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Summary

In this master thesis, numerical research is performed on the global buckling of eccentrically loaded
cellular members, i.e. members with openings introduced in the web subjected to a strong-axis bend-
ing moment and axial compressive force. The application of cellular members is especially favourable
for longer spans due to the higher moment-of-inertia-to-weight ratio of cellular members compared to
plain-webbed members. Different design rules are applicable to describe the global buckling of eccen-
trically loaded plain-webbed members: the design rules proposed by the ECCS and the formulations
currently adopted in Eurocode 3.
This work will serve as an extended research of the numerical study performed in (Gevaert, 2010) on
plain-webbed members, where design rules ECCS-Vandepitte, ECCS-Van Impe were compared with
Method 1 adopted in Eurocode 3. However, since ECCS-Van Impe has been adapted afterwards based
on the research of D. Gevaert and to clarify the assumptions made in Gevaert’s work, part of his
study was repeated, but extended with Method 2 of Eurocode 3. Afterwards, a parametric study was
performed on cellular members with the finite element program Abaqus. The numerical results were
compared with the four mentioned design rules, adapted to take into account the openings in the web.
Similar findings as for plain-webbed members were possible, showing that application of the design
rules of Eurocode 3 and ECCS-Van Impe is generally safe, except for short length members. For longer
lengths, the analytically obtained results are very conservative compared to the numerical values. De-
sign rule ECCS-Vandepitte is in general unsafe, but similarly as for the other methods, the safety of
this design rule is increasing with increasing length. Consequently, application of ECCS-Vandepitte is
safe for longer lengths and can be an alternative to the conservative approach of other methods.

Keywords: Eccentrically loaded compression members, Flexural buckling, Lateral Torsional Buckling,
Web openings, Finite Element Analysis, Abaqus

v



vi



Global buckling of eccentrically loaded cellular
members
Melissa Kerkhove

Supervisor(s): dr. ir. Delphine Sonck, prof. dr. ir.-arch. Jan Belis

Abstract— A numerical investigation was performed on

global buckling of eccentrically loaded cellular members as

an extension of the study on plain-webbed members by D.

Gevaert. Four available design rules for members subjected

to combined bending and compression were compared: the

formulations of the ECCS (ECCS-Vandepitte and ECCS-

Van Impe) and the design rules currently adopted in Eu-

rocode 3 (Method 1 and Method 2). The four design rules

are applicable to plain-webbed members, but were adapted

to take into account the web openings. The analytical results

were further compared with the results of numerical simu-

lations executed with the finite element program Abaqus. In

this way, general conclusions can be drawn about the safety

and applicability of the four different design rules.

Keywords— Eccentrically loaded compression members,

Flexural buckling, Lateral Torsional Buckling, Web open-

ings, Finite Element Analysis, Abaqus

I. INTRODUCTION

To restrict the wide topic of eccentrically loaded mem-
bers, only simply supported doubly symmetric members
subjected to a strong axis-bending moment and axial load
were considered. The rotation around the x-axis as well as
the displacement in y- and z-direction are obstructed.

Fig. 1. Members subjected to bending moment (a) and axial
load (b).

Although numerical research on plain-webbed members
was already performed in [1], it was necessary to clarify
the assumptions made in Gevaert’s work regarding among
others the cross-section classification and the exact formu-
lation of the ECCS-Van Impe design rule. The Van Impe
design rule was namely adapted during the years to bet-
ter correspond to the design rules adopted in Eurocode 3.

Therefore, it was uncertain based on which formulation the
conclusions regarding the safety of this design rule were
drawn. Eventually, it was decided to repeat part of the
study of Gevaert, extended with the six additional profiles
that were used as parent sections of the cellular members
to extend the limited research on plain-webbed members.
Additionally, comparison was also made with the analyt-
ical expressions of Method 2, which were not considered
by Gevaert. Finally, the results of this extended study on
plain-webbed members could be compared with the results
of the parametric study on cellular members.

II. STUDIED CASES

Three different moment distributions were considered
(Fig. 2) determined by the parameter  , expressing the
ratio between the moments at both end sections. The rela-
tion between the applied bending moment and axial load
is determined by the parameter µ (Eq. 1), for which seven
different values were considered (Fig. 3).

µ =

MEd,left

Mcr

NEd
Ncr,z

(1)

Fig. 2. Considered values of  .

Fig. 3. Considered values of µ.

III. DESIGN RULES

In total, four different design rules are compared:
ECCS-Vandepitte, ECCS-Van Impe, EC3-Method 1 and
EC3-Method 2. Design rule ECCS-Van Impe was based



on ECCS-Vandepitte, but adapted to obtain a better cor-
respondence with the Eurocode formulations. In Method
1 of Eurocode 3, individual factors are introduced to re-
flect the influence of different physical phenomena with a
high level of accuracy. In contrast to the transparency of
Method 1, simplicity is enhanced with Method 2 by us-
ing one compact interaction factor. It should be noted that
the lateral-torsional buckling resistance was determined
based on the Modified General method, in which a mod-
ification factor f is introduced to take into account non-
uniform bending moments. Due to this modification fac-
tor, an increase in lateral-torsional buckling resistance of
25% can be obtained for members under double curved
bending ( = �1) and for an optimal value of the non-
dimensionless slenderness �

LT

of 0.8.

Based on the value of  and µ, the initial axial load
and bending moment were determined according to Eqs.2-
3. For M

start

, a value of 1 kNm was considered. Both
analytically and numerically (GMNIA analysis) the load
proportionality factor can be determined, i.e. the factor by
which the starting values of M and N should be multiplied
to obtain the failure load.

M = �
start

M
start

(2)

N = �
start

N
start

(3)

IV. NUMERICAL SIMULATIONS

As geometric imperfection, a half-sine wave with ampli-
tude L/1000 was considered as out-of-plane imperfection
for both the plain-webbed and cellular members. Prefer-
ence was given to quadratic shell elements S8R5 with re-
duced integration to obtain accurate results at a reasonable
cost. A mesh size of six elements per flange with was cho-
sen based on a preliminary refinement study. The cross-
sectional properties were calculated based on a wire model
(c=h-t

f

-2r) to obtain a better correspondence with the nu-
merical model, in which fillets are omitted. However, the
cross-section classification itself is performed according to
EC3 (c=h-2t

f

-2r).

A. Plain-webbed members

For the plain-webbed members, 840 GMNIA simula-
tions were executed on the ten profiles considered by
Gevaert and 504 on the six profiles that will be used as
parent sections for the plain-webbed members. The resid-
ual stress pattern as proposed in [2] was introduced in the
model using a user subroutine (Fig. 4).

Fig. 4. Residual stress pattern plain-webbed members [2].

B. Cellular members

Due to the additional cutting and welding procedure for
cellular members, an increase of the compressive residual
stress in the flanges can be noticed, resulting in a modified
residual stress pattern. Therefore, the residual stresses in
cellular members have a more detrimental effect on the
global buckling resistance compared to residual stresses in
plain-webbed members. A preliminary proposal for this
adapted residual stress pattern was made in [3] (Fig. 5).

Fig. 5. Proposed residual stress pattern cellular members [3].

For the cellular members, in total 2520 GMNIA (420
per section) and 420 LBA analyses were performed. The
examined parent sections are given in Fig. 6.

Fig. 6. Examined parent sections.

V. CONCLUSION

Similar findings were possible for plain-webbed mem-
bers as well as for cellular members. It can be con-
cluded that design-rules ECCS-Van Impe, EC3-Method 1
and EC3-Method 2 are safe, except for shorter lengths. In
general, safety is increasing with increasing length. There-
fore, application of design rule ECCS-Vandepitte would be
a good alternative to the other design rules, showing a large
safety for longer lengths. Design rule ECCS-Vandepitte is
however not applicable for short and intermediate lengths.



This is illustrated in Fig. 7 by means of normalized prob-
ability density functions, from which the insecurity of ap-
plying this method can be noticed. The largest variability
in the results was obtained for members subjected to a non-
uniform bending moment ( = �1).

Fig. 7. Normal probability density functions of deviations
�LPF according to method ECCS-Vandepitte.

The difference between the four different design rules
is illustrated for cellular members in Figs. 8-10, but
similar findings are possible for plain-webbed members.
For members subjected to a constant bending moment
( = 1), largest deviations are clearly observed for method
ECCS-Vandepitte, as mentioned previously. Similar devi-
ations in load proportionality factor are obtained for the
other methods.

Fig. 8. Normal PDF of �LPF according to four different meth-
ods ( = 1).

Compared to  = 1, a much larger standard deviation
can be observed for  = 0 (Fig. 9) for all methods.
It should be noted that application of design rule ECCS-
Vandepitte is still unsafe, whereas design rules ECCS-Van
Impe and EC3-Method 2 are becoming conservative for
longer lengths. Therefore, application of EC3- Method 1
for = 0 can be a could alternative. For = �1, the stan-
dard deviation of all distribution functions is even larger
and very conservative results are obtained by application

of methods ECCS-Van Impe and EC3-Method 2. Applica-
tion of EC3-Method 1 is therefore a good alternative, but
for  = �1 even ECCS-Vandepitte can be preferred. Ex-
cept for short length members, application of the latter is
safe and less conservative than the other methods.

Fig. 9. Normal PDF of �LPF according to four different meth-
ods ( = 0).

Fig. 10. Normal PDF of �LPF according to four different meth-
ods ( = �1).
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Chapter 1

Introduction

When circular web openings with regular spacing are provided along the length of I-section members,
the members are designated as cellular members. Also castellated members with hexagonal openings
are commonly used, but these will not be focused on in this work. Alternative opening shapes were
recently introduced of which AngelinaTM beams, a variant of castellated beams but with sinusoidally
shaped openings, are most often applied (Fig. 1.1). These alternative opening shapes are outside
the scope of this work. For a detailed description on the application and geometry of these specific
members, the reader is referred to (ArcelorMittal, 2008b). (Aa, 2008aa).

Figure 1.1: Cellular, castellated and AngelinaTM beams. Extracted from (ArcelorMittal, 2008b).

1.1 Advantages/disadvantages

The openings of cellular members can have a diameter up to 80% of the member’s height with only a
limited intermediate distance between the openings, resulting in a transparent design (ArcelorMittal,
2008c). Besides the lighter appearance of cellular members, the most important advantage is that
increased spans (in the region of 40 m) are possible due to their higher moment-of-inertia-to-weight
ratio. Furthermore, service ducts can be guided through the openings, reducing the floor-to-floor
height. Disadvantages are the lower shear capacity, the modified failure pattern and therefore the
larger calculation effort. Furthermore, cellular members are less suitable for concentrated loads and
despite their more economic material use, the production costs will be higher.

1.2 Application as beam-columns

Cellular members have already been applied for more than thirty years, but principally as beams
loaded in strong-axis bending, taking advantage of their increased bending resistance compared to
plain-webbed members. In this master thesis however, another application as beam-columns subjected
to a combination of bending moment (M) and axial compressive force (N), is being focused on. The
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4 CHAPTER 1. INTRODUCTION

bending moment is possibly arising from the eccentric application of an axial force in longitudinal
direction or determined by the boundary conditions and transversal loads.
The specific application as columns is less common and their design mostly based on conservative
rules and good engineering judgement. The question can be asked whether applying cellular members
vertically is useful, because for lower height columns the presence of the openings will decrease the
axial capacity. The contribution of the web to the axial capacity is larger than to the strong-axis
bending moment resistance. Therefore, the impact of the web perforations will be larger for columns
than for long span beams.
However, for slender columns weak-axis flexural buckling is the dominant factor regarding column
design, not the pure axial capacity (Verweij, 2010). One of the factors influencing this buckling capacity
is the radius of gyration i (

p
I/A). By introducing openings in the web, the radius of gyration will

increase as well as the ratio between the buckling capacity and the pure axial load capacity. In this
way, for slender columns this increase will compensate the reduced pure axial load capacity. Therefore,
a nearly equal buckling load can be found for cellular columns as for plain-webbed members. However,
the use of cellular columns is favourable with regard to the more economical use of materials and the
reduced horizontal deflections induced by wind loads. Compared to their parent sections, the height
of cellular members is increased and consequently also the second moment of area, minimising the
horizontal deflections. On the contrary, for lower height columns, introducing openings is not proven
economical and is mainly driven by aesthetics.

1.3 Production method cellular members

Three different manufacturing methods for cellular members are described in (Lawson & Hicks, 2011).

• Isolated openings are cut in the web of symmetric hot-rolled sections. This method is only
applicable for isolated openings, not for multiple openings as considered in this work.

• An I-section is formed by welding three steel plates together. Prior to the welding process,
openings are cut in the web. This production method is applicable for both isolated and regularly
spaced web openings and can also be used for asymmetric or tapered sections. For tapered
sections, a linear variation of the height of the web is obtained by cutting the web at an angle to
the central axis.

• An existing H- or I-shaped hot-rolled plain-webbed member is cut according to a regular pattern
along the web. Afterwards, by shifting and re-welding the separated top and bottom sections, the
resulting profiles will be 40-60% higher compared to their parent section (Fig. 1.2). Asymmetric
sections can also be achieved by executing the cutting process on two different base sections.

The second method is still applied by Fabsec (UK), although the last manufacturing process is more
commonly used by amongst others ArcelorMittal (Luxembourg) and Westok (UK) and will be consid-
ered in this work. Other fabricators of cellular and castellated beams are CMC Steel Products (USA),
New Millennium (USA), Tata Steel Europe Limited, Peiner Träger GmbH (Germany), Macsteel Trad-
ing (South Africa), Grünbauer BV (The Nederlands).

1.4 Residual stresses

Residual stresses can have a detrimental influence on the buckling strength of structural steel members.
These longitudinal stresses will introduce a system of forces within the cross-section which are always
in internal static equilibrium. Due to uneven cooling or heating during the manufacturing process,
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Figure 1.2: Manufacturing process of cellular members according to method 3. Extracted from (Westok,
2013).

residual stresses will be induced. Furthermore, other fabrication operations such as cold-deformation,
punching, cambering, welding will influence the formation of residual stresses.

1.4.1 Parent sections

As described in (Young, 1975), residual stresses in I-section members will be generated during the
cooling stage of the hot-rolling process. Variability in rolling technique and the corresponding cooling
conditions after rolling will introduce different residual stress patterns in the members. The flange tips
and the center of the web will cool first; the cooling process at the web to flange junction will be slower.
There will be a thermal contraction at the web-to-flange intersection upon cooling. This is however
restricted by the already cooled flange tips, resulting in tension at the flange-web intersection.
The residual stress pattern for hot-rolled members proposed in (ECCS, 1984) based on the height-
to-width ratio is depicted in Fig. 1.3. A distinction is made between sections with h/b  1.2 with
a corresponding stress magnitude of 0.5 f

y

and sections for which h/b > 1.2. For the latter, the
stress magnitude is 0.3 f

y

. Due to plasticity at the compressed tips, the flexibility and consequently
the buckling resistance of the member are reduced. Residual stresses have therefore a detrimental
influence on the buckling strength, especially on the resistance against weak-axis buckling.

Figure 1.3: Residual stress distribution for hot-rolled members proposed in (ECCS, 1984).
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1.4.2 Cellular and castellated members

Due to the additional cutting and welding process of cellular members, an increase of the compressive
residual stress in the flanges is possible. Hence, it is expected that the modified residual stress pattern
of cellular and castellated members will have a more detrimental effect on the global buckling resistance
compared to the residual stresses present in the corresponding parent sections.
In recent research performed by (Sonck, 2014), a proposal was made for this modified residual stress
pattern, based on residual stress measurements in both castellated and cellular members with IPE
160 profiles as parent section. The castellated members were fabricated by a standard production
procedure, while a deviating fabrication procedure was applied for the cellular members, by cutting
circular openings around the hexagonal openings of the castellated members. The cutting procedure
was not applied over a length of 1 m at the end of the member, to allow for comparison with the stress
pattern of the parent section.
The obtained residual stress patterns of the parent sections showed a good correspondence with the
proposed pattern by the ECCS. For the section halves after thermal cutting, a counteracting effect
on the residual stress pattern was noticed due to the mechanical effect of the elastic rebound and the
thermal effect of the local heat input. Both effects cannot be added linearly due to the non-linear
effects of plasticity during the cutting procedure, but the combined influence on the measured stress
pattern in the flanges was found to be rather limited.
After welding of the tee sections, the measured residual stresses in the castellated and cellular members
were compared with the initial stress pattern proposed by the ECCS (Fig. 1.3). An increase of the
compressive stress in the flanges could be noticed. This can be explained by the increased tensile
stresses at the web due to the extra heat input during the cutting and welding procedure, which must
be balanced by the compressive stresses in the flanges.

a) Variation of original stress pattern in
plain-webbed members h/b>1.2 (ECCS). b) Cellular and castellated members (Sonck, 2014).

Figure 1.4: Proposed residual stress patterns.

Considering the original stress pattern as proposed by the ECCS for a yield strength f
y

of 235 MPa,
a stress amplitude of 70 MPa (0.3 f

y

) was obtained for h/b >1.2 and 120MPa (0.5 f
y

) for h/b  1.2.
The proposal by (Sonck, 2014) implements a stress decrease of 20MPa at the web-flange connection;
for the flange tips, a decrease of 30MPa is proposed. The suggested adaptations of the original ECCS
stress pattern for the specific case of an IPE profile (h/b >1.2) are indicated in Fig. 1.4a. The final
proposal of the residual stress pattern by Sonck, depending on the depth to width ratio of the original
parent section, is depicted in Fig. 1.4b.
The residual stress pattern is assumed to be constant along the member’s length, with a constant
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tensile strength in the web at the tee section and at the web post. (Eq. 1.4.1, notation according to
Fig. A.1).

�
res,web

= 50MPa ·
bt

f

(H � t
f

� a) t
w

(1.4.1)

This adapted residual stress pattern is proposed for both cellular and castellated members based
on a standard fabrication procedure. It should be noted that the proposed stress pattern is still
preliminary and should be further investigated. However, preference was given to implement the
modified stress pattern already in the numerical simulations of the cellular members, since with this
pattern a better correspondence of the actual stress pattern could be obtained than in case the stress
pattern of plain-webbed members would be used. In case the circular openings are obtained by a
non-standard fabrication procedure, a modified stress pattern should be applied (Sonck, 2014).

1.5 Failure modes of cellular members

Two types of failure modes can be identified for cellular members: global and local failure. Global
failure modes are essentially similar to those observed for plain-webbed members with lateral-torsional
buckling and flexural buckling of main interest in this work. Failure loads can therefore be predicted
according to the established methods, but taking into account a few modifications, e.g. the cross-
sectional properties should be calculated at the centre of the openings (2T approach) and the buckling
curves should be altered to take into account the adapted residual stress pattern. For cellular members
however, due to the different shear transfer through the web openings, additional local failure modes
can be observed. High shear forces in the member can result in among others the formation of a
Vierendeel mechanism, different types of web post failure or shear buckling. This work has however
not the aim to give a detailed description of the different failure modes, but is mainly introduced since
web-post buckling was observed during the GMNIA analyses.

1.5.1 Vierendeel mechanism

This failure mode is characterized by the formation of four plastic hinges at the corners of the web
openings due to local bending. The mechanism is often examined for members with large openings
and is most detrimental in case of short length members where shear is dominating. Furthermore, due
to the lower plastic resistance of narrow tee sections, the occurrence of the Vierendeel mechanism is
more likely. For further information, the reader is referred to (Tsavdaridis et al., 2012); (Kerdal &
Nethercot, 1984).

1.5.2 Web post buckling

Web post buckling can be visually observed by an out-of-plane displacement of the web post. The
S-shaped displacement of the web post is characteristic for this failure mode (Fig. 1.6a). The web
post will be subjected to a combination of horizontal shear and double curvature bending. Both
compressive and tensile forces will act across the web post on opposing diagonals. This will result in
an inclined compression strut across the member’s height (1.6b). Web post buckling can result from
the compressive stresses along this compression strut and local buckling was observed adjacent to the
openings. This failure mode is further discussed in (Kerdal & Nethercot, 1984); (Durif et al., 2013);
(Tsavdaridis et al., 2012); (Tsavdaridis & D’Mello, 2011).
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Figure 1.5: Vierendeel mechanism with formation of plastic hinge. Extracted from (Durif et al., 2013).

1.5.3 Shear resistance

To calculate the shear resistance of cellular members, the shear area at the web opening should be
taken into account. Under high shear forces, the web can buckle locally and the presence of the web
openings will have a detrimental effect on this failure mode, which was also observed for plain-webbed
members (Durif et al., 2013).

a) Inclined compression line over web post’s height. Ex-
tracted from (Durif et al., 2013).

b) Compressive and tensile forces across the web post.
Extracted from (Durif et al., 2013) and (Tsavdaridis &
D’Mello, 2011).

Figure 1.6: Web-post buckling cellular member.

1.6 Previous and recent research

Due to the presence of the openings, the structural behaviour of these members is modified and the
global buckling behaviour of members under a compressive force and strong-axis bending moment will
be different than for plain-webbed members. To the author’s best knowledge, up to now no investigation
is carried out on eccentrically loaded cellular or castellated members. Recent research was performed
in (Sonck, 2014) for the extreme load cases of only bending or compression of cellular and castellated
members with respectively lateral torsion buckling (LTB) and weak-axis flexural buckling (FB) as
governing instability modes (Fig. 1.7). Furthermore, in (Gevaert, 2010) the member’s resistance of
eccentrically loaded plain-webbed members was investigated. A numerical study was performed and
the results compared with the analytical results of different design approaches.
The proposed approaches are based on the available resistance calculation methods in the European
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Standard EN 1993-1-1 (CEN, 2005), in the remainder referred to as EC3 (Eurocode 3). For the com-
bination of compressive force and bending moment, two different approaches can be found in EC3,
Method 1 and 2, of which only Method 1 is applicable in Belgium and Method 2 was therefore not
considered by Gevaert. Additionally, the member’s resistance was determined according to an alter-
native set of design rules of the European Convention of Constructional Steelwork (ECCS), although
considered less economically compared to the EC3 design rules. However, the theoretical interpretation
of the ECCS design rules is more straightforward compared to the complex shaped EC3 design rules of
Method 1 including different factors reflecting the physical phenomena. The design rules according to
the ECCS approach are listed in (Vandepitte, 1979) and afterwards adapted by Van Impe (Van Impe,
2010) based on the research by Gevaert. A detailed description of the parameters varied in Gevaert’s
parametric study and the results for the combined compression and bending case on plain-webbed
members are given in Chapter 3.

Figure 1.7: Overview prior research master thesis.

1.7 Overview thesis research

The numerical model in this work will be based on the model used in (Sonck, 2014) for the investigation
of global buckling on cellular and castellated members. However, this work will serve as an extended
research of the numerical study performed in (Gevaert, 2010) on eccentrically loaded plain-webbed
members. Therefore, in order to clarify the assumptions made in Gevaert’s work regarding among
others the cross-section classification and the exact applied formulation of the design rule ECCS-Van
Impe (due to adaptations over the last years), first a parametric study will be performed on the same
profiles considered in (Gevaert, 2010). This study was extended with Method 2 of EC3 considering the
more user-friendly approach and therefore possible advantage of this method. The available analytical
results from Gevaert could also serve as an additional check to avoid mistakes in the Python scripts
created for the analytical calculation of the design rules. A detailed interpretation of the results and
comparison with both analytical expressions as well as the results of the investigation of Gevaert are
given in Chapter 3.
Afterwards, this parametric study on plain-webbed members will be extended with the six profiles,
which where considered in (Sonck, 2014) as parent sections for the parametric study of cellular and
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castellated members (Fig. 1.8). This additional research is performed as additional validation of the
applied model and to extend the limited amount of numerical investigations of plain-webbed members
subjected to combined bending and compression. The results of both sets of profiles will be compared
and possible additional information or limitations of the study of Gevaert are derived.
Finally, also a parametric study is executed on cellular members with these six profiles as parent
sections. The proposed adapted residual stress pattern by Sonck for cellular and castellated members
will be implemented in the model. However, it should be noted that experimental measurements of
residual stresses were only executed on light parent section geometries (IPE160). Although it can be
expected that the production process of cellular and castellated members will have a similar influence
on heavier sections, additional residual stress measurements should be performed to confirm the validity
of the proposed stress pattern.

Figure 1.8: Overview thesis research.

Finally, by comparing analytical formulations with the numerical results from the parametric study on
cellular members, the following questions will be answered throughout this thesis.

• What is the effect of the web openings of cellular members on the buckling resistance of members
subjected to a combination of an axial compressive force and bending moment?

• Is it possible to apply the standard formulations listed in EC3 or alternative expressions proposed
by the ECCS, valid for plain-webbed members for the special case of cellular members considering
a 2T approach?

• Which of the different expressions shows the best agreement with the numerical results?

• What is the influence of the adapted residual stress pattern proposed in (Sonck, 2014) on the
member’s buckling resistance of eccentrically loaded members?

1.8 Organisation of the thesis

Part 1 In Chapter 2, first an overview of the stability rules is given for the limit cases of flexural
buckling and lateral-torsional buckling. Afterwards, the design rules applicable for eccentrically loaded
members are discussed: ECCS-Vandepitte, ECCS-Van Impe, EC3-Method 1 and EC3-Method 2.

Part 2 In Chapter 3, first the determination of the load-proportionality factor is discussed. After-
wards an overview is given on the considered cross-sections for the parametric study on plain-webbed
members. Finally, the results of the numerical study are compared with the analytical formulae.
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In Chapter 4, a short description of the extended parametric study on the six profiles that are used as
parent sections for the cellular members is given.

In Chapter 5, the profiles considered for the parametric study on cellular members are discussed and
the numerical results are compared in different ways to the analytical formulae.
Finally, a general conclusion is drawn in Chapter 6 referring to the research questions of Section 1.7
and suggestions for further research are made.
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Chapter 2

Stability design rules

2.1 Member behaviour

The response of members loaded by axial forces and bending moments can be characterized by the
load-deformation diagram depicted in Fig. 2.1 (Trahair et al., 2007). A linear response until the yield
strength is reached can be assumed theoretically for perfectly straight elastic members (curve 1). Ac-
cording to an elastic buckling theory, the elastic member will become unstable at the bifurcation point
(intersection curve 1 and 4), corresponding to the critical buckling load. At this critical load sudden
failure is caused by the presence of small stress concentrations, imperfections or other disturbances.
In reality, if residual stresses are taken into account, the material will show early non-linearity (curve
2). Depending on the yield stress f

y

, a condition of full plasticity can be reached.
Additionally, geometric imperfections or load eccentricities will cause geometric non-linear behaviour
(curve 3) of compressed and laterally unsupported members, depending on the modulus of elasticity
E and the shear modulus G. The corresponding deformations are quite large, the load-deflection curve
approaching the elastic buckling load (curve 4). Global geometric deformations have a detrimental
effect on the global buckling resistance; the effect of local geometric deformations is small (Trahair et
al., 2007).

Figure 2.1: General structural behaviour of steel member. Extracted from (Trahair et al., 2007).

For beam-columns subjected to a combination of bending moment and axial load, both material and
geometric non-linearities should be considered. Due to material non-linearities a maximum in the
load-deflection diagram is reached, i.e. the buckling resistance (curve 5). Therefore for members

13
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with combined axial and flexural loads, the failure load is determined by an interaction of yielding
and buckling and derived by performing a large number of GMNIA analyses (Geometric Material and
Nonlinear Analyses with Imperfections) for different loading conditions. However, due to the stabilizing
effect of the pre-buckling deflections the load deflection curve can be constantly increasing without the
presence of a maximum in the load-deflection curve. This stabilizing effect can for example be examined
for the lateral-torsional buckling behaviour of members subjected to a strong-axis bending moment.

2.2 General

The applied notations of the cross-sectional dimensions for the plain-webbed members and for the
parent sections of the cellular members are denoted in Fig. 2.2. Also the applied convention of the
principal y- and z-axes is indicated. The x-axis corresponds to the member’s direction; the member’s
length is L. Furthermore, the convention for the extreme load cases corresponding with only strong-axis
bending (M) and only a compressive force in longitudinal direction (N) are depicted (Fig. 2.2, a and
b).
It should be noted that for the finite element model a numerical model will be used consisting of shell
elements without including the fillet (denoted with radius r) at the web-flange intersection (Section
3.5). Therefore, the calculation of the cross-sectional properties will be based on a wire model, in
which the omission of the fillet is partly compensated by the overlap at the web-to-flange transition.
This simplification will introduce some discrepancies between the analytically calculated and real cross-
sectional properties of hot-rolled members. Although in (Taras, 2010) only small differences in buckling
curves were obtained for numerical models with or without omission of the fillet, the use of the wire
model can have a large effect on the cross-section classification and therefore determine if the calculation
should be performed according to an elastic or plastic theory. This influence of the considered model
on the cross-section classification will be further discussed in the results of the parametric study on
plain-webbed members (Chapter 3). In Fig. 2.2, the total height is denoted with h, including the
flanges (with thickness t

f

); the thickness of the web is indicated with t
w

.

Figure 2.2: Axis conventions, extreme load cases and boundary conditions. Extracted from (Sonck, 2014).

In the remainder of this thesis, to restrict the wide topic of eccentrically loaded members, some limi-
tations will be imposed.

• The members are simply supported with fork-supports at the end. The rotation around the
x-axis and well as the translation in y- and z-direction are obstructed, not the rotation around
the y- and z-axis;

• Only doubly symmetric I-section members are considered. The principle axes coincide with the
axes of symmetry and the shear centre D with the centre of gravity G.
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• It is assumed that members are only subjected to a combination of a strong-axis bending moment
M and compressive axial load N in longitudinal direction, i.e. in the vertical plane of symmetry
XY. Only an eccentricity e

z

from the centre of gravity G is considered, e
y

= 0 (Fig. 2.3).

Figure 2.3: Compressive axial load in longitudinal direction with eccentricity e
z

.

In Appendix A an overview is given of the standard expressions of the cross-sectional properties for
doubly symmetric plain-webbed I-section members.

2.3 Column buckling

Before the available design rules for members under the combined action of axial load and bending
moment are discussed, the limit behaviour of beam-columns will be examined more in detail, i.e.
lateral torsional buckling of beams under pure bending and flexural buckling of column under pure
compression.

Figure 2.4: Limit behaviour of beam-columns: lateral-torsional buckling and flexural buckling.

2.3.1 Buckling resistance ECCS

In this section the calculation of the buckling resistance that should be applied in the stability design
rules of Vandepitte for eccentrically loaded members is described. Different from EC3, according to
the ECCS the buckling resistance of members under axial force is determined by the parameters ⌫
and ! (Eq.2.3.1). For hot rolled sections, ! equals 1. The buckling curves are defined based on a
similar devision as for the residual stresses. Logically I profiles with small flanges (h/b > 1.2) and
lower residual stress values (�

res,max

= 0.3f
y

) correspond with higher buckling curves compared to
profiles h/b  1.2 with higher residual stresses (Table 2.1).
The value of ⌫ is determined based on the reduced slenderness �, listed in tables in (Vandepitte, 1979).
The listed values of ⌫ were approximated by the analytical expression (Eq.B.1.8) in (Vandepitte, 1979),
for which a good correspondence was found with the actual values. The deviation between the buckling
curves obtained by the listed values of the ECCS and those obtained from the analytical approximation
is illustrated in Fig. 2.5. Also the Euler curve is depicted corresponding with the buckling behaviour
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of a perfectly straight, elastic member without imperfections. The value of ↵ is given in Table 2.2 and
depends on the type of buckling curve.

N
b,Rd

= ⌫Af
y

! (2.3.1)

� =

s
Af

y

N
cr

(2.3.2)

⌫ =
1

2�
2

"
1 + ↵

�
�� 0.2

�
+ �

2 �
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1 + ↵
�
�� 0.2

�
+ �

2
i2

� 4�
2

#
(2.3.3)

It should be noted that for the design formula of Vandepitte the buckling resistance N
b,Rd

should
be determined with an increased yield strength depending on the flange thickness and the real yield
strength of the material. This increased value of f

y

should be introduced in both Eqs. 2.3.1 and 2.3.2.
Attention should be paid that the increased yield stress is only applicable on formulae of Vandepitte.
The ECCS formulae adapted by Van Impe and the Eurocode Method 1 and 2 approach are based on
the nominal value of f

y

.

Figure 2.5: Deviation of buckling curves ECCS with analytical approximation.

Table 2.1: Buckling curves ECCS for S235 and t
f

< 40mm.
Buckling axis h/b Buckling curve

y-axis > 1.2 a
 1.2 b

z-axis > 1.2 b
 1.2 c

Table 2.2: Imperfection factor ↵ for buckling curves ECCS.
Buckling curve a0 a b c d

Imperfection factor ↵ 0.125 0.206 0.339 0.489 0.756
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Table 2.3: Yield strength for buckling resistance ECCS.
t
f

[mm] Fe 360/ S235
t
f

 20 255
20 < t

f

 30 240
30 < t

f

 40 225

2.3.2 Buckling resistance EC3

To start with, it should be noted that the design buckling resistance of a compression member according
to EC3 is applied in the stability design rules of eccentrically loaded members for all methods, except
for the method ECCS-Vandepitte. Also for the method ECCS-Van Impe, a EC3 approach is applied for
the buckling resistance, which is given by Eq. 2.3.4, with f

y

the yield stress, �
M1 the partial factor for

the ’resistance of members to instability assessed by members checks’ (CEN, 2005), A the cross-section
area and � the reduction factor for the relevant buckling mode as given in Eq.2.3.5.

N
b,Rd

=
�Af

y

�
M1

(2.3.4)

� =
1

�+

q
�2 � �

2
(2.3.5)

According to the Belgian National Annex, �
M1 equals 1. Equation 2.3.4 is only valid for cross-sections

of class 1, 2 and 3. For cross-sections of class 4, the effective area should be introduced instead of
A. The reduction factor � is a function of the reduced slenderness � (Eq.2.3.6) and the intermediate
factor � (Eq. 2.3.7). The same remark for � as for Eq.2.3.4 is valid in case of cross-sections class 4.

� =

s
Af

y

N
cr

(2.3.6)

� = 0.5
h
1 + ↵(�� 0.2) + �

2
i

(2.3.7)

The factor � is determined by the reduced slenderness and the imperfection factor ↵, which depends on
the cross-section geometry, the yield strength, the fabrication process and buckling plane. Appendix
A, Table A.3 can be applied for the selection of the buckling curve.

Table 2.4: Imperfection factor ↵ for buckling curves EC3.

Buckling curve a0 a b c d

Imperfection factor ↵ 0.13 0.21 0.34 0.49 0.76
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Figure 2.6: Buckling curves according to EC3-1-1. Extracted from (Taras, 2010).

2.3.3 The Ayrton-Perry-Robertson approach

Another important approach to determine the buckling resistance is the Ayrton-Perry-Robertson ap-
proach. This method is discussed more in detail here as it forms the basis of the stability design
rules of beam-columns according to the ECCS. The most important advantage, compared to the EC3
approach, is that second-order effects due to structural and geometric imperfections can be explicitly
introduced in the design formulae.
Consider a simply supported member, subjected to an axial compression force N as indicated in Fig.2.7.
An initial sinusoidal shaped imperfection with amplitude e0 is proposed (Eq.2.3.8).

v0(x) = e0sin
⇡x

L
(2.3.8)

Figure 2.7: Ayrton-Perry derivation for simply supported member.

The Ayrton-Perry formulation that is currently adopted in the Eurocode, is based on the limitation of
the elastically calculated compressive stress to the yield stress (Eq. 2.3.9).

N

A · f
y

+
1

1�N/N
cr

· N · e0
W · f

y

 1.0 (2.3.9)

By introducing the following parameters, Eq. 2.3.9 can be rewritten to the normalized form, given in
Eq.2.3.11. The factor � is calculated according to Eq.2.3.12, with � and ⌘ as defined in Eq.2.3.10.

� =
N

A · f
y

� =

s
A · f

y

N
cr

⌘ =
A · e0
W

(2.3.10)

�+ ⌘ · �

1� � · �2
= 1.0 (2.3.11)
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� = 0.5
h
1 + ⌘ + �

2
i

(2.3.12)

In Eq.2.3.11, ⌘ represents the generalized imperfection, an estimate of the effect of residual stresses,
geometrical and material imperfections and eccentrically applied loads on the buckling behaviour. In
(Maquoi & Rondal, 1978) 7 possible expressions for ⌘ were proposed, of which Eqs.2.3.13-2.3.15 were
also considered in (Taras, 2010). All expressions are a function of some order of � and of the plateau
value �0 = 0.2, below which no reduction in buckling resistance is applied (� = 1).

⌘1 = ↵1 · (�� 0.2) (2.3.13)

⌘2 = ↵2 ·
q
�
2 � 0.22 (2.3.14)

⌘3 = ↵3 · (�� 0.2)2 (2.3.15)

Small discrepancies (less than 2%) were found between the tabulated buckling curves and the proposed
expressions for ⌘1 and ⌘2, considering the best fit value of ↵. Deviations up to 10% were obtained for
⌘3. In (Maquoi & Rondal, 1978) it was suggested to use ⌘1, which corresponds with the current used
formulation of � in the buckling curve expressions, where the generalized imperfection varies linearly
with �, which is in turn a linear function of the buckling length. The linear relationship was developed
based on the assumed imperfection of L/1000, which was adopted for the derivation of the European
column buckling curves (Taras, 2010).

2.3.4 Critical buckling load

The critical load resulting in buckling of members subjected to axial loading will be determined by
the columns’ resistance to torsion and bending. For columns with a doubly symmetric cross-section,
as considered in this work, the buckling modes (Eqs. 2.3.17-2.3.19) are independent. Consequently,
concentrically loaded columns will fail at the lowest of the critical loads associated with their buckling
modes (Eq. 2.3.16).

N
cr

= min(N
cr,z

, N
cr,y

, N
cr,t

) (2.3.16)

a) Weak-axis flexural buckling: displacement v in y-direction

N
cr,z

=
⇡2EI

z

L2
(2.3.17)

b) Strong-axis flexural buckling: displacement w in z-direction

N
cr,y

=
⇡2EI

y

L2
(2.3.18)

c) Torsional buckling: rotation over angle � about the longitudinal x-axis

N
cr,t

=
A

I0

✓
GI

t

+
⇡2EI

w

L2

◆
(2.3.19)
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Figure 2.8: Possible buckling modes at N
cr

: (a) weak-axis flexural buckling, (b) strong-axis flexural buckling,
(c) torsional buckling. Extracted from (Sonck, 2014).

For the simply supported I-section members considered in this work, flexural buckling will occur about
the weak axis (Eq. 2.3.20), except for columns where weak-axis flexural buckling is prevented. Other
exceptions can be found in (Trahair, 1993) for cross-sections with low h/b, t

w

/t
f

, t
w

/h and t
f

/b ratios.

I
z

 I
y

! N
cr,z

 N
cr,y

(2.3.20)

2.4 Lateral-torsional buckling of beams

For beams under pure major axis bending, the lateral-torsional buckling (LTB) phenomenon can be
characterized by a combined lateral and torsional movement. The lateral movement of the compressed
upper part is partly restricted by the lower part of the beam in tension, creating an additional torsional
effect on the member (Fig. 2.9). In this section, first a general formula is given to calculate the critical
moment for LTB for members under constant or non-uniform bending moments. Afterwards, different
approaches in EC3 applicable to calculate the buckling resistance are discussed: the General, Specific
and Modified Specific method. For completeness the new formulation proposed in (Taras, 2010) is
mentioned, although this approach won’t be applied in the remainder of this work.

Figure 2.9: Lateral-torsional buckling of beam loaded in strong-axis bending. Extracted from (Sonck et al.,
2012).

2.4.1 Critical buckling moment

The critical LTB moment M
cr

can be considered as the failure load of an elastic, perfectly straight
member, i.e. the bending moment at the bifurcation point (intersection curve 1 and 4, Fig. 2.1).
Geometric or material non-linearities are not taken into account. The general formula for the practical
calculation of the critical moment as adopted in ENV3 is given in Eq.2.4.1.

M
cr

= C1 ·
⇡2EI
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2
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3

5 (2.4.1)
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where

C1, C2, C3 Modification factors depending on restraint conditions and loading
z
g

Distance between (transversal) load application point and shear centre

z
j

z
s

� 0.5

Z

A

(y2 + z2)
z

I
y

dA

z
s

Coordinate of the shear centre
k
z

, k
w

Effective length factors for respectively in- and out-of-plane buckling

For doubly symmetric cross-sections with end-fork boundary conditions as considered in this work and
with the load acting in the centroid (the shear centre) of the cross-section, the formula can be simplified
to Eq. 2.4.2.

M
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= C1 ·
⇡2EI

z

L2
·

s
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+
L2 ·GI

t

⇡2EI
z

(2.4.2)

By definition, C1 equals 1.0 in case of a uniform bending moment. Non-uniform bending moment
diagrams correspond with values larger than 1, depending on the shape of the diagram as discussed in
the following section.

2.4.2 Non-uniform bending moments

As mentioned previously, the factor C1 in the expression of the critical bending moment can be applied
as a correction factor for members subjected to a non-uniform bending moment. Of special interest
in this work are the linearly varying bending moment lines, defined by the parameter  , expressing
the ratio between the moment applied at the member’s right and left end (M2/M1). In this work,
the investigation will be limited to three  values (1, 0, -1), but the given expressions are generally
applicable for linearly varying moment lines.

Figure 2.10: Values of  for linearly varying moment considered in this work.

From the definition of the non-dimensional slenderness for LTB �
LT

a multiplication factor k
c

can
be derived to adapt the slenderness value for a uniform bending moment (�

LT,U

) to be applicable in
case non-uniform bending moments (�

LT,NU

) are present (Eq. 2.4.3). This factor k
c

is related to the
factor C1 and is mentioned here as the value of k

c

will be required to calculate the buckling resistance
based on the Modified Specific method of EC3. In (NBN, 2005) the values of k

c

for different moment
distributions are tabulated. For a linearly varying bending moment, Eq. 2.4.4 is valid.
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C1 ·Mcr,U
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(2.4.3)
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=
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1.33� 0.33 
(2.4.4)
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Lower bound expressions for C1 were mentioned by (Salvadory, 1955) and (Trahair, 1993), respectively
given in Eqs. 2.4.5 and 2.4.6. Both formulae indicate that for beams in double curvature bending ( =
-1), the corresponding C1 values are approximately 2.5 times larger than in case of uniform bending
( =1). Consequently, for double curved bending, the critical moments M

cr

will be larger, reducing
the normalized slenderness �

LT

and hence increasing the reduction factor �
LT

. Therefore, resulting in
an increased bending moment resistance for members subjected to double curved bending.

C1 = 1.75� 1.05 + 0.3 2  2.5 (2.4.5)

C1 =
1

0.6 + 0.4 
 2.5 (2.4.6)

This can be explained as followed. Under a uniform bending moment ( = 1), deflection will occur
according to a symmetric sine wave, whereas an anti-symmetric double sine wave will be noticed for
double curvature bending ( = -1). This results in an anti-symmetric deflection v in case the twist
rotation � is symmetric. Consequently, the top and bottom flange will deflect respectively to the
left and right side towards the compression zones, enhancing the member’s resistance. The reader
is referred to (Trahair, 1993) for a more detailed description about simply supported beams under a
moment gradient.

Figure 2.11: Deflection under double curvature bending ( = �1). Based on (Trahair, 1993).

In this work the formula adopted in (ECCS, 2006) will be used as value of C1, applicable for any ratio
of end loading. The different formulae for C1 are depicted in Fig. 2.12. Besides the considered linearly
varying bending moment in this work, two other load conditions are often found and worth mentioning:
(i) a constant distributed line load over the member’s length and (ii) a point load applied at mid-span.
For these load conditions the corresponding C1 factor according to EC3 is respectively 1.12 and 1.35
and therefore a lower critical moment will be found than for members under double curvature bending
( = �1).

C1 = 1.77� 1.04 + 0.27 2  2.60 (2.4.7)

The formula of EC3 is only slightly deviating from the expression proposed by Salvadory, but with a
lower upper limit (2.5 instead of 2.6). By applying the equation of Trahair, a higher critical moment
is obtained for   �0.3 compared to Salvadory; values of  higher than -0.3 correspond with a lower
critical LTB moment. Values of C1 are ranging from 2.6 to 1.0 for respectively  = �1 and  = 1.
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Figure 2.12: Values of factor C1 for different linearly varying bending moment lines.

2.4.3 Buckling resistance

The critical LTB moment M
cr

could be regarded as the failure load of an elastic, perfectly straight
member. In reality however, the nonlinear geometric and material behaviour as well as the imperfec-
tions should be taken into account by the reduction factor �

LT

in the design buckling resistance M
Rd

.
For a laterally unrestrained member subjected to major axis bending, the LTB resistance is given by
Eq.2.4.8. According to the Belgian National Annex �

M1 equals 1.

M
Rd

=
�
LT

W
y

f
y

�
M1

(2.4.8)

Depending on the cross-section classification, a plastic (class 1-2), elastic (class 3) or effective (class 4)
section modulus W

y

should be used. Three methods to determine the buckling resistance are proposed
in EC3, each method using different sets of formulae for the reduction factor �

LT

or another choice of
buckling curves. In addition, the alternative approach of Taras is briefly mentioned.

• General Method (EC3, Section 6.3.2.2)

• Specific Method (EC3, Section 6.3.2.3)

• Modified Specific Method (EC3, Section 6.3.2.3)

• Taras Approach (Taras, 2010)

2.4.3.1 EC3 - General method

The general design rules implement the flexural buckling curves, this time related to specific h/b ratios
(Table 2.6) which results in a different categorization compared to the column buckling case. The
imperfection factor ↵

LT

is indicated in Table 2.5. This method is especially used for deep slender
beams, which are not considered in the specific method.

Table 2.5: Imperfection factor ↵
LT

for LTB curves.

Buckling curve a b c d

Imperfection factor ↵
LT

0.21 0.34 0.49 0.76
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Table 2.6: General Method: Lateral-torsional buckling curve.

Cross-section Limits Buckling curve

Rolled I-sections h/b  2 a
h/b > 2 b

Welded I-sections h/b  2 c
h/b > 2 d

Other cross-sections - d

The expressions for �
LT

and �
LT

have a similar shape as for the column buckling case, but are based
on a different value for the normalized slenderness �

LT

and the imperfection factor ↵
LT

for LTB.
(Eq.2.4.11).

�
LT

=
1

�
LT

+
q
�2
LT

� �
2
LT

 1.0 (2.4.9)

�
LT

=
1

2

h
1 + ↵

LT

(�
LT

� 0.2) + �
2
LT

i
(2.4.10)

�
LT

=

s
W

y

f
y

M
cr

(2.4.11)

2.4.3.2 EC3 - Specific method

For the ’special’ case of rolled sections or equivalent welded sections, this method is proposed by EC3.
The method is an extension of the general method, with the implementation of an additional factor
� in the formulas of �

LT

and �
LT

. According to the National Annex NBN EN 1993-1-1 ANB:2010,
� = 1 and �

LT,0 = 0.2. Although in EC3 � = 0.75 and �
LT,0 = 0.4 are the recommended values,

the national values were modified to take into account the criticisms on the specific method. Unsafe
results up to 12% were obtained in (Snijder & Hoenderkamp, 2007) with this method and therefore
a careful choice of � and �

LT,0 is required. With the nationally assumed values for these parameters,
the specific method is reduced to the general method, but with a different choice of buckling curves.

�
LT

=
1

�
LT

+
q
�2
LT

� � · �2
LT

 1

�
2
LT

 1.0 (2.4.12)

�
LT

=
1

2

h
1 + ↵

LT

(�
LT

� �
LT,0) + � · �2

LT

i
(2.4.13)

where

�
LT,0 Plateau value for LT buckling
� Curve shape modification factor
↵
LT

Imperfection factor Specific method (Table 2.5)
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Table 2.7: Specific Method: Lateral-torsional buckling curve.

Cross-section Limits Buckling curve

Rolled I-sections h/b  2 b
h/b > 2 c

Welded I-sections h/b  2 c
h/b > 2 d

2.4.3.3 EC3 - Modified Specific method

The LT-buckling curves used for the derivation of the lateral torsional buckling resistance are based on
a constant bending moment along the member. A higher LTB resistance can however be obtained for
a non-uniform bending moment due to the increased critical moment M

cr

, which results in a reduced
value of �

LT

and finally in a larger value of the reduction factor �
LT

. A second beneficial effect on
the buckling resistance will be present due to the reduction of the plastic zones due to the variable
bending moment along the member. EC3 takes this into account by introducing a moment-gradient
modification factor f. It should be noted that although this modification for the General Method is not
longer adopted in EC3, the modification for non-uniform bending moments was originally proposed by
the ECCS for both the General and Specific Method.

�
LT,mod

=
�
LT

f
 1 (2.4.14)

f = 1� 0.5(1� k
c

)
⇥
1� 2(�

LT

� 0.8)2
⇤
 1 (2.4.15)

The non-uniform shape of the moment diagram is taken into account by the correction factor k
c

, as
defined in paragraph 2.4.2. It should be noticed that the factor f has no mechanical justification (Taras,
2010). The factor was proposed by (Lindner, 2000) as the best-fitting curve for a large set of GMNIA
numerical calculations based on Specific Method formulations. As the buckling curves for the General
Method are generally lower, applying the modification factor for this general case was found to be a
conservative approach, although this is not longer adopted in EC3. In (Gevaert, 2010) both the general
and specific method of EC3 are applied without taking into account the modification factor f.
For the extended parametric study in this work however, only the modified general method will be
considered. This application of the general method, accounted for the moment distribution along the
member, was also in (Rebelo et al., 2009) stated as the most suitable method.

Figure 2.13: Modification factor 1/f in function of reduced slenderness �
LT

.

When plotting the factor 1/f over �
LT

, a parabolic shape can be found with a maximum at �
LT

=0.8
and a corresponding value of 2/(k

c

+1). The plot indicates the increased values of the LTB factor
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�
LT

compared to the general formulation of the reduction factor for a constant bending moment. The
unmodified value is valid outside the �

LT

interval [0.1;1.5].

As stated in paragraph 2.4.2, the largest increase of �
LT

can be obtained for double curved bending.
An increase in lateral torsional buckling resistance of 25% can be noticed compared to the case of
uniform bending.

2.4.3.4 Taras Approach

A new formulation was proposed in (Taras, 2010) showing a higher accuracy within the practical ranges
of length and a better consistency with the physical behaviour (Table 2.8). It is based on a generalized
imperfection of the form ⌘ = ↵

LT

(�
z

� 0.2) with �
z

the slenderness for weak-axis buckling. This
formulation reflects underlying assumptions made for the derivation of the numerical buckling curves
regarding material and geometrical imperfections. The reduction factor �

LT

for LTB is altered with a
factor f

M

taking into account the moment distribution. The factor is also adopted in Eq.2.4.17 with
f
M

= 1 as conservative approach. The formulation of �
LT

is the solution of an Ayrton-Perry equation,
limiting the sum of the first and second-order stresses to the yield stress. The eigenmode imperfection
is proportional to the length due to the proportionality with �

z

in Eq.2.4.17.

An additional factor should be included in the expression of the imperfection factor ↵
LT

to reflect the
transition in residual stress at a depth-to-width ratio of h/b = 1.2. In this way the inconsistency that
sections with lower residual stresses correspond with higher ↵

LT

values can be avoided. It was found
that the amplification of ↵

LT

should be proportional to the square root of W
y,el

/W
z,el

.

�
LT

=
f
M

�2
LT

+
q
�2
LT

� f
M

�
2
LT

 1.0 (2.4.16)
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� 0.2) + �
2
LT

!#
(2.4.17)

The maximum value of ↵
LT

, as indicated in Table 2.8, is given by ↵
z

, the generalized imperfection
amplitude for out-of-plane flexural buckling. This limit value can be explained by the similarity in
behaviour of the flange of a deep section with low torsional rigidity and weak-axis bucking of a column.
The imperfection factor ↵

z

for weak-axis flexural buckling was derived for both hot-rolled and welded
columns, although the residual stresses were based on rolled sections. Therefore for welded sections an
accurate description of the column buckling curves can only be obtained by considering a higher ↵

z

value to implement the ’welded’ residual stresses. This limiting value of ↵
LT,max

is set to 0.64, 31%
higher than for rolled section h/b  1.2 (↵

z

= 0.49). A similar increase was also incorporated in the
expression for ↵

LT

, where ↵
LT

= 0.21
p
W

el,y

/W
el,z

for welded sections is 31% higher than for rolled
sections: ↵

LT

= 0.16
p

W
el,y

/W
el,z

.

Table 2.8: Imperfection factor ↵
LT

according to Taras.

Cross-section Limits ↵
LT

Hot-rolled I & H h/b  2 0.16
q

Wel,y

Wel,z
 0.49

h/b > 2 0.12
q

Wel,y

Wel,z
 0.34

Welded I & H h/b  2 0.21
q

Wel,y

Wel,z
 0.64
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2.4.4 Lateral distortional buckling

In both design rules, lateral-distortional buckling (LDB) is not taken into account. Typical for this
failure mode is the distortion of the cross-section, as an interaction between lateral-torsional buckling
and local buckling typically for respectively short and long members (Fig. 2.14). Web distortion is
therefore mainly observed for members with intermediate length and members with slender webs are
most susceptible to the phenomenon. Due to the S-shaped distortion the torsional stiffness is reduced
and a lower critical moment is obtained (Eq. 2.4.2). The effect of web distortion is examined for
both plain-webbed members and members with web openings. The LDB strength can be estimated
by inserting 0 as value for the torsion constant in the equation of the critical moment. This approach
is only accurate for slender webs and overly conservative for more compact webs.

Figure 2.14: Local buckling, LTB and LDB of plain-webbed members.

In previous work (Sonck et al., 2009), numerical simulations on a wide variety of realistic cellular
beam geometries were performed in Abaqus to compare the numerically obtained critical moment with
the critical moment obtained from the ENV3 design rule, i.e. using the cross-sectional properties at
the centre of the openings (2T approach) for the expression of M

cr

(Eq. 2.4.2). Comparable results
were obtained for the numerical and theoretical calculations, except for HEM320 and HEA320 parent
sections in case of short-length members. For short-length members, the ENV3 design rule led to
an overestimation and therefore an unsafe estimation of the critical moment due to web distortion.
However, short members will fail by plastic yielding rather than elastic instability, decreasing the detri-
mental effects of web distortion. The largest web distortion was observed near the edges and around
mid-span of the considered members.
The cross-sectional properties for both plain-webbed members and cellular members are given in Ap-
pendix A. By comparing the expressions it can be concluded that mainly a reduction of the effective
torsional stiffness is obtained, the reduction in bending stiffness is limited. The difference between
M

cr,2T and M
cr,0 is therefore mainly determined by I

t

. This difference will increase with increasing
length, based on the classical LTB critical moment of a doubly symmetric I-section, supported by fork
bearings at its ends (Eq. 2.4.2). The above considerations concerning LDB, which is not covered by
the current desing rules, will be taken into account during the parametric study on plain-webbed and
cellular members.

2.5 Beam-columns

The resistance of steel members subjected to an axial force and bending moment is varying with
slenderness. For short members (low slenderness), the behaviour is dominated by the cross-section
resistance. With increasing slenderness, residual stresses and geometrical imperfections will induce
pronounced second-order effects. The design of members with high slenderness will therefore be gov-
erned by their elastic behaviour, i.e. failure due to instability phenomena: flexural and lateral-torsional
buckling, typically for respectively members in pure compression and bending.
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2.5.1 Cross-section resistance

The cross-section resistance will be based on the plastic resistance for sections class 1-2 or on the elastic
or effective resistance for cross-sections of respectively class 3 and 4. The cross-section classification is
further discussed in Appendix A. A disadvantage of this distinction in cross-section resistance based
on the classification is indicated in Fig. 2.15b, where a sudden loss of capacity can be noticed at
the transition between sections class 2 and 3. Therefore, as a result of two recent European research
projects, an alternative set of design rules for cross-sections class 3 (semi-compact sections) was pro-
posed in considering a partly-plastic capacity (Greiner, 2011). This proposal to allow an increased
design resistance of sections class 3 is based on the examined increased capacity compared to the elas-
tic resistance due to an internal plastic redistribution. The improved design rules are applicable for
doubly-symmetric cross-sections (rolled or welded) and allow for a more economic design compared to
the current conservative design approach in EC3. However, since this is not yet included in EC3, this
will not be further considered in this work.

a) Reduced bending capacity under axial force.

b) Bi-axial bending resistance.

Figure 2.15: Amendment proposal EC3 for cross-sections class 3. Extracted from (Greiner et al., 2013).

2.5.2 Plastic resistance

Specific formulae for I and H sections can be applied to evaluate the plastic cross-section resistance for
sections class 1 or 2. For the general case where a cross-section with section area A and yield strength
f
y

is subjected to N+M, the central area A
N

= N/f
y

can be defined in such a way that the remaining
upper and lower area (A1 and A2) are equal (Fig. 2.16).

A1 = A2 =
A�N/f

y

2
(2.5.1)
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Figure 2.16: Plastic interaction bending moment-axial force (compression: +, tension: -).

The central part of the cross-section is considered under compression due to the centrically applied
axial force N; the remaining cross-section will take up the additional bending moment arising from
the eccentric application of N. The reduced plastic bending moment resistance M

N,Rd

is given by Eq.
2.5.2, with d the distance between the centroid of the areas A1 and A2.

M
N,Rd

= A1fyd = A2fyd (2.5.2)

2.5.2.1 Reduced plastic moment resistance M
N,Rd

According to EC3, the reduction of the plastic moment is not significant and therefore not required
for doubly symmetric I or H sections if the following conditions are satisfied (Eq.2.5.3) and 2.5.4).

• No reduction in plastic moment resistance M
N,y,Rd

if:

N
Ed

 0.25N
pl,Rd

and N
Ed

 0.5h
w

t
w

f
y

�
M0

(2.5.3)

• No reduction in plastic moment resistance M
N,z,Rd

if:

N
Ed

 h
w

t
w

f
y

�
M0

(2.5.4)

with h
w

the height and t
w

the thickness of the web.
If the previous conditions are not fulfilled, the reduced plastic moment resistances for rolled or welded
I or H sections about the y and z axis, respectively M

N,y,Rd

and M
N,z,Rd

can be obtained by Eqs.2.5.5-
2.5.7 (CEN, 2005).

M
N,y,Rd

= M
pl,y,Rd

· 1� n

1� 0.5a
but M

N,y,Rd

 M
pl,y,Rd

(2.5.5)

M
N,z,Rd

= M
pl,z,Rd

if n  a (2.5.6)

M
N,z,Rd

= M
pl,z,Rd

"
1�

✓
n� a

1� a

◆2
#

if n > a (2.5.7)

Where

a =
A� 2bt

f

A
, but a  0.5 and n =

N
Ed

N
pl,Rd

(2.5.8)
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2.5.2.2 Influence of shear force

Only if V
Ed

> 0.5V
pl,Rd

, the influence of the shear force should be taken into account by calculating
the design resistance M

N,Rd

under bending moment and axial force with a reduced yield strength f
yr

for the shear area according to Eq. 2.5.9. It should be noted that in this case also the plastic moment
resistance (Eq. 2.5.5) is calculated with the reduced yield strength: W

pl,y

f
yr

. For V
Ed

 V
pl,Rd

, the
reduction is not significant and counterbalanced by strain-hardening of the steel.

f
yr

= (1� ⇢)f
y

(2.5.9)

where ⇢ =

✓
2V

Ed

V
pl,Rd

� 1

◆2

; V
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=
A

v

f
yp

3�
M0

(2.5.10)

The shear surface of the cross-section A
v

in 2.5.10 is determined based on the simplified cross-section
used in the numerical model (Fig. 2.17):

A
v

= A� 2bt
f

+ t
w

t
f

� h
w

t
w

(2.5.11)

Figure 2.17: Shear area for simplified cross-section of I profile.

2.5.2.3 ECCS - Vandepitte

Only in the formulae of the ECCS according to Vandepitte an alternative definition is used for the
reduced plastic moment resistances depending on the considered cross-section.

IPE profiles:

M
N,y,Rd

M
pl,y

= 1 if
N

Ed

N
pl

� 0.18;
M

N,y,Rd

M
pl,y

= 1.22

✓
1� N

Ed

N
pl

◆
if

N
Ed

N
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� 0.18 (2.5.12)

HE profiles:

M
N,y,Rd

M
pl,y

= 1 if
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Ed

N
pl

 0.1;
M

N,y,Rd

M
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Ed
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where N
pl

= Af
y

and M
pl,y

= W
pl,y

f
y

(2.5.14)

2.5.2.4 General formula plastic resistance

For a cross-section under an axial force and bi-axial bending N +M
y

+M
z

, the following interaction
formula (Eq. 2.5.15) can be applied:
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
M

y,Ed

M
N,y,Rd

�
↵

+


M

z,Ed

M
N,z,Rd

�
�

 1.0 (2.5.15)

The parameters ↵ and � are determined by the shape of the cross-section. For I or H sections, ↵=2
and �=5n with � � 1 and n = N

Ed

/N
pl,Rd

.

2.5.3 Elastic resistance

To determine the elastic cross-section capacity, general interaction formulae can be used, valid for all
cross-section classes. These formulae are based on a conservative approximation by considering a linear
summation on the basis of resistance for the different stress resultants. For a cross-section subjected
to an axial force N and bi-axial bending (M

y

,M
z

), the following criterion can be applied (Eq. 2.5.16).

N
Ed

N
Rd

+
M

y,Ed

M
y,Rd

+
M

z,Ed

M
z,Rd

 1 (2.5.16)

where M
y,Ed

/M
z,Ed

and M
y,Rd

/M
z,Rd

represent respectively the design and resisting bending moments
about the strong and weak axis. N

Rd

is the resisting axial force corresponding to the applied load N
Ed

.

2.5.3.1 Combined shear and bending

For cross-sections class 3 or 4 the interaction between bending moment and axial force should be
checked by applying a yield criterion.

�
von�Mises

=
p
�2 + 3⌧2  f

y

�
M0

(2.5.17)

with ⌧
Ed

=
V S

I
y

t
w

(2.5.18)

where V is the shear force, S the first moment of area about the neutral axis of the part of the
cross-section between a considered point and the cross-section boundary.
The normal and shear stresses � and ⌧ are based on an elastic stress analysis with a reduced effective
cross-section for section members class 4. This verification in combination with Eq. 2.5.16 will be
performed for all 4 methods in this chapter at the web-flange transition of the member’s end sections.

2.5.4 ECCS - Vandepitte

2.5.4.1 Design formula

The design rules of the ECCS expressing the interaction of an axial force and bending moment were
developed based on the formula of Perry-Robertson, limiting the elastically calculated compressive
stresses at the ultimate fiber to the yield stress (Eq.2.5.19).

N

A
+

1

1�N/N
cr,y

Ne

W
el,y

 f
y

or
N

N
pl

+
1

1�N/N
cr,y

|M1|
M

el,y

 1 (2.5.19)
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Figure 2.18: Definition of axes eccentric axial load.

where M1 = -Ne
z

and M
el,y

= W
el,y

f
y

. Equation 2.5.19 is valid for members with two planes of sym-
metry and an axial load applied with eccentricity e

z

in the vertical plane of symmetry XZ resulting in
a strong-axis bending moment M

y

.
The first order moment M1 is multiplied by the magnification factor 1

1�N/Ncr
. The factor is introduced

to include second order effects as a result of the applied axial force on the member, deflected due to the
first order moment M1. This magnification factor was already introduced in section 2.3.3 where the
reduction factor � for the flexural buckling resistance was derived based on an Ayrton-Perry Robertson
approach.

2.5.4.2 Ideal shape imperfections

The ideal shape imperfections with amplitude v0 (XY-plane) and w0 (XZ-plane) applied in the ECCS
formulae are chosen such that the highest compressive stress in the elastic member with imperfections
is equal to the yield stress at the same load which results in buckling for the case of the real axially-
loaded compressed beam (incl. its material and shape imperfections). It should be noted that the
ideal shape factor is determined by the dimensions of the cross-section, the method of fabrication, the
slenderness of the beam and the yield stress, but independent of the load acting on the member.

Figure 2.19: Shape imperfections factors w0 and v0.

The ideal shape imperfection w0 is found by introducing N = N
b,y,Rd

in Eq.2.5.19.
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Similarly v0 corresponds to N = N
b,z,Rd

. It should be noted that by introducing N
b,y,Rd

or N
b,z,Rd

in
the expressions of w0 and v0, the shape imperfections are calculated with an increased yield strength
(Section 2.3.1).
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2.5.4.3 Adaptations design formula

The design formula (Eq.2.5.19) should be adapted in two ways.

• In reality the eccentricities at both end sections will have a different magnitude or even an opposite
sign. Therefore an equivalent effective uniform bending moment is introduced: M

eff

= �|M1|.
This effective moment should have the same influence on the buckling behaviour as the real
acting moments M1 and M2 at the end sections with |M1|� |M2|. Different empirical formulae
can be applied for � (cf. section 2.5.4.4).

• The special case where e
z

= 0 and therefore M1 = 0, would result in N = N
pl

. As indicated before,
failure of short members is governed by yielding of the cross-section, but for slender members
elastic buckling is the determining failure mode. To take into account the risk for buckling, N

pl

should be reduced to N
b,Rd

= �N
pl

. This failure compressive force N
b,Rd

can be determined based
on the buckling curves of the ECCS that are applicable for the assumed compression member.

Considering the two limitations of design formula 2.5.19 discussed in this section, the formula should
be adapted as followed.

N
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+
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1�N/N
cr,y

|M
eff

|
M

el,y

 1 (2.5.24)

2.5.4.4 Equivalent moment factor �

Different empirical formulae for the equivalent moment factor � are listed below (Van Impe, 2010).
Equal moments at both ends ( = M2/M1 = 1) logically result in � = 1. Smaller values of � are
obtained for M2 = 0. For moments with opposite sign (M2 = �M1) the risk of reaching the failure
state is even smaller. It should be noted that the proposed values of � are only applicable for linear
bending moment lines. The widely used formula of Austin will be used in the remainder of this work.

Campus and Massonnet � =
p
0.3 + 0.4 + 0.3 2

Austin � = 0.6 + 0.4 with � � 0.4

Van Impe � = 0.4 + 0.15(1 +  )2
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Figure 2.20: Equivalent moment factor � in function of  .

2.5.4.5 Members susceptible to lateral torsional buckling

For profiles susceptible to torsional deformations (e.g. I and H-sections), the strong-axis bending
moment is multiplied by an additional factor ✓, defined according to Eq. 2.5.25, where ↵ is the shape
factor for buckling around the strong axis and �

cr

the elastic critical stress for LTB. If ↵f
y

/�
cr

 0.16,
✓ equals 1. In (Vandepitte, 1979) it is proposed to exclude the factor 1/↵ from the expression of ✓.
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The resulting design rules of the ECCS for the general case of members subjected to bi-axial bending
and susceptible to torsional deformations are given by Eqs. B.1.1 and B.1.2. Depending on a verifica-
tion according to a plastic (class 1 or 2) or elastic (class 3 or 4) theory, the values of respectively W

pl

and W
el

should be used for the section modulus. As the distinction between plastic or elastic theory
was not prescribed by the design rules of Vandepitte, the classification is adopted from the Eurocode.

Buckling in XZ-plane:
N

A
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⌘
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(2.5.26)

Buckling in XY-plane:
N

A
+

✓�
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(2.5.27)

It should be noted that for purely compressed members (M1y = M2y = 0), a stricter condition is
obtained than was proposed for column buckling: N

b,Rd

= ⌫Af
y

!. This can be explained as the
shape imperfections w0 and v0 in Eqs. B.1.1-B.1.2 were calculated with an increased yield strength
(Section 2.3.1), whereas the real yield strength is introduced on the right-hand side, resulting in an
underestimation of the member’s strength. Therefore the strength conditions in this section will be used
for members under combined axial force and bending moment; for pure compressive members N

b,Rd

(Eq. 2.3.1) is used. Consequently, a discontinuity will be noticeable between these different loading
conditions. Additionally, the stress at the ultimate fiber of the member’s end sections should be limited
to the yield stress. This can be verified according to an elastic theory similarly as in Eq. 2.5.16; the
formula for cross-sections following a plastic theory is derived from Eq.2.5.15 with ↵ = � = µ.
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Elastic theory (Class 1-2):
N

A
+

|M1y|
W

el,y

+
|M1z|
W

el,z

 f
y

(2.5.28)

Plastic theory (Class 3-4):
✓

|M1y|
M

N,y,Rd

◆
µ
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M
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◆
µ

 1 with µ = 1.6�
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Ed

/N
pl

2ln (N
Ed

/N
P l

)

(2.5.29)

2.5.5 ECCS - Van Impe

Compared to the design rules listed by Vandepitte, the rules were adapted by Van Impe to obtain a
better correspondence with the design rules adopted in the Eurocode. N

b,Rd

and M
b,Rd

are determined
based on the buckling curves from the Eurocode. The equivalent moment factor � and the shape
imperfections w0 and v0 are determined similarly as in the formulae ECCS-Vandepitte. The resistance
of the end cross-sections following a plastic theory is defined differently.

2.5.5.1 General strength conditions

The general strength conditions for members subjected to a combination of biaxial bending and axial
compression are given by Eqs. B.1.22-B.1.23. The stress due to the axial load N and the weak-axis
bending moments M1z and M2z is expressed by respectively the first and third term of Eq. B.1.22.
Verification of buckling around the strong axis is included by the second term. Comparable to the
reduction factor ✓ in the formulae of Vandepitte, the factor �

LT

is introduced for members susceptible
to torsional deformations. The choice of the section modulus (W

el

or W
pl

) is again based on the
member’s cross-section classification.

(i� a) Buckling y-y:
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⇣
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⌘
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y

(2.5.30)

(ii� a) Buckling z-z
N

A
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⌘
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z
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y

(2.5.31)

The interaction between lateral-torsional buckling and weak-axis flexural buckling can be expressed
alternatively by a set of equations without the reduction factor �

LT

, but by considering a torsional
imperfection �(x) for strong-axis bending with amplitude �0 (Eqs.2.5.32-2.5.33). The amplitude �0 is
determined such that for a member only subjected to a uniform moment, M

y

equals the LTB resistance
M

b,Rd

=�
LT

W
y

f
y

. Therefore �0 can be calculated from Eq. 2.5.35, obtained by setting N=0, �
y

= 1

and M1z = 0 in Eq. 2.5.33.
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(2.5.32)

(ii� b) Buckling z-z:
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(2.5.33)

�(x) = �0 sin
⇣⇡x
L

⌘
(2.5.34)
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M
b,Rd

W
y

f
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+
M

b,Rd

�0✓
1� M

2
b,Rd

M

2
cr

◆
W

z

f
z

= 1 (2.5.35)

For the specific case of members subjected only to a strong-axis bending moment M1y (�
y

< 1), M
z

= 0

and in case the interaction with the axial force is negligible (N is small), condition (i-a) can be reduced
according to Eq. 2.5.36. The resulting value of M1y obtained from Eq.2.5.33 might be larger than the
resistance against lateral-torsional buckling M

b,Rd

and the ultimate moment M
u

even larger than M
cr

.
To avoid this anomaly an additional third condition (Eq.2.5.37) is required.

�
y

|M1y|
�
LT

W
y

 f
y

! �
y
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LT

W
y

f
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! �
y
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(2.5.36)

(iii)

✓
N

N
bz,Rd

◆2

+

0

@ M1y⇣
1� N

Ncr,y

⌘
M

b,Rd

1

A
2

+

0

BB@
M1z✓

1� N

Ncr,z
� M

2
1y

M

2
cr

◆
W

z

f
z

1

CCA

2

 1 (2.5.37)

where M
b,Rd

= �
LT

W
y

f
y

. By introducing this third condition the M/N-interaction diagram is capped,
avoiding moments M

u

> M
cr

. However, by introducing this horizontal branch, the resisting moment
M

u

is independent of the magnitude of the normal force, which is in contrast to the real member’s
behaviour. It should be noted that this third condition is only required in case of �

y

 1, i.e. for
non-uniform bending moments ( = 0 or  = �1).
Furthermore, again the compressive stresses at the ultimate fiber of the end sections should be limited
to the yield stress, which can be verified by Eq.2.5.38 for an elastic approach or with Eq.2.5.39 following
a theory of plasticity.

Elastic theory (Class 1-2):
N

A
+

|M1y|
W

el,y

+
|M1z|
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el,z

 f
y

(2.5.38)

Plastic theory (Class 3-4):
✓
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◆5n
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N
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(2.5.39)

2.5.5.2 Strong-axis bending

For completeness, in this section an overview is given of the simplified conditions for members subjected
to strong-axis bending where axial-torsional and flexural-torsional buckling do not occur, i.e. torsionally
stiff members (e.g. rectangular box profile, torsionally restrained profile,..).
Three strength conditions should be fulfilled (Eq. 2.5.40-2.5.42).
(i) Strength verification eccentrically loaded beam, prevention of buckling around the strong axis y (in
the XZ-plane):

N

A
+
�
y

|M1y|+Nw0⇣
1� N

Ncr,y

⌘
W

y

 f
y

(2.5.40)

(ii) Prevention of buckling around the weak axis z (in the XY-plane):

N  N
bz,Rd

(2.5.41)

(iii) Strength verification eccentrically most-heavily loaded cross-sections:

N

A
+

|M1y|
W

y

 f
y

(2.5.42)



2.5. BEAM-COLUMNS 37

In case |M2y| |M1y| or M2y and M1y have a different sign, �
y

< 1 and for short members the left-
hand term of expression (i) can be smaller than the one of equation (iii). Therefore, expression (iii)
is required to avoid yielding of the edge fiber at both ends of the member. Following a plastic theory,
equation (iii) should be replaced by |M1y| M

N,y,Rd

(Eq.2.5.5).

2.5.5.3 Weak-axis bending

Similarly simplified expressions can be obtained for weak-axis bending without axial-torsional buckling.
Again three strength conditions should be fulfilled (Eq. 2.5.43-2.5.45)
(i) Strength verification eccentrically loaded beam, prevention of buckling around the weak axis z (in
the XY-plane):

N
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�
z

|M1z|+Nv0⇣
1� N

Ncr,z

⌘
W

y

 f
y

(2.5.43)

(ii) Prevention of buckling around the strong axis y (in the XZ-plane) in case l
z

< l
y

:

N  N
by,Rd

(2.5.44)

(iii) Strength verification eccentrically most-heavily loaded cross-sections:

N

A
+

|M1z|
W

z

 f
y

(2.5.45)

Following the theory of plasticity, equation (iii) should be replaced by |M1z| M
N,z,Rd

(Eqs. 2.5.6 and
2.5.7).

2.5.6 Eurocode

For the verification of members subjected to a combination of bending and axial compression, two
different design approaches are incorporated in EN 1993-1-1(CEN, 2005).
Pronounced second order effects due to residual stresses, material and geometrical imperfections will
appear. The effects of the bending moments and the axial force can be linearly summed; specific
interaction factors can be used for the non-linear effects. Based on this concept, two sets of formulae
were derived: the first one by a French-Belgian team (Method 1), the second one was developed by an
Austrian-German team (Method 2) (ECCS, 2006).
In Method 1 individual factors are introduced to reflect the influence of different physical phenomena
with a high level of accuracy. In contrast to the transparency of Method 1, simplicity is enhanced with
Method 2 by using one compact interaction factor. By this globalisation of several effects, Method 2
is more user-friendly, focussing on direct design. Although only Method 1 is applicable in Belgium,
both methods will be considered in the remainder of this thesis, to compare Method 1 with the more
user-friendly approach of Method 2.

2.5.7 Method 1

2.5.7.1 Derivation of general formulae

The structure of the formulae of Method 1 can be easily understood by considering a simply supported
member with an initial sinusoidal shaped geometrical imperfection with amplitude e0 and subjected
to moment M and axial force N , expressed in the equations with their design values M

Ed

and N
Ed

.
As indicated in section 2.3.3, an Ayrton-Perry approach can be used, verifying the resistance of the
most heavy-loaded cross-section according to an elastic second-order theory. For members subjected
to a first order bending moment M

Ed

, second order bending moments will be introduced, amplifying
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the existing bending moment as well as the deflection. Therefore, an additional third term is added
(Eq.2.5.46).

Figure 2.21: Member with initial sinusoidal shaped imperfection and subjected to M and N.

The classical amplification factor 1/(1�N
Ed

/N
cr

) for second order effects was introduced in both the
second and third term, although it should be noted that for the third term this is only an approximation
of 1/

h
cos(⇡/2)

p
N

Ed

/N
cr

i
. The equivalent moment factor C

m

was discussed in section 2.5.4.4.

N
Ed

N
pl,Rd

+
1

1�N
Ed

/N
cr

N
Ed

· e0
M

el,Rd

+
1

1�N
Ed

/N
cr

C
m

M
Ed

M
el,Rd

 1.0 (2.5.46)

This formula can be rearranged into the so-called µ format, which can be reduced to the classical
buckling check (N

Ed

 N
b,Rd

) for members in pure compression (M
Ed

= 0). For the exact derivation
of this formula, the reader is referred to (ECCS, 2006); (Boissonnade et al., 2004).
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 1 (2.5.47)

µ =
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1� �N
Ed

/N
cr

(2.5.48)

2.5.7.2 Beam-column under biaxial bending and axial force

The previously derived Eq.2.5.47 can be extended to the general formulae expressing the complex
coupling of axial compression and bending based on an elastic second-order theory.
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Buckling z-z:
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To make the expressions also applicable for cross-sections class 1 and 2, the elastic bending resis-
tance M

el,Rd

is replaced by an elastic-plastic resistance CM
pl,Rd

, where the additional parameters
C
yy

, C
yz

, C
zy

and C
zz

are introduced to reflect plasticity effects. The factors ↵* and �* simulate the
material’s non-linear behaviour and are chosen as 0.6

q
wz
wy

and 0.6
q

wy

wz
to be applicable for any type

of cross-section. The meaning of the different factors will be explained in the next section (2.5.7.3).
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2.5.7.3 Members susceptible to lateral-torsional buckling

Different from the design rules of the ECCS, where it should be decided (by adding the factor ✓ or
�
LT

) if flexural-torsional buckling should be taken into account, in Method 1 the values of I
t

and I
y

determine if the member is susceptible to torsional deformations. Torsional deformation is typically
relevant in case of open I or H sections without torsion restraint; hollow sections are assumed to be
not susceptible to torsional deformations.

• The member is not susceptible to torsional deformations if:
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y
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With N
cr,T

the critical load for torsional buckling:
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• The member is susceptible to torsional deformations if:
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N
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N
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In Eqs. 2.5.53 - 2.5.55, �0 expresses the reduced slenderness for LTB with constant bending moment.
Factor C1 takes into account a non-uniform bending moment distribution as discussed in paragraph
2.4.2. The critical load for weak-axis flexural buckling is indicated by N

cr,z

(Eq.2.3.17).
For members susceptible to lateral-torsional buckling, an additional factor C

mLT

/�
LT

should be added
to the strong bending term. The influence of the axial load and the shape of the cross-section is
accounted for by C

mLT

(Eq.B.1.43). The reduction factor �
LT

is introduced on the bending resistance
M

pl,y,Rd

for torsionally flexible profiles subjected to strong-axis bending. The resulting conditions in
case of double bending for members susceptible to LTB are given by Eqs. B.1.38-2.5.59.
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Buckling around the weak axis z-z:
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The factors µ
y

and µ
z

are defined according to Eq. B.1.40. To include the influence of lateral-torsional
buckling, the expression for C

my0 is modified. The adapted value is denoted with C
my

.
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mz,0 (2.5.61)
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The elastic-plastic coefficients C
ii

and C
ij

are introduced (i and j referring to the main directions),
expressing the elastic-plastic interaction under bending and compression, i.e. the amount of plasticity
in the cross-section at the moment of failure. The coefficients are function of (i) the reduced slenderness
(or N

Ed

/N
cr

) and (ii) the bending moment distribution (expressed by C
m

) (Boissonnade et al., 2004).
The N-M elastic-plastic interaction will be different for slender members subjected to high axial force
compared to stocky members under low compression.
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where
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Class 3-4: w
y

= w
z

= 1.0 (2.5.69)

n
pl

=
N

Ed

N
pl,Rd

; �
max

= max(�
y

,�
z

) (2.5.70)

With factor (w � 1) indicating the bending potential available from from pure elasticity to plasticity.
For cross-sections class 3, preference is given to replace W

pl

by W3 to allow for a more continuous
transitions between sections class 2 and 3, as discussed in section 2.5.1. In the expressions of C
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/C
ij

,
the factors b
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LT

, d
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are 0 if lateral-torsional buckling is prevented.
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Class 3-4:
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= 0.6 (2.5.75)

2.5.7.4 Continuity to cross-sectional resistance

For members of which the slenderness approaches 0, i.e. N
cr,y

and N
cr,z

are infinitely large (and
therefore C

my

= C
mz

= 1), the member’s failure behaviour is no longer determined by instability
effects and only cross-sectional checks should be performed. For class 1 and 2 cross-sections, the C

ii

and C
ij

factors are equal to 1 and Eqs. B.1.38-B.1.39 are reduced to the following expressions:

M
y,Ed

M
pl,y,Rd

+ ↵*
M

z,Ed

M
pl,z,Rd

 1 (2.5.76)

�*
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y,Ed

M
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+
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z,Ed

M
pl,z,Rd

 1 (2.5.77)

Figure 2.22: Biaxial bending and interaction criteria N-M resistance. Extracted from (Boissonnade et al.,
2004).

These approximate interaction formulae are visualised in Fig. 2.22 and compared with the cross-
sectional resistance to biaxial bending according to EC3 (Eq. 2.5.78), where the factors ↵ and � are
function of the cross-sectional shape. Similarly the plastic cross-section check for members subjected
to an axial load an mono-axial bending (M

z

= 0) is represented and compared to the formula adopted
in EC3.

✓
M

y,Ed

M
pl,y,Rd

◆
↵

+

✓
M

z,Ed

M
pl,z,Rd

◆
�

 1 (2.5.78)

2.5.7.5 Equivalent uniform moment factor C
m

Similarly as the equivalent moment factor � for the ECCS formulae, the factor C
m

is introduced for
Method 1. It should be noted that the factors listed in this section represent the factors C

my,0 and
C
mz,0 for members not susceptible to LTB. To simplify the determination of the most heavy-loaded

cross-section, the equivalent moment concept is introduced: the maximum amplified moment due to
an axial compression force on the real member is equal to the maximum amplified moment in a column
under an equivalent sinusoidal moment distribution (Boissonnade et al., 2004).
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Figure 2.23: Concept equivalent moment factor C
m

. Extracted from (Boissonnade et al., 2004).

Different approximate formulae are proposed in (ECCS, 2006) for C
m

for linearly distributed mo-
ments. A first expression is due to Villette (Eq.2.5.79), for which it should be noted that for  =1
no correspondence can be found with the expression for a uniform moment as given in (Taras, 2010)
(Eq.2.5.80).

C
m

= 0.79 + 0.21 + 0.36( � 0.33)
N

Ed

N
cr

(2.5.79)

C
m

= 1 + 0.27
N

Ed

N
cr

(2.5.80)

Based on numerical calculations, it was concluded by Taras that with this formulation a conservative,
but yet acceptable approach is obtained. This conservative behaviour can be explained by the elastic
second-order moment amplification on which the formula is based. In contrast, GMNIA calculations
will include plasticity effects. Alternative expressions are therefore shown to describe more accurately
the elastic-plastic buckling strength of beam-columns. Commonly, the expression proposed by Austin
is used, which was already introduced for the ECCS design rules.

C
m

= 0.6 + 0.4 � 0.4 (2.5.81)

An alternative equivalent uniform moment factor was introduced by Campus and Massonnet.

C
m

=
p

0.3(1 +  2) + 0.4 � 1

2.3
(2.5.82)

Equations 2.5.81 and 2.5.82 are both expressed relative to a constant bending moment and have the
advantage to be independent of the axial force N

Ed

. In reality however, Eq. 2.5.83 for a linearly
varying bending moment will dependent on N

Ed

.
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✓
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◆
q
1� 2 cos(⇡

p
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Ed

/N
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) +  2

sin(⇡
p

N
Ed

/N
cr

)
(2.5.83)

It should be noted that the expressions of Austin and Campus and Massonnet (Eq.2.5.81-2.5.82) are
both relative to a constant reference equivalent moment, while Villette (Eq.2.5.79) and the theoretical
expression 2.5.83 are expressed relative to a sinusoidal bending moment. More information on the
influence of this different reference moment and on the C

m

factor for different moment distributions is
given in (ECCS, 2006),(Taras, 2010) and (CEN, 2005), Table A.2.

2.5.8 Method 2

Although the format of Method 2 is also based on the theoretical buckling equations, various specific
coefficients will be summarized in a few factors. This aim for simplicity will reduce the accuracy of the
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formulations, but for practical standard design cases the influence is not considered to be significant.
The derivation of the general interaction formulae of Method 2 will be based on formulation 2.5.84,
expressing the resistance of members subjected to an axial force N and bending moment M, as derived
in section 2.5.7.1. By considering Eq.2.5.85, this expression can be reformulated resulting in the
theoretical expression 2.5.86.
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 1 with k =
1

1� NEd
Npl,Rd

��
2 (2.5.86)

Similarly as for Method 1, a distinction can be made between members susceptible or not suscepti-
ble to lateral torsional buckling. A complete overview of the design rules adopted in (ECCS, 2006) is
given in Appendix C. This section will focus on the background of the interaction formulae of Method 2.

The formulation of the interaction factor k, as introduced in Eq. 2.5.86, is the result of an extensive
GMNIA analysis carried out by Abaqus for different cross-sections and moment distributions. Also
the effect of geometrical and material non-linearities on the buckling behaviour was investigated. The
Method 2 interaction coefficients are applicable for doubly symmetric sections as considered in this
work, but extension to mono-symmetric sections is possible.

2.5.8.1 Characteristics buckling rules Method 2

Different sets of formulae are available depending on whether the member is susceptible to lateral-
torsional buckling or not. Hot-rolled I and H-sections forming the scope of this work are torsionally
flexible; torsionally restrained I-sections restrict out-of-plane deformations. Furthermore, also hollow
sections are torsionally stiff.

Figure 2.24: Characteristics of Method 2 of EC3. Extracted from (Greiner & Lindner, 2006).
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For members subjected to an axial load and uniaxial or biaxial bending, two expressions are available
of which the first is corresponding with the strong-axis buckling mode; weak axis-buckling is described
by the second expression.
In contrast to Method 1, with Method 2 also members with intermediate lateral restraints are covered
(Greiner & Lindner, 2006). The equivalent uniform moment factors C

mLT

and C
mz

(cf. infra) are
therefore determined by the segmental moment diagram between lateral restraints. Factor C

my

is
however always related to the total span length. A clear overview (Fig. 2.24) on the available interaction
formulae was provided in (Greiner & Lindner, 2006). For the torsionally stiff profiles, only flexural
buckling will be of concern. Torsionally flexible profiles will be susceptible to LTB. The axis about
which buckling takes place is influenced by the presence of intermediate restraints.

Figure 2.25: Interaction formulae Method 2. Extracted from (Greiner & Lindner, 2006).

2.5.8.2 Members not susceptible to lateral torsional buckling

If lateral deformation is sufficiently restrained, the governing buckling mode will be in-plane buckling.
Out-of-plane buckling is examined for unrestrained members. The formulae given are valid for cross-
sections class 1 and 2.

In-plane buckling under N+M
y

The interaction behaviour is determined by the parameters �
y

and n
y

. A graphical representation of the derived interaction factor k
y

for a constant moment is
presented in Fig. 2.27a. The effect of the cross-section shape was found to be very limited, only
affecting the results for higher n

y

values.
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 1 (2.5.87)
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= 1 + (�
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� 0.2)n
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 1 + 0.8n
y

(2.5.88)

C
my

= 0.6 + 0.4 � 0.4 (2.5.89)

n
y

=
N

Ed

�
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N
pl,Rd

(2.5.90)

Values of k
y

below 1.0 can be noticed in the range of � ⇡ 0 and express the plastic cross-section inter-
action of moment M

y

and axial force N. Numerical analysis showed increased k
y

values for increasing
relative slenderness up to � ⇡ 1.0 due to the increase of second-order effects with the axial compression
parameter n

y

. For a slenderness �
y

larger than 1.0, a constant level of k
y

is reached as compensation for
the used plastic moment resistance M

pl,y,Rd

in Eq. 2.5.87 throughout the complete slenderness range,
wheras members for �

y

> 1.0 show increasing elastic behaviour and the use of M
el,y,Rd

is required. The
GMNIA results are translated into a bi-linear diagram with a plateau value at �

y

= 1 (Fig. 2.27b).
From the GMNIA results however, it can be noticed that beyond �

z

⇡ 1.0 for large n
y

-values k
y

is
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still decreasing with increasing �
z

, different from the assumed bi-linear diagram with constant level for
�
z

= 1. This is however acceptable as differences in k
y

occur mainly at larger values of n
y

where the
member’s behaviour is determined by the normal force N and the moment term in Eq. 2.5.87 is less
pronounced, reducing the influence of the k

y

-factor. An Austin formulation is used for the factor C
my

with C
my

= 1.0 for a constant moment and lower values for non-uniform moment diagrams.

a) GMNIA Analysis b) ECS (EN)

Figure 2.26: Interaction factor k
y

for constant moment. Extracted from (ECCS, 2006).

Out-of-plane buckling under N+M
y

The design formulae for members subjected to out-of-plane
buckling are given by Eq. 2.5.91. It can be noticed that in the second term the interaction factor 0.6k

y

was introduced, assuming that the out-of-plane buckling is affected by 60% of the in-plane buckling.
This formula can be simplified to Eq. 2.5.92, for which the level of unsafety (maximum of 7% to 9%)
was considered tolerable (Greiner & Lindner, 2006).
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M
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M
pl,y,Rd

 1 (2.5.91)

N
Ed

�
z

N
pl,Rd

 1 (2.5.92)

2.5.8.3 Members susceptible to lateral torsional buckling

In case no lateral restraints are present (as considered in this work), buckling about the z-axis will
dominate. If lateral restraints are provided, failure can be dominated by LTB about the y-axis for the
segmental part between the restraints (Fig. 2.27). The formulae discussed in this section are valid for
sections class 1 and 2.
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a) LTB about y-axis b) LTB about z-axis

Figure 2.27: Buckling modes as function of restraints for members susceptible to torsional deformation. Ex-
tracted from (Greiner & Lindner, 2006).

In-plane buckling under N + M
y

Compared to the interaction formula for torsionally stiff mem-
bers (Eq. 2.5.87), for torsionally flexible profiles the bending resistance is replaced by the buckling
resistance �

LT pl,y,Rd

(Eq. B.1.53). It should be noted that for short members with low slenderness
values �

LT

, this formula for torsionally stiff members is again reduced to Eq. 2.5.87. as �
LT

⇡ 1.0.
Flexural in-plane buckling is than the corresponding failure mode. As in this thesis simply supported
members with fork-supports are considered without intermediate lateral restraints, Eq. B.1.53 is irrel-
evant and should not be checked.
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 1 (2.5.93)

Out-of-plane buckling under N+M
y

In a similar way as for the k
y

-factors, the interaction factor
k
LT

in Eq. B.1.54 was again determined based on GMNIA simulations (Fig. 2.28). For a constant
bending moment values for k

LT

in the range 0.6 to slightly below 1.0 are obtained, with an initial
increase of k

LT

up to �
z

⇡ 1.0. The influence of the shape of the moment diagram is taken into
account by the uniform moment factor C

mLT

(Eq. B.1.55). Although the non-uniformity is beneficial,
the k

LT

-factor is reduced significantly for high n
z

-values. However, a similar comment as for torsionally
stiff members can be made: due to the reduced magnitude of the bending moment for higher n

z

values
the influence of the second term (Eq. B.1.54) and therefore of k

LT

will be reduced.
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Figure 2.28: GMNIA-results interaction factor k
LT

as function of �
z

. Extracted from (Greiner & Lindner,
2006).

As for �
z

! 0 according to the bi-lineair interaction formula, k
LT

equals 1.0 and the transition to
the plastic cross-section interaction for �

z

= 0 is not included in the formula. Therefore the cut-off
formula (Eq. B.1.56) has been introduced (Fig. 2.29) for �

z

< 0.4, approaching k
LT

= 0.6 in the
low slenderness range. As mentioned in section 2.5.8.1, the C

mLT

factor is related to the full span for
laterally free members, but restricted to a segmental part in case relevant lateral restraints are present.

Figure 2.29: Interaction factor k
LT

for different moment diagrams. Extracted from (Greiner & Lindner, 2006).

2.5.8.4 Members of class 3 or 4

As explained previously in section 2.5.1, for cross-sections of class 3 also a partial-plastic resistance can
be considered. The interaction formulae for cross-sections class 3 or 4 will therefore by analogous with
the expressions discussed in paragraphs 2.5.8.2 and 2.5.8.3, but with the plastic moment resistance M

pl

replaced by M
el

or M
eff

(class 3 or 4). The resulting shift of the neutral axis due to the considered
effective cross-section for members class 4 should also be taken into account by �M = e

N

· N . An
overview of the interaction formulae for members class 3 and 4 is given in Appendix C. Also the
formulae for in-plane buckling under N+M

y

as well as for the combination of axial compression and
biaxial bending (N + M

y

+ M
z

) are listed.
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Buckling z-z:

N
Ed

�
z

N
pl,Rd

+ k
LT

C
my

M
y,Ed

�
LT

M
el,y,Rd

 1 (2.5.100)



48 CHAPTER 2. STABILITY DESIGN RULES

Interaction factors k
y

, k
z

:
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Equivalent moment factor:

C
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= 0.6 + 0.4 � 0.4 (2.5.104)

Axial compression parameter:
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Ed
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For linear moment distributions, the C
m

factor according to Austin is applied. The formulation shows
a bilinear shape with a conservative lower bound of 0.4. For non-linear bending diagrams, expressions
for C

my

, C
mz

and C
mLT

are tabulated based on the coefficients ↵
s

and ↵
h

(ECCS, 2006). These
coefficients are determined based on the largest (absolute) value of the two hogging moments M

h

at
the beam extremities and the sagging moment M

s

at mid-span. This is not necessarily the maximum
sagging moment. The table providing the additional equations for uniformly distributed loads and for
a concentrated transversal load at mid-span can be found in (CEN, 2005).

2.6 Application to cellular members

2.6.1 Design approach for cellular members

The design rules listed in the previous section are generally applicable for plain-webbed members. To
apply these analytical rules on cellular members, two different design approaches are proposed, the
1T and 2T Approach. Only the 2T Approach will be considered in the remainder of this work. The
cross-sectional properties based on this 2T approach can be found in Appendix A.

2.6.1.1 2T Approach

The 2T approach is based on experimental findings of Nethercot (Nethercot & Kerdal, 1982) and is
adopted in the European pre-standard ENV 1993-1-1 (further referred to as ENV3), Annex N (CEN,
1998). Based on these limited number of test results, the critical LTB failure moment of cellular
members can be calculated similarly as for plain-webbed cross-sections, but with the cross-sectional
properties at the centre of the openings. According to this 2T approach, referring to the two tees of
which the cross-section with web openings is formed, the effect of the openings on the lateral stability
is negligible.

2.6.1.2 1T Approach

The 1T approach, adopted in the software program ARCELOR Cellular Beams, only takes into account
the compressed tee section at the openings for the calculation of the lateral torsional resistance. By
neglecting the stabilizing effect of the tee-section in tension, very conservative results are obtained.
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Figure 2.30: Design approaches for cellular members.

2.6.2 Buckling curves

To take into account the adapted residual stress pattern of cellular members, the FB and LTB resistance
should be calculated based on a different set of buckling curves. In (Sonck, 2014), a preliminary proposal
was made for the modification of the buckling curves by derivation of the best fitting buckling curve
to the numerical results.

2.6.2.1 Buckling curves for FB

Similarly as for the choice of the residual stress pattern, the selection of buckling curve is based on
the height-to-width ratio of the parent section (h/b > 1.2 or h/b  1.2). The current and for cellular
members adapted EC3 buckling curve formulation, using existing buckling curves is given in Table 2.9.
It can be concluded that the modified residual stress pattern for cellular members due the adapted
manufacturing process will result in a lowering of approximately one buckling curve. Consequently,
the buckling resistance N

Rd

is decreased due to the lower value of the reduction factor �.

Table 2.9: Current buckling curves for plain-webbed members (PWM) EC3 for hot-rolled sections (EC3) and
proposal for cellular members.

buckling axis PWM Cellular member
h/b � 1.2 z b c

t
f

 40mm

h/b  1.2 z c d
t
f

 100mm

In (Sonck, 2014) preference was given to maintain the standard imperfection factors ↵ (Table 2.4)
corresponding with each buckling curve, although in this way slightly unsafe results were obtained for
the HE650A profile.

2.6.2.2 Buckling curves for LTB

In (Sonck, 2014) a preliminary proposal for the selection of the buckling curves for LTB was made,
using the current EC3 formulation (Table 2.10). Satisfactory results were obtained for all listed profiles,
although even better results could be obtained for the profiles HE320A, IPE300, HE650A and IPE600
by considering a modified optimal imperfection factor ↵

opt

. Finally, as conservative assumption it was
proposed to perform the calculation of all profiles with ↵ = 0.6. A distinction based on the height-
to-width ratio H/b ( 2 or � 2) as in the current EC3 LTB curve selection was not recommended



50 CHAPTER 2. STABILITY DESIGN RULES

do to the large difference in results between the HE320A and HE320M sections, although for both
geometries H/b<2.0.

Table 2.10: Preliminary proposal for LTB curves per parent section based on existing buckling curves.
parent section H/b buckling curve ↵ ↵

opt

HE320A  2.0 d 0.76 0.6
HE320M  2.0 a 0.21 -
IPE300 � 2.0 d 0.76 0.55
HE650A � 2.0 d 0.76 0.55
HE650M � 2.0 c 0.49 -
IPE600 � 2.0 d 0.76 0.55
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Numerical research

51





Chapter 3

Eccentrically loaded plain-webbed

members

As already mentioned briefly in Chapter 1, the finite element model used is based on the model in
(Sonck, 2014) for the investigation of global buckling of cellular and castellated members. In Sonck’s
work the model was first validated by performing a linear and linear bucking analysis (LA and LBA)
on plain-webbed members loaded in bending or compression. Afterwards, the model was further
validated for the specific case of cellular and castellated members under axial force or bending moment
by comparing the numerically obtained buckling resistance with two sets of experiments. Experimental
results obtained at Ghent University and results from experiments at the EIA-FR in Fribourg were
used for the validation. It can be concluded that numerical and experimental results show a good
correspondence, except for longer beams where failure was initiated by plasticity at extreme large
deformations instead of the LTB phenomenon. In this master thesis however, members are subjected
to a combination of bending moment and axial load. This work will therefore serve as an extension
of the numerical study on eccentrically loaded members in (Gevaert, 2010), but performed for cellular
members. In this chapter the principles and results of the numerical study of Gevaert are discussed.

3.1 Scope of Chapter 3

Although this work is focusing on cellular members, the study of Gevaert on plain-webbed members
will be partly repeated for following reasons:

• To check the analytical values of the load proportionality factor obtained by means of Python
scripts with numerical values.

• To clarify the assumptions of Gevaert regarding the considered boundary conditions, the use of
kinematic coupling restraints, the applied imperfections, the analytical expressions used for the
determinations of the load-proportionality factor.

• To extend the limited research on eccentrically loaded members (Chapter 4) and draw more
general conclusions, since only interaction diagrams were available in (Gevaert, 2010).

• To verify the numerical model used in (Sonck, 2014) for the changed load condition of bending
and compression.

Next, an overview of general principles will be given.

53
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3.2 Analytical determination of load proportionality factor

To limit the number of simulations, three types of bending moment lines were considered: constant
bending moment ( = 1), one-sided bending moment ( = 0) and moment at both supports ( = �1)
equal in absolute value but opposite in sign.

Figure 3.1: Considered moment distributions ( = M2/M1).

The magnitude of the normal force relative to the strong-axis bending moment can be expressed by
the parameter µ. This parameter is a function of the critical buckling load N

cr,z

and the critical LTB
moment M

cr

. Low values of µ will therefore correspond to failure due to flexural buckling, whereas
large values will result in a LTB failure mechanism. For the limit value µ = 0, only an axial load is
present, for µ = 1 the member is only subjected to a bending moment. In (Gevaert, 2010) as well as
in this work, seven different values of µ are considered (Table 3.1).

µ =
M/M

cr,LTB

N/N
cr,z

$ e =
M

N
= µ

M
cr,LTB

N
cr,z

(3.2.1)

Table 3.1: Considered values of µ.
µ

0 0.1 0.5 1 5 10 1

For the GMNIA analyses, first the initial load condition of the member is determined, i.e. the value of
the initial axial load N and bending moment M (at both supports) to which the member is subjected.
The initial load condition is indicated with the load proportionality factor �

start

and will be determined
by the choice of the parameters µ and  .

M
left

= �
start

·M
left,start

(3.2.2)

M
right

= �
start

·M
right,start

(3.2.3)

N = �
start

·N
start

(3.2.4)

Except for the limit cases µ = 0 and µ = 1, the value of the axial load N
start

can be determined based
on Eq. 3.2.1 with an assumed starting value of M

left,start

equal to 1 kNm.

µ =

Mleft,start

Mcr

Nstart
Ncr,z

! N
start

=
N

cr,z

M
left,start

µM
cr

! N
start

=
N

cr,z

µM
cr

(3.2.5)

An overview of the different initial load conditions is given in Table 3.2.
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Table 3.2: Initial load condition.
M

start,left

[kNm] M
start,right

[kNm] N
start

[kN]
µ  = 1  = 0  = -1
0 0 0 0 0 1

0.1 to 10 1 1 0 -1 Ncr,z

µMcr

1 1 1 0 -1 0

In a specified number of increments, depending on the considered cross-section and corresponding
resistance to failure, the value of �

start

is increased to the ultimate value �
u

at failure. With this
proportionality factor, the load condition resulting in failure (M

u

and N
u

) can be determined.

M
u,left

= �
u

·M
left,start

(3.2.6)

M
u,right

= �
u

·M
right,start

(3.2.7)

N
u

= �
u

·N
start

(3.2.8)

In Section 2.5, four different methods with their corresponding conditions were discussed to check the
cross-section resistance of members under a combination of bending moment and axial force.
For the analytical calculation of �

u

, each strength condition is written with 1 as upper limit. The
load proportionality factor � can be increased to its ultimate value �

u

, reached if the maximum of
the strength conditions equals 1. The value of � is therefore determined by iteration according to
Eq. 3.2.10, by which the value of � is initially varying strongly due to the low values of the strength
conditions. With increasing values of � and the strength conditions approaching 1, the variation of �
is limited. In this way the determination of � can occur easily and efficiently. To limit the calculation
time, the number of iterations will be limited to 500 as higher numbers resulted in a negligible deviation
( 1%).

Strength condition  1 ! max(Strength conditions) = 1 (3.2.9)

�
new

=
�
old

max(strength conditions)
while max(strength conditions) 6= 1 (3.2.10)

3.3 Levels of numerical analysis

The software package Abaqus was used for three types of analysis:

• Linear Buckling Analysis (LBA): Elastic, critical buckling load
An eigenvalue analysis on a perfectly straight, elastic member is performed to determine the
critical loads and eigenvalues. No imperfections nor residual stresses are introduced.

• Material Non-linear Analysis: First order plastic limit load
No specific MNA analyses will be performed in this thesis, only a preliminary study was executed
to examine if local deformations at the end sections were observed in the MNA analyses and if
therefore a kinematic coupling constraint was strictly required.

• Geometrically and Materially Non-linear Analysis with imperfections: Ultimate buckling strength
The resistance of the member subjected to a compression force, bending moment or both, de-
pending on the values of µ and  (Section 3.2), is determined by the modified Riks method.
Both imperfections and material non-linearities are considered.
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3.4 Numerical determination of load proportionality factor

According to an analytical approach, the member will fail if one of the strength conditions of the
ECCS or the Eurocode (as discussed in Chapter 2) is no longer fulfilled. Numerically, the member is
considered to reach its failure mode if the maximum in the load displacement diagram is obtained, so
no restriction is applied on the maximum deformation. However, it should be noted that in this way
the failure load can correspond with large deformations and therefore in reality the failure state of this
member is already reached before a maximum in the load displacement diagram is obtained. The load
displacement diagram (of node indicated in Fig. 3.3) resulting from a GMNIA analysis on a HE300A
profile with a length of 20.3 m and subjected to a uniform moment is given in Fig. 3.2.

Figure 3.2: Load displacement diagram of HE300A, L=20.3m,  = 1, µ = 0.1.

Figure 3.3: Considered node for load-displacement diagram.

As already mentioned in Section 2.1, it is possible that the load deflection curve is constantly increasing
and that no maximum is reached due to the stabilizing effect of the pre-buckling deflections. This effect
was at least noticeable for the largest considered length of all profiles (k=4, Section 3.11.1) subjected
to a constant bending moment ( = 1, µ = 1). As members under a non-uniform bending moment
( = 0,  = �1) can be considered to behave as members with reduced buckling length, this stabilizing
effect will be more pronounced under a constant bending moment. Although the effect is larger under
pure bending (µ = 1), it was also examined for µ = 5 and µ = 10 (Fig. 3.4), where the influence of
the axial load compared to the bending moment is already small. It should however be noted that by
not including the kinematic coupling constraint, in some cases a maximum in the load displacement
diagram could be reached. The effect of this kinematic coupling constraint is further discussed in
Section 3.7.
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Figure 3.4: Load displacement diagram of HE300A, L=20.3m,  = 1, µ = 10.

3.5 Element type

The considered model for the plain-webbed members is depicted in Fig. 3.5. For the selection of the
shell elements, to obtain accurate results at a reasonable cost the preference is given to quadratic shell
elements S8R5 with reduced integration. Quadrilateral shell elements S4R are not considered as they
are prone to hourglassing. A greater solution accuracy could be obtained by considering S4 elements,
although increasing the calculation time considerably. With continuum elements the cross-section can
be modelled more accurately, but again with a detrimental effect on the calculation time (Dassault
Systèmes, 2012). Considering these drawbacks, the use of elements S8R5 is proposed.
The fillet at the web-to-flange intersection was not taken into account. Consequently, the torsion con-
stant and plastic section modulus will be lower than in reality. This is partially compensated by the
overlap of material at the web-to-flange transition. Earlier investigations were performed by D. Sonck
where the fillet was implemented in the numerical model by means of an additional set of elements at
the upper and lower part of the web with a variable thickness. Results of these test simulations showed
however a limited improvement and still a lack of correspondence with the real cross-section geometry
at the web-to-flange interface.
Based on the considerations above, the simplified model will be used for both the numerical simulations
and for the cross-section characteristics in the theoretical formulations. As shown in (Taras, 2010),
the omission of the fillet is justified as buckling curves similar in shape are obtained, depending on the
dimensionless parameters � and �. For the determination of the buckling strength in absolute terms,
the fillet must be included.

Figure 3.5: Cross-section numerical model with indication web-flange overlap.
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3.6 Mesh size

Not only the type of element (S8R5), but also the mesh size will have a large influence on the accuracy
and calculation time. In this work a preliminary refinement study was performed on different profiles
for which the element size was defined as b/n, with b the flange width and n 2 [2, 4, 6, 8]. In this
way the number of elements was varied along the flange width from 2 to 8 (Fig. 3.6). The study
was limited to members subjected to pure bending, but a constant ( = 1) as well as a non-uniform
bending moment ( = 0; = �1) were considered.

Figure 3.6: Examined variation of number of elements along the flange width.

The critical LTB moment was determined by means of an LBA analysis. The results on a HE500A
profile (L=18.3 m) are depicted in Fig. 3.7, from which a convergence of M

cr

can be observed starting
from six elements along the flange width. A slightly higher value of M

cr

can even be observed for eight
elements per flange width due to the large mesh density. It should be noted that in (Gevaert, 2010)
a mesh size of 4 elements along the flange width was chosen based on a similar refinement study for
an LBA and MNA analysis. The maximum difference (obtained for  = 1) in critical LTB moment
for a model with four or six elements per flange width for the described HE500A profile is indeed only
0.036%. In this work however the parametric study was performed with the model of six elements
along the flange, the same amount as will be used for the model of the cellular members. This larger
accuracy can compensate for the fact that in this study only an out-of-plane imperfection is applied,
whereas also an in-plane imperfection was considered by Gevaert. In this way, a larger calculation
time will however be required as illustrated in Fig. 3.7, where a maximum increase from 60.1 s to 107 s
was obtained for  = 1 by changing the elements per flange width from 4 to 6. An overview of the
considered mesh size for the refinement study is given in Table 3.3.

Table 3.3: Overview mesh size for different no. of elements along the flange width.
No. elements/ No. Elements Mesh size [m]
flange width [-] along member’s length [-]

2 122 0.150
4 244 0.075
6 366 0.050
8 488 0.038

3.7 Boundary conditions and load application

To meet the theoretical assumption of fork supports as boundary condition, the displacement of all
nodes in y- and z- direction (indicated with U2 and U3, Fig. 3.8) at both ends of the member is
prevented, as well as the rotation about the x-axis (UR1). Furthermore, the translation in x-direction
at the central node of the web of one end is restricted (U1). In this work also a kinematic coupling
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Figure 3.7: Preliminary study mesh size based on LBA analysis HE500A (L=18.3m).

constraint was implemented in the numerical model similarly as in (Sonck, 2014), due to the observed
local deformations during MNA analyses, which could be avoided by the coupling restraint. Local
deformations at the end sections are prevented, but not the warping of the flanges. This coupling
constraint was however not incorporated by Gevaert in his model used for the parametric study on
plain-webbed members.

Both the axial load and bending moment are introduced as line loads at both ends of the member
acting on the flanges as well as on the web. For members under combined moment and compressive
force, the sum of both contributing line loads (M and N) is taken. This load introduction is illustrated
in Fig. 3.9 for an eccentrically loaded HE180A profile subjected to non-uniform bending ( = �1) and
for µ = 5, indicating that the influence of the axial load is rather small. Therefore, for the resulting
line load the same direction as for the pure bending case is examined.

Figure 3.8: Boundary conditions at end sections.
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Figure 3.9: Load introduction eccentrically loaded HEA180 (M=1000Nm; N=822.3N).

3.8 Geometric imperfection

For the GMNIA analysis, a half-sine wave geometric imperfection with amplitude L/1000 was in-
troduced. In (Gevaert, 2010) both an in-plane and out-of-plane imperfection were applied. As the
considered members are subjected to a combination of axial load and strong-axis bending moment,
the direction in which the out-of-plane imperfection is applied (positive or negative y-coordinate) has
no influence. For the geometric imperfection according to the z-axis (in-plane), two opposing effects
should be taken into account to determine the most detrimental direction. This was investigated by
Gevaert.

For members subjected to pure bending (µ = 1), the direction of the in-plane geometric imperfection
will have an influence on the critical LTB moment. Members for which the direction of the imperfection
is opposite from the deflections due to the applied bending moment will result in lower values of M

cr

and these members will therefore be more susceptible to LTB compared to members with an opposite
or no in-plane imperfection (Fig. 3.10). As an example, an upward (positive z-coordinate) geometric
imperfection is most detrimental for members under uniform bending.

For eccentrically loaded members, also the influence of the axial load N should be considered. For
members with a downward geometric in-plane imperfection, the bending moment at mid-span will
increase with �M = Ne0. This will result in larger stresses and earlier failure of the member. This
effect is however opposed by the larger favourable critical LTB moment under a downward imperfec-
tion. For members with an upward imperfection, the bending moment at mid-span is decreased with
�M , increasing the member’s strength, but this favourable effect is opposed by a lower value of M

cr

for an upward imperfection.

Figure 3.10: Opposing effects preferential direction geometric in-plane imperfection.
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3.9 Residual stress pattern for plain-webbed members

The residual stress pattern is applied according to section 1.4.1 as function of the height to width ratio
of the profiles. The residual stresses were implemented in the model by means of a user subroutine
by which the longitudinal stresses are defined in function of the coordinates of the nodes of the model
with imperfections. The residual stresses are only implemented for the GMNIA analysis in contrast to
the LBA analysis, which is performed on a perfectly straight, elastic member.

h/b  1.2: |�
res

|
max

= 0.5 f
y

HEA180/ HEA300

h/b � 1.2: |�
res

|
max

= 0.3 f
y

IPE120/IPE240/IPEO360/HEA400/
IPEO450/HEA500/IPEO600/HEM700

Figure 3.11: Applied residual stress pattern for profiles of Gevaert (�
compression

< 0,�
tension

> 0).

3.10 Profiles

3.10.1 Classification cross-section

In (Gevaert, 2010), ten different doubly-symmetric I-section profiles with steel grade S235 were con-
sidered, of which the cross-section characteristics are given in Table 3.4.

Table 3.4: Cross-sectional properties profiles Gevaert.
h [m] b [m] t

f

[m] t
w

[m]
IPE120 0.120 0.064 0.0063 0.0044
HE180A 0.171 0.180 0.0095 0.0060
IPE240 0.240 0.120 0.0098 0.0062
HE300A 0.290 0.300 0.0140 0.0085
IPEO360 0.364 0.172 0.0147 0.0092
HE400A 0.390 0.300 0.0190 0.0110
IPEO450 0.456 0.192 0.0176 0.0110
HE500A 0.490 0.300 0.0230 0.0120
IPEO600 0.610 0.224 0.0240 0.0150
HE700M 0.716 0.304 0.0400 0.0210

The most detrimental classification is obtained when the web is only subjected to a compressive force
(µ = 0). When also a bending moment is present, it is assumed that the compressive force will be
taken by the central part of the cross-section (hatched in Fig.3.12), while the bending moment is taken
by the outermost parts.
For  = 1 and µ 6= 0, there is always a combination of compressive force and constant bending moment.
For these sections the relative height ↵ of the compressive zone is determined based on z

n

, the distance
between the centre of gravity and the end of the compressive zone. The distance z

n

can be calculated
by expressing a constant ratio between bending moment and axial force until failure (Eq.3.10.3), i.e
the ultimate value of the load proportionality factor �

u

is equal for M and N. It should be noted
that for cross-sections class 3, an elastic approach is required with parameter  indicating the stress
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distribution over the web (Eq.3.10.4). For the double symmetric I section members considered in this
work the stress ratio  is always larger than -1. For members under constant bending moment the
classification is depending on the members’ length. This is due to the variation of M

cr

and N
cr,z

for
different lengths resulting in different values for the ratio of M

start

and N
start

influencing the value of
↵ for the classification.

N
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f
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Figure 3.12: Cross-section classification according to plastic and elastic theory (compression: +, tension: -).
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If the cross-section is only subjected to a bending moment (µ = 1), at least half of the cross-section is
in compression, considering that the neutral line (NL) is situated at half the height of the cross-section
for doubly-symmetrical profiles. The compressive zone will increase with increasing values of N. For
both  = �1 and  = 0, one cross-section can be found where only a compressive force is acting,
which will be determining for the classification. For these sections, the classification is independent of
the length of the considered members.
The numerical research in (Gevaert, 2010) was limited to cross-sections class 1 till 3. Although the
classical HEA and IPE profiles belong to this range, for the classification based on the numerical model
also sections class 4 were obtained. This can be explained by the larger web height of the wire model
(h � t

f

), where the fillet is not taken into account, compared to the standard classification based on
h � t

f

� 2 r. Therefore, in (Gevaert, 2010), it was decided to deviate from the standard HEA and
IPE profiles. Due to the larger web and and flange thickness of IPEO and HEM profiles compared to
IPE and HEA sections, the width-to-thickness ratios for the compression parts are sufficiently low to
obtain maximum class 3. An overview of the classification for the 10 profiles considered by Gevaert as
function of the load distribution is given in Tables 3.5 and 3.6. For members under constant bending
moment ( = 1), the most detrimental classification is listed, obtained for the shortest members (k=1,
Section 3.11.1). For IPE120, HE180A, HE300A and HE700M profiles, the classification is valid for all
considered lengths.
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Table 3.5: Classification of cross-sections Gevaert for  = 1 (k=1) (c = h� t
f

� 2r).
µ IPE120 HE180A IPE240 HE300A IPEO360 HE400A IPEO450 HE500A IPEO600 HE700M
0 1 2 2 3 2 2 3 3 3 1

0.1 1 2 2 3 2 2 3 3 3 1
0.5 1 2 2 3 2 2 3 3 3 1
1 1 2 2 3 2 2 3 3 2 1
5 1 2 1 3 1 1 1 1 1 1
10 1 2 1 3 1 1 1 1 1 1
1 1 2 1 3 1 1 1 1 1 1

Table 3.6: Classification of cross-sections Gevaert for  = 0 and  = �1 (c = h� t
f

� 2r).
µ IPE120 HE180A IPE240 HE300A IPEO360 HE400A IPEO450 HE500A IPEO600 HE700M
0 1 2 2 3 2 2 3 3 3 1

0.1 1 2 2 3 2 2 3 3 3 1
0.5 1 2 2 3 2 2 3 3 3 1
1 1 2 2 3 2 2 3 3 3 1
5 1 2 2 3 2 2 3 3 3 1
10 1 2 2 3 2 2 3 3 3 1
1 1 2 1 3 1 1 1 1 1 1

The classification of the web and flange are performed according to EC3 (CEN, 2005) (c = h�2t
f

�2r),
whereas based on a wire model (c = h�t

f

�2r) in (Gevaert, 2010). Only for comparison of results with
Gevaert, the wire model will be considered. By considering a wire model, a better correspondence can
be obtained with the numerical study where the fillets were also omitted from the model. A critical
remark can however be made on this cross-section classification. Due to the larger web height of the wire
model compared to the real profiles, a higher classification is obtained compared to the classification
according to EC3 (Tables 3.8 - 3.7). For profiles HE300A, IPEO450, HE500A and IPEO600 the
maximum class obtained by including the fillets is only 2 and these sections can therefore be calculated
according to a plastic theory, whereas for the wire model an elastic calculation is required as class 3
was obtained. The differences between the classification according to a wire model (Tables 3.5-3.6)
and according to EC3 (Tables 3.8-3.7) are indicated in bold. Differences between elastic and plastic
theory are underlined.

Table 3.7: Classification of cross-sections Gevaert for  = 1 according to EC3 (c = h� 2t
f

� 2r).
µ IPE120 HE180A IPE240 HE300A IPEO360 HE400A IPEO450 HE500A IPEO600 HE700M
0 1 1 1 1 2 1 2 2 2 1

0.1 1 1 1 1 2 1 2 2 2 1
0.5 1 1 1 1 2 1 2 2 2 1
1 1 1 1 1 2 1 2 2 2 1
5 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

Table 3.8: Classification of cross-sections Gevaert for  = 0 and  = �1 according to EC3 (c = h� 2t
f

� 2r).
µ IPE120 HE180A IPE240 HE300A IPEO360 HE400A IPEO450 HE500A IPEO600 HE700M
0 1 1 1 1 2 1 2 2 2 1

0.1 1 1 1 1 2 1 2 2 2 1
0.5 1 1 1 1 2 1 2 2 2 1
1 1 1 1 1 2 1 2 2 2 1
5 1 1 1 1 2 1 2 2 2 1
10 1 1 1 1 2 1 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1
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It should be noted that the model according to EC3 (c = h�2t
f

�2r) is only used for the cross-section
classification and not for the cross-sectional properties appearing in the design rules, for which the wire
model is still used. This reasoning can be substantiated in the following way based on the design rule
of Van Impe, but a similar reasoning is possible for other methods.
The design rule of Van Impe for buckling about the weak axis is repeated here in the form used to
determine the load proportionality factor analytically. In this formula, the influence of introducing
a plastic or elastic section modulus is clearly noticeable. The same reasoning can be applied on the
design rule of Vandepitte. Under pure compression (µ = 0, Fig. 3.13), members fail by weak-axis
flexural buckling (N  N

bz,Rd

). This flexural buckling resistance is independent of the considered
section modulus and therefore no difference is obtained between a plastic or elastic calculation, as
visualized in Fig. 3.13. In this figure the deviation in LPF between a plastic or elastic calculation is
plotted for an HE300A profile for a range of forty µ values between 0 and 100. The determination
of these µ values is discussed in Section 3.16. Two different lengths (L=2.9 m; L=20.3 m) and three
different  values are considered. For the profile HE300A class 3 was obtained for the wire model;
without omission of the fillet the cross-section classification is 1.
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Figure 3.13: Deviation of LPF following a plastic or elastic theory according to Van Impe method

It can be concluded that calculation according to a plastic theory would result in a higher LPF for both
considered lengths. The deviation is increasing with increasing µ value and largest for the shortest
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members and for  = �1. The largest obtained deviation is 4.1%. That the deviation will be positive
can be directly derived from Eq. 3.10.5, which can be reduced as followed for the limit case of pure
bending (µ = 1; N=0):
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(3.10.6)

Since W
pl

> W
el

, the value of the load proportionality factor should be larger for a calculation according
to a plastic theory.
Due to the larger value of the load proportionality factor �

u

, the failure moment M
u

and compressive
force N

u

are larger and therefore by calculation according to a plastic theory it is assumed that the
cross-section can resist a higher bending moment and axial load.

Although criticism on calculation according to a plastic theory is therefore possible, it should be
noted that deviations are small, that in reality the cross-section does have a fillet with radius r and
that these short length members will behave plastically. Furthermore, in this master thesis only the
global instability of eccentrically loaded members is addressed, not failure due to local instabilities.
Therefore, only a global shape imperfection was introduced without inclusion of local imperfections.
Since in the modified Riks method elastic behaviour can only be introduced by local folding effects,
which are not modelled, members will behave plastically. As a result, calculation according to an elastic
theory by considering a wire model would be safe, but not economic and not better corresponding with
the obtained Abaqus results. However, for the cross-sectional properties in the stability design rules
themselves, the fillet is omitted as in this way a better correspondence is obtained with the numerical
model.

3.11 Differences with D. Gevaert

An overview of the assumptions made in this work regarding the numerical model, compared to Gevaert,
is given in Table 3.9.

Table 3.9: Comparison of assumptions in this work with Gevaert.
Section Assumptions (Gevaert, 2010)

Mesh: elements/flange width 3.6 6 4
Kinematic coupling 3.7 Yes No
Imperfection 3.8 Out-of-plane In-plane and out-of-plane
Classification 3.10.1 EC3 (c = h� 2t

f

� 2r) wire model (c = h� t
f

� 2r)
CS properties design rules 3.10.1 wire model (c = h� t

f

� 2r) wire model (c = h� t
f

� 2r)

3.11.1 Length

The determination of the length was based on Gevaert, with the length chosen to cover a sufficient
range of slendernesses for the different profiles. Preference was given to examen four different lengths
with a maximum length of 25 m to obtain lengths in the normal range of application. However, due
to the large variation in dimensions of the four different I-section types (IPE, IPEO, HEA, HEM), the
length of the lower-height profiles (70 h  25) was calculated differently than for the larger profiles
(70 h>25), where the length was determined based on interpolation between the lower boundary of 10 h
and the maximum considered length of 25 m (Table 3.10). With the notation h is referred to the total
cross-section height. An overview of the dimensionless slendernesses �

z

(FB) and �
LT

(LTB) is given in



66 CHAPTER 3. ECCENTRICALLY LOADED PLAIN-WEBBED MEMBERS

Table 3.11. It can be noticed that due to the higher second moment of area I
z

for equal height profiles
HEA/HEM compared to IPE/IPEO profiles, the corresponding critical weak-axis flexural buckling load
N

cr,z

for these HE profiles is higher, reducing the member’s slenderness. To make it possible to examen
also lower slenderness values of IPE profiles, a lower boundary of 5 h could have been introduced in
(Gevaert, 2010). The reduced slenderness values � and �

LT

are represented in Figs. 3.14-3.15, where
the lower values for HE compared to IPE profiles are clearly noticeable. The profile numbers are
mentioned in Table 3.11.

Table 3.10: Profile length plain-webbed members.
k 70 h  25 70 h > 25
1 10 h 10 h
2 30 h 10 h + (25-10 h)(1/3)
3 50 h 10 h + (25-10 h)(2/3)
4 70 h 25

Figure 3.14: Reduced slenderness � for 10 different profiles of Gevaert for 4 different lengths (defined by k).

Table 3.11: Slenderness range �
z

and �
LT,min

/�
LT,min

for plain-webbed members.
k 1 2 3 4

�
z

�
LT,min

�
LT,max

70 h  25
1 IPE120 0.88 2.64 4.40 6.15 0.41 2.18
2 HEA180 0.40 1.19 1.98 2.78 0.22 1.43
3 IPE240 0.93 2.80 4.67 6.54 0.46 2.58
4 HEA300 0.40 1.21 2.02 2.72 0.22 1.54
5 IPEO360 1.00 3.00 4.99 6.98 0.48 2.68

70 h>25
6 HEA400 0.56 1.57 2.57 3.58 0.29 1.75
7 IPEO450 1.15 2.86 4.57 6.28 0.54 2.59
8 HEA500 0.71 1.69 2.67 3.64 0.37 1.81
9 IPEO600 1.35 2.75 4.14 5.54 0.61 2.40
10 HEM700 1.09 2.00 2.91 3.81 0.49 1.70
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Figure 3.15: Reduced slenderness for LTB �
LT

for 10 different profiles of Gevaert for 4 different lengths
(defined by k;  = 1).

3.12 Critical load Ncr

Correct modelling will be governed by the complex LTB behaviour rather than failure due to flexural
buckling. Therefore only a preliminary study was performed comparing numerical results from Abaqus
of this model with those obtained by D. Gevaert. The critical load was determined by an LBA analysis
on perfectly elastic members without imperfections. A further verification occurred by comparison
with analytical expressions, the difference between both expressed by the deviation factor �

N

, defined
according to Eq. 3.12.1.
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The deviations obtained for both models (Table 3.12) are negative indicating that the theoretical
expression of the critical flexural buckling load is slightly unsafe. However, the maximum measured
deviations are only 0.33%.

Table 3.12: Deviation of N
cr

.
L [m] N

an

[kN ] N
cr,Abq,GD

[kN ] �
N,GD

N
Abq

[kN ] �
N

[%]

IPE120 6.00 15.89 15.88 -0.06 15.88 -0.09
HEA180 8.55 261.89 261.04 -0.32 261.02 -0.33
IPE240 12.00 40.69 40.65 -0.10 40.65 -0.10
HEA300 14.50 621.18 619.19 -0.32 619.16 -0.33
IPEO360 18.20 78.15 78.08 -0.09 78.08 -0.09
HEA400 17.97 549.24 547.99 -0.23 547.97 -0.23
IPEO450 18.19 130.40 130.28 -0.09 130.28 -0.09
HEA500 18.30 640.97 639.59 -0.22 639.27 -0.27
IPEO600 18.70 267.44 267.16 -0.10 267.16 -0.10
HEM700 19.05 1072.30 1070.3 -0.19 1070.30 -0.19
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3.13 Deviation of Mcr,0

From an LBA analysis, a deviation factor �M
cr,0 is determined, indicating the deviation of the numer-

ical results for the critical LTB bending moment M
abq

with the analytically obtained values M
cr,an

.
For the theoretical expressions, the cross-sectional properties according to a wire model were used.

�M
cr,0 =

✓
M

cr,Abq

M
cr,an

� 1

◆
· 100% (3.13.1)

An overview of the minimum and maximum deviations for different load configurations is given in Table
3.13. For members subjected to a constant bending moment ( = 1), the observed deviations for longer
members are limited, as depicted in Fig. 3.18. For shorter members however unsafe deviations are
obtained due to web distortion, but these deviations can be considered insignificant as the governing
failure mode of short members will be plastic yielding instead of elastic buckling. For a non-uniform
bending moment ( = 0, = �1), positive deviations are obtained indicating that the expressions
for the critical LTB bending moment are safe and more conservative than for members subjected to a
constant moment. Again, short members are prone to lateral-distortional buckling, which is even more
pronounced than under a uniform moment. Under a non-uniform bending moment, the behaviour is
comparable to members with reduced buckling length, resulting in an increased critical LTB moment
and increased importance of other failure modes such as lateral-distortional buckling or other local
buckling phenomena. For these local effects, load configuration  = �1 is most detrimental.

Table 3.13: Deviation of M
cr,Abq

and M
cr,an

.
 �

min

[%] �
max

[%] �
mean

[%] �
median

[%]
1 -4.16 0.14 -0.66 -0.28
0 -3.09 2.34 1.24 1.34
-1 -7.65 2.36 0.26 1.04

The observed web distortion is illustrated for section IPE240 showing the largest deviation (7.65%) of
all profiles for  = �1 and a length of 2.4m. From Fig. 3.16 the S shape of the distorted web is clearly
visible. Furthermore, it can be noticed that over this section the yield strength is fully reached and
the plastic capacity will determine the member’s failure behaviour.

Figure 3.16: Observed web distortion for IPE240 ( = �1;L = 2.4m)

It should however be noted that for some of the shortest considered lengths of profiles HE180A,
HE300A, HE400A and HE500A, much larger deviations (>10 %) were obtained. These configurations,
listed in Table 3.21, failed by local plastic yielding, not in a lateral-torsional buckling mode. The
plastic moment M

pl

of these sections is much lower than the critical LTB bending moment M
cr,LTB

as illustrated by the low values of M
pl

/M
cr,An

and �
LT

. Therefore, the member’s behaviour will be
governed by plastic yielding and elastic buckling is considered unlikely. Consequently, although the
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observed deviations are large, they can be considered insignificant, similarly as for the examined web
distortion. The first eigenmode of an HE300A profile is given in Fig. 3.17.

Figure 3.17: First eigenmode of HE300A (L=2.9 m).

Table 3.14: Deviation M
cr,0 > 10% for profiles in (Gevaert, 2010).

 L [m] CS M
pl

[kNm] M
cr,Abq

[kNm] M
cr,An

[kNm] �M
cr,0 [%] �

LT

[-] M
pl

/M
cr,An

[-]
HE180A 1 1.71 1 74.09 385.29 581.47 -33.74 0.36 0.127

0 1.71 1 74.09 449.55 1029.20 -56.32 0.27 0.072
-1 1.71 1 74.09 487.17 1511.83 -67.78 0.22 0.049

HE300A 1 2.90 1 310.45 1241.30 2308.78 -46.24 0.37 0.134
0 2.90 1 310.45 1446.20 4086.54 -64.61 0.28 0.076
-1 2.90 1 310.45 1565.80 6002.82 -73.92 0.23 0.052

HE400A -1 3.90 1 585.91 4745.80 6404.37 -25.90 0.30 0.091
HE500A -1 4.90 1 910.99 5497.50 6485.02 -15.23 0.37 0.140

3.14 Determination critical LTB moment

For the analytical calculation of the load proportionality factor �
u

of members susceptible to torsional
deformations, the value of the critical LTB moment M

cr,0 should be known. As mentioned previously
(Section 3.2), this value is also required to determine the start value of the axial force acting on the
member. Different methods are applicable to calculate this critical moment analytically or numerically.

3.14.1 Numerical determination

LTBeam This software program was developed by CTICM (Centre Technique Industriel de la Con-
struction Métallique) and can be used to determine the critical LTB moment of plain-webbed members.
In this work it will only be used as a fast check of the obtained results by Abaqus and those from an-
alytical expressions. The cross-sectional properties entered in the program are based on the simplified
numerical model (Fig. 3.5).

Abaqus The critical LTB moment is determined by a linear buckling analysis (LBA).

3.14.2 Analytical determination

Variation equation and Ritz method An analytical result can be obtained by integration of the
variation equation on which the method of Ritz can be applied. The variation equation is obtained
by expressing the equilibrium between the virtual work performed by the internal and external forces.
For a detailed description on the derivation of this equation, the reader is referred to (Van Impe, 2010)
According to the Ritz method, both the translation in y-direction and the angular rotation around the
longitudinal x-axis are replaced by linearly independent functions fulfilling the kinematic boundary
conditions. By integrating the variation equation, a closed but complex theoretical expression can
be obtained. In (Gevaert, 2010) and also in this work, this method will only be used as a reference
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Figure 3.18: Deviation of M
cr0 for profiles in (Gevaert, 2010).
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value to check the numerically obtained results and to easily notice Abaqus results deviating from this
theoretical value due to distortion or local yielding.

Eurocode 3 The expressions for the critical moment adopted in EC3 for uniform and non-uniform
moments were already mentioned in sections 2.4.1 and 2.4.2.

3.14.3 Comparison different methods

The described methods for the determination of M
cr

are compared for an IPE240 profile subjected to
different load configurations by varying the value of  between -1 and 1 with a step size of 0.25 (Figs.
3.19-3.20). Two different lengths were considered: L=2.4 m and L=16.8 m.

For the longest considered members (L=16.8m) the values for M
cr

obtained by Abaqus and LTBeam
are almost perfectly coinciding. The values of EC3 are only slightly deviating from and always lower
than or equal to these numerically obtained results. The expression for M

cr

(Eq. 2.4.2) adopted in
EC3 is therefore a safe estimate. The application of the Ritz method is safe for  � 0.25; for lower
values the graph is situated above the numerical results and therefore an unsafe estimate.

Figure 3.19: Determination of M
cr

based on 4 different methods for IPE240, L=16.8 m, µ = 1

For the short length member (L=2.4 m), the best correspondence is found between the values of
LTBeam and the Ritz method, with again slightly higher values obtained following the Ritz method
and therefore unsafe. In contrast to the longer members, a deviation is found between the numerical
results of Abaqus and LTBeam. This is due to the observed web distortion, as mentioned in Section
3.13, with a maximum deviation of 4.8% between the Abaqus and LTBeam results for M

cr

. The
expression of EC3, which does not cover the lateral-distortional buckling behaviour, is therefore only
safe for  > 0.5.
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Figure 3.20: Determination of M
cr

based on 4 different methods for IPE240, L=2.4 m, µ = 1

3.15 Influence numerical or analytical determination Mcr,0 on LPF

In (Gevaert, 2010), the values of M
cr,0 obtained by LT-Beam were used to determine the start value

of the applied axial load and were also used in the analytical formulae according to the four discussed
methods (Chapter 2) to determine the member’s resistance. From practical point of view however, if one
wants to determine the resisting moment and axial load of eccentrically loaded members theoretically,
no set of LBA simulations will be performed in advance to determine the critical load. Furthermore,
the LT-Beam software is only applicable for plain-webbed members and therefore for cellular members
theoretical expressions of the critical LTB moment should be applied anyway. The deviation of the
load proportionality factor obtained by an analytical or numerical value of M

cr,0 for the ten considered
profiles is plotted in Fig. 3.21. The plots are based on the General Method 1 as analytical approach,
but similar findings can be derived from application of other methods. For each profile and every  

value, seven different µ values are plotted per considered length of the profile. For this specific case,
largest deviations were obtained for the different  values for µ equal to 0.1.

It can be noticed that under a constant bending moment the deviation is insignificant. For members
subjected to a linear varying bending moment ( = 0,  = �1), the largest deviation is as expected
examined for short-length members, for which the deviation of M

cr,0 was also largest due to the
observed web distortion. An overview of the maximum and minimum obtained deviations is given in
Table 3.15. Since the deviations are mainly negative (the positive deviation is insignificant), lower
values of the LPF will be obtained for an analytical value of M

cr

than in case the numerical values are
introduced, i.e. the estimated member’s resistance is lower, which is a safe estimate.

Table 3.15: Deviation of LPF based on analytical or numerical value of M
cr,0.

 �
min

[%] �
max

[%] �
mean

[%] �
median

[%]
1 -0.165 0.035 -0.009 0
0 -5.647 0 -1.484 -1.145
-1 -4.429 0.228 -1.040 -0.937
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Figure 3.21: Deviation of LPF based on analytical or numerical value of M
cr,0.
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3.16 Parametric study: results and discussion

The results of the parametric study will be represented in moment-normal force interaction diagrams
with N

u

/N
b,Rd

as abscissa and M
u

/M
b,Rd

as ordinate. On these interaction diagrams (provided on an
additional CD), the Abaqus results are represented as well as the results obtained from the different
analytical methods available for the stability of eccentrically loaded members, which were mentioned
in Chapter 2 and listed as reminder:

• ECCS - Vandepitte

• ECCS - Van Impe

• EC3 - Method 1: Modified General Method

• EC3 - Method 2

The normal buckling resistance N
b,z,Rd

and the bending resistance M
b,y,Rd

are calculated as prescribed
according to their corresponding method. This means that the buckling resistance should be calculated
differently for the method ECCS-Vandepitte (Eq. 2.3.1) than for the other methods, for which EC3
is used (Eq. 2.3.4). As described in Section 2.4.3, for Method 1 different approaches are adopted in
EC3 to determine the buckling resistance. Starting from the General Method, the Specific Method
was obtained by applying the same expressions, but with a different set of buckling curves. For the
method to be also applicable for members subjected to a non-uniform bending moment, a modification
factor f was introduced and the method was referred to as the Modified Specific Method. It should
be noted however that for Method 1 depicted on the interaction diagrams, the so-called Modified
General Method was used, where the modification factor f was applied to the General Method, since
this was concluded to be the most suitable method (Section 2.4.3.3). For all other methods (ECCS-
Vandepitte, ECCS-Van Impe, EC3-Method 2), the buckling resistance M

b,y,Rd

is calculated according
to the General Method of EC3. It should be noted that although in this way the ultimate moment M

u

and axial load N
u

are scaled differently for different methods, this representation is preferred due to
its clear compilation of both the analytical and numerical results.
For each length only seven different µ values were considered to perform the numerical simulations in
Abaqus, represented as discrete points on the interaction diagrams. As mentioned previously (Section
3.4), for some load configurations no maximum is obtained in the load displacement diagram and
the results obtained from these configurations are not included in the interaction diagrams. For the
analytical expressions the number of µ values was extended to 40 to get a smoother and more accurate
representation of the stability rules (Table 3.16).

Table 3.16: Overview considered values of µ.
0.00 0.25 0.50 0.80 1.30 2.25 4.00 9.00
0.05 0.30 0.55 0.90 1.40 2.50 4.50 10.00
0.10 0.35 0.60 1.00 1.50 2.75 5.00 20.00
0.15 0.40 0.65 1.10 1.75 3.00 6.00 40.00
0.20 0.45 0.70 1.20 2.00 3.50 7.50 1

3.16.1 ECCS - Vandepitte

At first, general conclusions can be drawn about the safety and validity of the design rules by comparing
the numerical (LPF

Abq

) and fully analytical (LPF
an

) (i.e. based on an analytical determination of
M

cr,0) results of the load proportionality factor. The results are represented by the deviation factor
�LPF , defined according to Eq. 3.16.1.
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�LPF =

✓
LPF

Abq

LPF
an

� 1

◆
· 100% (3.16.1)

Again for every  value seven different µ values are depicted for each considered length. It can be easily
noticed that under a constant bending moment ( = 1) the design rule ECCS-Vandepitte is unsafe
over a certain range of µ values for all considered profiles and lengths. Observation of the deviation
for  = 0 results in similar findings. For  = �1 however, the amount of positive deviations is larger
and therefore application of the design rule is safer, especially for larger lengths. An overview of the µ

values for which this design rule is not applicable is given in Appendix B, Table B.1.

Figure 3.22: Deviation between the numerically and analytically obtained LPF according to Vandepitte
method ( = 1).

Figure 3.23: Deviation between the numerically and analytically obtained LPF according to Vandepitte
method ( = �1).

It can be examined that the interaction diagrams according to Vandepitte are very dissimilar in shape
compared to the other design rules and in most cases the interaction diagram is situated higher than the
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one obtained by Abaqus and therefore unsafe. A more rectangular shape is observed with increasing
length of the members and especially for a non-uniform bending moment ( = 0;  = �1). By this
rectangular shape, it is reflected that members subjected to a large bending moment (µ ! 1) can
resist an axial load as large as if the member would only be subjected to this compressive force. This
effect is illustrated here in Fig. 3.24 for an IPEO450 profile with L=4.56m (k=1) and L=11.37 m
(k=2) subjected to a constant bending moment. It is clearly visible that for the longest member the
shape of the interaction diagram is more rectangular. Also the interaction diagram for  = �1 is given
for L=11.37 m, from which it can be noticed that the rectangular shape is even more pronounced than
under a uniform bending moment. Due to the rectangular shape, the Vandepitte design rule can be
economically interesting for low and high µ values, but unsafe for intermediate values. This can be
examined in Fig. 3.24 for L=11.37m and  = �1, where the design rule is not applicable for µ = 1,
but an economic approach for all other µ values.
Furthermore, it is examined that this rectangular shape of the interaction diagram is more pronounced
for IPE than for HE profiles with equal length. This is illustrated in Fig. 3.25 where the interaction
diagrams for  = 1 of both an IPEO450 (L=11.37 m) and HE500A (L=11.6 m) profile are presented.
By considering these two profiles, the best correspondence in length and height (h-t

f

) is obtained.

Figure 3.25: Comparison design rule ECCS-Vandepitte for IPEO450 and HE500A ( = 1).

The observed difference in shape of the interaction diagrams will be explained based on the govern-
ing condition of weak-axis buckling for members subjected to an axial load and strong-axis bending
moment, in the adapted form used to determine the load proportionality factor analytically.

�N
start

Af
y

+
✓�

y

�|M1y,start|⇣
1� �Nstart

Ncr,y

⌘
W
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f
y

+
�N
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1� �Nstart

Ncr,z

⌘
W

z

f
y

 1 (3.16.2)

The contribution of the axial load is expressed by the first and third term, while the contribution of
the bending moment is represented by the second term. Both parts contributing to the total strength
condition are indicated in Fig. 3.26. In this figure the strength condition in function of the load
proportionality factor is depicted for the IPEO450 and HE500A profile for which a difference in shape
of the interaction diagram was observed. Only the chart for µ = 1 is given; Similar findings can
be derived from other load configurations with an increased contribution of the bending moment for
increasing µ values. The corresponding curve will therefore be situated closer to the curve representing
the total strength condition. It should be noted that for the third term an asymptotic value is reached
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Figure 3.24: Moment-Normal force interaction diagram IPEO450 under different load configurations and for
different lengths
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for � = N
cr,z

/N
start

. Therefore, for values of the ultimate buckling load �
u

N
start

approaching N
cr,z

an increased slope of the contribution of N near �
u

, the ultimate value of the LPF, should be noticed.
Although differences are small (Table 3.17) due to the almost equal and even slightly lower length of
the IPEO450 profile, it can be noticed that the slope of the curve expressing the contribution of the
axial load is slightly increased for the IPEO450 profile while reaching �

u

, while the curve remains more
or less straight for the HE500A profile.

Table 3.17: Characteristics profiles IPEO450 and HE500A for comparison strength condition Vandepitte.
IPEO450 HE500A

L [m] 11.37 11.60
�
z

[-] 2.86 1.69
N

u

[kN] 218.84 807.57
N

cr,z

[kN] 333.45 1595.24
N

u

/N
cr,z

[-] 0.66 0.51

The curve ’Contribution M’ is situated closer to the curve of the total strength condition for an
IPEO450 profile than for HE500A. Therefore, the corresponding point on the moment-normal force
interaction diagram of an IPEO450 will be positioned more to the right compared to µ = 1 for HE500A,
as illustrated on Fig. 3.25. This is generally observed when making the comparison between IPE and
(the most corresponding) HE profiles and explains the more pronounced rectangular shape of the IPE
profiles. The length of the profiles was defined based on the height only (Section 3.11.1) and due to
the larger reduced slenderness �

z

for IPE than for HE profiles with equal height, resulting in a larger
ratio of N

u

/N
cr,z

for IPE profiles.

Figure 3.26: Strength condition in function of load proportionality factor for IPEO450 and HE500A.

3.16.2 ECCS - Van Impe

Similarly as for the Vandepitte method, first graphs indicating the difference in LPF between numerical
and analytical results are given (Figs. 3.27 - 3.28). Similarly as for the Vandepitte method, a wider
range of deviations is obtained for  = �1 than for  = 1. In contrast to the Vandepitte method
however, a large improvement in safety can be examined for the Van Impe design rule, except for
short length members, where still negative deviations can be observed. The combinations for which
application of the ECCS-Van Impe design rule is unsafe are listed in Table 3.18.
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Figure 3.27: Deviation between the numerically and analytically obtained LPF according to ECCS-Van Impe
( = 0).

Figure 3.28: Deviation between the numerically and analytically obtained LPF according to ECCS-Van Impe
( = �1).
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Table 3.18: Combinations for which design rule ECCS-Van Impe is unsafe.
L [m]  µ [-] L [m]  µ [-]

IPE120 1.20 1 0 - 1 HE400A 3.90 1 0 - 1
1.20 0 0 3.90 0 0
1.20 -1 0 3.90 -1 0

HE180A 1.71 1 0 - 1 IPEO450 4.56 1 0
1.71 0 0 4.56 0 0
1.71 -1 0 4.56 -1 0

HE300A 2.90 1 0 - 1 HE500A 4.90 1 0 - 5 - 10 - 1
2.90 -1 0 4.90 0 0
8.70 1 1 - 5 - 10 - 1 4.90 -1 0

IPEO360 3.64 1 0
3.64 0 0
3.64 -1 0

3.16.3 EC3 - Method 1

By comparison with the numerically obtained moment-normal force interaction diagrams, it can be
concluded that application of design rule EC3-Method 1 is mostly a safe approach, except for the
combinations listed in Table 3.19. It can be noticed that the design rule is only unsafe for the shortest
considered members (k=1) and especially for members subjected to a non-uniform bending moment
( = 0;  = �1). Unsafe results were mainly obtained for low or high values of µ as illustrated in Fig.
3.29 for the profile IPE120, where the design rule is not applicable for µ = 0, 0.5 or 1.

Figure 3.29: Unsafe approach of EC3-Method 1 for IPE120.

For this method the results are represented in an alternative manner by means of box plots (Fig. 3.31)
indicating the first (Q1) and third quartiles (Q3), the median (second quartile Q2, indicated in red)
and the whiskers within 1.5 IQR (Interquartile range) of the lower and upper quartile (Fig. 3.30).
The outliers outside this range are plotted as individual points. The numbers on the horizontal axis
refer to the different profiles and are given in Table 3.20. Three plots were made for the different  
values and on each plot the seven different µ values are considered. Similar findings as for the Van
Impe method are possible with for all  values mainly positive deviations, indicating the safety of this
method, except for short length members for which negative deviations corresponding with the lower
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Table 3.19: Combinations for which design rule EC3-Modified General Method 1 is unsafe. Values of µ for
which no maximum was reached in the load-displacement diagram are given in brackets after *.

L [m]  [�] µ[�]

IPE120 1.20 -1 0 - 0.5 - 1
HE180A 1.71 1 0 - 0.1 - 1

1.71 0 0 - 0.1
1.71 -1 0 - 1

IPE240 2.40 -1 0.5 - 1
HE300A 2.90 1 0 - 0.1

2.90 0 0 - 0.1 *(1)

2.90 -1 1
IPEO360 3.64 -1 0 - 0.5 - 1 - 1
HE400A 3.90 1 0 - 0.1 - 1

3.90 0 0 - 0.1
3.90 -1 0 - 0.1 - 0.5 - 1

IPEO450 4.56 -1 0 - 1
HE500A 4.90 1 0 - 10 - 1

4.90 -1 0 - 0.5 - 1
HE700M 7.16 -1 0 - 0.5 - 1

whisker were measured. The maximum deviations are again obtained for the longest members with for
example for  = 1 two outliers for IPE240 (L=16.80 m; µ = 1) and for IPEO360 (L=25.48 m; µ = 1).
Although the maximum deviations were obtained for different µ values, it should be noted that for
the IPE240 profile, µ = 1 is the largest of the seven considered values of µ for which a maximum was
obtained in the load-displacement diagram. Therefore, it is of further interest if the design rules are
indeed more conservative towards the limit case of members under pure bending (µ = 1). This will
be further discussed in the next paragraph.

Figure 3.30: Nomenclature box plot.
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Figure 3.31: Deviation of �LPF for the Modified General Method for different values of  .
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Table 3.20: Profiles numbers of geometries examined in Fig. 3.31.
1 2 3 4 5 6 7 8 9 10

IPE120 HE180A IPE240 HE300A IPEO360 HE400A IPEO450 HE500A IPEO600 HE700M

Furthermore, it can be emphasized that for  = 0 and especially for  = �1 a larger variation
is examined than for members under a constant bending moment. This is most pronounced for IPE
sections, where a maximum positive deviation of 88.5% is obtained for the IPEO600 section for  = �1

(L=25 m; µ = 1).

3.16.4 Influence of the considered µ value

In Figs. 3.32-3.33 histograms of the deviations of the load proportionality factor according to EC3-
Method 1 for respectively the five considered IPE and HE sections are given. For the histograms, a
binwidth of 10 was chosen; the sum of all surface areas equals 1. It can be concluded that for both
IPE and HE sections larger deviations were obtained for µ = 1 than for µ = 0 (max. of 85% for IPE).
In general, for µ = 1, the histograms show a larger varibility, which is more pronounced for IPE than
for HE sections.

Figure 3.32: Histogram of deviation of LPF according to EC3-Method 1: IPE sections.

Figure 3.33: Histogram of deviation of LPF according to EC3-Method 1: HE sections.

3.16.5 Comparison different approaches Method 1

As mentioned in the introduction of Section 3.16, preference was given to the representation of the
Modified General Method on the interaction diagram. In this paragraph results obtained by the
General Method, the Modified General Method and Modified Specific Method are compared. It should
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be noted that under pure compression (µ = 0) there is no deviation between the three methods as they
are based on the same buckling curves.
As already mentioned in paragraph 2.4.3.3, the influence of the application of the Modified General
Method will be largest for  = �1 and for a reduced slenderness for LTB �

LT

near 0.8. It was indeed
clearly noticeable that the largest deviations between the General Method and the Modified General
Method were obtained for members with a value of �

LT

closest to 0.8 (Table 3.21). Due to the larger
values of �

LT

for IPE profiles than for HE profiles with similar height and length (Section 3.11.1), the
value �

LT

= 0.8 is for IPE profiles already reached for shorter length members than for HE profiles.
For the Modified Specific Method, additionally lower buckling curves are used compared to the General
Method corresponding with a larger imperfection factor ↵ and a lower reduction factor for LTB �

LT

.
This is opposing the effect of the increased buckling resistance due to the modification factor f.

Figure 3.34: Comparison approaches Method 1 for IPEO600.

Table 3.21: Profiles with largest deviation between General Method and Modified General Method ( = �1).
Profile L [m] �

LT

[-]
IPE120 3.60 0.85
HE180A 11.97 0.88
IPE240 7.20 0.99
HE300A 14.50 0.78
IPEO360 10.92 1.04
HE400A 17.97 0.89
IPEO450 11.37 1.02
HE500A 18.30 0.93
IPEO600 12.40 0.99
HEM700 13.11 0.72

Also marked in paragraph 2.4.3.3, an increase in lateral torsional buckling resistance M
b,Rd

of 25%
was obtained for  = �1 by introduction of the modification factor f. Due to this increased buckling
resistance, the curve of the Modified General Method will be positioned lower and therefore more
conservative values are obtained than for the General Method. The Modified Method can therefore
certainly be preferable for short length members, for which unsafe results were obtained for the General
Method.
The differences between the different approaches is illustrated in Fig. 3.35 for a short length IPEO600
profile (L=6.1 m). Safe results are obtained over the complete range of considered µ values by applying
the Modified General Method, whereas the General Method would result in an unsafe approach for
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Figure 3.35: Comparison approaches Method 1 for IPEO600.

values of µ ranging from 1 to 5.

3.16.6 EC3 - Method 2

Although a good agreement with the numerical results was obtained for the EC3-Method 1, a possible
criticism is certainly the unpredictable and complex combination of different specific interaction factors
giving the user a black box feeling. A good alternative could therefore be the more user-friendly
approach of Method 2, but the question is if this method is as accurate and economic as Method 1 of
EC3. It will be tried to provide an answer to this question by examination of the results.

In general it can be concluded that Method 2 is a safe and mostly more conservative approach than
the Modified General Method 1. In contrast to the latter, Method 2 is therefore also applicable for
short length members under a non-uniform bending moment. Only for two combinations application
of the method would be an unsafe estimate (Table 3.22). It can be noticed that these unsafe results
were obtained in the range of intermediate to high µ values (0.5-1) and for members subjected to a
constant moment ( = 1). The interaction diagram of the HE500A profile is given as example in Fig.
3.36, where the unsafe part of the interaction diagram of Method 2 is indicated in red.

Table 3.22: Combinations for which design rule EC3-Method 2 is unsafe.
L [m]  [�] µ[�]

HE300A 8.70 1 0.5 - 1 - 5 - 10 - 1
HE500A 4.90 1 1 - 5 - 10 - 1
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Figure 3.36: Insecurity of EC3 - Method 2 for HE500A.

Although the general behaviour of Method 2 is more conservative than Method 1, certain combinations
are of interest for which application of Method 2 is more economic. From Table 3.23 it can be observed
that these combinations mostly correspond with a uniform bending moment ( = 1), except for the
profiles HE180A and HE300A where for the shortest length members the economic trend was also
observed for  = �1 for larger µ values (5, 10, 1). The economic approach of Method 2 is illustrated
in Fig. 3.37 for a HE180A profile for  = 1 (L=5.13 m) and  = �1 (L=1.71 m), where the economic
range of µ values is indicated in green.

Table 3.23: Combinations for which EC3-Method 2 is more economic than EC3-Method1 (Modified General).
L [m]  µ [-]

IPE120 1.20 1 1 - 5 - 10
HE180A 1.71 1 1 - 5 - 10

1.71 -1 5 - 10 - 1
5.13 1 0.1 - 0.5 - 1 - 5 - 10
8.55 1 1 - 5 - 10
11.97 1 1 - 5 - 10

IPE240 2.40 1 0.1 - 1 - 5 - 10
HE300A 2.90 1 0.5 - 1 - 5 - 10

2.90 -1 5 -10 - 1
8.70 1 0.1 - 0.5
14.50 1 1 - 5 - 10
20.30 1 5 - 10

IPEO360 3.64 1 0.1 - 1 - 5 - 10
HE400A 3.90 1 0.5 - 1 -5 -10

10.93 1 1 - 5 - 10
IPEO450 4.56 1 0.1 - 1 - 5 - 10
HE500A 11.60 1 5 - 10
IPEO600 6.10 1 0.1 - 5 - 10
HEM700 7.16 1 0.1 - 1 - 5 - 10
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Figure 3.37: Economic application of Method 2 for HE180A profile.
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3.17 Conclusion applicability of the design rules

Considering all µ values, the largest variability in the deviation between the numerical and analytical
values of the load proportionality factor was obtained for  = �1. Looking at the different µ values
in particular, largest deviations were obtained for µ = 1, i.e. for members subjected to pure bending.
Deviations are generally increasing with increasing length. Application of the design rules is in general
unsafe (negative deviations) for short length members, while deviations up to 100% were observed for
the longest members (25 m;  = �1).

From observation of the interaction diagrams, it can be concluded that the design rule of Vandepitte
is mostly unsafe, even for longer members. A large increase in safety was indeed examined for the
the improved design rule of Vandepitte. For Method 1, the Modified General Method was considered
taking into account the influence of a non-uniform bending moment. With this method, mostly safe
results were obtained, except for short length members and especially under a non-uniform bending
moment. Method 2 was observed to be more conservative than the General Modified Method and
therefore also much safer for short length members, except for sections HE300A and HE500A under a
constant bending moment ( = 1).



Chapter 4

Extended parametric study on

plain-webbed members

The same profiles that will be used as parent sections to examen the resistance of eccentrically loaded
cellular members, were also used to extend the limited research on plain-webbed members under
combined bending and axial load. However, since the six additional sections are very similar to the
ones of Gevaert, similar findings are possible. Therefore only a few interesting observations will be
highlighted. A detailed description on the choice of these specific profiles as parent sections of the
cellular members is given in section 5.1. An overview of the profiles with their principal dimensions is
given in Table 4.1.

Table 4.1: Cross-sectional properties parent sections.
Section h [m] b [m] t

f

[m] t
w

[m]
IPE300 0.300 0.150 0.0071 0.0107
IPE600 0.600 0.220 0.0120 0.0190
HE320A 0.310 0.300 0.0090 0.0155
HE650A 0.640 0.300 0.0135 0.0260
HE320M 0.359 0.309 0.0210 0.0400
HE650M 0.668 0.305 0.0210 0.0400

4.1 Deviation of Mcr,0

Similarly as for the ten plain-webbed members in the parametric study of Gevaert, a deviation factor
�M

cr,0 is defined indicating the correspondence of the theoretical expressions for the critical LTB
bending moment with the numerically obtained results. Lateral-distortional buckling was again ob-
served for the short length members and large deviations were obtained for the shortest considered
lengths of profiles HE320A and HE650A. As mentioned previously (section 3.13), the large deviations
can be explained by the observed plastic failure instead of elastic buckling failure.
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Figure 4.1: Deviation of M
cr0 for profiles extended parametric study.

4.2 Classification cross-section

The cross-section classification is again performed according to EC3 (CEN, 2005) (c = h � 2t
f

� 2r)
and for the different µ values given in Tables 4.4-4.5. Different from the study of Gevaert, cross-
sections Class 4 are obtained for sections IPE600 and HE650A. Since the classification has an important
influence on the application of the design rules (as mentioned in Section 3.10.1), comparison is again
made with the classification based on a wire model (c = h � t

f

� 2r) (Tables 4.2-4.3). The most
important difference can be found for IPE300 profiles, where (different from the wire model) according
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to EC3 a plastic theory can be applied. Furthermore, it can be emphasized that for sections IPE600
and HE650A, class 1 is obtained under pure bending whereas class 3 or 4 is found for other µ values.
Consequently, a shift in the interaction diagram from elastic (low µ values) to plastic (high µ values)
theory is noticeable. According to a plastic theory, sections will reach a larger value of the ultimate
axial load N

u

compared to an elastic theory and also the failure moment M
u

is larger. This is illustrated
for a HE650A section subjected to a constant bending moment ( = 1). The transition between the
elastic and plastic theory is clearly noticeable for three methods: ECCS-Vandepitte, EC3-Method 1
and EC3-Method 2. The influence of the cross-section classification on the design rule Vandepitte
was already discussed in Section 3.10.1. Also for Method 2, in the governing condition of buckling
around the weak axis (Eq. 4.2.1), the influence of the cross-section classification is clearly noticeable
since depending on this classification the elastic or plastic bending resistance is used. This is less
straightforward for Method 1, where several interaction factors are calculated differently depending on
an elastic or plastic theory.

N
Ed

�
z

N
pl,Rd

+ k
LT

M
y,Ed

�
LT

M
y,Rd

 1 (4.2.1)

The above considerations will be important for cellular members where due to their increased height
compared to the parent sections cross-sections Class 4 will be obtained for all profiles for one or more
µ values. Consequently, the same transition in the interaction diagram from elastic to plastic theory
can be observed.

Figure 4.2: Transition elastic-plastic theory HE650A (L=12.6 m,  = 1).

Table 4.2: Classification of cross-sections extended study for  = 1 (wire model).
µ IPE300 IPE600 HE320A HE650A HE320M HE650M
0 3 4 2 4 1 1

0.1 3 4 2 3 1 1
0.5 3 3 2 3 1 1
1 3 3 2 3 1 1
5 1 1 2 1 1 1
10 1 1 2 1 1 1
1 1 1 2 1 1 1
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Table 4.3: Classification of cross-sections extended study for  = 0 and  = �1 (wire model).
µ IPE300 IPE600 HE320A HE650A HE320M HE650M
0 3 4 2 4 1 1

0.1 3 4 2 4 1 1
0.5 3 4 2 4 1 1
1 3 4 2 4 1 1
5 3 4 2 4 1 1
10 3 4 2 4 1 1
1 1 1 2 1 1 1

Table 4.4: Classification of cross-sections extended study for  = 1 according to EC3.
µ IPE300 IPE600 HE320A HE650A HE320M HE650M
0 2 4 1 3 1 1

0.1 2 3 1 3 1 1
0.5 2 3 1 3 1 1
1 2 3 1 3 1 1
5 1 1 1 1 1 1
10 1 1 1 1 1 1
1 1 1 1 1 1 1

Table 4.5: Classification of cross-sections extended study for  = 0 and  = �1 according to EC3.
µ IPE300 IPE600 HE320A HE650A HE320M HE650M
0 2 4 1 3 1 1

0.1 2 4 1 3 1 1
0.5 2 4 1 3 1 1
1 2 4 1 3 1 1
5 2 4 1 3 1 1
10 2 4 1 3 1 1
1 1 1 1 1 1 1

4.3 Alternative representation of the results

An alternative representation of the interaction diagrams is possible by means of normal probability
density functions (Fig. 4.3). In this way easier comparison between the deviations of the different
methods is possible. The distributions are characterized by their mean value and standard deviation
��, of which the latter gives an idea of the variability of the results. It can be concluded that
application of design rules ECCS-Van Impe, EC3-Method 1 and 2 is safe, except for short length
members, corresponding to the negative deviations in the probability density functions. For Vandepitte,
unsafe results are obtained over a wider range of lengths, showing the insecurity of this method. It
should however be noted that for larger lengths the method can be a good alternative to the conservative
results obtained by the other methods.
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Figure 4.3: Normal PDF of members extended parametric study.
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Chapter 5

Parametric study on cellular members

Referring to the scope of this thesis (Section 1.7), a parametric study will be performed to determine the
buckling resistance of cellular members subjected to a combination of bending moment and compressive
force. In this chapter first the different parameters considered in the parametric study will be discussed.

5.1 Parent sections

For plain-webbed members, a parametric study was already executed on the profiles considered in
(Gevaert, 2010). This served as a verification of the numerical model that is based on the model used
in (Sonck, 2014) under the changed load condition of bending and compression. The six profiles that
were used to extend the research on plain-webbed members will now be considered as parent sections
for the cellular members.
With the choice of parent sections, it was tried to cover a range of regularly used profiles starting from
three different I-section types (IPE, HEA and HEM). Representative parent sections for the cellular
members were selected based on the available profiles in (ArcelorMittal, 2008). The dimensions of the
profiles were chosen to vary in the normal range of application: IPE200-IPE750 for IPE profiles and
HE260-HE1000 for HE profiles. It should be noted that adapted residual stress pattern proposed by
Sonck for cellular members, which was only experimentally validated for light parent sections (IPE160),
will be implemented in the model. Therefore, the extremely heavy HE sections where excluded from
the parametric study. Based on the same reasoning, the heavy HL sections, only ranging from HL900
to HL1100, were not considered. Although the application of HEB sections is common, the choice of
HEA and HEM sections was chosen to cover a larger range of section properties. As final criterium,
sections were chosen with a limited variation in web height (h-2t

f

).
The above considerations were also made in (Sonck, 2014) for the investigation of the global buckling
on castellated and cellular members. As a result, the same profiles will be considered for the parametric
study (Table 4.1).

5.1.1 Parameters cellular openings

To determine the buckling resistance of members under the combined action of bending moment and
normal force, a sufficient number of different geometries should be considered. For cellular members,
the dimension of the openings a is determined by the factor f

a

. To characterize the web post width
w the factor f

w

is introduced. Similarly, the width of the web post at the end of the cellular member
can by varied by f

w,end

, although this width will be considered constant throughout the parametric
study. The relations between the factors f and the dimensions of the cellular members are given by
Eqs. 5.1.1-5.1.3 (Fig. 5.1).
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a = f
a

· h (5.1.1)

w = f
w

· a (5.1.2)

w
end

= f
w,end

· w (5.1.3)

Figure 5.1: Cellular member dimensions. Extracted from (Sonck, 2014).

The choice of the factors f
a

and f
w

is based on values of normal application in (ArcelorMittal, 2008).
To limit the number of simulations, two different values will be considered for both parameters. The
considered values for both factors are given in Table 5.1. However, also the geometrical constraints
found in the Detailed Technical Description of ARCELOR Cellular Beams (CTICM, 2006) should be
fulfilled, possibly reducing the number of possible geometries for one or more of the considered values
for f

a

and f
w

. The values in Table 5.1 are therefore starting values, that are altered per profile to
obtain four parameters that meet the geometrical constraints.

Table 5.1: Considered factors f
a

and f
w

Factor Considered values.
f
a

0.8 1.2
f
w

0.1 0.7

An overview of the geometrical constraints for cellular members is given in Appendix A.5. To illus-
trate the adaptations that will be made to the factors f

a

and f
w

, first an overview of the considered
combinations (denoted with c1 till c4) is given in Table 5.2.

Table 5.2: Considered combinations factors f
a

and f
w

.
Combination f

a

f
w

c1 0.8 0.1
c2 1.2 0.1
c3 0.8 0.7
c4 1.2 0.7

Figure 5.2: Illustration of combinations c1-c4 for HE650M.
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Constraint 3 (w � 50 mm) was not fulfilled for combination c1 for all profiles except for the higher
HE650A and HE650M profiles. This can be explained by the low value of factor f

a

and its direct relation
with the web post width w according to Eq. 5.1.2. To allow for a wider range of applicable geometries,
constraint 3 was not used to determine the possible geometries for the parametric study. Consequently,
the originally proposed factors for f

a

and f
w

of combination c1 (Table 5.2) were maintained. For
combination c2 the proposed value of 1.2 for factor f

a

was adapted to 1.1 to fulfill constraint 7. All
geometrical constraints for combination c3 were met for all profiles.

Table 5.3: Adapted values considered values factors f
a

and f
w

.
Section Combination f

a

f
w

Failing constraint
IPE300 c4 1.1 0.65 constraint 4/7/8
IPE600 c4 1.15 0.6 constraint 4
HE320A c4 1 0.65 constraint 4/7/8
HE650A c4 1.15 0.6 constraint 4
HE320M c2 1.05 0.1 constraint 7

c4 0.9 0.6 constraint 4/7/8
HE650M c4 1.15 0.6 constraint 4/7/8

Most restrictions on factors f
a

and f
w

were obtained for combination c4. An overview of the final
considered values and the failing constraints for the originally proposed values (Table 5.2) for the
different sections is given in Table 5.3. It should be noted that for the adapted values of f

a

and f
w

the preference was given to values of f
a

with a minimal deviation of the original value 1.2 in order
to obtain a diameter of the openings that is as large as possible. By aiming for a maximum web
opening area, the dead load is lowest with a larger possibility to integrate services in the openings. An
overview of the considered combinations for HE650M is given in Fig. 5.2, where the larger openings
for combinations c2 and c4 are clearly noticeable, as well as
Limitations were mainly obtained for geometrical constraints 4, 7 and 8. For combination c4 all profiles
failed on constraint 4, which imposes a lower limit of 1.25 on H/a. Difficulties for this constraint can
be explained by the combination of high f

a

and f
w

values considering Eqs. 5.1.1-5.1.2. Constraints 7
and 8 were introduced to facilitate the cutting of the web of the parent section during the fabrication
process and are based on h

web,TS

, the height of the remaining part of the web at the location of the
opening (Fig. A.1).

5.1.2 Profile length

The variation of the member’s length was determined similarly as for the plain-webbed members, i.e.
by interpolation between two set boundaries for the minimum and maximum length. The height H
is now referring to the total height of the cellular member. In contrast to the profiles considered in
(Gevaert, 2010), the variation in web height for the two groups of profiles IPE300/HE320A/HE320M
and IP600/HE650A/HE650M is limited. As a reminder, the devision made by Gevaert (section 3.11.1)
was mainly introduced for low-height profiles to limit the non-dimensional slenderness � (Eq.5.1.4) for
long lengths due to the considerable decrease of the critical weak-axis flexural buckling load N

cr,z

for
these members. For large values of �, the critical flexural buckling load becomes determining, since N
approaches N

cr,z

. Based on this consideration and the smaller variation of the cross-sectional properties
of the profiles in this work, only the length determination based on interpolation was retained. How-
ever, to allow for a wider variation of corresponding slenderness of the members, an additional length
was introduced. A few other adaptations were required due the larger height of the cellular members.
First, a minimum length f

L,min

of 5H was introduced for the higher profiles IPE600/HE650A/HE650M
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so that also for these profiles lower slenderness values �
z

could be examined. The lower boundary of
5H was also introduced for IPE300 profiles due to their higher slenderness for equal lengths compared
to HE320A and HE320M profiles. As already mentioned in section 3.11.1, for high values of �

LT

(Eq.
), it is not possible to obtain a load proportionality factor from the GMNIA analyses as deformations
are increasing with increasing load and no maximum is obtained.
Therefore, for IPE300 and IPE600 profiles an additional limitation will be set to the length of respec-
tively 15m and 20 m. The subdivision for the different profiles is given in Table 5.4.

Table 5.4: Profile length cellular members.
k IPE300 IPE600 HE650A/HE650M HE320A/HE320M
1 5H 5H 5H 10H
2 5H + (15-5H)(1/4) 5H + (20-5H)(1/4) 5H + (25-5H)(1/4) 10H + (25-10H)(1/4)
3 5H + (15-5H)(2/4) 5H + (20-5H) (2/4) 5H + (25-5H)(2/4) 10H + (25-10H)(2/4)
4 5H + (15-5H)(3/4) 5H + (20-5H) (3/4) 5H + (25-5H)(3/4) 10H + (25-10H)(3/4)
5 15 20 25 25

Table 5.5: Slenderness range �
z

and �
min

/�
max

for cellular members.
�
z

�
LT,min

�
LT,max

IPE300 0.6 - 1.5 - 2.4 - 3.3 - 4.2 0.35 2.75
IPE600 0.9 - 1.7 - 2.4 - 3.2 - 3.9 0.49 2.77
HE650A 0.7 - 1.4 - 2.1 - 2.7 - 3.5 0.37 2.37
HE650M 0.7 - 1.4 - 2.0 - 2.7 - 3.4 0.36 2.01
HE320A 0.6 - 1.3 - 1.9 - 2.6 - 3.3 0.3 2.07
HE320M 0.6 - 1.3 - 1.9 - 2.5 - 3.2 0.28 1.39

�
z

=

s
f
y

A2T

N
crz,2T

(5.1.4)

�
LT

=

s
f
y

W
pl,2T

M
cr,2T,avg

(5.1.5)

It should be noted that the lengths specified in Table 5.4 are the minimum lengths L
min

of the cellular
members. The length L is determined using Eq. 5.1.6 with n indicating the smallest number of whole
openings (Eq. 5.1.7) and the dimensions of the cellular member as indicated in Fig. A.1.

L = n(a+ w)� w + 2w
end

(5.1.6)

n =

⇠
L
min

+ w � 2w
end

a+ w

⇡
(5.1.7)

5.1.3 Cross-section classification cellular members

The classification of the web post between the openings will be performed in the same manner as
discussed in detail for the plain-webbed members, i.e. by applying the classification rules of EC3
without omission of the fillets. It should again be emphasized that for the cross-sectional properties
themselves a wire model is used. Also for the classification of the flanges, the rules of (CEN, 2005)
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are applied. For cellular members however, an additional check of local buckling of the web at the tee
section is required according to (CEN, 1998) (Annex N). Based on the following rules, a distinction is
made between profiles Class 2 or 3 (Figs. 5.1-A.1).

Class 2: l⇤  32✏t
w

or h
web,TS

 10✏t
wq

1�
�
32✏tw
l

⇤
�2 (5.1.8)

Class 3: l⇤  36✏t
w

or h
web,TS

 14✏t
wq

1�
�
36✏tw
l

⇤
�2 (5.1.9)

where l⇤ = 0.7a; h
web,TS

=
H � 2t

f

� 2r � a0
2

(5.1.10)

Due to large height of the web post of cellular members, Class 4 was obtained for all profiles, except for
HE320M (Class 2). The most detrimental classification for all profiles was obtained for the largest web
opening (defined by f

a

) and the smallest web post width (defined by f
w

), i.e. combination c2 (Table
5.2 and 5.3). The most detrimental classification for different load configurations is given in Table 5.6
and 5.7. Although for class 4, an effective cross-section should be considered with an ineffective central
part of the web (h

ineff

), this central part was always smaller than the opening height a, which is
already included in the cross-sectional properties when applying a 2T approach. The ineffective height
h
ineff

is largest for the combinations with the most detrimental classification and given in Table 5.8.

Table 5.6: Classification of cellular members for  = 1 (c = h� 2t
f

� 2
r

).
µ IPE300 IPE600 HE320A HE650A HE320M HE650M
0 4 4 4 4 2 4

0.1 4 4 4 4 2 4
0.5 4 4 3 4 2 3
1 3 4 3 4 2 3
5 3 4 2 3 2 2
10 3 4 2 3 2 2
1 3 4 2 3 2 2

Table 5.7: Classification of cellular members for  = 0 and  = �1 (c = h� 2t
f

� 2r).
µ IPE300 IPE600 HE320A HE650A HE320M HE650M
0 4 4 4 4 2 4

0.1 4 4 4 4 2 4
0.5 4 4 4 4 2 4
1 4 4 4 4 2 4
5 4 4 4 4 2 4
10 4 4 4 4 2 4
1 3 4 2 3 2 2
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Table 5.8: Geometries with largest ineffective height h
ineff

.
IPE300 IPE600 HE320A HE650A HE320M HE650M

f
a

1.20 1.20 1.20 1.20 1.05 1.20
f
w

0.10 0.10 0.10 0.10 0.10 0.10
H 0.471 0.950 0.487 1.014 0.539 1.059
a 0.360 0.720 0.372 0.768 0.377 0.802
h
ineff

0.230 0.466 0.236 0.494 0.249 0.509

5.1.4 Types of analyses

First, an LBA analysis will be performed to determine the critical lateral-torsional buckling moment
M

cr,abq

and the deviation from the analytical formula M
cr,an

according to a 2T approach. In total, 420
LBA analyses should be executed on every profile, i.e. for each of the 5 lengths, the 4 combinations (c1
!c4), the seven µ values and the three  -values defining the load condition. Similarly as in the study
of Gevaert, this value of M

cr

will be required for the GMNIA analyses to define the initial axial load
on the members. However, due to the observed web post buckling for short length members (Section
5.1.5), resulting in a large deviation between the numerically and theoretically obtained results, the
theoretical expressions will be used to determine the initial axial load. For each of the LBA analyses,
a corresponding GMNIA analysis will be performed.

5.1.5 Critical bending moment M
cr

For all considered members subjected to a constant bending moment ( = 1) lateral-torsional buckling
was examined as failure mode. For the non-uniform bending moments however, local web post-buckling
was observed for the short-length members. By means of LBA analyses, the deviation factor �

M

between the numerical and analytical results will be examined (Eq.5.1.11).

�
M

=

✓
M

abq

M
an

� 1

◆
· 100% (5.1.11)

For the analytical expression of the critical buckling moment, it should be noted that the torsional
constant I

t

will be the determining factor. Therefore, a weighted average approach was proposed for I
t

according to Eq. 5.1.12, resulting in a value intermediate between the underestimated value I
t,2T and

the overestimated value I
t,0. With this expression, an equivalent rectangular opening is considered with

horizontal dimension l0,avg (Eq. 5.1.12) and vertically the diameter of the circular opening (Fig.5.3).
The factor �

cell

in the expression of the equivalent length l0,avg based on examination of �
Mcr , are

obtained by best fitting of the factors �
cell

with the numerical results. This was studied in (Sonck,
2014) and a value of 0.9 was proposed for cellular members. Although this value was only derived for
members subjected to a constant bending moment, based on further investigation in this work it could
be concluded that also satisfactory results were obtained in case of non-uniform bending moments
( = 0;  = �1). It should be noted that (as investigated by Sonck) the introduction of I

t,avg

compared to I
t,0 will only affect the deviations for larger lengths significantly, considering the smaller

influence of the torsional constant I
t,avg

for shorter lengths in the expression of M
cr

.

I
t,avg

= n
l0,avg
L

· I
t,2T +

✓
1� nl0,avg

L
· I

t,0

◆
l0,avg,cell = �

cell

l0 = �
cell

a (5.1.12)

The deviations �M
cr,2T for different  values are represented in Fig. 5.5. The combinations for which

large deviations were obtained due to web-post buckling are listed in Table B.2. An example of the
observed web-post buckling for section IPE300 (L=2.18m;  = �1) is given in Fig. 5.4.
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Figure 5.3: Equivalent opening cellular member. Extracted from (Sonck, 2014).

Figure 5.4: Observed web-post buckling for IPE300 (L=2.18 m;  = �1).

5.2 Comparison numerical results with buckling curves for limit cases

5.2.1 Flexural buckling

In (Sonck, 2014) a design rule proposal was made for the adapted weak-axis flexural buckling curves of
cellular members due to the more detrimental residual stress pattern. The best buckling curve fit with
existing EC3 buckling curves was determined for the same six geometries as considered in this work.
The additional GMNIA results for the different set of slendernesses examined here will therefore serve
as an additional verification of this preliminary design rule. Comparison of the numerical results with
the different existing buckling curves is given in Fig. 5.6, where the non-dimensionless slenderness � was
calculated analytically according to Eq. 5.1.4. The reduction factor �

Abq

was determined numerically
using Eq. 5.2.1, based on N

b,Rd

= �
u

N
start

.

�
Abq

=
N

Rd,abq

f
y

A2T
(5.2.1)

For each buckling curve, the deviations �N
Rd

from the existing EC3 buckling curves are given in
Appendix B, Table B.3, of which the minimal deviations and best fitting buckling curves are also
represented in Table 5.9. The profiles HE320A and HE320M show the best correspondence with
buckling curve d, whereas for the other geometries best fitting was obtained with buckling curve c.
This can be explained by the higher residual stresses in the parent sections due to which also for the
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Figure 5.5: Deviation of M
cr,2T .



5.2. COMPARISON NUMERICAL RESULTS WITH BUCKLING CURVES FOR LIMIT CASES103

cellular members a higher residual stress pattern was assumed. Detailed examination is outside the
scope of this work, but based on these results, it can be concluded that the FB curve proposal for
cellular members made in (Sonck, 2014) is also applicable for the different range of slendernesses in
this work.

Table 5.9: Best fitting EC3 buckling curve under pure compression.
parent section h/b [-] H/b [-] �N

Rd,EC3,min

[%] buckling curve
IPE300 � 1.2 � 1.2 -2.13 c
IPE600 � 1.2 � 1.2 -0.32 c
HE320A  1.2 � 1.2 -0.46 d
HE650A � 1.2 � 1.2 -3.28 c
HE320M  1.2 � 1.2 -0.46 d
HE650M � 1.2 � 1.2 -2.49 c

Figure 5.6: Comparison numerical results with existing buckling curves (µ = 0).

5.2.2 Lateral-torsional buckling

According to (CEN, 2005), a global non-dimensional slenderness �
op

can be defined according to Eq.
5.2.2 for structural components subjected to lateral and lateral-torsional buckling.

�
op

=
r
↵
ult,k

↵
cr,op

(5.2.2)

The factor ↵
ult,k

is the minimum amplification factor that should be applied to the design loads
(moment and axial load) to obtain the characteristic resistance of the most critical cross-section of
the considered member. It is defined here specifically as the factor by which both moment and axial
force should be multiplied to obtain full plastic yielding of the cross-section. It should be noted that
the initially applied bending moment M and normal force N were defined based on a constant ratio
between both (e=M/N, Eq. 3.2.1). Therefore it is possible to define a general multiplication factor for
the combined action of M and N. The factor ↵

ult,k

was determined theoretically based on Eq. 5.2.3,
with N

Rk

and M
y,Rk

respectively the normal buckling and bending resistance.
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Figure 5.7: Comparison numerical results with existing buckling curves (µ = 1;  = 1).

↵
ult,k

✓
N

Ed

N
Rk

+
M

y,Ed

M
y,Rk

◆
= 1 (5.2.3)

On the other hand, for the multiplication factor ↵
cr,op

the results of an LBA analysis executed for all
combinations will be used, since this factor represents the elastic critical lateral or lateral torsional
buckling resistance of the considered member.
This alternative formulation of the non-dimensionless slenderness will be used to compare the numerical
results with the buckling curves proposed in EC3. In this way, not only members under pure bending or
compression can be considered, but representation of all results of members subjected to a combination
of bending and compression is possible. The reduction factor �

Abq,LT

was defined according to Eq.
5.2.4, where the resistances M

Rd,Abq

are obtained from GMNIA analysis; factor ↵
ult,k

results again
from Eq. 5.2.3.

�
Abq

=
M

Rd,abq

↵
ult,k

(5.2.4)

First, only members subjected to pure (uniform or non-uniform) bending are considered. The obtained
resistances in the GMNIA analysis will be compared with the resistances M

Rd,2T,avg = �
LT

W
pl

f
y

, in
which a 2T approach is used for all cross-sectional properties, but a weighted average expression for
the torsional constant. Similarly as for flexural buckling (Section 5.2.1), the deviations �M

Rd

from
the existing EC3 buckling curves can be determined. An overview of the deviations and best fitting
buckling curves for three different  values is given in Table 5.10. The corresponding best fit buckling
curves for  = 1, corresponding to the smallest value of

P
(�

Abq

� �)2, are identical as in (Sonck,
2014), where a similar study was performed. For section HE650M, the best fit buckling curve is b, but
since the minimum deviation �M

Rd,EC3,min

(-7.7%) is smaller than -5%, the choice of this buckling
curve is considered unsafe. Therefore, buckling curve c is recommended.
As indicated in Section 2.4.3.2, an increased lateral-torsional buckling resistance can be obtained
members subjected to an non-uniform bending moment compared to members under constant bending.
This can be clearly noticed from the higher buckling curves that were obtained for  = 0 (Fig. 5.8). For
all considered sections, the highest buckling curve a was therefore most suitable, although deviations
with buckling curve a are still large for all HE sections. This effect is even more pronounced for  = �1
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where, although a higher variation of the results can be noticed (Fig. 5.9), most values of �
LT

for all
sections are situated at a significant distance above buckling curve a.

Table 5.10: Best fitting EC3 buckling curve under pure bending.
h/b [-] H/b [-]  = 1  = 0  = �1

�M
Rd,EC3,min

[%] curve [-] �M
Rd,EC3,min

[%] curve [-] �M
Rd,EC3,min

[%] curve [-]
IPE300 � 2 � 2 -2.4 c -4.7 a -84.5 a*
IPE600 � 2 � 2 -3.3 c -3.2 a -35.9 a*
HE320A  2 � 2 -6.7 c -20.5 a* -26.7 a*

-3.9 c
HE650A � 2 � 2 -4.5 c -29.2 a* -67.9 a*

0.2 d
HE320M  2 � 2 -3.2 a 9.2 a* -17.2 a*
HE650M � 2 � 2 -7.7 b* -6.9 a* -43.8 a*

-0.5 c -3.4 b

Figure 5.8: Comparison numerical results with existing buckling curves (µ = 1;  = 0).

5.2.3 Members subjected to bending and axial load

Finally, it is possible to compare the results obtained for all seven µ values of Table 3.1 with the
buckling curves of EC3. This is illustrated in Figs. 5.10-5.11 for  = 1, where the data corresponding
to µ = 1 are indicated in red; Blue is used for all other µ values. Best fitting buckling curves can
again be derived of which a summary is given in Table 5.11. The charts for  = 0 and  = �1 as well
as the corresponding deviations in M

Rd

are given in Appendix B.
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Figure 5.9: Comparison numerical results with existing buckling curves (µ = 1;  = �1).

Table 5.11: Best fitting EC3 buckling curve under bending and compression.
parent section h/b [-] H/b [-] �M

N,Rd,EC3,min

[%] buckling curve
IPE300 � 1.2 � 1.2 -2.4 c
IPE600 � 1.2 � 1.2 -3.2 c
HE320A  1.2 � 1.2 -6.7 c*

3.6 d
HE650A � 1.2 � 1.2 -4.5 c
HE320M  1.2 � 1.2 -3.2 a
HE650M � 1.2 � 1.2 -7.7 b*

-0.5 c

Figure 5.10: Comparison numerical results with existing buckling curves for all µ values - IPE sections ( = 1).
Data corresponding to µ = 1 indicated in red; Blue is used for all other µ values.
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Figure 5.11: Comparison numerical results with existing buckling curves for all µ values - HE sections ( = 1).
Data corresponding to µ = 1 indicated in red; Blue is used for all other µ values.

5.3 Deviation of LPF for different lengths

Similarly as for plain-webbed members, the deviation between the numerically and analytically ob-
tained load-proportionality factor is represented by �LPF (Eq. 3.16.1). Figure 5.12 shows the results
for Method 1 based on a modified optimal imperfection factor ↵ of 0.6 for the LTB curves, but similar
findings are possible for other methods. The seven different µ values of Table 3.1 are represented in
the graphs. Similar findings as for plain-webbed members are possible where also negative deviations
were observed for short length members indicating the insecurity of the design rules for shorter lengths.
Largest negative deviations were again obtained for  = �1 (-85%). Long length members on the other
hand show large positive deviations (up to 140% for IPE600;  = �1) and application of the design
rule for these members is therefore very conservative. As remarked for the plain-webbed members, a
larger variation of the results can be noticed for  = �1 than for members subjected to a constant
bending moment.

5.4 Deviation of LPF for different slendernesses

Alternatively, the deviation in load proportionality factor for seven µ values (Table 3.1) can be given
as function of the slenderness �

op

(Eq. 5.2.2). Comparable results are obtained for three methods:
ECCS-Van Impe, Method 1 and Method 2 of EC3. The results for Method 2 are represented in Fig.
5.13. Under a constant bending moment ( = 1), deviations are increasing with increasing slenderness
up to �

op

⇡ 2.5. For higher slendernesses (�
op

> 2.5), especially obtained for profiles IPE300 and IP600
(Fig. 5.13), the observed deviations are smaller. For members under a non-uniform bending moment
( = 0 or  = �1), a similar effect can be noticed with all large deviations obtained for �

op

< 2.

Reference is made to Section 5.3, where it was concluded that deviations in LPF were increasing with
increasing length of the members. For longer lengths, the obtained values of the elastic critical buckling
resistance were indeed lower, increasing the member’s slenderness �

op

.
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Figure 5.12: Deviation of LPF for cellular members as function of length.
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Figure 5.13: Deviation of LPF for cellular members as function of slenderness.
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5.5 Influence of the considered µ value

As concluded for plain-webbed members, also for cellular members largest deviations are obtained for
members subjected to pure bending (µ = 1). The plot of Fig. 5.12 for  = �1 is repeated here,
but only for µ = 0 and µ = 1. It can be concluded that for both values of µ application of design
rule Method 1 is unsafe for short length members and conservative for longer lengths. However, the
deviation and variability of the results is much larger for µ = 1 than for µ = 0. Although the focus
in this part is only on Method 1, it should be noted that other methods lead to similar findings.

Figure 5.14: Influence of considered µ value for cellular members.

5.6 Influence of the cross-section classification

The influence of the cross-section classification, again based on EC3, is represented by a moment-
normal force interaction diagram (Fig. 5.15). All moment-normal force interaction diagrams are
provided on CD. Similarly as observed in the extended study on plain-webbed members, a shift from
elastic to plastic theory is clearly noticeable (for Method 1 and 2) with increasing values of µ. However,
comments can be made on this classification and possibly the calculation could be performed according
to a plastic theory (considering the comments of Section 3.10.1) for all µ values. Still, preference was
given by the author to follow the classification of EC3 according to an elastic-plastic theory due to the
increased height and therefore more pronounced elastic behaviour of cellular members.

5.7 Influence of the choice of parent section

In this section the influence of the choice of parent section on the applicability and insecurity of the
design rules is of further interest. This will be discussed based on the normal probability density
function of the deviation of the load proportionality factor of each of the profiles, repeated for the four
considered methods. An overview of the minimum, maximum, mean, median and standard deviation
is given in Appendix B, Section B.7. In this part, a qualitative interpretation of the results is given.
The results will be discussed separately for different  values.
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Figure 5.15: Moment-Normal force interaction diagram HE650M (L=16.13m;  = 1).

5.7.1 Members subjected to a constant bending moment ( = 1)

Although in this paragraph only members subjected to a constant bending moment are considered,
for which the smallest deviations are expected, the larger insecurity of the Vandepitte design rule is
already clearly noticeable (Fig. 5.16) with a minimum deviation of -36.9% for section HE320A. For this
section, also the maximum deviation (46.3%) of all profiles was observed. For this profile, the standard
deviation �� is 10.9%, which is the largest of all profiles. The deviations of HE320M show the smallest
variability with a standard deviation �� of 5.8% and the smallest negative deviation (-4.8%) as mean
value. The distributions of the five other profiles are quite comparable and for each of them a larger
variability can be observed.

Figure 5.16: Normal PDF of �LPF according to method ECCS-Vandepitte ( = 1).

Similar findings are possible for the Van Impe method (Fig. 5.17) concerning section HE320M, for
which the distribution shows an even smaller variability (4.3%). Similarly as for the Vandepitte method,
other profiles show a larger variability with the largest variability on the deviations again obtained for
HE320A (14.9%). It should be noted that the obtained distribution functions are quite comparable to
the ones of Method 2 (as can be observed in Fig. 5.19), from which similar conclusions can be drawn. In
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contrast to the previous methods, the distribution function of the deviations in LPF of Method 1 has a
wider variability for section HE320M (15.3%). Similarly as for the other methods, the largest maximum
deviation was obtained for HE320A (109.1%). It should be noted that although negative deviations
were obtained for method Vandepitte, a better correspondence can be found with the numerical results
compared to the other methods, for which application of the design rule is conservative.

Figure 5.17: Normal PDF of �LPF according to method ECCS-VI ( = 1).

Figure 5.18: Normal PDF of �LPF according to Method 1 ( = 1).
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Figure 5.19: Normal PDF of �LPF according to Method 2 ( = 1).

5.7.2 Members subjected to a non-uniform bending moment ( = 0 or  = �1)

For members subjected to a bending moment at one of the member’s end sections ( = 0), the obtained
distribution functions of the deviations in LPF are very similar for the four methods. As indicated for
 = 1, negative deviations are observed for method Vandepitte (Fig. 5.20), which are even larger in
absolute value (up to 66.3% for HE650M) than for members subjected to a uniform bending moment
( = 1). The distribution function of profile HE320M shows the largest frequency with a mean value
of -2.7%. Mean values of the distribution functions of other profiles are comparable, but lower.

Figure 5.20: Normal PDF of �LPF according to method ECCS-VDP ( = 0).

For the three other methods, negative deviations in the same order of magnitude of method Vande-
pitte can be noticed. As remarked in Section 5.3, these large deviations were observed for short length
members. In contrast to the design rule Vandepitte however, the distribution functions of the other
methods show a larger variability, which was already observed in Section 5.3. For Method 2, a maxi-
mum standard deviation �� of 22.6% was found for section HE650A, whereas only 14.5% for method
Vandepitte.
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Figure 5.21: Normal PDF of �LPF according to method ECCS-VI ( = 0).

Figure 5.22: Normal PDF of �LPF according to Method 1 ( = 0).

Figure 5.23: Normal PDF of �LPF according to Method 2 ( = 0).
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When an equal moment, but opposite in sign ( = �1) is applied at both member’s end sections,
the distribution functions of all methods show again a larger variability. Largest standard deviations
�� were obtained for method ECCS-Van Impe, Method 1 and Method 2 (Figs. 5.25 - 5.27) with a
maximum of 155.5% for profile IPE600 according to Method 2. Although method Vandepitte was
proved to be unsafe for different µ values, due to the smaller variability on the deviations of the LPF
and with mean values of the different profiles close to 0, it should be noted the Vandepitte method
(Fig. 5.24) is less conservative compared to the other methods, for which a large safety is obtained for
longer length members. Finally, it can be remarked that a lower mean value and standard deviation
are obtained for profiles HE320M and that in general the variability of the deviations according to
Method 1 is lower for all considered sections.

Figure 5.24: Normal PDF of �LPF according to method ECCS-VDP ( = �1).

Figure 5.25: Normal PDF of �LPF according to method ECCS-VI ( = �1).
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Figure 5.26: Normal PDF of �LPF according to Method 1 ( = �1).

Figure 5.27: Normal PDF of �LPF according to Method 2 ( = �1).

5.8 Influence of the dimensions of the web openings and web post
width

As indicated in Section 5.1.1, four different combinations were considered for each profile (Table 5.2).
The factors were altered per profile to meet the geometrical restrictions, but in general combinations
c2 and c4 correspond to large web openings (f

a

= 1.2), whereas a large web post between the openings
and at the end sections is aimed for with combinations c3 and c4. A possible influence of the cross-
section geometry on the design rules is illustrated in Fig. 5.28 for Method 2, but similar observations
are possible for other methods. In general, it can be concluded that there are no significant differences
between the observed combinations, due to which general conclusions regarding design rules can be
drawn for all combinations. Minor remarks: for  = 0 and  = �1, a larger variability can be noticed
for combination c2. Furthermore, for combination c4, distribution functions of all  values show the
largest mean value.
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Figure 5.28: Influence dimensions web openings on design rule Method 2.
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5.9 Comparison of the different methods

In this section the deviations between the numerical and analytical values of the load proportionality
factor are compared for the four considered methods. The results are again plotted by means of
normal probability density functions. It should be noted that the plots are made based on results of
all profiles and considering the seven different µ values of Table 3.1, but that a distinction was made
between different  values. What follows is a summary of the safety and applicability of the different
design rules based on Fig. 5.29. An overview of the parameters characterizing the probability density
functions is given in Appendix B.
As observed in Section 5.7, the largest insecurity is obtained for method Vandepitte with the largest
negative deviations (-90.6%) for  = �1. It should however be noted that with this design rule the
smallest standard deviation is obtained for all  values. Although application of the method is unsafe
for short length members, a better correspondence with the numerical results is obtained for longer
lengths.

Comparable results are obtained from application of method Van Impe and Method 2, where it can
be remarked that these design rules are very conservative for short length members with a maximum
deviation of 155.5% for Method 2. Method 1 can therefore serve as a good alternative since the
analytically obtained results are less conservative, although application of the method is only unsafe
in the range of shorter lengths.



5.9. COMPARISON OF THE DIFFERENT METHODS 119

Figure 5.29: Normal PDF of �LPF according to four different methods.
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Chapter 6

General conclusions and further research

As conclusion, general answers will be provided to the research questions of Chapter 1, Section 1.7.
The formulations provided by the ECCS (ECCS-Vandepitte and ECCS-Van Impe) and the design rules
adopted in EC3 (EC3-Method 1 and EC3-Method 2) regarding eccentrically loaded members can be
applied for both plain-webbed members and cellular members. It should however be noticed that ad-
ditional failure modes might be observed for cellular members, such as web-post buckling. For cellular
members, a 2T approach was applied considering the cross-section characteristics at the centre of the
openings. Adapted buckling curves were used (Section 2.6) to take into account the adapted residual
stress pattern of cellular members. Best fitting buckling curves for members subjected to combined
bending and compression were also derived in Section 5.2.3. It can be concluded that the the four
considered design rules are unsafe for short length members and conservative for longer lengths. De-
sign rule Vandepitte was observed to be still unsafe for intermediate lengths, but can serve as a good
alternative for longer lengths, due to the conservative results obtained by other methods.

In this work the preliminary residual stress pattern proposed in (Sonck, 2014) for cellular members was
already implemented in the numerical model, although further research should be performed, especially
to confirm if the proposed pattern is still applicable for heavier parent sections. Furthermore, further
research can be performed to adapt the four proposed design rules for eccentrically loaded members
considering the unsafe results for short length members and the conservative approach for long lengths.
Finally, one should be aware of the impact of the cross-section classification on the proposed design
rules and the conclusions made in this work should be reconsidered in case of further adaptations to
the existing cross-section classification of EC3.

121



122 CHAPTER 6. GENERAL CONCLUSIONS AND FURTHER RESEARCH



Part III

Appendices
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Appendix A

Sectional properties

A.1 Plain-webbed members

Based on the notations in Fig. 2.2, the formulas for the second moments of area around the y- and
z-axis (I

y

and I
z

), the polar moment of area I0, the torsional constant I
t

and the warping constant I
w

are given by Equations A.1.1-A.1.5.
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The elastic section moduli W
y,el

and W
z,el

for respectively strong- and weak-axis bending are given in
Equations A.1.6 and A.1.7. The plastic section moduli are determined by Eqs. A.1.8 - A.1.9.
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A.2 Cross-section classification plain-webbed members according to
(CEN, 2005)

Table A.1: Maximum width-to thickness ratios for compression parts (1) (CEN, 2005).

A.3 FB curve selection according to (CEN, 2005)

A.4 Cellular members

The 2T approach is adopted in the European pre-standard ENV3, Annex N (CEN, 1998). The formulas
of the cross-sectional properties corresponding to this approach are given by Equations A.4.2-A.4.5 for
a height H of the cellular member.

H = h+

p
(a+ 2r

b

)2 � w2

2
(A.4.1)
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Table A.2: Maximum width-to thickness ratios for compression parts (2) (CEN, 2005).

Figure A.1: Dimensions cross-section parent section and cellular member.
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A.5 Geometrical constraints

Constraints for cellular members according to (CTICM, 2006):
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Table A.3: Selection of buckling curves for flexural buckling (CEN, 2005).
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(1)
a

t
w

 90 (A.5.1)

(2) 0.08l0  w  0.75l0 (l0 = a for cellular beams) (A.5.2)

(3) 50mm  w (A.5.3)

(4)
H

a
� 1.25 (A.5.4)

(5)
H

a
 4 (A.5.5)

(6)
h
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 124✏ with ✏ =
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(A.5.6)

(7) h
web,TS

� r > 0.01m with h
web,TS

=
H � 2t

f

� a

2
(A.5.7)

(8) h
web,TS

> 0.03m (A.5.8)

(7) and (8) are practical constraints to ascertain enough room for the nozzle during cutting of the web
of the parent section.
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Appendix B

Design rules eccentrically loaded members

B.1 Overview stability design rules simply supported members

In this section a summary is given of the applied stability design rules, specifically for simply supported
members with fork supports subjected to a strong-axis bending moment M

y

and an axial load N.

Figure B.1: Members subjected to strong-axis bending moment M
y

and axial load N.

B.1.1 ECCS - Vandepitte
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2. Buckling in XY-plane:
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3. N  N
b,y,Rd

= ⌫Af
y

! (B.1.6)

4. N  N
b,z,Rd

= ⌫Af
y

! (B.1.7)

where for 3. and 4.: ⌫ =
1

2�
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"
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�
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� 4�
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In Eq. B.1.8, �= �
y

in N
b,y,Rd

and �=�
z

in N
b,z,Rd

. Imperfection factor ↵ is given in Table 2.2.

5. ✓|M1y| M
y,Rd

= W
y

f
y

(✓ according to Eq. B.1.3) (B.1.9)

6. Cross-section resistance of end sections

131
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CS  3

6.a. Most outward fibre M  M
N,y,Rd

(B.1.10)

IPE profiles:

M
N,y,Rd

M
pl,y

= 1 if
N

Ed

N
pl

� 0.18;
M

N,y,Rd

M
pl,y

= 1.22

✓
1� N

Ed

N
pl

◆
if

N
Ed

N
pl

� 0.18 (B.1.11)

HE profiles:

M
N,y,Rd

M
pl,y

= 1 if
N

Ed

N
pl

 0.1;
M

N,y,Rd

M
pl,y

= 1.11

✓
1� N

Ed

N
pl

◆
if

N
Ed

N
pl

� 0.1 (B.1.12)

where N
pl

= Af
y

and M
pl,y

= W
pl,y

f
y

(B.1.13)

CS > 3 : max(6b.,6c.,6d.) (B.1.14)

6b.Most outward fibre
N

N
pl

+
M1y

W
el,y

f
y

 1. (B.1.15)

6c. Fibre located at the web-to-flange transition (B.1.16)
q
�22 + 3⌧22  f

y

(B.1.17)

where �2 =
N

A
+

M1y(h/2� t
f

)

I
y

; S2 = t
f

b
h� t

f

2
; ⌧2 =

V
Ed

S2

t
w

I
y

(B.1.18)

6d. Central fibre (B.1.19)
q
�23 + 3⌧23  f

y

(B.1.20)

where �3 =
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B.1.2 ECCS - Van Impe

1. Buckling y-y:
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+
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2. Buckling z-z:
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where �0 =
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M2
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!✓
f
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�
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W
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◆
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M
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(B.1.24)

M
b,Rd

is calculated according to Eq. 2.4.8 and for M
cr

(Eq. 2.4.2) I
t

= I
t,avg

(Eq. 5.1.12) is
used.

3. N  N
b,y,Rd

=
�
y

Af
y

�
M1

Eq. 2.3.4 (B.1.25)

4. N  N
b,z,Rd

=
�
z

Af
y

�
M1

Eq. 2.3.4 (B.1.26)
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5. Cross-section resistance of end sections: max (5a.,5b., 5c.)

5a. Most outward fibre

CS < 3

N > 0.25 N
pl

or N > 0.5ht
w

f
y
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(ii)
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Condition: M1y  M
N,y,Rd

(B.1.30)

CS < 3
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W
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f
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 1. (B.1.31)

5b. Fibre located at the web-to-flange transition

CS < 3: N  N
pl,Rd

(B.1.32)
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5c. Central fibre

CS  3:V  V
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(B.1.35)

CS > 3:
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B.1.3 EC3 - Method 1
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2. Buckling z-z
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CS < 3: w
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C
mz

= C
mz,0 = 0.79 + 0.21 + 0.36( � 0.33)

N

N
cr,z

(B.1.44)

C
my,0 = 0.79 + 0.21 + 0.36( � 0.33)

N

N
cr,y

(B.1.45)

C
my

= C
my,0 + (1� C

my,0)

p
✏
y

a
LT

1 +
p
✏
y

a
LT

(B.1.46)
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3. N  N
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=
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�
M1

Eq. 2.3.4 (B.1.51)

4. N  N
b,z,Rd

=
�
z

Af
y

�
M1

Eq. 2.3.4 (B.1.52)

5. Cross-section resistance of end sections: Idem Van Impe (Condition 5)

B.1.4 EC3 - Method 2
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2. Buckling z-z:
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N
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3. Cross-section resistance of end sections: idem Van Impe (Condition 5)
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B.2 Safety of the design rules

Table B.1: Overview µ values for which design rule ECCS-Vandepitte is unsafe. Values of µ for which no
maximum was reached in the load-displacement diagram are given in brackets after *.

Length [m]  = 1  = 0  = �1

IPE120 1.2 0� 1� 5� 10�1 0� 0.5� 1� 5� 10�1 0� 0.5� 1� 5� 10�1
3.6 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 1� 5� 10�1
6.0 0.5� 1� 5* (1) 0.5� 1� 5� 10 1
8.4 0.5� 1* (5,10,1) 0.5� 1* (5,10,1) 1

HEA180 1.71 0�1 0� 5 0
5.13 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
8.55 1� 5� 10 0.5� 1� 5� 10�1 1� 5� 10�1
11.97 1*(1) 0.5� 1� 5� 10 1� 5� 10�1

IPE240 2.4 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
7.2 0.5� 1� 5� 10 0.5� 1� 5� 10 1
12.0 0.5� 1* (1) 0.5� 1* (1) 1
16.8 * (5,10,1) 0.5� 1* (10,1) 1

HE300A 2.9 10�1 0� 5 0
8.7 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
14.5 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 1� 5� 10�1
20.3 1*(1) 0.5� 1� 5� 10 1

IPEO360 3.64 0� 0.5� 1� 5� 10�1 0� 0.5� 1� 5� 10�1 0� 0.5� 1� 5� 10�1
10.92 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 1
18.2 0.5� 1 0.5� 1� 5 1
25.48 0.5* (5,10,1) 0.5� 1 1

HE400A 3.9 0� 5� 10�1 0� 5� 10�1 0� 5

10.93 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
17.97 0.5� 1� 5 0.5� 1� 5� 10 1-5-10-1
25.0 0.5� 1* (1) 0.5� 1� 5 1

IPEO450 4.56 0� 0.5� 1� 5� 10�1 0� 0.5� 1� 5� 10�1 0� 0.5� 1� 5� 10�1
11.37 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 1
18.19 0.5� 1� 5 0.5� 1� 5 1
25.0 0.5� 1* (10,1) 0.5� 1 1

HE500A 4.9 0� 1� 5� 10�1 0� 0.5� 1� 5� 10�1 0� 1� 5� 10�1
11.6 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
18.3 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 1
25 0.5� 1� 5 0.5� 1� 5� 10 1

IPEO600 6.1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
12.4 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 1
18.7 0.5� 1� 5� 10 0.5� 1� 5� 10 1
25 0.5� 1 0.5� 1� 5 1

HEM700 7.16 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
13.11 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1
19.05 0.5� 1� 5� 10�1 0.5� 1� 5� 10�1 1� 5� 10�1
25 0.5� 1� 5� 10 0.5� 1� 5� 10�1 1
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B.3 Deviation between Mcr,Abq and Mcr,2T,avg for cellular members.

Table B.2: Combinations with large deviations between M
cr,Abq

and M
cr,2T,avg

due to web-post buckling.
 [-] k [-] L [m] f

a

[-] f
w

[-] a [m] w [m] H [m] M
cr,Abq

[kNm] M
cr,2T,avg [kNm] �M

cr

[%]
IPE300 0 1 2.18 0.80 0.10 0.24 0.024 0.41 443.19 976.94 -54.63

0 1 2.48 1.20 0.10 0.36 0.036 0.47 304.12 865.62 -64.87
0 1 2.14 0.80 0.70 0.24 0.168 0.37 773.84 936.07 -17.33
0 1 2.28 1.10 0.65 0.33 0.215 0.41 709.76 911.62 -22.14
-1 1 2.18 0.80 0.10 0.24 0.024 0.41 223.71 1435.06 -84.41
-1 1 2.48 1.20 0.10 0.36 0.036 0.47 152.39 1271.54 -88.02
-1 1 2.14 0.80 0.70 0.24 0.168 0.37 442.62 1375.02 -67.81
-1 1 2.28 1.10 0.65 0.33 0.215 0.41 374.06 1339.10 -72.07

IPE600 0 1 4.37 0.80 0.10 0.48 0.048 0.83 2066.5 2836.21 -27.14
0 1 4.97 1.20 0.10 0.72 0.072 0.95 1444.7 2506.12 -42.35
-1 1 4.37 0.80 0.10 0.48 0.048 0.83 1069.3 4166.19 -74.33
-1 1 4.97 1.20 0.10 0.72 0.072 0.95 727.8 3681.31 -80.23
-1 1 4.27 0.80 0.70 0.48 0.336 0.76 1972.6 4032.86 -51.09
-1 1 4.55 1.15 0.60 0.69 0.414 0.87 1586.4 4014.58 -60.48

HE320A 0 1 4.44 0.80 0.10 0.248 0.025 0.43 1709.0 2917.31 -41.42
0 1 5.02 1.20 0.10 0.372 0.037 0.49 1191.4 2612.77 -54.40
0 1 3.89 0.80 0.70 0.248 0.174 0.39 2373.6 3422.65 -30.65
0 1 4.19 1.00 0.65 0.31 0.202 0.42 2441.5 3199.56 -23.69
0 1 4.44 0.80 0.10 0.248 0.025 0.43 867.0 2917.31 -70.28
-1 1 5.02 1.20 0.10 0.372 0.037 0.49 598.1 3837.97 -84.42
-1 1 3.89 0.80 0.70 0.248 0.174 0.39 1683.3 5027.63 -66.52
-1 1 4.19 1.00 0.65 0.31 0.202 0.42 1514.3 4699.92 -67.78

HE320M -1 1 5.14 0.80 0.10 0.287 0.029 0.49 9602.8 13797.70 -30.40
-1 1 5.50 1.05 0.10 0.377 0.038 0.54 7597.5 13011.55 -41.61

HE650A 0 1 4.66 0.80 0.10 0.512 0.051 0.89 3212.9 9103.81 -64.71
0 1 5.30 1.20 0.10 0.768 0.077 1.01 2196.2 8061.10 -72.76
0 1 4.56 0.80 0.70 0.512 0.358 0.81 6202.9 8782.83 -29.37
0 1 4.86 1.15 0.60 0.736 0.442 0.92 5010.1 8756.43 -42.78
-1 1 4.66 0.80 0.10 0.512 0.051 0.89 1615.4 13372.82 -87.92
-1 1 5.30 1.20 0.10 0.768 0.077 1.01 1099.5 11841.17 -90.71
-1 1 4.56 0.80 0.70 0.512 0.358 0.81 3240.9 12901.33 -74.88
-1 1 4.86 1.15 0.60 0.736 0.442 0.92 2538.6 12862.56 -80.26
-1 2 9.73 0.80 0.10 0.512 0.051 0.89 2801.3 3658.23 -23.42
-1 2 10.37 1.20 0.10 0.768 0.077 1.01 1967.9 3586.48 -45.13

HE650M 0 1 4.86 0.80 0.10 0.534 0.053 0.93 11183.0 15003.74 -25.47
0 1 5.53 1.20 0.10 0.802 0.080 1.06 7898.4 13271.91 -40.49
-1 1 4.86 0.80 0.10 0.534 0.053 0.93 5801.6 22039.39 -73.68
-1 1 5.53 1.20 0.10 0.802 0.080 1.06 3999.1 19495.46 -79.49
-1 1 4.76 0.80 0.70 0.534 0.374 0.85 11444.0 21477.86 -46.72
-1 1 5.07 1.15 0.60 0.768 0.461 0.97 9213.1 21249.48 -56.64



B.4. FLEXURAL BUCKLING: ADDITIONAL RESULTS FOR N
RD

137

B.4 Flexural buckling: additional results for NRd

Figure B.2: FB curves: Deviations N
Rd,Abq

with buckling curve a.

Figure B.3: FB curves: Deviations N
Rd,Abq

with buckling curve b.
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Figure B.4: FB curves: Deviations N
Rd,Abq

with buckling curve c.

Figure B.5: FB curves: Deviations N
Rd,Abq

with buckling curve d.
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Table B.3: Deviation of N
Rd,2T for cellular members under pure compression. The underlined values indicate

the best fitting EC3 buckling curves.
IPE300 �

min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
NRd,a -15.7 4.0 -4.3 -3.0 0.06

�
NRd,b -9.2 7.2 0.9 2.1 0.017

�
NRd,c -2.1 10.8 6.6 8.1 0.004

�
NRd,d 9.2 23.4 16.6 17.0 0.036

IPE600 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
NRd,a -18.4 2.7 -5.1 -3.3 0.068

�
NRd,b -9.5 6.0 0.5 1.9 0.012

�
NRd,c -0.3 9.9 6.8 7.8 0.003

�
NRd,d 14.7 22.5 17.4 16.7 0.042

HE320A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
NRd,a -23.5 -3.0 -12.4 -11.4 0.17

�
NRd,b -16.9 0.8 -7.1 -5.5 0.08

�
NRd,c -10.8 5.1 -1.1 1.1 0.02

�
NRd,d -0.5 13.4 9.1 11.7 0.007

HE650A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
NRd,a -16.9 1.9 -6.1 -4.4 0.080

�
NRd,b -10.0 5.6 -0.3 1.6 0.022

�
NRd,c -3.3 9.9 6.1 8.1 0.005

�
NRd,d 8.1 23.5 17.2 17.5 0.042

HE320M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
NRd,a -22.7 -3.4 -12.2 -11.6 0.117

�
NRd,b -16.5 0.4 -6.6 -5.6 0.049

�
NRd,c -10.3 4.7 -0.5 1.1 0.013

�
NRd,d -0.1 12.9 10.1 12.0 0.007

HE650M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
NRd,a -17.2 1.7 -6.2 -4.7 0.082

�
NRd,b -10.0 5.5 -0.3 1.5 0.022

�
NRd,c -2.5 9.8 6.2 7.8 0.005

�
NRd,d 8.7 23.3 17.3 17.54 0.043
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B.5 Lateral-torsional buckling: additional results for Mb,Rd

Figure B.6: LTB curves: Deviations M
Rd,Abq

with buckling curve a.

Figure B.7: LTB curves: Deviations M
Rd,Abq

with buckling curve b.
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Figure B.8: LTB curves: Deviations M
Rd,Abq

with buckling curve c.

Figure B.9: LTB curves: Deviations M
Rd,Abq

with buckling curve d.
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Table B.4: Deviation of M
b,Rd

for cellular members under pure bending ( = 1). The underlined values
indicate the best fitting EC3 buckling curves.

IPE300 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -15.3 5.4 -4.2 -3.9 0.056
�

MRd,b -9.1 11.5 2.7 4.2 0.017
�

MRd,c -2.4 18.4 10.3 12.9 0.016

�
MRd,d 8.2 31.0 23.3 25.8 0.074

IPE600 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -20.0 22.1 -4.3 -2.9 0.076
�

MRd,b -11.8 28.0 2.7 3.7 0.019
�

MRd,c -3.3 34.8 10.4 10.7 0.012

�
MRd,d 10.8 46.8 23.4 22.9 0.067

HE320A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -18.5 4.3 -9.7 -10.0 0.109
�

MRd,b -12.6 10.8 -2.2 -5.3 0.034
�

MRd,c -6.7 18.0 5.8 4.7 0.017

�
MRd,d 3.6 33.6 19.4 21.1 0.072

HE650A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -16.6 5.5 -4.5 -1.7 0.075
�

MRd,b -10.5 11.5 2.6 6.4 0.023
�

MRd,c -4.5 18.2 10.4 13.5 0.021

�
MRd,d 5.8 31.3 23.8 26.5 0.091

HE320M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -3.2 14.9 3.2 1.8 0.017

�
MRd,b 2.3 27.0 12.8 12.1 0.105

�
MRd,c 8.4 39.8 22.8 23.1 0.273

�
MRd,d 16.7 60.9 39.5 41.1 0.633

HE650M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -14.3 7.9 -1.5 -0.2 0.048
�

MRd,b -7.7 15.6 6.8 9.5 0.024

�
MRd,c -0.5 24.2 15.7 18.8 0.062

�
MRd,d 11.4 40.1 30.7 33.9 0.206
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Table B.5: Deviation of M
b,Rd

for cellular members under pure bending ( = 0). The underlined values
indicate the best fitting EC3 buckling curves.

IPE300 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -4.7 12.6 6.1 7.4 0.049

�
MRd,b -1.4 22.0 15.1 15.9 0.130

�
MRd,c 2.4 34.8 24.7 25.6 0.251

�
MRd,d 9.0 55.7 40.9 43.2 0.484

IPE600 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -3.2 13.5 4.3 4.2 0.041

�
MRd,b 7.8 20.2 13.1 12.4 0.121

�
MRd,c 15.1 31.9 22.5 21.8 0.241

�
MRd,d 27.8 52.5 38.4 38.0 0.474

HE320A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -20.5 13.6 4.9 7.3 0.051

�
MRd,b -12.4 24.0 14.5 18.1 0.118

�
MRd,c -3.9 35.3 24.6 28.8 0.237

�
MRd,d 10.1 54.3 41.3 47.0 0.483

HE650A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -29.2 11.2 4.0 7.5 0.099

�
MRd,b -21.3 21.1 13.2 16.5 0.160

�
MRd,c -13.1 33.4 23.1 27.1 0.269

�
MRd,d 0.2 53.9 39.6 45.0 0.497

HE320M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a 9.2 25.1 18.6 19.5 0.254

�
MRd,b 11.9 39.2 29.1 31.9 0.517

�
MRd,c 14.5 53.7 40.2 45.5 0.824

�
MRd,d 19.1 77.3 58.5 67.9 1.342

HE650M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -6.9 15.1 11.4 12.9 0.100

�
MRd,b -3.4 27.6 21.9 23.5 0.259

�
MRd,c 0.5 41.1 33.1 35.3 0.467

�
MRd,d 7.5 63.1 51.7 55.6 0.842
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Table B.6: Deviation of M
b,Rd

for cellular members under pure bending ( = �1). The underlined values
indicate the best fitting EC3 buckling curves.

IPE300 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -84.5 83.2 28.0 54.8 2.286

�
MRd,b -84.1 97.4 39.2 72.4 2.480

�
MRd,c -83.7 113.3 51.2 90.6 2.675

�
MRd,d -83.0 144.3 71.3 120.3 2.969

IPE600 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -35.9 87.7 42.8 57.7 1.022

�
MRd,b -33.0 103.3 55.7 73.4 1.291

�
MRd,c -29.8 120.4 69.5 90.0 1.571

�
MRd,d -24.1 151.7 92.7 117.7 2.010

HE320A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -26.7 48.6 17.6 28.2 0.396

�
MRd,b -25.5 64.0 27.9 41.7 0.586

�
MRd,c -24.2 80.2 38.6 55.8 0.795

�
MRd,d -21.7 107.1 56.4 78.8 1.135

HE650A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -67.9 75.0 21.8 28.1 0.790

�
MRd,b -64.9 91.7 33.4 40.3 0.917

�
MRd,c -61.8 109.6 45.6 53.2 1.074

�
MRd,d -56.5 139.7 65.9 74.8 1.348

HE320M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -17.2 28.6 15.8 17.3 0.271

�
MRd,b -16.3 41.3 23.5 24.9 0.454

�
MRd,c -15.1 54.7 31.9 33.4 0.672

�
MRd,d -13.1 76.8 46.2 47.8 1.053

HE650M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MRd,a -43.8 55.4 18.8 32.3 0.597

�
MRd,b -42.4 72.6 29.7 45.7 0.794

�
MRd,c -40.8 90.5 41.1 59.7 1.005

�
MRd,d -38.0 119.9 59.9 82.7 1.343
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B.6 Members subjected to bending and compression

Table B.7: Deviation of M
N,b,Rd

for cellular members under bending and compression ( = 1). The underlined
values indicate the best fitting EC3 buckling curves.
IPE300 �

min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -15.3 5.4 -4.2 -3.9 0.056

�
MN,Rd,b -9.1 11.5 2.7 4.2 0.017

�
MN,Rd,c -2.4 18.4 10.3 12.9 0.016

�
MN,Rd,d 8.2 31.0 23.3 25.8 0.074

IPE600 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -20.0 22.1 -4.3 -2.9 0.076

�
MN,Rd,b -11.8 28.0 2.7 3.7 0.019

�
MN,Rd,c -3.3 34.8 10.4 10.7 0.012

�
MN,Rd,d 10.8 46.8 23.4 22.9 0.067

HE320A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -18.5 4.3 -9.7 -10.0 0.109

�
MN,Rd,b -12.6 10.8 -2.2 -5.3 0.034

�
MN,Rd,c -6.7 18.0 5.8 4.7 0.017

�
MN,Rd,d 3.6 33.6 19.4 21.1 0.072

HE650A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -16.6 5.5 -4.5 -1.7 0.075

�
MN,Rd,b -10.5 11.5 2.6 6.4 0.023

�
MN,Rd,c -4.5 18.2 10.4 13.5 0.021

�
MN,Rd,d 5.8 31.3 23.8 26.5 0.091

HE320M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -3.2 14.9 3.2 1.8 0.017

�
MN,Rd,b 2.3 27.0 12.8 12.1 0.105

�
MN,Rd,c 8.4 39.8 22.8 23.1 0.273

�
MN,Rd,d 16.7 60.9 39.5 41.1 0.633

HE650M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -14.3 7.9 -1.5 -0.2 0.048

�
MN,Rd,b -7.7 15.6 6.8 9.5 0.024

�
MN,Rd,c -0.5 24.2 15.7 18.8 0.062

�
MN,Rd,d 11.4 40.1 30.7 33.9 0.206
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Table B.8: Deviation of M
N,b,Rd

for cellular members under bending and compression ( = 0). The underlined
values indicate the best fitting EC3 buckling curves.

IPE300 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -4.7 12.6 6.1 7.4 0.049

�
MN,Rd,b -1.4 22.0 15.1 15.9 0.130

�
MN,Rd,c 2.4 34.8 24.7 25.6 0.251

�
MN,Rd,d 9.0 55.7 40.9 43.2 0.484

IPE600 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -50.9 13.5 1.4 4.2 0.224

�
MN,Rd,b -47.1 20.2 9.9 12.3 0.256

�
MN,Rd,c -43.0 31.9 19.0 21.6 0.336

�
MN,Rd,d -36.1 52.5 34.5 37.7 0.526

HE320A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a 9.2 25.1 18.6 19.5 0.254

�
MN,Rd,b 11.9 39.2 29.1 31.9 0.517

�
MN,Rd,c 14.5 53.7 40.2 45.5 0.824

�
MN,Rd,d 19.1 77.3 58.5 67.9 1.342

HE650A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -20.5 13.6 4.9 7.3 0.051

�
MN,Rd,b -12.4 24.0 14.5 18.1 0.118

�
MN,Rd,c -3.9 35.3 24.6 28.8 0.237

�
MN,Rd,d 10.1 54.3 41.3 47.0 0.483

HE320M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -6.9 15.1 11.4 12.9 0.100

�
MN,Rd,b -3.4 27.6 21.9 23.5 0.259

�
MN,Rd,c 0.5 41.1 33.1 35.3 0.467

�
MN,Rd,d 7.5 63.1 51.7 55.6 0.842

HE650M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -29.2 11.2 4.0 7.5 0.099

�
MN,Rd,b -21.3 21.1 13.2 16.5 0.160

�
MN,Rd,c -13.1 33.4 23.1 27.1 0.269

�
MN,Rd,d 0.2 53.9 39.6 45.0 0.497
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Table B.9: Deviation of M
N,b,Rd

for cellular members under bending and compression ( = �1). The under-
lined values indicate the best fitting EC3 buckling curves.

IPE300 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -84.5 83.2 28.0 54.8 2.286

�
MN,Rd,b -84.1 97.4 39.2 72.4 2.480

�
MN,Rd,c -83.7 113.3 51.2 90.6 2.675

�
MN,Rd,d -83.0 144.3 71.3 120.3 2.969

IPE600 �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -81.6 87.7 27.6 44.2 2.041

�
MN,Rd,b -80.7 103.3 39.0 58.0 2.190

�
MN,Rd,c -79.8 120.4 51.2 72.6 2.355

�
MN,Rd,d -78.1 151.7 71.8 97.0 2.636

HE320A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -26.7 48.6 17.6 28.2 0.396

�
MN,Rd,b -25.5 64.0 27.9 41.7 0.586

�
MN,Rd,c -24.2 80.2 38.6 55.8 0.795

�
MN,Rd,d -21.7 107.1 56.4 78.8 1.135

HE650A �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -67.9 75.0 21.8 28.1 0.790

�
MN,Rd,b -64.9 91.7 33.4 40.3 0.917

�
MN,Rd,c -61.8 109.6 45.6 53.2 1.074

�
MN,Rd,d -56.5 139.7 65.9 74.8 1.348

HE320M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -17.2 28.6 15.8 17.3 0.271

�
MN,Rd,b -16.3 41.3 23.5 24.9 0.454

�
MN,Rd,c -15.1 54.7 31.9 33.4 0.672

�
MN,Rd,d -13.1 76.8 46.2 47.8 1.053

HE650M �
min

[%] �
max

[%] �
mean

[%] �
med

[%]
P

(�
Abq

� �
an

)2[�]

�
MN,Rd,a -43.8 55.4 18.8 32.3 0.597

�
MN,Rd,b -42.4 72.6 29.7 45.7 0.794

�
MN,Rd,c -40.8 90.5 41.1 59.7 1.005

�
MN,Rd,d -38.0 119.9 59.9 82.7 1.343
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Figure B.10: Comparison numerical results with existing buckling curves for all µ values - IPE sections ( =

0). Data corresponding to µ = 1 indicated in red; Blue is used for all other µ values.

Figure B.11: Comparison numerical results with existing buckling curves for all µ values - HE sections ( = 0).
Data corresponding to µ = 1 indicated in red; Blue is used for all other µ values.
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Figure B.12: Comparison numerical results with existing buckling curves for all µ values - IPE sections ( =

�1). Data corresponding to µ = 1 indicated in red; Blue is used for all other µ values.

Figure B.13: Comparison numerical results with existing buckling curves for all µ values - HE sections ( =

�1). Data corresponding to µ = 1 indicated in red; Blue is used for all other µ values.
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Table B.10: Deviation of LPF for method ECCS-Vandepitte.
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
IPE300 1 -23.0 11.3 -6.6 -7.4 10.2

0 -62.3 11.3 -5.6 -5.6 13.4
-1 -83.8 68.4 10.8 8.5 28.3

IPE600 1 -27.7 12.7 -7.9 -9.8 10.9
0 -54.5 10.0 -7.0 -6.3 13.0
-1 -81.8 70.9 9.9 8.2 28.0

HE320A 1 -36.9 46.3 -11.2 -13.0 10.9
0 -56.6 5.6 -11.1 -9.2 12.1
-1 -54.2 31.7 -2.4 0.2 14.8

HE650A 1 -24.3 10.4 -7.7 -9.2 10.3
0 -64.9 39.6 -7.2 -6.9 14.5
-1 -70.7 56.2 3.2 7.6 22.6

HE320M 1 -15.5 7.0 -4.8 -5.6 5.8
0 -49.0 10.2 -2.7 -0.1 9.9
-1 -56.6 14.6 -1.1 2.2 13.2

HE650M 1 -22.0 10.6 -6.0 -7.8 9.5
0 -66.3 11.2 -4.6 -4.0 12.4
-1 -90.6 37.8 2.0 7.4 18.7

Table B.11: Deviation of LPF for method ECCS-Van Impe.
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
IPE300 1 -2.1 38.3 16.7 17.9 8.8

0 -52.1 57.4 28.0 32.7 19.8
-1 -77.0 155.5 56.4 51.3 54.9

IPE600 1 -0.3 46.8 16.3 16.3 7.1
0 -34.6 54.8 27.3 31.1 16.8
-1 -77.0 155.5 56.4 51.3 54.9

HE320A 1 -11.2 118.9 11.6 8.9 14.9
0 -44.9 55.4 21.9 20.9 21.2
-1 -29.7 114.1 37.4 17.2 40.8

HE650A 1 -3.3 31.3 17.2 19.1 9.0
0 -56.6 97.6 27.7 31.3 20.9
-1 -55.9 142.0 46.4 36.3 49.3

HE320M 1 -10.3 14.9 4.0 4.7 4.3
0 -36.5 30.7 13.7 17.7 11.1
-1 -39.4 57.2 14.5 12.4 20.4

HE650M 1 -2.5 24.2 13.3 13.5 7.3
0 -59.5 41.9 23.8 29.4 16.4
-1 -85.2 97.7 32.1 19.0 36.6
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B.7 Deviation LPF according to four different methods

Table B.12: Deviation of LPF for Method 1.
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
IPE300 1 -2.1 33.0 15.0 16.7 7.4

0 -60.0 38.5 14.1 14.9 14.1
-1 -83.8 128.0 32.1 27.2 43.8

IPE600 1 -0.3 39.7 14.8 15.4 5.9
0 -46.1 33.9 13.5 13.3 11.9
-1 -81.6 136.0 30.4 23.0 42.2

HE320A 1 -15.6 109.1 7.9 6.7 13.4
0 -53.0 40.1 4.2 4.2 13.9
-1 -43.4 72.2 8.4 4.6 21.8

HE650A 1 -3.3 26.0 15.1 18.1 7.5
0 -63.4 74.5 12.8 14.9 15.7
-1 -67.3 110.9 20.0 12.2 32.8

HE320M 1 -10.3 48.6 17.4 14.8 14.0
0 -46.5 44.0 12.2 7.7 15.3
-1 -49.4 34.7 4.2 4.5 16.3

HE650M 1 -2.5 30.5 16.2 16.2 9.0
0 -64.0 40.9 14.5 13.1 15.0
-1 -88.2 74.6 13.3 10.4 25.7

Table B.13: Deviation of LPF for Method 2.
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
IPE300 1 -2.1 43.6 21.4 24.8 12.2

0 -52.3 63.4 31.7 40.4 21.2
-1 -82.3 148.1 59.3 65.0 59.3

IPE600 1 -0.3 46.8 21.2 22.8 10.0
0 -34.6 54.8 31.1 38.0 17.8
-1 -77.0 155.5 57.5 48.6 55.1

HE320A 1 -10.8 123.9 13.8 12.5 16.7
0 -46.2 55.9 22.3 18.6 21.7
-1 -34.6 113.6 30.8 15.3 38.2

HE650A 1 -3.3 40.6 20.8 23.9 11.6
0 -56.8 116.7 30.6 37.4 22.6
-1 -55.9 142.0 46.6 34.0 49.7

HE320M 1 -10.3 24.9 7.6 6.6 7.6
0 -38.9 35.6 16.2 16.2 12.8
-1 -43.9 49.1 11.1 10.9 18.7

HE650M 1 -2.5 39.8 17.3 19.1 10.9
0 -59.7 50.0 26.7 34.5 17.9
-1 -85.3 99.5 30.3 21.8 36.2



152 APPENDIX B. DESIGN RULES ECCENTRICALLY LOADED MEMBERS

Table B.14: Comparison deviations of four methods.
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
ECCS-Vandepitte 1 -36.9 46.3 -7.3 -8.2 9.9

0 -66.3 39.6 -6.4 -5.6 12.9
-1 -90.6 70.9 4.2 5.8 22.8
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
ECCS-Van Impe 1 -11.2 118.9 13.3 12.8 10.1

0 -59.5 97.6 24.2 26.3 18.7
-1 -85.2 155.5 42.4 22.3 48.6
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
EC3-Method1 1 -15.6 109.1 14.5 14.9 10.3

0 -64.0 74.5 12.0 12.6 14.7
-1 -88.2 136.0 19.2 11.0 34.6
 �

min

[%] �
max

[%] �
mean

[%] �
med

[%] ��[%]
EC3-Method 2 1 -10.8 123.9 17.1 17.9 12.7

0 -59.7 116.7 26.9 30.6 20.1
-1 -85.3 155.5 41.1 24.0 49.0



Appendix C

Method 2

C.1 Members not susceptible to lateral torsional buckling

C.1.1 Buckling under N + M
y

Class 1-2

In-plane buckling about y-axis:

N
Ed

�
y

N
pl,Rd

+ k
y

C
my

M
y,Ed

M
pl,y,Rd

 1 (C.1.1)

Out-of-plane buckling about z-axis:

N
Ed

�
z

N
pl,Rd

+ 0.6k
y

C
my

M
y,Ed

M
pl,y,Rd

 1 (C.1.2)

k
y

= 1 + (�
y

� 0.2)n
y

 1 + 0.8n
y

(C.1.3)

C
my

= 0.6 + 0.4 � 0.4 (C.1.4)

n
y

=
N

Ed

�
y

N
pl,Rd

(C.1.5)

Class 3-4

In-plane buckling about y-axis:

N
Ed

�
y

N
pl,Rd

+ k
y

C
my

M
y,Ed

M
el,y,Rd

 1 (C.1.6)

Out-of-plane buckling about z-axis:

N
Ed

�
z

N
pl,Rd

+ 0.8k
y

C
my

M
y,Ed

M
el,y,Rd

 1 (C.1.7)
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k
y

= 1 + 0.6�
y

n
y

 1 + 0.6n
y

(C.1.8)

C
my

= 0.6 + 0.4 � 0.4 (C.1.9)

Class 3 M
el,y,Rd

=
W

y

f
y

�
M1

(C.1.10)

Class 4 M
el,y,Rd

=
W

y,eff

f
y

�
M1

; N
eff,Rd

=
A

eff

f
y

�
M1

(C.1.11)

C.1.2 In plane buckling under N + M
z

The interaction formulae for members in weak-axis bending are comparable to those for strong-axis
bending (Eq. C.1.12). Similarly as for the k

y

-factor, the expression for the k
z

-factor is based on
GMNIA-simulations. In contrast to the case of strong-axis bending, the cross-section interaction for
�
z

! 0 is more pronounced (Greiner & Lindner, 2006). Furthermore, the obtained k
z

-values of I-
sections for �

z

> 1.0 are considerably larger than the k
y

interaction factors due to the higher plastic
reserve for weak-axis than for strong axis bending.

N
Ed

�
z

N
pl,Rd

+ k
z

C
my

M
y,Ed

M
pl,z,Rd

 1 (C.1.12)

k
z

= 1 + (2�
z

� 0.6) · n
z

 1 + 1.4n
z

(C.1.13)

C
mz

= 0.6 + 0.4 � 0.4 (C.1.14)

n
z

=
N

Ed

�
z

N
pl,Rd

(C.1.15)

Figure C.1: GMNIA-results interaction factor k
z

as function of �
z

. Extracted from (Greiner & Lindner, 2006).

C.1.3 Buckling under biaxial bending and axial compression

Buckling mode y-y:
N

Ed

�
y

N
pl,Rd

+ k
y

C
my

M
y,Ed

M
pl,y,Rd

+ 0.6k
z

C
mz

M
z,Ed

M
pl,z,Rd

 1 (C.1.16)

Buckling mode z-z:
N

Ed

�
y

N
pl,Rd

+ 0.6k
y

C
my

M
y,Ed

M
pl,y,Rd

+ k
z

C
mz

M
z,Ed

M
pl,z,Rd

 1 (C.1.17)

k
y

= 1 + (�
y

� 0.2)n
y

 1 + 0.8n
y

(C.1.18)

k
z

= 1 + (2�
z

� 0.6)n
z

 1 + 1.4n
z

(C.1.19)
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C
my

= C
mz

= 0.6 + 0.4 � 0.4 (C.1.20)

The axial compression parameters n
y

and n
z

are determined similarly as in Eqs.C.1.5-C.1.15 for uniaxial
bending.

C.1.4 Class 3 cross-sections

Buckling y-y:

N
Ed

�
y

N
pl,Rd

+ k
y

C
my

M
y,Ed

M
el,y,Rd

 1 (C.1.21)

Buckling z-z:

N
Ed
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N
pl,Rd
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y
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my

M
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M
el,y,Rd

 1 (C.1.22)

RHS- and I-section:

k
y

= 1 + 0.6�
y

n
y

 1 + 0.6n
y

(C.1.23)

C
my

= 0.6 + 0.4 � 0.4 (C.1.24)
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 1 (C.1.25)

Buckling z-z:
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 1 (C.1.26)

RHS- and I-section:

k
z

= 1 + 0.6�
z

n
z

 1 + 0.6n
z

(C.1.27)

C
mz

= 0.6 + 0.4 � 0.4 (C.1.28)

n
z

=
N

Ed

�
z

N
pl,Rd

(C.1.29)

C.2 Members susceptible to lateral torsional buckling

C.2.1 Buckling under N +M
y

The described interaction formulae for torsionally flexible members under N +M
y

are listed for com-
pleteness.
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Class 1-2
In-plane buckling about y-axis:

N
Ed

�
y

N
pl,Rd

+ k
y

C
my

M
y,Ed

�
LT

M
pl,y,Rd

 1 (C.2.1)

Out-of-plane buckling about z-axis:
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M
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Class 3-4
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 1 (C.2.5)
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 1 (C.2.6)
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The applied equivalent moment factor C
mLT

and the axial compression

n
z

=
N

Ed

�
z

N
pl,Rd

(C.2.8)
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Buckling z-z:
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Figure C.2: Equivalent moment factor C
m

Method 2.
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Appendix D

Additional results parametric study

cellular members

D.1 Deviation factor �MAbq

By comparison of the numerical results from an GMNIA and LBA analysis, a deviation factor �M
Abq

can be derived indicating whether the bending resistance M
Rd,Abq

is exceeding the critical LTB bending
moment M

cr,Abq

(Eq. D.1.1). Positive values of the deviation factor correspond with values of M
Rd

larger than the critical moment.

�M
Abq

=

✓
M

Rd,Abq

M
cr,Abq

� 1

◆
· 100%. (D.1.1)

From Figs. D.1-D.3, it can be concluded that the largest positive deviations are obtained for the
longest members under a non-uniform bending moment ( = �1) with maximum values obtained for
the most slender sections: IPE300 and IPE600 (Table D.1).

Table D.1: �M
Abq,max

for different  values.
 = 1  = 0  = �1

Profile [-] IPE300 IPE300 IPE600
�M

Abq,max

[%] 7.1 2.7 56.6

This exceedance of M
cr

can also be observed on interaction diagrams where alternatively M
u

/M
cr,y,avg

is represented as function of N
u

/N
cr,z

. For the expression of the critical bending moment, an average
value of the torsional constant was used as explained in Section 5.1.5. An example is given for profile
IPE300 (L=15.19 m;  = 0), for which the critical LTB moment is slightly exceeded (Fig. D.4). This
corresponds with the observations in Fig. D.2, where the considered combination is indicated in red
and for which �M

Abq

equals 2.7%. Similarly, the interaction diagram of the combination indicated
in Fig. D.3 is given (Fig. D.5). Since for this combination  = �1, much larger deviations are
obtained (�M

Abq

= 49.1%). It should be noted that although the interaction diagrams are based on
a theoretical determination of M

cr

, a good correspondance can be found with the deviations in Figs.
D.1-D.3.
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Figure D.1: Comparison GMNIA and LBA results for µ = 1 and  = 1.

Figure D.2: Comparison GMNIA and LBA results for µ = 1 and  = 0.

Figure D.3: Comparison GMNIA and LBA results for µ = 1 and  = �1.
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Figure D.4: Interaction diagram M
u

/M
cr,y

- N
u

/N
cr,z

of IPE300 section.

Figure D.5: Interaction diagram M
u

/M
cr,y

- N
u

/N
cr,z

of IPE600 section.

D.2 Deviation of Ncr

The deviation factor �N
cr

(Eq. D.2.1) can be derived from an LBA analysis, indicating the deviation
of the numerical results N

cr

from the analytical values N
cr,Abq

. Unsafe deviations were obtained for
short length members with a minimum of 4.4% for profile IPE300 (Table D.2). For longer lengths,
differences are negligible (Fig. D.6).

�N
cr

=

✓
N

cr,Abq

N
cr,an

� 1

◆
· 100% (D.2.1)
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Figure D.6: Deviation of N
cr

for cellular members.

Table D.2: Minimum deviation of N
cr,Abq

and N
cr,an

.
IPE300 IPE600 HE320A HE650A HE320M HE650M

�N
cr,min

[%] -4.4 -3.3 -2.5 -3.5 -1.9 -2.1

D.3 Yield and buckling phenomena in GMNIA and LBA analysis

As discussed in Section 3.10.1, the cross-section classification will have an influence on the analytical
determination of the load proportionality factor. For sections HE320A and HE650M subjected to a
constant bending moment ( = 1), the classification is varying from Class 4 (pure compression, µ = 0)
to Class 2 (pure bending, µ = 1) with increasing µ value (Table 5.6). Observation of a short length
HE320A section under pure compression (L=4.2 m;  = 1; µ = 0) however shows failure by plastic
yielding of the flanges, around the web openings and at the web-to-flange transition (Fig. D.7). Also
for longer lengths (L=20.0 m), plastic yielding at the upper and lower flange was observed before a
maximum in the load displacement diagram was reached. An overview of the results from an GMNIA
(N

Rd,Abq

) and LBA analysis (N
cr,Abq

) is given in Table D.3. No local buckling behaviour was observed
during the LBA analysis and therefore a good correspondence was obtained with analytical values. For
short length members, the critical load N

cr,Abq

is much larger than N
pl

. Members behave plastically
and calculation of the load proportionality factor according to a plastic theory is possible.

Table D.3: Overview results GMNIA and LBA analysis HE320A for pure compression (µ = 0).
L [m] N

pl

[kN] N
Rd,Abq

[kN] N
cr,Abq

[kN] N
cr,an

[kN] �N
cr

[%]

4.2 2379.1 1800.4 8078.5 8254.8 -2.1
9.8 2379.1 924.3 1494.4 1501.9 -0.5
20.0 2379.1 310.9 359.4 359.9 -0.2
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Figure D.7: Yielding of upper flange, lower flange and around web openings of HE320A section (L=4.2m;
µ = 0;  = 1).

Similarly, for members subjected to pure bending (µ = 1), the results of an GMNIA and LBA analysis
on section HE320A are given in Table D.4. In the GMNIA analysis, local yielding at the corners of
the openings was observed for the shortest members (L=4.2 m;  = �1), as illustrated in Fig. D.8.
Furthermore, for this combination a large deviation was obtained between the numerically (M

cr,Abq

)
and analytically (M

cr,avg

) determined critical LTB bending moment, which can be explained by the
observed web post buckling (Fig. D.9).

Table D.4: Overview results GMNIA and LBA analysis HE320A for pure bending (µ = 1).
 L [m] M

pl

[kNm] M
Rd,Abq

[kNm] M
cr,Abq

[kNm] M
cr,avg

[kNm] �M
cr

[%]

1 4.2 473.2 387.0 1723.1 1807.7 -4.7
-1 4.2 473.2 337.5 1514.3 4699.9 -67.8
0 25.2 473.2 213.4 231.1 226.9 1.8

Figure D.8: Plastic yielding at corners of web openings of HE320A section (L=4.2 m; µ = 1;  = �1).
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Figure D.9: Web post buckling of HE320A section (L=4.2m; µ = 1;  = �1).
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