Characterization of a rat model of Maternal Immune Activation with relevance to schizophrenia

Stephan Missault
Persbericht

Characterization of a rat model of Maternal Immune Activation with relevance to schizophrenia

Je bent zwanger en krijgt de griep: vergroot dit werkelijk de kans op schizofrenie bij je kind?

Een studie van de hersenen en het gedrag van de rat…

Tijdens mijn masterproef werden zwangere ratten ingespoten met een virale nabootser, die een immuunrespons opwekt in het lichaam alsof je de griep zou hebben. De immuun-eiwitten die worden opgewekt in het lichaam van de moeder circuleren in het bloed en kunnen via de placenta de foetussen bereiken. Men gelooft dat deze immuun-eiwitten veranderingen teweeg brengen in de ontwikkeling van de hersenen van de foetussen en zo de kans vergroten dat deze nakomelingen schizofreen worden tijdens het jongvolwassen leven. Eén theorie is dat dit gebeurt door activatie van microglia, de belangrijkste immuuncellen in de hersenen, die mogelijk geactiveerd blijven tot in het volwassen leven. In een eerste studie werd de meest optimale dosis van de virale nabootser bepaald alsook de fase van de zwangerschap waarbij injectie met de virale nabootser het grootste effect heeft op de immuunrespons in de moeders en foetussen. In de tweede studie werden zwangere ratten geïnjecteerd met de beste dosis van de virale nabootser tijdens de late zwangerschap. Vervolgens werd er gekeken of de moeders gewicht verloren of bijkwamen na injectie met deze virale nabootser. Eens de mannelijke nakomelingen volwassen waren, ondergingen ze verschillende gedragstesten om te onderzoeken of ze schizofreen waren. De nakomelingen van de moeders die gewicht verloren na injectie met de virale nabootser hadden verschillende gedragsafwijkingen die doen denken aan schizofrenie. De nakomelingen van de moeders die geen gewicht verloren, hadden veel minder gedragsafwijkingen. Na de gedragstesten werden de nakomelingen opgeofferd en de hersenen uit de schedels gehaald. Ten slotte werd er gekeken of de microglia geactiveerd waren in de hersenen van de “schizofrene” ratten. We ontdekten voor de eerste keer dat er veel meer microglia geactiveerd waren in de hersenen van de nakomelingen van moeders die gewicht verloren na inspuiting met de virale nabootser dan in de hersenen van de nakomelingen van moeders die geen gewicht verloren. De nakomelingen van moeders die gewicht verloren na inspuiting vertoonden dus niet alleen veel abnormaler gedrag dan de nakomelingen van moeders die geen gewicht verloren, maar hadden ook meer geactiveerde immuuncellen in hun hersenen. Hierdoor kunnen we nu als hypothese stellen dat er een directe link is tussen de activatie van microglia in de hersenen en het “schizofreen” gedrag in deze dieren.

Zoals eerder vermeld werden zwangere ratten in de eerste studie geïnjecteerd met verschillende dosissen van de virale nabootser: een lage, gemiddelde en hoge dosis. Ongeveer de helft van de ratten werd geïnjecteerd iets voor de helft van de zwangerschap. De andere helft werd ingespoten tijdens de late zwangerschap. Andere ratten werden ingespoten met water en dienden als referentie. Zes uur na de injectie werden de ratten opgeofferd. Er werd een bloedstaal genomen van de moeders en er werden een aantal foetussen gedissecteerd uit de baarmoeder van de rat. Vervolgens werden de hersenen van de foetus gedissecteerd en bijgehouden. Tot slot hebben we indirect de hoeveelheid immuun-eiwitten gemeten in het bloed van de moeders en de hersenen van de foetussen. Tot onze verbazing waren de immuun-eiwitten meestal het sterkst gestegen na een injectie met de gemiddelde dosis van de virale nabootser en niet na de hoogste dosis. De meest interessante resultaten werden bekomen bij een injectie tijdens de late zwangerschap.

In de tweede studie werden ratten daarom geïnjecteerd met de gemiddelde dosis van de virale nabootser tijdens de late zwangerschap. Er werden opnieuw ratten ingespoten met water als referentie. Vervolgens werd er opgevolgd welke ratten gewicht verloren na injectie en welke gewicht bijkwamen. Eens de mannelijke nakomelingen volwassen waren, werden ze onderworpen aan drie gedragstesten. De eerste test onderzocht of de ratten problemen hadden om overbodige informatie uit hun omgeving weg te filteren. Schizofrene patiënten kampen immers met het probleem dat ze belangrijke en onbelangrijke informatie niet meer kunnen onderscheiden. Alles lijkt belangrijk voor hen. Tijdens de tweede test werd er gekeken naar de activiteit van de ratten in hun kooi: zitten ze lang stil of lopen ze veel rond? Zowel spontane activiteit werd onderzocht als de activiteit uitgelokt door toediening van bepaalde drugs: amfetamine en MK-801 (vergelijkbaar met een drug als ‘angel dust’). Deze drugs kunnen bij gezonde mensen een acute psychose veroorzaken. Schizofrene patiënten zijn vaak gevoeliger voor deze drugs. Bij ratten veroorzaken ze in lage dosis hyperactiviteit, maar net als bij patiënten gaan “schizofrene” ratten anders reageren op deze drugs dan gezonde ratten. Tot slot werd in een laatste test onderzocht of de ratten problemen hadden om plezier te beleven, een symptoom die ook bij schizofrenen voorkomt. De nakomelingen van moeders die gewicht verloren na de immuun-activatie vertoonden in vrijwel elke test abnormaal gedrag. De nakomelingen van moeders die geen gewicht verloren, vertoonden vaker normaal gedrag. Ze waren echter ook niet geheel vrij van abnormaliteiten vergeleken met de nakomelingen van de moeders die met water werden ingespoten. Als we uiteindelijk gingen kijken naar de activiteit van de belangrijkste immuuncellen in de hersenen, de microglia, dan ontdekten we dat de ratten met het meest abnormale gedrag ook de grootste microglia-activatie hadden. Dit suggereert een belangrijk verband tussen de activiteit van de microglia en het “schizofreen” gedrag in deze ratten.

We kunnen concluderen dat een antivirale immuunrespons tijdens de zwangerschap een belangrijke risicofactor is voor schizofrenie bij de nakomelingen. Er hangt echter veel af van de manier waarop de moeder reageert op het virus (of de virale nabootser). Aan de andere kant zijn de geobserveerde gedragsafwijkingen eerder subtiel. De oorzaak van schizofrenie is waarschijnlijk ook niet eenzijdig. Verschillende risicofactoren, zowel overgeërfde als andere, werken vermoedelijk samen om schizofrenie bij de mens te veroorzaken. Desalniettemin kan het interessant zijn om zich vóór de zwagerschap te laten inenten tegen het influenza-virus, het voornaamste virus dat de griep veroorzaakt. De kleine immuun-activatie die een vaccin veroorzaakt zou immers risicovol kunnen zijn als men reeds zwanger is. Meer onderzoek is hiervoor echter nodig.

Het is ook belangrijk te beseffen dat de activatie van microglia in de hersenen een belangrijke rol kan spelen bij schizofrenie en dat therapieën gericht op deze immuuncellen hulp kunnen bieden bij het bestrijden van deze belangrijke ziekte.

Bibliografie

References

Alexander, K.S., Wu, H.Q., Schwarcz, R., and Bruno, J.P. (2012). Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology 220, 627-637.

Anderson, G., and Maes, M. (2012). Schizophrenia: Linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Progress in neuro-psychopharmacology & biological psychiatry.

Anderson, G., Maes, M., and Berk, M. (2012). Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Progress in neuro-psychopharmacology & biological psychiatry.

Andine, P., Widermark, N., Axelsson, R., Nyberg, G., Olofsson, U., Martensson, E., and Sandberg, M. (1999). Characterization of MK-801-induced behavior as a putative rat model of psychosis. The Journal of pharmacology and experimental therapeutics 290, 1393-1408.

Bassi, G.S., Kanashiro, A., Santin, F.M., de Souza, G.E., Nobre, M.J., and Coimbra, N.C. (2012). Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic & clinical pharmacology & toxicology 110, 359-369.

Bayer, S.A., Altman, J., Russo, R.J., and Zhang, X. (1993). Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14, 83-144.

Bayer, T.A., Buslei, R., Havas, L., and Falkai, P. (1999). Evidence for activation of microglia in patients with psychiatric illnesses. Neuroscience letters 271, 126-128.

Bitanihirwe, B.K., Peleg-Raibstein, D., Mouttet, F., Feldon, J., and Meyer, U. (2010). Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 35, 2462-2478.

Borrell, J., Vela, J.M., Arevalo-Martin, A., Molina-Holgado, E., and Guaza, C. (2002). Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 26, 204-215.

Bronson, S.L., Ahlbrand, R., Horn, P.S., Kern, J.R., and Richtand, N.M. (2011). Individual differences in maternal response to immune challenge predict offspring behavior: contribution of environmental factors. Behavioural brain research 220, 55-64.

Brown, A.S. (2011). The environment and susceptibility to schizophrenia. Progress in neurobiology 93, 23-58.

Brown, A.S., Begg, M.D., Gravenstein, S., Schaefer, C.A., Wyatt, R.J., Bresnahan, M., Babulas, V.P., and Susser, E.S. (2004a). Serologic evidence of prenatal influenza in the etiology of schizophrenia. Archives of general psychiatry 61, 774-780.

Brown, A.S., Hooton, J., Schaefer, C.A., Zhang, H., Petkova, E., Babulas, V., Perrin, M., Gorman, J.M., and Susser, E.S. (2004b). Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. The American journal of psychiatry 161, 889-895.

Buchanan, J.B., and Johnson, R.W. (2007). Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology 86, 183-190.

Buka, S.L., Tsuang, M.T., Torrey, E.F., Klebanoff, M.A., Wagner, R.L., and Yolken, R.H. (2001). Maternal cytokine levels during pregnancy and adult psychosis. Brain, behavior, and immunity 15, 411-420.

Cannon, M., Jones, P.B., and Murray, R.M. (2002). Obstetric complications and schizophrenia: historical and meta-analytic review. The American journal of psychiatry 159, 1080-1092.

Chen, Z., Jalabi, W., Shpargel, K.B., Farabaugh, K.T., Dutta, R., Yin, X., Kidd, G.J., Bergmann, C.C., Stohlman, S.A., and Trapp, B.D. (2012). Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 11706-11715.

Clancy, B., Darlington, R.B., and Finlay, B.L. (2001). Translating developmental time across mammalian species. Neuroscience 105, 7-17.

Corona, A.W., Huang, Y., O'Connor, J.C., Dantzer, R., Kelley, K.W., Popovich, P.G., and Godbout, J.P. (2010). Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. Journal of neuroinflammation 7, 93.

Corona, A.W., Norden, D.M., Skendelas, J.P., Huang, Y., O'Connor, J.C., Lawson, M., Dantzer, R., Kelley, K.W., and Godbout, J.P. (2013). Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX3CR1)-deficient mice. Brain, behavior, and immunity 31, 134-142.

Cui, K., Ashdown, H., Luheshi, G.N., and Boksa, P. (2009). Effects of prenatal immune activation on hippocampal neurogenesis in the rat. Schizophrenia research 113, 288-297.

Dantzer, R. (2009). Cytokine, sickness behavior, and depression. Immunology and allergy clinics of North America 29, 247-264.

Davis, J.O., Phelps, J.A., and Bracha, H.S. (1995). Prenatal development of monozygotic twins and concordance for schizophrenia. Schizophrenia bulletin 21, 357-366.

Davis, K.L., Stewart, D.G., Friedman, J.I., Buchsbaum, M., Harvey, P.D., Hof, P.R., Buxbaum, J., and Haroutunian, V. (2003). White matter changes in schizophrenia: evidence for myelin-related dysfunction. Archives of general psychiatry 60, 443-456.

Deverman, B.E., and Patterson, P.H. (2009). Cytokines and CNS development. Neuron 64, 61-78.

Dham, P., and Alexander, J. (2013). Mood disorder in a patient with a benign thalamic cystic lesion: a case report. Journal of medical case reports 7, 107.

Dheen, S.T., Kaur, C., and Ling, E.A. (2007). Microglial activation and its implications in the brain diseases. Current medicinal chemistry 14, 1189-1197.

Dickerson, D.D., Wolff, A.R., and Bilkey, D.K. (2010). Abnormal long-range neural synchrony in a maternal immune activation animal model of schizophrenia. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 12424-12431.

Do, K.Q., Cabungcal, J.H., Frank, A., Steullet, P., and Cuenod, M. (2009). Redox dysregulation, neurodevelopment, and schizophrenia. Current opinion in neurobiology 19, 220-230.

Doorduin, J., de Vries, E.F., Willemsen, A.T., de Groot, J.C., Dierckx, R.A., and Klein, H.C. (2009). Neuroinflammation in schizophrenia-related psychosis: a PET study. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 50, 1801-1807.

Edwards, M.J. (2006). Review: Hyperthermia and fever during pregnancy. Birth defects research Part A, Clinical and molecular teratology 76, 507-516.

Edwards, M.J. (2007). Hyperthermia in utero due to maternal influenza is an environmental risk factor for schizophrenia. Congenital anomalies 47, 84-89.

Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2009). Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021-1029.

Fan, K., Wu, X., Fan, B., Li, N., Lin, Y., Yao, Y., and Ma, J. (2012). Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation. Journal of neuroinflammation 9, 96.

Fatemi, S.H., Folsom, T.D., Rooney, R.J., Mori, S., Kornfield, T.E., Reutiman, T.J., Kneeland, R.E., Liesch, S.B., Hua, K., Hsu, J., et al. (2012). The viral theory of schizophrenia revisited: abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology 62, 1290-1298.

Fetler, L., and Amigorena, S. (2005). Neuroscience. Brain under surveillance: the microglia patrol. Science 309, 392-393.

Forrest, C.M., Khalil, O.S., Pisar, M., Smith, R.A., Darlington, L.G., and Stone, T.W. (2012). Prenatal activation of Toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Molecular brain 5, 22.

Fortier, M.E., Joober, R., Luheshi, G.N., and Boksa, P. (2004a). Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. Journal of psychiatric research 38, 335-345.

Fortier, M.E., Kent, S., Ashdown, H., Poole, S., Boksa, P., and Luheshi, G.N. (2004b). The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. American journal of physiology Regulatory, integrative and comparative physiology 287, R759-766.

Fortier, M.E., Luheshi, G.N., and Boksa, P. (2007). Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behavioural brain research 181, 270-277.

Fricker, M., Oliva-Martin, M.J., and Brown, G.C. (2012). Primary phagocytosis of viable neurons by microglia activated with LPS or Abeta is dependent on calreticulin/LRP phagocytic signalling. Journal of neuroinflammation 9, 196.

Garay, P.A., Hsiao, E.Y., Patterson, P.H., and McAllister, A.K. (2012). Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain, behavior, and immunity.

Geddes, J.R., and Lawrie, S.M. (1995). Obstetric complications and schizophrenia: a meta-analysis. The British journal of psychiatry : the journal of mental science 167, 786-793.

Gibney, S.M., McGuinness, B., Prendergast, C., Harkin, A., and Connor, T.J. (2012). Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain, behavior, and immunity.

Gibney, S.M., McGuinness, B., Prendergast, C., Harkin, A., and Connor, T.J. (2013). Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain, behavior, and immunity 28, 170-181.

Gilmore, J.H., and Jarskog, L.F. (1997). Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophrenia research 24, 365-367.

Giovanoli, S., Engler, H., Engler, A., Richetto, J., Voget, M., Willi, R., Winter, C., Riva, M.A., Mortensen, P.B., Schedlowski, M., et al. (2013). Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339, 1095-1099.

Guo, R., Hou, W., Dong, Y., Yu, Z., Stites, J., and Weiner, C.P. (2010). Brain injury caused by chronic fetal hypoxemia is mediated by inflammatory cascade activation. Reprod Sci 17, 540-548.

Ha, S.K., Moon, E., Lee, P., Ryu, J.H., Oh, M.S., and Kim, S.Y. (2012). Acacetin attenuates neuroinflammation via regulation the response to LPS stimuli in vitro and in vivo. Neurochemical research 37, 1560-1567.

Hagberg, H., Gressens, P., and Mallard, C. (2012). Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Annals of neurology 71, 444-457.

Harris, A., and Seckl, J. (2011). Glucocorticoids, prenatal stress and the programming of disease. Hormones and behavior 59, 279-289.

Heidbreder, C., and Feldon, J. (1998). Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Synapse 29, 310-322.

Henry, C.J., Huang, Y., Wynne, A., Hanke, M., Himler, J., Bailey, M.T., Sheridan, J.F., and Godbout, J.P. (2008). Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. Journal of neuroinflammation 5, 15.

Hines, D.J., Choi, H.B., Hines, R.M., Phillips, A.G., and MacVicar, B.A. (2013). Prevention of LPS-induced microglia activation, cytokine production and sickness behavior with TLR4 receptor interfering peptides. PloS one 8, e60388.

Howland, J.G., Cazakoff, B.N., and Zhang, Y. (2012). Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience 201, 184-198.

Hu, H., Ho, W., Mackie, K., Pittman, Q.J., and Sharkey, K.A. (2012). Brain CB(1) receptor expression following lipopolysaccharide-induced inflammation. Neuroscience 227, 211-222.

Jarskog, L.F., Selinger, E.S., Lieberman, J.A., and Gilmore, J.H. (2004). Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. The American journal of psychiatry 161, 109-115.

Juckel, G., Manitz, M.P., Brune, M., Friebe, A., Heneka, M.T., and Wolf, R.J. (2011). Microglial activation in a neuroinflammational animal model of schizophrenia--a pilot study. Schizophrenia research 131, 96-100.

Kato, T.A., Monji, A., Mizoguchi, Y., Hashioka, S., Horikawa, H., Seki, Y., Kasai, M., Utsumi, H., and Kanba, S. (2011). Anti-Inflammatory properties of antipsychotics via microglia modulations: are antipsychotics a 'fire extinguisher' in the brain of schizophrenia? Mini reviews in medicinal chemistry 11, 565-574.

Kent, S., Bret-Dibat, J.L., Kelley, K.W., and Dantzer, R. (1996). Mechanisms of sickness-induced decreases in food-motivated behavior. Neuroscience and biobehavioral reviews 20, 171-175.

Kigerl, K.A., Gensel, J.C., Ankeny, D.P., Alexander, J.K., Donnelly, D.J., and Popovich, P.G. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 13435-13444.

Kim, Y.K., Myint, A.M., Verkerk, R., Scharpe, S., Steinbusch, H., and Leonard, B. (2009). Cytokine changes and tryptophan metabolites in medication-naive and medication-free schizophrenic patients. Neuropsychobiology 59, 123-129.

Kneeland, R.E., and Fatemi, S.H. (2012). Viral infection, inflammation and schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry.

Kobayashi, K., Imagama, S., Ohgomori, T., Hirano, K., Uchimura, K., Sakamoto, K., Hirakawa, A., Takeuchi, H., Suzumura, A., Ishiguro, N., et al. (2013). Minocycline selectively inhibits M1 polarization of microglia. Cell death & disease 4, e525.

Li, Q., Cheung, C., Wei, R., Hui, E.S., Feldon, J., Meyer, U., Chung, S., Chua, S.E., Sham, P.C., Wu, E.X., et al. (2009). Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PloS one 4, e6354.

Malaspina, D. (2001). Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophrenia bulletin 27, 379-393.

Malaspina, D., Harlap, S., Fennig, S., Heiman, D., Nahon, D., Feldman, D., and Susser, E.S. (2001). Advancing paternal age and the risk of schizophrenia. Archives of general psychiatry 58, 361-367.

Malkova, N.V., Yu, C.Z., Hsiao, E.Y., Moore, M.J., and Patterson, P.H. (2012). Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain, behavior, and immunity 26, 607-616.

Marcelis, M., Takei, N., and van Os, J. (1999). Urbanization and risk for schizophrenia: does the effect operate before or around the time of illness onset? Psychological medicine 29, 1197-1203.

Maynard, T.M., Sikich, L., Lieberman, J.A., and LaMantia, A.S. (2001). Neural development, cell-cell signaling, and the "two-hit" hypothesis of schizophrenia. Schizophrenia bulletin 27, 457-476.

McAllister, C.G., van Kammen, D.P., Rehn, T.J., Miller, A.L., Gurklis, J., Kelley, M.E., Yao, J., and Peters, J.L. (1995). Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status. The American journal of psychiatry 152, 1291-1297.

McGrath, J.J. (2005). Myths and plain truths about schizophrenia epidemiology--the NAPE lecture 2004. Acta psychiatrica Scandinavica 111, 4-11.

Meyer, U., Engler, A., Weber, L., Schedlowski, M., and Feldon, J. (2008a). Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience 154, 701-709.

Meyer, U., Feldon, J., Schedlowski, M., and Yee, B.K. (2005). Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neuroscience and biobehavioral reviews 29, 913-947.

Meyer, U., Feldon, J., and Yee, B.K. (2009). A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophrenia bulletin 35, 959-972.

Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., Yee, B.K., and Feldon, J. (2006). The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 4752-4762.

Meyer, U., Nyffeler, M., Schwendener, S., Knuesel, I., Yee, B.K., and Feldon, J. (2008b). Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 33, 441-456.

Meyer, U., Nyffeler, M., Yee, B.K., Knuesel, I., and Feldon, J. (2008c). Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain, behavior, and immunity 22, 469-486.

Michelucci, A., Heurtaux, T., Grandbarbe, L., Morga, E., and Heuschling, P. (2009). Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. Journal of neuroimmunology 210, 3-12.

Miller, B., Messias, E., Miettunen, J., Alaraisanen, A., Jarvelin, M.R., Koponen, H., Rasanen, P., Isohanni, M., and Kirkpatrick, B. (2011a). Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophrenia bulletin 37, 1039-1047.

Miller, B.J., Buckley, P., Seabolt, W., Mellor, A., and Kirkpatrick, B. (2011b). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological psychiatry 70, 663-671.

Moller, M., Du Preez, J.L., Emsley, R., and Harvey, B.H. (2012). Social isolation rearing in rats alters plasma tryptophan metabolism and is reversed by sub-chronic clozapine treatment. Neuropharmacology 62, 2499-2506.

Mortensen, P.B., Pedersen, C.B., Westergaard, T., Wohlfahrt, J., Ewald, H., Mors, O., Andersen, P.K., and Melbye, M. (1999). Effects of family history and place and season of birth on the risk of schizophrenia. The New England journal of medicine 340, 603-608.

Muller, N., Myint, A.M., and Schwarz, M.J. (2011). Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects. Current pharmaceutical design 17, 130-136.

Na, K.S., Jung, H.Y., and Kim, Y.K. (2012). The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry.

Neher, J.J., Neniskyte, U., Zhao, J.W., Bal-Price, A., Tolkovsky, A.M., and Brown, G.C. (2011). Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186, 4973-4983.

O'Brien, S.M., Scully, P., and Dinan, T.G. (2008). Increased tumor necrosis factor-alpha concentrations with interleukin-4 concentrations in exacerbations of schizophrenia. Psychiatry research 160, 256-262.

Ozawa, K., Hashimoto, K., Kishimoto, T., Shimizu, E., Ishikura, H., and Iyo, M. (2006). Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biological psychiatry 59, 546-554.

Paintlia, M.K., Paintlia, A.S., Barbosa, E., Singh, I., and Singh, A.K. (2004). N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. Journal of neuroscience research 78, 347-361.

Park, S.M., Choi, M.S., Sohn, N.W., and Shin, J.W. (2012). Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biological & pharmaceutical bulletin 35, 1546-1552.

Perego, C., Fumagalli, S., and De Simoni, M.G. (2011). Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. Journal of neuroinflammation 8, 174.

Piontkewitz, Y., Arad, M., and Weiner, I. (2011). Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia. Schizophrenia bulletin 37, 1257-1269.

Piontkewitz, Y., Assaf, Y., and Weiner, I. (2009). Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia. Biological psychiatry 66, 1038-1046.

Piontkewitz, Y., Bernstein, H.G., Dobrowolny, H., Bogerts, B., Weiner, I., and Keilhoff, G. (2012). Effects of risperidone treatment in adolescence on hippocampal neurogenesis, parvalbumin expression, and vascularization following prenatal immune activation in rats. Brain, behavior, and immunity 26, 353-363.

Radewicz, K., Garey, L.J., Gentleman, S.M., and Reynolds, R. (2000). Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. Journal of neuropathology and experimental neurology 59, 137-150.

Richtand, N.M., Ahlbrand, R., Horn, P., Stanford, K., Bronson, S.L., and McNamara, R.K. (2011). Effects of risperidone and paliperidone pre-treatment on locomotor response following prenatal immune activation. Journal of psychiatric research 45, 1194-1201.

Roenker, N.L., Gudelsky, G., Ahlbrand, R., Bronson, S.L., Kern, J.R., Waterman, H., and Richtand, N.M. (2011). Effect of paliperidone and risperidone on extracellular glutamate in the prefrontal cortex of rats exposed to prenatal immune activation or MK-801. Neuroscience letters 500, 167-171.

Romero, E., Ali, C., Molina-Holgado, E., Castellano, B., Guaza, C., and Borrell, J. (2007). Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 32, 1791-1804.

Rousset, C.I., Chalon, S., Cantagrel, S., Bodard, S., Andres, C., Gressens, P., and Saliba, E. (2006). Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatric research 59, 428-433.

Salazar, A., Gonzalez-Rivera, B.L., Redus, L., Parrott, J.M., and O'Connor, J.C. (2012). Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Hormones and behavior 62, 202-209.

Samuelsson, A.M., Jennische, E., Hansson, H.A., and Holmang, A. (2006). Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. American journal of physiology Regulatory, integrative and comparative physiology 290, R1345-1356.

Sargent, I.L. (1993). Maternal and fetal immune responses during pregnancy. Experimental and clinical immunogenetics 10, 85-102.

Schnieder, T.P., and Dwork, A.J. (2011). Searching for neuropathology: gliosis in schizophrenia. Biological psychiatry 69, 134-139.

Shi, L., Fatemi, S.H., Sidwell, R.W., and Patterson, P.H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 297-302.

Short, S.J., Lubach, G.R., Karasin, A.I., Olsen, C.W., Styner, M., Knickmeyer, R.C., Gilmore, J.H., and Coe, C.L. (2010). Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey. Biological psychiatry 67, 965-973.

Smith, S.E., Li, J., Garbett, K., Mirnics, K., and Patterson, P.H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 10695-10702.

Soncini, R., de Souza, D.F., Neves, A.P., Braga, D.S., Andrade, C.A., and Giusti-Paiva, A. (2012). Dipyrone attenuates acute sickness response to lipopolysaccharide in mice. Neuroscience letters 516, 114-118.

Swerdlow, N.R., and Geyer, M.A. (1998). Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophrenia bulletin 24, 285-301.

Tokes, T., Eros, G., Bebes, A., Hartmann, P., Varszegi, S., Varga, G., Kaszaki, J., Gulya, K., Ghyczy, M., and Boros, M. (2011). Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat. Shock 36, 458-465.

Torrey, E.F., Miller, J., Rawlings, R., and Yolken, R.H. (1997). Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophrenia research 28, 1-38.

Ugwumadu, A. (2006). Infection and fetal neurologic injury. Current opinion in obstetrics & gynecology 18, 106-111.

van Heesch, F., Prins, J., Konsman, J.P., Westphal, K.G., Olivier, B., Kraneveld, A.D., and Korte, S.M. (2013). Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: an intracranial self-stimulation study. Brain, behavior, and immunity 29, 98-103.

Viana, A.F., Maciel, I.S., Dornelles, F.N., Figueiredo, C.P., Siqueira, J.M., Campos, M.M., and Calixto, J.B. (2010). Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide. Journal of neuroinflammation 7, 98.

Vidal, J., and Chamizo, V.D. (2010). The conditioned stimulus elicits taste aversion but not sickness behavior in conditioned mice. Neuroimmunomodulation 17, 325-332.

Vloeberghs, E., Van Dam, D., Franck, F., Staufenbiel, M., and De Deyn, P.P. (2007). Mood and male sexual behaviour in the APP23 model of Alzheimer's disease. Behavioural brain research 180, 146-151.

Vorhees, C.V., Graham, D.L., Braun, A.A., Schaefer, T.L., Skelton, M.R., Richtand, N.M., and Williams, M.T. (2012). Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC. Synapse 66, 725-737.

Vuillermot, S., Weber, L., Feldon, J., and Meyer, U. (2010). A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 1270-1287.

Watanabe, A., Tatematsu, M., Saeki, K., Shibata, S., Shime, H., Yoshimura, A., Obuse, C., Seya, T., and Matsumoto, M. (2011). Raftlin is involved in the nucleocapture complex to induce poly(I:C)-mediated TLR3 activation. The Journal of biological chemistry 286, 10702-10711.

Waterland, R.A., and Michels, K.B. (2007). Epigenetic epidemiology of the developmental origins hypothesis. Annual review of nutrition 27, 363-388.

Weiss, I.C., and Feldon, J. (2001). Environmental animal models for sensorimotor gating deficiencies in schizophrenia: a review. Psychopharmacology 156, 305-326.

Willette, A.A., Lubach, G.R., Knickmeyer, R.C., Short, S.J., Styner, M., Gilmore, J.H., and Coe, C.L. (2011). Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behavioural brain research 219, 108-115.

Wintergerst, E.S., Maggini, S., and Hornig, D.H. (2007). Contribution of selected vitamins and trace elements to immune function. Annals of nutrition & metabolism 51, 301-323.

Wolff, A.R., and Bilkey, D.K. (2008). Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring. Behavioural brain research 190, 156-159.

Wolff, A.R., and Bilkey, D.K. (2010). The maternal immune activation (MIA) model of schizophrenia produces pre-pulse inhibition (PPI) deficits in both juvenile and adult rats but these effects are not associated with maternal weight loss. Behavioural brain research 213, 323-327.

Yee, N., Ribic, A., de Roo, C.C., and Fuchs, E. (2011). Differential effects of maternal immune activation and juvenile stress on anxiety-like behaviour and physiology in adult rats: no evidence for the "double-hit hypothesis". Behavioural brain research 224, 180-188.

Yirmiya, R. (1996). Endotoxin produces a depressive-like episode in rats. Brain research 711, 163-174.

Zuckerman, L., Rehavi, M., Nachman, R., and Weiner, I. (2003). Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 28, 1778-1789.

Zuckerman, L., and Weiner, I. (2003). Post-pubertal emergence of disrupted latent inhibition following prenatal immune activation. Psychopharmacology 169, 308-313.

Zuckerman, L., and Weiner, I. (2005). Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. Journal of psychiatric research 39, 311-323.

Universiteit of Hogeschool
Biomedische wetenschappen: neurosciences
Publicatiejaar
2013
Kernwoorden
Share this on: