Microbial interactions in endotracheal tube biofilm and its role in the development of pneumonia

Sarah De Backer
Persbericht

Microbial interactions in endotracheal tube biofilm and its role in the development of pneumonia

Geen monsters in mijn ademhalingstube, aub!

-Ze zijn onzichtbaar. Ze zijn overal. En ze zijn onoverwinnelijk.-

Over bacteriën heb je vast al gehoord, maar waarschijnlijk niet veel goeds. Bacteriën staan bekend als kleine monstertjes die ziektes veroorzaken. Ze zijn niet allemaal gevaarlijk, maar toch kan je beter voorzichtig zijn. Want wanneer de bacteriën hun krachten bundelen is er geen ontsnappen meer aan…

Bacterie op je lijfZe nestelen zich op onze huid, in onze ogen, neus en mond. Ze groeien, eten, sterven op en in je lichaam. En ze zijn met velen. Je lijf bevat tien keer zoveel bacteriële als menselijke cellen. Alleen omdat ze zo klein zijn, blijven ze relatief verborgen. “Toch zijn ze allesbehalve kwaadaardig”, beweert Bonnie Bassler, een microbiologiste. “We ademen en slikken bacteriën in gedurende elk moment van ons leven. Zelfs ons voedsel is bedekt met bacteriën. Toch word je meestal niet ziek.”

Held of slechterik?We hebben bacteriën dus nodig, ook al vind je ze maar niks en wil je ze maar wat graag kwijt. Op onze huid bevinden zich acht miljoen bacteriën per vierkante centimeter. Staphylococcus epidermidis, Staphylococcus hominis, Micrococcus luteus... Deze namen klinken alsof je dringend antibiotica nodig hebt, maar eigenlijk draagt iedereen er wel bij zich, ongeacht hoe vaak deze persoon zich wast. Neem bijvoorbeeld Staphylococcus epidermidis; deze goedaardige huidbacterie zit op elk plaatsje van het lichaam, ook de plekjes die je dagelijks goed schrobt. De microbe heeft de vorm van een bolletje en groeit in groepjes. Ook de naam verwijst hiernaar; ‘staphylo’ is namelijk Grieks voor 'druiventros'.     

Hoewel Staphylococcus epidermidis gewoonlijk niet kwaadaardig is, afgezien van het occasionele puistje, kan de microbe zich in ernstig zieke patiënten toch ontpoppen tot een vreeswekkend monster. “Staphylococcus epidermidis wordt vaak beschouwd als een microbe die eigenlijk ‘per ongeluk’ ziekte veroorzaakt”, zegt specialist Michael Otto. “Vanwege zijn positie op de huid, kan de microbe makkelijk binnenin het lichaam terecht komen”. Voornamelijk mensen die kunstmatig beademd worden lopen ernstig risico omdat de bacterie op deze toestellen een biofilm vormt en zo longontsteking veroorzaakt. Dit is op heden een van de meest voorkomende complicaties in ziekenhuizen. Maar hoe een onschuldige bewoner als Staphylococcus epidermidis aanleiding kan geven tot een levensbedreigende ziekte is niet geweten. Zodoende is een juiste behandeling dan ook niet mogelijk. Een thesis aan de Universiteit Antwerpen door Sarah De Backer probeert licht te werpen op de zaak.                    

Een bio-watte?

Een biofilm is een laag micro-organismen omgeven door zelf geproduceerd slijm vastgehecht aan een oppervlak. Biofilms zijn overal. Op een gladde rots onder water. In je doucheafvoer. En ja, zelfs op je tanden als je niet vaak genoeg poetst. Met het blote oog is het onmogelijk om te zien wat deze vreemde oppervlakken precies zijn. Maar als je wat dichterbij kijkt, met behulp van een microscoop, dan zie je dat deze slijmerige lagen allesbehalve saai zijn. Het zijn vaak diverse, kleine gemeenschappen van levende micro-organismen die nog het meest op een kleine, kronkelende vleeskroket lijken. Zo is het ook in de ademhalingstube van patiënten.

Stad van microbenDe biofilm die zich ontwikkelt op de ademhalingstube van patiënten, kan je het best vergelijken met een levendige en multiculturele stad. Wonen in zo’n stad gebeurt in verschillende stappen. Eerst moet je kiezen in welke stad je gaat wonen, vervolgens kies je de buurt uit die het best aan jouw eisen en behoeften tegemoet komt, en ten slotte vind je een huis ten midden van alle andere stadbewoners. En soms, wanneer het leven in de stad tegenvalt, ga je weer weg. Dezelfde stappen treden op bij de vorming van een biofilm. Allereerst hecht een bacterie zich vast aan een oppervlak of aan andere microben. Dankzij deze vasthechting kan de bacterie een plekje zoeken om zich ‘te settelen’. Ten slotte, verlaat de bacterie de woonplaats weer als alle voedingsstoffen zijn opgebruikt om op zoek te gaan naar betere oorden. De hoge gebouwen in een stad gelijken zelfs sterk op de driedimensionale structuur van een biofilm. Voor Staphylococcus epidermidis is die ideale woonomgeving blijkbaar de ademhalingstube van sommige patiënten.

List en bedrog in de biofilmDe perfecte woonomgeving trekt echter ook andere geïnteresseerden aan. Net als in het echte leven, kan je opgescheept zitten met vriendelijke of onvriendelijke buren. Interacties tussen bacteriën kunnen immers gaan van hevige competitie voor nutriënten en chemische oorlogvoering tot het samenwerken met en het beschermen van elkaar. Klebsiella pneumoniae, bijvoorbeeld, bedekt het hele oppervlak om te voorkomen dat anderen in zijn ideale omgeving zouden kunnen komen wonen. Pseudomonas aeruginosa bestookt de buurtbewoners dan weer met giftige stoffen totdat ze compleet verdwenen zijn. Soms worden de nieuwkomers zelfs letterlijk opgegeten. Desondanks, zijn er ook microben die de nieuwkomers helpen hun huis op te bouwen, zoals Serratia marcescens.

Uit het onderzoek bleek dat juist deze gezellige onderonsjes bepalen of Staphylococcus epidermidis de held of de slechterik speelt in het verhaal en of er zich al dan niet een infectie ontwikkelt. Wanneer de bacterie een biofilm begint te vormen op de tube, kan deze dikke maatjes worden met andere bacteriële soorten. Zo kunnen ze samen op meesterlijke wijze de hele stad overnemen waardoor deze infecties moeilijker of zelfs bijna onmogelijk zijn te genezen.

Hoe ga jij ze te lijf?Dankzij deze machtige allianties heeft staphylococcus epidermidis zich mettertijd ontpopt tot een regelrecht monster in ziekenhuizen dat bovendien ongevoelig is voor antibiotica. “Maar er bestaat nog hoop”, aldus Sarah De Backer. “Door te voorkomen dat Staphylococcus epidermidis in contact komt met andere microben, bijvoorbeeld  door de ademhalingstube van patiënten te bedekken met een afstotende stof of door de communicatie tussen de bacteriën te blokkeren, kan het monster vermoedelijk alsnog getemd worden”. Verder onderzoek zal het leven in de biofilm tot in detail ontleden en hopelijk nieuwe wapens opleveren in de strijd tegen bacteriën.              

Heeft het nu zin om meteen nadat je dit gelezen hebt in de douche te springen en zo hard te schrobben totdat er geen bacterie meer overblijft op je lijf? Neen.                  Het is waar. Ze zijn onzichtbaar. Ze zijn overal. Maar ze zijn zeker niet onoverwinnelijk.

Bibliografie

1.         Lavie, C.J., H.O. Ventura, and R.V. Milani, The "obesity paradox": is smoking/lung disease the explanation? Chest, 2008. 134(5): p. 896-8.

2.         Fux, C.A., et al., Survival strategies of infectious biofilms. Trends Microbiol, 2005. 13(1): p. 34-40.

3.         Cooper, V.B. and C. Haut, Preventing ventilator-associated pneumonia in children: an evidence-based protocol. Crit Care Nurse, 2013. 33(3): p. 21-9; quiz 30.

4.         Vandecandelaere, I., et al., Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS One, 2012. 7(6): p. e38401.

5.         Cairns, S., et al., Molecular analysis of microbial communities in endotracheal tube biofilms. PLoS One, 2011. 6(3): p. e14759.

6.         Koenig, S.M. and J.D. Truwit, Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev, 2006. 19(4): p. 637-57.

7.         Raghavendran, K., J.E. Mylotte, and F.A. Scannapieco, Nursing home-associated pneumonia, hospital-acquired pneumonia and ventilator-associated pneumonia: the contribution of dental biofilms and periodontal inflammation. Periodontol 2000, 2007. 44: p. 164-177.

8.         Raghavendran, K., J.M. Mylotte, and F.A. Scannapieco, Nursing home-associated pneumonia, hospital-acquired pneumonia and ventilator-associated pneumonia: the contribution of dental biofilms and periodontal inflammation. Periodontol. 2000, 2007. 44(164-177).

9.         Chastre, J. and J. Fagon, Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med., 2002. 165: p. 867-903.

10.       Kollef, M.H., The prevention of VAP. The New England Journal of Medicine, 2003. 340(8): p. 627-634.

11.       Hunter, J.D., Ventilator associated pneumonia. Postgrad Med J, 2006. 82(965): p. 172-8.

12.       Paju, S. and F.A. Scannapieco, Oral biofilms, periodontitis and pulmonary infections. Oral Dis., 2007. 13(6): p. 508-512.

13.       Perkins, S.D., K.F. Woeltje, and L.T. Angenent, Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. Int J Med Microbiol, 2010. 300(7): p. 503-11.

14.       Mietto, C., et al., Ventilator associated pneumonia: evolving definitions and preventive strategies. Respir Care, 2013. 58(6): p. 990-1007.

15.       Safdar, N., C.J. Crnich, and D.G. Maki, The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respir Care, 2005. 50(6): p. 725-741.

16.       Papadaki, H.A. and M. Velegraki, The immunology of the respiratory system. Pneumon., 2007. 20(4): p. 384-394.

17.       Christensen, G.D., et al., Adherence of slime-producing strains of staphylococcus epidermidis to smooth surfaces. Infect. Immun., 1982. 37(1): p. 318-326.

18.       Bauer, T.T., et al., Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis., 2002. 57(1): p. 84-87.

19.       Otto, M., Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol, 2012. 34(2): p. 201-14.

20.       Bauer, T.T., et al., Biofilm formation in ET tubes association between pneumonia and the persistence of pathogens. Monaldi Arch. Chest Dis., 2002. 57(1): p. 84-87.

21.       Inglis, T.J.J., et al., Structural features of tracheal tube biofilm formed during prolonged mechanical ventilation. Chest, 1995. 108: p. 1049-1052.

22.       Fey, P.D. and M.E. Olson, Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol, 2010. 5(6): p. 917-33.

23.       Morehead, R.S. and S.J. Pinto, Ventilator-associated pneumonia. Arch Intern MED, 2000. 160: p. 1926-1936.

24.       Safdar, N., C.J. Crnich, and D.G. Maki, The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respiratory Care, 2005. 50(6): p. 725-741.

25.       Feldman, C., et al., The presence and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation Eur. Respir. J., 1999. 13(546-551).

26.       Morehead, R.S. and S.J. Pinto, Ventilator-associated pneumonia. Arch. Intern. Med., 2000. 160: p. 1926-1936.

27.       Stewart, P.S. and J.W. Costerton, Antibiotic resistance of bacteria in biofilms The Lancet, 2001. 358: p. 135-138.

28.       Basak, S., et al., Biofilms: A Challenge to Medical Fraternity in Infection Control. 2013.

29.       Tlaskalova-Hogenova, H., et al., Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett, 2004. 93(2-3): p. 97-108.

30.       Smith, A.D., The Pulmonary Microbiome, Mechanical Ventilation, and Trauma. Biological Systems: Open Access, 2012. 02(03).

31.       Lynch, S.V. and K.D. Bruce, The cystic fibrosis airway microbiome. Cold Spring Harb Perspect Med, 2013. 3(3): p. a009738.

32.       Lemon, K.P., et al., Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio, 2010. 1(3).

33.       Hotterbeekx, A., et al., Composition of the endotracheal tube microbiome associated with Pseudomonas aeruginosa and/or Staphylococcus epidermidis. Unpublished, 2014: p. 1-27.

34.       Huang, Y.J. and S.V. Lynch, The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert Rev Respir Med, 2011. 5(6): p. 809-21.

35.       Erb-Downward, J.R., et al., Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One, 2011. 6(2): p. 16384-16394.

36.       Otto, M., et al., Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun, 2001. 69(3): p. 1957-60.

37.       Bousbia, S., D. Raoult, and B. La Scola, Pneumonia pathogen detection and microbial interactions in polymicrobial episodes. Future Microbiol, 2013. 8(5): p. 633-660.

38.       Kolenbrander, P.E., Oral microbial communities: biofilms, interactions and genetic systems. Annu Rev Microbiol, 2000. 54: p. 413-437.

39.       von Eiff, C., G. Peters, and C. Heilmann, Pathogenesis of infections due to coagulasenegative staphylococci. The Lancet Infectious Diseases, 2002. 2(11): p. 677-685.

40.       Park, D.R., The microbiology of VAP. Respiratory Care, 2005. 50(6): p. 742-765.

41.       Park, D.R., The microbiology of ventilator-associated pneumonia. Respir Care, 2005. 50(6): p. 742-765.

42.       Dalmora, C.H., et al., Defining ventilator-associated pneumonia: a (de)construction concept. Rev Bras Ter Intensiva, 2013. 25(2): p. 81-6.

43.       Rello, J., et al., International conference for the development of consensus on the diagnosis and treatment of ventilator-associated pneumonia. Chest, 2001. 120: p. 955-970.

44.       Li, Y.H. and X. Tian, Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel), 2012. 12(3): p. 2519-38.

45.       Gil-Perotin, S., et al., Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care, 2012. 16(3): p. R93.

46.       Federale overheidsdienst Volksgezondheid, V.v.d.v.e.L., Handleiding "Implementatie en opvolging VAP bundel". UZA, edegem, 2013: p. 1-23.

47.       Rachid, S., et al., Effect of Subinhibitory Antibiotic Concentrations on Polysaccharide Intercellular Adhesin Expression in Biofilm-Forming Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 2000. 44(12): p. 3357-3363.

48.       Raad, I., A. Alrahwan, and K. Rolston, Staphylococcus epidermidis: Emerging resistance and need for alternative agents. Clinical Infectious Diseases, 1998. 26(1182-1187).

49.       O'Toole, G., H.B. Kaplan, and R. Kolter, Biofilm formation as microbial development. Annu. Rev. Microbiol., 2000. 54: p. 49-79.

50.       Dunne, W.M., Bacterial Adhesion: Seen Any Good Biofilms Lately? Clinical Microbiology Reviews, 2002. 15(2): p. 155-166.

51.       Stoodley, P., et al., Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002. 56: p. 187-209.

52.       Lewis, K., Persister cells and the riddle of biofilm survival. Biochemistry, 2005. 70(2): p. 267-274.

53.       Dunne, W.M., E.O. Mason, and S.L. Kaplan, Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrobial Agents and Chemotherapy, 1993. 37(12): p. 2522-2526.

54.       Rickard, A.H., et al., Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends in Microbiology, 2003. 11(2): p. 94-100.

55.       Yang, L., et al., Current understanding of multi-species biofilms. Int J Oral Sci, 2011. 3(2): p. 74-81.

56.       Moons, P., C.W. Michiels, and A. Aertsen, Bacterial interactions in biofilms. Crit Rev Microbiol, 2009. 35(3): p. 157-68.

57.       Watnick, P. and R. Kolter, Biofilm, city of microbes. J. Bacteriol., 2000. 182(10): p. 2675-2679.

58.       Thein, Z.M., et al., Community lifestyle of Candida in mixed biofilms: a mini review. Mycoses, 2009. 52(6): p. 467-75.

59.       Parsek, M.R. and E.P. Greenberg, Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 2005. 13(1): p. 27-33.

60.       Burmolle, M., et al., Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol, 2006. 72(6): p. 3916-23.

61.       Lee, K.W., et al., Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J, 2014. 8(4): p. 894-907.

62.       Elias, S. and E. Banin, Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev, 2012.

63.       De Kievit, T.R. and B.H. Iglewski, Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 2000. 68(9): p. 4839-4849.

64.       Irie, Y. and M.R. Parsek, Quorum sensing and microbial biofilms. Current Topics in Microbiology and Immunology, 2008. 332: p. 67-84.

65.       Vuong, C., et al., Increased colonization of indwelling medical devices by quorum-sensing mutants of S. epidermidis in vivo. The Journal of Infectious Diseases, 2004. 190: p. 1498-1505.

66.       Rendueles, O. and J.M. Ghigo, Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev, 2012.

67.       Mack, D., et al., Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem, 2007. 387(2): p. 399-408.

68.       Oliveira, A. and M. Cunha, Bacterial biofilms with emphasis on coagulase-negative staphylococci. J. Venom. Anim. Toxins incl. Trop. Dis., 2008. 14(4): p. 572-596.

69.       Otto, M., Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol, 2009. 7(8): p. 555-67.

70.       Vuong, C., et al., Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. The Journal of Infectious Diseases, 2000. 188: p. 706-718.

71.       Schoenfelder, S.M., et al., Success through diversity - how Staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol, 2010. 300(6): p. 380-6.

72.       Kozitskaya, S., et al., Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J Clin Microbiol, 2005. 43(9): p. 4751-7.

73.       Wei, W., et al., Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC Genomics, 2006. 7: p. 112.

74.       Foster, T.J., Immune evasion by staphylococci. Nat Rev Microbiol, 2005. 3(12): p. 948-58.

75.       Foster, T.J., et al., Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol, 2014. 12(1): p. 49-62.

76.       Kocianova, S., et al., Key role of poly-γ-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. Journal of Clinical Investigation, 2005. 115(3): p. 688-694.

77.       Fey, P.D., Staphylococcus epidermidis: methods and protocols. Methods in Molecular Biology, 2014. 1106: p. 17-31.

78.       O'Gara, J.P., ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett, 2007. 270(2): p. 179-88.

79.       Christensen, G.D., et al., Adherence of coagulase negative staphylococci to plastic tissue culture plates Journal of Clinical Microbiology, 1985. 22(6): p. 996-1006.

80.       Branda, S.S., et al., Biofilms: the matrix revisited. Trends Microbiol, 2005. 13(1): p. 20-6.

81.       Flemming, H.C. and J. Wingender, The biofilm matrix. Nat Rev Microbiol, 2010. 8(9): p. 623-33.

82.       O'Toole, G.A., H.B. Kaplan, and R. Kolter, Biofilm formation as microbial development. Annu. Rev. Microbiol., 2000. 54(49-79).

83.       Gray, E.D., et al., Effect of extracellular slime substance from staphylococcus epidermidis on the human cellular immune response. The Lancet, 1984. 18: p. 365-367.

84.       Vuong, C. and M. Otto, Staphylococcus epidermidis infections. Microbes and Infection, 2002. 4: p. 481-489.

85.       Vuong, C., et al., Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular Microbiology, 2004. 6(3): p. 269-275.

86.       Halebeedu, P.P., G.V. Kumar, and S. Gopal, Revamping the role of biofilm regulating operons in device-associated Staphylococci and Pseudomonas aeruginosa. Indian J Med Microbiol, 2014. 32(2): p. 112-23.

87.       Mack, D., Molecular mechanisms of Staphylococcus epidermidis biofilm formation journal of Hospital Infection, 1999. 43: p. 113-125.

88.       Qin, Z., et al., Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology, 2007. 153(Pt 7): p. 2083-92.

89.       Flemming, H.C., T.R. Neu, and D.J. Wozniak, The EPS matrix: the "house of biofilm cells". J Bacteriol, 2007. 189(22): p. 7945-7.

90.       Gotz, F., Staphylococcus and biofilms. Molecular Microbiology, 2002. 43(6): p. 1367-1376.

91.       Hall-Stoodley, L., J.W. Costerton, and P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2004. 2(2): p. 95-108.

92.       Yoa, Y., D.E. Sturdevant, and M. Otto, Genomewide analysis of gene expression in S. epidermidis biofilms The Journal of Infectious Diseases, 2004. 191: p. 289-298.

93.       Tormo, M.A., et al., SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol, 2005. 187(7): p. 2348-56.

94.       Wang, C., et al., Role of spx in biofilm formation of Staphylococcus epidermidis. FEMS Immunol Med Microbiol, 2010. 59(2): p. 152-60.

95.       O'Gara, J.P. and H. Humphreys, Staphylcoccus epidermidis biofilms: importance and implications. J. Med. Microbiol., 2001. 50: p. 582-587.

96.       Wang, R., et al., Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest, 2011. 121(1): p. 238-48.

97.       Vandecasteele, S.J., et al., Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol, 2001. 183(24): p. 7094-101.

98.       Kleerebezem, M., et al., Quorum-sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molecular Microbiology, 1997. 24(5): p. 895-904.

99.       Reading, N.C. and V. Sperandio, Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett, 2006. 254(1): p. 1-11.

100.     Atkinson, S. and P. Williams, Quorum sensing and social networking in the microbial world. J R Soc Interface, 2009. 6(40): p. 959-78.

101.     Hellmark, B., et al., Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. Int J Med Microbiol, 2013. 303(1): p. 32-9.

102.     Yarwood, J.M. and P.M. Schlievert, Quorum sensing in Staphylococcus infections. Journal of Clinical Investigation, 2003. 112(11): p. 1620-1625.

103.     McCann, M.T., B.F. Gilmore, and S.P. Gorman, Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm Pharmacol, 2008. 60(12): p. 1551-71.

104.     Xu, L., et al., Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun, 2006. 74(1): p. 488-96.

105.     Hardie, K.R. and K. Heurlier, Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol, 2008. 6(8): p. 635-43.

106.     Fuqua, W.C., S.C. Winans, and E.P. Greenberg, Quorum-sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 1994. 176(2): p. 269-275.

107.     McNab, R., Microbial dinner-party conversations: the role of LuxS in interspecies communication. Journal of Medical Microbiology, 2003. 52(7): p. 541-545.

108.     Kong, K.F., C. Vuong, and M. Otto, Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol, 2006. 296(2-3): p. 133-9.

109.     Ekrami, A., et al., Prevalence of methicillin resistant staphylococcus species isolated from burn patients in a burn center, Ahvaz, Iran. J. Med. Microbiol., 2010. 3(2): p. 84-91.

110.     Mulvey, M.R. and A.E. Simor, Antimicrobial resistance in hospitals: how concerned should we be? CMAJ, 2009. 180(4): p. 408-15.

111.     Hellmark, B., et al., Staphylococcal cassette chromosome mec (SCCmec) and arginine catabolic mobile element (ACME) in Staphylococcus epidermidis isolated from prosthetic joint infections. Eur J Clin Microbiol Infect Dis, 2013. 32(5): p. 691-7.

112.     Barbier, F., et al., High prevalence of the arginine catabolic mobile element in carriage isolates of methicillin-resistant Staphylococcus epidermidis. J Antimicrob Chemother, 2011. 66(1): p. 29-36.

113.     Shore, A.C., et al., Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother, 2011. 55(5): p. 1896-905.

114.     Lindgren, J.K., et al., Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol, 2014.

115.     Planet, P.J., et al., Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin. MBio, 2013. 4(6): p. e00889-13.

116.     Granslo, H.N., et al., Arginine catabolic mobile element is associated with low antibiotic resistance and low pathogenicity in Staphylococcus epidermidis from neonates. Pediatric Research, 2010. 68(3): p. 237-241.

117.     Miragaia, M., I. Couto, and H. de Lencastre, Genetic diversity among methicillin-resistant Staphylococcus epidermidis (MRSE). Microbial drug resistance, 2005. 11(2): p. 83-96.

118.     Miragaia, M., et al., Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. PLoS One, 2009. 4(11): p. e7722.

119.     Diep, B.A., et al., The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis, 2008. 197(11): p. 1523-30.

120.     Kuramitsu, H.K., et al., Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev, 2007. 71(4): p. 653-70.

121.     Hajishengallis, G., R.P. Darveau, and M.A. Curtis, The keystone-pathogen hypothesis. Nat Rev Microbiol, 2012. 10(10): p. 717-25.

122.     Zhang, Y.-Q., et al., Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Molecular Microbiology, 2003. 49(6): p. 1577-1593.

123.     (CLSI), C.a.L.S.I., Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24. Wayne, PA, 2014. 2014: p. 1-228.

124.     Kondo, Y., et al., Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother, 2007. 51(1): p. 264-74.

125.     Croxatto, A., G. Prod'hom, and G. Greub, Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev, 2012. 36(2): p. 380-407.

126.     Maiden, M.C.J., et al., Multilocus sequence typing: a portable approach to the identification of clones wihtin populations of pathogenic organisms. Proc. Nat. Acad., 1998. 95: p. 3140-3145.

127.     Spratt, B.G., et al., Displaying the relatedness among isolates of bacterial species -- the eBURST approach. FEMS Microbiol Lett, 2004. 241(2): p. 129-34.

128.     Sullivan, C.B., M.A. Diggle, and S.C. Clarke, Multilocus sequence typing. Molecular Biotechnology, 2005. 29: p. 245-254.

129.     Urwin, R. and M.C.J. Maiden, Multi-locus sequence typing: a tool for global epidemiology. Trends in Microbiology, 2003. 11(10): p. 479-487.

130.     Civit, L., A. Fragoso, and C.K. O'Sullivan, Evaluation of techniques for generation of single-stranded DNA for quantitative detection. Anal Biochem, 2012. 431(2): p. 132-8.

131.     Thomas, J.C., et al., Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol, 2007. 45(2): p. 616-9.

132.     Wisplinghoff, H., et al., Related Clones Containing SCCmec Type IV Predominate among Clinically Significant Staphylococcus epidermidis Isolates. Antimicrobial Agents and Chemotherapy, 2003. 47(11): p. 3574-3579.

133.     Wang, X.M., Evaluation of a multilocus sequence typing system for Staphylococcus epidermidis. Journal of Medical Microbiology, 2003. 52(11): p. 989-998.

134.     Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad., 1977. 74(12): p. 5463-5467.

135.     DeAngelis, M.M., D.G. Wang, and T.L. Hawkins, Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Research, 1995. 23(4): p. 4742-4743.

136.     Feil, E.J., et al., eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data. Journal of Bacteriology, 2004. 186(5): p. 1518-1530.

137.     Testing, T.E.C.o.A.S., Breakpoint tables for interpretation of MICs and zone diameters. http://www.eucast.org, 2014. Version 4.0.

138.     Jorgensen, J.H. and M.J. Ferraro, Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis, 2009. 49(11): p. 1749-55.

139.     Zapantis, A., et al., Nationwide antibiogram analysis using NCCLS M39-A guidelines. J Clin Microbiol, 2005. 43(6): p. 2629-34.

140.     (CLSI), C.a.L.S.I., Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard-seventh edition. CLSI document M7-A7 (ISBN 1-56238-587-9). 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2006. 2006: p. 1-64.

141.     Merritt, J.H., D.E. Kadouri, and G.A. O'Toole, Growing and Analyzing Static Biofilms. 2011.

142.     Freeman, R., D. Burdess, and S. Smith, Crystal violet reactions of coagulase negative Staphylococci J. Clin. Pathol., 1994. 47: p. 283-285.

143.     Stepanovic, S., et al., Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. Apmis, 2007. 115: p. 891-899.

144.     O'Toole, G.A., Microtiter dish biofilm formation assay. J Vis Exp, 2011(47).

145.     Kwasny, S.M. and T.J. Opperman, Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol, 2010. Chapter 13: p. Unit 13A 8.

146.     Cramton, S.E., et al., Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun, 2001. 69(6): p. 4079-85.

147.     Burton, E., et al., A microplate spectrofluorometric assay for bacterial biofilms. J Ind Microbiol Biotechnol, 2007. 34(1): p. 1-4.

148.     Fey, P.D., et al., Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in staphylococcus epidermidis. The Journal of Infectious Diseases, 1999. 179: p. 1561-1564.

149.     Koch, A.L., Turbidity measurements of bacterial cultures in some available commercial instruments. Anaytical Biochemistry, 1970. 38: p. 252-259.

150.     Matlock, B.C., et al., Differences in bacterial optical density measurements between spectrophotometers. Thermo Fisher Scientific Inc., 2011. Technical note 52236: p. 1-4.

151.     Koch, A.L., Theory of the angular dependence on light scattered by bacteria and similar-sized biological objects. J. Theoret. Biol., 1968. 18: p. 133-156.

152.     Handelsman, J., Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 2004. 68(4): p. 669-685.

153.     Berney, M., et al., Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol, 2007. 73(10): p. 3283-90.

154.     Hannig, C., et al., Visualization of adherent micro-organisms using different techniques. J Med Microbiol, 2010. 59(Pt 1): p. 1-7.

155.     Paddock, S.W., Confocal laser scanning microscopy. Biotechniques, 1999. 27: p. 992-1004.

156.     Claxton, N.S., T.J. Fellers, and M.W. Davidson, Confocal laser scanning microscopy. Department of optical microscopy and digital imaging, national high mangetic field laboratory, Florida State University, 2005. Unpublished: p. 1-37.

157.     Almeida, C., et al., Discriminating multi-species populations in biofilmw with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One, 2013. 6(3): p. 1-13.

158.     Miragaia, M., et al., Comparison of molecular typing methods for characterization of Staphylococcus epidermidis: proposal for clone definition. J Clin Microbiol, 2008. 46(1): p. 118-29.

159.     Barbier, F., et al., Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J Infect Dis, 2010. 202(2): p. 270-81.

160.     International Working Group on the Classification of Staphylococcal Cassette Chromosome, E., Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother, 2009. 53(12): p. 4961-7.

161.     Fessler, A.T., et al., Identification and characterization of methicillin-resistant coagulase-negative staphylococci from bovine mastitis. J Antimicrob Chemother, 2010. 65(8): p. 1576-82.

162.     Smith, K., et al., Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microbiol, 2008. 57(Pt 8): p. 1018-23.

163.     Vanhommerig, E., et al., Comparison of biofilm formation between major clonal lineages of methicillin resistant Staphylococcus aureus. Unpublished, 2010: p. 1-24.

164.     Adam, B., G.S. Baillie, and L.J. Douglas, Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J. Med. Microbiol., 2002. 51: p. 344-349.

165.     Qin, Z., et al., Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology, 2009. 155(Pt 7): p. 2148-56.

166.     Koh, K.S., et al., Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J Bacteriol, 2007. 189(1): p. 119-30.

167.     Enright, M.C. and B.G. Spratt, Multilocus Sequence typing. Trends in Microbiology, 1999. 7(12): p. 482-487.

168.     Otto, M., Staphylococcal biofilms. Curr. Top. Microbiol. Immunol., 2008. 322: p. 207-228.

169.     Miragaia, M., et al., Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol, 2007. 189(6): p. 2540-52.

170.     Rohde, H., et al., Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol, 2004. 42(12): p. 5614-9.

171.     Du, X., et al., Molecular analysis of Staphylococcus epidermidis strains isolated from community and hospital environments in China. PLoS One, 2013. 8(5): p. e62742.

172.     Archer, G.L. and M.W. Climo, Antimicrobial susceptibility of coagulase-negative Staphylococci. Antimicrob Agents Chemother, 1994. 38(10): p. 2231-2237.

173.     McDermott, P.F., R.D. Walker, and D.G. White, Antimicrobial modes of action and resistance. International Journal of Toxicology, 2003. 22: p. 135-143.

174.     Gill, S.R., et al., Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol, 2005. 187(7): p. 2426-38.

175.     Iorio, N.L., et al., Characteristics related to antimicrobial resistance and biofilm formation of widespread methicillin-resistant Staphylococcus epidermidis ST2 and ST23 lineages in Rio de Janeiro hospitals, Brazil. Diagn Microbiol Infect Dis, 2012. 72(1): p. 32-40.

176.     Georgios, M., Heteroresistance. Infection Control, 2012: p. 163-180.

177.     Falagas, M.E., et al., Heteroresistance: a concern of increasing clinical significance? Clin. Microbiol. Infect., 2008. 14: p. 101-104.

178.     Rolo, J., H. de Lencastre, and M. Miragaia, Strategies of adaptation of Staphylococcus epidermidis to hospital and community: amplification and diversification of SCCmec. J Antimicrob Chemother, 2012. 67(6): p. 1333-41.

179.     Otto, M., Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays, 2013. 35(1): p. 4-11.

180.     Zong, Z., C. Peng, and X. Lu, Diversity of SCCmec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLoS One, 2011. 6(5): p. 1-6.

181.     Garza-Gonzalez, E., et al., Diversity of staphylococcal cassette chromosome mec structures in coagulase-negative staphylococci and relationship to drug resistance. J Med Microbiol, 2010. 59(Pt 3): p. 323-9.

182.     Ben Zakour, N.L., C.M. Guinane, and J.R. Fitzgerald, Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiol Lett, 2008. 289(1): p. 1-12.

183.     Svensson, K., B. Hellmark, and B. Soderquist, Characterization of SCCmec elements in methicillin-resistant Staphylococcus epidermidis isolated from blood cultures from neonates during three decades. APMIS, 2011. 119(12): p. 885-93.

184.     Conlan, S., et al., Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol, 2012. 13(7): p. R64.

185.     Arciola, C.R., et al., Detection of slime production by means of an optimised Congo red agar plate test based on a clourimetric scale in Staphylococcus epidermidis isolates genotyped for ica locus. Biomaterials, 2002. 23: p. 4233-4239.

186.     Deighton, M.A. and B. Balkau, Adherence measured by microtiter assay as a virulence marker for Staphylococcus epidermidis infections. Journal of Clinical Microbiology, 1990. 28(11): p. 2442-2447.

187.     Gorman, S.P., et al., The concomitant development of poly (vinyl chloride)-related biofilm  and antimicrobial resistance in relation to VAP. Biomaterials, 2001. 22(2741-2747).

188.     Heilmann, C., et al., Evidence for autolysin-mediated primary attachment of S. epidermidis to a polystyrene surface. Molecular Microbiology, 1997. 24(5): p. 1013-1024.

189.     Cucarella, C., et al., Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol, 2001. 183(9): p. 2888-96.

190.     Gu, J., et al., Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect, 2005. 61(4): p. 342-8.

191.     Jain, A. and A. Agarwal, Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J Microbiol Methods, 2009. 76(1): p. 88-92.

192.     Ehrlich, G.D., N.L. Hiller, and F.Z. Hu, What makes pathogens pathogenic. Genome Biol, 2008. 9(6): p. 225.

193.     Seneviratne, C.J., L. Jin, and L.P. Samaranayake, Biofilm lifestyle of Candida: a mini review. Oral Dis, 2008. 14(7): p. 582-90.

194.     Shirtliff, M.E., B.M. Peters, and M.A. Jabra-Rizk, Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett, 2009. 299(1): p. 1-8.

195.     El-Azizi, M.A., S.E. Starks, and N. Khardori, Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol, 2004. 96(5): p. 1067-73.

196.     Pammi, M., et al., Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol, 2013. 13: p. 257-269.

197.     Yang, L., et al., Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. FEMS Immunol Med Microbiol, 2011. 62(3): p. 339-47.

198.     Demuyser, L., M.A. Jabra-Rizk, and P. Van Dijck, Microbial cell surface proteins and secreted metabolites involved in multispecies biofilms. Pathogens and Disease, 2014. 70: p. 219-230.

199.     Peleg, A.Y., D.A. Hogan, and E. Mylonakis, Medically important bacterial-fungal interactions. Nat Rev Microbiol, 2010. 8(5): p. 340-9.

200.     Di Martino, P., et al., Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Research in Microbiology, 2003. 154: p. 9-16.

201.     Schroll, C., et al., Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol, 2010. 10: p. 179.

202.     Stewart, P.S., et al., Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb. Ecol., 1997. 33: p. 2-10.

203.     Langstraat, J., M. Bohse, and S. Clegg, Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesion (MrkD), facilitates biofilm formation. Infect Immun, 2001. 69(9): p. 5805-5812.

204.     Jagnow, J. and S. Clegg, Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology, 2003. 149(9): p. 2397-2405.

205.     Hejazi, A. and F.R. Falkiner, Serratia Marcescens. J. Med. Microbiol., 1997. 46: p. 903-912.

206.     Mahlen, S.D., Serratia infections: from military experiments to current practice. Clin Microbiol Rev, 2011. 24(4): p. 755-91.

207.     Bakkiyaraj, D., C. Sivasankar, and S.K. Pandian, Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections. Bioorg Med Chem Lett, 2012. 22(9): p. 3089-94.

208.     Shanks, R.M.Q., et al., A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation. J. Bacteriol., 2007. 189(20): p. 7262-7272.

209.     Rice, S.A., et al., Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol, 2005. 187(10): p. 3477-85.

210.     Brewer, S.C., et al., Ventilator-associated pneumonia due to Pseudomonas Aeruginosa. Chest, 1996. 109: p. 1019-1029.

211.     Lyczak, J.B., C.L. Cannon, and G.B. Pier, Establishment of Pseudomonas aeruginosa infections: lessons from a versatile opportunist. Microbes and Infection, 2000. 2: p. 1051-1060.

212.     Klausen, M., et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 2003. 48(6): p. 1511-1524.

213.     Joo, H.S. and M. Otto, Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol, 2012. 19(12): p. 1503-13.

214.     Biswas, L., et al., Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol, 2009. 75(21): p. 6910-2.

215.     Harmsen, M., et al., An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol, 2010. 59(3): p. 253-68.

216.     Pihl, M., et al., Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis. FEMS Immunol Med Microbiol, 2010. 59(3): p. 439-46.

217.     Pihl, M., et al., Effects of clinical isolates of Pseudomonas aeruginosa on Staphylococcus epidermidis biofilm formation. FEMS Immunol Med Microbiol, 2010. 59(3): p. 504-12.

218.     Ziebuhr, W., et al., Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents, 2006. 28 Suppl 1: p. S14-20.

219.     Rupp, M.E. and G.L. Archer, Coagulase-Negative Staphylococci: pathogens associated with medical progress. Clin Infect Dis, 1994. 19: p. 231-245.

220.     Christensen, G.D., et al., Adherence of slime producing strains of S. epidermidis to smooth surfaces Infect. Immun., 1982. 37(1): p. 318-326.

221.     Coenye, T. and H.J. Nelis, In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods, 2010. 83(2): p. 89-105.

222.     Otto, M., Quorum-sensing control in Staphylococci -- a target for antimicrobial drug therapy? FEMS Microbiol Lett, 2004. 241(2): p. 135-41.

223.     Xavier, K.B. and B.L. Bassler, LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology, 2003. 6(2): p. 191-197.

224.     De Keersmaecker, S.C., K. Sonck, and J. Vanderleyden, Let LuxS speak up in AI-2 signaling. Trends Microbiol, 2006. 14(3): p. 114-9.

225.     Slonczewski, J. L., & Foster, J. W. (2009). Microbiology : an evolving science. Second edition (New York ; W. W. Norton & Company, Inc.).

226.     Lawrence, E. (2008). Henderson’s dictionary of biology. Fourtheenth edition (Essex; Pearson Education Limited.).

Universiteit of Hogeschool
Biomedische wetenschappen
Publicatiejaar
2014
Kernwoorden
Share this on: