw. Rev. Microbiol. 39:527-56

Cappuyns, A.M., K. Bernaerts, J. Vanderleyden, and J.F. Van Impe. 2008. A dynamic model for diauxic growth, overflow metabolism and AI-2 mediated Cell-Cell communication of Salmonella Typhimurium based on system biology concepts. Biotechnol. Bioeng. 102:280-293

Carl R. Woese, Otto Kandler, and Mark L. Wheelis, Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Nati. Acad. Sci. USA Vol. 87, pp. 4576-4579, June 1990 Evolutio

Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., & Buret, A. (1999). The Calgary Biofilm Device : New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. Journal of clinical microbiology, 37(6), 1771–1776

Chalfie,M. Y. Tu, et al, GFP as a marker for gene expression. Science 1994, 263, 802-805

Chelsea D. Boyd and George A. O´Toole 2012, Second Messenger regulation of Biofilm formation: Breakthroughs in understanding c-di-GMP effector systems, Annu. Rev. Cell Dev. Biol. 28:439-62

Cheshire, F. R., Cheyne, W. W. 1885, The pathogenic history and history under cultivation of a new bacillus (B. alvei), the cause of the disease of the hive bee hitherto known as foul brood. J. Roy. Microscop. Soc., series 2, 5, 681-601

Clark, F. E. 1939. Non-motile variants of Bacillus alvei. J. Bacteriol. 38:491-497.

Coburn B, Grassl GA, Finlay BB. 2007. Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 85:112–118.

Coetzee, J. N. 1963.  Transduction of swarming in Proteus mirabilis. J. Gen. Microbiol. 33:1-7

Coetzee, J. N., and T. G. Sacks. 1960. Morphological variants of Proteus hauseri. J. Gen. Microbiol. 23:209-216.

Costerton IW, Cheng K-I, Geesey GG, Ladd TI, Nickel NC, et al. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41 :4354

Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistant infections. Science 284, 1318-1322 (1999).

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745.).

Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I., & Penades, J. R. (2001). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 183(9), 2888−2896

Danese, P.N, Pratt,L. A. & Kolter,R. exopolysaccharide production is required of development of E. coli K-12 biofilm architecture, J. Bacteriol. 182, 3593-3596, 2000

Daughdrill GW, Chadsey MS, Karlinsey JE, Hughes KT, Dahlquist FW (1997). "The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma 28." Nat Struct Biol 4(4);285-91.

Davey M.E., G.A. O’Toole, Microbial biofilms: From ecology to molecular genetics, Microbiol. Mol. Biol. Rev. 64 (2000) 847–867

Davies DG, Chakrabarty AM, Geesey GG. 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59:1181-86

De Keersmaecker, S. C. J., Varszegi, C., Van Boxel, N., Habel, L. W., Metzger, K., Daniels, R., Marchal, K., et al. (2005). Chemical synthesis of (S)-4,5-dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella typhimurium. The Journal of biological chemistry, 280(20), 19563–19568. doi:10.1074/jbc.M412660200

de Rezende, C. E.,  nriany, Y., Carr, L. E., Joseph, S. W., & Weiner, R. M. (2005). Capsular polysaccharide surrounds smooth and rugose types of Salmonella enterica serovar Typhimurium DT104. Applied and Environmental Microbiology, 71(11), 7345−7351

Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. (2007). Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond B Biol Sci 362, 1241–1249.

Donlan R.M., Biofilms: Microbial life on surfaces, Emerg. Inf. Dis. 8 (2002) 881–890), (M.W. Dunne Jr., Bacterial adhesion: Seen any good biofilms lately?, Clin. Microbiol. Rev. 15 (2002) 155–166

Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167−193.

Dubnau, D. and Losick, R. 2006. Bistability in bacteria. Mol. Microbiol. 61: 564–572

EcoSal, www.ecosal.org.doi:10.1128/ecosal.3.6.2, Jensen KF, Dandanell G, Hove-Jensen B, Willemoes M. 2008, Nucleotides, Nucleosides and Nucleobases.

Eva Brombacher, Andrea Baratto, Corinne Dorel and Paolo Landini, Gene Expression Regulation by the Curli Activator CsgD Protein: Modulation of Cellulose Biosynthesis and Control of Negative Determinants for Microbial Adhesion J. Bacteriol. March 2006 vol. 188 no. 6 2027-2037

Fàbrega Anna and Jordi Vila 2013, Salmonella enterica Serovar Typhimurium Skills to Succeed in the Host: Virulence and Regulation, Clin. Microbiol. Rev. 2013, 26(2):308. DOI: 10.1128/CMR.00066-12.

Finlay BB, Falkow S. 1988. Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70:1089 –1099

Finlay BB, Ruschkowski S, Dedhar S. 1991. Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J. Cell Sci. 99:283–296

Fletcher M. 1991. The physiological activity of bacteria attached to solid surfaces. Adv. Microb. Physiol. 32:53- 85

Foster JW, Hall HK. 1991. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J. Bacteriol. 173:5129– 5135

 Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S. 1993. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364:639–642.

Francis CL, Starnbach MN, Falkow S. 1992. Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol. Microbiol. 6:3077–3087.

Frølund Bo, Rikke Palmgren, Kristian Keiding, Per Halkjær Nielsen, Extraction of extracellular polymers from activated sludge using a cation exchange resin, Water Research, Volume 30, Issue 8, August 1996, Pages 1749–1758

Garavaglia M, Rossi E, Landini P (2012) The Pyrimidine Nucleotide Biosynthetic Pathway Modulates Production of Biofilm Determinants in Escherichia coli. PLoS ONE 7(2): e31252. doi:10.1371/journal.pone.003125

Garcia-del Portillo F, Finlay BB. 1994. Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell. Infect. Immun. 62:4641– 4645

Gast RK, Holt PS. 1998. Persistence of Salmonella enteritidis from one day of age until maturity in experimentally infected layer chickens sampling for persistent. Poult. Sci. 77:1759 –1762

George O'Toole1 Heidi B. Kaplan2 and Roberto Kolter, BIOFILM FORMATION AS MICROBIAL DEVELOPMENT, Annual Review of Microbiology  2000, Vol. 54: 49-79

Ghigo, J. M. (2001). Natural conjugative plasmids induce bacterial biofilm development. Nature, 412(6845), 442−445

Gibson, D. L., White, A. P., Snyder, S. D., Martin, S., Heiss, C., Azadi, P., et al. (2006).Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. Journal of Bacteriology, 188(22), 7722−7730

GOA, DDB, FB, MGI, ZFIN (2001). &quot;Gene Ontology annotation through association of InterPro records with GO terms.&quot;', WIDTH, 500);" onmouseout="return nd();">GOA01a</a>

Grimont PAD, Weill FX. 2007. Antigenic formulae of the Salmonella serovars, 9th revision. World Health Organization Collaborating Center for Reference and Research on Salmonella, Pasteur Institute, Paris, France

Hall-Stoodley LCosterton JWStoodley P; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004 Feb;2(2):95-108.)

Hall-Stoodley, L., & Stoodley, P. (2009). Evolving concepts in biofilm infections. Cellular Microbiology, 11(7), 1034−1043.

Hall-Stoodley, L., Hu, F. Z., Gieseke, A., Nistico, L., Nguyen, D., Hayes, J., et al. (2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. Jama, 296(2), 202−211.

Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, Lappin-Scott HM, Hinton JC. 2009. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10:599.

Hans Steenackers, Kim Hermans, Jos Vanderleyden, Sigrid C.J. De Keersmaecker, Salmonella biofilms: An overview on occurrence, structure, regulation and eradication, Food Research International 45 (2012) 502–531,

Hans-Curt Flemming and Jost Wingender, The Biofilm Matrix, Nature Review Microbiology 2010, vol. 8: 623-633

Hans-Curt Flemming & Jost Wingender, Nature Reviews Microbiology 8, 623-633 (September 2010) | doi:10.1038/nrmicro2415

Harrison F. C. 1900 The foul brood of bees. Bacillus alvei (Cheshire and W. Cheyne). Zentr. Bakt. Parasitenk., II Abt., 6, 457-469.];

Haugland RP. 1992 Molecular probes. In Handbook of Fluorescent Probes and Research Chemicals, ed. KD Larison, pp. 1-421 . Eugene, OR: Molecular Probes

Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7: 263–273. doi:10.1038/nrmicro2109

Henrichsen J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36:478–503

Hermansson M, Marshall KC. 1985. Utilization of surface localized substrate by non-adhesive marine bacteria. Microb. &01. 1 1 :91-105

Hidese R, Mihara H, Kurihara T, Esaki N (2011). &quot;Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil.&quot; J Bacteriol 193(4);989-93.

Hochstadt-Ozer, J. 1972. The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes. J. Biol. Chem. 247:2419-2426.

Homoe, P., Bjarnsholt, T., Wessman, M., Sorensen, H. C., & Johansen, H. K. (2009). Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media. European Archives of Otorhinolaryngology, 266(10), 1533−1538

Houdt R. Van,  C.W. Michiels /Role of bacterial cell surface structures in Escherichia coli biofilm formation Research in Microbiology 156 (2005) 626–633

Hoyle BD, Williarus LJ, Costerton JW. 1993. Production of mucoid exopolysaccharide during development of PseudomOllas aemginosa biofilms. Infect. 1mInWI. 61 :777-fIIJ

http://dx.doi.org/10.1016/j.bbrc.2010.09.026

http://jb.asm.org/content/190/20/6646.full.pdf and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423026/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573354/

http://www.ncbi.nlm.nih.gov/pubmed/22096200

Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T, Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell. 2006 Jan 6;21(1):97-108.

J Bacteriol. 2006 Jan;188(1):305-16.

J Bacteriol. 2007 Apr;189(8):3051-62

J. William Costerton and Zbigniew Lewandowski, Microbial Biofilms, Annu. Rev. Microbiol. 1995.49:711-745

Jackson DW, Simecka JW, Romeo T. 2002a. Catabolite repression of Escherichia coli biofilm formation. J. bacterial. 184:3406-10

Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T. 2002b. Biofilm formation and dispersal under the influence of the global regulator CsrA of E. coli. J. bacterial. 184:290-301

James A. Shapir, Taking about Bacterial populations as multicellular organisms, Annu. Rev. Microbiol. 1998. 52:81–104

James K. Fredrickson, John M. Zachara, David L. Balkwill, David Kennedy,  Shu-mei W. Li, Heather M. Kostandarithes, Michael J. Daly,  Margaret F. Romine, and Fred J. Brockman, Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State, Applied and Environmental Microbiology, July 2004, p. 4230–4241

Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40: 385–407. doi:10.1146/annurev.genet.40.110405.090423.

Jensen ET, Kharazmi A, Lam K, Costerton JW. 1990. Human polymorpho nuclear leukocyte response to Pseudomonas aeruginosa biofilms. Infect. Immull. 58:2383-S5

Jensen KF, Dandanell G, Hove-Jensen B, Willemoes M. 2008, Nucleotides, Nucleosides and Nucleobases. www.ecosal.orgdoi:10.1128/ecosal.3.6.2

Jones BD, Ghori N, Falkow S. 1994. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J. Exp. Med. 180:15–23

Jones CJ, Macnab RM, Okino H, Aizawa S (1990). &quot;Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium.&quot; J Mol Biol 212(2);377-87.

Joost C. A. Janssens, Kristine Metzger, Ruth Daniels, Dave Ptacek, Tine Verhoeven, Lothar W. Habel, Jos Vanderleyden, Dirk E. De Vos, and Sigrid C. J. De Keersmaecker; Synthesis of N-Acyl Homoserine Lactone Analogues Reveals Strong Activators of SdiA, the Salmonella enterica Serovar Typhimurium LuxR Homologue; Applied and Env. Micro. Jan. 2007, p. 535–544

Kalia Dimpy, Go¨kçe Merey, Shizuka Nakayama, Yue Zheng, Jie Zhou, Yiling Luo, Min Guo, Benjamin T. Roembke  and Herman O. Sintim* Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis, Chem. Soc. Rev.,2013, 42, 305

Kendall M. Melissa and Vanessa Sperandio 2009, Cell-to-Cell signaling in E.coli and salmonella, Department of Microbiology, University of Texas southwestern medical centre, Dallas, TX 75390

Kim KS, Manasherob R, Cohen SN (2008). &quot;YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity.&quot; Genes Dev 22(24);3497-508. PMID: 19141481', WIDTH, 500)

Kim, S. H., & Wei, C. I. (2009). Molecular characterization of biofilm formation and attachment of Salmonella enterica serovar Typhimurium DT104 on food contact surfaces. Journal of Food Protection, 72(9), 1841−1847

Kjelleberg S. 1993. Starvation in Bacteria, pp. 1-277. New York: Plenum

Lamprokostopoulou, A., Monteiro, C., Rhen, M., & Römling, U. (2010). Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environmental Microbiology, 12(1), 40−53

Latasa, C., Roux, A., Toledo-Arana, A., Ghigo, J. M., Gamazo, C., Penades, J. R., et al. (2005). BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Molecular Microbiology, 58(5), 1322−1339.

Latasa, C., Solano, C., Penades, J. R., & Lasa, I. (2006). Biofilm-associated proteins.Comptes Rendus Biologies, 329(11), 849−857.

Lautrop, H. 1961. Bacterium anitratum transferred to the genus Cytophaga. Int. Bull. Bacteriol. Nomencl. 11:107-108.

Lautrop, H. 1965. Gliding motility in bacteria as a taxonomic criterion. Publ. Fac. Sci. Univ. J. E. Purkyne, ser. K, 35:322-327

Lawin-Scott HM, osterton JW. 1989. Bacterial biofilms and surface fouling. Biofouling 1 :323-42

Lazazzera, B.A. 2005. Lessons from DNA microarray analysis: The gene expression profile of biofilms. Curr. Opin. Microbiol. 8: 222–227

Ledeboer, N. A., & Jones, B. D. (2005). Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar Typhimurium on HEp-2 cells and chicken intestinal epithelium. Journal of Bacteriology, 187(9), 3214−3226

Ledeboer, N. A., Frye, J. G., McClelland, M., & Jones, B. D. (2006). Salmonella enteric serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infection and Immunity, 74(6), 3156−3169.

Liu X, Matsumura P (1996). &quot;Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli.&quot; Mol Microbiol 21(3);613-20.

Lugtenberg, B. J. J., Kravchenko, L. V., and Simons, M. 1999. Tomato seed and root exudate sugars: Composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1:439-446.

Matthew R. Parsek and E.P. Greenberg 2005, Sociomicrobiology: the connections between quorum sensing and biofilms, TRENDS in Microbiology Vol.13 No.1, 27-33

Méndez-Ortiz, MM, Hyodo, M, Hayakawa, Y and Membrillo-Hernández, J (2006) Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3',5'-cyclic diguanylic acid. J. Biol. Chem. 281:8090-9

Merz Alexey J., Magdalene So & Michael P. Sheetz; 2000, Pilus retraction powers bacterial twitching motility, Nature 407, 98-102 (7 September 2000) | doi:10.1038/35024105; Received 28 April 2000; Accepted 20 June 2000

Mireles, J. R., 2nd, Toguchi, A., & Harshey, R. M. (2001). Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. Journal of Bacteriology, 183(20), 5848−5854

Molin S1, Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol. 2003 Jun;14(3):255-61.

Monroe D (2007) Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5(11): e307. doi:10.1371/journal.pbio.0050307

Morrison, R. B., and A. Scott. 1966. Swarming of Proteus-a solution to an old problem? Nature (London) 211:255-257.

Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. PLoS Pathog 4(11): e1000213. doi:10.1371/journal.ppat.1000213

 Muller, J., Rothballer, M., Hartmann, A. H. & Kreft, J.-U. (2007). Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5, 230–239

Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (ed). 1999. Manual of clinical microbiology, 7th ed. ASM Press, Washington, DC.

Murray, R. G. E., and R. H. Elder. 1949. The predominance of counterclockwise rotation during swarming of Bacillus species. J. Bacteriol. 58:351-359

Mytelka DS, Chamberlin MJ (1996). &quot;Escherichia coli fliAZY operon.&quot; J Bacteriol 1996;178(1);24-34.

Nambu T, Kutsukake K (2000). &quot;The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation.&quot; Microbiology 146 ( Pt 5);1171-8.

Nesse LL, et al. 2003. Molecular analyses of Salmonella enterica isolates from fish feed factories and fish feed ingredients. Appl. Environ. Microbiol. 69:1075–1081

Novitsky JA, Morita RY. 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine Vibrio. Appl. Environ. Microbiol. 32:617-22

O’Toole, G. A. & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295±304

O’Toole, G. A., Gibbs, K. A., Hager, P. W., Phibbs, P. V. & Kolter, R. (2000). The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182, 425±431.

 P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities, Annu. Rev. Microbiol. 56 (2002) 187–209

Paul R, Weiser S. Amiot NC, Chan C, Schirmer T, et al. 2004. Cell cycle dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain, Genes Dev. 18:715-27

Paul Williams, Quorum sensing, communication and cross-kingdom signalling in the bacterial world, Microbiology (2007), 153, 3923–3938

Prigent-Combaret, C., Vidal, O., Dorel, C. & Lejeune, P. (1999). Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181, 5993±6002.

Prouty, A. M., & Gunn, J. S. (2003). Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infection and Immunity, 71(12), 7154−7158.

Prouty, A. M., Schwesinger, W. H., & Gunn, J. S. (2002). Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infection and Immunity, 70(5), 2640−2649

Raha M, Sockett H, Macnab RM (1994). &quot;Characterization of the fliL gene in the flagellar regulon of Escherichia coli and Salmonella typhimurium.&quot; J Bacteriol 1994;176(8);2308-11.

Rajagopala SVSikorski PKumar AMosca RVlasblom JArnold RFranca-Koh JPakala SBPhanse SCeol AHäuser RSiszler GWuchty SEmili ABabu MAloy PPieper RUetz P. The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol. 2014 Mar;32(3):285-90. doi: 10.1038/nbt.2831. Epub 2014 Feb 23

Redfield, R. J. (2002), Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10, 365–370.; Hense, B. A., Kuttler, C.

Robijns S.C.A., S. Roberfroid, S. Van Puyvelde, B. De Pauw, E. Uceda Santamaría, A. De Weerdt, D. De Coster, K. Hermans, S.C.J. De Keersmaecker, J. Vanderleyden & H.P.L. Steenackers (2014) A GFP promoter fusion library for the study of Salmonella biofilm formation and the mode of action of biofilm inhibitors, Biofouling: The Journal of Bioadhesion and Biofilm Research, 30:5, 605-625

Romling U, Bian Z, Hammar M, Sierralta WD, Normark S. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180:722–731

Romling U, Sierralta WD, Eriksson K, Normark S. 1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol. 28:249 –264. 249.

Römling, U. (2008) Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci Signal 1: pe39

Romling, U., M. Rohde, A. Olsen, S. Normark, and J. Reinkoster. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium, regulates at least two independent pathways. Mol. Microbiol. 36:10–23.

Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., et al. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 325(6101), 279−281

Ryjenkov DA1, Simm RRömling UGomelsky M. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem. 2006 Oct 13;281(41):30310-4. Epub 2006 Aug 18.

Saijo-Hamano Y, Uchida N, Namba K, Oosawa K (2004). &quot;In vitro characterization of FlgB, FlgC, FlgF, FlgG, and FliE, flagellar basal body proteins of Salmonella.&quot; J Mol Biol 339(2);423-35.

Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P 2004, Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186:7312-26

Serina S, Nozza F, Nicastro G, Faggioni F, Mottl H, Deho G, Polissi A (2004). &quot;Scanning the Escherichia coli chromosome by random transposon mutagenesis and multiple phenotypic screening.&quot; Res Microbiol 155(8);692-701.

Shi X, Namvar A, Kostrzynska M, Hora R, Warriner K. 2007. Persistence and growth of different Salmonella serovars on pre- and postharvest tomatoes. J. Food Prot. 70:2725–2731

Shinn, L. E. 1940. The -'iotion of colonies of Bacillus alvei as shown by lapse-time inematography. J. Bacteriol. 39:22.

Shizuta Y, Nakazawa A, Tokushige M, Hayaishi O (1969). &quot;Studies on the interaction between regulatory enzymes and effectors. 3. Crystallization and characterization of adenosine 5\'-monophosphate-dependent threonine deaminase from Escherichia coli.&quot; J Biol Chem 244(7);1883-9. PMID: 4889010', WIDTH, 500)

Shotton DM. 1989. Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sci. 94: 175-206

Singh PK, Parsek MR, Greenberg EP, Welsh MJ 2002. A component of innate immunity prevents bacterial bacterial biofilm development. Nature 417:552-55

Smith James L., Pina M. Fratamico and Xianghe Yan, 2011, Eavesdropping by bacteria: The role of SdiA in E. coli and Salmonella enterica Serovar Typhimurium Quorum Sensing, Foodborn Pathogens and Disease, Vol.8, Number 2. DOI: 10.1089/fpd.2010.0651

Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H. 1985, measurement of protein using bicinchoninic acid, anal. Biochem, 150, 76-85

Smits, W.K., Kuipers, O.P., and Veening, J.W. 2006. Phenotypic variation in bacteria: The role of feedback regulation. Nat Rev. Microbiol. 4: 259–271

Snyder, D. S., Gibson, D., Heiss, C., Kay, W., & Azadi, P. (2006). Structure of a capsular polysaccharide isolated from Salmonella enteritidis. Carbohydrate Research, 341(14), 2388−2397

Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43:793– 808

Spoering, A. L., & Lewis, K. (2001). Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar Resistance to Killing by Antimicrobials. Journal of bacteriology, 183(23), 6746–6751. doi:10.1128/JB.183.23.6746

Stahl DA, Flesher B, Mansfeld HR, Montgomery L. 1 988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-84

Stoodley P., K. Sauer, D. G. Davies, and J. W. Costerton, Biofilm as compex differentiated communities, Annual Review of Microbiology, October 2002; Vol. 56: 187-209]

Su L-H, Chiu C-H. 2006. Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med. J. 30:210 –219.

Surette MG, Miller MB, Bassler BL (1999). &quot;Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production.&quot; Proc Natl Acad Sci U S A 96(4);1639-44.

Surette, M.G.,M.B. Miller and B.L. Bassler. 1999. Quorum sensing in E. coli, S. Typhimurium and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96:1639-1644

Sutherland, I.W.2001, The biofilm matrix-an immobilized but dynamic microbial environment, Trends Microbiol. 9, 222-227

Takeuchi A. 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am. J. Pathol. 50:109 –136. 

Tarr,H. L. A. 1935 Studies on European foul brood of bees. I. A description of strains of Bacillus alvei obtained from different sources, and of another species occurring in larvae affected with this disease. Ann. Applied Biol., 22, 709-718.

Teplitski, M., Al-Agely, A., & Ahmer, B. M. (2006). Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiology, 152(Pt 11), 3411−3424

Thomas Boulin, John F. Etchberger, Oliver Hobert,  2006 Reporer gene fusions, wormbook.org

Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, et al. 2006. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic-di-GMP. J. Bacteriol. 188:2681-91

Tsien RY, Waggoner A. 1990. Fluoro­ phores for confocal microscopy: photophysics and photochemistry. In Handbook of Confocal Microscopy, ed. JB Pawley, pp. 169-78. New York: Plenum

Ueda Akihiro, Can Attila, Marvin Whiteley and Thomas K. Wood, Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist, Microbial Biotechnology (2009) 2(1), 62–74

Ueno T, Oosawa K, Aizawa S (1992). &quot;M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF.&quot; J Mol Biol 227(3);672-7.

uracil inhibit transcription http://ecocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=G6639

Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., et al. (2008). Living on a surface: Swarming and biofilm formation. Trends in  Microbiology, 16(10), 496−506

Vestby LK, Møretrø T, Langsrud S, Heir E, Nesse LL. 2009. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal and feed factories. BMC Vet. Res. 5:20

Vlamakis H, Claudio Aguilar, Richard Losick, and Roberto Kolter; Control of cell fate by the formation of an architecturally complex bacterial community, Genes Dev. 2008 22: 945-953

Watnik, P.I. and Kolter, R. steps in the development of a Vibrio cholerae EI Tor biofilm, Mol. Microbiol. 34, 586-595, 1999

White,G. F. 1906 The bacteria of the apiary with special reference to bee diseases. Bull. U. S. Bur. Entmol., No. 14.];

Winfield MD, Groisman EA. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69: 3679–3694

Wingender, Jost, Neu, Thomas R., Flemming, Hans-Curt (Eds.) Microbial Extracellular Polymeric Substances, 1-19, Springer, Heildelberg, 1999;

Witte, G., Hartung, S., Büttner, K., and  opfner, K.P. (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30: 167–178)

Yang LBarken KBSkindersoe MEChristensen ABGivskov MTolker-Nielsen T. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa, Microbiology. 2007 May;153(Pt 5):1318-28

Zobell CE, Anderson DQ. 1936. Observations on the multiplication of bacteria in different volumes of stored seawater and the influence of oxygen tension and solid surfaces. Bioi. Bull. Woods Hole 7 1 :324-42 127

Zobell CEo 1943. The effect of solid surfaces upon bacterial activity. J. Bacterio/. 46:39-56

Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001). &quot;The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix.&quot; Mol Microbiol 39(6);1452-63.

Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz, and U. Romling. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39:1452–1463.

Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Römling, U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452–1463 (2001).

Zogaj, X., W. Bokranz, M. Nimtz, and U. Romling. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 71:4151–4158.

Universiteit of Hogeschool
Master of Molecular biology
Publicatiejaar
2014
Share this on: