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Abstract 

Goal-directed and habitual behavior are two fundamental forms of behavior in 

organisms, but their relative importance remains unclear. In reinforcement 

learning, goal-directed and habitual behavior are referred to as model-based and 

model-free responses, respectively. An extensively used decision-making task, 

called the two-step task, allows capturing a balance between model-based and 

model-free systems, assuming humans use a mixture of these systems. 

However, a recent study demonstrated that clear instructions cause participants 

to mainly use model-based strategies. Moreover, previous research suggested 

that certain behaviors could be better understood at a different dimension of 

learning and decision-making. In the current study, participants performed a 

modified two-step task in which model-based strategies are more accurate than 

model-free ones, unlike the original task. Here, we examined whether participants 

also mainly use model-based responses with improved instructions, and how the 

trade-off between exploration and exploitation drives our behavior in the decision-

making process. The results of a model comparison showed that the subjects 

mainly used model-based control, explored more when the stimuli changed, and 

had high learning rates in our task. Furthermore, as our task was modified to 

maximize the benefits of model-based control, we did not find a relationship 

between model-based control and accuracy, but instead observed that more 

exploitation was related to higher accuracy. Our results suggest that the 

distinction between model-based and model-free learning is not sufficient to 

understand behavior in the two-step task. We address that future research should 

consider several factors when using the two-step task.   



 

Nederlandstalige Samenvatting 

Doelgericht en gewoontegedrag zijn fundamentele vormen van gedrag, maar hun 

relatieve belang blijft onduidelijk. Bij versterkend leren (reinforcement learning) 

worden doelgericht en gewoontegedrag respectievelijk modelgebaseerde en 

modelvrije reacties genoemd. Een veelgebruikte besluitvormingstaak, de 

tweestapstaak genoemd, maakt het mogelijk om een balans te vinden tussen 

modelgebaseerde en modelvrije systemen, ervan uitgaande dat mensen een 

combinatie gebruiken. Een recent onderzoek toonde echter aan dat duidelijke 

instructies ervoor zorgen dat deelnemers voornamelijk modelgebaseerde 

strategieën gebruiken. Bovendien suggereerde voormalig onderzoek dat 

bepaalde gedragingen beter begrepen worden op een andere dimensie van leren 

en besluitvorming. In de huidige studie voerden de deelnemers een aangepaste 

tweestapstaak uit waarin modelgebaseerde strategieën accurater zijn, in 

tegenstelling tot de oorspronkelijke taak. Hier hebben we onderzocht of de 

deelnemers ook voornamelijk modelgebaseerde reacties gebruiken met 

verbeterde instructies, en hoe de afweging tussen exploratie en exploitatie onze 

beslissingen aanstuurt. De resultaten toonden aan dat de proefpersonen 

voornamelijk modelgebaseerde controle gebruikten, meer exploreerden wanneer 

stimuli veranderden en een hoge leersnelheid hadden in onze taak. Bovendien, 

aangezien de taak werd aangepast om modelgebaseerde controle voordelig te 

maken, vonden we geen verband tussen modelgebaseerde controle en prestatie, 

maar zagen we dat meer exploitatie gerelateerd was aan betere prestatie. Onze 

resultaten laten zien dat het onderscheid tussen modelgebaseerd en modelvrij 

leren niet voldoende is om gedrag in de tweestapstaak te begrijpen. We 

bespreken dat toekomstig onderzoek verschillende factoren in overweging moet 

nemen bij het gebruik van de tweestapstaak. 
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Computational Model Comparison in the Two-Step Decision-Making Task
It is generally accepted that organisms can learn to choose actions in an

environment by experiencing outcomes of their actions (reinforcement and

punishments; i.e., instrumental learning; Skinner, 1938). The basic idea is that

rewarded actions are more likely to be taken in the future while punished

actions are less likely to be repeated (Thorndike, 1898). So, organisms decide

to take actions based on the learned associations between the outcomes of

these actions and the actions themselves. However, to learn this in an optimally

efficient manner, organisms must learn about much more than just associations

between stimuli, responses, and outcomes. For example, organisms can also

learn about their environment without experiencing immediate reward or

punishment, and this information can be used to make future decisions as well

(Gershman & Niv, 2010; Tolman, 1948).

While many organisms are able to carefully consider the possible

outcomes of their actions by using information they learned about their

environment, they often simply repeat the actions that previously resulted in a

desirable outcome. This is often referred to as a distinction between

goal-directed and habitual behavior. Reinforcement learning is a computational

framework used to distinguish goal-directed behavior from habitual behavior.

Goal-directed behavior is cognitively flexible behavior that leverages an internal

model of the environment. Therefore, in reinforcement learning, goal-directed

behavior is referred to as using model-based strategies; using strategies based

on a “model of the world” (Dayan & Niv, 2008). A model-based strategy uses

information learned from the environment in addition to the outcomes

associated with actions. Thus, model-based strategies are more accurate but

need a higher mental effort as well (Daw, Niv, & Dayan, 2005). On the other

hand, habitual behavior is referred to as using model-free strategies in

reinforcement learning (Dayan & Niv, 2008), because it simply uses outcome

associations of actions without taking the model of the environment into

account. Therefore, model-free strategies are less accurate but also less

effortful to use (Daw et al., 2005).
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For instance, imagine you want to buy a salad. One possibility is that you

choose to buy the salad from the supermarket you always go to to get your

groceries (i.e., a model-free strategy). However, another possibility is to choose

the shop two blocks away, in which you know the prices of the salad are lower

(i.e., a model-based strategy). So, by deliberating how the environment works

(e.g., prices for a salad at different places), organisms are able to make better

decisions. Instead, organisms often tend to repeat their previous decisions

although it was not the best option (e.g., going to the same supermarket).

Daw, Gershman, Seymour, Dayan, and Dolan (2011) introduced the

two-step task, a behavioral paradigm that operationalises the distinction

between the model-based and model-free systems. This paradigm has since

been extensively used, especially to make a distinction between the neural

substrates of the two systems (e.g., Doll, Duncan, Simon, Shohamy, & Daw,

2015; Lee, Shimojo, & O’Doherty, 2014; Piray, Toni, & Cools, 2016), and to

examine the effects of working memory capacity and stress on the balance

between the two systems (e.g., Otto, Gershman, Markman, & Daw, 2013; Otto,

Raio, Chiang, Phelps, & Daw, 2013; Radenbach, Reiter, Engert, Sjoerds,

Villringer, Heinze, Deserno, & Schlagenhauf, 2015). The two-step task is a

decision-making task designed to capture a parameter (by the use of

computational modeling) that represents the balance between model-free and

model-based learning. In other words, it allows capturing a parameter that

represents the balance between behavior using either simply outcome

associations or behavior that also takes a model of the task into account.

Daw et al. (2011) demonstrated that humans are not just pure model-free

or pure model-based learners, but seem to use a mixture of these two systems

during the two-step task. Using a mixture of the two systems actually means

that an agent learns the outcome associated with an action partially by using a

model of the task. Thus, the more an agent uses the model-free system, the

more the agent relies on actual observed outcomes to learn an action’s

expected outcomes. The more an agent uses the model-based system, the

more the agent also updates the expected outcomes of an action based on the

structure of the task.
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However, certain behaviors in the two-step task can not be understood

by simply making a distinction between model-based and model-free learning

(Collins & Cockburn, 2020; Daw, 2018). Therefore, the current study

investigated if there are other ways we can understand the behavior in the

two-step task. Before we explain how we examined this, we will first elaborate

on how the two-step task works and explain some of its limitations.

The Two-Step Task
The two-step task by Daw et al. (2011) is a decision-making task in which

each trial consists of two step phases. In the first-step phase of a trial,

participants have to choose between two stimuli (Figure 1A). Each stimulus in

the first-step phase has a probability of leading to one of two different

second-step phases. In each second-step phase, participants have to choose

again between two stimuli. In these second-step phases, each choice is

associated with a different probability of receiving a binary reward (i.e.,

receiving a reward or not). The reward probabilities of the stimuli in the

second-step phases fluctuate slowly and independently so that the participants

have to learn throughout the task (Figure 1B).

Importantly, each choice in the first-step phase has a common transition

(i.e., a 70% chance that it leads to one of the second-step phases) and a rare

transition (i.e., a 30% chance that it leads to the other second-step phase); the

common transition of one choice is the rare transition of the other choice. These

probability transitions of the first-step phase are crucial for dissociating between

model-free and model-based learning. For example, a model-free learner will

more likely choose a stimulus in the first-step phase that led to a reward in the

previous trial, regardless of the probability transition (common or rare transition)

because the model-free learner does not take the (transition) structure of the

task into account. In contrast, a model-based learner will less likely repeat a

decision in the first-step phase after a reward with a rare transition, because the

likelihood of leading to the previous second-step phase is higher when choosing

the other option in the first-step phase. In addition, the model-based strategy

will more likely repeat a decision after an unrewarded rare transition since that

choice will more likely be followed by the other second-step phase. With the
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latter in mind, the two-step task can estimate a weighting parameter that

establishes the balance between model-free and model-based learning of the

behavioral data.

A B

Figure 1. Design of the two-step task according to Daw et al. (2011). (A) Each

choice in the first-step phase (pink) has a common (70% of trials) transition and

a rare (30% of trials) transition to one of the two second-step phases (brown

and yellow). (B) The reward probability of each choice in both second-step

phases fluctuates gradually over time. Adapted from “When Does Model-Based

Control Pay Off?” by W. Kool, F. A. Cushman, and S. J. Gershman, 2016, PLoS

Computational Biology,​ ​12(​8), p. 3.

A Modified Two-Step Task
One of the motivations behind the two-step tasks is that more

model-based learning leads to more accurate performance. However, when

people have to make fast decisions, the flexible model-based system might be

too slow to be more accurate (Heitz, 2014; Keramati, Dezfouli, & Piray, 2011).

Additionally, people may consider cognitive demand as an effort cost and

evaluate this effort cost in relation to accuracy benefits in decision making

(Kool, McGuire, Rosen, & Botvinick, 2010). Therefore, it is optimal to use the

model-free system when the accuracy does not increase with more cognitive

effort or when the person needs to make a fast decision. Previous research

showed that model-based strategies were not more accurate in the original
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two-step task, meaning there is no trade-off between accuracy and demand

(Akam, Costa, & Dayan, 2015; Kool, Cushman, & Gershman, 2016), hence

people may not be sufficiently stimulated to use the model-based system. Kool

et al. (2016) noted five features in the original two-step task that reduce the

accuracy of the model-based system and introduced adjustments to the

two-step task to solve these issues (we will refer to this as the modified

two-step task).

The first feature in the original two-step task is that the probability of

receiving a binary reward (i.e., chance of getting a reward or not) is not

informative enough. One way to deal with this issue is to use a fluctuating

number of points instead of fluctuating reward probabilities. In this case, each

choice has a specific outcome (e.g., getting 4 points each time you choose that

option), which is more informative (i.e., after every decision, the participant can

observe the reward of their chosen option), and hence the accuracy of the

model-based system increases. Secondly, the original two-step task uses rare

transitions, meaning that the model-based choices sometimes lead to the

non-preferred second-step phases. The authors showed that the relationship

between the model-based strategy and accuracy increased when using

deterministic transitions in the task (i.e., a choice of the first-step phase always

leads to the same second-step phase). In third place, Kool et al. (2016) found

that the difference between model-based and model-free strategies only affects

the choices in the first-step phase. Thus, by removing the choices in the

second-step phase, the importance of the first-step phase’s choices increases,

which in turn increases the accuracy-demand trade-off. Their fourth statement is

that, in the original two-step task, the reward values always ranged between a

lower and an upper bound that made the reward values too close to each other.

Therefore, the outcomes may be too similar for both the model-based and

model-free strategies. By increasing the range of the reward values, we can

increase the differences between choices. And finally, the fifth factor is that the

model-free strategy can adapt fast enough to the outcomes, to be as accurate

as the model-based one, due to the slow changes in reward values. Using

larger reward changes can solve this issue.



6

The Current Study
The current study used a task paradigm based on these changes

proposed by Kool et al. (2016), so that our paradigm also includes an

accuracy-demand trade-off. In our modified two-step task, participants had to

obtain as many points (treasure coins) as possible. In each trial, participants

were randomly presented with one of two possible first-step phases (i.e., two

different states; Figure 2A). Each state of the first-step phase had a different

pair of animals as stimuli, from which participants had to choose. Each animal

deterministically led to a treasure chest (a second-step phase without choice

options) that contained a specific number of points (reliable outcome; no reward

probability).

Importantly, one of the animals in one state always led to the same

number of points as one of the animals in the other state (Figure 2). The latter

feature is of importance to dissociate between model-based and model-free

strategies. For instance, a model-free learner will update the expected reward

for each animal separately, while a model-based learner can also update the

expected reward of the coupled animal in the other state as the model-based

learner takes the structure of the task into account and, thus, generalizes the

expected rewards over the two states.

Moreover, the outcome in our modified task could range between 0 and

10 points (Figure 2B). And unlike Kool et al. (2016), we used reward

fluctuations of at least 3 points (large reward changes) instead of a Gaussian

drift (i.e., random fluctuations over trials that vary according to a normal

distribution), to maximize the competitive advantage of the model-based

system. The current study used this modified two-step task to examine how

participants behave in this two-step task and what makes a participant a better

performer. We will elaborate on our research questions in the following sections.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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A B

Figure 2. Task paradigm. (A) The two different states in which the participants

had to select one of the animals. After choosing an animal, a treasure chest

appeared, which the participants had to open to receive their reward (coins). A

similar image was presented during the instructions of the task. (B) The reward

fluctuations throughout the task. Each color represents the changing reward

associated with one animal for each state.

How Model-Based Are Humans in the Two-Step Task?
To analyze how participants behave in the modified two-step task, we

fitted computational models to a dataset and performed a model comparison

analysis to see which computational model describes the behavior best. We

had three main research questions for the model comparison. The first question

was whether the participants used a mixture of model-based and model-free

strategies, or mainly used model-based or model-free strategies in our task.

Daw et al. (2011) and subsequently many others (e.g., Kool et al., 2016;

Piray et al., 2016) found that people use a mixture of model-based and

model-free strategies in the two-step task. Recently, however, da Silva and

Hare (2020) demonstrated that when the instructions before the two-step task

explicitly explains all the features of the task, the use of model-based strategies

is much higher than for the common instructions used in earlier studies.

Moreover, da Silva and Hare (2020) found that some behavior in the two-step
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task can be misinterpreted as model-free when it may actually be a

model-based strategy using an incorrect model of the environment (e.g., wrong

idea about the features of the task). In general, their findings suggest that

participants mainly use model-based strategies in the two-step task.

In the current study, participants also received specific instructions about

the task structure. This way, the participants in our task were also aware of the

correct model of the task environment and, therefore, it is possible that

participants in our task would show mostly model-based responses as well.

Unlike the study by da Silva and Hare (2020), we used the modified two-step

task. Kool et al. (2016) demonstrated that the modified task not only increases

the benefits of a model-based learner, but that it also made participants rely

more on model-based strategies. Therefore, we predicted that participants in

our modified task will mainly use model-based strategies. To test this, we used

a model-comparison approach to see if the data was better fitted by a hybrid

model (i.e., computational model that still uses the balance parameter to

arbitrate between model-based and model-free learning) or a pure model-based

learner (i.e., computational model that only uses model-based learning). For

completeness, we also compared the latter computational models with a pure

model-free learner (i.e., computational model only using model-free learning).

The Exploration-Exploitation Trade-Off in the Two-Step Task
For our second research question, we focussed on a different dimension

of learning and decision-making than the one between model-based and

model-free learning, that might explain some of the behavior in the two-step

task. As we previously noted, da Silva and Hare (2020) found that when the

balance parameter of the two systems indicates that participants use less

model-based strategies, the participants are not necessarily more model-free.

Instead, their behavior might actually deviate from what is expected from a

model-based learner due to the use of an incorrect model of the environment.

Furthermore, Akam et al. (2015) demonstrated that model-free responses can

be misclassified as being model-based due to exploiting a regularity in the task

structure. In other words, certain behaviors in the two-step task are not

determined by the dichotomy between model-based and model-free systems
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(Collins & Cockburn, 2020; Daw, 2018) but can be misclassified as such, which

limits our understanding of what actually happens during this task. Therefore,

we decided to also look at a different dimension than the one between

model-based and model-free learning. Particularly, we focussed on a dimension

involved in reward-based decision-making, namingly exploration-exploitation

trade-off.

In reinforcement learning, the parameter inverse temperature is typically

introduced to represent the exploration-exploitation trade-off (Sutton & Barto,

2018). Exploitation refers to an agent selecting a choice that (s)he considers to

be the most optimal choice, while exploration refers to selecting another choice

because the agent might want to learn if the other option is better or not.

Therefore, finding a balance between exploration and exploitation is important

for making optimal decisions, because too much exploitation makes it

impossible to learn the true outcome of other options and too much exploration

makes decisions too random (i.e., less goal-directed). So, exploration is more

important in unknown tasks, while exploitation is better when the environment is

already known.

The trade-off between exploration and exploitation is especially important

for adapting to changing environments, such as outcomes changing over time.

However, whether someone will explore or exploit depends on many different

factors (Cohen, McClure, & Yu, 2007). One possible factor that may affect this

trade-off is the belief that an outcome change occurs more often when

something else changes in the environment. Therefore, we were interested in

whether an environmental change in our task, other than an outcome change,

prompts people to explore or exploit more.

In our task, the outcomes of the choices fluctuated over time, so it was

preferable for the subjects to explore from time to time to see whether or not the

outcome of the other choice had changed to a better one. Another feature in our

task, which was particularly important for model-based learning, was that there

were two different environments with different stimuli (herein called states)

alternating over time; the stimuli could either stay the same or change to

different stimuli as in the previous trial. However, it is possible that people
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associate these changing stimuli with outcome changes, and that they base

their decisions on the incorrect assumption that outcome changes accompany

stimuli changes. Thus, the current study investigated if participants used a

different exploration-exploitation trade-off when the state changed than when

the state stayed the same. We predicted here that participants explore more

after a state change because a state change might evoke a belief of an

outcome change.

High Learning Rates for Reliable Outcomes
Our third research question was how fast participants learn the outcomes

associated with the choices in our two-step task. We predicted that participants

would immediately learn the correct outcome associated with a decision in our

task, because our task used completely reliable outcomes instead of the

outcome probabilities used in the original two-step task; hence it is optimal to

have a high learning rate. In reinforcement learning, a learning rate parameter

captures the rate at which participants learn the value of a choice based on the

previous perceived outcome (Sutton & Barto, 2018). Thus, we examined if this

learning rate parameter in our task is better fixed on its maximum value or not.

Relationships Between Parameters and Accuracy
Furthermore, we had two more research questions involving the

relationships between individual differences in behavior and optimal

decision-making. Kool et al. (2016) modified the two-step task so that

model-based control would increase accuracy and demonstrated that this was

the case in the modified task. Therefore, we were interested in how a better

performer actually behaves in our two-step task. As our task was also modified

to maximize the benefits of model-based control, our fourth research question

was whether individuals with higher model-based control would also have

higher accuracy scores in our task.

Our fifth research question was how the trade-off between exploration

and exploitation is related to optimal decision-making in our task, because the

exploration-exploitation trade-off plays an important role in selecting optimal

decisions and some of its tendencies to explore or exploit can be suboptimal

(Sutton & Barto, 2018). Therefore, it might be interesting to see if the tendency
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to explore or exploit is simply in general correlated to accuracy, or whether

instead the exploration-exploitation trade-offs when a state changed or stayed

the same have a different relationship with accuracy. These correlations might

tell us something about how more optimal decision-makers behave in the

two-step task.
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Method
Participants

Our sample size consisted of 275 college students performing a two-step

task. This dataset was collected by Prof. Dr. Qi Chen and Prof. Dr. Tingyong

Feng at Southwest University in Chongqing, China. In total, twelve participants

were excluded from the data analysis. Two subjects were excluded because

they did not complete the whole experiment, resulting in a large amount of

missing data for these subjects. The other ten participants were excluded

because their accuracy scores (i.e., number of trials choosing the optimal

choice) were more than 2 standard deviations below the mean (i.e., scores

below 61% accuracy). This leaves us with a total sample size of 263

participants (189 females, 74 males; mean age: 20.07; range: 17–30 years of

age). Each participant received 25 yuan (approximately €3.25) for their

participation. The data exclusion and the analysis of demographic information

was carried out using R (version 4.0.5)1.

Behavioral Task
The participants performed a two-step task on a computer in a

laboratory. The goal of the two-step task was to obtain as many points (treasure

coins) as possible. This task had two states of the first-step phase (Figure 2A),

each with two different animals of which the participants had to choose one on

every trial. The participants could select an animal by pressing the “F” or “J”

button on the keyboard of a computer. The time limit of the response was 2500

ms. Immediately after choosing an animal, a treasure chest appeared

representing the second-step phase. To obtain the reward of the selected

stimulus in a state, the participants were instructed to press the spacebar on the

keyboard when the treasure chest was presented. Here, the time limit of

responding was 3500 ms. Each chosen animal deterministically led to an

outcome within an outcome range of 0 to 10 points.

Importantly, the reward of each animal in a state is coupled to the reward

of one of the animals in the other state (Figure 2). For example, stimulus A of

one state and stimulus C of the other state always had the same reward, while

1 All scripts for the data analysis can be found on the following link:
https://github.ugent.be/fdspiege/Thesis_2021.git
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stimulus B had the same reward as stimulus D. This is an important feature of

the task that allows us to dissociate between the use of model-free and

model-based strategies. For instance, the model-based system uses the

structure of the task (i.e., the coupling between pairs of stimuli in different

states) by also updating the expected reward of the other animal after seeing

the shared reward of an animal in the other state. In contrast, the model-free

system only uses the experience of a received reward, therefore only updating

the expected reward of the chosen animal and not generalizing the expected

reward to the linked animal in the other state. Thus, the model-based system

updates the expected reward of the stimuli more efficiently, resulting in a higher

total score.

To encourage learning throughout the task, the corresponding reward of

each choice changed eight times per 100 trials with a minimal reward shift of 3

points and had a standard deviation of at least 3 (Figure 2B). These reward

changes were statistically independent of each other, except that the reward

transitions could never occur simultaneously and the choices in a state never

had the same rewards (so there always was an optimal choice). Moreover, the

reward fluctuations for stimulus A and C in the first half of the experiment were

mirrored in time and assigned to stimulus B and D in the second half of the

experiment, and vice versa. This ensured that the stimuli could total the same

number of points throughout the task, while still keeping the predictability of the

rewards minimal. In addition, the reward fluctuations in the task were generated

independently for each participant.

Before the experiment started, the participants performed a practice

block of ten trials. Then an instruction screen appeared explicitly explaining that

there are two treasure chests, of which the amount of treasure changes

throughout the task, but each animal always goes to the same treasure chest

as one of the other animals. After the instructions, the participants performed

another practice block of ten trials. The practice blocks had different stimuli (i.e.,

different animals) than in the experimental block. This training phase allows

participants to learn about different aspects of the task (such as range of

rewards, reward changes, and shared rewards between stimuli in different
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states) without generalizing the expected rewards of these stimuli to the stimuli

in the experimental phase. The experimental phase consisted of 400 trials in

total.

Computational Models
First of all, we used a Rescorla-Wagner update rule (Rescorla & Wagner,

1972) to capture the model-free and model-based learner. The model-free

learner updates the expected reward of a specific stimulus (A, B, C, or D)𝑉
𝑀𝐹

based on the difference between the previous expected reward and the new

obtained outcome of that stimulus. For example, the model-free learner

chooses animal A, which the model-free learner predicts to have a reward of

four coins based on the previous trials. After selecting animal A, a reward of

(say) ten coins is obtained. By subtracting the previous expected reward (4

points) from the new outcome (10 points) we get a discrepancy of six which is

called the reward prediction error. Additionally, there is also a learning rate

parameter which has a value between 0 and 1. This parameter determinesα

how fast the algorithm will learn. If the learning rate parameter is equal to 0, it

means that the agent is not learning anything about the reward of a stimulus. If

the learning rate is equal to 1, the agent completely changes the expected

reward of the stimulus into the last obtained outcome, , of the stimulus itself.𝑂

The reward prediction error can be used to compute the new expected reward,

, by first multiplying it with the learning rate parameter, which we then𝑉
𝑀𝐹

(𝐴
𝑡
)

add up with the previous expected reward, . The expected reward of a𝑉
𝑀𝐹

(𝐴
𝑡−1

)

model-free learner can be computed as follows:

(1)𝑉
𝑀𝐹

(𝐴
𝑡
) = 𝑉

𝑀𝐹
(𝐴

𝑡−1
) + α * (𝑂 − 𝑉

𝑀𝐹
(𝐴

𝑡−1
))

As previously explained, the model-free learner updates the expected

reward for each stimulus separately. In contrast, the model-based learner can

also update the expected reward of the coupled animal from the other state. For

example, the expected reward of animal A, , can be generalized to𝑉
𝑀𝐵

(𝐴
𝑡
)
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animal C, . Thus, the expected reward of a model-based learner can be𝑉
𝑀𝐵

(𝐶
𝑡
)

computed as follows:

(2)𝑉
𝑀𝐵

(𝐴
𝑡
) = 𝑉

𝑀𝐵
(𝐴

𝑡−1
) + α * (𝑂 − 𝑉

𝑀𝐵
(𝐴

𝑡−1
))

and

(3)𝑉
𝑀𝐵

(𝐶
𝑡
) = 𝑉

𝑀𝐵
(𝐴

𝑡
) 

We assume that these expected rewards are independently computed

and are combined to arrive at a mixed value, upon which the behavior is based.

This was done by a hybrid account which computes a parameter that(𝑤)

captures the balance between the model-based and model-free learner, in

which the expected rewards of the two systems are weighted by the parameter

for each stimulus. By capturing the balance between the two learning systems,

the expected reward of an agent can be computed as follows:

(4)𝑉(𝐴
𝑡
) = 𝑤 * 𝑉

𝑀𝐵
(𝐴

𝑡
) + (1 − 𝑤) * 𝑉

𝑀𝐹
(𝐴

𝑡
)

where is also bounded between 0 and 1. When , we have a pure𝑤 𝑤 =  0

model-free learner. When , we have a pure model-based learner. Thus,𝑤 =  1

a higher value of means we have a stronger reliance on a model-based𝑤

system, whereas a lower value is associated with a higher degree of model-free

strategies. Note here that the expected rewards for each stimulus had an initial

value of 5 (i.e., in the beginning of the task), as the rewards could range

between 0 and 10.

Furthermore, we compute the decisions by using a softmax rule that

translates the expected rewards of an agent to probability of choice (e.g.,

probability of picking animal A instead of animal B):

(5)𝑃
𝑡
(𝐴) =  

𝑒𝑥𝑝(β*𝑉(𝐴
𝑡
))

𝑒𝑥𝑝(β*𝑉(𝐴
𝑡
)) + 𝑒𝑥𝑝(β*𝑉(𝐵

𝑡
))  



16

where is the inverse temperature parameter that reflects theβ

exploration-exploitation trade-off. When , the decisions tend towardβ → 0

completely random (i.e., exploratory) choices. When , the decisions tendβ → ∞

toward fully exploiting one’s current knowledge, and thus toward choosing the

stimulus with the highest expected reward.

Furthermore, people sometimes tend to repeat their responses (e.g.,

perseveration of the same button press) or repeat the same choices (e.g.,

choosing the same stimulus) regardless of the reward outcomes. Kool et al.

(2016) introduced two “stickiness” parameters in the softmax decision rule,

which represent an agent's tendency to repeat the same choices (referred to as

stimulus stickiness) and to repeat the same responses (referred to as response

stickiness) independent of expected rewards. Based on Kool et al. (2016), we

also introduced these parameters in our models, because they may capture

some of the tendencies in our task that were not reward-based. In this case, the

softmax decision rule can be computed as follows:

(6)𝑃
𝑡
(𝐴) =

 𝑒𝑥𝑝(β*[𝑉(𝐴
𝑡
) + π*𝑟𝑒𝑝(𝐴) + ρ*𝑟𝑒𝑠𝑝(𝐴)])

𝑒𝑥𝑝(β*[𝑉(𝐴
𝑡
) + π*𝑟𝑒𝑝(𝐴) + ρ*𝑟𝑒𝑠𝑝(𝐴)]) + 𝑒𝑥𝑝(β*[𝑉(𝐵

𝑡
) + π*𝑟𝑒𝑝(𝐵) + ρ*𝑟𝑒𝑠𝑝(𝐵)])

where the variable represents whether (= 1) or not (= 0) the stimulus A𝑟𝑒𝑝(𝐴)

is the same as the previously chosen stimulus. This variable is weighted𝑟𝑒𝑝(𝐴)

to the parameter stimulus stickiness , which captures the extent to which theπ

agent chooses the same stimulus or not between two consecutive trials. This

parameter is added to the expected reward . When , the agent is𝑉(𝐴
𝑡
) π >  0

more likely to choose the same stimulus. When , the agent is more likelyπ <  0

to switch choices between two trials. The variable represents whether𝑟𝑒𝑠𝑝(𝐴)

(= 1) or not (= 0) the position of stimulus A (i.e., left or right) requires the same

response as the previously made button press. Here, is weighted by𝑟𝑒𝑠𝑝(𝐴)

response stickiness , which captures the extent to which the agent presses theρ

same button or not, and is then also added to the expected reward . When𝑉(𝐴
𝑡
)

, the agent is more likely to respond with the same button press. Whenρ >  0

, the agent is more likely to switch button presses. In other words, byρ <  0

including these two stickiness parameters, the probability of choosing stimulus
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A also depends on whether or not stimulus A was selected in the previous trial

and selecting this stimulus requires the same button press previously made or

not.

As we explained in the introduction, we were interested in whether the

trade-off between exploration and exploitation differed when a state changed

between trials compared to this trade-off when the state remained the same as

in the previous trial. For this, we also introduced separate inverse temperatures

in the softmax decision rule: one for when the state changes (i.e., different

animals than in the previous trial), , and another for when the state is theβ
𝐶ℎ𝑎𝑛𝑔𝑒

same as in the previous trial, . We will refer to these two inverseβ
𝑆𝑎𝑚𝑒

temperatures as the dual inverse temperatures. Note that the trials with different

states for inverse temperature also includes the first trial of theβ
𝐶ℎ𝑎𝑛𝑔𝑒

experiment, assuming the state has changed even though there was no

previous trial. Additionally, we first checked if the number of trials for each

inverse temperature were relatively similar. Even though a paired samples t-test

revealed that the number of trials for (M = 203.24, SD = 9.50) wereβ
𝐶ℎ𝑎𝑛𝑔𝑒

significantly higher than the number of trials for (M = 195.18, SD = 9.51),β
𝑆𝑎𝑚𝑒

t(262) = 6.96, p < 0.001, this difference was only small: about eight trials out of

the 400. Therefore, the dual inverse temperatures can be estimated based on a

relatively similar number of trials.

Model Fitting and Model Selection
All trials on which participants reached the time limit to respond (i.e., not

selecting a stimulus or not opening the chest) were first excluded (an average

of 0.4% of all trials). No participants were excluded from the data analysis due

to their number of missed responses, as the maximum number of missed

responses was 25 trials (6.25% of 400 trials). For the model fitting, we used the

mfit toolbox (https://github.com/sjgershm/mfit; Gershman, 2016) running on

MATLAB, version R2020b (The Math Works, Inc., http://www.mathworks.com/).

We estimated the free parameters of each model for each subject

separately to maximize the log-likelihood of the data. To estimate the

parameters, we used the maximum a posteriori (MAP) estimate (i.e., the mode

https://github.com/sjgershm/mfit
http://www.mathworks.com/
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of the posterior distribution) with empirical priors (i.e., prior distributions

estimated from another dataset), based on Gershman (2016). Using prior

distributions can help with the identifiability of models, which is a critical factor

when parameter estimates need to be interpreted. Models are unidentifiable

when different combinations of parameter settings yield the same likelihoods

(e.g., different settings of learning rate and inverse temperature having

equivalent likelihoods). Specifically, we used a gamma distribution (i.e., a

continuous probability distribution with a shape parameter and scale

parameter), ∼ Gamma(4.83, 0.73), as prior distribution of the inverseβ

temperature when no stickiness parameters were introduced and, ∼β

Gamma(4.82, 0.88), when at least one of the stickiness parameters was

included. The inverse temperatures always had lower and upper bounds of 0

and 50, respectively. The stickiness parameters had prior distributions, , ∼π ρ

𝒩(0.15, 1.42), with boundaries -5 and 5. Both learning rate parameter andα

balance parameter had uniform priors, i.e. prior distributions of equal𝑤

probability for any value between the boundaries 0 and 1. For each participant,

we used random initializations for the optimization of all parameters, and

repeated this optimization process ten times. We then selected the parameter

estimates from the optimization with the maximum log-likelihood of these ten

iterations.

For the model comparison, we used both Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) to select the best-fitting models.

AIC and BIC are both based on the likelihood, but include a penalty term for the

number of model parameters. BIC has a stronger penalty term (i.e., is more

conservative) than AIC. These penalty terms are used to avoid overfitting. The

log-likelihood is by definition at least as good (i.e., higher log-likelihoods) for

nested models with more parameters, which are not necessarily better models

as they may be worse in predicting new datasets. Therefore, we decided to use

AIC and BIC. Here, the best model is considered to be the one with the lowest

AIC or BIC, indicating there is a good balance between a high likelihood and a

low complexity.
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First, we used AIC and BIC to compare models with or without the

stickiness parameters and (i.e., both, one or none of these parameters), toπ ρ

see if we would include these parameters in the models in further model

comparisons. We did this based on the method of Kool et al. (2016) and

because the stickiness parameters were not the main focus of our research

questions.

Secondly, we compared models using AIC and BIC based on three

different aspects. The first aspect we wanted to look at was whether the

participants were fully model-based, fully model-free, or instead used a mixture

of the two systems (i.e., hybrid model). In this case, we compared models in

which parameter was fixed to 1, fixed to 0, or a free parameter. Here, we𝑤

predicted that a pure model-based model would be a better fit to our data,

because the instructions in our task also explicitly explained the features of the

task as in the study by Silva and Hare (2020). As a second aspect, we also

compared models to examine whether the inverse temperature is better off

being split up into and ; one when the state changed and one whenβ
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

the state stayed the same. Here, we would like to note again that when a state

changed, simply different stimuli were presented in that trial than in the previous

trial, and that these state changes were independent of the reward changes.

Thus, the participants had to map the expected rewards of the stimuli in one

state to the other when a state changed. By introducing these dual inverse

temperatures, we investigated if a different exploration-exploitation trade-off

was used when the state changed or stayed the same. It is possible that the

changing states have an effect on participants’ beliefs about the reward

changes. Thus, we predicted that participants explore more when a state

changes than when it stays the same, as a changing state may elicit higher

belief of reward changes. The third aspect we looked at was whether or not the

learning rate should be fixed to 1. In our task, the reward outcome of aα

stimulus was completely reliable; choosing a stimulus deterministically led to a

specific reward (e.g., stimulus A has a reward of 7 points). Therefore,

participants should be able to immediately learn the correct value of the reward

that they perceived (i.e., a high learning rate).
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Relations Between Parameters and Accuracy
We also examined individual differences between the participants, using

Python, version 3.7.10 (Python Software Foundation, https://www.python.org/).

As model-based learners are able to use environmental information more

efficiently to learn about the rewards of stimuli (e.g., ),𝑉
𝑀𝐵

(𝐶
𝑡
) = 𝑉

𝑀𝐵
(𝐴

𝑡
) 

model-based learners may in general be more accurate in making decisions

than model-free learners. However, previous research demonstrated that

model-based learners in the original two-step task do not actually have a higher

accuracy rate (Akam et al., 2015; Kool et al., 2016). To remedy this, Kool et al.

(2016) adjusted the two-step task so that people who used a model-based

strategy, would also have accuracy. The task in our study was based on the

adjustments created by Kool et al. (2016). Unlike Kool et al. (2016), we also

worked with large reward fluctuations (i.e., minimum reward shifts of 3 points)

rather than a Gaussian drift (i.e., random fluctuations according to a normal

distribution), to maximize the competitive advantage of the model-based

system. Therefore, we also investigated whether participants who used more

model-based strategies would have higher accuracy scores in our task. For this

purpose, we correlated the balance parameter with accuracy. For the𝑤

accuracy scores, we specifically looked at the percentages of trials in which

optimal decisions were made (i.e., choosing the animals with the highest

rewards) and not the total points obtained. We chose the amount of optimal

decisions because the possible number of points that could be earned were

randomly assigned to participants and did not particularly represent the

accuracy of a participant.

In addition, we were also interested in the relationship between

exploration-exploitation trade-off and accuracy, because this trade-off is

important for making optimal decisions (Sutton & Barto, 2018). Here, we were

particularly interested in whether there is simply a general relationship between

the tendency to explore or exploit and optimal decision-making, or whether

instead the exploration-exploitation trade-offs in case a state changed or stayed

the same had a different relationship with accuracy. Examining the latter might

tell us something about how more optimal decision-makers behave in our task.
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We first correlated the individual inverse temperatures with the accuracyβ

scores, to see if the exploratory tendency of participants are in general related

to the amount of making optimal decisions. Then, we tested whether the dual

inverse temperatures and had a different relationship withβ
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

accuracy scores. Here, we correlated accuracy with , , the mean ofβ
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

the two inverse temperatures (i.e., ), and differences(β
𝐶ℎ𝑎𝑛𝑔𝑒

+ β
𝑆𝑎𝑚𝑒

)/2

between the two inverse temperatures (i.e., ). In our task,∆β = β
𝐶ℎ𝑎𝑛𝑔𝑒

− β
𝑆𝑎𝑚𝑒

the stimuli deterministically led to a specific number of points and the reward

changes occured only eight times per 100 trials for each choice. Moreover,

there were only two options to choose from. So, exploring the other choice,

instead of the one expected to be the optimal choice, can more often lead to

suboptimal decisions. Therefore, we predicted that more exploitation (higher

inverse temperatures) in general would lead to more optimal decisions (higher

accuracy scores).
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Results
Model Fitting and Model Selection

Based on Kool et al. (2016), we first tested whether models including

response and stimulus stickiness generated a better fit. Here, both AIC and BIC

were compared among four models; models with both stickiness parameters,

one of either, or none. This already allows for including or excluding these

stickiness parameters in further model comparisons. AIC and BIC both penalize

for the number of parameters, the difference is that AIC is less conservative.

According to both AIC and BIC, the model with both stickiness parameters was

a better fit to the data (i.e., lowest values for AIC, BIC, and the negative

log-likelihood; Table 1).

Table 1
Comparing models for inclusion of response and stimulus stickiness

parameters.

Model Parameters BIC AIC - LL % best

BIC

% best

AIC

% best

LL

Two stickiness parameters 𝑤,  α,  β,  π,  ρ 41598 36355 16862 100% 100% 100%

No response stickiness 𝑤,  α,  β,  π 67738 64543 30719 0% 0% 0%

No stimulus stickiness 𝑤,  α,  β,  ρ 49822 45627 21762 0% 0% 0%

No stickiness parameters 𝑤,  α,  β 84375 81229 39825 0% 0% 0%

Note. The last three columns represent how many participants on an individual

level had a better BIC, AIC, or LL (log-likelihood) for each model.

Subsequently, we compared the other models by already including both

stickiness parameters. Here, we analysed three different aspects. The first one

is whether the inclusion of a free parameter (i.e., hybrid model) or fixing to𝑤 𝑤

either 1 (i.e., pure model-based) or 0 (i.e., pure model-free) was a better fit.

Secondly, we investigated if there is a difference in the exploration-exploitation

trade-off between states that stayed the same and states that changed. To do

so, we also introduced dual inverse temperature parameters for different or
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same states; one for trials in which the previous stimuli were different stimuli

than the current one ( ) and one for trials in which the same stimuli wereβ
𝐶ℎ𝑎𝑛𝑔𝑒

repeated ( ). And finally, we also tested whether the learning rate is betterβ
𝑆𝑎𝑚𝑒

α

fixed to 1. We tested this because a stimulus in our task deterministically led to

a specific number of points, which makes the stimulus outcome completely

reliable, and it is better to have a high learning rate when a reward is completely

reliable.

Here, we also compared both AIC and BIC of each model. According to

the AIC, the best fit was the pure model-based model with a fixed learning rate

to 1 and dual inverse temperatures (Table 2). Although a large number of the

individual AICs (30%) fitted better with the pure model-based model with fixed

learning rate to 1, most of the individual AICs (42.2%) were better for this latter

model with dual inverse temperatures. Based on the BIC, a pure model-based

model with a fixed learning rate to 1 was the best fit. For most participants

(71.5%), the individual BIC was at lowest (best) for this pure model-based

model with fixed learning rate to 1. However, in almost a quarter of the BIC

cases (23.2%), the better fit was for the pure model-based model with fixed

learning rate to 1 and dual inverse temperatures. These results indicate that, in

our two-step task, the participants mainly used model-based strategies and

quickly learned the correct reward values of the stimuli after obtaining them.

Moreover, the inverse temperature is better off being split up into andβ
𝐶ℎ𝑎𝑛𝑔𝑒

according to the AIC. Therefore, we decided to further explore the dualβ
𝑆𝑎𝑚𝑒

inverse temperatures to see if different exploration-exploitation trade-offs were

used when a state changed or not.
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Table 2
Comparing the hybrid, pure model-based, and pure model-free models with or

without a fixed learning rate to 1 and dual inverse temperatures.

Model Parameters BIC AIC - LL % best

BIC

% best

AIC

% best

LL

Hybrid 𝑤,  α,  β,  π,  ρ 41598 36355 16862 0% 0% 4.2%

Hybrid + fixed LR (α = 1) 𝑤,  β,  π,  ρ 40161 35966 16931 1.1% 6.5% 0.8%

Hybrid + dual IT 𝑤,  α,  β
1
,  β

2
,  π,  ρ 42156 35864 16354 0% 0% 40.7%

Hybrid + fixed LR (α = 1) & dual IT 𝑤,  β
1
,  β

2
,  π,  ρ 40735 35492 16431 0% 5.7% 23.6%

MB (w = 1) α,  β,  π,  ρ 40158 35964 16930 1.1% 5.3% 3%

MB (w = 1) + fixed LR (α = 1) β,  π,  ρ 38823 35677 17049 71.5% 30% 1.1%

MB (w = 1) + dual IT α,  β
1
,  β

2
,  π,  ρ 40779 35535 16453 0% 8.4% 19%

MB (w = 1) + fixed LR (α = 1) & dual IT β
1
,  β

2
,  π,  ρ 39417 35223 16559 23.2% 42.2% 7.2%

MF (w = 0) α,  β,  π,  ρ 46414 42220 20058 0% 0% 0.4%

MF (w = 0) + fixed LR (α = 1) β,  π,  ρ 44937 41791 20106 3% 1.1% 0%

MF (w = 0) + dual IT α,  β
1
,  β

2
,  π,  ρ 47799 42556 19963 0% 0% 0%

MF (w = 0) + fixed LR (α = 1) & dual IT β
1
,  β

2
,  π,  ρ 46302 42108 20002 0% 0.8% 0%

Note. The last three columns represent how many participants on an individual

level had a better BIC, AIC, or LL (log-likelihood) for each model. MB stands for

pure model-based, MF for pure model-free, LR for learning rate, and IT for

inverse temperature. In the parameters column, and represent andβ
1

β
2

β
𝐶ℎ𝑎𝑛𝑔𝑒

.β
𝑆𝑎𝑚𝑒

To further test if the tendency to explore changed based on whether a

state changed or not, we examined whether the dual inverse temperatures were

significantly different from each other. For this analysis, we selected the model

which had the best fit according to the AIC. Here, we first obtained the average

estimate of each parameter and the average standard error (SE) of each

parameter. To calculate the SEs of the parameters, we used the second
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derivatives of each likelihood based on Hessian matrices (also returned by the

mfit toolbox in MATLAB) and measured the square root of the diagonals of

minus the inverse of the Hessian matrices (Verguts & Storms, 2004). Note in

Table 3 that the estimates of all parameters, in the model with the best AIC, are

relatively precise (i.e., relatively low SEs).

Table 3
The mean estimates and SEs of each parameter for each model interpreted.

Model with best

AIC

Model without

stimulus stickiness

Model with

parameter 𝑤

Model with best

BIC

Parameters Mean SE Mean SE Mean SE Mean SE

β
𝐶ℎ𝑎𝑛𝑔𝑒 4.53 1.81 4.57 0.82 - - - -

β
𝑆𝑎𝑚𝑒 2.88 1.77 5.66 1.07 - - - -

ρ 1.79 1.38 1.58 0.59 1.68 1.24 1.71 2.53

π 1.72 1.35 - - 1.36 1.56 1.39 2.85

β - - - - 4.06 1.95 3.94 3.08

𝑤 - - - - 0.87 0.33 - -

Note. The SEs of the parameters are based on the Hessian matrices.

Subsequently, we tested if the normality assumption holds for the two

inverse temperature parameters and , to choose whether to use aβ
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

parametric or nonparametric test. A Shapiro-Wilk test (Shapiro & Wilk, 1965)

revealed a non-normal distribution for both parameters , W(263) = .94, pβ
𝐶ℎ𝑎𝑛𝑔𝑒

< .001, and , W(263) = .95, p < .001 (Figure 3). Therefore, we decided toβ
𝑆𝑎𝑚𝑒

perform a nonparametric Wilcoxon signed-rank test (Wilcoxon, 1945) to see if

the dual inverse temperature parameters were significantly different from each

other.
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A B

Figure 3. Frequency distributions of parameters (A) and (B).β
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

The Wilcoxon signed-rank test revealed that parameter (Mdn =β
𝐶ℎ𝑎𝑛𝑔𝑒

4.41) was significantly higher than parameter (Mdn = 2.76), z = 1,246.00,β
𝑆𝑎𝑚𝑒

p < .001. This would suggest that the participants exploited more after a state

changed than when a state stayed the same as in the previous trial. This is

inconsistent with our prediction that exploration should be higher when a state

changes, because it may evoke the idea that a reward value also changed.

However, it is reasonable to think that the stimulus stickiness parameter

might influence this result. Repeating the same choice and exploitation showπ

similar behavioral responses (i.e., they both represent choosing the same

stimulus), and choice repetition is only possible when the same state occured,

because only then can the same stimulus be selected. So, the stimulus

stickiness parameter can only apply to the same states. Therefore, it is possible

that the stimulus stickiness specifically interfered with inverse temperatureπ

, and resulted in being significantly lower than in this model.β
𝑆𝑎𝑚𝑒

β
𝑆𝑎𝑚𝑒

β
𝐶ℎ𝑎𝑛𝑔𝑒

In other words, the stimulus stickiness parameter may have partially absorbed

exploitation from the inverse temperature in the same states. Therefore, we

decided to also perform a post-hoc analysis, exploring whether a similar

difference between the dual inverse temperatures appears when the stimulus

stickiness parameter is excluded; a model with dual inverse temperatures and

only response stickiness. We see for this model without stimulus stickiness that
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the estimates of each parameter are relatively accurate (i.e., relatively low SEs;

Table 3). However, it is important to note here that this model without stimulus

stickiness yields a worse fit based on both BIC (a goodness-of-fit estimation of

48,146) and AIC (a goodness-of-fit estimation of 45,000) than almost every

model we compared.

Also here, we decided to use a non-parametric test, because a

Shapiro-Wilk test revealed a non-normal distribution for both parameters β
𝐶ℎ𝑎𝑛𝑔𝑒

, W(263) = .95, p < .001, and , W(263) = .97, p < .001 (Figure 4).β
𝑆𝑎𝑚𝑒

Interestingly, a Wilcoxon signed-rank test revealed that parameter (Mdnβ
𝐶ℎ𝑎𝑛𝑔𝑒

= 4.41) was significantly lower than parameter (Mdn = 5.57), z = 4,815.00,β
𝑆𝑎𝑚𝑒

p < .001, in the model without stimulus stickiness. This is consistent with our

predictions and suggests that the stimulus stickiness interfered with theπ

inverse temperature parameter .β
𝐶ℎ𝑎𝑛𝑔𝑒

A B

Figure 4. Frequency distributions of parameters (A) and (B) in theβ
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

model without the stimulus stickiness parameter.

One possible explanation for this effect of state transition (i.e., changed

stimuli) on exploration could be that the participants believed a reward is more

likely to change after a state changed than when the state stayed the same.
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Therefore, we performed a post-hoc analysis to test whether it was actually the

case that there were more reward changes when the state changed. Here, we

also decided to use a Wilcoxon signed-rank test, as a Shapiro-Wilk test

revealed a non-normal distribution for both the percentages of trials having

reward changes after a changed state, W(263) = .98, p < .001, and reward

changes after a unchanged state, W(263) = .98, p = .004. The results of a

Wilcoxon signed-rank test showed no significant difference between

percentages of trials having reward changes after a changed state (Mdn =

11.70) and reward changes after unchanged states (Mdn = 11.06), z =

15,487.00, p = .130. So, if participants would assume more reward changes

occured after state changes, this would be a false assumption (i.e., incorrect

model of the task). Our data did not allow us to test this explanation any further.

Relations Between Parameters and Accuracy
Although both AIC and BIC prefered pure model-based models, we were

still interested in whether participants who used more model-based strategies

selected more optimal choices in our task. Therefore, we also correlated

parameter and accuracy scores (i.e., % of trials making optimal decisions).𝑤

For this analysis, we used the parameters of the hybrid model with the best𝑤

BIC (i.e., hybrid model with fixed learning rate to 1), as BIC is more

conservative. For this model including a free parameter , we can see that the𝑤

estimates of most parameters are relatively precise (i.e., relatively low SEs),

except for parameter as its estimates can only range between 0 and 1 (Table𝑤

3).

We first tested whether the normality assumption holds to perform a

parametric correlation between parameter and accuracy score. A𝑤

Shapiro-Wilk test demonstrated a significant deviation from normality for both

parameter , W(263) = .79, p < .001, and accuracy score, W(263) = .99, p =𝑤

.025 (Figure 5). Parameter had a skewness of -1.62 (SE = 0.15) and a𝑤

kurtosis of 2.67 (SE = 0.3), and accuracy score had a skewness of -0.34 (SE =

0.15) and a kurtosis of -0.11 (SE = 0.3). In Figure 5A, it is clear that parameter

is negatively skewed, likely due to a ceiling effect. Therefore, we decided to𝑤

perform a Spearman (nonparametric) correlation.
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A B

Figure 5. Frequency distributions of parameter (A) and accuracy score (B).𝑤

The Spearman correlation reported no significant correlation between

parameter and accuracy scores, r(263) = .09, p = .157 (Figure 6). Thus, we𝑤

can conclude that using more model-based strategies in our task is probably

not related to higher accuracy scores. However, we should be cautious

interpreting these results as they may be due to a ceiling effect.

Figure 6. Scatterplot showing the relationship between accuracy scores and

balance parameter . The shading represents the 95% confidence interval.𝑤
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In addition, we wanted to see if exploratory tendencies were related to

making optimal decisions. To do so, we first correlated the inverse temperature

(of the model with the best fit based on BIC) with accuracy score. For theβ

model with the best BIC, we see that the estimates of inverse temperature areβ

relatively accurate (i.e., relatively low SEs), but not for the stickiness

parameters and as their values can only vary between -5 and 5 (Table 3).π ρ

We first performed a Shapiro-Wilk test that showed a non-normal distribution for

parameter , W(263) = .94, p < .001. Subsequently, a Spearman correlationβ

reported a significant positive correlation between parameter and accuracy,β

r(263) = .35, p < .001 (Figure 7). This suggests that participants who exploit

more during the task make more often optimal decisions in our task.

Figure 7. Scatterplot showing the relationship between accuracy scores and

inverse temperature (in the model with best fit according to BIC). The shadingβ

represents the 95% confidence interval.

Furthermore, we were interested in whether the two

exploration-exploitation strategies used, when the state changed and when the
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state stayed the same, were differentially related to how optimal decisions were.

To do so, we correlated the two inverse temperatures and withβ
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

accuracy. In addition, we also correlated both the difference between the dual

inverse temperatures, ( ), and the mean of these two∆β β
𝐶ℎ𝑎𝑛𝑔𝑒

− β
𝑆𝑎𝑚𝑒

parameters with accuracy. For these correlations, we selected the dual inverse

temperatures of the model which had the best fit according to AIC. A Spearman

(nonparametric) correlation revealed that parameter positively correlatedβ
𝐶ℎ𝑎𝑛𝑔𝑒

with accuracy score, r(263) = .38, p < .001 (Figure 8A), but parameter didβ
𝑆𝑎𝑚𝑒

not, r(263) = .09, p = .146 (Figure 8B). Furthermore, a Shapiro-Wilk test showed

that both variable , W(263) = .96, p < .001, and the mean of the dual inverse∆β

temperatures, W(263) = .96, p < .001, were non-normally distributed. A

Spearman correlation then demonstrated that the accuracy scores correlated

positively with both , r(263) = .32, p < .001 (Figure 8C), and the mean of the∆β

dual inverse temperatures, r(263) = .35, p < .001 (Figure 8D).

In general, these latter results may indicate that the participants who

exploit more after an altered state are the participants who are more accurate in

this task. However, as we noted earlier, the stimulus stickiness parameter

probably interfered with inverse temperature and, thus, it is possible thatβ
𝑆𝑎𝑚𝑒

these correlations were affected by the inclusion of the stimulus stickiness.

Therefore, we also decided to perform a post-hoc analysis, exploring the

correlation between accuracy and the dual inverse temperatures of a model

without the stimulus stickiness parameter (i.e., a model with only the dual

inverse temperatures and response stickiness as free parameters).
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A B

C D

Figure 8. Scatterplots showing the relationships of accuracy with: (A) inverse

temperature when the state changed, (B) inverse temperature when the state

stayed the same, (C) the difference between the dual inverse temperatures,

and (D) the mean of the two inverse temperatures. Here, we used the

parameters of the model with the best AIC estimate; a model with dual inverse

temperatures, response stickiness, and stimulus stickiness as free parameters.

The shading represents the 95% confidence interval.

For the model without stimulus stickiness, we followed the same

procedure for the correlation analysis as used for the model with the stimulus

stickiness. A Spearman correlation revealed that accuracy correlated positively

with both , r(263) = .38, p < .001 (Figure 9A), and , r(263) = .29, p <β
𝐶ℎ𝑎𝑛𝑔𝑒

β
𝑆𝑎𝑚𝑒

.001 (Figure 9B). For this model, a Shapiro-Wilk test demonstrated that both

variable , W(263) = .96, p < .001, and the mean of the two inverse∆β

temperatures, W(263) = .96, p < .001, were also non-normally distributed. A
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Spearman correlation subsequently showed that accuracy did not correlate with

variable , r(263) = .04, p = .547 (Figure 9C), and that there was a significant∆β

positive correlation between accuracy and the mean of the inverse

temperatures, r(263) = .37, p < .001 (Figure 9D). The latter results may suggest

that participants who have a generally higher exploitation throughout the task

are better performers.

Since the best fit model according to AIC had a stimulus stickiness

included, the interference of the stimulus stickiness with the inverse

temperature of the same states, , may have affected the correlationsβ
𝑆𝑎𝑚𝑒

between and accuracy, and the correlations between and accuracy.β
𝑆𝑎𝑚𝑒

∆β

Therefore, we specifically looked at the results of the general inverse

temperature of the best fit model based on BIC, and the results of the dualβ

inverse temperatures of the model without stimulus stickiness. Here, we see

that each inverse temperature, as well as the mean inverse temperatures, had

a positive correlation with accuracy, except the difference between the dual

inverse temperatures, , (of the model without the stickiness parameter) did∆β

not correlate with accuracy. Therefore, we can conclude that participants with a

generally higher tendency to exploit throughout the task are more optimal

decision-makers. These results are in line with our predictions and make sense,

as exploration can lead to suboptimal decisions more often than exploitation in

our two-step task (due the full reliability of choice rewards and relatively low

number of reward changes). So, one way to interpret this is that participants

that exploit more during the task are better at the task. However, another way to

look at it is that people who (for some reason) are better at the task can afford

to exploit more. In this second interpretation, there is no causal relationship

between the inverse temperature and accuracy. Note that our dataset does not

allow testing of a causal relationship.
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A B

C D

Figure 9. Scatterplots showing the relationships of accuracy with: (A) inverse

temperature when the state changed, (B) inverse temperature when the state

stayed the same, (C) the difference between the dual inverse temperatures,

and (D) the mean of the two inverse temperatures. Here, we used the

parameters of the model without stimulus stickiness; a model with only dual

inverse temperatures and response stickiness as free parameters. The shading

represents the 95% confidence interval.
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Discussion
The distinction between goal-directed and habitual behavior has been

essential to better understand how humans and other cognitive agents can

behave. The reinforcement learning framework has been used to distinguish

between goal-directed and habitual behavior, and is often referred to as the

distinction between model-based and model-free learning, respectively. The

two-step decision-making task is an extensively used paradigm to dissociate

between the effects of model-based and model-free learning on behavior,

assuming humans use a mixture of these two learning systems (Daw et al.,

2011). However, a recent study has shown that people mainly use model-based

strategies when the task instructions are very clear in explaining the

characteristics of the two-step task (da Silva & Hare, 2020). Moreover, previous

studies have shown that certain behaviors in the two-step task are misclassified

as model-based or model-free strategies (Akam et al., 2015; da Silva & Hare,

2020). The current study used a model-comparison approach to get a better

understanding of how people behave in the two-step task. In general, our

results suggest that participants in the two-step task mainly use model-based

strategies. In addition, our findings indicate that some of the behavioral

tendencies in the two-step task might be better understood at a different

dimension of learning or decision-making, such as the trade-off between

exploration and exploitation.

Our first research question was whether the participants used a mixture

of model-based and model-free strategies in our two-step task, or whether they

were pure model-based or pure model-free learners. Our results demonstrated

that the participants in our two-step task mainly used model-based strategies.

These results are inconsistent with the main assumption that people use a

mixture of these two systems during the two-step task (Daw et al., 2011) and

are in line with the findings by da Silva and Hare (2020). It is important to note

here that, similar to the study by da Silva and Hare (2020), we used task

instructions that explicitly explained the structure of the task. These explicit

instructions might have helped people understand the model of the task from
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the beginning, allowing them to use model-based strategies throughout the

task.

In addition, Kool et al. (2016) demonstrated that the modified two-step

task also makes people rely more on model-based strategies. Although the

results by Kool et al. (2016) showed participants still used a mixture of the two

systems, the modified task increasing the reliance on model-based control

could also have been an additional reason why we found that participants were

mainly model-based learners. Kool et al. (2016) suggested that

accuracy-demand trade-off might have motivated participants to rely more on

model-based control in the modified task, as this task allows model-based

learner to be more accurate, while the original two-step task does not.

However, another possible explanation could be that the adjustments

actually simplified the two-step task and, therefore, the task is easier to

understand, allowing people to use more model-based strategies. Moreover, da

Silva and Hare (2020), Kool et al. (2016), and our study also introduced a story

with matching stimuli in the two-step task that was easy to understand (e.g.,

following an animal in the forest to find a treasure chest), unlike the original task

of Daw et al. (2011) where it is very abstract (e.g., Tibetan characters). The

latter may also have helped people better understand the task, leading to a

higher use of model-based strategies.

Furthermore, previous research has shown that participants use more

model-free strategies under a working memory load (Otto, Gershman, et al.,

2013). By introducing an easy-to-understand story with matching stimuli, it may

have lowered the working memory load. Also, unlike the original task, each

choice deterministically led to a specific number of points and there were no

choice options in the second-step phase in our task. Our task also had a wider

range of reward values and larger reward changes than the original task,

making it easier to detect the reward changes and the reward differences

between choices. All of these adjustments simplify the task and, thus, may have

reduced the working memory load, allowing participants to use more

model-based strategies.
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Another possible factor of more model-based control in our task is that all

our participants were young adults, and previous research showed that young

adults use more model-based strategies than older adults (e.g., Ito, Cao,

Reinberg, Keller, Monterosso, Schweighofer, & Liew, 2021). Our study did not

allow us to investigate to what extent the accuracy-demand trade-off,

understanding the task structure, task simplicity, and age of subjects actually

affected the reliance on model-based control. Future research is needed to

further investigate when model-free control is actually used or not in the

two-step task.

Our second research question was whether a different dimension of

learning and decision-making may reveal certain behavior in the two-step task,

instead of the dimension between model-based and model-free learning. Here,

we specifically focussed on the trade-off between exploration and exploitation

by using the inverse temperature parameter. We investigated if the tendency to

explore changed when the stimuli in the environment (i.e., state) changed. Our

findings suggest that people explore the other choice options more often after

the stimuli in the environment changed than when the stimuli stayed the same,

even though this had no reward-based benefits whatsoever. In the next

paragraphs, we will elaborate on some possible interpretations of this higher

tendency to explore after a state changed. However, it is important to note here

that these findings were part of a post-hoc analysis, exploring a computational

model without the stimulus stickiness parameter, as the stimulus stickiness can

interfere with the exploration-exploitation trade-off.

There are three possible interpretations for why the participants explored

more often when the stimuli (state) changed. Before we describe these

interpretations, we first want to note that there are two types of exploration:

directed and random exploration (Wilson, Geana, White, Ludvig, & Cohen,

2014). Directed exploration refers to exploration used as a strategy to find an

optimal decision, while random exploration refers to accidental exploration due

to noise. Thus, directed exploration is reward-based, while random exploration

is not. The first possible interpretation is that participants had the false

assumption that rewards changed more often when the stimuli changed and
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that this false assumption caused them to explore more often to see if the other

choice’s reward got better or not. In other words, this would be directed

exploration based on an incorrect model of the task. Note that this interpretation

is in line with the findings by da Silva and Hare (2020) showing model-based

strategies can deviate from what is expected from a model-based learner by

using an incorrect model of the environment.

A second possible interpretation is that the trials are more demanding

when the stimuli change and, therefore, participants selected more often

random choices in these trials (i.e., random exploration). During a trial with

different stimuli than in the previous trial, the participants have to transition the

expected reward from one stimulus to another. This reward transition can be

more cognitively demanding because it has to be retrieved from working

memory, similar to cases where the task changes (e.g., Rogers & Monsell,

1995). Kool et al. (2010) found evidence that people try to avoid cognitive effort

when making decisions. One way to avoid the cognitive effort of a reward

transition is by randomly selecting one of the choices, regardless of its expected

rewards. Previous studies have shown that people tend to use more random

exploration due to higher cognitive load (Cogliati Dezza, Cleeremans, &

Alexander, 2019).

However, the results by Cogliati Dezza et al. (2019) suggest that the

effects of cognitive load on exploration are due to a decrease in information

integration processes instead of more noise in decision-making itself. Thus, a

third possible interpretation is that we found that people used more exploration

when stimuli changed due to higher cognitive demand, but that this exploration

was guided by expected rewards that integrated less information about the

environment. In other words, we may have found exploration, which actually

corresponds to model-free learning. Previous research has demonstrated that

participants use more model-free strategies under a working memory load

(Otto, Gershman, et al., 2013). Thus, it is possible that we captured a higher

tendency to explore after changing states that actually represents more

model-free learning. Our study did not look further into a possible effect of the

changed stimuli on the use of model-free strategies. In addition, further
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research is needed to investigate which of the two types of exploration are

involved at certain points during the two-step task, as our task did not allow us

to distinguish between directed and random exploration.

Importantly, our findings suggest that the stimulus stickiness parameter

partially absorbed the exploitation from the inverse temperature parameter. This

makes sense as the stimulus stickiness and exploitation both show similar

responses (i.e., choosing the same choices as in the previous trial). Moreover,

the stimulus stickiness specifically represents the tendency to repeat the same

stimulus and this is only possible when the same stimuli are presented.

Therefore, it makes sense that the stimulus stickiness only absorbed the

exploitation of the trials in which the stimuli were the same as in the previous

trial. The only difference between the stimulus stickiness and exploitation is that

exploitation represents the tendency to repeat the same choices based on their

learned reward values, while the stimulus stickiness simply tends to repeat the

same choice regardless of the expected rewards. So, it is important here to

note that the stimulus stickiness parameter and the inverse temperature

parameter interfere with each other, although one is based on the expected

rewards while the other is not. Future research should be careful in interpreting

these parameters when they are both included in the same model.

Our third research question was whether participants learned the reward

values immediately from the outcomes they obtained in our task, which is more

optimal in our task. Our results found that the learning rate parameter was

better set to its maximum value, which indicates the participants did learn the

reward values quickly. The reward outcome of a stimulus was completely

reliable in our task because choosing a stimulus deterministically led to a

specific reward. When a learning rate is set to its maximum value, an agent

completely changes the expected reward of the stimulus into the previous

perceived outcome of the stimulus. Therefore, changing the expected rewards

of stimuli completely into the values of the last obtained outcomes is more

optimal in our two-step task, as well as easier to do compared to the original

two-step task that used reward probabilities.
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Our fourth question was whether individuals who relied more on

model-based strategies were more accurate. We used the modified two-step

task because it should maximize the benefits of model-based control.

Additionally, Kool et al. (2016) found that a higher use of model-based control

indeed correlated with accuracy in their modified two-step task, on which we

based ours. In contrast with Kool et al. (2016), our study did not find a

relationship between model-based control and accuracy scores. However, the

participants in our study mainly used model-based control. The high values of

the balance parameter between the model-based and model-free systems

clearly reached a ceiling effect, and this may be the reason why we did not find

a correlation between the balance parameter and accuracy scores.

As a fifth research question, we were interested if accuracy was related

to other behavioral responses in our task, namingly the trade-off between

exploration and exploitation. Here, we found that the participants that generally

exploited more had higher accuracy scores. This can be interpreted in two

ways. The first interpretation is the causal explanation that exploration more

often leads to suboptimal decisions than exploitation in our two-step task. This

makes sense because the choice rewards were completely reliable in our task

and there were relatively low numbers of reward changes throughout the task.

These two latter factors make explorative decisions more likely to be

suboptimal.

The second interpretation is a non-causal relationship that people who

make more optimal decisions can afford to exploit more. For example, it is

possible that some participants were lucky by often getting high reward values

from their selected choices and that this allowed them to continue exploiting

these rewards without having to explore to find better rewards. For instance,

when an agent receives a reward of 9 points when choosing a stimulus, (s)he

does not have to explore the other choice option because her/his current choice

option is most likely to be the most optimal choice (when the upper bound of the

reward values is 10 points). This was not controlled for in the current study,

because the possible number of points that could be earned were randomly

assigned to the participants. Here, we would like to address that the trade-off
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between exploration and exploitation is one of the major dilemmas (i.e. seeking

information or maximizing rewards) in behavioral science (Cohen et al., 2007),

especially important in understanding how and when people change behavior to

make more optimal decisions and what the individual behavioral differences

are. However, this trade-off still remains unclear. Future research should further

explore how this dilemma is involved in learning and decision-making.

To conclude, the current study suggests that people use mainly

model-based strategies when performing the two-step task, which probably

depends on how well the participants understand the task structure. On the

other hand, our results suggest that the exploration-exploitation trade-off plays

an important role in how people behave in the two-step task, and could explain

some behavioral tendencies more than what we are able to explain by simply

looking at the distinction between the model-based and model-free system. A

better understanding of the behavior in the two-step task, beyond the distinction

between model-based and model-free learning, should be addressed by future

research. Furthermore, future research should carefully consider several factors

when using the two-step task, such as how explicit the task instructions are,

how easy the task is, and whether the task structure avoids misclassification of

model-based and model-free learning.
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