Plant-water relations of the mangrove species Rhizophora stylosa: a unique story

Michiel Hubeau
Bomen kopje-onder en met de voeten in de zeeNet zoals de echte Robinson Crusoe onder ons weet dat dorst lessen met zeewater alles behalve slim is, vermijden ook bomen dit zodat ze niet gaan uitdrogen. Net zoals wij moeten slapen om rust en herstel een kans te geven, groeien en herstellen bomen tijdens de nacht. En net zoals wij, moeten bomen ook ademen en iedereen weet dat ademen onder water niet echt goed lukt. Maar wat als ik je zou vertellen dat er een boom bestaat die zich van al het voorgaande helemaal niets aantrekt?

Plant-water relations of the mangrove species Rhizophora stylosa: a unique story

Bomen kopje-onder en met de voeten in de zee

Net zoals de echte Robinson Crusoe onder ons weet dat dorst lessen met zeewater alles behalve slim is, vermijden ook bomen dit zodat ze niet gaan uitdrogen. Net zoals wij moeten slapen om rust en herstel een kans te geven, groeien en herstellen bomen tijdens de nacht. En net zoals wij, moeten bomen ook ademen en iedereen weet dat ademen onder water niet echt goed lukt. Maar wat als ik je zou vertellen dat er een boom bestaat die zich van al het voorgaande helemaal niets aantrekt? Maak kennis met de mangroveboom Rhizophora stylosa.

Wat doe je als boom als je de helft van de dag kopje-onder staat en je wortels zich heel de dag in een zoute grond bevinden? Mangrovebomen staan erom bekend dat ze na vele aanpassingen en evoluties in deze omstandigheden kunnen overleven.

Mangroves worden gekenmerkt door het feit dat ze op regelmatige basis worden overspoeld door zeewater. Het zout uit dit water zorgt voor een extreem zoute bodem. Bovendien sluit het water alle zuurstoftoevoer naar de wortels af. Net zoals voor mensen is water voor bomen onmisbaar. Daarom zijn de wortels zo belangrijk voor bomen en vergen ze veel energie van de boom. Deze energie kan, net zoals bij de mensen, enkel worden geleverd door te ademen en hiervoor is natuurlijk zuurstof nodig. Om te kunnen ademen wanneer de wortels overspoeld zijn door de zee hebben mangrovebomen grote holtes in de wortels ontwikkeld die dienst doen als luchtreservoir. Mangrovebomen maken veel wortels boven de grond aan om, wanneer de zee wegtrekt, zoveel mogelijk te kunnen ademen en zuurstof op te slaan. Dit geeft mangroves hun typische uitzicht met wortels die meer weg hebben van tentakels, zichtbaar op Figuren 1 en 2.

Zo vermijden mangrovebomen om in ademnood te komen, maar dan hebben ze nog steeds de nog grotere zoutuitdagingen niet opgelost. Onaangepaste bomen zouden leeglopen omdat zout in de bodem water aanzuigt. Mangrovebomen ontwikkelen echter een nog sterkere zuigkracht in de bladeren om toch water te kunnen opnemen. Daarenboven werken hun wortels als filters waardoor er relatief zoet water in de boom circuleert. Waarom moeten bomen zoveel water drinken? Net zoals een mens, transpireert een boom ook. Door te zweten kunnen bomen hun bladeren koelen. Hoe beter ze hun bladeren kunnen afkoelen, hoe efficiënter het fotosynthetisch apparaat, de motor van de boom, kan werken. Om voldoende te kunnen afkoelen moet er dus ook voldoende water beschikbaar zijn om te transpireren.

Mangrovebomen hebben na vele miljoenen jaren van evolutie allerhande opmerkelijke aanpassingen ondergaan om zo efficiënt mogelijk om te gaan met water. Net zoals je zuinige auto's hebt, zijn mangrovebomen zuinige bomen. Ze verbruiken weinig water per gram voedingsstof die ze produceren. Op die manier moeten ze minder grote hoeveelheden water opzuigen en ondervinden ze minder problemen met het zoute water waarin ze groeien.

Dit onderzoek heeft zich gericht op één specifieke mangrovesoort, Rhizophora stylosa. Deze soort heeft nog vele geheimen en dit onderzoek ontrafelde welke specifieke aanpassingen deze boom heeft ondergaan om te overleven in gebieden die worden overspoeld door het getij. De combinatie van een intense subtropische zon en een zoute bodem zorgt immers voor een enorme droogtestress. De intense zon zorgt voor veel transpiratie die nodig is om de bladeren koel te houden. De wateropname die hierdoor nodig is wordt evenwel sterk bemoeilijkt door het zout dat aanwezig is in de bodem. De soort Rhizophora stylosa heeft echter een zeer elegante oplossing gevonden om geen al te grote problemen te ondervinden onder deze stressvolle omstandigheden.

Maar laat ons eerst eens kijken hoe gewone bomen, die niet geconfronteerd worden met zoutstress, groeien. Naast jaarlijkse groeipatronen, waarbij jaarringen een gekend voorbeeld zijn, bestaan ook dagelijkse groeipatronen. Alle bomen krimpen en zwellen dag in dag uit. Nochtans zie je geen verschil in de dikte van een boom wanneer je een boom 's morgens of 's avonds bekijkt. Dit komt omdat deze dagelijkse groeipatronen zich afspelen in de grootteorde van een duizendste van een millimeter: niet meteen zichtbaar voor het blote oog, maar wel detecteerbaar door supergevoelige sensoren die deze verschillen kunnen meten.

Het klassieke groeipatroon, dat bij bijna alle bomen waargenomen wordt, is een zwelfase tijdens de nacht en een krimpfase overdag, in het zwart afgebeeld in Figuur 3. De oorzaak van deze krimp ligt bij het waterverlies, veroorzaakt door transpiratie. Wanneer de zon ondergaat, stopt de transpiratie en zorgen de wortels ervoor dat er genoeg water wordt opgenomen zodat de boom kan zwellen en dus groeien.

Het groeipatroon van Rhizophora stylosa is echter helemaal anders, zoals in het rood afgebeeld in Figuur 3. De stam zwelt 's morgens en krimpt tijdens de namiddag, terwijl de stamdiameter 's nachts helemaal niet verandert. Om dit onverwachte resultaat te verklaren moest een unieke hypothese bedacht worden.

De hypothese stelt dat deze boom de suikers die aangemaakt worden tijdens de fotosynthese anders gebruikt en transporteert. Suikers zijn, net zoals bij de mens, de basisbouwstenen voor de boom. De suikers gevormd door Rhizophora stylosa hebben een osmotische werking wat wil zeggen dat ze water aanzuigen in de plantcellen. Het water dat in de boom omhoog gezogen wordt kan zo in belangrijke mate naar de cellen gaan in plaats van door transpiratie te verdampen via de bladeren en verloren te gaan in de atmosfeer. Cellen die voldoende water hebben functioneren veel beter en door ervoor te zorgen dat er genoeg water in de cellen aanwezig is op het moment dat er veel zonne-energie is, kan deze boom efficiënt groeien. Dit verklaart dus waarom het de perfecte keuze is voor een mangroveboom om overdag te groeien in plaats van 's nachts.

Dit verhaal bevestigt eens te meer dat bomen in staat zijn om zeer dynamisch te reageren op veranderende omstandigheden, ondanks hun statisch voorkomen. Hoe langer hoe meer worden er unieke processen en nieuwe mechanismen ontdekt die verklaren hoe bomen zelfs in de meest barre condities kunnen overleven. Genoeg redenen dus om onderzoek te blijven doen naar de geheimen van de plantenwereld.

 

Bibliografie

Acevedo, E., I. Badilla, and P. S. Nobel. 1983. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica. Plant Physiology 72:775-780.

Acevedo, E., E. Fereres, T. C. Hsiao, and D. W. Henderson. 1979. Diurnal Growth Trends, Water Potential, and Osmotic Adjustment of Maize and Sorghum Leaves in the Field. Plant Physiology 64:476-480.

Adam, P. 1994. Saltmarsh and mangrove. Pages 395-435 in R. H. Groves, editor. Australian vegetation. Cambridge University Press.

Ainsworth, E. A. and A. Rogers. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30:258-270.

Allen, J. A., J. L. Chambers, and M. Stine. 1994. Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiology 14:843-853.

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300:6541.

Alongi, D. M. 2008. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76:1-13.

Andrews, T. J., B. F. Clough, and G. J. Muller. 1984. Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in North Queensland. Pages 15-23 in H. J. Teas, editor. Physiology and management of mangroves. Springer Netherlands.

Aziz, I. and M. A. Khan. 2001. Effect of Seawater on the Growth, Ion Content and Water Potential of Rhizophora mucronata Lam. Journal of Plant Research 114:369-373.

Ball, M. C. 1988. Ecophysiology of mangroves. Trees 2:129-142.

Ball, M. C., M. J. Cochrane, and H. M. Rawson. 1997. Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant, Cell & Environment 20:1158-1166.

Becker, P. 1996. Sap flow in Bornean heath and dipterocarp forest trees during wet and dry periods. Tree Physiology 16:295-299.

Begg, J. E. and N. C. Turner. 1970. Water Potential Gradients in Field Tobacco. Plant Physiology 46:343-346.

Blasco, F., P. Saenger, and E. Janodet. 1996. Mangroves as indicators of coastal change. CATENA 27:167-178.

Bleby, T. M., A. J. McElrone, and S. S. O. Burgess. 2008. Limitations of the HRM: great at low flow rates, but not yet up to speed?in Book of abstract of the 7th sap flow workshop, Seville.

Bohnert, H. J., D. E. Nelson, and R. G. Jensen. 1995. Adaptations to environmental stresses. The plant cell 7:1099.

Bohnert, H. J. and E. Sheveleva. 1998. Plant stress adaptations — making metabolism move. Current Opinion in Plant Biology 1:267-274.

Bond, B. J. and K. L. Kavanagh. 1999. Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiology 19:503-510.

Bouriaud, O., J. M. Leban, D. Bert, and C. Deleuze. 2005. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiology 25:651-660.

Boyer, J. S. 1968. Relationship of Water Potential to Growth of Leaves. Plant Physiology 43:1056-1062.

Brodribb, T. J., N. M. Holbrook, E. J. Edwards, and M. V. Gutiérrez. 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell & Environment 26:443-450.

Brough, D. W., H. G. Jones, and J. Grace. 1986. Diurnal changes in water content of the stems of apple trees, as influenced by irrigation. Plant, Cell & Environment 9:1-7.

Buck, A. L. 1981. New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology 20:1527-1532.

Bureau of Meteorology. 2012. Daily rainfall Dunwich Australian Government.

Burgess, S. S. O., M. A. Adams, N. C. Turner, C. R. Beverly, C. K. Ong, A. A. H. Khan, and T. M. Bleby. 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology 21:589-598.

Burgess, S. S. O. and T. E. Dawson. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment 27:1023-1034.

Burghardt, M. and M. Riederer. 2003. Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential*. Journal of Experimental Botany 54:1941-1949.

Čermák, J., J. Kučera, W. L. Bauerle, N. Phillips, and T. M. Hinckley. 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology 27:181-198.

Chen, S.-S. and C. C. Black. 1983. Diurnal Changes in Volume and Specific Tissue Weight of Crassulacean Acid Metabolism Plants. Plant Physiology 71:373-378.

Coder, K. D. 1999. Water movement in trees. Daniel B. Warnell School of Forest Resources, University of Georgia. Extension publication FOR99-007. 4pp.

Comstock, J. P. 2000. Correction of Thermocouple Psychrometer Readings for the Interaction of Temperature and Actual Water Potential. Crop Sci. 40:709-712.

Cuevas, E., P. Baeza, and J. R. Lissarrague. 2006. Variation in stomatal behaviour and gas exchange between mid-morning and mid-afternoon of north–south oriented grapevines (Vitis vinifera L. cv. Tempranillo) at different levels of soil water availability. Scientia Horticulturae 108:173-180.

Dahdouh-Guebas, F., L. P. Jayatissa, D. Di Nitto, J. O. Bosire, D. Lo Seen, and N. Koedam. 2005. How effective were mangroves as a defence against the recent tsunami? Current Biology 15:R443-R447.

Daudet, F.-A., T. Améglio, H. Cochard, O. Archilla, and A. Lacointe. 2005. Experimental analysis of the role of water and carbon in tree stem diameter variations. Journal of Experimental Botany 56:135-144.

Dawson, T. E., S. S. O. Burgess, K. P. Tu, R. S. Oliveira, L. S. Santiago, J. B. Fisher, K. A. Simonin, and A. R. Ambrose. 2007. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology 27:561-575.

Day, J. W., R. H. Day, F. Ley-Lou, and C. J. Madden. 1982. Primary production in the Laguna de Terminos, a tropical estuary in the Southern Gulf of Mexico. Oceanologica Acta.

De Swaef, T. and K. Steppe. 2010. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Functional Plant Biology 37:429-438.

Deslauriers, A., T. Anfodillo, S. Rossi, and V. Carraro. 2007a. Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees Tree Physiology 27:1125-1136.

Deslauriers, A., H. Morin, C. Urbinati, and M. Carrer. 2003. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17:477-484.

Deslauriers, A., S. Rossi, and T. Anfodillo. 2007b. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia 25:113-124.

Dixon, M. A. and M. T. Tyree. 1984. A new stem hygrometer, corrected for temperature gradients and calibrated against the pressure bomb. Plant, Cell & Environment 7:693-697.

Dolman, A. J. and G. J. Van Den Burg. 1988. Stomatal behaviour in an oak canopy. Agricultural and Forest Meteorology 43:99-108.

Donovan, L., M. Linton, and J. Richards. 2001. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 129:328-335.

Downes, G., C. Beadle, and D. Worledge. 1999. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14:102-111.

Drew, D. M. and G. M. Downes. 2009. The use of precision dendrometers in research on daily stem size and wood property variation: A review. Dendrochronologia 27:159-172.

Drew, D. M., A. P. O'Grady, G. M. Downes, J. Read, and D. Worledge. 2008. Daily patterns of stem size variation in irrigated and unirrigated Eucalyptus globulus. Tree Physiology 28:1573-1581.

Duke, N. C., E. Lo, and M. Sun. 2002. Global distribution and genetic discontinuities of mangroves – emerging patterns in the evolution of Rhizophora. Trees 16:65-79.

Duke, N. C., J. O. Meynecke, S. Dittmann, A. M. Ellison, K. Anger, U. Berger, S. Cannicci, K. Diele, K. C. Ewel, C. D. Field, N. Koedam, S. Y. Lee, C. Marchand, I. Nordhaus, and F. Dahdouh-Guebas. 2007. A World Without Mangroves? Science 317:41-42.

Ehleringer, J. R. and T. E. Dawson. 1992. Water uptake by plants: perspectives from stable isotope composition. Plant, Cell & Environment 15:1073-1082.

Elfving, D. C., M. R. Kaufmann, and A. E. Hall. 1972. Interpreting Leaf Water Potential Measurements with a Model of the Soil-Plant-Atmosphere Continuum. Physiologia Plantarum 27:161-168.

Fereres, E. and D. A. Goldhamer. 2003. Suitability of stem diameter variations and water potential as indicators for irrigation scheduling of almond trees. Journal of Horticultural Science and Biotechnology 78:139-144.

Fernández, J. E., F. Moreno, M. J. Martín-Palomo, M. V. Cuevas, J. M. Torres-Ruiz, and A. Moriana. 2011. Combining sap flow and trunk diameter measurements to assess water needs in mature olive orchards. Environmental and Experimental Botany 72:330-338.

Fernández, J. E., M. J. Palomo, A. Dı́az-Espejo, B. E. Clothier, S. R. Green, I. F. Girón, and F. Moreno. 2001. Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress. Agricultural Water Management 51:99-123.

Field, C. D. 1995. Impact of expected climate change on mangroves. Hydrobiologia 295:75-81.

Genard, M., S. Fishman, G. Vercambre, J. G. Huguet, C. Bussi, J. Besset, and R. Habib. 2001. A biophysical analysis of stem and root diameter variations in woody plants. Plant Physiology 126:188-202.

Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, and N. Duke. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20:154-159.

Goldstein, G., J. L. Andrade, F. C. Meinzer, N. M. Holbrook, J. Cavelier, P. Jackson, and A. Celis. 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment 21:397-406.

Gouvra, E. and G. Grammatikopoulos. 2003. Beneficial effects of direct foliar water uptake on shoot water potential of five chasmophytes. Canadian Journal of Botany 81:1278-1284.

Hall, R. C. 1944. A vernier tree-growth band. Journal of forestry 42:742-743.

Hao, G.-Y., T. J. Jones, C. Luton, Y.-J. Zhang, E. Manzane, F. G. Scholz, S. J. Bucci, K.-F. Cao, and G. Goldstein. 2009. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Tree Physiology 29:697-705.

Herzog, K., R. Häsler, and R. Thum. 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10:94-101.

Hetherington, A. M. and F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901-908.

Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research 50:839-866.

Hoste, P. 2011. Ecophysiology of mangrove in Australia: hydraulic functioning. University of Gent, Gent.

Hosy, E., A. Vavasseur, K. Mouline, I. Dreyer, F. Gaymard, F. Porée, J. Boucherez, A. Lebaudy, D. Bouchez, A.-A. Véry, T. Simonneau, J.-B. Thibaud, and H. Sentenac. 2003. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proceedings of the National Academy of Sciences 100:5549-5554.

Hsiao, T. C. and E. Acevedo. 1974. Plant responses to water deficits, water-use efficiency, and drought resistance. Agricultural Meteorology 14:59-84.

Hughes, L. 2003. Climate change and Australia: Trends, projections and impacts. Austral Ecology 28:423-443.

Ibrahim, D. G., M. E. Gilbert, B. S. Ripley, and C. P. Osborne. 2008. Seasonal differences in photosynthesis between the C3 and C4 subspecies of Alloteropsis semialata are offset by frost and drought. Plant, Cell & Environment 31:1038-1050.

Irvine, J. and J. Grace. 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202:455-461.

Jintana, V., A. Komiyama, H. Moriya, and K. Ogino. 1985. Forest ecological studies of mangrove ecosystem in Ranong, Southern Thailand - 4. Diameter growth measurement by dendrometry. Pages 227-233  Studies on the mangrove ecosystem. Nodai Research Institute, Tokyo University of Agriculture, Japan.

Kanemasu, E. T., G. W. Thurtell, and C. B. Tanner. 1969. Design calibration and field use of a stomatal diffusion porometer. Plant Physiology 44:881-885.

Kathiresan, K. and B. L. Bingham. 2001. Biology of mangroves and mangrove Ecosystems. Pages 81-251  Advances in Marine Biology. Academic Press.

Katul, G., S. Manzoni, S. Palmroth, and R. Oren. 2010. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration Annals of Botany 105:431-442.

Katz, C., R. Oren, E. D. Schulze, and J. A. Milburn. 1989. Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees 3:33-37.

Kelly, P. M. and W. N. Adger. 2000. Theory and Practice in Assessing Vulnerability to Climate Change and Facilitating Adaptation. Climatic Change 47:325-352.

Klepper, B. 1968. Diurnal Pattern of Water Potential in Woody Plants. Plant Physiology 43:1931-1934.

Klepper, B., V. D. Browning, and H. M. Taylor. 1971. Stem diameter in relation to plant water status. Plant Physiology 48:683-685.

Knapp, A. K. 1993. Gas Exchange Dynamics in C3 and C4 Grasses: Consequence of Differences in Stomatal Conductance. Ecology 74:113-123.

Kozlowski, T. T. and C. H. Winget. 1964. Diurnal and Seasonal Variation in Radii of Tree Stems. Ecology 45:149-155.

Kramer, P. J. and J. S. Boyer. 1995a. The Absorption of Water and Root and Stem Pressures. Pages 167-200  Water relations of plants and soils. Academic Press, Inc.

Kramer, P. J. and J. S. Boyer. 1995b. Functions and Properties of Water. Pages 14-41  Water relations of plants and soils. Academic Press, Inc.

Kramer, P. J. and J. S. Boyer. 1995c. Transpiration and the Ascent of Sap. Pages 201-256  Water relations of plants and soils. Academic Press, Inc.

Krauss, K. W., B. D. Keeland, J. A. Allen, K. C. Ewel, and D. J. Johnson. 2007. Effects of Season, Rainfall, and Hydrogeomorphic Setting on Mangrove Tree Growth in Micronesia. Biotropica 39:161-170.

Kume, T., H. Takizawa, N. Yoshifuji, K. Tanaka, C. Tantasirin, N. Tanaka, and M. Suzuki. 2007. Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand. Forest Ecology and Management 238:220-230.

Lal, P. 2003. Economic valuation of mangroves and decision-making in the Pacific. Ocean & Coastal Management 46:823-844.

Lawton, J. R., A. N. N. Todd, and D. K. Naidoo. 1981. Preliminary investigations into the structure of the roots of the mangroves, Avicennia marina and Bruguiera gymnorrhiza, in relation to ion uptake. New Phytologist 88:713-722.

Lee, R. 1967. The hydrologic importance of transpiration control by stomata. Water Resources Research 3:737-752.

Leuning, R., A. Tuzet, and A. Perrier. 2004. Stomata as Part of the Soil-Plant-Atmosphere Continuum. Pages 9-28 in M. Mencuccini, J. Grace, J. Moncrieff, and K. G. McNaughton, editors. Forests at the Land-Atmosphere Interface. CABI.

Limm, E., K. Simonin, A. Bothman, and T. Dawson. 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161:449-459.

Lo Gullo, M. A., S. Salleo, E. C. Piaceri, and R. Rosso. 1995. Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus corris. Plant, Cell & Environment 18:661-669.

Lugo, A. E. and S. C. Snedaker. 1974. The Ecology of Mangroves. Annual Review of Ecology and Systematics 5:39-64.

Lüttge, U. 2004. Ecophysiology of Crassulacean Acid Metabolism (CAM). Annals of Botany 93:629-652.

MacDougal, D. T. 1936. Studies in Tree-growth by the Dendrographic Method. Carnegie Institution of Washington.

Mäkinen, H., P. Nöjd, and P. Saranpää. 2003. Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology 23:959-968.

Mansfield, T. A. 2004. Stomatal Control of Transpiration: a Major Dilemma 100 years Ago. Pages 1-8 in M. Mencuccini, J. Grace, J. Moncrieff, and K. G. McNaughton, editors. Forests at the Land-Atmosphere Interface.

Martin, C. E. and V. S. Loeschen. 1993. Photosynthesis in the mangrove species Rhizophora mangle L.: No evidence for CAM-cycling. Photosynthetica 28:391-400.

Matimati, I., C. F. Musil, L. Raitt, and E. C. February. 2012. Diurnal stem diameter variations show CAM and C3 photosynthetic modes and CAM–C3 switches in arid South African succulent shrubs. Agricultural and Forest Meteorology 161:72-79.

McCully, M. E. 1999. Root Xylem Embolisms and Refilling. Relation to Water Potentials of Soil, Roots, and Leaves, and Osmotic Potentials of Root Xylem Sap. Plant Physiology 119:1001-1008.

McCutchan, H. and K. A. Shackel. 1992. Stem-water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. cv. French). Journal of the American Society for Horticultural Science 117:607-611.

McIntyre, D. S. 1980. Basic relationships for salinity evaluation from measurements on soil solution. Soil Research 18:199-206.

McKee, K. L. 1993. Soil Physicochemical Patterns and Mangrove Species Distribution--Reciprocal Effects? Journal of Ecology 81:477-487.

McLaughlin, S. B., S. D. Wullschleger, and M. Nosal. 2003. Diurnal and seasonal changes in stem increment and water use by yellow poplar trees in response to environmental stress. Tree Physiology 23:1125-1136.

McLeod, E. and R. V. Salm. 2006. Managing mangroves for resilience to climate change. World Conservation Union (IUCN).

Medina, E. 1999. Mangrove physiology: the challenge of salt, heat, and light stress under recurrent flooding. Ecosystemas de manglar em América tropical. Yánez-Arancibia A. & Lara-Domínguez AL (eds), Instituto de Ecología AC Xalapa, México. UICN/ORMA Costa Rica, NOAA/NMFS, Silver Spring, Md. USA:109-126.

Meinzer, F. C., S. A. James, and G. Goldstein. 2004. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiology 24:901-909.

Mitchell, D. E., M. V. Gadus, and M. A. Madore. 1992. Patterns of Assimilate Production and Translocation in Muskmelon (Cucumis melo L.) : I. Diurnal Patterns. Plant Physiology 99:959-965.

Motzer, T., N. Munz, M. Küppers, D. Schmitt, and D. Anhuf. 2005. Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiology 25:1283-1293.

O'Brien, J. J., S. F. Oberbauer, and D. B. Clark. 2004. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant, Cell & Environment 27:551-567.

Offenthaler, I., P. Hietz, and H. Richter. 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees 15:215-221.

Oguntunde, P. G. and A. M. Oguntuase. 2007. Influence of environmental factors on the sap flux density of mango trees under rain-fed cropping systems in West Africa. International Journal of Plant Production 1:179-188.

Oparka, K. J. 1994. Plasmolysis: new insights into an old process. New Phytologist 126:571-591.

Oren, R. and D. E. Pataki. 2001. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127:549-559.

Ortuño, M. F., Y. García-Orellana, W. Conejero, M. C. Ruiz-Sánchez, J. J. Alarcón, and A. Torrecillas. 2006a. Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 20:1-8.

Ortuño, M. F., Y. García-Orellana, W. Conejero, M. C. Ruiz-Sánchez, O. Mounzer, J. J. Alarcón, and A. Torrecillas. 2006b. Relationships Between Climatic Variables and Sap Flow, Stem Water Potential and Maximum Daily Trunk Shrinkage in Lemon Trees. Plant and Soil 279:229-242.

Parida, A. and B. Jha. 2010. Salt tolerance mechanisms in mangroves: a review. Trees 24:199-217.

Perämäki, M., E. Nikinmaa, S. Sevanto, H. Ilvesniemi, E. Siivola, P. Hari, and T. Vesala. 2001. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Physiology 21:889-897.

Phillips, N., A. Nagchaudhuri, R. Oren, and G. Katul. 1997. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees 11:412-419.

Polidoro, B. A., K. E. Carpenter, L. Collins, N. C. Duke, A. M. Ellison, J. C. Ellison, E. J. Farnsworth, E. S. Fernando, K. Kathiresan, N. E. Koedam, S. R. Livingstone, T. Miyagi, G. E. Moore, V. Ngoc Nam, J. E. Ong, J. H. Primavera, S. G. Salmo, III, J. C. Sanciangco, S. Sukardjo, Y. Wang, and J. W. H. Yong. 2010. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 5:e10095.

Poole, D. K. and P. C. Miller. 1975. Water Relations of Selected Species of Chaparral and Coastal Sage Communities. Ecology 56:1118-1128.

Popp, M. 1984. Chemical Composition of Australian Mangroves I. Inorganic Ions and Organic Acids. Zeitschrift für Pflanzenphysiologie 113:395-409.

Porporato, A., F. Laio, L. Ridolfi, and I. Rodriguez-Iturbe. 2001. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress. Advances in Water Resources 24:725-744.

Robert, E. M. R., N. Koedam, H. Beeckman, and N. Schmitz. 2009. A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Functional Ecology 23:649-657.

Romero, P. and P. Botía. 2006. Daily and seasonal patterns of leaf water relations and gas exchange of regulated deficit-irrigated almond trees under semiarid conditions. Environmental and Experimental Botany 56:158-173.

Scarth, G. W. 1927. Stomatal movement: Its regulation and regulatory rôle a review. Protoplasma 2:498-511.

Scholander, P. F. 1968. How mangroves desalinate water. Physiologia Plantarum 21:251-261.

Scholander, P. F., E. D. Bradstreet, E. A. Hemmingsen, and H. T. Hammel. 1965. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science (New York, N.Y.) 148:339-346.

Scholander, P. F., H. T. Hammel, E. Hemmingsen, and W. Garey. 1962. Salt Balance in mangroves. Plant Physiology 37:722-729.

Scholander, P. F., H. T. Hammel, E. A. Hemmingsen, and E. D. Bradstreet. 1964. Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences of the United States of America 52:119.

Scholander, P. F., L. Van Dam, and S. I. Scholander. 1955. Gas exchange in the roots of mangroves. American Journal of Botany:92-98.

Scholz, F. C., S. J. Bucci, G. Goldstein, F. C. Meinzer, A. C. Franco, and F. Miralles-Wilhelm. 2008. Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiology 28:469-480.

Schöngart, J., M. T. F. Piedade, S. Ludwigshausen, V. Horna, and M. Worbes. 2002. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology 18:581-597.

Schulze, E. D., J. Čermák, M. Matyssek, M. Penka, R. Zimmermann, F. Vasícek, W. Gries, and J. Kučera. 1985. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66:475-483.

Sevanto, S., T. Vesala, M. Perämäki, J. Pumpanen, H. Ilvesniemi, and E. Nikinmaa. 2001. Xylem diameter changes as an indicator of stand-level evapo-transpiration. Boreal environment research 6:45-52.

Simonin, K. A., L. S. Santiago, and T. E. Dawson. 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell & Environment 32:882-892.

Slatyer, R. O. 1969. Physiological significance of internal water relations to crop yield. Agronomy--Faculty Publications:186.

Smith, D. M. and S. J. Allen. 1996. Measurement of sap flow in plant stems. Journal of Experimental Botany 47:1833-1844.

Steppe, K., D. J. W. De Pauw, T. M. Doody, and R. O. Teskey. 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology 150:1046-1056.

Steppe, K., D. J. W. De Pauw, R. Lemeur, and P. A. Vanrolleghem. 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology 26:257-273.

Steppe, K. and R. Lemeur. 2004. An experimental system for analysis of the dynamic sap-flow characteristics in young trees: results of a beech tree. Functional Plant Biology 31:83-92.

Stiles, W., J. L. Monteith, and T. A. Bull. 1970. A diffusive resistance porometer for field use. Journal of Applied Ecology:617-638.

Tardieu, F. and T. Simonneau. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany 49:419-432.

Tardif, J., M. Flannigan, and Y. Bergeron. 2001. An Analysis of the Daily Radial Activity of 7 Boreal Tree Species, Northwestern Quebec. Environmental Monitoring and Assessment 67:141-160.

Taub, D. 2010. Effects of rising atmospheric concentrations of carbon dioxide on plants. Nature Education Knowledge 1:21.

Ting, I. P., L. Bates, L. O. R. Sternberg, and M. J. Deniro. 1985. Physiological and Isotopic Aspects of Photosynthesis in Peperomia. Plant Physiology 78:246-249.

Tomlinson, P. B. 1995. The botany of mangroves. Cambridge University Press.

Tyree, M. T. and F. W. Ewers. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119:345-360.

Upmeyer, D. J. and H. R. Koller. 1973. Diurnal Trends in Net Photosynthetic Rate and Carbohydrate Levels of Soybean Leaves. Plant Physiology 51:871-874.

Van Bavel, C. H. M., F. S. Nakayama, and W. L. Ehrler. 1965. Measuring transpiration resistance of leaves. Plant Physiology 40:535.

Vandegehuchte, M. W. and K. Steppe. 2012. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytologist 196:306-317.

Vandegehuchte, M. W. and K. Steppe. 2013. Sap-flux density measurement methods: working principles and applicability. Functional Plant Biology 40:213-223.

Walters, B. B., P. Rönnbäck, J. M. Kovacs, B. Crona, S. A. Hussain, R. Badola, J. H. Primavera, E. Barbier, and F. Dahdouh-Guebas. 2008. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany 89:220-236.

Wells, S., C. Ravilious, and E. Corcoran. 2006. In the front line: Shoreline protection and other ecosystem services from mangroves and coral reefs. United Nations Publications.

White, D. A., N. C. Turner, and J. H. Galbraith. 2000. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiology 20:1157-1165.

Whitehead, D. 1998. Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiology 18:633-644.

Williams, L. E. and F. J. Araujo. 2002. Correlations among Predawn Leaf, Midday Leaf, and Midday Stem Water Potential and their Correlations with other Measures of Soil and Plant Water Status in Vitis vinifera. Journal of the American Society for Horticultural Science 127:448-454.

Wullschleger, S. D. and A. W. King. 2000. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiology 20:511-518.

Wullschleger, S. D., F. C. Meinzer, and R. A. Vertessy. 1998. A review of whole-plant water use studies in tree. Tree Physiology 18:499-512.

Xiong, W., Y. Wang, P. Yu, H. Liu, Z. Shi, and W. Guan. 2007. Growth in stem diameter of Larix principis-rupprechtii and its response to meteorological factors in the south of Liupan Mountain, China. Acta Ecologica Sinica 27:432-440.

Yates, D. J. and L. B. Hutley. 1995. Foliar Uptake of Water by Wet Leaves of Sloanea woollsii, an Australian Subtropical Rainforest Tree. Australian Journal of Botany 43:157-167.

Zeppel, M., C. O. Macinnis-Ng, C. Ford, and D. Eamus. 2008. The response of sap flow to pulses of rain in a temperate Australian woodland. Plant and Soil 305:121-130.

Zufferey, V., H. Cochard, T. Ameglio, J. L. Spring, and O. Viret. 2011. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). Journal of Experimental Botany 62:3885-3894.

Zweifel, R., J. P. Böhm, and R. Häsler. 2002. Midday stomatal closure in Norway spruce—reactions in the upper and lower crown. Tree Physiology 22:1125-1136.

Zweifel, R. and R. Häsler. 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology 21:561-569.

Zweifel, R., H. Item, and R. Häsler. 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 15:50-57.

Zweifel, R., L. Zimmermann, F. Zeugin, and D. M. Newbery. 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany 57:1445-1459.

Universiteit of Hogeschool
Master in de bio-ingenieurswetenschappen: milieutechnologie
Publicatiejaar
2013
Kernwoorden
Share this on: