
Pieter Aerts

axial flow
turbulence on an array of cylinders in incompressible
Assessment of the force spectrum induced by

Academic year 2014-2015
Faculty of Engineering and Architecture
Chairman: Prof. dr. ir. Jan Vierendeels
Department of Flow, Heat and Combustion Mechanics

Master of Science in Electromechanical Engineering
Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Ir. Jeroen De Ridder
Supervisors: Prof. dr. ir. Joris Degroote, Prof. dr. ir. Jan Vierendeels



ii



Pieter Aerts

axial flow
turbulence on an array of cylinders in incompressible
Assessment of the force spectrum induced by

Academic year 2014-2015
Faculty of Engineering and Architecture
Chairman: Prof. dr. ir. Jan Vierendeels
Department of Flow, Heat and Combustion Mechanics

Master of Science in Electromechanical Engineering
Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Ir. Jeroen De Ridder
Supervisors: Prof. dr. ir. Joris Degroote, Prof. dr. ir. Jan Vierendeels



iv

Preface

A thesis is the icing on the cake for every student. As someone with interests in nuclear engineering

and fluid mechanics, this subject was just right for me. Apart from the knowledge I gained during

the writing and performing the simulations, especially a feeling of pride remains. Pride that I

was able to create a scientific work in just under a year time. Proud of my thesis, like a parent of

its child. A thesis is the icing on the cake for every student, and why would I be any different?

I would like to thank both professor J. Degroote and professor J. Vierendeels for giving me the

opportunity to write this thesis. Without their letters of approval, I would have been unable to

gain access to extensive calculation units, causing the computational capacity to be inadequate

to complete this work. Also thanks for aiding and commenting on my work, essentially upgrading

my thesis.

Special thanks go out to Jeroen De Ridder for bringing the notion of counsellor to a whole

new level. Thank you for being there, even in the weekends, and helping me with all kinds of

issues, both in flow and engineering applications, as with the software. The learning curve of the

OpenFOAM flow simulation program became much less steep because of you. I really appreciated

the last-minute proofreads, and your comments greatly enhanced the thesis.

I would have never gotten this far if it wasn’t for my parents, who allowed me to follow my

dreams and supported me both psychologically and financially throughout my studies. Moral

support also came from friends, especially Enya De Winne, Zoé Claeys, the guys from Stranger
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Abstract

Arrays of cylinders, subjected to turbulent axial flows, are often encountered in nuclear reactor cores. The

flow induces pressure fluctuations on the cylinders, causing them to vibrate slightly. These vibrations give

rise to long-term failure mechanisms, like fatigue, and fretting due to impacting of closely spaced cylinders.

Simulations evaluating the distribution of pressure fluctuations amplitude and frequency on the cylinder

surface, are performed on a realistic nuclear core geometry. The frequency and position dependency of

the pressure fluctuations is extracted, indicating that larger vortices induce larger pressures. A parameter

study, extracting the influence of the Reynolds number, the spacing between cylinders, and the array

configuration, is performed. The induced pressure amplitude decreases with decreasing Reynolds number

and increasing array spacing. The correlation between pressure fluctuations is strongly dependent on both

the Reynolds number and array spacing. The latter also determines the existence of a vortex street: a

sequence of alternating large scale vortices, enhancing mixing between subchannels, caused by a Kelvin-

Helmholtz instability in a mixing layer. The methods used in this thesis can be used to analyse nuclear

reactor cores with respect to pressure fluctuations and structural safety.
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bulent axial flows, are often encountered in nu-
clear reactor cores. The flow induces pressure
fluctuations on the cylinders, causing them to
vibrate slightly. These vibrations give rise to
long-term failure mechanisms, like fatigue, and
fretting due to impacting of closely spaced cylin-
ders. Simulations evaluating the distribution of
pressure fluctuations amplitude and frequency on
the cylinder surface, are performed on a realistic
nuclear core geometry. The frequency and po-
sition dependency of the pressure fluctuations is
extracted, indicating that larger vortices induce
larger pressures. A parameter study, extracting
the influence of the Reynolds number, the spac-
ing between cylinders, and the array configura-
tion, is performed. The induced pressure ampli-
tude decreases with decreasing Reynolds number
and increasing array spacing. The correlation be-
tween pressure fluctuations is strongly dependent
on both the Reynolds number and array spac-
ing. The latter also determines the existence of
a vortex street: a sequence of alternating large
scale vortices, enhancing mixing between sub-
channels, caused by a Kelvin-Helmholtz insta-
bility in a mixing layer. The methods used in
this thesis can be used to analyse nuclear reactor
cores with respect to pressure fluctuations and
structural safety.

Keywords - Flow induced vibrations, Large-Eddy
Simulation, spectral analysis, turbulent vortices,
vortex street

introduction

Cylinder bundles subjected to axial flow, are a geom-
etry often encountered in nuclear reactor cores (ref.
5) and tube-in-tube heat exchangers. The vortices
present in the turbulent flow, induce pressure fluc-
tuations on the cylindrical surfaces, and exert forces
on the structure. Due to these fluctuating forces,
the cylinders start vibrating. However small, these
vibrations can lead to structural failure in the long
term, e.g. fatigue, or fretting due to impacting on
adjacent cylinders or spacers (ref. 6).

This thesis evaluates the forces exerted by the flow
on the cylinders, by computing the pressures in-
duced on the cylinder walls. Wall-pressure frequency
spectra are obtained and analysed, extracting the
influence of the position on the cylinder, Reynolds
number, array spacing, and array configuration on
the pressure magnitude, its frequency distribution,
and the spatial coherence between pressure fluctua-
tions.

To obtain these spectral distributions, LES (large
eddy simulations) are performed on cases with dif-
ferent geometric and flow parameters. Spectra from
cases, each with a different Reynolds number, array
spacing or array configuration, are compared to the
spectra obtained with the reference case.

The simulations were performed with incompressible
fluids with constant flow properties, in the absence
of heat transfer, on rigid cylinders.
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Methodology

Out of all different CFD (computational fluid dy-
namics) methods, LES is the most suitable for this
particular study. RANS (Reynolds-averaged Navier
Stokes) models all turbulent scales, and is less suited
for boundary layer analysis, which is a prerequi-
site to study the wall-pressures. with DNS (direct
Navier-Stokes) simulations, highly accurate results
can be obtained, but at the cost of very high com-
putation loads, as all turbulent scales are resolved.
LES is a trade-off between both, and resolves only
the large turbulent scales, while modelling the oth-
ers. It combines sufficiently accurate results with
acceptable computational loads.

The flow domain on which the LES simulations are
performed, contains only one cylinder. This signif-
icantly reduces the grid size, hence the computa-
tional load. However, the interpretation of the re-
sults is less straightforward, and it should be checked
if this flow domain is representative for the entire ar-
ray. An example of such a flow domain is given in
Figure 1 in solid line. On this figure, the cylinder
diameter D and pitch P are indicated.

Figure 1: Top view of square array flow do-
main, with indication of the cylinder diame-
ter D and pitch P.

The flow domain side walls coincide with the
midlines between adjacent rods. The flow domain

length L is chosen to be 15Dh, with Dh = 4
P 2−π4D

2

πD
the hydraulic diameter of a square array.

It was confirmed that the flow domain length is large

enough to allow large scale vortices to be present in
the simulations. Grid spacings are taken from the
literature (ref. 7) and the convergence was studied
by progressively refining them. The dimensionless
grid spacings are set at ∆x+ = 100, ∆y+ = 2 and
∆z+ = 20. Although the solution is not completely
grid independent, the grid dependency is only weak,
which is sufficient for LES simulations. The ax-
ial resolution limits the scope to Strouhal numbers
St = fDh

U , the dimensionless frequency, up to 1.25,
with f the fluctuation frequency and U the flow ve-
locity. Larger frequency vortices have lower length
scales and do not span multiple grid cells.

On the cylinder wall, a no-slip condition is imposed,
which means that the velocity is zero on the sur-
face. Between all opposite flow domain planes, such
as inflow, outflow and side planes, periodic bound-
ary conditions are imposed. The planes are then
connected in terms of flow path while separated in
space: fluid flowing out of one plane enters the other
one and vice versa. The periodic boundary condi-
tions between the inlet and outlet planes simulate in-
finitely long cylinders, eliminating entrance effects.
Those between opposite side planes, simulate the
continuity of the array. However, they also have an
impact on the solution.

The initial velocity field is constructed by a random
generator: on a uniform axial velocity field, random
perturbations are imposed. They aid the transition
to a fully developed turbulent regime. All other flow
parameters are chosen uniform throughout the flow
domain, but their initial state is quickly forgotten
by the flow. To couple the flow parameters, some
adaptation time is needed.

The solver is an LES solver, resolving the large
scales, with dynamic Lagrangian averaging and a
Smagorinski sub-grid scale model, modelling the
small scales. The solver introduces a virtual pres-
sure difference between the inlet and outlet plane,
because the boundary conditions would otherwise
eliminate the driving force.

The studied wall-pressure spectra are Power Spec-
tral Density (PSD), Cross-Spectral Density (CSD)
and coherence (γ) functions. They originate from a
Fourier transform. The Discrete Fourier Transform
(DFT) X of a time signal x obtained at N time steps,
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is defined as

Xm =
∑N−1
k=0 x(k)exp

(
−j2πmkN

)
,

m = 0, ..., N − 1 .
(1)

Nyquist’s theorem (ref. 4) limits the frequency res-
olution and lower and upper frequency data as a
function of the number of time steps and time batch
length.
The PSD auto-correlates the Fourier transform, and
is given as

PSD ~x1 ~x1
(St) = 2

(
X ~x1

(St)X∗~x1
(St)

) fs
N

, (2)

with x1 a space vector. The spectrum amplitude
is normalised by fs

N : the ratio of sample frequency
to the number of samples. The PSD visualizes the
pressure magnitude as a function of position on the
cylinder and fluctuation frequency.
The CSD cross-correlates the Fourier transform at
different points x1 and x2. It is defined as

CSD ~x1 ~x2
(St) = 2

(
X ~x1

(St)X∗~x2
(St)

) fs
N

, (3)

where X∗ represents the complex conjugate of X. In
fluid mechanics, for pressure spectra, both PSD and
CSD functions are made dimensionless by a factor

1
ρ2U3Dh

, with ρ the fluid density.
The coherence is a dimensionless representation of
the CSD, normalised by the PSD in both points (ref.
1):

γ ~x1 ~x2
(St) =

CSD ~x1 ~x2
(St)√

PSD ~x1 ~x1
(St)PSD ~x2 ~x2

(St)
. (4)

It represents the correlation between the pressure
fluctuations at different positions on the cylinder,
per frequency band.
To eliminate outliers and reduce variance, the spec-
tra are averaged over space and time. The time av-
eraging, splitting the time data of length t0 into N
time batches of length t0

N , inherently causes a reduc-
tion in frequency resolution and limits the minimal
frequency in the spectra.

The spectra are a function of the frequency, repre-
sented dimensionless by the Strouhal number, and
one - for a PSD -, or two - for a CSD or coherence -
points on the cylinder surface. The position on the
cylinder is represented by a circumferential coordi-
nate θ and an axial coordinate x. Because of the

boundary conditions and the method of spectra cal-
culation, the axial coordinate loses its meaning as
absolute coordinate, and is only present as an axial
distance between two points x. The circumferential
position on the cylinder surface for a square array,
is visualised in Figure 2, with in blue the simulated
flow domain, and in black the flow domain as it is
interpreted due to the boundary conditions.

Figure 2: A square array configuration with
the studied flow domain in blue dashed lines.
A point on the flow domain cylinder in the
green, yellow, or blue region is equivalent to
the point on another cylinder arc of the same
colour, as indicated by the evolution of θ.
An equivalent flow domain is drawn in black
dashed lines.

Results and discussion

In a first study, the influence of the position and fre-
quency on the pressure amplitudes and their corre-
lation in different points, is extracted qualitatively.
To validate the results, the reference case is com-
pared against Curling’s correlation (ref. 2), which is
based on experiments on a similar array geometry.
A second study compares cases with a variation in
Reynolds number, cylinder spacing, and array con-
figuration. The influence of these parameters on the
pressure amplitude and their correlation in different



x

Table 1: The flow and geometric properties of the different case.

Name Config. D [m] P [m] Dh [m] U [ms ] ReDh [-]
reference � 0.2 0.217 0.1 140 14,000
Re 10000 � 0.2 0.217 0.1 100 10,000
Re 6800 � 0.2 0.217 0.1 68 6,800
PD 1.3 � 0.2 0.26 0.2304 60 14,000
hexagonal 4 0.2 0.2332 0.1 140 14,000

points is extracted qualitatively.
The relevant geometric and flow parameters of the
different cases are given in Table 1, with ReDh =
DhU
ν the Reynolds number, and ν the kinematic vis-

cosity.

Power spectral density spectra

The PSD of the reference case is given in Figure 3.

Figure 3: Dimensionless PSD contour plot
for the reference case.

The pressure amplitude is high at low frequen-
cies: large scale vortices induce large pressure fluc-
tuations. At higher frequencies, the pressure ampli-
tude first decreases, but then shows a maximum at
a Strouhal number in between 0.25 and 0.45, near
adjacent cylinders. This is because an important
vortex street is present near the gap region, with its
axis of convection at the position of this maximum.
The velocity contours on a side plane of the flow
domain for the reference case, are given in Figure 4.

Figure 4: The velocity magnitude along a
flow domain side plane.

The zigzagging velocity contour indicates a vor-
tex street: an alternating sequence of large scale
vortices, enhancing mixing between adjacent sub-
channels. The vortex street results from a Kelvin-
Helmholtz instability in the mixing layer between
the high-velocity subchannel and low-velocity gap
flows (ref. 5).

At even higher frequencies, the pressure am-
plitudes drop to zero, but the spectrum remains
broader in the subchannel region.

At lower Reynolds numbers, the global pressure
amplitude drops, but the distribution over the di-
mensionless frequency range is not influenced. For
less closely spaced arrays, the pressure amplitude
drops, and the pressure peak is shifted towards
larger Strouhal numbers, and towards the subchan-
nel region.
For both decreasing Reynolds number and increas-
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ing free-flow section, the pressure drop over a unit
length decreases. this indicates a weakening of the
turbulence intensity and vortex street, and results in
lower pressure amplitudes. The shift in maximum is
because the vortex street is absent in more open ge-
ometries.

Coherence spectra

The coherence between pressures in points at the
same axial coordinate, and one point’s circumferen-
tial position fixed in the subchannel region, is given
in Figure 5.

Figure 5: Coherence amplitude contour plot
between points at the same axial coordi-
nate, and one point’s circumferential posi-
tion fixed in the subchannel region, for the
reference case.

The cross-correlation between pressures is high-
est at points on the same or adjacent cylinders, and
small in the gap regions. At high frequencies, the co-
herence is no longer significant. Smaller vortices do
not exists at both sides of a gap simultaneously, and
their spanwise length is too small to induce pressures
at diagonally opposite cylinders. The high coherence
at θ′ = 45◦ is the CSD equalling the PSD at θ = θ′.
The coherence phase is identically zero for x = 0:
the vortices cross the points simultaneously in time.
For decreasing Reynolds number or increasing cylin-
der spacing, the coherence amplitude increases over
the entire circumferential and frequency range. In
both cases, the main flow velocity decreases and the

spanwise length of the vortices increases, allowing
them to induce pressures over longer distances.

The coherence contour plots of the reference case
for two points at θ = 0◦, separated over an axial
distance x, are given in Figure 6 and 7.

Figure 6: Coherence amplitude contour plot
between points in the same gap region, sepa-
rated over an axial distance, for the reference
case.

Figure 7: Coherence phase contour plot be-
tween points in the same gap region, sepa-
rated over an axial distance, for the reference
case.

Coherence amplitudes are high for low Strouhal
and axial distance combinations. This shows the dis-
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sipation of small vortices over distance, and verifies
Curling’s observation that the coherence is propor-
tional to exp(−j2πf xU ) (ref. 2), with j =

√
−1 the

imaginary unit. In (ref. 3), the bands in the spec-
tra are explained as the result of the convection of
a series of irrotational vortices.
The coherence plots for varying Reynolds number or
array spacing do not vary significantly. This is how-
ever only true on a dimensionless frequency axis: in
an absolute sense, the eddy turnover time l

U or the
amount of periods completed per time unit, with l
the length scale of the vortex (ref. 8), increases for
lower flow velocities, as the time to convect these
vortices over the same distance increases.
For triangular arrays, the vortices are correlated
over significantly smaller distances.

Conclusions

In this thesis, the forces on a cylinder bundle, in-
duced by an axial flow, are evaluated by computing
the frequency spectra of the pressures on the cylin-
der walls. These pressures need to be limited to
avoid excessive cylinder vibration, causing failure in
the long run. The influence of the position, Reynolds
number, pitch-over-diameter ratio, and array config-
uration on the pressure fluctuation amplitude and
frequency, are extracted by performing LES simula-
tions on a flow domain containing a single cylinder.

In closely spaced arrays, a vortex street, resulting
from a Kelvin-Helmholtz instability in the mixing
layer between the high-velocity subchannel and low-
velocity gap flow, is responsible for high pressure
fluctuations, especially in the low frequency range.
The convection and dissipation of vortices is visual-
ized in the coherence spectra, correlating pressures
in points at different axial positions along the cylin-
der surface.

An open geometry in a low Reynolds number flow
limits the pressure fluctuation amplitudes: the re-
duced Reynolds number and larger flow section limit
the turbulence in the main flow, while the latter also
reduces the importance of the vortex street.

As the major pressure amplitudes are induced by
the largest vortices, eliminating these vortices, e.g.

by introducing mechanical obstructions in the flow,
might be most advantageous from a structural point
of view. However, these vortices significantly en-
hance the mixing between subchannels, and are de-
sired for heat transfer applications.
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Chapter 1

Literature review

The literature review starts with a section about the goal and the relevance of the the-

sis. The underlying fluid mechanics theory is described hereafter. In a third section, the

definition and generation of frequency spectra is discussed.

1.1 Global introduction

The goal of this thesis is the study of axial flow over bundles of cylinders, and the vibration

of these cylinders by forces exerted by the flow. The study of these axial-flow induced

vibrations of slender structures has long been overshadowed by the study of cross-flow

induced vibrations (ref. [15]). The vibration amplitudes of the latter are several orders of

magnitudes larger, resulting in immediate and severe mechanical consequences. Axial-flow

induced vibrations generally have much smaller vibration amplitudes, in the order of 10−3D

to 10−2D, with D the cylinder diameter. Therefore, failure of the structure occurs very

gradually: mechanically by fretting, wear and fatigue, and chemically by stress-corrosion

cracking. Another mode of failure by fluido-elastic instability, like buckling, only occurs

at very high fluid velocities without practical value (ref. [15]) and is not treated in this

thesis.

Two particular applications of closely spaced cylinder bundles in axial flow, are nuclear

reactors and pipe-in-pipe heat exchangers. Both nuclear cores and heat exchangers nuclear

cores have high life expectancies, and cylinder replacement is very costly or even impossi-

ble. Products contained in the cylinders must be confined at all costs, as spills might cause

unwanted chemical reactions or release of radioactive substances. Even small vibration
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amplitudes pose problems due to close cylinder spacing or vicinity of spacers separating

cylinders. Impacting of cylinders onto each other or onto the spacers accelerates fretting

and failure.

Although following simulations and results are equally valid for heat exchangers, the main

focus is on nuclear applications. The square and triangular array configurations are fre-

quently used in reactor cores and spent fuel pools (ref. [13]) and therefore studied here. A

top view of these configurations is given in Figure 1.1. On this figure, the cylinder diameter

D and the distance between adjacent cylinder midpoints - the pitch P - are indicated.

The vibrations induced by axial flow on slender structures are of a stochastic nature (ref.

[15]). To cope with this randomness, probabilistic methods are employed. The power

distribution of the vibrations over the frequency range is studied using frequency spectra.

The coherence of different frequency vibrations at different locations and times is evaluated

using power and cross-spectral density functions.

The incompressible fluid and adiabatic system assumptions are expected to strongly reduce

the computational time, as the energy conservation equation is omitted and pressure wave

effects do not occur. These assumptions presumably have little influence on the solution.

Fluid densities are approximately constant at moderate temperatures. For cylinders ema-

nating little or no heat, the system is approximately adiabatic, as the friction heat losses

are negligible and fluid specific heat capacities are high.

The simulation of rigid cylinders prevents the study of the cylinder vibrations. However,

the pressures on the cylinder surface give a good indication of the resulting cylinder mo-

tion. The influence of the cylinder vibration on the pressure distribution over its surface is

negligible, as turbulence-induced vibrations have a one-way coupling between the flow and

the structural motion: the turbulence influences the structural motion but not the other

way around (ref. [18]). Rigid structures allow for stationary computational meshes, which

strongly reduces computational load.

1.2 Fluid mechanics

The cause of the pressure fluctuations on the cylinder surface is discussed in this section.

First, the phenomenon turbulence is treated, along with the boundary layer analysis and

the vortex energy cascade. Further, a vortex street, specific for axial flow in cylinder

bundles, is discussed. This phenomenon is the major contributor to the fluctuating pressure

distribution on the cylinder surface.
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Figure 1.1: Top view of a square (left) and triangular (right) array configuration.

Many things in this chapter have been extracted from U. Piomelli, 2012 (ref. [16]). No

further referrals to this work will be made.

1.2.1 Turbulence - Definition

An introductory course to the LES (large-eddy simulation) model lectured at the VKI

(Von Karman Institute) postulates the following definition of turbulence: “Turbulence is

an irregular, chaotic state of fluid motion that occurs when the instabilities present in the

initial or boundary conditions are amplified, and a self-sustained cycle is established in

which turbulent eddies (coherent regions of vorticity) are generated and destroyed ”.

Important in this definition are the keywords ’chaotic’ and ’irregular’. Turbulence exhibits

a kind of randomness: it consists of coherent structures, turbulent eddies or vortices,

random in location and time of occurrence, superposed on a random background motion.

These structures are however not completely random in nature: the turbulent velocity

fluctuations in different directions and in different points are correlated (ref. [17]).

The development of turbulence is largely influenced by the initial and boundary conditions

and the details of the perturbations in them. Consequently, the flow field is extremely

sensitive to these conditions: different solutions diverge exponentially in time, although

the statistical flow properties are identical.

For turbulence to develop and be self-sustaining, the flows Reynolds number has to be



4 CHAPTER 1. LITERATURE REVIEW

sufficiently large. this number is defined as

ReL =
ρLU

µ
=
LU

ν
, (1.1)

where ρ, µ and ν = µ
ρ

are the fluid density, dynamic viscosity and kinematic viscosity

respectively. U is the free-flow velocity, and L is a characteristic length scale (the length

L of a flat plate, the diameter D of a pipe, or the hydraulic diameter Dh = 4 · A
Pw

of more

complex geometries, with A the free flow cross-section and Pw the wetted perimeter).

An important effect of turbulence is the enhanced mixing (ref. [17]). The increase in

momentum transfer between different flow layers is of particular interest in the boundary

layer, where it results in an increased friction between the solid body and the flow, leading

to a higher skin friction coefficient.

1.2.2 Turbulence - Boundary layer

The boundary layer of a turbulent flow near a solid wall is usually subdivided in a number

of layers and sub-layers, depending on the dimensionless wall units. The dimensionless

velocity in these layers follows a characteristic pattern described by the law of the wall

(ref. [17]).

Wall units are made dimensionless with the shear velocity uτ and the characteristic length

scale ls, which are defined as

uτ =

√
τw
ρ

and ls =
ν

uτ
, (1.2)

with τw the wall shear stress.

With these quantities, the distance normal to the solid boundary - y - and the velocity

parallel to the boundary - u - can be made dimensionless:

y+ =
y

ls
and u+ =

u

uτ
. (1.3)

Dimensionless quantities are denoted by a superscript +.

Starting from the solid boundary, the first layer encountered is the wall layer (Fig. 1.2). It

comprises the bottom 10 to 20% of the boundary layer, or more general, the region where

y+ < 400 . In this layer, large velocity gradients are present, and significant production

and dissipation of turbulence occurs. This layer consists of three sub-layers (ref. [17]).
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The viscous sub-layer makes up the region where y+ < 5 . Here, viscous effects are

important, and they greatly surpass the Reynold stress effects. The linear law of the wall

applies: u+ = y+ (ref. [17]).

The second part of the wall layer is formed by the buffer layer. This is a transition layer

in which the viscous effects become progressively less important. The peak production of

turbulent kinetic energy occurs here, at y+ = 12.

The final sub-layer is the logarithmic layer. It stretches over a range of y+-values from

30 to 400, and is in fact an overlap between the wall layer and the outer layer. In this

region, the logarithmic layer of the wall applies: u+ = 1
K

ln(y+) + B where K and B are

approximately constant, taken as K = 0.41 and B = 5.25 (ref. [3]).

The outer layer forms the final 80 to 90 % of the boundary layer. Here, an exchange of

fluid between the boundary layer and the free stream occurs.

The law of the wall {
u+ = y+, y+ < 5

u+ = 1
K
ln(y+) +B, y ∈]30, 400[

, (1.4)

depicted in Figure 1.2, is only valid for flows over a flat plate. Since external flow over

cylinders is the subject of the study here, the law won’t apply to the obtained results.

However, it is still approximately valid for cylinders with large diameters, as the curvature

of the surface is very small there. For cylinders with smaller diameters, the surface curva-

ture has a profound effect, lowering the dimensionless velocity in the logarithmic and outer

layers (ref. [4]).

1.2.3 Turbulence - Energy cascade

In a turbulent flow, eddies of different sizes or length scales are present, with their dynamics

depending on their sizes. They are divided into three categories according to their length-

scales: the integral, inertial and Kolmogorov ranges. These ranges participate in an energy

cascade: turbulent kinetic energy is produced at the largest scales and transferred to smaller

and smaller ones, until it is dissipated at the smallest scales (ref. [17]).

The integral range comprises the largest eddies. The production of turbulent kinetic energy

requires high levels of anisotropy in the flow, present at the largest scales as they are

most affected by the boundary conditions. They are responsible for the main part of

the turbulent kinetic energy production. Their length- and velocity-scales - l0 and u0 -

are of the same magnitude as those of the mean turbulent flow. The Reynolds number
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Figure 1.2: the law of the wall for a flat plate (ref.[16]).

corresponding to these eddies is much larger than unity.

Rel0 =
l0u0

ν
≈ LU

ν
� 1 (1.5)

The viscous forces are negligible compared to the inertial ones, and there is no dissipation of

turbulent kinetic energy. As these scales are unable to dissipate the energy, it is transferred

to smaller scales (ref. [17]).

The Kolmogorov hypothesis of local isotropy states that the memory of the boundary

layer, responsible for anisotropy, is quickly lost as turbulent kinetic energy is transferred

to smaller scales. The inertial range, and especially the Kolmogorov range, are considered

more and more isotropic and do not produce turbulent kinetic energy anymore, as it

requires anisotropy (Kolmogorov, 1941).

The inertial range includes eddies with sufficiently large length- and velocity-scales to

assure a Reynolds number well above unity, preventing turbulent kinetic energy dissipation.

Turbulent kinetic energy production is also impossible, regarding the low level of anisotropy

at these scales. In this range, energy is only transferred to smaller scales (ref. [17]).
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Once the turbulent kinetic energy is transferred to the eddies in the Kolmogorov range,

dissipation starts. These scales are small and their velocity is low, causing the Reynolds

number to drop below unity and the viscous forces to become more important than the

inertial ones. These viscous forces dissipate the kinetic energy of the smallest eddies.

To properly illustrate the amount of turbulent kinetic energy at different length-scales,

Figure 1.3 shows the energy spectrum. The Kolmogorov similarity hypothesis postulates

a universal form of the statistics in the inertial and Kolmogorov ranges, defining them

uniquely by the kinematic viscosity ν and the dissipation rate ε, and proposes following

analytical form of the energy spectrum (Kolmogorov, 1941).

E(κ) = CKε
2
3κ−

5
3 (1.6)

Here, CK is the Kolmogorov constant and κ is the wave number, which is inversely pro-

portional to the length scale.

1.2.4 Vortex street

A peculiarity with axial flow over rod bundles, is the high mixing intensity, even at low

Reynolds numbers. This intense mixing is aided by large-scale quasi periodic vortices

transporting mass, momentum and energy between adjacent subchannels connected by the

gaps separating the rods. In nuclear terminology, the free-flow section in between cylinder

groups is often called a subchannel. These subchannels are connected through gaps in

between adjacent cylinders. The intense mixing at low Reynolds numbers, implying low

pressure losses, is important for heat transfer applications.

Although, historically, there has been some discussion about the nature of these vortices

(ref. [13]), in the current view, an instability resembling a Kelvin-Helmholtz instability is

held responsible for this phenomenon.

A Kelvin-Helmholtz like instability is formed in the mixing layer between the high velocity

subchannel flow and the lower velocity flow in the gap region, where the vicinity of the

cylinder walls slows down the flow. Differences in axial velocity allow the formation of large

scale eddies, and the connection of different subchannels through a gap allows the eddies

to stabilize and exist in both adjacent subchannels. Hence a vortex street appears, with

alternating eddies rotating in opposite senses in adjacent subchannels. This also explains

the correlation between the vortices in different subchannels.
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Figure 1.3: The turbulent kinetic energy spectrum (ref. [2]).

Möller (ref. [14]) devised an experimental relation for the Strouhal number, the dimen-

sionless frequency based on the local shear velocity,

St−1
τ =

(
fD

uτ

)−1

= 0.808
P −D
D

+ 0.056 , (1.7)

with f the fluctuation frequency.

In later work, Guellouz and Tavoularis (ref. [9]) found an experimental correlation for the

convection speed Uc of the vortex street and the spacing λ between consecutive vortices.

Uc = 1.04U
(
1− exp

(
−10.9P

D
+ 10.6

))
λ = 18.7(P −D) + 2.4D

(1.8)

1.3 Frequency spectra

As already introduced in Section 1.1, a spectral analysis of the pressure distribution, spatial

and temporal, on the cylinder surface, is the final goal of this thesis. The frequency

spectra of interest are the power spectral density (PSD), cross-spectral density (CSD), and

coherence, which is derived from the PSD and CSD. In the definition of these spectra,

Fourier-transformed variables appear. Hence, a first subsection is devoted to the discrete

Fourier transform (DFT).

Frequency spectra visualize the distribution of frequencies present in a time signal in a

frequency-amplitude diagram. It is a convenient way of calculating the power distribution
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Figure 1.4: An alternating vortex street in adjacent subchannels (ref. [13]).

of an electrical signal (ref. [10]) or a random time signal in general (ref.[11]), over the

frequencies present in the signal.

1.3.1 Discrete Fourier Transform (DFT)

The Fourier transform decomposes a time signal in its frequency components. If this time

signal is a discrete series, a discrete Fourier transform (DFT) is used. A scalar time series

x measured at N different time steps is Fourier-transformed into a complex signal X as

(ref. [10])

Xm =
N−1∑
k=0

x(k)exp

(
−j2πmk

N

)
, m = 0, ..., N − 1 , (1.9)

with j =
√
−1 the imaginary unit.

For real time series x, XN−m = X∗m , m = 0, ..N − 1 is valid, with X∗ the complex conju-

gate of X. Therefore, only half of the spectrum needs to be computed. This half of the

spectrum is referred to as the one-sided Fourier function.

From the Nyquist theorem (ref. [10]), the maximal useful frequency equals the Nyquist

frequency fNy = fs
2

, with fs the sampling frequency. The frequency resolution, or the num-

ber of data points per frequency interval, equals fres = fs
N

. To investigate high frequency

signals, the sampling frequency should be high, while for a high frequency resolution and

to investigate low frequency signals, a high number of sampling points is important.
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1.3.2 Power Spectral Density (PSD)

A PSD function is defined as an overlapped segmented averaging of modified periodograms

(ref. [10]). A periodogram is a DFT of one segment of the time series, modified refers to

the application of a time-domain window function, and averaging reduces the variance of

spectral estimates. The PSD function statistically auto-correlates the Fourier transforms

of a time series evaluated at a given point. It is defined as (ref. [10])

PSD ~x1 ~x1(St) = 2
(
X ~x1(St)X∗~x1

(St)
) fs
N

. (1.10)

The Strouhal number in above definition represents a dimensionless frequency and is de-

fined in fluid dynamics as St = fDh

U
. The factor two originates from the one-sided Fourier

transform, whereas the factor fs
N

corrects the amplitude of the spectrum for the number

of sample points. Indeed, the spectrum amplitude becomes independent of the number of

time steps.

Comparison of different PSD functions is facilitated when the spectra are dimensionless.

In fluid mechanics, PSD functions of pressure variables are made dimensionless as

PSD

ρ2U3Dh

. (1.11)

As incompressible fluids are used in the simulations, and for a dimensionless analysis, the

density has no further influence on the simulations or post-processing results, ρ is chosen

unity.

1.3.3 Cross-Spectral Density (CSD)

The cross-spectral density function visualizes the correlation of a time signal at two points

in space per frequency band in a frequency-amplitude diagram. It is the cross-correlation

of the Fourier transform of a time series evaluated at two points in space. Note that a PSD

function is a special case of a CSD function, where the two points in space are identical.

The CSD-function is defined as (ref. [7])

CSD ~x1 ~x2(St) = 2
(
X ~x1(St)X∗~x2

(St)
) fs
N

, (1.12)

and is a complex function, as opposed to the real PSD function.
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CSD functions are made dimensionless similar to the way PSD functions are made dimen-

sionless, and for the same reasons.
CSD

ρ2U3Dh

(1.13)

1.3.4 Coherence

By comparison of spectra of different time series, the differences in signal amplitude are

easily extracted. It is however more challenging to extract the differences in the correlation

of the signals between different points, as the CSD amplitudes are heavily influenced by

the signal amplitude. To filter out this signal amplitude influence, a dimensionless CSD

spectrum is proposed. The coherence normalizes the CSD spectrum by the PSD spectra

in both correlated points. As the PSD is based on an auto-correlation function, and the

CSD on a cross-correlation function, the PSD amplitude in a point is an upper limit to

the CSD amplitude. The resulting spectrum is named the coherence and is defined as (ref.

[1])

γ ~x1 ~x2(St) =
CSD ~x1 ~x2(St)√

PSD ~x1 ~x1(St)PSD ~x2 ~x2(St)
. (1.14)

The coherence allows comparison of the cross-correlation between points over different time

series: their coherence functions are represented on the same scale.
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Chapter 2

Methodology

To study the flow over the cylinder arrays, computational fluid dynamics (CFD) simu-

lations are performed, using the open source software OpenFOAM. In this chapter, the

methodology employed in these simulations and in the post-processing are explained in

depth.

The chapter starts with a discussion about the choice of flow domain and mesh. The

boundary and initial conditions are treated hereafter.

An introduction to LES, a simulation method in which the large scale eddies are resolved

while the small scale ones are modelled, is given next. The filter function and its charac-

teristics are described. The Smagorinski sub-grid scale model is discussed. The part about

the LES ends with an introduction to dynamic models, with a focus on the Lagrangian

dynamic model.

The final part of this chapter is about the generation of the spectral functions.

2.1 Flow domain

The primary goal of the thesis is to investigate the forces exerted by a turbulent axial flow

on an array of cylinders. The most widely used type of cylinder arrays in nuclear reactors,

are those with square and triangular configurations (ref. [13]), which are studied here.

The major parameters of these arrays are the cylinder diameter D, the cylinder pitch P

(the distance between the centerpoints of adjacent cylinders), and the cylinder length L

orthogonal to the plane (Fig. 2.1). As in this thesis, only the forces induced by turbulence

are investigated, excluding the inlet and outlet effects at the cylinder edges, an infinitely
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Figure 2.1: Top view of a square (left) and triangular (right) array configuration. The flow

domain boundaries are given in solid line.

long cylinder is simulated.

In a first approach, one cylinder is taken representative for an entire array. A flow domain

containing one cylinder is significantly smaller than one containing an entire array. Hence

the grid is smaller and the computational load is strongly reduced.

A polygonal flow domain with a cylinder cut out is considered (Fig. 2.1). The edges of the

polygons are the mid-lines between two adjacent cylinders. In contrast to the cross section

of the flow domain, which is fixed by the array configuration and cylinder pitch, the length

can be chosen freely. However, it should be long enough to allow large scale structures

to be generated, otherwise they will not appear. Large scale structures break down over

time into smaller ones and are the main source of turbulent eddies. Their absence will

severely influence the solution and will reduce the amplitude of the spectra over the entire

frequency range. The length scales of the large structures are comparable to the hydraulic

diameter of the array (ref. [16]). As such, a length-over-hydraulic diameter ratio L
Dh

of

15 is chosen. In the following chapter (sec. 3.2) a simulation with a larger L
Dh

-ratio is

performed to check the length-convergence of the flow domain.

The chosen computational flow domain envelops one cylinder of an array. To investigate the

influence of this choice of flow domain on the solution, a study checking the representativity

of this flow domain for an entire cylinder array should be performed by comparing the

solutions on flow domains containing n2 cylinders (for square arrays), with n an integer.
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For higher n, the influence of the boundary layers on the central subchannel or cylinder

decreases. This should validate if the realistic coupling between adjacent subchannels is

present. However, due to the large grid sizes, and high computational loads, accompanying

flow domains enveloping multiple cylinders, this study was not yet finished by the thesis

due date. Hence, the representativity of the flow domain remains but an assumption as it

was not proven.

2.2 Mesh

By subdividing the flow domain in quadrilateral building blocks and meshing the edges, a

high-quality prismatic mesh is generated. An example of a mesh for a quadrilateral building

block of a square array flow domain is given on the left-hand side of Figure 2.2. The

building block is meshed in the tangential direction along the yellow edges, in the radial

direction along the green edges, and in the longitudinal direction along the red edges.

Afterwards, the interior is subdivided in rectangular prismatic cells. The quadrilateral

elements of the hexagonal flow domain are meshed in a similar manner. The building

blocks are assembled to a full flow domain. The resulting mesh for a square array flow

domain is shown on the right-hand side of Figure 2.2. For visualisation purposes, a very

coarse mesh is shown, with a mesh size on the order of 103 cells. The meshes used in the

simulations have mesh sizes 3 orders of magnitude larger.

The LES model resolves the large scale structures and models the smaller scales. To

resolve these large scale structures, the simulation has to be able to follow them. This is

only possible with a sufficiently fine grid: the vortices have to span multiple grid cells to

be visible. Eddies smaller than the cells, so-called sub-grid scales (SGS), are modelled.

Boundary layer cell widths are made dimensionless in the same way as the dimensionless

distance to the wall (sec. 1.2.2), thus

∆x+ =
∆x

ls
, ∆y+ =

∆y

ls
and ∆z+ =

∆z

ls
. (2.1)

The characteristic length scale ls is derived from equation 1.2, and the wall shear stress

arises from a momentum balance in the longitudinal direction. The wall shear force Fshear

is equal to the pressure difference ∆p along the cylinder, multiplied by the flow-through

area A.

Fshear = τw · Acylinder = ∆p · A⇔ τw = ∆p
A

Acylinder
= ∆p

A

πDL
(2.2)
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Figure 2.2: Mesh of a quadrilateral building block (left), and a full flow domain (right).

Acylinder represents the circumferential cylinder surface area. The flow-through area A

differs for square and triangular array configurations. For a square array it equals

A = P 2 − π

4
D2 ⇒ τw = ∆p

P 2 − π
4
D2

πDL
, (2.3)

and for a triangular array

A = 6
1

2

P

2

P

2cos(π
6
)
− π

4
D2 =

1

4

(
2
√

3P 2 − πD2
)
⇒ τw = ∆p

2
√

3P 2 − πD2

4πDL
. (2.4)

Because the pressure gradient over the cylinder length is not known a priori, a precursor

flow simulation on a coarse grid is run. The resulting pressure drop over the flow domain

gives an indication of the magnitude of the pressure drop in the actual simulation.

The radial dimensionless cell width normal to the solid boundary - ∆y+ - should be smaller

than two: for a LES-simulation y+ should be smaller than unity (ref. [20]), since no sub-

grid scale model with enhanced wall treatment is used. This sizing only applies to the cells

closest to the solid boundary: as eddies further away from the boundary are larger in size,

larger cell sizes are allowed there (ref. [16]). To reduce the grid size, grading in the radial

direction is recommended. The cell-to-cell expansion factor n should be limited, here to

1.02, to avoid loss of information between large and small cells (ref. [20]). Along with the

starting cell width ∆y1 and the edge length Ly, the number of cells Ny and the bias factor
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By, or ratio between end and start cell widths, are determined (ref. [19]).

∆yi = ni−1∆y1 , i = 1, · · · , Ny

Ly =
∑i=Ny

i=1 ∆yi = ∆y1

∑i=Ny

i=1 ni−1 = ∆y1
nNy−1
n−1

⇒ Ny = round

[
ln
(

n−1
∆y1

Ly+1
)

ln(n)

]
By =

∆yNy

∆y1
= nNy−1∆y1

∆y1
= nNy−1

(2.5)

Cell widths in the direction of the flow - x - or in the circumferential direction - z - are

subjected to less severe conditions. ∆x+ and ∆z+-values of 100 and 20 respectively can

be used for the inner boundary layer (ref. [16]), although a convergence study of the grid

is advised, which is performed in section 3.1. In the x- and z-directions, the mesh is not

graded, since the dynamics are dominated by quasi-streamwise vortices with dimensions

constant in wall-units (ref. [16]).

The dimensional grid size is based on the chosen dimensionless cell width sizes and equa-

tions 2.1, and 2.3 or 2.4.

2.3 Initial and boundary conditions

For turbulent flow problems, the initial and boundary conditions have a profound influence

on the final solution (sec. 1.2.1). A careful choice of these conditions increases the accuracy

and real-world representativity of the simulations.

2.3.1 Initial conditions

The amount, location and size of the turbulent scales is very dependent on geometry and

flow parameters. Not all these parameters are known a priori. The generation of an

accurate physical turbulent velocity field is impractical due to its complexity.

A more practical solution is the generation of a random non-physical initial velocity field.

After some time, the randomness is dissipated and replaced by physical structures.

The initial velocity field is constructed by a random generator: superposed on a uniform

axial velocity field is a random perturbation. This perturbation amounts up to a maximum

of 10% of the axial velocity magnitude in any direction. It assists the transition to a
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turbulent regime and allows for fast vortex generation. Although most of the randomness

is dissipated very quickly (Fig. 2.3), the remainder ensures fast transition. The other

initial fields are taken uniform throughout the flow domain, but their values are quickly

forgotten by the flow.

The advantages of such an initialisation are its ease of implementation and the homoge-

neousness of the parameters throughout the flow domain. A disadvantage is that the initial

fields are not coupled and some adaptation time is needed.

As turbulent motions are correlated (ref. [16]) and the initial velocity field is random, some

development time is needed to allow the turbulent vortices to become physical. After this

development time, data acquisition starts. For accuracy reasons, no data acquisition starts

before the flow has travelled 140 hydraulic diameters.

2.3.2 Boundary conditions

First, a categorisation of flow domain end planes is made. An isometric view of a square

array flow domain is shown in Figure 2.4. The grey cylindrical surface in the middle is

referred to as the cylinder wall, the green and blue planes parallel to the cylinder axis are

the side planes, the red plane on top is the outlet plane, and a similar plane at the bottom

the inlet plane (not shown on the figure).

The cylinder is modelled as a wall with a smooth surface. For the velocity, a no-slip

condition is imposed, which means that the velocity equals zero on the entire surface. For

all other flow parameters - the pressure, SGS viscosity and the Lagrangian dynamic model

parameters (explained further in section 2.4.3)- a zero-gradient condition is imposed: the

change of the parameter with the distance from the cylinder surface becomes zero at the

cylinder surface.

Periodic boundary conditions for all flow parameters are imposed pairwise between side

planes at opposite sides of the flow domain, and between the inflow and outflow planes.

These conditions between two faces are a convenient way of repeating a computational

domain an infinite number of times along a direction of homogeneity. The two faces are

connected in terms of flow path, while they are separated in space: flow going out of

the flow domain along one plane flows in again across the other one and vice versa. The

main advantage is the efficient reduction of computational domain, which strongly reduces

computation time. However, the domain has to remain at least twice as large as the length
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Figure 2.3: Velocity fluctuations in the flow domain at two time instants, illustrating the

fast dissipation of randomness.

scales of the longest structures in the flow, otherwise these structures will not appear in

the flow and the solution will be less accurate (sec. 2.1).

The use of periodic boundary conditions on side planes at opposite sides of the flow domain

simulates the continuity of the array of cylinders. However, some implicit assumptions are

made. The flow in all domain building blocks in the array is assumed to be identical. In

addition to this, it is impossible to observe certain modes: those in which a symmetrical

motion of the fluid is present, would imply in- or outflow along both opposite side planes.

As periodic boundary conditions between the inflow and outflow planes would eliminate the

driving force, a virtually added axial pressure gradient is implemented in the solver. The

fluid leaving the flow domain along the outflow plane flows back in across the inflow plane.

This simulates an infinite cylinder length and filters out the entrance effects. Again, some

implicit assumption are made: the flow is identical when translated over the length of the

flow domain in longitudinal direction. An important consequence is that the wavelength

of the largest structure in the flow is limited to half the length of the flow domain. This is

the reason why the L
Dh

-ratio of the flow domain is taken at such a large value (sec. 2.1).
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Figure 2.4: An isometric view of a square array flow domain. In grey the cylinder, red the

outflow plane, and green and blue the side planes.

2.4 Large-Eddy Simulation model

The LES-model is a numerical method for (turbulent) flow simulations. It resolves the

large-scale turbulent eddies while modelling the smaller scales. Justification for the mod-

elling of the smaller scales is found in the Kolmogorov hypothesis of local isotropy (sec.

1.2.3): the small scales are more homogeneous and isotropic, and less affected by boundary

conditions. Models describing these scales are more broadly applicable with less adjust-

ments. They exploit the similarity of the small scales in the inertial and Kolmogorov

ranges, and them being solely defined by the kinematic viscosity and the dissipation rate

(sec. 1.2.3). The models use the residual stresses to accurately reproduce the energy

transfer in a statistical sense.

Many things in this section have been extracted from U. Piomelli, 2012 (ref. [16]). The sec-

tion about the Lagrangian dynamic model has been entirely taken over from C. Meneveau

et. al. , 1995 (ref. [12]). No further referrals to these works will be made.
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2.4.1 Filter

Filtered Navier-Stokes equations

The flow in or over an arbitrary geometry is governed by the Navier-Stokes equations. For

a viscous incompressible Newtonian fluid with constant fluid properties, in the absence of

body forces and heat transfer, they are given by

conservation of mass
∂uj
∂xj

= 0

conservation of momentum ∂ui
∂t

+ ∂
∂xj

(uiuj) = −1
ρ
∂p
∂xi

+ ν ∂
2ui
∂x2

i
,

(2.6)

with u the velocity, ρ the density, p the pressure and ν the kinematic viscosity. In all of

the above, Einstein’s summation applies over repeated indices. The conservation of energy

is omitted because the flow properties are independent of temperature, and heat transfer

is not addressed here.

In a LES, the Navier-Stokes equations are filtered: filtered variables are used in the equa-

tions. A filtered variable is denoted by an overhead bar and defined as

f(x) =

∫
D

f(x′)G
(
x, x′,∆

)
dx′ , (2.7)

with D the flow domain, G the filtering function, and ∆ the filter width.

The goal of this filtering operation is to reduce the importance of smaller scale motions:

instead of resolving these motions, they will be modelled and appear in the filtered Navier-

Stokes equations as residual terms.

By applying this filter to equation 2.6, one obtains

conservation of mass
∂uj
∂xj

= 0

conservation of momentum ∂ui
∂t

+ ∂
∂xj

(ūiūj) = −1
ρ
∂p
∂xi
− ∂τij

∂xj
+ ν ∂2ui

∂xi∂xj
.

(2.8)

The Navier-Stokes equations govern the evolution of the large-scale motions. The effect

of the small-scale motions on the large ones appears through a residual stress term τij =

uiuj − ūiūj , also referred to as the SGS stress.

Filter width

The filter width ∆ is related to the smallest scales of motion that are still resolved and is

usually chosen proportional to the grid size h: ∆ = n ·h, with n a constant. For anisotropic
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grids, h can be chosen an algebraic average: h = (hxhyhz)
1/3.

Relating the filter width and the grid size is a convenient choice, as they both limit the

smallest scales of motion that are still resolved (sec. 2.2). With this choice, a reduction

in grid size induces a reduction in filter width, ensuring the LES approaching a DNS

simulation (Direct Navier Stokes simulation, a simulation technique that resolves all scales)

for a reducing grid size.

Filter function

The filter function defines the weight assigned to the structures in the transition region

between scales larger and scales smaller than the filter width. A multitude of filters exist,

but only the simple tophat-filter is discussed here. It is defined (in real space) as

G(x) =

{
1
∆
|x| ≤ 1

2
∆

0 otherwise
, (2.9)

and depicted in Figure 2.5. Its simplicity and capability to smooth out small scale fluctu-

ations makes it a filter of choice.

2.4.2 Sub-grid scale models

The goal of a subgrid scale model is to represent energy transfer between resolved and

unresolved scales. Two energy equations, one for the resolved and one for the unresolved

scales, represent the energy transfer with the other scales and with the surroundings. The

transport equation for q2 = ūiūj, twice the total resolved energy, becomes

∂q2

∂t
+

∂

∂xj

(
q̄2ūj

)
︸ ︷︷ ︸

advection

= −2
∂

∂xj
(p̄ūj)︸ ︷︷ ︸

pressure diffusion

+
∂

∂xj

(
ν
∂q2

∂xj

)
︸ ︷︷ ︸
viscous diffusion

−2
∂

∂xj
(τijui)︸ ︷︷ ︸

SGS diffusion

−2 ν
∂ui
∂xj

∂ui
∂xj︸ ︷︷ ︸

viscous dissipation

+2 τijSij︸ ︷︷ ︸
SGS dissipation

.
(2.10)
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(a) Tophat filter in real space (- - -)

(b) Tophat filter in wave space (- - -)

(c) Filtering of the turbulent energy spectrum by a tophat filter

(4)

Figure 2.5: Visualisation of the tophat filter (ref. [16]).

The transport equation for q2
SGS = τkk, twice the SGS-energy, is given by

∂q2
SGS

∂t
+

∂

∂xj

(
q2
SGSuj

)
︸ ︷︷ ︸

advection

= − ∂

∂xj
(uiuiūj − uiuiuj)︸ ︷︷ ︸

turbulent transport

−2
∂

∂xj
(puj − p̄ūj)︸ ︷︷ ︸

pressure diffusion

+
∂

∂xj

(
ν
∂q2

SGS

∂xj

)
︸ ︷︷ ︸

viscous diffusion

+2
∂

∂xj
(τijui)︸ ︷︷ ︸

SGS diffusion

−2 ν

(
∂ui
∂xj

∂ui
∂xj
− ∂ui
∂xj

∂ui
∂xj

)
︸ ︷︷ ︸

viscous dissipation

−2 τijSij︸ ︷︷ ︸
SGS dissipation

,

(2.11)
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with S̄ij = 1
2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
the large scale strainrate tensor.

In these equations the diffusion and advection terms are solely responsible for the redistri-

bution of energy. The dissipation terms in the resolved energy equation appear as source

terms in the unresolved one, while dissipation terms in the unresolved energy equation

convert kinetic energy to heat. Along with the other conservation equations, the system is

closed.

Eddy viscosity models

Eddy viscosity models relate the SGS-stresses to the large scale strainrate tensor.

τij −
δij
3
τkk = −2νTSij (2.12)

Herein, δij is the chronecker delta. This equation needs closure for the eddy viscosity νT .

For simplicity reasons, this eddy viscosity is often obtained algebraically to avoid solv-

ing additional equations and increasing computation time. This is justifiable due to the

Kolmogorov hypothesis of local isotropy (sec 1.2.3), assuming the small unresolved scales

homogeneous and isentropic, offering a certain accuracy to even simple models. Addition-

ally, the contribution of the SGS stresses compared to the total stresses is negligible, hence

the severity of modelling errors is limited.

The algebraic model postulates a linear relation between the eddy viscosity and a charac-

teristic length and velocity scale

νT ∼ l · uSGS . (2.13)

The length scale l is taken equal to the filter width l = ∆: the most active of the unresolved

scales are closest to the cutoff length. The characteristic velocity is chosen as the square

root of the trace of the SGS-stress tensor: u2
SGS = q2

SGS = τkk.

To avoid solving the transport equation for q2
SGS, an equilibrium assumption is made: due

to the short time scales of the small scales, it is assumed that they adjust to perturbations

instantaneously, hence being in a state of equilibrium at any given moment. Neglecting all

derivatives in equation 2.11, the transport equation for q2
SGS simplifies to

εν = −τijSij , (2.14)

with εν = ν
(
∂ui
∂xj

∂ui
∂xj
− ∂ui

∂xj

∂ui
∂xj

)
the viscous dissipation rate.



2.4. LARGE-EDDY SIMULATION MODEL 25

Smagorinski model

One widely used type of eddy viscosity model is the Smagorinski model, developed by

Smagorinski in 1963. It uses the equilibrium hypothesis, along with dimensional analysis,

stating εν ∼
q3
SGS

l
. Combining this equation, along with equations 2.12, 2.13, 2.14, and the

equations for the characteristic length and velocity scales, one obtains qSGS ∼ ∆|S|, with

|S| =
√

2S̄ijS̄ij the magnitude of the strain rate tensor. The eddy viscosity becomes

νT =
(
Cs∆

)2 |S| , (2.15)

where the value of the Smagorinski constant Cs is either chosen a priori with static models,

or calculated during the simulation with dynamic models.

2.4.3 Lagrangian dynamic model

Dynamic model

A dynamic model evaluates the model coefficients for the SGS stresses during the calcu-

lation instead of a priori. They are computed directly from the resolved turbulent field

of the LES simulation by sampling the turbulent stresses for the smallest resolved scales

and extrapolating them to the SGS range. To do so, the resolved turbulent stresses are

calculated using the Germano identity (ref. [8]) and a test filter ∆̂, usually taken twice the

width of the grid filter: ∆̂ = 2∆.

Lij = Tij − τ̂ij (2.16)

Here, Lij = ̂̄uiūj − ūiūj represents the resolved turbulent stresses (Reynoldstresses from

length scales in between the grid- and testfilter width), Tij = ûiuj−ūiūj the subtest stresses

(Reynoldstresses from length scales smaller than the testfilter width), and τ̂ij = ûiuj− ̂̄uiūj
the sub-grid stresses (Reynoldstresses from length scales smaller than the gridfilter width).

Both the subtest and the subgrid stresses are approximated by an eddy viscosity model,

in this case a Smagorinski model.

τ̂ij = −2
(
Cs∆

)2 |S|Sij
Tij = −2

(
Cs∆̂

)2

|Ŝ|Ŝij = −2
(
Cs2∆

)2 |Ŝ|Ŝij
(2.17)

Due to the approximation of the subtest and sub-grid scale stresses, the Germano identity

is only approximately satisfied. This, along with an overdefined system for the Smagorinski

constant, results in an error

eij = Lij − (Tij − τ̂ij) = Lij − 2∆
2
(

̂C2
s |S|Sij − 4C2

s |Ŝ|Ŝij
)
. (2.18)
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To obtain an optimal solution, this error should be minimized. This is done in a least-

square sense, by taking an ensemble average over the error. By using Lagrangian averaging,

this ensemble average is taken along pathlines. This is an obvious choice, as the pathlines

are the natural direction of the fluid flow and the turbulent kinetic energy cascade.

The pathline of a particle at position x at time t is given by the function z(x,t,t’), giving

its position at a time t’

z (x, t, t′) = x−
∫ t

t′
u (z (x, t, t′′) , t′′) dt′′ . (2.19)

The local error at time t’ according to equation 2.18 becomes

eij (z, t′′) = Lij (z, t′′)− C2
s (x, t′′)Mij (z, t′′)

Mij = 2∆
2
(
|̂S|Sij − 4|Ŝ|Ŝij

)
.

(2.20)

C2
s is left out of the filtering operation, keeping in mind that it doesn’t vary strongly in

space over the scale of the test filter, as it is determined by averaged equations. The total

error E, being the pathline accumulation of the local error squared (the ensemble average),

is obtained as

E =

∫ t

−∞
eij(z, t

′)eij(z, t
′)W (t− t′)dt′ , (2.21)

with W(t-t’) a weighing function assigning a higher importance to errors closer to time t.

When this total error is minimized, an expression for Cs(x, t) is obtained

∂E
∂C2

s
= 0⇔ C2

s (x, t) = fLM (x,t)
fMM (x,t)

with

{
fLM(x, t) =

∫ t
−∞ Lij(z, t

′)Mij(z, t
′)W (t− t′)dt′

fMM(x, t) =
∫ t
−∞Mij(z, t

′)Mij(z, t
′)W (t− t′)dt′ .

(2.22)

The increased computational load associated with the dynamic Lagrangian model is due

to the need to solve additional transport equations for fLM and fMM .

2.5 Frequency spectra

In this section, a somewhat deeper analysis of the calculation and meaning of the frequency

spectra is performed. Throughout the thesis, wall-pressure PSD and CSD spectra are used

to quantify the effect of different parameters on the magnitude and frequency of the forces

on the cylinders. First, the cylinder surface coordinates are defined, and the importance of
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time and space averaging on the spectra is explained. Then, the effects of the choice of flow

domain and boundary conditions on the calculation and interpretation of the spectra are

discussed. The section ends with the description of Curling’s correlation for CSD spectra.

2.5.1 Cylinder surface coordinates

The position of a point on the cylinder surface is given by a longitudinal coordinate and a

circumferential coordinate. Because of the use of periodic boundary conditions between the

inlet and outlet planes, the longitudinal coordinate loses its absolute meaning: only relative

differences between axial coordinates of points are of importance. The circumferential

coordinate - θ - is chosen such that is equals zero in the gap region (Fig. 2.6). Thus, in

the gap region, θgap is given by

θgap = k · 90◦ , k ∈ Z for square arrays and

θgap = k · 60◦ , k ∈ Z for triangular arrays ,
(2.23)

and in the subchannel region θsubchannel by

θsubchannel = 2k+1
2
· 90◦ , k ∈ Z for square arrays and

θsubchannel = 2k+1
2
· 60◦ , k ∈ Z for triangular arrays .

(2.24)

2.5.2 The importance of averaging

The plotting of raw PSD and CSD data results in a significant amount of scatter. To reduce

this scatter and the influence of outliers, averaging in different variables is employed.

A double averaging in space is performed: in the longitudinal and in the circumferential

direction.

For the longitudinal averaging, the circumferential coordinates are fixed, while the longitu-

dinal coordinates are free to move from the bottom of the cylinder towards the top. Taking

the average of the spectra over the number of gridpoints in the longitudinal direction re-

sults in a longitudinal averaged spectrum.

Circumferential averaging exploits the symmetry of the array configuration: shifting θ over

90◦ in a square array or 60◦ in a triangular one, results in a similar situation to the one

before the shift. Taking the average of the spectra over the 4 (square configuration) or 6
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Figure 2.6: Indication of the zero reference value of the circumferential coordinate in a

square (left) and triangular (right) array. θ = 0◦ corresponds to the gap region, and

θ = 45◦ or θ = 30◦ to the subchannel region for square or triangular arrays respectively.

(triangular configuration) similar situations, gives the circumferential averaged spectrum.

Averaging in space is performed in the square array as

CSD (St, θ, θ′, x) =

1
4Nx

∑m=Nx−1
m=0

∑3
n=0 CSD

(
St, θ + nπ

4
, θ′ + nπ

4
,
(
m+ 1

2

)
∆x
L
,
(
x+

(
m+ 1

2

)
∆x
L

)
modL

)
,

(2.25)

with Nx the number of cells in the longitudinal direction, and mod the modulus. Similar

expressions are used for the PSD and coherence spectra, and for the triangular configura-

tion.

Averaging in time is performed by dividing the length of the time domain t over which

the pressures are obtained, into n number of time batches, each with a time length t
n
.

The spectrum of each time batch is calculated, after which the average of the spectra is

taken. A disadvantage of time-averaging is that by reducing the time length over which a

spectrum is calculated, hence reducing the amount of samples, low frequency information

is lost (Nyquist theorem, ref. [10]).

An example of this is shown in the figures below. Two PSD plots of square arrays are

shown in Figure 2.7, one without averaging, and one with averaging in space and in time
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over 10 time batches. By averaging over space and time, the scatter is significantly reduced

and the influence of outliers becomes negligible.
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(a) PSD plot without averaging
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(b) PSD plot with averaging in space and in time over 10 time batches

Figure 2.7: Visualisation of the importance of averaging for spectral functions.
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2.5.3 Flow domain and boundary conditions effects

The choice of flow domain and boundary conditions has a significant effect on the calcula-

tion and interpretation of the spectra, especially the CSD and coherence.

A first effect was already given in 2.5.1: because of the periodic boundary conditions

between inlet and outlet plane, the limited flow domain length, and the absence of entrance

effects, the absolute axial coordinate loses its meaning. Indeed, the flow at a point x1

and a point x2 translated axially over the flow domain length L with respect to x1, is

identical. Therefore, only relative axial coordinates, or differences in axial coordinates x

have meaning. This, however, is beneficial, as it allows averaging over the axial direction

(sec. 2.5.2).

A second effect of the limited flow domain length in combination with the periodic bound-

ary conditions between inlet and outlet plane, is the limitation of the x in the CSD and

coherence calculations. It is self-evident that spectra with an axial shift argument x larger

than the flow domain length L, are identical to the same spectra with an axial shift argu-

ment x mod L.

However, a more stringent condition is present. Axial shifts larger than half the flow do-

main length are, due to the periodic boundary conditions between inlet and outlet plane,

equivalent to a negative shift: x = (x mod L)− L
2
. As absolute axial coordinates have no

meaning, a negative shift or a positive shift over the same axial distance results in identical

spectra. Thus, x ∈ [0, L
2
] is representative for the entire range of axial shifts, as all x′ can

be reduced to x = |(x′ mod L)− L
2
|

While the two first effects had an influence on the calculation and limitations of the spectra,

the periodic boundary conditions on the side walls of the flow domain have an influence

on the interpretation of the spectra.

By looking at Figure 2.1, it might not seem like different quadrants of the flow domain are

well connected. However, because of the periodic boundary conditions between opposite

flow domain side planes, fluid is easily transported from one side of the flow domain to

the other. It is therefore careless to assume that the cross-correlation between points in

different quadrants of the cylinder equals the cross-correlation between different points on

the same cylinder: these sides of the cylinder are only connected through gap regions and

the flow exchangement through these gaps is negligible to the one through the flow domain

boundaries. Hence, these spectra are interpreted as cross-correlations between points on

different cylinders adjacent to the same subchannel. This, along with the circumferential
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coordinate range for each arc, is given in Figure 2.8.

Figure 2.8: A square array configuration with the studied flow domain in blue dashed lines.

A point on the flow domain cylinder in the green, yellow, or blue region is equivalent to

the point on another cylinder arc of the same colour, as indicated by the evolution of θ.

An equivalent flow domain is drawn in black dashed lines.

The blue flow domain is essentially transformed to an equivalent flow domain drawn in

black dashed lines. On this flow domain, the same boundary conditions apply: periodic

boundary conditions between inlet and outlet plane and between opposite flow domain

sides, and wall conditions on the quarter-cylinder surfaces.

This approach limits the application of the spectral analysis, in a sense that cross-correlations

between points adjacent to different subchannels can not be calculated, even when they

are on the same cylinder.



32 CHAPTER 2. METHODOLOGY

2.5.4 Curling’s correlation

Curling proposed a correlation for CSD spectra of wall-pressures between positions on the

same cylinder, for square arrays subjected to an axial flow (ref. [5]). This correlation is

used throughout the thesis to compare and validate the obtained results with, and is given

in appendix A.

Curling’s correlation is obtained experimentally with his cylinder bundle setup. In this

setup, flexible cylinders are used, conflicting with the rigid cylinders simulated in this thesis.

However, this should have no large influence on the wall-pressure spectra, as turbulence-

induced vibrations have a one-way coupling between the flow and the structural motion

(sec. 1.1). Entrance effects, however, do play an important role in the correlation, while

they are filtered out in the simulations. The correlation is estimated to be valid for any

Strouhal number larger than 0.25 and for any pitch and diameter combination. Although

it is only validated for Strouhal numbers up to 3 and for one pitch-over-diameter ratio.

As shown in Figure 2.9, depicting the wall pressure CSD’s between points at 0◦ and 30◦ for

two different Reynolds numbers, there is a significant mismatch between the correlation

and the data. This questions the accuracy of the correlation.

Despite these arguments against the correlation, it is used nevertheless, although only to

roughly estimate the magnitude and trend of the spectra.

With regards to the discussion in the previous section (sec. 2.5.3), the comparison between

the obtained spectral distributions and Curling’s correlation is only valid for points in the

same quadrant. For larger circumferential coordinate differences, the CSD and coherence

functions of the simulation results will represent the cross-correlation between points on

different cylinders adjacent to the same subchannel, while the functions for Curling’s cor-

relation will represent the cross-correlation between points on the same cylinder adjacent

to different subchannels.
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Figure 2.9: The real (top) and imaginary (bottom) parts of the wall pressure CSD·105

between points at 0◦ and 30◦ against the Strouhal number, according to Curling (ref. [5]).

Triangles represent measurements at Re 14,000, circles measurements at Re 34,000. The

correlation is drawn in solid line.



34 CHAPTER 2. METHODOLOGY



35

Chapter 3

Accuracy study

Before data can be interpreted, the accuracy of the calculations has to be checked. First,

the convergence of the computational mesh is proven, followed by the length convergence

of the flow domain.

The representativity of the one-cylinder representation of the full array is also part of the

accuracy study, but as was already mentioned in section 2.1, these simulations were not

yet finished by the thesis due date.

The accuracy studies are performed on only one case. Once the accuracy of this case is

proven, other simulations with the same dimensionless quantities are assumed to be accu-

rate as well. This strategy avoids performing identical accuracy calculations on subsequent

simulations, and reduces the work load.

The dimensionless quantities for the grid convergence, are the dimensionless cell widths

near the cylinder surface in all three directions. Simulations on grids with lower dimen-

sionless cell widths than the converged grid, are grid independent as well.

For the flow domain length sensitivity study, the dimensionless parameter is the ratio of

the flow domain length to the hydraulic diameter of the array. Simulations on flow do-

mains with larger L
Dh

-ratios than the length-converged flow domain, are flow domain length

independent as well.

3.1 Grid convergence

A total grid convergence is achieved once the solution is completely independent from

further grid refinement. For LES-simulations, this condition is relaxed to a solution that
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no longer depends strongly on the grid size. To achieve full grid independency, the grid

size is close to those required for DNS-simulations.

An initial simulation, named the reference case, has been created. Its properties are given

in Table 3.1. The dimensionless wall units of the reference case are chosen ∆x+ = 100,

∆y+ = 2 and ∆z+ = 20, as discussed in Section 2.2. Once the pressure drop over the array

is stable in time, the resulting dimensionless mean velocity distribution along a gap and

along a subchannel is plotted against the log-law of the wall (Fig. 1.2). The mean velocity

field is calculated by averaging the velocity field over 2000 time steps. This filters out the

outliers and reduces the scatter. From this mean velocity field, the velocities along a gap

or subchannel zone are selected. They are made dimensionless by dividing them by the

previously calculated characteristic length and velocity scales (eq. 1.2).

Several identical cases with refined grids are simulated and compared to the reference case

to study the grid convergence. Their dimensionless cell widths are given in Table 3.2.

The dimensionless velocity distributions of these cases are plotted in Figure 3.1. As these

plots do not differ much from the reference case, one builds up confidence that the grid is

converged in all three directions.

The velocity distributions are drawn up to a dimensionless wall distance of 400, because

the law of the wall is only valid up to this y+-value (sec. 1.2.2). The simulation results in

the gap region (Fig. 3.1(a)) however, are only given up to a y+-value of 75. This is because

the distance from the cylinder surface to the flow domain wall is small and corresponds to

a maximum y+-value of 75.

The curvature of the cylinder surface increases the dimensionless velocity in the logarithmic

and outer layers, as opposed to the results obtained by Chung, Rhee and Sung (ref. [4]).

A possible explanation is the annular flow geometry used in the paper. Further reasons

for this disagreement have not been explored, as the main conclusion aimed for is the

insensitivity of the solution to the grid size.

An additional verification of grid convergence is performed by comparing the PSD spectra

of the wall pressures obtained with the different grids. In Figure 3.2, the PSD spectra in

the gap region are compared to each other and to the correlation proposed by Curling (ref.

Table 3.1: The flow and geometric properties of the reference case.

Name Configuration D [m] P [m] P
D

[-] Dh [m] U [m
s

] ν [m
2

s
] ReDh

[-]

reference case square 0.2 0.217 1.085 0.1 140 0.001 14,000
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Table 3.2: The grid properties of the cases used to check grid convergence.

Name ∆x+ [-] ∆y+ [-] ∆z+ [-] # cells

reference case 100 2 20 2,620,800

X30 case 60 2 20 4,368,000

X20 case 40 2 20 6,552,000

Y06 case 100 1.2 20 3,307,200

Z6 case 100 2 12 4,233,600

[5]).

Unlike the PSDs of the grids refined in the circumferential and radial direction, the PSDs of

the grids refined in the longitudinal direction do not correspond to the PSD of the reference

case. However, their disagreement is restricted to the high frequency domain (Fig. 3.2).

When refining the grid in the longitudinal direction, vortices with smaller longitudinal di-

mensions are resolved. These smaller vortices correspond to high frequency variations and

are responsible for the increased contribution of the high frequencies in the PSD spectrum.

One could argue that a further refinement of the grid in the longitudinal direction is nec-

essary to obtain accurate solutions. However, as the scope of this thesis is limited to a

Strouhal number up to 1.25, the difference in the PSD spectra for the different grids is

negligible. The grid size and hence the computation time can therefore be limited. As a

Strouhal number of 1.25 corresponds to a high frequency (about 1.75kHz for the reference

case), the practical applications of the research are in no way harmed by this limitation.

Note that the frequency ranges of the Y06 and X20 cases extend to higher Strouhal num-

bers. This is because the time step sizes in these simulations are smaller. As stated in

section 1.3.1, smaller time step sizes generate higher frequency data.

3.2 Flow domain length-convergence

Once grid convergence is established, the convergence of the flow domain length needs to

be checked. As specified by Piomelli et. al. (ref. [16]), the length of the flow domain has to

be sufficiently large to allow the generation of large scale vortices. The presence or absence

of these vortices is shown in the frequency spectra: they are responsible for an increase

in the content over the entire frequency domain, as these large scale eddies, containing

low frequency information, break down into smaller vortices, containing higher frequency

information.
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Figure 3.1: Dimensionless mean velocity distributions for simulations on different grids.

The geometry of the reference case is given in Table 3.3. The resulting L
Dh

-ratio equals 15,

as specified in section 2.1. To check the length convergence of the reference case, its wall-

pressure PSD spectrum is compared to that of an identical simulation on a flow domain

that is twice as long, referred to as the L/Dh 30 case. This PSD spectrum is obtained in

the subchannel region: more large-scale vortices are expected to be present here, as the
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Figure 3.2: The dimensionless PSD spectrum in the subchannel region for the different

grids as a function of the Strouhal number.

free flow section in the subchannel region is larger compared to the gap region. The result

is given in Figure 3.3

Both PSD spectra correspond very well over the entire frequency range. This proofs that

the flow domain length has no distinct influence on the solution: the solution is shown to

be converged in terms of flow domain length.

To further prove the importance of a sufficiently long flow domain, and to show the conse-

quences of a flow domain that is chosen too short, Figure 3.4 compares wall-pressure PSD

plots of simulations run on a long flow domain - the L/Dh 30 case -, and a short one -

the L/Dh 1 case - (Table 3.3). The wall-pressure amplitudes in the short flow domain

are significantly lower over the entire frequency range, as was predicted in section 2.1.

The lower frequency content in the the L/Dh 1 case could have been predicted earlier by

comparing the pressure gradients over the flow domain: the ∆p
L

-ratio of L/Dh 30 case is a
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Table 3.3: The flow domain properties of the cases used to check flow domain length

convergence.

Name D [m] P [m] L [m] Dh[m] L
Dh

[-] # cells

reference case 0.2 0.217 1.5 0.1 15 2,620,800

L/Dh 30 case 0.2 0.217 3 0.1 30 5,241,600

L/Dh 1 case 0.2 0.217 0.1 0.1 1 174,720
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Figure 3.3: The dimensionless PSD spectrum in the subchannel region for two flow domains

with different lengths, as a function of the Strouhal number.

factor 4 larger. This indicates a larger turbulence intensity, thus more and larger vortices

are present, and the wall-pressure frequency content is higher.
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Figure 3.4: The dimensionless PSD spectrum in the subchannel region for two flow domains

with different lengths as a function of the Strouhal number.
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Chapter 4

Analysis of the pressure spectra in a

square array

In this chapter, the results obtained with the reference case are discussed. PSD, CSD and

coherence spectra of wall-pressures are plotted and studied. The most important features

are pointed out, and the influence of Strouhal number and position on the cylinder are

extracted from the results. The main geometric and flow properties of the reference case

were given in Table 3.1 in chapter 3.

4.1 Power spectral density of pressure

Comparison of PSD functions at different positions on the cylinder is facilitated when the

PSD amplitude is plotted as a function of position and frequency, as shown in Figure 4.1(a)

for the reference case, and Figure 4.1(b) for Curling’s correlation. In these contour plots,

some resolution is sacrificed to obtain a better overview.

Because of the symmetry of the geometry, and the method of spectra calculation (sec.

2.5.2), only θ-values ranging from 0◦ to 90◦ are studied. Similar results are expected for

PSD spectra at positions θ and (90◦ − θ) because of additional geometry symmetry axis.

θ was defined in Figure 2.6, section 2.5.1.

At very low frequencies, the amplitude of the pressure spectra is high, regardless of the

position on the cylinder, indicating high amplitude fluctuations at low frequencies. Large

vortices with large time-scales are responsible for these low-frequency fluctuations. One

might be surprised that even in the tightly spaced gap region (at θ = k · 90◦ , k ∈ Z),
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volumetric large scale vortices are present. However, as explained in section 1.2.4, there is

a vortex street present at this location, consisting out of alternating large-scale vortices.

At higher frequencies or Strouhal numbers, the pressure spectra quickly drop. However,

an increase in frequency content is noticeable at a Strouhal number between 0.25 and 0.45.

This increase is larger for positions on the cylinder near the gap region, at θ = 15◦ and

θ = 75◦. This can be explained when one assumes that the axis along which the vortex

street is convected (sec. 1.2.4), is located at these positions. Figure 4.2 shows the velocity

magnitude along a side plane of the flow domain. A lower velocity contour is observed near

the gap region. The zigzagging nature of the contour can be explained by the alternating

vortices at both sides of the gap. This also explains the alternating positive and negative

velocity magnitudes in Figure 4.3, showing the velocity magnitude perpendicular to the

flow domain side planes for two adjacent flow domain planes.

The vortex spacing λ, defined in Figure 1.4 in section 1.2.4, has a value in between 0.1m

and 0.3m, based on Figure 4.3. Equation 1.8 predicts an vortex spacing of 0.15m. These

values agree well.

For St > 0.5, the PSD decreases uniformly. This suggests that small, high frequency

vortices induce smaller pressure amplitude fluctuations. These smaller vortices contribute

more to the PSD amplitude in the subchannel region compared to the gap region. There,

the vicinity of the cylinder walls increases damping and smaller vortices are dissipated

faster.

The PSD obtained by the reference case corresponds reasonably well with Curling’s corre-

lation. However, the PSD peaks, present in the reference case near the gap region, are not

present in the correlation. Instead, the correlation shows a strong increase in frequency

content in the subchannel region for Strouhal number ranging from 0.5 to 1. The influence

of entrance effects, the correlation’s experimental uncertainty, and other explanations for

this mismatch, were given in section 3.1. Also, based on the different location of the pres-

sure peak, Curling’s correlation does not take the vortex street into account. In the very

low frequency range (St < 0.25), the correlation is not valid, which is the reason for the

blank part in the figure.
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(a) reference case

(b) Curling’s correlation

Figure 4.1: Contour plots of the dimensionless PSD spectra as a function of the angular

position on the cylinder and Strouhal number.
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Figure 4.2: The velocity magnitude along a flow domain side plane.

Figure 4.3: The velocity magnitude perpendicular to the main flow direction on the flow

domain side planes, for two adjacent planes.
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4.2 Cross-spectral density and coherence of pressure

The cross-correlation of the pressures is studied in two directions: one in which the cir-

cumferential coordinate is varied, and one where the axial coordinate changes. As CSDs

and coherences are functions of 4 variables (St, θ, θ′, and x), one 2D contour plot is not

sufficient to visualize all possible spectra, as was the case with the PSD plots.

To study the relation between different points on the cylinder surface, filtering out the in-

fluence of the pressure amplitude, coherence plots are made (sec. 1.3.4). The cross-spectral

density can be extracted from the coherence and PSD (sec. 1.3.4).

γ ~x1 ~x2(St) =
CSD ~x1 ~x2(St)√

PSD ~x1 ~x1(St)PSD ~x2 ~x2(St)
, (4.1)

hence, to avoid an overload of figures, only the coherences are plotted. Note that the

phase angle of the CSD equals the one of the coherence. This follows from the coherence

definition and the phase angle of the PSD being identically zero.

In contrast to the PSD analysis, the coherence analysis can not be limited to only one

quarter of the flow domain. Due to the periodic boundary conditions, a shift in circum-

ferential position of 90◦ or more, corresponds to the coherence between points on different

cylinders, adjacent to the same subchannel (Fig. 2.8). The choice of a fixed circumferential

coordinate, however, can be limited to to only one cylinder: due to the method of CSD and

PSD calculation (sec. 2.5.2), a shift of this coordinate over 90◦ corresponds to an identical

spectrum, also shifted over 90◦.

The influence of the circumferential and axial coordinates on the CSD and coherence

spectra are studied for a fixed circumferential coordinate in the gap region, and for one in

the subchannel region. This corresponds to the two extreme cases.

4.2.1 Circumferential cross-correlation in gap region

The influence of the circumferential coordinate on the coherence is studied in Figures 4.4

and 4.5, which show the contour plots for the coherence amplitude and phase respectively

for varying θ′ and Strouhal number, for x = 0, and a fixed circumferential coordinate in the

gap region. The plots for Curling’s correlation are only shown up to θ′ = 90◦, in accordance

with the reasoning in section 2.5.4. Note that because the fixed circumferential coordinate

is chosen on a geometric symmetry axis, the plots are symmetric around that coordinate.
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At first glance, there is again a good agreement between Curling’s coherence amplitude

plot (Fig. 4.4(b)) and the one obtained with the reference case (Fig. 4.4(a)). In section

1.3.4, it was stated that the PSD is an upper limit for the CSD. This can be observed in

the plots. Indeed: the coherence magnitude at θ = 0◦ is unity, and larger than or equal

to those at other circumferential positions, for all Strouhal numbers. Moving away from

the gap region, the coherence magnitude quickly drops, especially at higher frequencies.

This is because the large scale vortices span longer distances, thus they induce pressures

at points separated over longer distances. The small vortices span much smaller distances.

Another important observation is the high coherence magnitude in the gap region on the

opposite side of the flow domain, at θ′ = 180◦. This results mainly from the periodic

boundary conditions between opposite sides of the flow domain, allowing vortices to exist

at both subchannel sides simultaneously, thus highly correlating both sides. This was

visualised in Figure 2.8. Only large scale vortices are physically capable of inducing pressure

fluctuations at both sides of the subchannel, as only they span the entire subchannel width.

The coherence magnitude in the same and opposite side gap regions, is a decreasing function

of the Strouhal number. Keep in mind that the scope of the thesis is limited to Strouhal

numbers equal to 1.25 (sec. 3.1).

The Coherence phase plots show a zero-phase difference over the entire cylinder perimeter

and frequency range. The fluctuations are in phase because vortices cross both positions

on the cylinder at the same time.
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(a) reference case

(b) Curling’s correlation

Figure 4.4: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the gap region.
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(a) reference case

(b) Curling’s correlation

Figure 4.5: Contour plots of the coherence phase between points at the same axial position,

and one point’s circumferential position fixed in the gap region.
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4.2.2 Circumferential cross-correlation in the subchannel region

The same study as in the previous section is repeated here, but now for a fixed circum-

ferential coordinate in the subchannel region. The coherence amplitude contour plots for

the reference case and Curling’s correlation are given in Figure 4.6. The phase plots are

omitted because they are identically zero, as was explained in section 4.2.1. Once again,

the fixed circumferential position is chosen on a geometric symmetry axis, hence the plots

are symmetric around that coordinate.

The coherence amplitude in the subchannel region at θ′ = θ = 45◦ obviously is the highest,

as at this position the CSD equals the PSD and consequently the coherence is unity. The

magnitude quickly drops when moving away from this position. Curling’s correlation shows

the same trend, but less extreme.

In the first quadrant of the flow domain, the coherence in the low-frequency region up to

St = 0.5 is important. Vortices large enough, responsible for the low St content, can span

the distance from θ = 45◦ to θ ∈]0◦, 90◦[ . In the same frequency range, the coherence

on adjacent cylinders from θ ∈ [135◦, 180◦] and θ ∈ [270◦, 315◦] is high as well. Large

scale vortices are able to span the subchannel width and influence adjacent cylinders.

Diagonally adjacent cylinders are, however, not influenced by the same vortices, as the

coherence amplitude for θ ∈]180◦, 270◦[ remains low.
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(a) reference case

(b) Curling’s correlation

Figure 4.6: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the subchannel region.
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4.2.3 Axial cross-correlation in the gap region

In this and the next section, the axial influence on the cross-correlation is analysed. First,

the coherence is calculated between two points in the gap region, separated over an axial

distance x. Figures 4.7 and 4.8 show the coherence amplitude and phase for the reference

case and Curling’s correlation respectively.

The coherence amplitude plots for the reference case (Fig. 4.7(a)) and Curling’s correla-

tion (Fig. 4.8(a)) show a comparable evolution: the Strouhal number and axial distance

between the points are inversely proportional for a constant coherence magnitude. Small

vortices with high frequencies are quickly dissipated, and they do not exist anymore an

axial distance x more downstream. Other small vortices generated by the energy cascade

have taken their place. Curling proposes an exponential decay of coherence with distance

and vortex frequency (ref. [5]).

γ ∼ exp(−j2πf x
U

) (4.2)

Larger vortices with lower frequencies are not dissipated as fast. They exist longer and

consequently, they are able to induce pressure fluctuations further downstream. Therefore

the coherence magnitude is large for low St and low x.

A feature present in the reference case coherence plot but not in Curling’s correlation, is

intermittency: bands with coherence magnitude zero for constant St ·x can be observed. A

better understanding of this phenomenon results from the analysis of the coherence phase

plots.

The coherence phase plots for the reference case and Curling’s correlation agree very well.

Again, the effects of vortices dissipating more downstream is visible: for higher Strouhal

numbers and axial separation, the phase becomes identically zero because the vortices are

no longer correlated.

The bands in the plots are the result of the Fourier transform. The pressure distribution

in time induced by the same turbulent structure a distance x more downstream, is the

same, but shifted over a time T = x
Uc

. The Fourier transform of these functions therefore

only differ by a factor exp(−jωT ), with ω = 2πf the radial frequency. Indeed, the Fourier

transform of a signal shifted in time is given by

FT [f(t− T )](ω) = FT [f(t)](ω) · exp(−jωT ) (4.3)

The frequency resolution is too low for the phase distribution to be clearly visible. This
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is due to the extensive time-averaging (sec. 2.5.2) and the resolution limit imposed by the

Nyquist theorem (sec. 1.3.1).

The coherence phase angle drops proportional to the Strouhal number, as is shown in

Figure 4.9(b), showing the CSD phase plot for points in the gap region, spaced over an

axial distance x = 3Dh, as a function of the Strouhal number. This is a consequence of

the convection transport of vortices with the flow. A vortex travels from the first to the

second point in a time t, dependent on the convection speed Uc and the distance between

the points x. During that time, the vortex will complete a number of periods, dependent

on its eddy turn-over time (ref. [21])

tL =
l

Uc
. (4.4)

The turn-over time of a small vortex is smaller than that of a large one. Hence, it will

complete more periods over the same time or axial distance interval, and its phase will

have dropped more.

The accompanying CSD amplitude plot in Figure 4.9(a) shows the amplitude distribution

over the Strouhal number. This amplitude becomes zero everytime the phase angle crosses

±180◦ and is at a maximum for phase angle 0◦. This is the reason why the intermittency

in Figure 4.7(a) is present. J. De Ridder et. al., 2015 (ref. [6]), encountered similar bands

in CSD and coherence spectra of pressures on cylinders in axial flow, and attributed this to

the transport of irrotational vortices. Figure 4.10 shows the pressure profile due to a regular

series of irrotational vortices in solid line, and this same pressure distribution shifted over

180◦ in dashed line. Obviously, the CSD multiplying both pressure distributions, is at a

maximum at phase difference 0◦ and near zero at 180◦.
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(a) amplitude

(b) phase

Figure 4.7: Contour plots of the coherence between points in the same gap region, separated

over an axial distance, for the reference case.
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(a) amplitude

(b) phase

Figure 4.8: Contour plots of the coherence between points in the same gap region, separated

over an axial distance, for Curling’s correlation.
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(a) amplitude

(b) phase

Figure 4.9: CSD plots between points in the same gap region, separated over an axial

distance 3Dh. The red curve represents Curling’s correlation, the blue squares the reference

case.
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Figure 4.10: The pressure distribution of a series of irrotational vortices in solid line. The

dashed line represents the same pressure distribution shifted over 180◦ (ref. [6]).

4.2.4 Axial cross-correlation in the subchannel region

In this section, the coherence between points in the subchannel region is investigated as

a function of the Strouhal number and their axial spacing. The coherence amplitude and

phase contour plots for the reference case and Curling’s correlation are given in Figures

4.11 and 4.12 respectively.

The coherence amplitude and phase plots strongly resemble those in the gap region (sec.

4.2.3). The same discussion thus applies. The only difference, besides the increased noise

in the subchannel figures, is the slightly longer distance over which vortices are correlated

in the gap region. This is due to the higher convection speed in the subchannel, compared

to the gap region. Indeed, the free-flow velocity in the subchannel is higher than in the

gap region. This is visualised in Figure 4.13, depicting the coherence phase angle for two

points in the subchannel and two points in the gap region, spaced over an axial distance

x = 3Dh, for both the reference case and Curling’s correlation. While the reference case

plots show no significant difference between the subchannel and the gap region, Curling’s

correlation shows that the phase drops faster in the subchannel region. This is self-evident,

as the phase drop is proportional the eddy turn-over time (eq. 4.4), and the velocity in

the subchannel region is higher than in the gap region.

In the next chapter, extracting the influence of some important geometric and flow param-

eters on the spectral functions, the discussion of the influence on the coherence between

axially separated points will be limited to points in the gap region. This is because of the

similarity of the coherence spectra of the reference case in both regions, and to avoid an

excessive number of images.
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(a) Coherence amplitude

(b) Coherence phase

Figure 4.11: Contour plots of the coherence between points in the same subchannel region,

separated over an axial distance, for the reference case.
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(a) Coherence amplitude

(b) Coherence phase

Figure 4.12: Contour plots of the coherence between points in the same subchannel region,

separated over an axial distance, for Curling’s correlation.
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Figure 4.13: The coherence phase angle between points in the same subchannel and gap

regions, separated over an axial distance 3Dh.

4.3 Conclusions

In the final section of this chapter, the conclusions regarding the position and frequency

influence on the pressure spectra for the reference case are listed. This is a brief summary of

the results without further explanation, as all conclusions are already extensively discussed

and explained in the previous sections.

A fixed circumferential coordinate on a geometric symmetry axis results in a symmetric

frequency spectrum along this axis. This is due to the regular geometry. Because of the

method of spectra calculation and symmetrical geometry, identical spectra are obtained

when both coordinates are shifted over an angle of 90◦.
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As the frequency increases, the amplitudes of the pressure fluctuations decreases: vortices

with smaller length and time scales induce smaller pressure amplitudes. There exists,

however, a maximum in pressure fluctuation amplitude at a Strouhal number between 0.25

and 0.45. This maximum is due to the vortex street phenomenon. The maximum pressure

amplitudes correspond with circumferential coordinates θ = 15◦ and θ = 75◦. The axes

along which the vortex streets are convected, are located at these positions.

The high-frequency pressure spectra is broader in the subchannel region than in the gap

region. In the latter, vortices are dissipated faster due to the close vicinity of the cylinder

walls.

The cross-correlation amplitude between the pressures in two points is high for high fluctua-

tion frequencies, only if the circumferential distance between them is small. The frequency

then has little effect on the cross-correlation. For low fluctuation amplitudes, the pres-

sures are highly correlated over the entire cylinder circumference: large vortices are able to

span the entire subchannel width, inducing pressures over the entire subchannel perimeter.

Fluctuation frequencies up to St = 0.5 are still significantly correlated, but only if they are

located in the subchannel regions of the same or adjacent cylinders. The correlation be-

tween pressure fluctuations on diagonally adjacent cylinders, or in different gap regions, is

non-existent for higher frequency fluctuations. The high cross-correlation between pressure

fluctuations in opposite gap regions, shown in Figure 4.4(a), is mainly due to an artefact,

especially for the high frequency fluctuations, created by the boundary conditions.

The coherence phase between pressure fluctuations in different points, only separated over

a circumferential distance perpendicular to the main flow velocity, is identically zero over

the entire cylinder surface and frequency range. This is because vortices cross these points

at the exact same moment in time.

The cross-correlation between pressure fluctuations in points separated over an axial dis-

tance, parallel to the main flow, is significant only for low St · x-products. Large vortices

do still exist a distance x more downstream, thus the pressure fluctuations induced there

origin from the same vortices, and the cross-correlation remains high. Small vortices with

high frequencies, are quickly dissipated and are replaced by other vortices a distance x

more downstream. The pressure fluctuations in the two points origin from different vor-

tices, hence they are not correlated.

The phase difference between highly correlated pressure fluctuations is due to the convec-

tion of the vortices: as vortices are convected with the flow, they complete a number of

periods, proportional to the distance and eddy turn-over time. Large vortices have lower
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eddy turn-over times and complete less periods over the same distance downstream than

small high-frequency vortices. Therefore, the pressure fluctuation phase changes more over

longer distances, and more rapidly for higher frequency fluctuations. The bands in the

amplitude spectra can be explained by this phase distribution, and the assumption of ir-

rotational vortex sequences. Indeed, the cross-correlation between pressures induced by

vortices is at a maximum when the vortices are in phase, and zero when they are out of

phase.

The cross-correlation of the pressure fluctuations between two points, separated over an

axial distance, is almost independent of the circumferential position of the points. The

gap and subchannel regions differ only in convection speed: the flow velocity is higher in

the subchannel region, as the flow there is less influenced by the cylinder walls. Hence, the

phase drops faster in the subchannel region, but this effect is only slightly visible in the

plots.
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Chapter 5

Parameter study

In the fifth chapter of this thesis, the influence of the Reynolds number, the pitch-over-

diameter or P
D

-ratio, and the array configuration on the pressure spectra is studied. Sim-

ulations with variations in one of these parameters are compared in order to extract their

influence from the obtained results.

This comparison is performed on 3 quantities. Comparison of the PSD spectra reveals

the parameter influence on the pressure fluctuation magnitudes. The second quantity

is the coherence spectrum between two points with different circumferential coordinates.

Therefore, the amplitude spectra are compared, once for a fixed coordinate in the gap

region, and once for one in the subchannel region. The phase spectra of these coherences

are omitted, because they are identically zero for a zero axial displacement between the

points (sec. 4.2.1). The third quantity is the coherence spectrum between points in the gap

region, axially spaced over a distance x. Both phase and amplitude spectra are compared.

Identical coherence spectra between points in the subchannel region have been omitted,

because of the very close resemblance to the ones between the points in the gap region.

No new information can be extracted from these plots.

The parameters of the simulations are changed such that the computational load of its

simulation is lower than the one for the reference case.
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5.1 Reynolds number influence

In this section, the influence of the Reynolds number is analysed. Two cases additional

to the reference case are simulated, one with a Reynolds number of 10,000, and one with

a Reynolds number 6,800. The change in Reynolds number is based on a change in flow

velocity. Their characteristics are summarized in Table 5.1. These particular Reynolds

numbers are chosen for two reasons. First, they allow for coarser meshes and thus lower

grid sizes. Indeed, lower Reynolds numbers correspond with lower pressure drops over

the flow domain length. The pressure drop per unit length - ∆p
L

- is given in Table 5.1.

From equations 2.2, 1.2 and 2.1, it follows that larger cell sizes can be chosen for the same

dimensionless cell widths. The second reason, explaining their exact value, is because there

is experimental data available to compare the results with. Curling (ref. [5]) performed

experiments on cylinders in a square array, subjected an axial flow with these Reynolds

numbers.

The PSD contour plots of the reference case, the Re 10000 case and the Re 6800 case are

given in Figure 5.1.

The figures show a similar evolution of the PSD over the entire frequency range. How-

ever, the PSD magnitude is strongly dependent on the Reynolds number. Although the

figures suggest that the amplitude of the pressure fluctuations increases with decreasing

Reynolds number, especially with the different scaling, one must take into account that the

dimensionless PSD magnitude is inversely proportional to the velocity U to the third power

(eq. 1.11). Therefore, the actual amplitude of the pressure fluctuations is much larger for

larger Reynolds numbers. This is self-evident: flows with larger Reynolds numbers exhibit

higher turbulent intensities and contain more and stronger vortices. As these vortices are

stronger, they obviously induce larger pressure fluctuations.

It seems like another feature is present in the figures: at lower Reynolds numbers, the

tendency for small vortices to generate higher pressure amplitude fluctuations in the sub-

channel region than in the gap region, disappears, and the pressure fluctuation amplitude

Table 5.1: The properties of the cases used to check Reynolds number influence.

Name D [m] P [m] Dh [m] U [ms ] ν [m
2

s ] ReDh
[-] ∆p

L [Pam ] # cells

reference case 0.2 0.217 0.1 140 0.001 14,000 2570 2,620,800

Re 10000 case 0.2 0.217 0.1 100 0.001 10,000 1480 1,463,000

Re 6800 case 0.2 0.217 0.1 68 0.001 6,800 830 739,200
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decreases uniformly over the circumferential position with increasing Strouhal number, for

large enough Strouhal numbers. However, this is contributed entirely to scaling effects:

the higher pressure fluctuations at high frequencies in the subchannel region are present

at all Reynolds numbers, although it is less visible in the plots with larger scales. This

also means that the pressure fluctuations induced by smaller vortices, are less influenced

by the Reynolds number.

The increase in PSD magnitude at θ = 15◦ and θ = 75◦ at St = 0.3 is present at all

Reynolds numbers. This indicates the presence of a vortex street. Indeed, Figure 5.2

shows the velocity magnitude and velocity component perpendicular to the main flow

along a flow domain side plane, for both the Re 10000 and Re 6800 cases. In both figures,

a vortex street is visible. Although the vortex street is less strong for lower Reynolds

numbers, its relative contribution to the PSD spectrum increases. The contribution of the

main flow turbulence decreases fast with decreasing Reynolds numbers, while the vortex

street phenomenon is still significant at lower Reynolds numbers (sec. 1.2.4).

Globally, it can be concluded that the Reynolds number has a profound influence on the

magnitude of the pressure fluctuations, only little on their frequency distribution, and not

on their spatial distribution.

Coherence amplitude contour plots, visualizing the cross-correlation between points with

identical axial coordinates, with one point’s circumferential coordinate fixed in the gap or

subchannel region, are shown in Figure 5.3 and 5.4 respectively.

The distribution of the coherence looks similar over the entire circumferential and frequency

range for all Reynolds numbers. The coherence magnitude increases slightly over the entire

frequency and circumferential range for decreasing Reynolds number. This is due to an

increase in noise because the overall lower PSD and CSD magnitudes for lower Reynolds

numbers: division by a small PSD value increases the importance of random fluctuations

on the coherence. Apart from this, it can be concluded that the Reynolds number has

no influence on the coherence of pressure fluctuations in points at different circumferential

positions.

Coherence phase and amplitude contour plots, visualising the cross-correlation between

two points in the gap region, separated over an axial distance x, are given in Figures 5.5

and 5.6.

The coherence phase and amplitude plots are identical for all three Reynolds numbers. The

overall larger coherence magnitude for lower Reynolds numbers can again be attributed

to the increased noise because of the low PSD value. The small differences present in the
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figures at higher frequencies can be attributed to noise and randomness. It is concluded

that the Reynolds number has no influence on the coherence of pressure fluctuations in

points separated over an axial distance.

These plots are drawn on dimensionless frequency axes. The Strouhal number normalizes

the frequency with the hydraulic diameter and the flow velocity (St = fDh

U
). Therefore,

a given Strouhal number corresponds to a lower frequency for a flow velocity. Thus, the

plots are quite similar on a dimensionless scale, but differ very much on an absolute scale.

Figures 5.5 and 5.6 once again confirm the convection of vortices: at lower flow velocities,

the vortices are transported slower. This means that their eddy turn-over time increases

(eq. 4.4) and they complete more periods over the same axial distance. In absolute

frequency, their phase drops more rapidly, and the bands in the amplitude spectrum are

more closely spaced for lower flow velocities.

To summarize, lower Reynolds number flows induce smaller pressure fluctuations. The

relative contribution of the vortex street to the pressure fluctuations increases. This shifts

the PSD spectra to slightly higher frequencies, but the circumferential distribution is not

influenced. The coherence amplitude spectra increase at lower Reynolds numbers, because

the noise increases.

On dimensional frequency axes, the bands in the coherence spectra between axially spaced

points are more closely spaced for decreasing flow velocity. This is due to the reduced

speeds at which the vortices are convected.
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(a) reference case (Re 14,000) (b) Re 10000 case

(c) Re 6800 case

Figure 5.1: Contour plots of the dimensionless PSD as a function of the position on the

cylinder and Strouhal number, visualizing the influence of the Reynolds number.
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(a) Re 10000 case

(b) Re 6800 case

Figure 5.2: Velocity magnitude (left) and velocity component perpendicular to the main

flow (right) along a flow domain side plane.
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(a) reference case (Re 14,000) (b) Re 10000 case

(c) Re 6800 case

Figure 5.3: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the gap region, visualizing the

influence of the Reynolds number.
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(a) reference case (Re 14,000) (b) Re 10000 case

(c) Re 6800 case

Figure 5.4: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the subchannel region, visualizing

the influence of the Reynolds number.
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(a) reference case (Re 14,000) (b) Re 10000 case

(c) Re 6800 case

Figure 5.5: Contour plots of the coherence amplitude between points in the same gap

region, separated over an axial distance, visualizing the influence of the Reynolds number.
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(a) reference case (Re 14,000) (b) Re 10000 case

(c) Re 6800 case

Figure 5.6: Contour plots of the coherence phase between points in the same gap region,

separated over an axial distance, visualizing the influence of the Reynolds number.

5.2 Pitch-over-diameter influence

The second parameter which has been varied, is the pitch-over-diameter ratio. This changes

the dimensionless gap width P−D
D

in between adjacent cylinders. In the reference case, this
P
D

-ratio equals 1.085. It will be compared to another simulation with a P
D

-ratio of 1.3,

hence referred to as the PD 1.3 case. Their characteristics are given in Table 5.2. As the

adapted geometry causes a variation in hydraulic diameter, the length and flow velocity
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of the PD 1.3 case have to be adapted as well in order to maintain an L
Dh

-ratio of 15 (sec.

2.1) and a Reynolds number equal to the one of the reference case. As in the previous

section, the P
D

-ratio is chosen in such a way that it reduces the grid size, hence reducing

the computational load. Indeed, the increased free-flow section and decreased flow velocity

strongly reduce the pressure gradient over the flow domain length (Table 5.2). This effect,

allowing coarser meshes for equal dimensionless wall units, dominates the increase in flow

domain, effectively reducing the grid size and computational load.

Figure 5.7 shows the dimensionless wall-pressure PSD distribution over the frequency range

and position on the cylinder for the reference and PD 1.3 cases.

The increase in free flow section with increasing P
D

-ratio strongly reduces the amplitudes

of the pressure fluctuations on the cylinder wall. This is concluded by the small PSD

amplitude of the PD 1.3 case compared to the reference case. This effect is even larger in

absolute values, as the factor normalizing the PSD for the reference case, is 5.5 times as

large as the one normalising the PSD for the PD 1.3 case. As stated before, the pressure

drop over the PD 1.3 flow domain is much lower than for the reference case. This pressure

drop results from wall friction losses and viscous losses. The decrease in wall friction losses

is self-evident for larger flow sections, as relatively less friction surface is present. The

decrease in viscous losses suggests the absence of a vortex street. Figure 5.8 shows the

velocity magnitude and velocity component perpendicular to the main flow along a flow

domain side plane. Although there is some randomness present in the flow field, this is

entirely attributed to the main flow turbulence. The zigzagging pattern of the velocity

magnitude, or the alternating positive and negative velocity spots of the component per-

pendicular to the wall, have completely disappeared. Hence, the vortex street is no longer

present at high P
D

-ratio geometries. As this vortex street no longer contributes the pressure

fluctuations, inherently lower wall-pressure spectra are obtained.

The PSD distribution over the circumferential coordinate also changes with P
D

-ratio: the

maximum amplitude evolves from near the gap region to the center of the subchannel

region. At higher P
D

-ratios, the gap width between the cylinders grows in a relative sense.

Therefore, the velocity reduction near the gap region relative to the subchannel flow ve-

Table 5.2: The properties of the cases used to check the P
D

-ratio influence.

Name D [m] P [m] P
D [-] Dh [m] L [m] L

Dh
[-] U [ms ] ReDh [-] ∆p

L [Pam ] # cells

reference case 0.2 0.217 1.085 0.1 1.5 15 140 14,000 2570 2,620,800

PD 1.3 case 0.2 0.26 1.3 0.2304 3.5 15 60 14,000 200 1,022,400
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locity, is less pronounced, and the importance of the vortex street phenomenon decreases

(sec. 1.2.4). The largest vortex density is localized near the region with the largest ve-

locity gradients. The largest velocities are in the largest free-flow section, and as there

is no vortex street present, the velocity near the cylinder surface becomes approximately

uniform over the entire circumference.Therefore the largest velocity gradients are present

in the subchannel region, as are the largest pressure fluctuations.

The coherence amplitude contour plots between points with the same axial coordinate, and

one point’s circumferential coordinate fixed in the gap or subchannel region, are given in

Figures 5.9 and 5.10 respectively.

The figures show a similar distribution of the coherence for both a fixed point in the gap

region, and one in the subchannel region. The major difference between the plots is the

coherence magnitude: pressure fluctuations in points on different circumferential positions

are much more correlated for larger P
D

-ratios, and this over the entire circumferential and

frequency range. In geometries with larger gap widths, more vortices are able to traverse

these gaps: the influence of the cylinder walls decreases and the vortices are less quickly

dissipated. Due to the boundary conditions, transport through the gap regions allow vor-

tices to reappear at a position 180◦ shifted to their original position. This way, correlation

of pressure fluctuations is overestimated over the entire circumference. This overestimation

remains lower for smaller gap widths, as in that situation, fewer vortices are able to cross

the gap.

An effect unintentionally introduced when increasing the P
D

-ratio, is the decrease of the

flow velocity U. As in the Re 10000 and Re 6800 cases, where the free flow velocity was

reduced, the PD 1.3 case also shows an increased coherence between pressure fluctuations

in points with different circumferential coordinates, compared to the reference case. At

lower flow velocities, the spanwise length of the vortices is larger and they are able to

induce pressure fluctuations over longer circumferential distances. Also, the PSD reduces

and noise becomes more important.

The influence of the axial distance between two points in the gap region on the coherence

amplitude is shown in Figure 5.11 and on the coherence phase in Figure 5.12.

The low resolution in the PD 1.3 case figures along the vertical axis is because only a small

section of the complete flow domain length is shown. This, combined with a low number

of cells over the entire axial length of the flow domain, results in very pixelated figures.

A first important difference between the coherence plots of both cases, is the scaling of the

vertical axis. In the PD 1.3 case figures, the maximum x
Dh

shown is much smaller than in
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the reference case. This is done on purpose: because of the larger hydraulic diameter of

the PD 1.3 case, a certain x
Dh

value corresponds with a larger x, compared to the reference

case. As was stated in section 4.2.3, the coherence between pressure fluctuations in two

points quickly vanishes as the axial distance between them grows. If the coherence plots of

the PD 1.3 case were given over half of the flow domain length, as is done for the reference

case, only the lower part of the graph would contain meaningful information, while the

rest would contain only noise.

Apart from the vertical axis scaling, the plots for the coherence amplitude and phasing

correspond well for both cases. The only significant influence of the P
D

-ratio on the axial

coherence is the reduced distance over which pressure fluctuations are correlated.

To summarize, in geometries with larger P
D

-ratios, the vortex street phenomenon decreases

in importance, or even disappears completely. This causes the pressure fluctuations to

strongly reduce in amplitude, and the maximum pressure amplitude shifts away from the

gap region towards the subchannel region.

The coherence amplitude increases over the entire frequency and circumferential range for

increasing P
D

-ratio, although this might also be due to the lowered flow velocity needed to

maintain a certain Reynolds number, and an increase in noise. Also, for increasing P
D

-ratio,

vortices and consequently pressure fluctuations, are less coherent over the same distance

downstream.
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(a) reference case (PD 1.085)

(b) PD 1.3 case

Figure 5.7: Contour plots of the dimensionless PSD as a function of the position on the

cylinder and Strouhal number, visualizing the influence of the P
D

-ratio.
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Figure 5.8: Velocity magnitude (left) and velocity component perpendicular to the main

flow (right) along a flow domain side plane.
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(a) reference case (PD 1.085)

(b) PD 1.3 case

Figure 5.9: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the gap region, visualizing the

influence of the P
D

-ratio.
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(a) reference case (PD 1.085)

(b) PD 1.3 case

Figure 5.10: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the subchannel region, visualizing

the influence of the P
D

-ratio.
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(a) reference case (PD 1.085)

(b) PD 1.3 case

Figure 5.11: Contour plots of the coherence amplitude between points in the same gap

region, separated over an axial distance, visualizing the influence of the P
D

-ratio.
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(a) reference case (PD 1.085)

(b) PD 1.3 case

Figure 5.12: Contour plots of the coherence phase between points in the same gap region,

separated over an axial distance, visualizing the influence of the P
D

-ratio.
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5.3 Array configuration influence

The final parameter whose influence on the spectra is discussed, is the array configuration.

In the introduction (sec. 1.1) it was already pointed out that apart from square arrays,

triangular arrays are often encountered nuclear reactor cores. In this section, the major

differences in pressure amplitude and frequency distribution on the cylinder surfaces are

studied, for a square array represented by a square flow domain, and a triangular array

represented by a hexagonal flow domain (Fig. 2.1). The most important characteristics

are given in Table 5.3

Because of the different geometric outline of the flow domains, it is impossible to vary only

one parameter. For the hexagonal case, a cylinder and hydraulic diameter equal to the

ones of the reference case are chosen. However, by fixing these variables and postulating

a Reynolds number equal to the one of the reference case, the pitch inevitably changes.

This causes pitch-over-diameter effects, described in section 5.2, to disturb the results. The

influence of the array configuration can not be fully extracted by this comparison, but an

attempt is made nevertheless.

Note that for the hexagonal case, there are 6 gap and subchannel regions present. Also, a

shift of the spectra over 60◦ results in a similar spectrum (sec. 2.5.2).

The PSD spectra for both array configurations are given in Figure 5.13. The spectrum for

the hexagonal case is only given up to θ = 60◦ due to symmetry reasons.

From the PSD spectra, the influence of the array configuration can not unambiguously be

extracted. All the features present in the PSD plots - the lower PSD amplitude over the

entire frequency and circumferential range, the PSD peak shifted towards the subchannel

region - are also found in the previous section. Therefore, these features are attributed to

a variation in the P
D

-ratio between the cases.

The cross-correlation between different points, displaced over a circumferential distance, is

evaluated by the coherence magnitude and is given in Figure 5.14 for a fixed circumferential

coordinate in the gap region, and Figure 5.15 for a fixed circumferential coordinate in the

Table 5.3: The properties of the cases used to check the array configuration influence.

Name Configuration D [m] P [m] P
D [-] Dh [m] U [ms ] ReDh

[-] # cells

reference case square 0.2 0.217 1.085 0.1 140 14,000 2,620,800

hexagonal case triangular 0.2 0.2332 1.166 0.1 140 14,000 1,821,600
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subchannel region.

Figure 5.14(b) shows what was to be expected, based on previous observations: a coherence

amplitude equal to one where θ = θ′ because of the coherence definition (eq. 1.14), an

increase in coherence between pressure fluctuations in opposite gap regions because of the

periodic boundary conditions, and an increased coherence over the entire circumferential

and frequency range compared to the reference case (Fig. 5.15(a)) due to the increase in
P
D

-ratio.

The enhanced coherence at θ′ = 60◦ in Figure 5.15(b) is probably an error. An equally

large coherence should be present in the gap region on the other cylinder side (θ′ = 0◦),

otherwise the plot would not be symmetrical along the geometric symmetry axis on which

the fixed point is located (θ = 30◦).

The influence of the axial distance on the cross-correlation between two points in the gap

region, is evaluated by the coherence amplitude and phase plots in Figures 5.16 and 5.17

respectively.

The low resolution in the hexagonal case figures along the vertical axis is because only a

small section of the complete flow domain length is shown. This, combined with a low

number of cells over the entire axial length of the flow domain, results in very pixelated

figures, and makes comparison between the array configurations difficult.

Although the hydraulic diameter is the same for both cases, the vertical axis of the hexag-

onal case plots had to be rescaled because of the low levels of coherence and high levels of

noise present at high x
Dh

. The pressure fluctuations are correlated over significantly shorter

distances, compared to the reference case. The evolution of the coherence over the axial

distance and frequency is however quite similar for both configurations. Also note that the

plots are given on dimensionless axes, but because of the geometric and flow similarities

between the two cases, the axes are normalised with the same coefficient. Hence, the plots

could also be displayed on the same dimensional axes.

The only influence of the array configuration that was extracted by previous analysis,

is that for triangular arrays, vortices and pressure fluctuations are correlated over signifi-

cantly shorter distances downstream. The thesis mainly focusses on square arrays, and this

excursion to triangular arrays was only a first attempt. Further study might be necessary.
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(a) square array configuration

(b) triangular array configuration

Figure 5.13: Contour plots of the dimensionless PSD as a function of the position on the

cylinder and Strouhal number, visualizing the influence of the array configuration.
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(a) square array configuration

(b) triangular array configuration

Figure 5.14: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the gap region, visualizing the

influence of the array configuration.
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(a) square array configuration

(b) triangular array configuration

Figure 5.15: Contour plots of the coherence amplitude between points at the same axial

position, and one point’s circumferential position fixed in the subchannel region, visualizing

the influence of the array configuration.
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(a) square array configuration

(b) triangular array configuration

Figure 5.16: Contour plots of the coherence amplitude between points in the same gap

region, separated over an axial distance, visualizing the influence of the array configuration.
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(a) square array configuration

(b) triangular array configuration

Figure 5.17: Contour plots of the coherence phase between points in the same gap region,

separated over an axial distance, visualizing the influence of the array configuration.
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5.4 Conclusions

In the final section of this chapter, the conclusions regarding the Reynolds number, P
D

-ratio

and array configuration influence on the pressure spectra are listed. This is a brief sum-

mary of the results without further explanation, as all conclusions are already extensively

discussed and explained in the previous sections.

The global pressure fluctuation amplitude is mostly influenced by the Reynolds number of

the flow and the P
D

-ratio of the array geometry. Either decreasing the Reynolds number

or increasing the array spacing results in a decrease in pressure loss over a certain length.

By decreasing the Reynolds number, the shear stresses on the cylinder wall reduce, and

the vortices present in the flow are weaker and fewer in number. The increased P
D

-ratio

increases the free-flow section, hence the lower pressure drop.

As with a lower pressure drop, lower viscous losses and a weaker vortex street corresponds,

it can be concluded that the vortices or turbulence in the flow is less strong, and the

pressure fluctuation amplitudes decrease for decreasing Reynolds number and increasing
P
D

-ratio.

The influence of the array configuration on the pressure fluctuations could not be extracted.

The pressure fluctuation amplitude distribution over the cylinder surface is independent

of Reynolds number, but heavily influenced by array geometry. As the spacing between

the cylinders increases, the vortex street phenomenon decreases in importance. At low
P
D

-ratios, the vortex street is present and stronger pressure fluctuations are located on the

axis along which the street is convected. At high P
D

-ratios, the peak pressures shift towards

the subchannel region. The strongest vortices are present at the location where the velocity

gradient is the strongest. If a strong vortex street is present, this is near the gap region.

If the vortex street is absent, this is in the subchannel region.

As a result of the reduced PSD at these conditions, the influence of the noise also increases,

increasing the coherence amplitude over the entire frequency and circumferential range.

The influence of the array configuration on the circumferential coherence could not be

extracted.

Cross-correlation between pressure fluctuations in circumferentially separated points, be-

comes higher for decreasing Reynolds number and increasing P
D

-ratio. For both, the re-

duced flow velocity allows the vortices to span longer distances perpendicular to the main

flow. Therefore, they can induce pressures over longer circumferential distances. At lower
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Reynolds numbers, or larger gap widths, the flow experiences less pressure loss when

traversing the gap region. More vortices are able to cross the gap and induce pressure

fluctuations on the other side, correlating these pressures.

The correlation between pressure fluctuations shifted over axial distances, only changes

when switching array geometry. For both triangular arrays and increased P
D

-ratios, the

pressure fluctuations are correlated over significantly smaller distances. On an absolute

frequency scale, the bands present in the coherence amplitude spectra are more closely

spaced for decreasing flow velocity and increasing hydraulic diameter (or increasing free-

flow section). The Strouhal number is defined as St = fDh

U
, thus the frequency becomes

f = StU
Dh

.

These phenomena can be explained by the convection of vortices: at lower flow velocity,

the eddy turn-over time increases, and the vortices complete more periods over shorter

axial distances, hence their phase drops more quickly in an absolute sense. The bands in

the spectra then are more closely spaced.
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Chapter 6

Conclusion

In this thesis, the forces on a cylinder bundle, induced by an axial flow, are evaluated by

computing the frequency spectra of the pressures on the cylinder walls. These pressures

need to be limited to avoid excessive cylinder vibration, causing failure in the long run.

The influence of the position, Reynolds number, cylinder pitch-over-diameter ratio, and

array configuration on the pressure fluctuation amplitude and frequency are extracted by

performing LES simulations on a flow domain containing a single cylinder.

The highest pressures were generated by the large scale vortices and have low fluctuation

frequencies. The majority of these high pressures are generated by a vortex street: an

alternating sequence of large scale eddies, transporting mass, momentum and energy be-

tween adjacent subchannels. This vortex street is formed by a Kelvin-Helmholtz instability

between the mixing layer of the high flow velocity in the subchannel region, and the lower

flow velocity in the gap.

The amplitude of higher pressure fluctuation frequencies first decreases, independent of

the position on the cylinder, then increases to a maximum at a Strouhal number between

0.25 and 0.45, whereafter it again decreases and approaches zero. The position of the max-

imum, both in space and frequency, is dependent on the array geometry, more specifically

the distance between adjacent cylinders. The spectrum extends to higher frequencies in

the subchannel region.

Larger pressure drops over a unit length correspond to globally higher amplitude pres-

sure fluctuations over the entire cylinder surface, as they indicate the presence of large

amounts of strong vortices or a vortex street. Therefore the pressure amplitudes increase

with increasing Reynolds number, and more closely spaced cylinders.
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The cross-correlation between pressures induced in points on the same and different cylin-

ders at different circumferential positions, proofs to be dependent on the positions of the

points. Pressures in points near gaps in between cylinders are only correlated with pres-

sures in other points in that same gap, or in the gap on the other side of the subchannel.

However, the latter is mainly due to an artefact introduced by the boundary conditions.

Pressures in points on the cylinder in the subchannel region, are highly correlated with

pressures in points near the same channel on adjacent cylinders, but only for low frequency

fluctuations.

The cross-correlation between pressure fluctuations, globally increases in magnitude with

decreasing Reynolds number and less closely spaced arrays.

Pressures induced in points at the same circumferential position, but separated axially,

are highly correlated at low frequency and low axial spacing combinations, due to the

dissipation of vortices. In these spectra, alternating bands between maximum and zero

coherence are present. This results from the convection of vortices with the flow.

For more open geometries, and triangular array configurations compared to square ones,

the distance over which vortices are coherent is significantly smaller.

The highest pressure fluctuations are obtained for high Reynolds number flows in closely

spaced arrays. While disadvantageous for the structural safety, these conditions are wanted

for high efficiency in compact geometries.

As the highest pressure amplitudes are generated by the largest vortices, it is advised to

avoid these large scales by introducing mechanical obstructions in the flow, breaking these

vortices. However, the vortex street is the main source of mass, momentum and heat

transfer between adjacent subchannels, and therefore is desired for good heat transfer.

A trade-off between structural safety, spatial compactness, and heat transfer efficiency, is

inevitable.
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Chapter 7

Discussion

In the final chapter of the thesis, comments on the obtained results are given. The short-

comings of this research are described, and suggestions are made for improving further

research on similar subjects.

Some phenomena observed in the simulations that are not further described in the main

text because of time pressure or irrelevancy to the subject, are quickly listed here. Let

them be a starting point for further research.

7.1 Shortcomings and suggestions

As the simulation method employed in this thesis is LES, there are inevitably some errors

induced due to the modelling of small vortices instead of resolving them. Instead DNS

analyses can be performed, or a finer grid, especially in the flow direction (Fig. 3.2), can

be used. This way, more accurate result can be obtained, and pressure fluctuations at

higher Strouhal numbers can be studied.

Previous suggestions inherently give rise to larger grid sizes and higher computational

loads. Another possibility to obtain smaller wall units without increasing the grid size,

is simulating lower Reynolds numbers or geometries with larger P
D

-ratios. This way, the

characteristic length scale increases and coarser grids correspond with equal dimensionless

wall units (sec. 5.1 & 5.2). Although, the turbulence decreases with decreasing Reynolds

number, the vortex street is still present at low Reynolds numbers (sec. 1.2.4).

The influence of the boundary conditions should be reduced in further research. Periodic

boundary conditions between inlet and outlet plane posed no problem. Because of the suffi-
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ciently long flow domain and coherences between pressure fluctuations in axially separated

points disappearing for larger distances, this has no significant influence on the solution,

and even proved to be a good method to reduce the grid size. The influence of the periodic

boundary conditions on opposite side planes, however, was clearly visible in the spectra.

Because in the author’s opinion, no boundary condition is better fit to simulate the con-

tinuity of the cylinder array, starting from a flow domain enveloping one cylinder, further

research should simulate multiple cylinders. Although this implies a much larger flow do-

main, grid size, and computational load, it is believed that the obtained results will more

accurately describe the flow behaviour in a real array. Additionally, coherence spectra will

no longer be limited to two points, adjacent to the same subchannel.

Because of the large grid size and consequently high computational load, the representa-

tivity of the flow domain containing one cylinder, to the entire array, was not verified. It

might be necessary to check the representativity before continuing cylinder array research

on one-cylinder flow domains.

Some figures of spectra, given in chapters 4 and 5, are of poor resolution. The resolution

along θ or x axes can be improved by refining the grid in circumferential or longitudinal

direction respectively. This way, more points are available at which the pressure is eval-

uated. However, this method also incurs higher computational loads, as the grid size is

increased.

The resolution along the St axis is limited by the Nyquist theorem (sec. 1.3.1). The

number of frequencies at which the pressure is evaluated, can be increased by obtaining

data over a longer time. Again, the computational load increases because the simulations

now have to run longer. Another approach is decreasing the amount of time-averaging:

the length of the time intervals becomes longer, as the time over which data is obtained

is chopped into fewer batches. However, this increases the contribution of outliers and

spectral variance becomes important.

As this thesis focusses on square arrays, and only a quick excursion to triangular arrays

was made, further research on flow induced vibrations on triangular array configurations,

subjected to axial flow, is encouraged. Especially the influence of the array configuration

on the pressure spectra is of interest, as the extraction of this parameter was not a success.
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7.2 Undescribed phenomena

A first phenomenon, encountered in the simulations but not described in the thesis, is the

lossless transmittance of the pressures through the boundary layer. Figure 7.1 shows this.

Note that in this figure, the z axis is parallel with the flow velocity, in contrast to the x

axis being perpendicular to the flow velocity in other parts of the thesis. On the left are

the contours of the pressures on one of the side walls. On the right is the same view, but

this time of the pressure contours on the cylinder surface. The similarity between both

figures is striking.

This transmittance of pressures through the boundary layer originates from boundary layer

analysis. The pressures are transported at the speed of sound in the fluid. For incompress-

ible fluids, as used in this thesis, the speed of sound becomes infinite and pressures are

transmitted instantaneously.

Figure 7.1: The pressure distribution on the flow domain side wall (left) and cylinder

surface (right).

Another phenomenon, mentioned a few times in the main text, is the vortex street. These
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vortex street enhance mixing and heat transfer in closely spaced arrays, even at low

Reynolds numbers and low pressure drops. A study further investigating this vortex street

phenomenon in cylinder arrays, and their practical application, seems in place.
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Appendix A

Curling’s CSD-correlation

The formula for Curling’s dimensionless CSD-correlation is (ref. [5])

CSD (St, θ, θ′, x) =

bs
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(A.1)

This correlation is valid for Strouhal numbers larger than 0.25. The used coefficients are

bs = 0.305

a = 7.68
8+St3

θd = |θ′ − θ| − π
2

l = 0.384St3 + 0.899

ζ1 = 0.6

ζ2 = 8.68582 .

(A.2)



102 APPENDIX A. CURLING’S CSD-CORRELATION



Pieter Aerts

axial flow
turbulence on an array of cylinders in incompressible
Assessment of the force spectrum induced by

Academic year 2014-2015
Faculty of Engineering and Architecture
Chairman: Prof. dr. ir. Jan Vierendeels
Department of Flow, Heat and Combustion Mechanics

Master of Science in Electromechanical Engineering
Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Ir. Jeroen De Ridder
Supervisors: Prof. dr. ir. Joris Degroote, Prof. dr. ir. Jan Vierendeels


	Table of contents
	List of Figures
	List of Tables
	Literature review
	Global introduction
	Fluid mechanics
	Turbulence - Definition
	Turbulence - Boundary layer
	Turbulence - Energy cascade
	Vortex street

	Frequency spectra
	Discrete Fourier Transform (DFT)
	Power Spectral Density (PSD)
	Cross-Spectral Density (CSD)
	Coherence


	Methodology
	Flow domain
	Mesh
	Initial and boundary conditions
	Initial conditions
	Boundary conditions

	Large-Eddy Simulation model
	Filter
	Sub-grid scale models
	Lagrangian dynamic model

	Frequency spectra
	Cylinder surface coordinates
	The importance of averaging
	Flow domain and boundary conditions effects
	Curling's correlation


	Accuracy study
	Grid convergence
	Flow domain length-convergence

	Analysis of the pressure spectra in a square array
	Power spectral density of pressure
	Cross-spectral density and coherence of pressure
	Circumferential cross-correlation in gap region
	Circumferential cross-correlation in the subchannel region
	Axial cross-correlation in the gap region
	Axial cross-correlation in the subchannel region

	Conclusions

	Parameter study
	Reynolds number influence
	Pitch-over-diameter influence
	Array configuration influence
	Conclusions

	Conclusion
	Discussion
	Shortcomings and suggestions
	Undescribed phenomena

	Bibliography
	Curling's CSD-correlation

