
Intelligent objects by using RFID
&

Web technology

Decaestecker Jasper and Lapere Arend
Katho Kortrijk

June 22, 2011

1

Contents

1 Voorwoord 6

2 Description project 7
2.1 Introduction . 7
2.2 Smart objects . 7
2.3 Jointspace . 7
2.4 TouchaTag (RFID) . 8

3 Televic 9
3.1 Introduction . 9
3.2 Story of the statue . 9
3.3 History . 10

4 Architecture 11

5 RFID 12
5.1 What? . 12

5.1.1 Advantages . 12
5.1.2 Disadvantages . 12

5.2 How? . 12
5.3 RFID tags . 13
5.4 RFID reader . 13
5.5 Alternate RFID reader . 13
5.6 PN532 . 14

6 Programming RFID 15
6.1 Choices,Choices... 15

6.1.1 TouchaTag Service . 15
6.1.2 WinScard.dll . 15
6.1.3 Java SmartCardIO API . 15
6.1.4 Libnfc . 15

6.2 Libnfc . 15

7 Code RFID 16
7.1 C/C++ - Libnfc . 16

7.1.1 Setup . 16
7.1.2 Reading tags . 16
7.1.3 Counting tags . 16
7.1.4 Sending event . 17

7.2 C# . 17
7.2.1 setup . 17
7.2.2 Setting up the reader . 17
7.2.3 Setting up the ConnectX client 18
7.2.4 Tag added event . 18

7.3 Sleep mode . 20

2

8 Visualization 21
8.1 Introduction . 21
8.2 Different Approaches . 21

8.2.1 dlna or not dlna that is the question 21
8.2.2 JointSpace . 21

8.3 Alternatives . 22

9 Implementation 23
9.1 Introduction . 23
9.2 Basics . 23

9.2.1 A first glance at VisualX . 24

10 VisualX 25
10.1 XApplication . 25
10.2 XWindow . 25
10.3 XRectangle . 26
10.4 XTextBox . 26
10.5 XBrowser . 26

10.5.1 Internet Explorer . 27
10.5.2 Google Chrome . 27

10.6 XButton . 28
10.7 XSlideShow . 29
10.8 XContainer . 29

11 ConnectX 31
11.1 ConnectXServer . 31
11.2 ConnectXDigitalSignageReader . 32

12 VisualX insight 35
12.1 DirectFB . 35
12.2 Drawing . 38
12.3 A walk through GDI . 39
12.4 A walk through DirectX . 39
12.5 Improving VisualX . 39
12.6 Colors and alpha-channels . 42
12.7 Conclusion . 42

13 Televic Signage 43
13.1 Digital signage in general . 43
13.2 Televic Signage . 43
13.3 Setup Televic Signage . 43
13.4 Adjustments Televic Signage . 43

13.4.1 Changing visual experience . 44
13.4.2 Tag management . 45
13.4.3 Person management . 45
13.4.4 Plugin management . 46
13.4.5 Activities . 47
13.4.6 RSS feeds . 48
13.4.7 RSS feeds historical & technical 48

13.5 The Code behind . 48
13.5.1 Showing content . 48

3

13.5.2 Deleting content . 49
13.5.3 Zip . 50
13.5.4 Appbrowser . 50

14 Plugin System 51
14.0.5 TV guide . 52

15 How everything works? 53

16 The Future 56

17 Field trips 56
17.1 Philips Brugge . 56
17.2 IBBT Gent . 56

18 Complications 56
18.1 Compiling libnfc . 56
18.2 Televic Signage . 57
18.3 The power of green computing . 57
18.4 Direct FB . 57

18.4.1 Drawing images with alpha channel made glitches 57
18.4.2 Connection cannot be closed . 57
18.4.3 Connection with tv broken . 58
18.4.4 Enumerating televisions . 58
18.4.5 Browser crash . 58

19 Televic Demo day 59

20 Conclusion 60

21 Bibliography 61
21.1 Information links . 61
21.2 Software . 61

4

List of Figures

1 Statue ”Loud Silence” . 9
2 Architecture of project . 11
3 VisualX Logo . 25
4 Internet Explorer logo . 27
5 Chrome Logo . 27
6 VisualX Logo . 31
7 Stride in memory . 38
8 Difference in sign of stride . 38
9 view of people management page . 46
10 view of the plugins page . 47
11 view of calendar page . 47
12 Main menu of the Tv Guide . 52
13 Start of the programl . 53
14 Main menu . 53
15 Album . 53
16 Picture browserl . 54
17 Activity managerl . 54
18 Feed browser . 54
19 Browsing through the articlesl . 55
20 Application browser . 55
21 A plugin at work . 55
22 There was much rejoice !!! . 59

5

1 Voorwoord

Stepstone to a brighter Yesterday.

Onze opleiding te KATHO laat ons toe om ons eindwerk en stage te combineren. Dit
is een prachtige opportuniteit, aangezien deze een nauwlettende ervaring weergeeft met
het werkveld. Wij hebben gekozen voor dit project aangezien we beide genteresseerd
waren in het ontdekken van de RFID technologie en het verder uitwerken van onze ken-
nis i.v.m. het programmeren op het web.

Graag schenken we een dankwoord aan:

• prof. dr. ir. Piet Verhoeve en dr. ir. Brecht Stubbe, onze buiten-promotoren, die
ons hebben geholpen bij al onze vragen en het helpen uit werken van ons project.

• Dhr. Philip Vanloofsvelt, die ons geholpen heeft bij onze vragen.

• Het bedrijf Televic NV, die het mogelijke maakte om dit prachtige project waar
te maken.

• Onze ouders, die ons goed hebben verwend tijdens de harde werkdagen te Televic.

• Urshi, de vriendin van Arend, voor het maken van onze RFID1 kubus.

Zoals op te merken is, is ons voorwoord in het Nederlands geschreven, dit was een
gegeven vanuit het KATHO. Omdat Televic een multilinguaal bedrijf is, wordt ervoor
gezorgd dat iedereen in staat is deze thesis te lezen, daarom wordt alle hieropvolgende
tekst van de thesis in het Engels geschreven.

1RFID = Radio-Frequency Identification.

6

2 Description project

2.1 Introduction

The main assignment of our project was to research the possibilities of the RFID technol-
ogy in combination with web technology. Although RFID isn’t a brand new technology,
it’s not used in the context similar to our project. If we combine an ordinary object,
with a RFID tag, we have created a smart object. To have interaction wit this smart
object and the environment, a smart system must be developed. With these objects we
could be able to control an application on an alternative way. To be able to interact
with the user, a visual GUI2 must be made,which is being displayed on a television.

The application that would be running on this television, is a multimedia platform,
which is able to show content, according to the user which is controlling this system.
The idea behind this platform was inspired by a research concept that they are running
in the ”Woonzorgcentrum De Vijvers”.The concept was created by Televic and IBBT
in the context of the TransCare project. This application, made by the IBBT in Gent,
enables the users to see messages and pictures of their family and friends. The main
advantage of this platform, is that the users can still use their television, which they
are familiar with and access information, which would else be only accessible by using
a computer.

2.2 Smart objects

There are 2 different categories of smart objects. A smart object can literally be a
”smart object”, that is capable to interact with the environment using his own comput-
ing power, to determine the outcome of events that take place in the world around it.
This type of smart object can be compared to a person, which has the capabilities to
make up his own mind.

The second type of smart object is far from smart, the environment itself is smart.The
smart object itself can do nothing, the only purpose is to identify the object to the
system. The ”smart” object has only been given an id, the smart environment around
it will detect this id, as this object moves through the plane. According to the id of
the object, the system will trigger different events. The events are stored in a database,
which are linked to the id of the tag.
For our project we use the latter category of smart objects.

2.3 Jointspace

Of course abstract data isn’t of much use when you can’t really do something with it.
Every system’s downfall is the design of bad interface. Your software may be so brilliant,
if one can’t wield it’s power through an easy to use interface, no one will use it. Our
goal was to use a television to represent our data. That’s where jointspace enters the
picture, a technology developed by Phillips Brugge to show custom data on a television.

2GUI= Graphcial User interface

7

2.4 TouchaTag (RFID)

We can control our application in a traditional way, by using a standard remote control.
Although most of the times, these controllers contain way to many buttons to be used
with ease. By using RFID technology we could be able to do the basic ”computer” tasks
with the use of everyday objects. Imagine that watching your photo album could be
done by laying a picture on a reader. This is much easier than starting up a computer
and trying to find the directory where you placed your pictures, not to mention the
the need to connect your computer with a large TV screen, so that everyone can enjoy
watching your album.

8

3 Televic

3.1 Introduction

Televic is a company who develops and produce high quality communication systems.
Televic insures quality by deploying products that is made to the costumers’ wishes.
Televic works with the latest state-of-the-art technology which can only be achieved by
innovation. The employees of Televic are passionate about their job and excel at their
field of expertise. Televic is a financial independent group, who are are working hard
to be respected around the globe. Currently Televic has over 400 employees, which are
employed in Belgium, France, Great Britain, Bulgaria and China. Televic Headquarter
is stationed in Izegem, in this site they mostly concentrate on development of new
products. The first prototypes of a new product are made here and are thoroughly
tested. This ensures that every product that is released onto the market, meets the
strict requirements needed in the field of communication systems.
Televic has 5 branches were they deliver theses systems:

• Audiovisual

• Rail

• Health Care

• Conference

• Education

3.2 Story of the statue

The statue ”Loud Silence” is the symbol for Televic.

Loud symbolizes the need for communication and the need to be heard by others.

Silence stands for efficient communication by using the appropriate solutions or tech-
nologies.

The contradiction between Loud & Silence is symbolic for a good balance between the
need for communication and the need to organize this communication in an efficient way.
Televic is specialized in providing solutions for critical & interactive communication.
”Loud Silence” is a statue made by the sculptor Guy Timmerman.

Figure 1: Statue ”Loud Silence”

9

3.3 History

Televic was founded in Belgium, Roeselare by Mr Van Hulle in the year 1946. Initially,
Televic started out manufacturing radio receivers. The giants in consumer electronics,
however, quickly colonized this market and the company decided to focus exclusively on
professional systems.

In 1953 the first nurse call system was introduced, this system called ”T.C.D”
had integrated intercom capabilities. It wasn’t until 1965 till the company moved to
Izegem/Kachtem, which is still the headquarters of Televic.

During the golden sixties Televic started producing high quality audio product like
loudspeakers, mixes and PA systems for use on stage. Televic has outgrown Belgium
and were deploying these systems around Europe.

In the 70’s they introduced nurse call systems, which can be compared with technol-
ogy found in contemporary hospitals. The new bed unit made it possible for the patient
to control music programmes and lights from the bedside. In the late seventies Mr. G.
Maes becomes the new CEO/owner of the company.

With the launch of the T.N.C nurse call system, Televic was one of the first manufac-
turers worldwide, to have a processor-based, bus cabled and computer controlled nurse
call system. In cooperation with the university of Leuven, a single-chip microprocessor
was developed, the UNIF-05. this system was very successful during the eighties. The
T.N.C. system is still used in present-day hospitals.

In the late eighties Televic acquires the company Baert P.V.B.A.. This company also
develops, manufactures and markets training systems and language laboratories under
the brand name ARTEC. The product lines from Televic and ARTEC become one.
This is the start of a new range of multimedia learning systems.

During the nineties they deployed a digital controlled conference system in the new
European Parliament, in Brussels. A first introduction of the network-based nurse call
system called ”AXIO”. At the end of the 1st millennium, Mr Lieven Danneels and Mr
Thomas Verstraeten take over Televic from Mr Maes as owners/CEOs.

A new millennium, new opportunities, Televic celebrates its 60th anniversary. Al-
though Televic is already known around the globe, it wasn’t until 2007 that they build
manufacturing plants outside of Europe. In 2007 they opened a manufacturing plant in
Bulgaria and in 2010 a plant is opened in china.

Televic has won an award from the Flemish Government for ”most promising Com-
pany” in 2005.

10

4 Architecture

Figure 2: Architecture of project

11

5 RFID

5.1 What?

RFID = Radio-Frequency Identification. RFID is a technology to store and read in-
formation between a RFID reader and a RFID tag. Communication is done by using
radio-frequency waves. At the moment RFID is used for identification and localisation
of objects. Some examples of RFID usage in our daily lives are: Anti-theft detection in
shop (mainly clothing), localisation of packets that are send with a delivery company,
identification of cattle and registration of house pets. In our project we will use it for
identification of objects.

5.1.1 Advantages

In the future it is possible if not certain that the RFID technology will make the bar
code obsolete. RFID tags can be scanned from a further distance than bar codes. No
visual contact is required to scan these tags. With bar codes, it is only possible to scan
on code at a time. With a strong enough reader and the right software, multiple RFID
tags can be read at a time.

5.1.2 Disadvantages

Since RFID uses radio-waves, they can be easily disrupted using energy at the right
frequency. When the signal of multiple readers overlap, this could cause reader collision.
The tag isn’t able to respond to simultaneous queries. When multiple tags are present in
a small area, RFID tag collision may occur. At the moment it is cheaper to print a bar
code, than to make one RFID tag, although through mass production and innovations,
it becomes cheaper to make. The biggest disadvantage may be privacy issues. In the
future it may be possible that humans are implanted with a RFID chip, which could
replace the need of a passport. Since RFID readers are cheap and available everyone
could scan youre identity, without you even knowing.

5.2 How?

The system has 3 important parts:

• an antenna

• a RFID tag

• a transceiver

In most cases the transceiver and the antenna are implemented into one device, which
is called the reader. The antenna will send out radio-frequency signals in a relative short
range. The purpose of this signal is:

• Providing communications between the reader and the RFID tag

• Providing energy to the RFID tag

When a RFID tag passes through a signal that comes from the reader, it detects the
activation signal. This signal will power up the RFID chip, and the tag will transmits
its information. This information will be picked up by the scanning antenna. with the
right software we can retrieve the id of the tag.

12

5.3 RFID tags

There are two types of RFID tags. You have active tags and passive tags.
The active tags have their own power source, the extra power will provide more func-
tionality. The amount of features reflects the cost, which make active tags much more
expensive.
In our case we use passive tags, these tags don’t have batteries. These tags are very
easy to produce and are very cheap. The frequency that is used for communication is
13.56 MHz. Note that due to the usage of radio frequencies, these tags do not function
when they are used within close range of metal or liquids.
There different sorts of passive tags on the market. The most famous tags are MIFARE,
these tags are made by NXP semiconductors. Their are many different configurations
of the these tags: MIFARE classic, MIFARE ultralight, MIFARE plus,... The tags from
TouchaTag are MIFARE ultralight. These low-cost ICs employ the same protocol as
MIFARE Classic, but without the security part and slightly different commands. They
only have 512 bytes of memory. These chips are so inexpensive, they are often used for
disposable tickets for events.

5.4 RFID reader

There are a variety of readers on the market. There are 2 major types of reader on the
market:

• Embedded readers, mainly used in mobile phones.

• Separate readers, which in most times can be connected with USB/Ethernet.

For the embedded reader the most used MCU3 for NFC4 are produced by ARYGON
technologies. There are multiple configurations of their MCUs, but only a few have been
tested with the library we use for programming.
For separate readers, the ACR122 are the most used readers, these readers are produced
by ACS. These reader also come in different products, with the main difference being
alterations in the design.The TouchaTag reader that we use is a ACR122U102. All
these readers are using a PN532 NFC controller chip and a ST7 microcontroller unit.
All ACR122 reader are compatible with the Libnfc library, this enables us to use different
readers, with the same driver to be used in our program, without the need to adjust the
code.

5.5 Alternate RFID reader

Because we are using a RFID reader which is connected using USB, the distantce be-
tween PC and RFID reader is limited to 5 meters. Therefore we can only implement
the RFID technology if we provide a PC, close to the television.
A solution to this problem could be a RFID reader with Ethernet connection. Because
of the time limit and the cost of these devices, we haven’t tried this solution. This
reader would not be compatible with the code we have written, so we would needed to
invest even more time in developing the software. If in future development this imple-
mentation would be required, the WEB08S RFID reader could be used. this was the
cheapest RFID reader with Ethernet connection available on the market. This reader
acts as a HTTP client and can be programmed using PHP.

3MCU = Micro Controller unit
4NFC = Near field communication

13

Another option would be to use USB over Ethernet. There are different network-
attached USB hubs available on the market, which enables us to connect USB devices, in
our case the RFID reader on this hub. This hub would then communicate with a server
using Ethernet. This solution would be a great solution, as this solution would work
with our software. There is a main disadvantage however, as these USB to Ethernet
hubs are very expensive. A 2 port model, costs 220 euros.

5.6 PN532

This is an integrated transmission module for contactless communication at 13.56 MHz,
including micro-controller functionality. These are used for different kinds of passive
contactless communication. This PN532 chip supports all MIFARE product, which
include the Ultralight MIFARE tags that are used by TouchaTag. To make information
exchange to the host systems, several interfaces are implemented:

• SPI

• IC

• Serial UART

The PN532 embeds a low dropout voltage regulator allowing the device to be connected
directly to a battery as well as a medium power switch to supply and control the power
of the companion secure chip. This chip is implemented inside the TouchaTag reader.

14

6 Programming RFID

6.1 Choices,Choices...

If we want to use our RFID reader, we will need some software that will communicate
with the reader through the USB interface. We had different option we could choose
from:

• 6.1.1 TouchaTag Service

This service is given if you buy a TouchaTag reader. We quickly abandoned this
path, because the service required a constant internet connection and required the
use of their database. Programming could be done by using the TouchaTag API.

• 6.1.2 WinScard.dll

This is the SmartCard API from windows. Due to lack of proper documentation,
we only tried it out, but without any decent success.

• 6.1.3 Java SmartCardIO API

API to communicate with SmartCard while programming in JAVA. This API was
well documented and we succeeded in making a program that could read a tag,
we also stopped walking this path, because we are not really familiar with Java
programming.

• 6.1.4 Libnfc

C/C++ API that allows communication to most NFC devices on the market.
Including the TouchaTag reader. This API is being used by a lot op people, so
documentation was really good. An advantage of this API is that the source code
is written in C/C++. This enabled us to make a fast transition to C++.Net and
finally C#. We chosen this path for programming the RFID communication.

6.2 Libnfc

Libnfc is a free library that can be used to communicate between the RFID reader and
the application running on the computer. Libnfc can be build on all major OSs and is
compatible with most of the NFC devices currently on the market. The most developers
use Linux, this reflects that the library is better supported for Linux than windows.The
library supports modulation for MIFARE, FeliCa, NFCIP and ISO14443 tags. This
library is written in C/C++.

15

7 Code RFID

7.1 C/C++ - Libnfc

Before we show the Application code from C#, we will explain the most important parts
of the C/C++ code. In the C/C++ code we make use of the Libnfc library, this code
will take care of the communication between the application and the USB device. This
is code is the foundation of our tagreader application, and no changes should be made
in this code.

7.1.1 Setup

Before we can start programming we need to add the Libnfc library to our project.
When we compiled the source code from Libnfc, we generated several files. We need
to add the folder ”nfc” to our project. it is necessary to include the ”nfc.h” file, which
contains the prototype of the functions we will use.

7.1.2 Reading tags

With this code we are are searching for tags. This code is run continually on a separate
thread. If a tag has been found, we read the the tag id and convert it to a hex format
which has 7 pairs of 4bit hex value. This is the format that can be read on the TouchaTag
tags. example: ”048BB8F9232580”.

i f (n f c i n i t i a t o r s e l e c t t a g (pnd , (n f c modu la t i on t) 0 , nu l lp t r ,0 ,& n t i)) //
Search f o r tag

{
s t r c s = gcnew St r ing (””) ;
for (int i =0; i < 7 ; i++) // make s t r i n g o f hex value
{

dum[i] = new char [3] ;
s p r i n t f (dum[i] , ”%02X” , n t i . na i . abtUid [i]) ;
s t r c s += gcnew St r ing (dum[i]) ;
delete dum[i] ;

}

We want to be able to read multiple tags at the same time. each time a tag is read, we
check if the current tag exist inside or tag list. If it doesn’t exist, we add the new tag
to the list.
After a certain time ± 200ms we will send an event with the list of the current tags. if
no tags are detected, no events are sent.

7.1.3 Counting tags

We want to know if we added or subtracted tags on the reader. Therefore we need
to count the amount of tags on the reader. We also count the tags from the previous
counting. The difference between the previous tags and the current tags will determine
if tags are added or removed.

for (int i = 0 ; i < 10 ; i ++) // run through l i s t o f tags
{

i f (tags [i] != ””)
{

cntTags++; // new tag detec ted
}
i f (prevtags [i] != ””)
{

16

cntPrevTags++; // o ld tag detec ted
}
d i f f = cntTags − cntPrevTags ;

}

7.1.4 Sending event

Now we need to determine if it is required to send an event. We only need to send an
event if the previous tags are different to the current tags. If they are the same, nothing
has happened and no event must be send. If there is a change, we will send an event
with the list of the tags that are on the reader. If the difference is a positive number
then we have added a tag to the reader. If the difference is negative, then a tag has been
removed. In our C# application we subscribe to these events and run the appropriate
code according to the the information that the event has offered us.

for (int i = 0 ; i< 10 ; i++)
{

i f (tags [i] != prevtags [i]) // Check i f p rev ious tags are cur rent tags
{

i f (d i f f >= 1)
{

Raise (tags) ; // Tag added
}
else i f (d i f f <= −1)
{

Lower (tags) ; // Tag removed
}
d i f f = 0 ; // r e s e t d i f f e r e n c e counter

}
}

After sending the events, we will store the current tags inside the previous tags. The
current tag list is being cleared so it can be used for new readings. This C/C++ code
is being added to our C# application by using a dll.

7.2 C#

7.2.1 setup

Before we can start to make our C# application, we need to add the CLRTaTReader
dll. This enables us to use the code we have written in C/C++ in our C# application.

7.2.2 Setting up the reader

In the code below we make a new tagreader, which is called TouchaTag. We immediately
subscribe to the 2 events, the first event will be triggered if a tag is being placed on the
reader, while the other event will detect tag removal. We also check if a Tagreader is
connected. When a tagreader is not connected to a computer, a messagebox will notify
the user.

private void SetupReader ()
{

touchatag = new tagReader () ; // make new tagReader : touchatag
int i = touchatag . checkConnection () ;
touchatag . OnRaiseEvent += new

RaiseEventHandler (touchatag OnRaiseEvent) ; // s ub s c r i b e to
r a i s e event = tag i s p laced on reader

17

touchatag . OnLowerEvent += new
LowerEventHandler (touchatag OnLowerEvent) ; // su b s c r i b e to
lower event = tag i s removed from reader

i f (i == 0)
{

MessageBox . Show(”Tag reader not connected ”) ;
}

}

7.2.3 Setting up the ConnectX client

Here we try to make a new ConnectXClient. The constructor of the object requires 3
parameters: name of the connection, classification of the connection and the Ip-address
of the connectXServer. If we make a successful connection, the user will be notified
of the success. If the server can’t be found, no connection will be made, and the
information read from the tags can’t be send to the ConnectXServer. We will try and
make connection with the ConnectX server each time a tag of a different user is detected.
This is necessary because this enables us to show different data on the screen according
to the person that is currently using the application.

private void SetupConnectX (string id)
{

try
{

c l i entTv1 = new ConnectXClient (id , ”Tv” , ” 1 0 . 0 . 7 0 . 3 4 ”) ;
networkOnline = true ; // network connect ion i s o n l i n e

}
catch
{

networkOnline = fa l se ; // network connect ion i s o f f l i n e
}

}

7.2.4 Tag added event

If we want to add certain events to a tag, we need to store the information of the tags
on a database. The data for each tag is stored in the Televic signage database. When a
tag is detected, we check if the tag is stored in a local buffer. This buffer contains a list
of all tagid’s, linked to the user id and action. The buffer is filled each time a new tag
is detected. If the tag exists inside the buffer, we retrieve the data from the buffer and
send it to the connectX server. If the tag is not stored in the buffer, we will retrieve the
data from the televic signage database instead. This new tag will then be stored in the
buffer.
With the help of this buffer, we do not need to retrieve every tag from the database.
This will improve speed of the system and will limit the data that is send over the
network.
Before we can read or store information on the database, we need to connect and login
to the Televic signage, with the login and password name of the company we want to
login to. If connection is successful we should get a valid session. Hereafter we will get
the information of the tag which is placed on the reader. We parse the data we have
gotten from the Televic signage database and we determine the id of the person, which
we call ”id” and the id of the tag which is stored in index 1 of the tagId array. If the id
of the person is different to the id of the the person of the previous tag, we will make

18

a new connection to the connectX server. When the id is the same, we will send the
name of the event to the server.

private void TagAdded(string [] va l) // Code i s run when tag i s added
to reader

{
tagId = va l [0] ; // the s e l e c t e d tag i s the f i r s t tag on the

reader ;

i f (Buf f e r . ContainsKey (tagId))
{

string id = Buf f e r [tagId] . User ;
i f (id != prevId | | c l i entTv1 . Connected == fa l se)
{

SetupConnectX (id) ;
prevId = id ;

}
else
{

c l i entTv1 . SendStr ing (Buf f e r [tagId] . Action) ;
}

}
else
{

t imer1 . Enabled = fa l se ;
t imer1 . Enabled = true ;

/∗ GET ACCES TO TELEVIC SIGNAGE ∗/
string s e r v e r = ” 1 9 2 . 1 6 8 . 0 . 1 ” ; // ip adres o f s i gnage
string s e s s i o n c o o k i e ;
WebClient WC = new WebClient () ;
WC. DownloadString (” http :// ” + s e r v e r +

”/branch/manager/ l o g i n . php”) ;
s e s s i o n c o o k i e = WC. ResponseHeaders [”Set−Cookie ”] ;

WC = new WebClient () ;

System . C o l l e c t i o n s . S p e c i a l i z e d . NameValueCollection PostData = new
System . C o l l e c t i o n s . S p e c i a l i z e d . NameValueCollection () ;

PostData . Add(”username” , ”Admin”) ;
PostData . Add(”password” , ”password”) ;
PostData . Add(”company name” , ” f i r e f l y ”) ;
PostData . Add(”company password” , ” mini ”) ;
PostData . Add(”remember” , ””) ;
PostData . Add(” submit” , ””) ;

WC. Headers . Add(” Cookie ” , s e s s i o n c o o k i e) ;
WC. UploadValues (” http :// ” + s e r v e r + ”/branch/manager/ l o g i n . php” ,

”POST” , PostData) ;

s e s s i o n c o o k i e = WC. ResponseHeaders [”Set−Cookie ”] ;

/∗∗∗ GET STUFF ∗∗∗/
WC = new WebClient () ;

WC. Headers . Add(” Cookie ” , s e s s i o n c o o k i e) ;
string data = WC. DownloadString (” http :// ” + s e r v e r +

”/branch/manager/ tags . php? tag=” + tagId) ;
i f (data . Contains (” , ”))
{

19

string cut = data . Substr ing (data . IndexOf (” [”) ,
data . IndexOf (”] ”) + 1) ;

cut = cut . Replace (”\”” , ””) ;
cut = cut . Replace (”] ” , ””) ;
cut = cut . Replace (” [” , ””) ;

string [] event = cut . S p l i t (new char [] { ’ , ’ }) ;
string id = event [3] ;
i f (id != prevId | | c l i entTv1 . Connected == fa l se)
{

SetupConnectX (id) ;
prevId = id ;

}
else
{

c l i entTv1 . SendStr ing (event [1]) ;
}

Buf f e r . Add(tagId , new Tag () { Action = event [1] , User = id }) ;
}

}
}

Note that the information will not always be send to the connectX server when a tag
is added. When a user is adding a cube to a person, the PHP code will not return
any information from the database, but will instead insert the detected tagId into the
database. The tagId, the current event and the id of the person will be added into the
database. When a tag has been read that isn’t detected in the database, nothing will
happen.

7.3 Sleep mode

When a user is not using the TV application for a period of time, this user will be
logged off. The user will be informed when the system is in ”sleep-mode” and needs
identification. This can be done by placing an object, with an RFID tag of course on
the reader, the id of the person will be read and the system will be initialized with the
settings for this persons. We have created this ”sleep mode” by running a thread with
a timer. When this timer has counted to the selected value, the connectX client will
disconnect from the ConnectX server, and the Tv application will go in sleep mode. We
also reset the id of the person, then we are sure that the next tag on the reader will
make a new connection to the connectX server. Note that the Tagreader application
never stops reading, this will keep running, else it would be impossible to detect a tag.

private void t imer1 Tick (ob j e c t sender , EventArgs e)
{

t imer1 . Enabled = fa l se ;

c l i entTv1 . Disconnect () ;
prevId = ”” ;

}

20

8 Visualization

8.1 Introduction

Today we can choose between two technologies i.e. dlna and Philips’ JointSpace. The
latter one is a very young, but groundbreaking technology for just rendering stuff on a
screen, whilst dlna reads the data from a serving host and then renders stuff on screen
through it’s software. In the next chapter will look at the differences.

8.2 Different Approaches

8.2.1 dlna or not dlna that is the question

dlna5, a widely adopted standard created by Sony. It provides a way for consumer
products to communicate with each other and so creating a big media LAN. Say for
example you have pictures and movies on a dlna certified NAS6. With a dlna certified
television you can find that NAS, browse it and view its content on the television. dlna
is a fast-expanding standard, and many company’s create such devices. There’s also a
way to implement this on other non-dlna devices through software, so expect to see more
of these devices in the future! No this is indeed a very powerful, interesting technology,
but is it usefull for other things, like say creating an application? Well actually no.
First of all we couldn’t find much information about implementing dlna in your home-
brew application, second of all nowhere is stated that you can actually read command’s
from a remote, our the other way around, send command’s to the device, other than
querying for media. So that’s where we stopped the research on dlna and continued
with JointSpace.

8.2.2 JointSpace

JointSpace is being developed by a very small group of engineers at the Philips company
at Brugge (Belgium). It it build upon SPACE7. SPACE really splits the different parts
of TV-software development. Where in the past engineers used to write everything
themselves, they now offer a change to 3rd parties to create software for their televisions,
which is actually a good thing! So they created JointSpace which is regular SPACE
combined with DirectFB, a lightweight rendering API, which already had support for
remote rendering through ethernet! In one of their earliest attempts to make JointSpace
viable, they allowed to store a program (compiled with their compiler of course) on a
USB stick. This program would auto-boot, but the user had no control over what it
would do, so technically you could create a virus or other annoying program that would
interfere with the normal behavior the end-user expects. So they locked that idea away,
and a short time later they had another, better idea. Since almost all their televisions
have an ethernet port, they could access the television through a network. They expose
only limited resources to the television, so you can’t just do whatever you want with it,
so that partly increases security.

So they made it possible for us to create an application remotely, and we can control
it with our television’s remote control. This is a whole different approach from the one
dlna has. Here the television can’t really buffer, because it doesn’t know what will come

5Digital Living Network Alliance
6Network Attached Storage
7Split Architecture

21

next, it’s not a video stream or some sort, just plain old bitmaps that we send to the
screen.

The big advantage of this system is that you can show whatever you want, because
the television doesn’t render anything! The big disadvantage is that you can show what-
ever you want, because the television doesn’t render anything! Say there’s a building
filled with JointSpace enabled televisions, they’re all activated, and they’re all on the
same network, well through JointSpace you can scan the network, and send a shutdown
command to all the televisions! This is not what one would want to happen, so this
is something that hopefully will change in the future. Like we said before, we have to
render the images and then push it to the screen. This can seriously hog a network.
Right now they use RLE8, a way to compress raw bitmap data on the fly. Personally
I think they used this technique for proof of concept because it’s easy to implement
and it gives us an idea of what it does. They told us that in the near future they will
use a far better compression technique, however this could drastically increase the CPU
usage, while decrease network hogging. However it’s still the best system for us. It
changes our way of thinking where we used to need a computer next to each television
to do these kind of things, now you technically need only one computer to serve multiple
televisions. The main difference between dlna and JointSpace is that dlna pulls the data
from a remote system, while JointSpace remotely pushed data to the screen.

8.3 Alternatives

Next to JointSpace we were also looking at alternatives, because you can’t just force
people to buy Philips TV’s because of JointSpace. The alternative is the most hybrid
way known to man, just attach a computer to the television. OK this might look
easy, because we all know how to do this, however, we don’t have the cool extras like
JointSpace has, like overlays, shutting down the television or just return to the last
visible TV-channel. One could omit this, by installing a decoder in the computer, and
let the visual data from the TV-channel pass through while we draw a rectangle on top
of it, with our application in it.

8Run-time Length Encoding

22

9 Implementation

9.1 Introduction

So we made two choices, JointSpace and the alternative way. We focused on JointSpace,
since the alternative would be much easier to implement. In JointSpace, there is one
important fact: it has limited graphical resources. Yes you can store an image on the
television, and yes you can move that image around quit fluently. But it has only four
megabytes of memory to store stuff in, and this just doesn’t cut it. Certainly because
we want to use high(er) resolution images. When the memory is full, the television
just closes your application and that’s it. So we had to figure out a way that we could
show high resolution images, while preventing the television from closing our applica-
tion. The second problem occurred while we were creating some test-applications. The
test-applications on the JointSpace website can be compiled with the use of cygwin (a
cross-compiler to compile Linux programs for windows), these programs work perfectly,
and show the capabilities of JointSpace. However, these binaries don’t play well with
windows, and since cross-platform programming is not our field of expertise and the
fact that there was a win32 port, we didn’t continue with cygwin. The main problem
with the win32 port is that a lot of the functionality of the full API isn’t there. We
can’t print text on the television screen, we can’t shutdown the connection and we can’t
enumerate the televisions in a network. These are only a few of the limitations we found
rather annoying.

9.2 Basics

So we made our conclusion, do it yourself, or don’t do anything at all. So we started
creating a graphics library that would omit these problems. The main idea was to
create a list of sprites, do stuff with them, render them to a bitmap, and send the
bitmap to the screen. The first tests we did with this approach were as perfect as it
was simple. However there was still the problem of the enumeration of the televisions.
When I looked at the source code I could figure out the data-gram that was being send
for the broadcast, and on what port it was being send. However when I broadcast this
message, no one responded. So there was something wrong, the perfect solution to this
problem was...capturing the broadcast packet with WireShark, from a program that
was compiled with cygwin. We copied its data into a string and we send this over the
network, and surprise surprise it did work!

OK, we solved the tiny network issue. But there is something fishy about the drawing
functions don’t you think? Exactly! Why render the whole image (1024x786x16 bits),
and send the whole image to a television connected to a limited network, with limited
resources? That’s bit-suicide! Yes we known, the first-optimization we did was this, we
kept a list with all the sprites, and then checked for the ones that were changed. If none
changed, nothing needed to be drawn, and nothing had to be send to the television.
If one or more sprites changed, that one would be redrawn, and all the other sprites
intersecting with that particular sprite. Only that part of the buffer-bitmap would be
redrawn, send over the network and redrawn on screen. A very huge resource saver.
We implemented a simple form of dirty rectangles. It isn’t a full implementation of
dirty rectangles, because in a full implementation we would actually define the dirty
rectangle, instead we redraw the whole image, even if only one pixel would have been
changed.

23

9.2.1 A first glance at VisualX

At the time we didn’t know where our approach would lead us, and what complications
there were to come. VisualX is the name we gave to our drawing API. It contains the
actual rendering to a (television)screen. But we gave it a lot more functionality. We
found it to be rather hard to build an actual application with just a basic graphical-
engine. It’s like writing a game from the start: you’d have to do everything yourself.
That gives you a lot of power, but it takes too long too actually get a working, bug-less
system. We wrote a window-manager on top of VisualX. This window manager takes
care of all the windows inside an application, which one should be drawn, which one
should be visible, active and so on. The window-control is the part of the screen on
which you can begin to draw controls. We’ve also made a few controls ourselves. These
controls have been tested under every possible circumstance, ensuring that everything
does what it should do. The currently available controls are: a button, a rectangle/an
image, a container, a container-page, a window, a browser, a timer and a slide-show
control. With these controls we can build almost every possible application. These
controls are all derived from an abstract control class. Here we find all the properties
and function that are the same for every control.

24

10 VisualX

Figure 3: VisualX Logo

10.1 XApplication

The XApplication class is our main class to which different windows will be hooked.
Here we maintain the connection with our render-device (screen or television). Here
is where we define the position and size of the screen to be drawn on television, for a
normal screen it’s defaulted to full-screen.

XApplication XA = new XApplication (this . Handle) ;
//We pass the handle to the cur rent program , s t a t i n g
// that the render ing w i l l be done on the program ’ s s u r f a c e

XA. ConnectToTV(”xxx . xxx . xxx . xxx”) ;
//The ip−address o f the t e l e v i s i o n

10.2 XWindow

An XWindow is a window like the ones you know from your favorite OS9. The XWin-
dow class already has a default control, the XRectangle control. This rectangle is the
background of our window and can be user defined through a bitmap or a color. This
class should be directly added to an application. A window is like a drawing board,
this is the place where all the actual drawing will be happening. You can hide it, or
show it. A window is never actually destroyed, except when explicitly asked. By default
every XWindow (and all other controls for that matter) has the ability to be animated.
The animation of a window is ’zooming’ where the user-defined background zooms in
(showing) or out (hiding). The length (or quality) of the animation is a simple variable.
This variable just states how many steps there are to be taken between the previous
state and the new state. Animations weren’t just added to give the application a nicer
touch, they’re a extra feedback for the end-user, so he knows what’s going on (or that
is the big idea behind our animations).

I’d like to add here that only visible and activated windows can be used for interac-
tion. You can’t just go and work on another window, with the previous window still on
top. This ensures that no multitasking can be done, which is a big difference to what
we are used of. However the goal was not to develop a multitasking environment.

XWindow Window0 = new XWindow(new Rectangle (0 ,0 , 1024 , 768) , ”Window0” ,
Color . LightGray) ;

// Creat ing an ob j e c t Window0 , with a s i z e and
// pos i t i on , and a background c o l o r

9Operating System

25

XA. AddWindow(Window0) ;
// Adding the window to the system
// NOTE: t h i s must be done d i r e c t l y a f t e r c r e a t i n g
// the ob j e c t . Otherwise your program might crash
// due to a r c h i t e c t u r a l des ign

10.3 XRectangle

Next we have the XRectangle. This is a hybrid rectangle since it can be used both for
showing an image, but also just for viewing an image somewhere on the screen. The
default animation is a fading zoom. This is one of the simplest controls we’ve created,
but it renders to be a useful one.

Image Cube = Image . FromFile (’ cube . png ’) ;

for (int r = 0 ; r < 4 ; r++) // Create 4 squares
{

XRectangle tmp =
new XRectangle (new Rectangle ((r%2)∗100 , (r /2) ∗100 , 100 , 100) ,

” Rectangle ”+r , Cube) ;
tmp . AnimationLength = 10 ; // A 10 frames animation durat ion
tmp . AnimationDelay = 5∗ r ; // Wait f o r a mult i tude o f 5 frames be f o r e

a c t u a l l y animation
Window0 . AddControl (tmp) ; //Adding the ac tua l r e c t a n g l e

}

10.4 XTextBox

This class has the ability to show a text, with a user-defined font, on screen. We’ve added
the ability to show a border around a text, this greatly improves readability, especially
when there’s a complex background with a lot of transitions. When you change the
text, it simply cross-fades from the previous text to the new text.

XTextBox Text0 =
new XTextBox(new Rectangle (100 , 100 , 400 , 60) , ”Text0” , ”Welkom” , new

Font (”Tw Cen MT” , 25 .0 f , FontStyle . Regular)) ;

Text0 . BorderColor = Color . Black ;
Text0 . F i l lBrush = new Sol idBrush (Color . White) ;
Text0 . BorderWidth = 3 ;

Window0 . AddControl (Text0) ;

10.5 XBrowser

The browser-control was added upon request from Televic to be able to show digital-
signage content on a screen. But also for browsing the internet. We’ve had two imple-
mentations of the browser, one using Internet Explorer’s renderer and one using google’s
Chrome.

26

10.5.1 Internet Explorer

Figure 4: Internet Explorer logo

We started of using the well known ren-
derer used in internet explorer. This was
the easiest one to use and get results from.
Since we’re working with the .NET frame-
work, we have an internet-explorer control
at our disposal. Normally one would place
this control on a windows form, and thus
use the browser.

However we can’t directly do this, be-
cause we do all the drawing ourselves.
Therefore we had to create the control
in the background, in the constructor of
our XBrowser. This was an easy task,
however we still didn’t have an image
of what was rendered. Luckily for us,
there’s a function DrawToBitmap() which
returns...a bitmap of the control’s state.
This did exactly what it should do. But
there was a counter-side. It was horribly
slow, and even if nothing changed...the drawing would still happen. So it was a successful
proof of concept. But there was light at the end of the tunnel! Indeed DrawToBitmap
is slow, it uses GDI+, which is a hardware independent way of drawing, more about
this in the chapter GDI+. Therefore we tried the GDI way of doing things. There’s an
function called BitBlt which allowed us to pass the handle from one device context to
another device context. We’ve made a little test program which had a browser and a
picturebox. In the browser we’d watch a youtube-movie, while in the picturebox we’d
view the render. We put them side-by-side just to see any differences in speed or delay.
The speed difference was enormous! Not only did we have no delays, the processor-usage
was ultra-low, spiking somewhere at 5%. But our eyes were deceived. Everything did
go that well, but that had a very good explanation. The only thing we really did was,
copying the visible part of the browser to an image, however when there’s no browser
visible (and this is still what we want), no image will be shown. And that was the end
of internet explorer’s path. We had to start looking for alternatives.

10.5.2 Google Chrome

Figure 5: Chrome Logo

Since nearly all the major browsers use
Webkit, we had to see what could be done
with this piece of toy. Webkit was devel-
oped by Apple, to be used in their browser
Safari. Webkit is build upon KHtml, a
KDE HTML layout engine. In June 2005
whole Webkit became open-source. This
was a very good thing because a huge
community could improve the speed and
rendering capabilities of the engine. We-
bkit was the first one to pass the Acid3
test where no other engine could even get
close to this result. It didn’t take long

27

before other companies embedded Webkit
in their software. Chrome is a famous
browser that uses Webkit for its render-
ing. At first we couldn’t find much infor-
mation of Webkit and how to embed it.
Since we had a deadline, things needed to go fast, and that’s when a very interesting
API came by: Berkelium Sharp.

Berkelium Sharp is build upon Berkelium, which is a wrapper around Chromium,
which is the actual render-engine for Chrome, which is build upon Webkit. So we have
two major keywords here that define our choice: Webkit and .NET. Berkelium was
originally used for usage in 3D games. Again we couldn’t find much info about the API,
but it rather self-explanatory, the author also wrote a webbrowser with it using simple
windows forms and using XNA10, a faming library from Microsoft (more about this topic
in the chapter XNA). It proves to be very speedy, whilst not using a lot of resources.
When we look at our task-manager we see that another programs starts up with our
program: berkelium.exe, I figured that this is where the actual rendering happens, and
that the underlying system still uses a BitBlt to do the copying, however that’s not
something I know for a fact, but it seems plausible.

XBrowser Browser0 = new XBrowser(new Rectangle (50 , 50 , 640 , 480) /∗ the
l o c a t i o n and s i z e o f our browser ∗/ , new S i z e (640 , 480) /∗The s i z e o f
the browser−render ∗/ , ”Browser0” , ” http ://www. t e l e v i c . com/” /∗The
Url ∗/) ;

Window0 . AddControl (Browser0) ;

10.6 XButton

Even though we have a program already with some interaction, we can’t do very much.
Therefore we have created a button. This button (like any other button), can be selected
(which is the same as hovering a button with a mouse), can be clicked and has an action
attached. By default one could add a NormalState image, and when a user selects the
button, a white, translucent border will appear around the button. When you click on
a button, the button will briefly switch from selected to normal, and then back again
to selected. There’s a Clicked-event attached, which can be freely programmed.

void i n i tButton ()
{

XButton Button0 = new XButton(Rectangle (800 , 600 , 100 , 100) ,
”Button0”) ; // Object c r e a t i o n

Button0 . NormalState = Image . FromFile (’ button . png ’) ;
Button0 . BorderWidth = 3 ;
Button0 . BorderColor = Color . FromArgb (128 , Color . White) ;

Button0 . Tag = ” http ://www. goog l e . be/” ; //An user−de f ined ob j e c t can
be attached to the button

Button0 . Cl i cked += new XEventHandler (Button Cl icked) ; // Subsc r ib ing
the event

Window0 . AddControl (Button0) ; // Adding i t to the window
}

void ReturnToRSSFeed Clicked (XControl sender , RemoteKey e)

10XNA’s Not Acronymed (this is not a joke)

28

{
Browser0 . NavigateTo = sender . Tag ;

}

10.7 XSlideShow

The slide-show control was created because of the demand to browse and show pictures
on screen. By default the slide-show can be controlled with the left-arrow and right-
arrow buttons on a keyboard, a remote control or of course our cube. You can form a
list of pictures from a local repository or from pictures spread over the internet. There’s
no default animation, you choose which transition mode you want to use e.g. zoom,
fading zoom, blocked (pixelated), cube-like and many more. For a long time this was
our final control. Sooner than later however we had an urge to create photo-albums and
other easy browsing capabilities, which we could do by using buttons... but this would
be a lot of work, if not a lot of thinking how this could be done without a lot of bugging.
And that’s where our super-control saw daylight.

XSLideShow ImageViewer = new XSLideShow (new Rectangle (100 , 100 , 640 ,
480) , ” Sl ideshow ” , XSLideShowMode . OpacityZoomMaskRandomize) ;

ImageViewer . Mask = (Bitmap)Bitmap . FromFile (”Mask . png”) ;
//Load a mask , the alpha−channel i s used as a mask

List<string> images = new List<string >() ;

images . Add(” Test0 . jpg ”) ;
images . Add(” Test1 . jpg ”) ;
images . Add(” Test2 . jpg ”) ;

ImageViewer . LoadPictureL i s t (images , fa l se) ;
// Add images in the p i c t u r e l i s t , s t a t i n g that
// the p i c t u r e s are l o c a l (due to parameter 2
// being ’ f a l s e ’

Window0 . AddControl (ImageViewer) ;

10.8 XContainer

The XContainer, our final control. Like we said before, we needed an easy to use library-
control. We really loved the slideshow control so it didn’t take long before we chose to
do things the slideshow way, with the nice transitions and so on. Our first-problem
was a way to create an image from the controls, because only then we could have our
cool transitions (more about this topic in Drawing). In a first implementation you had
to make the XContainerPages (which is a descendant of XWindow) and add them to
the container so they could be viewed. But this proved to be rather limiting, certainly
when we had an infinite number of pages, like when creating an activity calendar, where
every day has a different set of activities. That’s where the concept of virtual pages
was invented. The only thing you have to do is stating how many pages there will be
used (where -1 represents infinite). When we go to another page, an event is fired. We
send a ’page’ parameter, which can be filled in by the program. This greatly limits the
size of the program, the resources used and makes it very easy to understand the code,
the downside is that things can be a little slower. We still kept the old way of adding
pages, but we like to push people to use the virtual pages instead. Another cool thing
is that you can put a container in a container (and so on). Giving the ability to create
a very lightweight, yet powerful GUI. However it is not advised to nest more than one

29

level of containers. This would make it rather hard for a user to quickly jump out of a
container onto it’s parent and so on, back to the parenting window.

void In i tConta ine r ()
{

XContainer XCPContainer =
new XContainer (new Rectangle (175 , 150 , 700 , 500) , ” Container1 ” ,

XSLideShowMode . CubeMaskRandomize , fa l se /∗ I s v e r t i c a l ? ∗/ , 3 /∗
Virtua lPages ? ∗/) ;

XCPContainer . VirtualPageRequested += new
LoadVirtua lDelegate (XCPContainer VirtualPageRequested) ;

Window . AddControl (XCPContainer) ;
}

void XCPContainer VirtualPageRequested (XContainer sender , r e f
XContainerPage page , int CurrentPage , int TotalPages)

{
XContainerPage XCP = page ;

XTextBox Text0 =
new XTextBox(new Rectangle (100 , 100 , 400 , 60) , ”Text0” , ”Page ” +

CurrentPage . ToString () , new Font (”Tw Cen MT” , 25 .0 f ,
FontStyle . Regular)) ;

Text0 . BorderColor = Color . Black ;
Text0 . F i l lBrush = new Sol idBrush (Color . White) ;
Text0 . BorderWidth = 3 ;

Window0 . AddControl (Text0) ;
}

30

11 ConnectX

Figure 6: VisualX Logo

ConnectX is our API name for a collection of functions that allows us to connect to the
outside world. This API makes it possible to use digital signage inside our program,
like browsing pictures, viewing RSS feeds or viewing the daily activities. These classes
also enable us to be used in a multi-client environment. In our program we’ll use all of
these functions to prove the stability.

11.1 ConnectXServer

This class is the base class in a multi-client environment. The server is a simple socket
server. The sockets are used as blocking sockets, since these are the easiest to program.
Blocking sockets are sockets that halt the thread they run in until a response has been
received. The Accept function for instance, keeps on waiting until a client connects to
it. This proves to be rather useful because it doesn’t use processor-time while waiting,
non-blocking sockets however continue to run, and a delay should be programmed. But
we want to use every bit of processor time available for useful things, not just waiting.
Bound to port 1234 by default. In this implementation we don’t use SSL11 or another
form of security. Only a plain-text password that needs to match. But since it’s plain
text, one could easily captate this with a package sniffer. This shouldn’t be to big of
a problem in a real-life situation where everything is done inside a LAN12. From the
second you connect to the internet, a real form of security should be used, but due to our
time-constraint we didn’t implement this. When a user connects to the server, an event
is fired, allowing to do things on the server side, for instance starting our JointSpace-
program. In the background we add this client in our server as a ConnectXEndPoint.
The ConnectXEndPoint creates a separate thread per class. This thread checks if the
client is still active and if the client has send data. When the client suddenly disconnects,
the client will be removed from the system, freeing up resources. When data has been
received an event is fired, with a ConnectXEndPoint as parameter, this parameter can
directly be used to send a response. Doing so gives us a parallel server-system. This
has as advantage that a crashing client doesn’t crash the whole program, and a bonus
is that it has much faster response times. As disadvantage we can say it’s a little bit
more complex to program, and it uses a bit more resources.

void I n i t S e r v e r ()
{

ConnectXServer . Port = 8888 ; // Set the port , the d e f a u l t i s 1234
ConnectXServer . Sec r e t = ” Sec r e t ” ; // Set the s e c r e t , both c l i e n t s need

the have the same s e c r e t

11Secure Socket Layer
12Local Area Network

31

Server = new ConnectXServer () ; // Star t the s e r v e r

Server . ClientAdded += new ClientStateChanged (Server Cl ientAdded) ;
Server . DataReceived += new ClientSendData (Server DataRece ived) ;
Server . ClientRemoved += new ClientStateChanged (Server ClientRemoved) ;

}

void Server Cl ientAdded (ConnectXEndPoint cxep)
{

MessageBox . Show(cxep .Name + ” has connected ! ”) ;
}

void Server ClientRemoved (ConnectXEndPoint cxep)
{

MessageBox . Show(cxep .Name + ” has d i s connected ! ”) ;
}

void Server DataRece ived (ConnectXEndPoint sender , string data)
{

MessageBox . Show(”Data r e c e i v e d : ” + data) ; // Here we ’ l l s e e ”Data
r e c e i v e d : He l lo Server ?”

sender . SendStr ing (” He l lo ”) ;
}

The client is easily implemented with the following code:

void i n i t C l i e n t ()
{

ConnectXClient . Port = 8888 ; //Same as the se rver−port
ConnectXClient . Sec r e t = ” Sec r e t ” ; //Same as the se rver−s e c r e t

ConnectXClient C l i en t = new ConnectXClient (” Eagle ” /∗Name∗/ , ” Birds ”
/∗ C l a s s i f i c a t i o n ∗/ , ”xxx . xxx . xxx . xxx” /∗ Server−IP∗/) ;

C l i en t . DataReceived += new
ReceivedDataFromServer (Cl ient DataRece ived) ;

C l i en t . SendStr ing (” He l lo Server ?”) ; // Send the s t r i n g ” He l lo Server ?”
}

void Cl ient DataRece ived (ConnectXClient sender , string data)
{

MessageBox . Show(” Server re sponse : ” + data) ; // Here we ’ l l s e e ” Server
re sponse : He l lo ”

}

11.2 ConnectXDigitalSignageReader

Televic has its own digital signage system13. It proves to be a rather useful platform
with a lot of extra-features that we can benefit from. We noticed that it’s rather easy
to add your own applets to this system. With this handy little tool we can access
everything from our client-program. We made it possible to read certain news-feeds,
query the pictures for a certain user (and/or the public ones) and as a little extra we
made it possible to let a user subscribe to a certain activity. The user identity is stored
in a public integer called UserID, when we set this to a value not equal to zero, we can
query for personal information about the user.

13More about Digital Signage in the chapter ’Digital Signage’

32

void I n i t D i g i t a l S i g n a g e ()
{

ConnectXDigitalSignageReader D ig i t a l S i g n ag e = new
ConnectXDigitalSignageReader (” s e r v e r ” , ”username” , ”password” ,
” l o c a t i o n ” , ” l o ca t i on−password”) ; // Here we make the nece s sa ry
connect ion to D i g i t a l Signage

}

All of this is done with the following functions:

Feeds

This function retrieves all the feeds that are registered in the system. It simply returns a
list of objects which state what the logo is of the feed, to name of the feed, a description
and the actual url to the feed. This object can than be passed to a ConnectXRSSReader.
This class does the actual reading, and we even built a nice little feature which tells you
what the latest features are (without actual remaking the object).

void XCPContainer VirtualPageRequested (XContainer sender , r e f
XContainerPage page , int CurrentPage , int TotalPages)

{
XContainerPage XCP = page ;
L i s t<ConnectXRSSFeed> Feeds = Dig iS ign . Feeds () ;

for (int i = 0 ; i < Feeds . Count − CurrentPage ∗ 6 && i < 6 ; i++)
{

ConnectXRSSFeed f eed = Feeds [i + CurrentPage ∗ 6] ;
int y = i / 3 ;
int x = i % 3 ;

XButton FeedButton =
new XButton(new Rectangle ((225 ∗ x) , (225 ∗ y) , 200 , 200) ,

”RSSFeed . ” + feed .Name) ;

FeedButton . NormalState = feed . Image ;
FeedButton . BorderWidth = 10 ;
FeedButton . BorderColor = Color . FromArgb (128 , Color . White) ;
FeedButton . AnimationLength = 5 ;
FeedButton . Tag = feed ;

FeedButton . Cl i cked += new XEventHandler (RSSFeed Clicked) ;

XCP. AddControl (FeedButton) ;

XTextBox FeedText =
new XTextBox(new Rectangle ((225 ∗ x) , (200 + 225 ∗ y) , 200 , 31) ,

”RSSFeed . Label ” + feed . Name, f e ed . Name, new Font (”Tw Cen MT” ,
25 .0 f , FontStyle . Regular)) ;

FeedText . BorderColor = Color . Black ;
FeedText . F i l lBrush = new Sol idBrush (Color . White) ;
FeedText . BorderWidth = 1 ;
FeedText . AnimationLength = 5 ;

XCP. AddControl (FeedText) ;
}

}

33

Images

It enables us to download pictures in a certain given folder (on the server that is).
Pictures that don’t belong to the user, won’t be returned.

XSlideShow ImageViewer = new XSlideShow (new Rectangle (150 , 150 , 630 ,
500) , ” Sl ideshow ” , XSLideShowMode . OpacityZoomMaskRandomize , fa l se) ;

ImageViewer . LoadPictureL i s t (Dig iS ign . Images (””)) ; // I n s e r t the
p i c t u r e s from a c e r t a i n f o l d e r

SubFolders

With this function we can view all the subfolders in a folder, the retrieved folder names
can than be passed to the picture folder, which views the pictures.

List<ConnectXDigita lSignageFolder> f o l d e r s =
Dig iS ign . SubFolders (P i c tureFo lde r) ;

for (; i < 6 && i < f o l d e r s . Count − CurrentPage ∗ 6 ; i++)
{

int index = CurrentPage ∗ 6 ;

XButton AlbumButton = new XButton(new Rectangle ((i % 3) ∗ 225 , (i /
3) ∗ 225 , 200 , 200) , ”XRectangle ”) ;

AlbumButton . NormalState =
(Bitmap)Bitmap . FromFile (” Images/ f o l d e r . png”) ;

AlbumButton . BorderWidth = 10 ;
AlbumButton . BorderColor = Color . FromArgb (127 , Color . White) ;
AlbumButton . Tag = f o l d e r s [index] . Path ;

XTextBox text = new XTextBox(new Rectangle ((i % 3) ∗ 225 , (i / 3) ∗
225 , 200 , 200) , ”XTextBox” , f o l d e r s [index] . Name, new Font (” Ar ia l ” ,
35 .0 f)) ;

t ex t . BorderWidth = 2 ;
t ex t . F i l lBrush = new Sol idBrush (Color . White) ;
t ex t . BorderColor = Color . Black ;

page . AddControl (AlbumButton) ;
page . AddControl (t ex t) ;

}

GetActivities

This function enumerates the activities on a given day, we can easily subscribe to an
activity with SubscribeActivity.

GetDinner

Allows us to query for the dinner of the day, this functions returns a string dictionary,
with strings as keys. The keys are respectively: ”breakfast”, ”lunch”, ”snack” and
”dinner”.

void Container VirtualPageRequested (XContainer sender , r e f XContainerPage
page , int CurrentPage , int TotalPages)

{
XContainerPage DayPage = page ;

34

XTextBox Text = new XTextBox(new Rectangle (0 , 0 , 600 , 50) , ”Text” ,
DateTime .Now. AddDays(CurrentPage) . ToLongDateString () , new Font (”Tw
Cen MT” , 30 .0 f , FontStyle . Regular)) ;

L i s t<Act iv i ty> A c t i v i t i e s = Dig iS ign . G e t A c t i v i t i e s (
DateTime .Now. AddDays(CurrentPage)) ;

i f (A c t i v i t i e s . Count == 0)
{

// Te l l the end−user nothing i s to be shown
}
else
{

XContainer Act iv i tyConta iner =
new XContainer(new Rectangle (50 , 50 , 400 , 420) ,

” Act iv i tyConta iner ” , XSLideShowMode . CubeMaskRandomize , true ,
A c t i v i t i e s . Count / 5 + 1) ;

Act iv i tyConta iner . Tag = A c t i v i t i e s ;
Act iv i tyConta iner . VirtualPageRequested +=
new LoadVirtua lDelegate (Act iv i tyConta iner Vir tua lPageRequested) ;

DayPage . AddControl (Act iv i tyConta iner) ;
}

List<Object> Dinner = Dig iS ign . GetDinner (
DateTime .Now. AddDays(CurrentPage)) ;

i f (Dinner . Count > 0)
{

XContainer Act iv i tyConta iner2 =
new XContainer(new Rectangle (460 , 50 , 340 , 420) ,

” Act iv i tyConta iner2 ” , XSLideShowMode . CubeMaskRandomize , true ,
Dinner . Count) ;

Act iv i tyConta iner2 . Tag = Dinner ;
Act iv i tyConta iner2 . VirtualPageRequested +=
new LoadVirtua lDelegate (Act iv i tyConta iner2 Vir tua lPageRequested

) ;
DayPage . AddControl (Act iv i tyConta iner2) ;

}
}

12 VisualX insight

12.1 DirectFB

DirectFB14 is a system developed by Denis Oliver Kropp, with whom Philips closely
works to develop JointSpace. DirectFB allows us to directly upload a picture to the
tv-buffer, and then manipulate it on screen. This is a quit speedy solution, because the
image doesn’t need to be uploaded everytime it changes its screen location. However
there are two problems here: the buffer is limited to 4096 kb, when we work with
higher resolutions (1024x768x16bits), we noticed that already 1536 kb was taken by the
window only, without even thinking about drawing an image. The second problem is,
we do change the picture a lot, to say the least. As resourceful that function might be

14DirectFB= Direct Frame Buffer

35

in very few cases, it didn’t cut our cake. So we tried a different approach, do all the
rendering at the serving-side. That way we have a lot of resources to spend, and a nice
centralized place where we can change our program if we wanted to change something.

Below we’ll show all the necessary steps needed to make the tv show our content.
First of all we need to initialize the directFB library:

DirectFBIni t (NULL, NULL) ;
// I n i t i z a l i z i n g the DirectFB l i b r a r y

j s l i b r c I n i t (NULL, NULL) ;
// Allows us to read the pre s sed button
// on the remote , and the other way around

Next we need to make the actual connection to our tv, subscribe to the window
manager and get the window-handle:

IDirectFB ∗ dfb ;
IDirectFBDisplayLayer ∗ l a y e r ;
IDirectFBSurface ∗ g s u r f a c e ;
DFBWindowDescription wdesc ;

IDirectFBWindow ∗gwindow ;
DFBSurfaceDescription desc ;
IDirectFBEventBuffer ∗ even t s ;
DFBWindowGeometry ∗wingeo =

new DFBWindowGeometry () ;
DFBRectangle winrec ;

winrec . x = X;
winrec . y = Y;
winrec .w = Width ;
winrec . h = Height ;

wingeo−>mode = DWGMRECTANGLE;
wingeo−>r e c t a n g l e = winrec ;

UpdateScreen = true ;

Running = true ;
DirectFBSetOption (” remote” , ”xxx . xxx . xxx . xxx” /∗ tv ip−address ∗/) ;

i f (DirectFBCreate (&dfb)) // r e tu rn s 0 i f everyth ing went accord ing
to plan

{
return ;

}

dfb −>GetDisplayLayer (dfb , DLID PRIMARY, &l a y e r) ; // Get handle to tv
drawing s u r f a c e

// Create a window
wdesc . f l a g s = (DFBWindowDescriptionFlags) (DWDESC POSX | DWDESC POSY |

DWDESC WIDTH | DWDESC HEIGHT | DWDESC OPTIONS |
DWDESC PIXELFORMAT) ;

wdesc . posx = 0 ;
wdesc . posy = 0 ;
wdesc . width = Width ;
wdesc . he ight = Height ;
wdesc . p ixe l f o rmat = DSPF RGB16 ; // Set the c o l o r r e s o l u t i o n
wdesc . s t a ck ing = DWSC MIDDLE;
wdesc . opt ions = DWOPNONE;

36

l ayer−>CreateWindow (layer , &wdesc , &gwindow) ;
gwindow−>GetSurface (gwindow , &g s u r f a c e) ;

g sur face−>Clear (gsur face , 0x00 , 0x00 , 0x00 , 0x00) ;
// Clear the sur face , should anything s t i l l be v i s i b l e from a prev ious

s e s s i o n

gwindow−>CreateEventBuffer (gwindow , &event s) ; // Allow us to capture
buttons

gwindow−>SetOpacity (gwindow , 0xFF) ; // Making i t f u l l y opaque
gwindow−>SetDstGeometry (gwindow , wingeo) ; // Sets the p o s i t i o n on

screen , p o s s i b l e to over l ay
gwindow−>SetColorKey (gwindow , 0x00 , 0 x00 , 0 x00) ;
// Def in ing t ransparent co l o r s , when a
// c o l o r matches th i s , the under ly ing v i s i b l e
// w i l l be v i s i b l e
gwindow−>RequestFocus (gwindow) ; // Focus the window

gsur face−>Fl ip (gsur face , NULL /∗ f u l l s c r e en reg i on ∗/ , DSFLIP NONE) ;
// Bring the back b u f f e r to f r o n t b u f f e r

From here on it’s just a walk in the park. We can now push data to the screen,
without flooding the buffer.

unsigned short ∗ bannerP ixe lBuf f e r = new unsigned short [r .w∗ r . h] ;
unsigned short ∗ bannerPixe lBuf ferAgain = bannerP ixe lBuf f e r ;
// We make a copy o f the po inter , po in t ing to l o c a t i o n 0 . . .

array<int> ˆ data = Engine−>GetBuffer (r . x , r . y , r .w, r . h) ;

for (int y = r . h−1;y > 0 ; y−−)
{

for (int x = 0 ; x < r .w; x++)
{

Color ˆ pixe lData = Color : : FromArgb(data [(y∗(r .w))+x]) ;
(∗ bannerP ixe lBuf f e r++) =

R5G6B5VAL((int) pixelData−>B, (int) pixelData−>G, (int) pixelData−>R) ;
// copy p ixe ldata , conver t ing 32 b i t s c o l o r s to 16 b i t s c o l o r s (

565)
}

}

sur face−>Write (sur face , &r , bannerPixe lBuf fe r , −r .w∗2) ;

i f (bannerPixe lBuf ferAgain != n u l l p t r)
{

delete bannerPixe lBuf ferAgain ; // we d e l e t e the memory , s t a r t i n g by
zero . . .

}

37

Figure 7: Stride in memory

Like you can see when we make a call to ’surface.Write’, we pass the surface, ’surface’,
we want to draw on, the region, r, we want to draw to and the actual pixeldata. However
the last parameter is maybe a little trickier to understand. It’s called the stride. The
stride or pitch of an image is the amount of bytes it needs to traverse before actually
going to the next line of pixels. It’s often used for caching purposes. In a 32bits image,
the stride is always (imageWidth * 2). This means that the picture has imagewidth
padding pixels. It depends on the way an image is drawn to screen if the stride is
either negative or positive, when it’s negative, this means that the image will be drawn
from bottom-up. We also utilise a negative stride, this is because of the fact that RGB
memory-bitmaps are usually bottom-up while YUV images are top-down.

Figure 8: Difference in sign of stride

12.2 Drawing

At the very beginning of our API development, we worked with GDI+. Why? Because
it’s one of the easiest to use, and easy to understand ways of drawing content directly on
a surface. We can do virtually anything we want, no matter how advanced. However,
ease of use has one major drawback. We all saw it happen before with other no-
brainer API’s, some people stop thinking about what they’re actually doing. And yes,
it happened to me too. Most of the actions (read functions) you take, are not processor
intensive tasks. They just happen without you even noticing. For instance creating a
rectangle, or an advanced geometrical shape. No the red wire throughout the developing
of a graphical library is to make every draw-call count. Drawing to a surface is (with
GDI+) the most intensive task around. If you have to much calls to the draw function,
well everything becomes a crawl. In our first version we drawed every-control on it’s own
surface, and in a later stage in the program we would draw these sub-surfaces to one big
buffer surface. This didn’t cause to much trouble when there were only a control or two
on screen. But when you make an actual, full-fledged program, we saw a major drop
in performance. And how much we twisted and turned, we couldn’t find a way around
that exact problem. It’s a fact GDI+ is slow and new desperate measures needed to be
taken...

38

12.3 A walk through GDI

In the early days (before windows was born), game-developers had a hard time drawing
an image. There was no actual standard library to address the video memory, and
each company had it’s own way of addressing his type of video-card. Yes there was
int(errupt) 10, which could draw stuff through the BIOS15 but it was slow as hell, so
they wrote ’drivers’ per major video-card manufacturer.

Then windows 1.0 was born, Microsoft’s GUI OS. This wasn’t a great success and
many companies waited to see where this would go. It was not until windows 3.0 that
windows created an API called GDI16 a real standard way of drawing static images to the
screen. GDI is still used, up to windows XP it even had some hardware acceleration, but
this was dropped in Vista and 7. It could draw to a Device Context (DC), this includes
screens but also printers, in a very simple way. It abstracted the DC and the idea of
DPI17. Which contributed to the whole WYSIWYG18 mindset of Microsoft. However
it had a few downfalls, no support for alpha-blending, no vector-drawing and above all
a limitation of how many GDI objects could be created. This amount increased from
1200 in windows 98 to 65536 in windows XP and above. Since windows XP, Microsoft
introduced GDI+, a wrapper around GDI, but with some extras like anti-aliased 2D
graphics, floating point coordinates, gradient shading, more complex path management
and support for modern graphics-file formats like JPEG and PNG. However due to the
underlying way of drawing, most things needed to be done by the CPU, which halved
the speed eight times! The other limitations remained.

12.4 A walk through DirectX

But back in the days, there was another path that could be walked. Like I said before,
GDI was only designed for static images, and it wasn’t really made to develop games
(and yes, after all, we’re still creating some sort of a ’game’). That’s why nearly
everyone stayed with DOS for creating fast-paced graphics. Microsoft wanted to show
people that windows was as great for game-development as its predecessor. This was
the start of a new era, because WinG was born, an API for creating fast graphics
performance applications. This was of course the predecessor of the well known DirectX
API, which had DirectDraw as 2D library. Since DirectX 9, DirectDraw wasn’t actually
present anymore, since most GPUs focus on 3D gaming, DirectDraw is actually done
on Direct3D for performance reasons. DirectDraw is since windows 7 succeeded by
Direct2D.

Today we do have a choice between many hardware accelerated graphical libraries:
Direct3D, Direct2D, XNA and openGL. Out of personal experience I didn’t even try to
go with Direct3D, because of the lines of code before you could actually start drawing
something. I even omitted openGL, because of the much lower performance gain com-
pared to DirectX and the fact the even though it doesn’t require a lot of work to port
OpenGL applications to unix-based systems, it will never run as smooth.

12.5 Improving VisualX

In the DirectX arena we have Direct2D and XNA. Direct2D shows us some very promis-
ing examples. It was created with only one thought in mind, porting GDI+ to Direct2D.

15Basic Input Output System
16Graphical Device Interface
17Dots Per Inch, the quantity of color-dots per square inch
18What You See Is What You Get

39

In the few examples we could find, this looked true. But there’s no .NET implemen-
tation, and since the whole engine I have right now is written in .NET, I want to use
.NET again. So the last one my list: XNA. XNA is an easy to use wrapper around
DirectX. An extra advantage is that is can be run on Windows, Zune, XBox 360 and
there’s even a Linux port called MonoXNA (which uses OpenGL).

I didn’t know very much about this API, only that is was easy, but this scared me
because easy mostly means not-versatile. But I was proven wrong, the API was indeed
easy to use. However a whole new idea of thinking needed to be used.

The first step is initialization, below is the code used for GDI+ to allow us to start
drawing primitives and graphics:

Bitmap Buf f e r = new Bitmap(1024 , 768) ;
// I n i t i a l i z i n g the b u f f e r

Graphics G = Graphics . FromImage (Buf f e r) ;
// I n i t i a l i z i n g the graph i c s ob j e c t

In the following block of code we’ll see that it takes a lot more effort to initialize
XNA:

PresentationParameters pp = new PresentationParameters () ;
// These parameters a l low us to c o n f i g u r e the engine , and where we ’ l l

s e e the output
pp . BackBufferFormat = ColorFormat ;
pp . BackBufferHeight = BackBufferHeight ;
pp . BackBufferWidth = BackBufferWidth ;
pp . DeviceWindowHandle = handle ; // the handle to the hos t ing c o n t r o l

(window , canvas , whatever)
pp . I s F u l l S c r e e n = fa l se ;
pp . P r e s e n t a t i o n I n t e r v a l = P r e s e n t I n t e r v a l . Immediate ;

GraphicsDevice Device = new GraphicsDevice (GraphicsAdapter . Adapters [0] ,
G ra ph i c s P ro f i l e . Reach , pp) ;
// The ac tua l dev i c e i n i t i a l i z a t i o n

SpriteBatch spr i t eBatch = new SpriteBatch (Device) ;
// This c l a s s i s where a l l the render ing w i l l happen

The actual drawing code is where the biggest change is visible. When we want to
draw an image in GDI+, we type the following line of code:

G. DrawImage (t e s t , 0 , 0 , 100 , 100) ;

What it actually does in the background now is a lot more, first of all it locks the
Buffer-image. We do this, so that the image can not be changed while we’re drawing,
not having to think about this actually speeds up the processing of the image. When
the image is locked, the image ’test’ is scaled to the size of 100px by 100px. This process
is done through the CPU. Afterwards the rescaled image is drawn to the Bitmap and
the bits are unlocked again, so another image can be drawn. Again for drawing only a
small amounts of images and/or primitives this won’t be too much of a problem. But
like you can see, the bitmap is being locked per draw-function call. The ease of use is
very big, but when we want to draw a lot, this is more like a burden than a blessing.
In real game development, the buffer is locked one and then images are pushed upon a
pipe-line:

spr i t eBatch . Begin () ; // Star t o f the p i p e l i n e

spr i t eBatch . Draw(testTexture , new Rectangle (0 , 0 , 100 , 100) , Color . White
) ;

//More drawing
//Even more drawing can be done here

40

spr i t eBatch . End () ; //End o f the p i p e l i n e

This code is rather self-explanatory, except for the last parameter of the draw func-
tion: ’Color.White’. This last parameter can be compared with the effect sun-glasses
have when you look through them, where Color.White sunglasses are the regular glasses
which pass through all the light and Color.Black would be sleeping mask where all the
colors are blocked.

Another major difference with GDI+ is that the spriteBatch only allows to draw
images, there is no support for primitives like rectangles or other stuff. Of course
these are very useful and we don’t wanna lose that! We wrote another wrapper around
XNA, to allow us to easily port our application from the GDI+ version, to XNA. This
challenged us to re-invent the wheel GDI+ already has, or do we! Luckily for us we
don’t! We can pass a stream to the Texture2D classes (XNA’s equivalent for GDI+’s
Image) and we can save an Image to a MemoryStream. In between those two functions
we can do the GDI+ rendering. Those functions won’t be the most speedy ones around,
but they’ll still do the job much faster!

41

12.6 Colors and alpha-channels

Like one could have guessed not everything is as easy as it seems. Since XNA 4.0 their
way of blending changed drastically. Before we had the most commonly known way of
blending called alpha-blending. In alpha blending the colors of the overlay are mixed
with the colors of the underlying plane by a factor ’alpha’.

blend(source, dest) = (source.rgb ∗ source.a) + (dest.rgb ∗ (1− source.a))

Here the alpha-channel can be seen as an invisibility cloak, where a color can be
red, but still be invisible at the same time. Nowadays we work with premultiplied alpha
blending. Which is a more realistic approach to how the real world works. A windshield
has an alpha channel nearing zero, but it doesn’t really have a color. The color and the
alpha-channel are now dependent values.

blend(source, dest) = source.rgb + (dest.rgb ∗ (1− source.a))

INFO: Alpha-channels don’t really have a meaning, they’re just an extra value attached
to an rgb value, which can be used for anything. But it’s mainly used for defining
opacity.

However we can’t just load an GDI+ image (which uses alpha-blending), and hope
that some magic will convert the color values to premultiplied alpha blending. In our
first attempt to overcome this problem, we took a pointer to the image, and looped over
the pixels, converting them to premultiplied on the fly. This did the trick, however, it
was slowing down the performance of our program. So we had to be a little bit more
creative. So we drew the image into an off-screen RenderTarget2D (which is inherited
from Texture2D) while stating that the alpha-channel for that RenderTarget is actually
used for alpha-blending. When we now copy the values from our GDI+ image, these will
be converted to premultiplied alpha on the fly, through the power of the GPU instead.

12.7 Conclusion

When we compare both API’s both in speed and ease of use, we can say that XNA is not
only faster, but actually a lot easier to use then GDI+. While writing this I wondered
why people would even want to use GDI+. Even the most power-efficient computers can
now render by the power of a magnitude faster. We used FRAPS for our benchmarks,
both test-systems ran Windows 7 home premium. We noticed that using GDI+ our
application couldn’t get above 10 FPS19 on a high-end computer. Running the app on a
low power-consuming PC, we noticed a drop to 3 FPS. This is very disturbing when you
want to implement animations. I’d like to add that while an animation was running,
our CPU was using only one core at max to do everything. So on a quad-core system
(or more) the application is at a crawl.

When we ran the same tests while using XNA, we noticed a very big difference of
60 FPS on both systems (the high-end system and the low power-consuming PC). This
was only limited due to vertical synchronization (which let’s the drawing functions wait
until the screen starts drawing from the start again. Also known as the refresh rate),
this prevents tearing in the screen at high rates. Disabling this synchronization gave us
a speed of 180 FPS!

19Frames Per Second

42

13 Televic Signage

13.1 Digital signage in general

Digital signage is electronic display that is able to show information. These displays, can
be LCD, LED, plasma,... displays. Most of the time the information that is displayed on
the screen, is being controlled on a computer with appropriate software. The software
that is used to link the media to the screen can be web-based software, this enables the
user to control and manage the screen from every location.

13.2 Televic Signage

Televic signage is a Digital signage system, that is developed in Televic. This system
provides a interface were different companies can sign in, were they could manage the
locations(sign) in their company. Each company has its own available content that can
be easily loaded into the database. The content that can be displayed isn’t just plain
text, you can also load images, movies, flash, websites,... onto the screen. The manager
is also able to make presentation, and schedule them according to the occasion. Before
the companies can use this system, they need to buy some credits. These credits are the
currency for using Televic signage. These credits will reduce according to the amount
you use the system.

13.3 Setup Televic Signage

Before we can deploy Televic signage, PHP, apache and MySQL must be installed on
your system. When you are using windows, like we did, WAMP20 offers this in one pack-
age. Download the latest version of WAMP and install on the system. The application
has been tested and was fully working with: APACHE: 2.2.17, PHP: 5.3.5, MYSQL:
5.0.51a.
Before you can use the Televic signage application, you must enables the required PHP
extensions and import some SQL files into the database. The PHP extensions that must
be installed are:php curl, php gd2, php gettext, php imap, php mbstring, php mysql,
php mysqli, php openssl, php pdo mysql, php pdo sqlite, php soap, php sqlite, php xmlrpc,
php zip.
After you have installed these extensions, you must import Televic signage for branch.sql
and Televic signage for branch empty.sql to PHPmyAdmin. Now you must copy the
Televic signage branch(the application) to the WAMP ”www” folder. Inside the ”con-
fig.php” file, which can be found in the include folder, you must adjust the setting
according to the server you’re using. The application should be running. Note: a de-
tailed ”how to install” file can be found in the readme folder of the Televic signage
branch.

13.4 Adjustments Televic Signage

In the beginning we made an manager application were we could manage our implemen-
tations to the project. Management was rather confusing, because we needed to switch
between the Televic manager and our Admin tool. Therefore we integrated our admin
tool into the Televic manager.

20WAMP = Windows, Apache, MySQL and PHP

43

13.4.1 Changing visual experience

Televic signage is used as a media content library. The manager can view the content
that is stored in the database, when he is logged in. in the original version of Televic
Signage, the content was shown in a long list, with lots of unnecessary information. The
picture thumbnail was really small, you couldn’t really see which picture you wanted
to add to a presentation, without clicking it first. We changed this representation into
something more user friendly. Every content is viewed as a large image, with the title
of the image. When hovering over a picture, you can tick the picture to add it to a
presentation, or delete it from the database. Later on we’ve added a folder-system,
which allows pictures to be in several folders. These folders can have sub-folders and
so on. The only restriction we have, is that the full folder path cannot be longer than
1024 characters long.

We’ve added hovering effects to make it more appealing to the eye. We have inte-
grated these changes throughout the website, so that everything looks uniform. The
hovering effect was done through the power of CSS21. In the full CSS3 specification we
have a few new tricks to use in our applications. We can now specify a transition. This
means that going from one CSS-value to another will be tweened22. However it’s not ac-
tually in the standard yet, and luckily there’s only one browser that doesn’t implement
these non-standard transitions: Internet Explorer. This is truly only for beautification.

div . ca l endar inac t i v e weekend
{

background : white ;
−moz−t r a n s i t i o n : a l l 0 . 5 s ease−out ; /∗ f o r Moz i l l a ∗/
−o−t r a n s i t i o n : a l l 0 . 5 s ease−out ; /∗ f o r Opera ∗/
−webkit−t r a n s i t i o n : a l l 0 . 5 s ease−out ; /∗ f o r webkit (s a f a r i , chrome

and many more) ∗/
t r a n s i t i o n : a l l 0 . 5 s ease−out ; /∗ the o f f i c i a l implementation ∗/

}

div . ca l endar inac t i v e weekend : hover
{

background : gray ; /∗ When we hover now , we ’ l l s e e that i t takes 0 . 5 s
be f o r e the new c o l o r i s f u l l y v i s i b l e . ∗/

}

Another ’experience’ we’ve added, is the infobox! The infobox is an innovative way
of showing the requested information. It pops up from below, but you can’t miss it, since
it’s moving. When you don’t hover over the text, the info-bar hides after 2.5 seconds.
That way we don’t get an annoying rectangle when we try to navigate the site. The
hover bar is implemented by javascript.

First we place where we want our infobox to be, and what basic styling it should
have (text-color, background, font-size, font-family...) with a required height of zero
pixels. Next we define which elements are triggers for the info-bar to show, and with
what content.

<div onmousemove=”ShowInfo (’ He l l o InfoWorld ’) ; ” >This i s some text</div>

When a mouse is moved above this control the ShowInfo function is called. Below we
see the code that handles the animation. As you can see it’s a second degree function,
where the closer we get to the end-value, the smaller the steps will be to the next value.

21Cascading Style Sheets
22tweened = the process of generating intermediate frames between two images to give the appearance

that the first image evolves smoothly into the second image.

44

When the mouse is not moved while it’s hovering over the element, a watch-dog will
trigger and 2.5 seconds later the infobox will be hidden.

f unc t i on ShowInfoBox () {
. .
InfoBox = document . getElementById (’ i n f o box ’) ;
InfoBoxInner = document . getElementById (’ i n f o b o x i n n e r ’) ;
wantedHeight = InfoBoxInner . o f f s e t H e i g h t + 40 ;

InfoBox . s t y l e . he ight = parseF loat (InfoBox . s t y l e . he ight) + parseF loat (
(wantedHeight − parseF loat (InfoBox . s t y l e . he ight)) ∗0 .1) +
’ px ’ ; // 0 .1 i s the procentua l step−s i z e

. .
}

13.4.2 Tag management

We have integrated the storage of the RFID tags into the Televic MySQL database.
Every tag that is stored into the database is assigned to a specific type, a tag can be
part of a cube, or it could be a tag of the type ”gallery” which would open you’re
personal media folder. Every tag is also given an personId, this way we can link tags to
a person, thus linking a cube or object to persons.

13.4.3 Person management

In our system we have the idea to give every person his own cube. With this cube
the user can identify himself to the system. Because we wanted this process to be
straightforward we added a person management page. On this page an administrator
could add a new person into the system, and also see a list of the current users that
are added to the system. On this list the administrator can easily see which users are
assigned to a cube and which don’t. This is shown by either a cube(assigned) or a
warning sign(not assigned). When a cube is not assigned, a click on the persons picture
will add a cube The administrator must then follow a certain amount of steps, involving
the interaction of the cube, to assign the person to the specific cube. When hovering
over a persons picture, some options will be shown. Clicking on the red circle will
remove a person from the system, and the cube that is assigned. Every person has been
assigned his own media folder, clicking on this folder will enable you to add pictures into
the folder of this specific person. When the users want to view his picture on the end-
user application, he will see his own pictures from his personal folder and the pictures
available to everyone, he will not be able to watch picture assigned to other persons.

45

Figure 9: view of people management page

13.4.4 Plugin management

When we want to add a new feature to the end-user application, it is possible to write
a plugin using our plugin system. We wanted the plugins to be easy to deploy, so we
added a plugin manager. Before you can upload the plugin to the manager, there are
some requirements on how to format you’re plugin. The plugin that must be uploaded
must be zipped and the main directory must contain:

• an index.php

• a logo.png

• a nfo.txt

The only real necessity is the index.php, because the plugin will not work without a
proper direction to the plugin code. the logo.png is the picture that will be displayed
in the plugin management page. the nfo.txt file will be displayed as extra information
when hovering over a plugin. A demo file is available on the CD.

46

Figure 10: view of the plugins page

13.4.5 Activities

On this page the administrator can add/view activities on each day. When hovering
over an activity, the activity can be removed, or you can view the list of people who
subscribed. When an activity is selected an short description is shown underneath the
selection. The people can subscribe to these events when they go to the calender on the
TV screen. Besides the activities that are shown on the calender, you can also view the
menu for each day. The administrator can use Televic Signage to change the menu of
each day.

Figure 11: view of calendar page

47

13.4.6 RSS feeds

On this page RSS23 feeds can be added into the database. These RSS feeds can then be
viewed on our application that is running on the tv. as in the other sections, we also
implemented the same layout of the page. when hovering over the RSS picture, you
have the option to remove or edit the RSS feed.

13.4.7 RSS feeds historical & technical

RSS was designed by Dave Winer at UserLand software in 1997. It was first used in
1999 by netscape. Since 2001 they dropped support for it. So Winer continued the
development inside his company UserLand. The basic usage for RSS-feeds (as they are
called) is to allow an end-user to quickly see what has changed on a website, without
actually looking at every website to see what has actually changed (or not). This task
can be done with a feed-manager that keeps track of the possible changes that have
happened. The creation is often automated, but can easily be written by hand.

<?xml v e r s i on=” 1 .0 ” ?>
<r s s v e r s i o n=” 2 .0 ”>

<channel>
<t i t l e >Students are cool </ t i t l e >
<l i nk>http : //www. goog l e . com/</ l ink>
<d e s c r i p t i o n>BLA BLA BLA</d e s c r i p t i o n>
<item>

<t i t l e >A r t i c l e one</ t i t l e >
<l i nk>ur l </l ink>
<d e s c r i p t i o n>this i s an a r t i c l e </d e s c r i p t i o n>

</item>
</channel>

</rs s>

This can be interpreted by any XML-parser, like the one in .NET. This way we only
need to know the url to the feed, retrieve the data and let it parse. The layout is almost
always the same with every feed.

13.5 The Code behind

13.5.1 Showing content

First we make a fieldset to include our pictures, the layout of this fieldset is adjustable
in the CSS file. Then we create a title for our fieldset using the legend tags. A div tag
is added, to make sure the images are centered inside the fieldset.
Now we will explain the changes made in the PHP code. First we draw a image to the
screen, each item represents an item, the first item enables users to add a new person,rss
feed, ... This image is encapsulated in a div with class”rss feeds”, this takes care of the
layout of the image. Note that our class is named ”rss feeds”, but this class is used for
all content that is shown on this way, the person management and plugin page use the
same class. A link is added to the picture, which will bring users to a new page when
pressed. A text is placed under the image, aligned in the center.
After we added an ”new item” button, we show the content that is available in the
database. we request all data from a specific table and order it by name. For each row
we have found, with each row being an separate item, we will draw a picture to the
screen. The procedure is the same as the new item button, but the picture itself and its

23Really Simple Syndication

48

name is extracted from the database. With each picture we add at least 1 button, this
small button is placed upon the image itself. The button is used to delete the selected
content from the database. Another button can be added to show additional informa-
tion of the content. These buttons are placed inside a div with class ”rss delete”, where
the CSS code will take care of the layout.

< f i e l d s e t class=” f i e l d s e t d a t a g r i d ”
s t y l e=” he ight :400 px ; p o s i t i o n : r e l a t i v e ; ”>
<legend>RSS Feeds</legend>
<div s t y l e=”bottom :20 px ; r i g h t : 20 px ; l e f t : 20 px ;

top :30 px ; over f low−y : auto ; p o s i t i o n : abso lu t e ; ”>
<?php

echo ’<div c l a s s =” r s s f e e d ”> ’ ;
echo ’<a h r e f=”index . php? page=new rs s f e ed”><img

s r c =”. ./ images / add hi . png”
s t y l e=”border−s t y l e : none ; width :85%;
margin−top :10 px ; max−he ight :140 px ; margin− l e f t :5%;”
/>
 ’ ;

echo ’<b
s t y l e=”p o s i t i o n : abso lu t e ; bottom : 0 px ; text−a l i g n : c en t e r ;
width :100%;”>Add a new RSS Feed ’ ;

echo ’</div> ’ ;

$query = mysql query (”SELECT ∗ FROM r s s f e e d s ORDER BY
t i t l e ” , $connect ion) ;

while ($array = mysq l f e t ch a r ray ($query))
{

echo ’<div c l a s s =” r s s f e e d ”> ’ ;
echo ’<img s r c =”. ./ images /dynamic image . php? type

=f e e d l o g o&id=’ . $array [’ id ’] . ’ ”
s t y l e=”border−s t y l e : none ; width :85%;
margin−top :10 px ; max−he ight :140 px ; margin− l e f t :5%;”
/>
 ’ ;

echo ’<b
s t y l e=”p o s i t i o n : abso lu t e ; bottom : 0 px ; text−a l i g n : c en t e r ;
width :100%;”> ’ . s t r i p s l a s h e s ($array [’ t i t l e ’]) . ’ ’ ;

echo ’<div c l a s s =” r s s d e l e t e”><a
h r e f=”index . php? page=r s s f e e d s&d e l e t e i t e m
=’ . $array [’ id ’] . ’”><img s r c =”. ./ images / d e l e t e . png”
s t y l e=”width :16 px ; he ight : 16 px ;
border−s t y l e : none;”/></div> ’ ;

echo ’<div c l a s s =” r s s d e l e t e ” s t y l e=”top :32 px”><a
h r e f=” ’ . s t r i p s l a s h e s ($array [’ l i n k ’]) . ’”><img
s r c =”. ./ images / l o g o r s s . png”
s t y l e=”width :16 px ; he ight : 16 px ;
border−s t y l e : none;”/></div> ’ ;

echo ’</div> ’ ;
}

?>
</div>

</ f i e l d s e t >

13.5.2 Deleting content

When the delete button is pressed, which is shown when hovering over an item, this
item will be deleted from the database. The delete button is a link to its own page,
with a Get variable which contains the id of this item. When this Get variable isset, we
send a mysql query, where the item with the id of the selected item will be deleted.

49

i f (i s s e t ($ GET [” d e l e t e i t e m ”]))
{

$query = ”DELETE FROM r s s f e e d s WHERE id =’{$ GET [” d e l e t e i t e m ”] } ’ ; ” ;
mysql query ($query , $connect ion) ;

}

13.5.3 Zip

Because we want our plugins to be easy to deploy, we use the zip extension available in
PHP. With help of this library, we could install these plugins by uploading a zip file to
our server.
When the zip file is submited, we copy the zip file from our computer to the server.
When the file is succesfully uploaded, the user is notified. hereafter we will extract the
uploaded zip file to a specific path, this can easily be done with the php zip library.
after the extraction we delete the zip file. Now we have a folder with the name of the
plugin, ”installed” on the server. This plugin can now be used on our tv application.

i f (i s s e t ($ POST [” submit”]))
{

$ta rge t pa th = ” . . / p lug in s /” ;
$ ta rge t pa th = $targe t path . basename (

$ FILES [’ f i l e u p l o a d ’] [’name ’]) ;

// upload f i l e to s e r v e r
i f (move up loaded f i l e ($ FILES [’ f i l e u p l o a d ’] [’ tmp name ’] ,

$ ta rge t pa th))
{

echo ”The f i l e ” . basename ($ FILES [’ f i l e u p l o a d ’] [’name ’]) .
” has been uploaded ” ;

}
else
{

echo ”There was an e r r o r uploading the f i l e , p l e a s e t ry again ! ” ;
}
$name= $ FILES [’ f i l e u p l o a d ’] [’name ’] ;
$name = subs t r ($name , 0 , s t r r p o s ($name , ” . ”)) ;

// e x t r a c t z ip to s e r v e r
$z ip = new ZipArchive ;
i f ($zip−>open ($ ta rge t path) === TRUE)
{

$ta rge t pa th = ” . . / p lug in s /” . $name . ”/” ;
$zip−>extractTo ($ ta rge t pa th) ;
$zip−>c l o s e () ;

}

// d e l e t e z ip
$ ta rge t pa th = ” . . / p lug in s /” . basename (

$ FILES [’ f i l e u p l o a d ’] [’name ’]) ;
un l ink ($ ta rge t pa th) ;

}

13.5.4 Appbrowser

This code will find all plugins which are installed and encode them to JSON.
We open the directory were the plugins are installed. For each plugin, we will get the
content from the nfo file which should be included in each plugin. The content inside

50

the nfo file is the description of the plugin. We place a list of all plugins inside an array.
This array is then encoded to JSON, ready to be read by our C# application, which
will show this content on our Television application.

i f ($handle = opendir (’ . . / p lug in s / ’))
{

while (fa l se !== ($ f i l e = readd i r ($handle)))
{

i f ($ f i l e != ” . ” && $ f i l e != ” . . ”)
{

$ d e s c r i p t i o n =
f i l e g e t c o n t e n t s (’ . . / p lug in s / ’ . $ f i l e . ’ / nfo . txt ’) ;

$ d e s c r i p t i o n = nl2br ($ d e s c r i p t i o n) ;
$ d e s c r i p t i o n = s t r r e p l a c e (”\n” , ”” , $ d e s c r i p t i o n) ;
$ d e s c r i p t i o n = s t r r e p l a c e (”\ r ” , ”” , $ d e s c r i p t i o n) ;
$ d e s c r i p t i o n =

subs t r ($de s c r i p t i on , s t r p o s ($de s c r i p t i on , ” d e s c r i p t i o n ”)) ;

$data [$ i]−>Name = $ f i l e ;
$data [$ i]−>Desc r ip t i on = $ d e s c r i p t i o n ;
$data [$ i]−>ImageUrl =

’ http :// ’ . $ SERVER [’SERVER ADDR ’] . ’ /branch/ p lug in s / ’ .
$ f i l e . ’ / logo . png ’ ;

$data [$ i]−>Appl i ca t ionUr l =
’ http :// ’ . $ SERVER [’SERVER ADDR ’] .
’ /branch/ p lug in s / ’ . $ f i l e . ’ / ’ ;

$ i++;
}

}
}
c l o s e d i r ($handle) ;
echo j son encode ($data) ;

14 Plugin System

This Plugin system enables us to make applications for our system, without the need
to edit the code of our application. The C# application is then able to load these
plugins and show the application on the screen. The plugins are written in PHP. The
communication between PHP and C# is made possible with JSON. There are 4 different
Controls that can be made with the plugin:

• Container: Used for making pages

• Textbox: Used for displaying text to the screen

• Button: Draws a button on the screen

• Rectangle: Can be used for layout

In the code below we will show you an example how to add a button to the screen. First
we make a new ConnectXAppControl. Then we select the type of the control, in our
case this control will be of the type Button. Note that order of the parameters are not
of importance. We will enable the button to accept events, else we would not be able
to select it and click it. We then define the width and height of the button, we can also
position the button everywhere in 2D space by changing the X and Y parameter. The
last parameter will change the background color of the button.

51

$data [$m] = new ConnectXAppControl () ;
$data [$m]−>Type = Button ;
$data [$m]−>AcceptEvents = true ;
$data [$m]−>Name = ” button1 ” ;
$data [$m]−>Width = 200 ;
$data [$m]−>Height = 150 ;
$data [$m]−>X = 200 ;
$data [$m]−>Y = 0 ;
$data [$m]−>BackGroundColor = hexdec (”6066FF33”) ;

A list of all the parameters are available in the ”VisualX.php” file.

14.0.5 TV guide

The first application we made for the new plugin system was a TV guide. This applica-
tion shows every tv show of the Flemish tv post. We did this by parsing the information
we get from the zita.be Tv guide. This information is then translated to the controls
we can make with the plugin system. For every Tv channel we have, we will create a
button, under these button a textbox will be placed. If we select a channel, we draw a
rectangle for every show, and populate these with some text, this text is of course the
name of the show. When we created all the pages with the controls, we encode this
data to JSON. This data is then been read by the C# application and is shown to the
tv screen.

Figure 12: Main menu of the Tv Guide

52

15 How everything works?

Figure 13: Start of the programl

When you first start this program, you’ll see
the following screen. This means that you
should place a personal cube. From the mo-
ment you place your cube, you are logged in.
You get a warm welcome message, together
with the owners’ name.

Figure 14: Main menu

If everything has gone according to plan
you should see the menu which is divided in
4 nice compartments. With the arrows on
our cube you can select different buttons.
From left to right: the first icon is a an al-
bum application. The second button is an
activity browser. Next we have an applica-
tion browser and last but not least we have
a feed browser.

Figure 15: Album

When we click OK with our cube ,
we enter the selected application, which
in our case is the album browser. With
this album browser we can view the
pictures that are available on the dig-
ital signage side. We have browsers
and pictures. When clicked on a
folder, well see the content of that folder
which can be folders or pictures and so
on.

53

Figure 16: Picture browserl

When we click on a picture, a slideshow
appears and we can get a closer look
at the picture. With the left and
right arrows we can browse through all
the pictures that are in that particu-
lar folder hallo. We return to the al-
bum menu by clicking the top-right but-
ton twice. Once to return to the album
browser, and the second time to return to
home.

Figure 17: Activity managerl

Back on the mainmenu we click on
the calendar icon. We enter the activity
browser. Here we can view which activities
and what food will be served each day. To
navigate you can use the arrows on the cube
to go either left (backwards in time) or right
(forwards in time). We have a list of activi-
ties, where you can subscribe. A green tick
means youre subscribed for that activity. A
limited amount of participants are available.
When theres no room left, no option will be
available to subscribe.

Figure 18: Feed browser

When we select the newsfeeds on the
main menu we enter the feed browser. Here
we see all the registered feeds. Again, nav-
igating can be done with the arrows on the
cube. In the background an actual RSS feed
will be read, allowing us to see the header,
and a small introduction text.

54

Figure 19: Browsing through the articlesl

When we click a feed, you’ll see a sum-
mary of all the messages. Theres a nice tran-
sition between each message. If theres a pic-
ture available, it will be shown. When we
click on an interesting message, a browser
will open, allowing us to read the full story.

Figure 20: Application browser

Next we have the application browser.
Here we see all the registered plugins. These
plugins are installed in digital signage and
allow to easily expand the usage of the pro-
gram.

Figure 21: A plugin at work

Take for instance testplugin, this plug-
ins gives the tv-magazine. Where we can
view what program is currently playing on
specific channel. When clicked, a more in-
detail view of that particular channel can be
browsed.

55

16 The Future

If this product would be commercialy used,
there are still some issues that need to be
fixed. First of all the televic signage applications needs to be adjusted. Our addition
to the application is a neccesity to demonstrate our application, this however made the
application a little more complex and in some cases contradictory to the original Televic
signage application. Though it will need some thorough thinking to make the applica-
tion more user friendly.

Security was never one of our concerns here, nor was it a part of our assignment
(although we did try to implement some solutions). However should this be used on
a larger scale security measures should be taken in account for. Like using HTTPS
to access the digital signage for instance, an SSL connection for ConnectX instead of
unsecured sockets.

Although we’ve written our programs to be as scalable as possible, this wasn’t a
direct request. So it hasn’t been tested to see what the results would be. In a future
version this is something that should be tested.

17 Field trips

17.1 Philips Brugge

Because it was necessary to acquire some information about Jointspace, Televic arranged
a meeting with Jean-Marc Harvengt, who is one of the founders of Jointspace. Our main
concern was the compatibility of our application on a real Television. We didn’t really
know how well our application would be running on the real hardware, because we were
using a simulator provided by Philips. Everything turned out great, the application was
performing as well on the television as it did on the simulator. Some questions about
speed performance and the future innovations of JointSpace was cleared up.

17.2 IBBT Gent

The IBBT Gent were the first to come up with the idea to make a smart platform for use
in nursing homes,... Televic and IBBT worked together to realise this project. Because
of this cooperation, we were invited in IBBT to explain the work we have put in our
project. The meeting was a fairly a technical presentation, as it purpose was to transfer
the knowledge we have received, to be used in the ”Woonzorgcentrum De Vijvers”.

18 Complications

18.1 Compiling libnfc

Before we could use the libnfc library we needed to compile the source code to object
code, that can be used on our PC. While browsing the libnfc community page we
quickly learned how to compile this code. We tried compiling the code with the Mingw
compiler, but the code that was generated didnt work really well when we started
programming. We tried recompiling and fiddling with the settings, Although without
any success whatsoever.
We tried compiling the code on an other PC. This was a success, the generated code

56

could be used without the random errors we have gotten on our previous tries. The
possible problem was the target OS. We first compiled it on a 64bit system while the
second time, the OS was a 32bit system. Although we are not sure that this caused the
problem, because the code should be 64bit compatible, at least if we believe the people
from the libnfc community.

18.2 Televic Signage

In the beginning we had problems setting up the Televic signage on our local machines.
The code we have gotten, was mainly adjusted to run in the cloud. Most settings could
be quickly adjusted, however some parts of the code needed rewriting to get it working
on our local machines.
Besides code problems, the documentation that was written to setup the system was
outdated. In this manual you could find a list of extensions that must be enabled to get
the signage going, however because of this outdated document, some extensions that
were required, were not mentioned. It was really more like a try and catch approach to
get the application running. We were still lucky to have Ivo Verdonck, a student who
had worked with Televic signage, by our side. Without the help of Ivo, we would have
required much more time to get the system operational.

18.3 The power of green computing

When we opened the box of these energy efficient eeebox PC from asus, we were dazzled
by the promising power these computer offered. When we got the system running
however, we were rather disappointed, the hardware looks good on paper, but working
with these computer was like going back into time. We tested our application on this
PC and the performance was really bad. We quickly discovered that our bottleneck was
the CPU. With GDI we would not use the GPU for drawing, XNA was the solution to
this. With XNA we use the GPU for drawing, The CPU is not bothered any more with
drawing tasks, which were to much to handle for this rather low end CPU.
Conclusion, on these energy efficient systems, it is important to use every resource
available!

18.4 Direct FB

18.4.1 Drawing images with alpha channel made glitches

In our first attempt to use jointspace to draw only a portion of the screen we used
PNG files to test the abilities of the library. Why? Because it has some extra features
like semi-transparancy. If we can show PNG files, it’s safe to say that we could draw
anything. However sending alpha data with the write function gave some strange effects
like non-transparant parts and other parts fully transparant. To solve this problem we
looped through all the pixels in the image, and drew a rectangle with a size of 1 by
1 pixel, with the color supplied by the image pixel. This gave us the wanted result,
however too much overhead to be actually usable. So we started the development of a
graphics library on top.

18.4.2 Connection cannot be closed

Another problem we’ve noticed is the inability to close a connection with a television
during a program-session. To actually close a connection we’d need to shut down the

57

program, and restart it. If we don’t do this, a memory leak is present at the tv-side,
causing the television to actually crash after starting the program a third time. However
due to the browser crashing on close, this solution can not be used at the time. This
is not necessary in a setting where only one computer servers one tv, however a setting
with one computer serving multiple tv’s would want to have as much resources available
to serve the actually connected users.

18.4.3 Connection with tv broken

When a television is shut down during a session, this will not render an error, instead
the program will keep on running, in the background, using up resources. The only way
we can think of to solve this, is to ping to the television to see if it’s still turned on.
This, however, doesn’t solve the problem when a user changes channels.

18.4.4 Enumerating televisions

There’s already a build in feature for enumerating tv’s. However we, as win32 developers,
don’t have this tool at our disposal. Therefor we needed to write that function ourselves.
To do so we captured the broadcast packages, and hard-coded that in our program. This
may not be a good solution in the long run, it gives us change to quickly implement this
feature. This kind of hack should be possible to transpose to the ”Connection cannot
be closed”-bug.

18.4.5 Browser crash

For some strange reason we can’t actually put our finger on, we get a crash whenever
the browser is or was visible during a session. We only get a generic error from windows
that something went wrong, but nothing more. This makes it harder to debug, but
we managed to narrow it down to the drawing functions. This is not something we’ve
managed to fix thus far.

58

19 Televic Demo day

Each year Televic organizes a demo day, where all the students can demonstrate their
project. The message must be handed over in under 5 minutes. The purpose of this
day is to bring the students closer and give some information to the employees. At the
end of the demonstrations there was time for a nibble and some drinks. Of course there
was some tension, because the 3 best performances could win a price. We ended second,
each winning an Ipod Touch.

Figure 22: There was much rejoice !!!

59

20 Conclusion

We’ve come to the conclusion that jointspace, with all the benefits it may have, has a
growing process ahead. In our current project we used some ’code hacks’ to get to a
certain point. For the RFID part we are rather satisfied. Although no out-of-the box
classes are provided by .NET (java does have an out-of-the box solution for reading
smartcards and such); we can say it was fairly duable to implement this ourselves. The
choice not to work with the provided service from alcatel, is solely based upon the face
that we don’t want to be dependent of alcatel.

For the total project we can say we’ve had a great success in several fields. First of
all we accomplished everything that was asked, and a lot more. We both had a fantastic
experience here at Televic. The project we have chosen was right down our alley, we
really enjoyed learning these new things.

It was fun to be able to use 6 different programming languages in our project.
Sometimes it was awkward to combine these different languages, many a time we were
programming PHP in our Visual studio IDE ... but we managed our way trough.
This internship was a great preparation for the real world. The description of the project
was broad, but this allowed us to make own decision in how we would like to use these
technologies. There was a common goal to be met, but we had the freedom to choose
which path we would walk.

We sure hope that the work we have put into making our application will be used
in future project. It would really be fantastic to see our application or even a tiny
percentage of it, being used in nursing and care homes.

60

21 Bibliography

21.1 Information links

http://www.libnfc.org/documentation/introduction

http://en.wikipedia.org/wiki/Radio-frequency_identification

http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=1

http://jointspace.sourceforge.net/

http://www.php.net/

http://msdn.microsoft.com/en-us/library/aa473780(v=vs.85).aspx

http://www.xnadevelopment.com/

21.2 Software

Visual studio 2010 Professional
Mikitex
Lyx
Notepad++
MinGw
Cmake
WampServer
SQL Server Management Studio

61

http://www.libnfc.org/documentation/introduction
http://en.wikipedia.org/wiki/Radio-frequency_identification
http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=1
http://jointspace.sourceforge.net/
http://www.php.net/
http://msdn.microsoft.com/en-us/library/aa473780(v=vs.85).aspx
http://www.xnadevelopment.com/

	Voorwoord
	Description project
	Introduction
	Smart objects
	Jointspace
	TouchaTag (RFID)

	Televic
	Introduction
	Story of the statue
	History

	Architecture
	RFID
	What?
	Advantages
	Disadvantages

	How?
	RFID tags
	RFID reader
	Alternate RFID reader
	PN532

	Programming RFID
	Choices,Choices...
	TouchaTag Service
	WinScard.dll
	Java SmartCardIO API
	Libnfc

	Libnfc

	Code RFID
	C/C++ - Libnfc
	Setup
	Reading tags
	Counting tags
	Sending event

	C#
	setup
	Setting up the reader
	Setting up the ConnectX client
	Tag added event

	Sleep mode

	Visualization
	Introduction
	Different Approaches
	dlna or not dlna that is the question
	JointSpace

	Alternatives

	Implementation
	Introduction
	Basics
	A first glance at VisualX

	VisualX
	XApplication
	XWindow
	XRectangle
	XTextBox
	XBrowser
	Internet Explorer
	Google Chrome

	XButton
	XSlideShow
	XContainer

	ConnectX
	ConnectXServer
	ConnectXDigitalSignageReader

	VisualX insight
	DirectFB
	Drawing
	A walk through GDI
	A walk through DirectX
	Improving VisualX
	Colors and alpha-channels
	Conclusion

	Televic Signage
	Digital signage in general
	Televic Signage
	Setup Televic Signage
	Adjustments Televic Signage
	Changing visual experience
	Tag management
	Person management
	Plugin management
	Activities
	RSS feeds
	RSS feeds historical & technical

	The Code behind
	Showing content
	Deleting content
	Zip
	Appbrowser

	Plugin System
	TV guide

	How everything works?
	The Future
	Field trips
	Philips Brugge
	IBBT Gent

	Complications
	Compiling libnfc
	Televic Signage
	The power of green computing
	Direct FB
	Drawing images with alpha channel made glitches
	Connection cannot be closed
	Connection with tv broken
	Enumerating televisions
	Browser crash

	Televic Demo day
	Conclusion
	Bibliography
	Information links
	Software

