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Abstract 
 
Introduction: The quality of psychiatric healthcare is significantly hampered by high rates of 
misdiagnosis, causing major psychiatric disorders to be among the leading causes of global disease 
burden. These high rates of misdiagnosis are partially a result of the extensive symptom overlap across 
major psychiatric disorders, more specifically major depressive disorder, bipolar disorder and 
schizophrenia. Furthermore, psychiatric diagnostics lack objective, biological measures to aid in the 
differential diagnosis of disorders with similar clinical presentations and is therefore affected by a high 
degree of subjectivity. In the last decades, many studies aimed to identify diagnostic biomarkers, 
mainly in plasma or serum. However, current experimental set-ups failed to yield any reliable 
biomarkers. Hence, the main goal of this thesis was to establish a robust mass spectrometry protocol 
for biomarker discovery by determining the best sample source, protein depletion strategy and 
analytical algorithm. Moreover, this thesis involved data analysis as part of a larger ongoing project of 
the host laboratory, which aims to identify biomarker candidates for differential diagnosis of the 
previously mentioned major psychiatric disorders. 
 
Methodology: Original experimental set-up: Plasma and peripheral blood mononuclear cells of healthy 
volunteers (N = 2) were analysed via label-free liquid chromatography – mass spectrometry. To 
establish the optimal biomarker discovery protocol, 6 liquid chromatography elution gradient 
durations (155, 180, 240, 300, 360 and 440 minutes), 2 depletion columns  (ProteoSpin™ Abundant 
Serum Protein Depletion Kit vs. Pierce™ Top 12 Abundant Protein Depletion Spin Column), 2 analytical 
algorithms (MaxQuant vs. MaxLFQ) and 2 sample sources (peripheral blood mononuclear cells vs. 
plasma) were compared for yield (i.e. the number of protein identifications) and protein retrieval 
reliability on multiple levels.  
Replacement assignment: Biomarker candidates for differential diagnosis of major depressive disorder 
(N = 5) and the depressive state of bipolar disorder (N = 3), on the one hand, and the manic state of 
bipolar disorder (N = 4) and schizophrenia (N = 4), on the other, were identified in peripheral blood 
mononuclear cells using iTRAQ liquid chromatography – mass spectrometry. Age and gender matched 
healthy controls (N = 6) were included as baseline comparator. Subsequently, biomarker candidates 
were analysed via pathway (CAMERA) and network (Cytoscape) analysis.  
 
Results: Original experimental set-up: The number of identifications was higher and overall variation 
was lower in plasma depleted with the ProteoSpin™ column than in plasma depleted with the Pierce™ 
column. In peripheral blood mononuclear cells, more proteins were identified and overall variation 
was higher than in plasma. Nevertheless, the number of proteins that were quantified with an 
acceptable precision was higher in peripheral blood mononuclear cells than in plasma. Analysis of mass 
spectra using MaxLFQ decreased the number of identifications and overall variation in plasma and 
peripheral blood mononuclear cells compared to analysis with the standard MaxQuant algorithm. 
Replacement assignment: When comparing expression values of patients suffering from major 
depressive disorder and bipolar patients in a depressive state, 67 biomarker candidates for differential 
diagnosis were identified, 139 gene sets were significantly enriched and biomarker candidates showed 
little interaction. Seventy eight biomarker candidates were identified for differential diagnosis of the 
manic state of bipolar disorder and schizophrenia. No gene sets were significantly enriched in this case 
and the majority of biomarker candidates were connected to each other. 
 
Conclusion: Original experimental set-up: Data were not sufficient to draw solid conclusions from. 
However, based on the limited data, liquid chromatography – mass spectrometry of peripheral blood 
mononuclear cells while using MaxLFQ seems to be the more reliable approach for untargeted 
biomarker discovery for psychiatric afflictions.  
Replacement assignment: Several potential biomarker candidates were discovered for discriminatory 
diagnostics in the abovementioned patient groups. As the sample size was small, results should be 
validated in larger cohorts to identify true biological differences.  
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Dutch summary 
 
Inleiding: De kwaliteit van de psychiatrische gezondheidszorg wordt aanzienlijk belemmerd door het 

hoge aantal misdiagnoses, waardoor psychiatrische stoornissen behoren tot de hoofdoorzaken van 

ziektelast. Misdiagnoses zijn deels te wijten aan de sterke symptoom overlap, vooral tussen 

depressieve stoornis, bipolaire stoornis en schizofrenie. Bovendien zijn er in de psychiatrische 

diagnostiek geen biologische hulpmiddelen voor de differentiële diagnose van ziektes met een 

vergelijkbare klinische presentatie. In de afgelopen decennia hebben vele studies getracht 

diagnostische biomerkers te identificeren, voornamelijk in plasma of serum. Deze experimentele 

opstellingen leverden echter geen betrouwbare biomerkers op. Het hoofddoel van deze thesis was 

dan ook om een massaspectrometrie protocol op te stellen door het bepalen van het beste staal, de 

beste depletie strategie en het beste analytisch algoritme. Bovendien omvatte deze thesis data analyse 

als onderdeel van een lopend project van het gastlaboratorium dat gericht is op het identificeren van 

biomerker kandidaten voor de differentiële diagnose van de eerder genoemde psychiatrische 

stoornissen. 

 

Methodologie: Oorspronkelijke experimentele opzet: Plasma en perifere mononucleaire cellen van 

gezonde vrijwilligers (N = 2) werden geanalyseerd via chromatografie - massaspectrometrie. Om het 

optimale protocol voor biomerker identificatie tot stand te brengen, werden 6 chromatografie 

gradiënten (155, 180, 240, 300, 360 en 440 minuten), 2 depletiekolommen (ProteoSpin ™ Depletion 

Kit vs. Pierce™ Depletion Column), 2 analytische algoritmen (MaxQuant vs. MaxLFQ) en 2 stalen 

(perifere mononucleaire cellen vs. plasma) vergeleken op basis van het aantal identificaties en de 

variabiliteit op proteïne intensiteiten. Vervangopdracht: Biomerker kandidaten voor differentiële 

diagnose van depressieve stoornis (N = 5) en de depressieve toestand van bipolaire stoornis (N = 3), 

enerzijds, en de manische toestand van bipolaire stoornis (N = 4) en schizofrenie (N = 4), anderzijds, 

werden geïdentificeerd in perifere mononucleaire cellen met behulp van iTRAQ chromatografie - 

massaspectrometrie. Gezonde controles (N = 6) werden ook geanalyseerd. Vervolgens werden de 

biomerker kandidaten geanalyseerd via pathway (CAMERA) en netwerk (Cytoscape) analyse.  

 

Resultaten: Oorspronkelijke experimentele opzet: Het aantal identificaties was hoger en de totale 

variatie was lager in plasma verwerkt met de ProteoSpin ™ kolom dan in plasma verwerkt met de 

Pierce ™ kolom. Meer proteïnes werden geïdentificeerd en de totale variatie was hoger in perifere 

mononucleaire cellen dan in plasma. Desondanks was het aantal eiwitten dat met een aanvaardbare 

variatie werd gekwantificeerd hoger in perifere mononucleaire cellen dan in plasma. MaxLFQ 

verminderde het aantal identificaties en de totale variatie in plasma en perifere mononucleaire cellen. 

Vervangopdracht: Bij het vergelijken van expressiewaarden van patiënten die lijden aan een 

depressieve stoornis en bipolaire patiënten in een depressieve toestand, werden 67 biomerker 

kandidaten geïdentificeerd, 139 genensets waren differentieel gereguleerd en biomerker kandidaten 

vertoonden weinig interactie. 78 biomerker kandidaten werden geïdentificeerd voor de differentiële 

diagnose van de manische toestand van bipolaire stoornis en schizofrenie. Er werden geen genensets 

geïdentificeerd en de meeste biomerker kandidaten waren met elkaar verbonden. 

 

Conclusie: Originele experimentele opstelling: De gegevens waren niet voldoende om er betrouwbare 

conclusies uit te trekken. Echter lijken perifere mononucleaire cellen en MaxLFQ de betere optie voor 

de ontdekking van biomerkers. Vervangopdracht: Verschillende potentiële biomerker kandidaten 

werden ontdekt voor discriminerende diagnostiek van de bovengenoemde patiëntengroepen. 

Aangezien de gegevens werden verkregen uit een klein cohort, moeten expressiewaarden van de 

proteïnes worden nagegaan in grotere cohorten om echte biologische verschillen te identificeren.  
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Overview of the Master’s Thesis: Before and After COVID-19 
 
Original experimental set-up: The original experimental set-up consisted of three phases of which the 

first two made use of technical samples whereas samples of psychiatric patient would have been used 

for the latter. First, the protocol for sample preparation of plasma for liquid chromatography – mass 

spectrometry (LCMS) would have been optimised. An important step in this protocol is the depletion 

of highly abundant proteins. Therefore, this thesis would have compared two commercially available 

depletion columns. Although the columns were used to prep three plasma samples each, these data 

are not sufficient to provide a solid answer to the question which column performs best. In case COVID-

19 would not have happened, the columns would have been used to prep more samples so that the 

power of the comparison would have been larger. Moreover, the effect of the length of the liquid 

chromatography (LC) elution gradient on the number of proteins that can be retrieved from samples 

would have been assessed in plasma and peripheral blood mononuclear cells (PBMCs). The optimal 

gradient length would have been determined for both sample sources before proceeding to the next 

phase. At the very last day students were allowed to enter the laboratory, a range of gradient lengths 

were tested on plasma samples. However, only one data point per gradient length could be collected. 

This parameter could not be varied for PBMCs. Second, data obtained from plasma and PBMCs would 

have been compared to decide which sample source provides the best characteristics for biomarker 

discovery in terms of quantitative and qualitative endpoints (i.e. highest number of identifications and 

lowest variation on protein intensities). Plasma samples would have been prepped using the optimised 

protocol while PBMCs would have been prepped using the protocol for sample preparation of cells 

that was already available at the host laboratory. Due to the circumstances, these samples could not 

be analysed simultaneously, as would have been the case in the original experimental set-up to limit 

time effects. Thus, the protein expression levels of plasma samples that were prepped with the best 

depletion column and obtained during the optimisation phase were directly compared with the results 

obtained from PBMCs, even though the samples were analysed with more than one month in between. 

Due to the limited time spend in the laboratory, not all previously anticipated levels of variation could 

be assessed. For instance, intra-individual variability would have been assessed by comparing samples 

of the same individuals collected at different time points. Moreover, the biological variation on protein 

abundances detected in these sample sources would have been determined. In a last phase, protein 

expression profiles of four patient groups would have been analysed via LCMS to identify biomarker 

candidates for differential diagnosis. This part of the thesis would have used plasma and PBMCs of 

healthy controls (HCs), patients with major depressive disorder (MDD), bipolar patients in a depressive 

state (BD-D), bipolar patients in a manic state (BD-M) and schizophrenia patients with active psychotic 

symptoms (SZ). Subsequently, these biomarker candidates would have been analysed via various 

bioinformatic approaches. This final phase of the original experimental set-up could not be performed. 

 

Replacement assignment: The biomarker discovery of the original experimental set-up was replaced 

by the analysis of data that were already available in the host laboratory. These data were obtained 

from PBMCs of the same experimental groups that would have been used in the original experimental 

set-up. This way, the most important part of this thesis, namely biomarker discovery for differential 

diagnosis of major psychiatric disorders, was not lost. Data analysis was performed in the same manner 

as would have been the case in the original experimental set-up. Hence, biomarker candidates for 

differential diagnosis of major psychiatric disorders were identified and analysed via pathway and 

network analysis.  



12 
 

  
Figure 0 Overview of the master’s thesis before and after COVID-19.  
Abbreviations: BD-D, bipolar patients in a depressive state; BD-M, bipolar patients in a manic state; LC, liquid 

chromatography; MDD, patients with major depressive disorder; PBMCs, peripheral blood mononuclear cells; SZ, 

schizophrenia patients with active psychotic symptoms 
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1. Introduction 
 
According to the latest Global Burden of Disease (GBD) Study1, major depressive disorder (MDD), 
bipolar disorder (BD) and schizophrenia (SZ) are among the leading causes of global disease burden 
[1]. These morbidities belong to the major psychiatric disorders and present with a wide range of 
symptoms, varying from depressive episodes to impaired physical functions, such as sleep and 
appetite. All three disorders are hallmarked by cardinal symptoms, being depressive mood for MDD, 
extreme mood cycling for BD and psychotic symptoms for SZ [2-4]. However, this does not exclude the 
existence of these symptoms in other psychiatric disorders or imply that these symptoms represent 
the disorder’s most frequent clinical presentation [5]. As shown in Figure 1, there is an extensive 
overlap of symptoms across these major psychiatric disorders, impeding proper diagnosis. 

 
1.1 Burden of Major Psychiatric Disorders 
 
1.1.1 Mortality 
 
Annually, approximately 800.000 people die by suicide [6]. A vast majority of these deaths (90-95%) 
occurs in people with a diagnosable psychiatric disorder, as revealed by a psychological autopsy of 
suicide victims [7]. Moreover, psychiatric patients are up to 20 times more likely to commit suicide 
compared to the general population [8]. However, the latest GBD study reported that psychiatric 
disorders are only causing 0,0011% of total Years of Life Lost (YLLs), which is very little compared to 
the 20% of total YLLs that are caused by cardiovascular diseases for example. Even more astonishing is 
that the study reported that all mental illness-related YLLs are caused by eating disorders without 
mentioning separate numbers for MDD, BD or SZ and without linking YLLs caused by self-harm to these 
afflictions [9]. Of note, calculating YLLs caused by psychiatric disorders is extremely challenging as 
psychiatric disorders are often not the direct cause of death [10, 11].  
 
Patients suffering from psychiatric disorders have an increased mortality rate compared to the general 
population, a discovery that was already made in 1937 and confirmed by more recent studies [8, 12]. 

 
1 The Global Burden of Disease study is a comprehensive study defining global disease burden by assessing 
mortality and disability.  

Figure 1 Symptoms of major depressive disorder, bipolar disorder and schizophrenia.  
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Specifically, the relative mortality risks of major psychiatric disorders are 1,6 for MDD, 2,2 for BD and 
2,5 for SZ compared to the general population [8]. These high relative mortality risks can be explained 
by the increased prevalence of modifiable risk factors for all-cause mortality, such as smoking, poor 
diet and social deprivation, in psychiatric patients [13]. Consequently, such risk factors can result in 
the emergence of physical comorbidities associated with high mortality rates in the general population 
[14, 15]. When psychiatric patients die, these physical comorbidities are mostly considered to be the 
cause of death, even though the psychiatric condition drove those patients towards adverse 
behaviours leading to such morbidities [10, 11]. Moreover, the occurrence of physical comorbidities in 
and the prevalence of suicide among psychiatric patients contribute to a reduced life expectancy of 7 
to 11 years for MDD patients, 9 to 20 years for BD patients and 10 to 20 years for SZ patients compared 
to the general population [8]. 
 
Furthermore, numerous studies report that the relative mortality risks of major psychiatric disorders 
increased over the last decades. This is further supported by the fact that the mortality gap between 
people with such disorders and the general population also increased, suggesting that people suffering 
from a major psychiatric disorder may not experience the increased life expectancy to the same extent 
as the general population [16-19]. 
 
1.1.2 Disability 
 
Although many deaths are caused by psychiatric disorders, they only amass to a small percentage of 
the previously mentioned YLLs, which was the standard measure to assess disease burden in early 
studies [9, 20]. However, disease burden associated with major psychiatric disorders is mainly rooted 
in impaired daily functioning of patients and thus disability rather than mortality, as illustrated in Table 
1. Therefore, the disease burden caused by major psychiatric disorders was seriously underestimated 
up until the first GBD study that was performed in 1990. The true burden of these afflictions was 
highlighted by the introduction of a new measure to quantify disease burden, namely the Disability-
Adjusted Life Year (DALY). A DALY is the summation of YLLs and Years Lost due to Disability (YLDs), 
thereby capturing both mortality and disability. Simply said, one DALY represents one lost year of 
healthy life, either due to premature death or disability [20]. 
 
The latest GBD study showed that disease burden caused by psychiatric disorders accounted for nearly 
5% of total DALY counts worldwide. As approximately half of these DALYs was caused by MDD, BD and 
SZ, these afflictions are considered to be the main drivers of disease burden associated with psychiatric 
disorders. Although this percentage might seem rather limited, psychiatric disorders are the sixth 
leading cause of DALYs and are therefore major contributors to global disease burden [21]. Compared 
to the percentage of DALY counts caused by psychiatric disorders, the YLD counts associated with these 
disorders were considerably larger (nearly 15% of total YLDs) [1]. Moreover, this difference between 
DALY and YLD counts, illustrated in Table 1, confirms that psychiatric disorders mainly contribute to 
disease burden by causing disability and not mortality, which is also illustrated by their rank in the list 
of leading causes of DALY and YLD counts. As previously mentioned, psychiatric disorders are the sixth 
leading cause of DALYs whereas they are the second leading cause of YLDs [1, 21]. 
 
As predicted by the GBD 1990 study and illustrated in Figure 2, the latest GBD study showed a 
significant increase in DALY counts for major psychiatric disorders, implying that psychiatric disorders 
are a growing issue for global health [21, 22]2. Moreover, the World Health Organization (WHO) 
predicted in 2010 that psychiatric disorders will become the largest contributors to global disease 
burden by 2030 [23]. 

 
2 This statement is arguable as the increase in DALY counts may also be a result of the increased awareness and 
visibility of psychiatric disorders, especially as these disorders are among the most stigmatised ones. Therefore, 
extrapolating might be challenging. 
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Table 1 Percentages of total YLLs, YLDs and DALYs caused by mental disorders and cardiovascular diseases 
in 2017. 

 

 
 
 

 
 

 
1.1.3 Economic Burden 
 
Next to the impact of a psychiatric disorder on an individual, they also have an enormous impact on 
the economy. In 2011, the World Economic Forum published the global economic burden of non-
communicable diseases, which revealed concerning numbers. The results showed that the expenditure 
associated with psychiatric disorders, costing the global economy annually US$ 2,5 trillion, was higher 
than that of chronic somatic diseases, such as cancer and diabetes. Based on prediction models, these 
costs are expected to increase significantly in the future [24].  
 
The economic burden of diseases is determined by evaluating direct and indirect costs. While direct 
costs cover the actual expenditures, such as medical costs, indirect costs are described by the 
monetary value of lost resources caused by the disease, such as the loss of income due to reduced 
productivity of patients and caregivers [25]. Contrasting to other diseases, such as cardiovascular 
diseases and cancer, the economic burden of psychiatric disorders is dominated by indirect costs, 
which account for two-thirds of the total cost [24, 26, 27].   
 
By accounting for 60% to even up to 90% of indirect costs and nearly 40% of total costs, the loss of 
income of patients and caregivers is the main driver of economic burden caused by psychiatric 
disorders [26, 27]. This is further supported by the fact that employees suffering from a psychiatric 

Disorder(s) Percentage of 
total YLLs 

Percentage of 
total YLDs 

Percentage of 
total DALYs 

Major depressive disorder * 3,86% 1,31% 

Bipolar disorder * 1,09% 0,37% 

Schizophrenia * 1,5% 0,51% 

All mental disorders 0,0011% 14,41% 4,89% 

Cardiovascular diseases 20,06% 4,19% 14,66% 

Legend: *, Data not available 
Abbreviations: DALYs, Disability-Adjusted Life Years; YLDs, Years Lost due to Disability; YLLs, Years of Life Lost  

 

Figure 2 Evolution of DALY counts between 1990 and 2017. The percentages indicate the magnitude of the increases 
in DALY counts caused by schizophrenia, bipolar disorder and major depressive disorder. DALY counts are based on 
data of the GBD studies performed throughout the years. 
Abbreviations: DALY, Disability-Adjusted Life Year 
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disorder are on average more days out of role than healthy ones. Data from the World Mental Health 
(WMH) surveys3 revealed that, annually, individuals with a psychiatric disorder were 31,1 more days 
out of role compared to those with no conditions. More specifically, employees diagnosed with MDD, 
BD or SZ were respectively 34,4, 41,2 and 40,3 more days out of role in one year [26, 28]. These 
numbers exceed the mean days out of role for individuals suffering from cancer (31,9) or a 
cardiovascular disease (28,7) [28] and confirm the results of the GBD studies, highlighting the severe 
disability and therefore also loss of productivity caused by these psychiatric disorders. 
 
1.2 Diagnosis of Psychiatric Disorders 
 
1.2.1 How Psychiatric Disorders should be Diagnosed 
 
Following guidelines, diagnosis of psychiatric disorder solely depends on patient anamnesis which is 
referenced to diagnostic manuals. They are considered to be classification systems and list criteria 
associated with a certain disorder. Patients should meet at least several of the listed criteria to be 
diagnosed with a certain disorder [29]. Hence, psychiatric disorders are mainly diagnosed by 
confirming cardinal symptoms and eliminating most probable differentials [30].  
 
The WHO as well as the American Psychiatric Association (APA) developed manuals to diagnose 
psychiatric disorders in a structured manner. The WHO’s International Statistical Classification of 
Diseases and Related Health Problems, 10th Edition (ICD-10) manual is used for clinical purposes 
worldwide, with the exception of the United States [31]. The APA’s Diagnostic and Statistical Manual 
of Mental Disorders, Fifth Edition (DSM-5) manual is used in clinical settings in the United States and 
for research purposes internationally [32].  
 
1.2.2 How Psychiatric Disorders are actually Diagnosed in Practice  
 
Although diagnostic manuals are available to apply a structured approach during the diagnostic 
process, unstructured interviews are still commonly used in practice. During such unstructured 
interviews, heuristic techniques, specifically the prototype and theory-based approach, are regularly 
applied [33]. The former approach is based on similarity-matching where a patient is compared to a 
prototype case of a disorder [34], while physicians using the latter conceive their own theories about 
a disorder instead of using manuals to diagnose psychiatric disorders [35].  Following Schneider’s “first-
rank symptoms” for example, (auditory) hallucinations have been suggested to be of high diagnostic 
value for SZ [36]. Therefore, a prototype case of SZ presents with psychotic symptoms while prototype 
cases of MDD and BD do not. However, many studies reported the existence of psychotic symptoms 
in MDD and BD patients with a lifetime prevalence of 28% for MDD and even up to 90% for BD patients 
[37-41] (for review see [42]). 
 
Both heuristic approaches allow that the patient’s diagnosis is influenced by the physician’s 
experiences and personal views [33], which may be affected by selective memory and thus may result 
in systematic errors [35]. Consequently, the diagnostic process is highly subjective, leading to a 
decreased accuracy when using an unstructured approach compared to a structured approach and 
ultimately misdiagnosis of psychiatric disorders [43]. 
 

 
3 The WMH surveys are part of the WMH initiative launched by the World Health Organization (WHO). It aims to 

obtain accurate cross-national information about the prevalence and correlate of mental, substance, and 

behavioural disorders.  
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1.2.3 Limitations of the Current Diagnostic Process 
 
1.2.3.1 Limitations related to the Diagnostic Manuals  
 
Various studies proved that current diagnostic tools fail to identify discrete psychiatric disorders and 
are, therefore, considered to be scientifically meaningless [5]. One limitation of the diagnostic manuals 
concerns the use of different criteria in a category representing the same psychiatric disorder across 
different manuals [44-46]. Hence, a patient might be diagnosed with one disorder when using DSM-5 
while being diagnosed with another when using ICD-10. However, even when implementing a 
structured approach using the same manual, diagnostic reliabilities remain suboptimal. A recent meta-
analysis assessed the interrater reliability in psychiatric disorders and reported a Cohen’s kappa of 0,80 
for SZ, 0,82 for BD and 0,75 for MDD. Moreover, the meta-analysis did not show any association 
between kappa values and publication year, implying that the interrater reliability in psychiatric 
disorders did not improve over the covered time period (1974-2012) [47]. In another meta-analysis, 
the same authors determined the Cohen’s kappa values to evaluate the test-retest reliability in 
psychiatric disorders. These kappa values averaged at 0,7, which is slightly lower when compared to 
those representing the interrater reliability, and were negatively associated with the time between 
baseline and follow-up diagnosis for all three afflictions [48]. Therefore, this meta-analysis revealed 
that a psychiatric diagnosis is dynamic over time in a considerable proportion of the patient population. 
Although the cause of this remains unclear, an initial misdiagnosis may partially explain this 
phenomenon. 
 
Additionally, diagnostic manuals are classification systems because a patient should meet a minimum 
(defined per disorder) number of the listed criteria, allowing that two patients can be diagnosed with 
the same disorder without having any symptoms or characteristics in common. Therefore, the 
diagnostic manuals represent psychiatric disorders as disjunctive categories. In 1968, Bannister was 
the first to address this problem for schizophrenia [49], but the same holds true for other psychiatric 
disorders, such as MDD and BD [5]. Although both DSM and ICD manuals have been adjusted over the 
years, psychiatric disorders are still represented by disjunctive categories [50]. Furthermore, these 
categories do not consider the existence of the same symptoms across psychiatric disorders and thus, 
patients do not always fit within the boundaries of a single diagnostic category, even though this may 
also be a consequence of the nature of the disorders [5]. This is especially concerning knowing that 
some symptoms are only included in the list of criteria for a certain disorder while they are also 
prevalent in others. Illustratively, the category representing SZ in the ICD-10 manual includes some of 
Schneider’s “first-rank symptoms”, which may result in misdiagnosis when such symptoms are present 
in patients suffering from another psychiatric disorder [51].  
 
Moreover, the criteria listed in the diagnostic manuals are strict in terms of duration and amount or 
severity of symptoms to receive a certain diagnosis. Consequently, individuals presenting with 
subthreshold symptoms may remain undiagnosed even though they should be treated following the 
guidelines for that disorder [52]. Furthermore, the diagnostic manuals allow the use of different 
questionnaires to obtain the necessary information as it is not specified which one should be used. 
This increases the subjectivity involved in the diagnostic process because each user of the diagnostic 
manuals decides which questionnaire is best suited for themselves and thus also the heterogeneity 
within the diagnostic process [53]. 
 
1.2.3.2 Limitations related to the Nature of the Disorders 
 
As the symptomatology of psychiatric patients is broad and varies with time, the clinical presentation 
of such patients is a dynamic entity. Hence, a major issue with diagnosing such patients concerns the 
time point at which they consult the physician since there is a possibility that not all previously 
experienced symptoms are present at that specific moment. When the patient does not recall certain 
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symptoms, important characteristics of a disorder may be overseen [44]. Moreover, some symptoms 
might not be recognised as pathological, which also results in a failure to report these symptoms [54, 
55]. For example, (hypo-)manic characteristics, such as elevated energy and euphoria, are important 
symptoms to mention during a clinical interview since they are cardinal symptoms of BD [2]. However, 
it can be challenging for patients to recognise those symptoms as being abnormal, resulting in a failure 
to report them. Watanabe et al. showed that 39% of BD patients did not recognise (hypo-)manic 
symptoms and thus failed to report them to the physician [56]. Although diagnostic guidelines require 
physicians to probe for symptoms of other disorders to eliminate the most probable differentials, the 
use of heuristic approaches sustains the impact of the time point of consultation [31, 32]. Combined 
with the fact that BD patients frequently consult a physician in a depressed state, this might cloud the 
physician’s judgement [57].  
 
1.2.4 High Rates of Misdiagnosis 
 
The underlying key issue of the abovementioned limitations is the lack of objective measurements, 
which could confirm or refute the physician’s diagnosis. The extensive overlap of symptoms across 
MDD, BD and SZ enlarges this problem of subjectivity as some symptoms may be valued more than 
others based on a prototype case of or the physician’s personal theory about a certain disorder [35]. 
As is to be expected, this modus operandi of the current diagnostic process results in alarmingly high 
rates of misdiagnosis in psychiatry.  
 
Frightening numbers implicate that especially the diagnosis of BD seems to be challenging. Only 1 in 5 
BD patients is correctly diagnosed within 1 year after consulting a physician, whereas approximately 
70% received at least one misdiagnosis [56, 58, 59]. On average, it takes 3,5 misdiagnoses and 4 
physicians over a time period of 5 to 10 years prior to receiving the correct diagnosis of BD [58, 60, 61]. 
This time period even exceeded 10 years in one third of BD patients examined by Hirschfield et al. [58].  
 
With an initial MDD diagnosis in 65% of misdiagnosed BD patients, MDD is the most frequent 
misdiagnosis of BD [56, 58, 59]. This may be explained by the high prevalence of depressive symptoms 
and low prevalence of typical (hypo-)manic symptoms in BD patients. Judd et al. observed BD patients 
over a time period of 13 years and concluded that BD patients were in a (hypo-)manic state less than 
10% of the time, whereas patients reported to be depressed nearly 40% of the time [62]. Furthermore, 
the clinical presentation of BD patients presenting to the physician with solely depressive symptoms is 
very similar to the presentation of MDD patients [63]. This is supported by results obtained by 
Watanabe and colleagues, who showed that 84% of BD patients without an early correct diagnosis4 
presented in a depressive state at the first visit compared to 43% of BD with an early correct diagnosis 
[56].  
 
As previously mentioned, psychotic symptoms are suggested to be of high diagnostic value for SZ and 
are therefore frequently implemented in heuristic approaches and even the ICD-10 diagnostic manual 
to reach differential diagnosis [51]. Consequently, this leads to BD patients receiving the diagnosis of 
SZ since psychotic symptoms are common in this population [37-40, 64]. More than one in five BD 
patients presenting with psychotic symptoms are misdiagnosed with a subtype of SZ [65]. Therefore, 
SZ is the second most common misdiagnosis of BD patients [59]. Additionally, the absence of (hypo-
)manic symptoms when consulting a physician seems to be another cause of misdiagnosing BD with 
either MDD or SZ. According to Watanabe et al., approximately half of BD patients with an early correct 
diagnosis experienced mixed state or (hypo-)manic symptoms at the first visit whereas this was the 
case for only 5% of BD patients without an early correct diagnosis [56]. 
 

 
4 In this study, an early correct diagnosis was defined as receiving a correct diagnosis within one year after the 
first visit to a medical institution. 
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1.2.5 Consequences of Misdiagnosis 
 
A misdiagnosis is associated with a number of consequences for patients themselves as well as their 
caregivers and society. For patients, the greatest concern is the lack of appropriate treatment. As each 
psychiatric disorder requires its own specific therapeutic intervention, a misdiagnosis implies that the 
physician will decide on the best therapeutic intervention following guidelines for this misdiagnosis 
instead of the correct diagnosis. Consequently, it is likely that the patient’s symptoms will not be 
alleviated by this therapeutic intervention, leading to a decreased quality of life among misdiagnosed 
BD patients compared to those who received a correct diagnosis [66-69].  
 
Moreover, misdiagnosis could further deteriorate the condition of the patient as some therapeutic 
interventions include the administration of drugs with, on the one hand, an augmenting effect on 
symptoms of another disorder or, on the other hand, major side-effects. For instance, antidepressant 
monotherapy, the golden standard to treat MDD patients, is suggested to worsen the condition of BD 
patients by accelerating mood cycling and triggering instability [70-72], resulting in an increase of 
hospitalisation rates and suicide attempts [73]. Keeping in mind that one third of all suicidal acts in 
psychiatric patients occurs within the first year of illness, the importance of a fast and accurate 
diagnosis and thus treatment is highlighted by the significant reduction of the incidence of suicide in 
BD patients receiving appropriate treatment [74, 75].  
 
Additionally, McCombs et al. demonstrated that, after one year, patients with recognised BD are on 
average US$1717 less costly than patients with unrecognised BD [76]. All studies examining the cost 
of unrecognised BD conclude that fast and accurate diagnosis of BD decreases the economic burden 
by lowering both direct (e.g. due to hospitalisation) and indirect costs (e.g. due to work loss) (for review 
see [77]). Furthermore, 30% of MDD and SZ patients do not respond to treatment strategies advised 
by guidelines for these disorders [78, 79]. However, evidence implies that approximately 40% of 
treatment-resistant MDD patients are in fact unrecognised BD patients, implicating that misdiagnosis 
of psychiatric disorders are partially causing concerningly low therapeutic efficacies of guideline 
treatments [80, 81]. Thus, accurate diagnosis could increase therapeutic efficacies of guideline 
treatments drastically. 
 
As mentioned above, misdiagnosis of psychiatric disorders is mainly a result of the subjectivity 
hampering the diagnostic process. These high rates of misdiagnosis and more importantly their 
sequelae illustrate the dire need for objective diagnostic modalities allowing accurate and timely 
diagnosis of major psychiatric disorders, which could improve psychiatric healthcare by decreasing 
misdiagnosis rates, increasing therapeutic efficacies and paving the way towards personalised 
medicine. 
 
1.3 Biomarker Discovery in Psychiatry 
 
As the dire need for objective diagnostic modalities was and still is recognised by the scientific 
community, biomarker discovery in psychiatry was a subject undergoing intense study in the last 
decades. Many techniques, methods and sample sources have been investigated thoroughly for their 
potential to serve as a biomarker.  
 
Neuroimaging has been extensively investigated because this technique allows to assess pathology-
related alterations in a non-invasive manner. Although such alterations have been identified in 
psychiatric patients, both on a structural and functional level, many studies report conflicting findings 
(for review see [82, 83]). Moreover, many overlapping alterations have been identified in MDD, BD 
and SZ patients and would thus not allow differential diagnosis [84-86]. 
 



20 
 

Another research area that has been extensively investigated in terms of biomarker discovery for 
psychiatric disorders is genomics. Family, twin and adoption studies revealed that the heritability of 
major psychiatric disorders is high (for review see [87-89]). This is specifically true for BD and SZ, in 
which the heritability rises to even up to 87% and 85%, respectively [90, 91]. Technological 
developments created the possibility to perform genome-wide association studies (GWAS) on large 
cohorts, which led to the identification of many risk genes (for review see [92]). Similar to 
neuroimaging, these genes are often implicated in multiple psychiatric disorders and are thus not fit 
for differential diagnosis. 
 
1.4 Proteomics for Biomarker Discovery in Psychiatry 
 
In the past years, proteomics gained interest in the field of biomarker discovery for psychiatric 
disorders since other approaches yielded disappointing results [93]. Proteomics, and more specifically 
non-targeted proteomics, offers a great platform for biomarker discovery by aiming to map the entire 
set of proteins in a desired cell, tissue or organism at a certain time point in a defined condition [94]. 
Therefore, profiling of the proteome might reveal underlying dynamic pathophysiological processes 
that may cause the varying symptomatology of psychiatric patients [95]. Furthermore, biomarker 
profiles can also increase our understanding of the molecular aetiology of psychiatric disorders and 
identify other disorders with similar molecular signatures, which in turn could even establish the basis 
to develop new therapeutics [96]. Hence, an increasing amount of proteomics studies was performed 
in the last decades, examining the proteome of brain tissue as well as peripheral fluids and cells (for 
review see [93, 97, 98]). 
 
1.4.1 Proteomics of Peripheral Fluids and Cells 
 
Although molecular fingerprinting of brain tissue could help to unravel underlying disease 
mechanisms, findings of such studies cannot be directly implemented as biomarkers since the 
collection of brain tissue is an extremely invasive procedure in living patients [99, 100]. Therefore, 
proteomics studies of fluids and cells, which are more feasible to collect in routine clinical practice, 
have been performed to investigate their potential as a sample source for biomarkers. Many studies 
focused on protein profiling of blood, mostly serum and plasma separately, because of the ease to 
collect the sample (for review see [93, 98, 101, 102]). Moreover, blood interacts with all tissues in the 
body and therefore contains important information regarding the health of our body, as demonstrated 
by the altered number of lymphocytes when our body is infected [103-105]. To a lesser extent, other 
fluids, such as cerebrospinal fluid (CSF), saliva, urine and sweat, were also investigated as potential 
sample sources for biomarkers (for review see [93, 95, 102, 106]). Although many studies made their 
data publicly available, comparison or a meta-analysis of the available data is difficult because of the 
large heterogeneity in experimental designs as well as statistical analysis [98]. The following sections 
provide a short overview of the best performing biomarker(s) (panels) that have been identified in 
previous studies. 
 

1.4.1.1 Proteomics in Schizophrenia 

 

The first blood-based test to aid in the diagnosis of SZ was established in 2010 by Schwarz et al. using 
the HumanMAP platform, a multiplexed immunoassay including 181 proteins at that time. The test  
consisted of a set of 34 proteins that were differentially expressed in serum of SZ patients compared 
to healthy controls. Although an algorithm using this biomarker panel could separate SZ patients 
correctly from healthy controls in 85% of the cases included in the cohort that was initially used for 
the discovery phase, this measure decreased significantly and was highly variable (40%-85%) when the 
algorithm was used to classify SZ patients and healthy controls in independent cohorts. Nevertheless, 
SZ patients could be discriminated from BD patients with a sensitivity and specificity of 86% and 78% 
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and from MDD patients with a with a sensitivity and specificity of 87% and 94%, respectively [107]. The 
sensitivity and specificity were not assessed in subsequent cohorts of the same psychiatric disorders, 
thus the variability of these measures when distinguishing SZ from other psychiatric disorders remains 
unknown.  
 
Using the same platform, including 225 analytes at that time, Chan and colleagues identified 29 
analytes that were differentially expressed in serum of SZ patients compared to healthy controls. 26 
of those analytes were ultimately comprised in the biomarker panel. In the discovery cohort, this panel 
was able to discriminate SZ patients from healthy controls with a sensitivity and specificity of 90%. The 
biomarker panel’s performance remained stable when it was used in a validation cohort [108]. 
 

1.4.1.2 Proteomics in Major Depressive Disorder 

 

Papakostas and colleagues established an algorithm that is able to distinguish MDD patients from 
healthy controls with a sensitivity of 91,7% and a specificity of 81,3%, which remained stable in larger 
and independent cohorts [109]. This algorithm was upgraded in 2015 by including gender and body 
mass index (BMI) as interaction terms and normalising cortisol levels, which increased the sensitivity 
and specificity to 94% and 92%, respectively. The algorithm computes a MDDScore, which ranges from 
one in healthy controls to nine in depressed patients, based on the expression levels of nine serum 
analytes. Moreover, the MDDScore proved to be independent of antidepressant treatment, which 
allows it to be used in any patient [110]. However, the performance of the algorithm when 
distinguishing MDD patients from patients with another psychiatric disorder was not assessed, which 
is the ultimate goal in clinical practice.  
 
Using the same multiplexed immunoassay as Schwarz and Chan et al. [107, 108], Stelzhammer and 
colleagues identified 11 serum analytes that could separate MDD patients from healthy controls with 
a sensitivity of 89% and a specificity of 95%. As Stelzhammer and colleagues assessed differences 
between MDD patients and healthy controls in two cohorts, differentially expressed analytes were 
only withheld when the differences were reproducible in both cohorts. Moreover, they concluded that 
two of these analytes were positively associated with symptom severity in cohort 1, but not in cohort 
2 [111].  
 

1.4.1.3 Proteomics in Bipolar Disorder 

 
Biomarker panels to discriminate BD patients from healthy controls and other psychiatric patients are 
very scarce. In 2016, Haenisch and colleagues identified 20 differentially expressed analytes in a 
discovery phase, validated them in a validation phase and tested their potential for clinical usefulness 
in an application phase. In the discovery phase, 87 analytes were detected in serum of BD patients and 
healthy controls using the Human DiscoveryMap platform. The patients and healthy controls were 
derived from eight cohorts recruited at five different sites. The differentially expressed analytes could 
distinguish BD patients from healthy controls with an area under the curve (AUC) of 0,90 when they 
were combined in a biomarker panel. The performance of the biomarker panel remained stable when 
it was tested in an independent cohort despite the fact that data were only available for 16 of the 20 
analytes selected in the discovery phase (AUC = 0,92). Furthermore, the predictive performance of the 
biomarker panel was assessed in a cohort containing 102 MDD patients of which 12 experienced a 
(hypo-)manic episode within two years after blood collection and were subsequently diagnosed with 
BD (AUC = 0,84). This suggests that the biomarker panel is clinically useful even though the sample size 
is too small to make solid conclusions [112]. 
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1.4.1.4 Proteomics Based on the Comparison of Differential Diagnoses 

 

Various studies focused on biomarker discovery for multiple psychiatric disorders with similar clinical 
presentations at the same time. However, such studies selected biomarker candidates only based on 
their discriminatory potential between psychiatric patients and healthy controls [107, 113, 114]. To 
the best of my knowledge, only three studies compared protein expression levels of patients with 
differential psychiatric disorders directly with each other. More specifically, they all investigated 
differential expressions across the proteome of MDD and BD patients [115-117]. The research papers 
reporting the results of these studies were all published in the last five years, indicating that this 
comparative approach only emerged very recently.  
 
In 2015, Chen and colleagues identified 25 proteins that were differentially expressed in plasma of 
MDD patients compared to BD patients by using a non-targeted proteomics approach. Validation of 
three of those proteins using Enzyme-Linked Immuno Sorbent Assay (ELISA) yielded quantitative 
results that were consistent with those of the non-targeted approach [115]. Another study using a non-
targeted proteomics approach was conducted in 2017 and identified 1012 proteins in plasma of the 
same patient populations and healthy controls. In total, 116 differentially expressed proteins were 
identified across the three comparisons (MDD/control, BD/control, MDD/BD), of which only 9 were 
differentially expressed between MDD and BD patients [116]. There was no overlap between these 9 
proteins and the 25 proteins that were identified by Chen and colleagues [115, 116]. A very recent 
study, published in April 2020, profiled expression levels of proteins in serum of MDD and BD patients. 
Of the 268 proteins that were considered for analysis, 14 showed to be differentially expressed. After 
correction for multiple testing, only three of those remained significantly differentially expressed 
[117]. Interestingly, one of the three proteins that remained differentially expressed after correction 
for multiple testing was also identified as differentially expressed in plasma of these patient 
populations by Chen et al. [115, 117]. None of these studies assessed the performance of the identified 
biomarkers when distinguishing patients with differential diagnoses from each other. 
 
1.4.2 Limitations of Previous Proteomics Studies 
 
Clearly, many studies focused on biomarker discovery for major psychiatric disorders using various 
techniques, methods and sample sources. However, none could identify a biomarker panel that is 
useful in clinical practice. Promising biomarkers identified in a research environment showed to be 
non-specific in a clinical setting and thus were of no use for clinical diagnosis of major psychiatric 
disorders. This specifically appeared to be true for single biomarkers, possibly because of their inability 
to represent complex underlying disease mechanisms [118, 119]. Therefore, psychiatry is one of the 
few fields lacking biological measures for diagnosis. 
 
In my opinion, the greatest limitation of many proteomic studies focusing on biomarker discovery for 
psychiatric disorders is the fact that they identify biomarker(s) (panels) based on their ability to 
distinguish patients suffering from a certain disorder and healthy controls. However, the challenging 
aspect of diagnosing psychiatric disorders is distinguishing differential diagnoses from each other, 
rather than deciding whether a patient is healthy or has a certain disorder. This might be causing that 
promising biomarker(s) (panels) are not specific and therefore not useful in clinical practice. Moreover, 
most studies do not take into account the different states associated with a certain psychiatric 
disorder. As these states present with a diverse symptomatology, underlying molecular processes 
causing these symptoms might be distinct. Therefore, proteins related to those processes might 
fluctuate resulting in state-specific biomarkers [119, 120]. For instance, BD is characterised by cycling 
between manic and depressive states, and SZ patients do not always present with psychotic symptoms. 
Furthermore, the majority of proteomic studies used a targeted approach, which may be biased by the 
included proteins and does not allow to quantify expression levels of most proteins. Illustratively, the 
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HumanMAP platform, which is widely used for biomarker discovery in psychiatry, is mainly focused on 
the quantification of immune mediators and cytokines [113]. Consequently, such approaches impede 
the disclosure of dysregulated pathways and protein networks outside the scope of the included 
proteins. Moreover, studies implementing a non-targeted proteomics approaches all used a much 
smaller sample size compared to when targeted approaches 
were used, resulting in a decreased power. The same holds 
true for studies comparing differential diagnoses directly with 
each other instead of healthy controls. 
 
Additionally, many of these studies focused on protein 
profiling of serum or plasma. However, a recent study 
highlighted that the use of PBMCs might be preferred over 
plasma for biomarker discovery because i) “cellular proteomes 
in general deliver a higher number of proteins than plasma” 
(see Figure 3), ii) “the focus of detected proteins in cellular 
proteomes is substantially different and significantly richer as 
a source of biomarkers” and iii) low-abundant proteins, which 
are more likely to be relevant biomarkers, are masked by high-
abundant proteins in plasma. Furthermore, the proteome of 
PBMCs and plasma is significantly different (see Figure 3) [121]. 
Hence, biomarker discovery might be more successful using 
PBMCs instead of plasma.  
 
1.5 PBMCs for Biomarker Discovery in Psychiatry 
 

PBMCs comprise all blood cells containing a round nucleus, including lymphocytes, monocytes and 
dendritic cells, and are therefore essential players of the immune system [122]. In terms of technical 
and practical matters, PBMCs are an excellent source for biomarkers because they are abundantly 
present in a venous blood sample. Per millilitre whole blood, PBMC counts range from 0,5 to 3 million 
[123-126]. Moreover, a venous blood sample is collected via a minimally invasive technique which is 
routinely used in clinical practice. Therefore, a diagnostic test based on PBMCs could be implemented 
in daily routine very fast once a biomarker panel is developed and validated. Furthermore, proteomics 
analysis of PBMCs yields a high number of proteins (Figure 3), increasing the chances to identify 
biomarkers compared to plasma or serum [121]. Other than the beneficial characteristics of PBMCs in 
terms of technical and practical matters, they are specifically interesting for biomarker discovery of 
brain disorders as they are proposed to be a neural probe [127]. This way, identified biomarkers might 
be reflecting pathophysiological processes occurring in the brain, resulting in an increased 
understanding of disease mechanisms [128, 129]. 
 

1.5.1 Bidirectional Communication between PBMCs and the Brain 
 

PBMCs manifest similar gene and protein expression profiles as the brain. For example, a study of 

Rollins et al., comparing gene expression levels in PBMCs and post mortem brain tissue of the same 

individual, revealed that a number of genes showed similar expression levels in PBMCs and brain tissue 

[100]. Furthermore, some of these similarly expressed genes and proteins, such as receptors for brain 

derived neurotrophic factor, serotonin and dopamine, have already been suggested to be involved in 

psychiatric disorders [127]. Similarities in gene expression profiles in PBMCs and brain tissue may be a 

result of the bidirectional communication occurring between them. 

 

On the one hand, the brain influences the immune system, including PBMCs, through various 

mediators, such as neurotransmitters and hormones [130, 131]. For instance, gamma-aminobutyric 

Figure 3 Number of proteins identified in 

PBMCs and plasma. The Venn diagram 

displays the number of proteins identified 

in PBMCs and plasma (HPPP) and the 

number of proteins overlapping between 

the proteome of PBMCs and plasma. 

Abbreviations: HPPP, Human Plasma 

Proteome Project; PBMCs, peripheral 

blood mononuclear cells [121] 
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acid (GABA) and glucocorticoids regulate cytokine production in PBMCs by binding to their receptors 

on the cell membrane of PBMCs and activating signalling cascades. This way, GABA and glucocorticoids 

can change gene expression and modulate the immune system [130, 132]. Additionally, the brain also 

affects PBMCs similarly via cytokines, which are important signalling molecules of the immune system 

[133]. Although they are mainly secreted by immune cells, including PBMCs, cytokines are also 

secreted by microglia, astrocytes and neurons [134, 135]. 

 

On the other hand, PBMCs influence the brain via various signalling molecules of the immune system, 

for which microglia, astrocytes and neurons express receptors on their cell membrane [136, 137]. 

Activation of these receptors allows signalling molecules to have an impact on normal functions of the 

central nervous system, such as the regulation of sleep [138] and neuronal development [139, 140]. 

These signalling molecules communicate with the central nervous system via neural routes, passive 

and active transport across the blood brain barrier and interaction with cells of the blood brain barrier 

[141]. 

 

1.5.2 Involvement in Psychiatric Disorders 
 

PBMCs are specifically of great interest for biomarker discovery in psychiatry as decades-old 
observations implicate altered PBMC features in psychiatric patients. These alterations entail both 
macroscopic characteristics, such as deviant amounts of PBMCs [142], as well as molecular processes, 
such as an impaired oxidative metabolism [143]. As new technologies were developed, the knowledge 
about PBMC alterations in psychiatric patients expanded by more recent studies focusing on all sorts 
of omics [144-146].  
 
Coppens and colleagues investigated whether or not PBMCs could serve as a source of biomarkers for 
differential diagnosis of psychiatric disorders with similar clinical presentations, namely MDD patients 
and BD patients in a depressive state (BD-D), on the one hand, and BD patients in a manic state (BD-
M) and SZ patients, on the other. The study identified proteins that are differentially expressed in these 
patients as well as compared to healthy controls, which implicates that the identified proteins are also 
pathology related [147]. Hence, the results of this study suggest that PBMCs offer a great source of 
biomarkers for psychiatric disorders. Furthermore, other studies reported alterations that could be 
related to hypotheses of underlying disease mechanisms [148-152]. Illustratively, Torres and 
colleagues noted that expression levels of receptors involved in dopaminergic pathways are aberrant 
in PBMCs of BD and SZ patients [148, 149]. 
 
Even more interesting is that some PBMC alterations have been shown to be condition-specific. For 
instance, Gurvich et al. observed episode-specific gene expression shifts in PBMCs of BD patients [153]. 
Another recent study reported that altered DNA methylation, and thus also expression, of stress 
related genes in PBMCs of MDD patients may only be present in patients with serious suicide ideation 
and not in other MDD patients [154]. Consequently, condition-specific alterations of PBMC features 
may result in an increased efficiency to detect conditions in need of extra care or treatment. 
 

1.6 Aims of the Project 

 
Objective diagnostic biomarkers are currently lacking in the field of psychiatry. Therefore, this thesis 
aimed to identify biomarker candidates for differential diagnosis of major psychiatric disorders via 
protein profiling. More specifically, differential diagnosis of MDD and BD-D patients and differential 
diagnosis of BD-M and SZ patients were prioritised because of the high misdiagnosis rates associated 
with these afflictions. 
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A first step towards this aim was to identify which sample source offers the best characteristics for 
biomarker discovery. Samples of healthy volunteers were used to compare the proteome of plasma, 
the golden standard in biomarker discovery, and PBMCs, proposed to be neural probes, in terms of 
quantitative and qualitative endpoints. First, the protocol for sample preparation of plasma was 
optimised because an optimised protocol for this purpose was not yet available in the host laboratory. 
However, this optimisation phase did not provide a solid optimised protocol for sample preparation of 
plasma as the goal of this phase was to optimally utilise the available resources rather than to create 
an optimised protocol that is as strong as possible in technical terms.  
 
Additionally, data of a proof-of-concept study using protein profiling of PBMCs of the same 
experimental groups as described earlier were analysed. Biomarker candidates were identified and 
subjected to pathway and network analysis to obtain a better understanding of affected pathways, 
cellular functions or systems. As this research was conducted in a highly exploratory approach, data 
were obtained in a hypothesis-free manner. 
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2. Methodology 
 

2.1 Initial Experimental Set-up 

 

2.1.1 Optimisation Protocol for Sample Preparation and Quantitative Proteomics 

 

2.1.1.1 Sample Collection 

 

Technical samples, obtained from healthy volunteers, were collected between 7:30 and 10 AM in 10 
mL K2-EDTA-coated collection tubes (REF 367525, BD Vacutainer®, New Jersey, USA). 5 mL whole blood 
was pipetted onto Histopaque-1077 (Sigma-aldrich, Missouri, USA) to collect PBMCs. The buffy coat, 
containing approximately one million PBMCs per millilitre blood [123-126], was collected following 
gradient centrifugation for 20 minutes at 700g and 20°C without brakes. Next, phosphate buffered 
saline (PBS; Thermo Fisher Scientific, Perth, United Kingdom) was used to wash the buffy coat twice. 
After discarding the supernatant, dry cells were stored at -80°C until further analysis (Figure S1 in 
Supplementary materials). The remaining 5 mL whole blood was centrifuged for 10 minutes at 3.6 rpm 
and 4°C to obtain plasma, which was aliquoted and stored at -80°C until further analysis (Figure S2 in 
Supplementary materials).  
 

2.1.1.2 Sample Preparation of Plasma 

 

For this study, three different aliquots of the same test subject were prepped. Of those, one aliquot 
was prepped in triplicate (Figure 4). As an optimised protocol for sample preparation of plasma was 
not yet available, a general sample preparation protocol for plasma was optimised by assessing the 
quality of some commercially available products [155, 156].  
 
Although non-targeted proteomics offers a great platform for biomarker discovery, the large dynamic 

range of protein abundances in plasma impedes mass spectrometry (MS)-based protein profiling [157, 

158]. Therefore, depletion of highly abundant proteins is necessary to allow detection of proteins with 

lower abundances [159, 160]. Moreover, Geyer and colleagues stated that less abundant proteins are 

possibly more likely to be identified as biomarkers than highly abundant proteins [161]. To achieve 

depletion of highly abundant proteins, the easiest and most commonly used method involves the use 

of solid phase extraction columns. These columns can be designed specifically for the depletion of 

highly abundant proteins in plasma, of which many are commercially available [160, 162]. Two of such 

commercially available columns are the ProteoSpin™ Abundant Serum Protein Depletion Kit (also fit 

for plasma, Norgen, Ontario, Canada) and the Pierce™ Top 12 Abundant Protein Depletion Spin Column 

(Thermo Scientific, Massachusetts, USA). Although the latter is the most well-known and widely used 

column for this purpose, it is three times more expensive than the former. Therefore, the 

performances of both columns were compared to assess whether or not the Pierce™ column is worth 

its price5. Samples were depleted following manufacturers’ instructions. 

 
As this study involves the quantification of proteins, an equal amount of proteins for each sample 
should be analysed. Hence, the determination of the protein concentration by an RC DC protein assay 
(Bio-Rad, California, USA) allowed us to calculate the necessary volume of each sample. Subsequently, 
the samples were reduced and alkylated to allow separation by the LC column. Finally, peptides were 
generated by digesting the proteins present in the sample via an appropriate enzyme or chemical. To 

 
5 The Pierce™ column would only be considered for use in the biomarker discovery phase when it significantly 
outperforms the ProteoSpin™ column. In case both columns perform equally well, the ProteoSpin™ column will 
be selected for the biomarker discovery phase based on the cost of the column. 
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perform these last two steps, the ProteoSpin™ On-Column Proteolytic Digestion Kit (Norgen, Ontario, 
Canada) was used according to the manufacturer’s instructions. Trypsin was used to digest proteins 
because of its high specificity and ease to use [163]. All prepped samples were stored at -20°C before 
LCMS analysis to mimic the experimental situation of the biomarker discovery phase as much as 
possible. 

 

2.1.1.3 Sample Preparation of PBMCs 

 

Three aliquots, two of which were derived from the same test subject, were prepped using the 
standard protocol for sample preparation of cells (Figure 5). PBMCs of technical samples were 
solubilised in a protein extraction buffer (RIPA buffer (150 mM NaCl, 50 mM Tris, 0,5% sodium 
deoxycholate, 1% NP-40) containing 1% SDS) using a sonicator (UP50H, Hielscher Ultrasonics, 
Germany). To ensure equal amounts of proteins in every sample, the necessary volume of each sample 
was calculated based on the results of a RC DC protein assay (Bio-Rad, California, USA) before 
proceeding to the next step. Subsequently, the ProteoSpin™ On-Column Proteolytic Digestion Kit 
(Norgen, Ontario, Canada) was used for reduction, alkylation and digestion of proteins in the samples 
following the manufacturer’s instructions. All prepped samples were stored at -20°C before LCMS 
analysis to mimic the experimental situation of the biomarker discovery phase as much as possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Visual representation of the experimental design for comparing depletion columns. 
Abbreviations: PBMCs, peripheral blood mononuclear cells 

 

Figure 5 Visual representation of the 
experimental design for comparing 
plasma and PBMCs as a sample source 
for biomarker discovery. 
Abbreviations: PBMCs, peripheral blood 

mononuclear cells 
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2.1.1.4 LCMS 

 

All samples were loaded in triplo onto the LC fractionation system (Dionex ULTIMATE 3000, Thermo 
Scientific, Massachusetts, USA), which consists of a nano-LC C18 column (200 Å, 2 μm, 75 μm × 25 cm), 
and eluted with a LC gradient of 155 minutes. As this column is coupled online to a QExactive™-Plus 
Orbitrap MS (Thermo Scientific, Massachusetts, USA), the eluents were automatically infused to the 
MS with a capillary at 1.7 KV on a nano-ESI source at a flow rate of 300 nl/min.  
 
Additionally, the length of the LC gradient that is used to elute peptides from the column was increased 
to try to increase the number of proteins that could be retrieved from the samples as this parameter 
already proved to have an effect on this number [164, 165]. The residuals of the two plasma samples 
with the highest number of identifications that were depleted with ProteoSpin™ were used to assess 
this effect. For this purpose, the above described LCMS procedure was repeated with a varying length 
of the LC gradient (180 minutes, 240 minutes, 300 minutes, 360 minutes and 440 minutes).  
 

2.1.1.5 Protein Identification and Quantification 

 

Data were acquired for a selected mass range of 350-1800 m/z at the MS1 level with a resolution of 
140,000 and at the MS2 level with a resolution of 17,500 and were analysed by MaxQuant Software 
(Open Source, [166]). Andromeda was used as search engine to generate peptide sequences based on 
the human UniProt/SwissProt database and to identify tandem mass spectra with a confidence over 
99%. Settings of MaxQuant software are listed in Table S1 in the Supplementary materials. 
 
Moreover, the effect of analysing the data with the MaxLFQ algorithm on the variation was examined 
by analysing all samples with this algorithm and the standard MaxQuant algorithm (see Figures 4 and 
5). The MaxLFQ algorithm was specifically designed for label-free quantification MS and showed to 
quantify protein abundances more accurately than other methods [167, 168]. MaxLFQ implements a 
delayed normalisation via a global optimisation procedure after the summation of peptide intensities. 
Based on the assumption that most protein expression levels do not change between two conditions, 
normalisation factors are determined by aiming for the least overall proteome variation. Proteins are 
quantified by calculating protein ratios between any pair-wise comparison of samples that were 
analysed. Each pair-wise protein ratio is defined by the median of the peptide ratios derived from the 
same pair-wise comparison. This way, protein quantification is based on the maximum possible 
information that can be retrieved from the data. A more detailed explanation of MaxLFQ is available 
in the original manuscript [168].  
 

2.1.1.6 Data Analysis 

 

Graphad Prism was used to perform statistical analysis with a statistical significance set at p < 0,05. 

The Shapiro-Wilk test was used to check for normality of data because it proved to be the most 

sensitive normality test. However, a study assessing the sensitivity of this test by subjecting it to non-

normal data concluded that it failed to reject the null hypothesis6 when the sample size was below 40 

[169]. Therefore, statistics were performed using a conservative approach and datasets with a sample 

size below 40 were analysed using non-parametric tests. Moreover, this conservative approach is in 

line with the fact that this thesis was focused on detecting large differences as conservative 

approaches tend to be more careful with respect to detecting significant differences [170]. The 

depletion columns were compared to determine whether or not the Pierce™ column is worth its price, 

which Is three times the price of the ProteoSpin™ column and thus would only be considered when 

 
6 The null hypothesis of the Shapiro-Wilk test states that data are normally distributed. 
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there are large differences. Significant differences were determined using the Wilcoxon signed-rank 

test in case the depletion columns were compared and the Mann Whitney U test in case plasma was 

compared to PBMCs. Data are presented as median [lower limit – upper limit]. 

 

To validate the method with the highest qualitative return, qualitative and quantitative endpoints were 
compared. Data was not transformed to capture real variation. The coefficient of variation (CV), 
defined as the ratio of the standard deviation to the mean, was calculated at multiple levels using 
Microsoft Excel. The variation on the intensity of each protein was determined across separate sample 
preparations of the same aliquot (inter-prep variability), across different LCMS runs (inter-run 
variability) and across different test subjects (inter-individual variability) (see Figure 6). Moreover, the 
range of the inter-run variability was determined for each separate protein by subtracting the 
maximum with the minimum inter-run CV. The number of proteins with a CV below 20% was also 
calculated at all levels. The cut-off was set at 20% as this is frequently used for diagnostic assays [171]. 
Additionally, the total number of distinct proteins identified per sample was calculated by summing up 
all individual proteins that were identified in at least one run. To assess the detection stability, the 
number of proteins that were identified in each run of a sample was also calculated. This is an 
important measure because detection in multiple runs is necessary to reach quantitative precision. 
These parameters were all assessed when using the standard MaxQuant algorithm as well as the 
MaxLFQ algorithm. 

 

2.2 Replacement Assignment 

 

Unfortunately, the initial experimental set-up could not be completed due to the COVID-19 outbreak. 

Therefore, this thesis included analysing a dataset containing protein expression levels of PBMCs of 

the same populations as the initial experimental set-up. These data were obtained in a proof-of-

concept study of which the experimental set-up is copied from the original manuscript with approval 

of the authors [147]. The original manuscript is supplied in the supplementary materials. 

 

2.2.1 Patient Selection and Sample Collection 

 

MDD patients (n = 5), BD-D patients (n = 3), BD-M patients (n = 4) and SZ patients with active positive 
symptoms (n = 4) were recruited from UPC Duffel. HCs were recruited via advertising and matched to 
patients based on age and gender. The study was approved by the Ethics committee of Antwerp 
University Hospital and UPC Duffel. PBMCs were collected as described in section 2.1.1.1.  
 

2.2.1.1 Inclusion Criteria 

 

Subjects must meet the following criteria before entering the study: 
1. Be a man or a woman between 18 and 55 years, inclusive 

Figure 6 Visual representation of the calculation of the variation at multiple levels. 
Abbreviations: prep, preparation 
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2. Have signed an informed consent document (indicating that they understand the purpose of, 
and procedures required for the study and are willing to participate in this study. 

3. Be medically stable on the basis of physical examination and vital signs performed at 
Screening. 

4. Be medically stable on the basis of clinical laboratory tests performed at Screening. If the 
results of the serum chemistry, haematology, or urinalysis are outside the normal reference 
ranges, the subject may be included only if the investigator judges the abnormalities or 
deviations from normal to be not clinically significant or to be appropriate and reasonable for 
the population under study. 

5. Be willing and able to adhere to the prohibitions and restrictions specified in the protocol. 
6. For patients: Be diagnosed with either MDD, BD (type 1 or 2) or SZ according to the diagnostical 

MINI-interview 
7. For inclusion in one of the four patient groups, patients additionally must have:  

• Group 1 major depressive disorder patients: a Hamilton Depression Rating Scale 
(HDRS) score of 14 or higher 

• Group 2: Bipolar disorder patients, depressed phase a HDRS score of 14 or higher 
• Group 3: Bipolar disorder patients, (hypo)manic phase: a Young Mania Rating Scale 

(YMRS) score of 13 or higher 
• Group 4: schizophrenia patients: A total score of ≥14 on the positive scale of the 

Positive And Negative Syndrome Scale (PANSS) and at least a score of 5 on 1 item or a 
score of 4 on 2 “psychotic” PANSS items P2, P3, P5 or G9 at Screening. 

8. Individuals have to be physically healthy on the basis of clinical judgment of the investigator. 
          

2.2.1.2 Exclusion Criteria 

 

Potential subjects who meet any of the following criteria will be excluded from participating in the 
study: 

1. Applicable to the control group: 
a. Personal history of psychotic disorder or mood disorder 
b. Family history of psychotic or mood disorder in first-degree relatives 

2. Has a history of drug or alcohol dependence according to DSM-5 criteria, except nicotine or 
caffeine, within 6 months before screening. 

3. Has history of (co-morbid) somatisation or mood disorder according to DSM-5 criteria within 
6 months before screening. 

4. Has a positive test result for drugs of abuse or for alcohol at screening or test day. 
5. Female subjects only: is pregnant or breastfeeding 
6. Has a history of chronic or acute physical illness associated with abnormal immune changes 

within the 2 weeks before the study. 
7. Leucocytosis (i.e., white blood cell count  ≤ 11 x109 /L) on screening and test days. 
8. Serology positive for hepatitis B surface antigen (HBsAg), hepatitis C antibodies, or HIV 

antibodies at screening. 
9. Has a medical history of any auto-immune disorder or chronic inflammatory disease. 
10. Has received electroconvulsive therapy in the last 6 months. 
11. Is currently enrolled in a study with an investigational study drug. 
12. Has any condition that, in the opinion of the investigator, would compromise the wellbeing of 

the subject or the study or prevent the subject from meeting or performing study 
requirements. 
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2.2.2 Quantitative Proteomics 

 

Multiplexed iTRAQ (isobaric mass-tag labelling for relative and absolute quantitation) LCMS was 
performed as described hereafter. PBMC samples were solubilised in a protein extraction buffer 
(composition: 8 M urea, 2 M thiourea, 0.1% SDS and 50 mM triethylammonium bicarbonate).  Next, 
protein concentrations were quantified using RC DC protein assays (Bio-Rad; California, USA). Equal 
amounts of proteins from each sample were then reduced by tris-2-carboxyethyl phosphine and 
alkylated by 5-methyl-methanoethiosulphate and finally subjected to trypsin digestion. The resulting 
peptides from each sample were labelled using iTRAQ reagents (Sciex, Massachusetts, USA) following 
the manufacturer's instructions.  
 
PBMC samples of HC and patient samples were spread randomly across three different octaplex iTRAQ 
LC runs. To improve LC-MS/MS proteome coverage, samples were subjected to a 2D-LC fractionation 
system (Dionex ULTIMATE 3000, Thermo Scientific, Massachusetts, USA). Peptide mixes were 
fractionated on a strong cationic exchange chromatography column (1 mm x 150 mm polysulfoethyl 
Aspartamide (California, USA, Dionex)) separated subsequently carried on a nano-LC C18 column (200 
Å, 2 μm, 75 μm × 25 cm). The nano-LC is coupled online to a QExactive™-Plus Orbitrap (Thermo 
Scientific) mass spectrometer (MS). The nano-LC eluents were infused to the Orbitrap mass-
spectrometer with a capillary at 1.7 KV on a nano-ESI source at a flow rate of 300 nl/min.  
 
Data dependent acquisition in positive ion mode was performed for a selected mass range of 350-1800 
m/z at the MS1 level with a resolution of 140,000 and at the MS2 level with a resolution of 17,500. The 
raw data were analysed by Proteome Discoverer 2.1 Software (Thermo Scientific) using Sequest HT as 
the search engine against the human UniProt/SwissProt database.  The threshold of confidence was 
set above 99% ensuring a false discovery rate of less than 1%. The list of identified proteins, containing 
iTRAQ ratios of expression levels over control samples, was generated. Proteome Discoverer 2.1 
employs a global analytical methodology.  
 

2.2.3 Data Analysis 

 

2.2.3.1 Demographics 

 
For demographics, group mean differences were calculated by ANOVA with Tukey honest significant 
differences (HSD) post-hoc comparisons for numerical data and with Fisher exact test for categorical 
variables (gender, smoking status). All analyses were performed using JMP® version 13 (SAS, Cary, 
North Carolina 27513, USA). Demographics are presented as mean ± standard deviation (SD). 
 

2.2.3.2 Identification of Biomarker Candidates for Differential Diagnosis 

 

Because of the small sample size, protein expression levels were only analysed when the protein was 
detected in all HC and patient samples to limit false discoveries. Raw iTRAQ ratios (condition/standard) 
were accumulated into mean abundance ratios per experimental group. Subsequently, these mean 
abundance ratios were used to calculate the fold change expression ratios of each patient group over 
HCs. Furthermore, the fold change expression ratios were also calculated for MDD and BD-D patients, 
on the one hand, and BD-M and SZ patients, on the other hand. All fold change expression ratios were 
log2 transformed to centre them around zero and thus reduce skewness. Finally, two lists of biomarker 
candidates were assembled: one for differential diagnosis of MDD and BD-D patients and one for 
differential diagnosis of BD-M and SZ patients. These lists contain proteins of which the log2 fold change 
expression ratio is larger than two SD to i) the patient/patient mean log2 fold change expression ratio 
and ii) the patient/HC mean log2 fold change expression ratio in at least one of the two patient groups 



33 
 

(Figure S3 in Supplementary materials) [172]. This way, biomarker candidates are only considered 
when they are pathology-related. VennPlex was used to visualise this modus operandi [173]. 
 

2.2.3.3 Pathway Analysis 

 

Protein expression values were further analysed via pathway analysis to identify enriched gene sets, 

the topology-free variants of pathways. As many pathway analysis methods are available, selecting the 

best methods for your study can be challenging and should be considered carefully. In this thesis, 

pathway analysis was performed by using the CAMERA method, or Correlation Adjusted MEan RAnk 

gene set test, because of the following reasons. First, CAMERA takes into account inter-gene 

correlations [174]. This is an important aspect because various studies have demonstrated that the 

false discovery rate can drastically inflate when these correlations are ignored, as is the case in many 

other pathway analysis methods [175-177]. Second, p-values of pathways generated by CAMERA are 

uniformly distributed between 0 and 1 [174], in contrast to the skewed null distribution of p-values 

generated by other methods for pathway analysis [178]. Illustratively, CAMERA identifies a number of 

gene sets to be differentially enriched that is close to the expected (5%) when samples are randomly 

labelled and significance is set at 0,05 [179]. Moreover, this number of gene sets predicted to be 

differentially enriched showed to be independent of the sample size whereas many other pathway 

analysis methods generated an increasing number of gene sets predicted to be differentially enriched 

when the sample size was enlarged [180]. Third, Maleki and colleagues demonstrated that the number 

of gene sets predicted to be differentially enriched by this method is reasonable while this number is 

much larger for other methods, of which many are known to generate false positives [178, 181].  

 

Pathway analysis was performed using R Statistical Software, more specifically the limma package 

[182]. This package includes a function that automatically performs pathway analysis via the CAMERA 

method [174]. Gene sets were downloaded from MSigDB7 because this database is a collection of gene 

sets derived from many other well-known databases, such as Reactome Pathways and KEGG, and 

therefore includes more information than a single database [183]. Using the gmtPathways function, 

which requires the Rcpp and fgsea packages, gene sets were loaded into an R object. Subsequently, 

this object was used to map genes, corresponding to the identified proteins, to the gene sets they 

belong to via the id2indices function. The camera function also requires an expression matrix, 

containing expression values of each protein in each sample, a design matrix, specifying to which 

experimental group a sample belongs, and a contrast matrix, defining the comparison of interest. 

Moreover, the inter-gene correlation was set at 0,01, as recommended in the R documentation. 

CAMERA assigns the direction of regulation (up- or down-regulated), a p-value and a q-value, the p-

value corrected via the Benjamini–Hochberg algorithm, to each gene set included in the database that 

was used.  

 

As the camera function does not take into account multiple contrasts simultaneously (e.g. 

patient/patient and patient/control), enriched gene sets were identified in the same manner as 

biomarker candidates were identified. Thus, a gene set should be enriched (q-value below 0,05) when 

i) expression values of patient groups were compared with each other and ii) expression values of HCs 

and patients were compared in at least one of the two patient groups. Interactions between 

significantly enriched gene sets were visualised via Cytoscape 3.7.2 [184] using the Cytoscape app 

Enrichment Map [185]. Clusters within these interaction networks were identified and annotated by 

 
7 Accessed on June 1ste 2020 
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AutoAnnotate and WordCloud [186, 187]. Overarching terms were manually added via Microsoft 

PowerPoint. 

 

2.2.3.4 Network Analysis 

 
Although pathway analysis is a great way of gaining more meaningful and interpretable information 
from a list of genes or proteins, it only considers canonical pathways or gene sets. As network analysis 
offers the opportunity to implement non-canonical information, the lists of biomarker candidates for 
differential diagnosis were also subjected to this type of analysis by using Cytoscape 3.7.2 [184]. Two 
networks, one based on biomarker candidates for differential diagnosis of MDD and BD-D patients and 
one based on biomarker candidates for differential diagnosis of BD-M and SZ patients, were created 
with information gathered via the STRING database. This database generates protein interactions 
based on experimental data as well as computational prediction efforts and therefore creates 
networks based on protein interactions at the widest scope [188]. The Cytoscape app stringApp is 
required to implement this information in Cytoscape [189].  
 
Network characteristics were assessed with the Cytoscape tool NetworkAnalyzer [190] and cytoHubba, 
another Cytoscape app, was used to identify hubs and bottleneck proteins [191]. Nodes with a high 
degree (i.e. number of direct neighbours) are called hubs whereas bottleneck proteins are 
characterised by a high betweenness centrality (i.e. number of shortest going through that node). Both 
are considered to be essential elements of a network [192, 193]. However, there is no inherent 
threshold defining which node is a hub or a bottleneck [192]. Therefore, hubs and bottlenecks are 
often referred to as the top 5-20% proteins with the highest degree or betweenness centrality, 
respectively [193-197]. As this is a highly explorative study, the threshold was set at 20%. A node that 
reaches the threshold to be considered a hub as well as a bottleneck is referred to as a hub-bottleneck. 
 
Additionally, cluster analysis of these networks was performed using the Cytoscape app Cluster ONE 
because this algorithm allows that one node, corresponding to one protein, can be part of multiple 
clusters, in contrast to other cluster algorithms where a node is assigned to just one of the clusters. 
This way, the Cluster ONE algorithm takes into account that one protein may have multiple functions 
and therefore clusters in a manner that is closer to the true biological situation [198]. Cluster analysis 
was performed with the default settings for all parameters, except for the edge weights. Edges were 
weighted using the STRING confidence score, which is automatically generated when the network is 
created and represents the likelihood for the interaction to be true. Finally, all clusters were subjected 
to functional enrichment analysis using the stringApp [189]. All proteins of the network were included 
as background. Terms were not filtered based on redundancy because this approach only withholds 
the most significant term(s) when there is a certain degree of overlap. However, the significance 
assigned to a gene set may be positively correlated with the size of the gene set [179]. Consequently, 
larger and more general gene sets are more likely to be withheld, leading to a loss of information about 
smaller and more specific gene sets.  
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3. Results 
 

3.1 Choice of Depletion Column and Analytical Algorithm 

 

3.1.1 Protein Yield 

 

As a first optimisation strategy, two types of commercially available and widely used depletion columns 
were compared in terms of the number of distinct proteins that were retrieved. When a sample was 
run in triplicate, the median total number of distinct identifications was higher in samples depleted 
with the ProteoSpin™ column compared to in those depleted with the Pierce™ column (196 [191 – 
198] vs 162 [158 – 169]; p = 0,0625; Figure 7a). Moreover, two analytical algorithms were compared 
using the same endpoints. The difference in the number of identifications between the two depletion 
columns attenuated when the samples were analysed using the MaxLFQ algorithm (139 [133 – 168] vs 
132 [130 – 143]; p = 0,1875; Figure 7a). Furthermore, analysis with the MaxLFQ algorithm resulted in 
a borderline significant decrease in the total number of identifications in samples depleted with the 
ProteoSpin™ column (p = 0,0625; Figure 5a). This was also the case for samples depleted with the 
Pierce™ column (p = 0,0625; Figure 7a).  
 
An important measure to consider when optimising a protocol for biomarker discovery is detection 
stability. Therefore, the number of distinct proteins that were detected in all runs per sample was 
determined. The number of proteins identified in all runs of a sample was borderline significantly 
higher in samples depleted with the ProteoSpin™ column compared to those depleted with the 
Pierce™ column (171 [165– 174] vs 139 [131 – 150]; p = 0,0625; Figure 7b). Furthermore, 
implementation of the MaxLFQ algorithm decreased the number of proteins identified in all runs of a 
sample for both depletion columns (116 [109 – 118], p = 0,0625 for samples depleted with the 
ProteoSpin™ column; 112 [105 – 121], p = 0,0625 for samples depleted with the Pierce™ column; 
Figure 7b). The difference in number of proteins identified in all runs between the depletion columns 
attenuated when the MaxLFQ algorithm was used (p = 0,3750; Figure 7b). 

3.1.2 Retrieval Reliability of Abundance Variability  

 

As biomarkers should allow for a stable detection, protein abundances should be detected with a 
variability below 20%. Data obtained from samples depleted with the ProteoSpin™ column showed to 

Figure 7 Number of proteins detected in samples depleted with the ProteoSpin™ or Pierce™ column. Displayed are a) 

the median total number of distinct proteins detected after three runs in samples depleted with the ProteoSpin™ (in 

black) or Pierce™ column (in grey) and b) the median number of proteins that were detected in all runs of samples 

depleted with the ProteoSpin™ (in black) or Pierce™ column (in grey). The minimum and maximum number of 

identifications are indicated by the error bars. 
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be more consistent than data obtained from samples depleted with the Pierce™ column at all levels. 
As illustrated in Table 2 and Figure 8, the number of proteins for which the inter-prep variability was 
below 20% was higher in samples depleted with the ProteoSpin™ column compared to those depleted 
with the Pierce™ column. Similar to the total number of identifications, using the MaxLFQ algorithm 
decreased the number of proteins for which the inter-prep variability was below 20% in samples 
depleted with the ProteoSpin™ column. However, the opposite was true in samples depleted with the 
Pierce™ column. Statistics could not be performed to determine the significance of the differences in 
the number of proteins for which the inter-prep variability was below 20% because they were assessed 
using only one aliquot. 
 
The number of proteins for which the inter-run variability was below 20% did not differ significantly 
between samples depleted with the ProteoSpin™ or Pierce™ column (p = 0,1875; Table 2). The use of 
the MaxLFQ algorithm increased this number in all samples (Table 2; Figure 9). This increase was 
borderline significant for samples depleted with the Pierce™ column (p = 0,0625), but not for samples 
depleted with the ProteoSpin™ column (p = 0,1250). When data was analysed using the MaxLFQ 
algorithm, the number of proteins for which the inter-run variability was below 20% did not differ 
between samples depleted with the ProteoSpin™ or Pierce™ column (p >0,9999; Table 2).  
 
Another measure reflecting detection stability is the range of the inter-run variability per protein 
across different samples. The median range of the inter-run variability was higher in samples depleted 
with the ProteoSpin™ column (65,00% [21,30% – 124,80%]; Figure 10) compared to those depleted 
with the Pierce™ column (41,75% [17,14% – 114,50%]; Figure 10). This difference attenuated when the 
MaxLFQ algorithm was used (Figure 10). Moreover, the MaxLFQ algorithm decreased the median 
range of the inter-run variability across different samples for samples depleted with the ProteoSpin™ 
column (11,15% [0,69% – 49,22%]; Figure 10) and for samples depleted with the Pierce™ column 
(8,50% [1,77% – 79,34%]; Figure 10).  
  

 

 

 ProteoSpin™ column Pierce™ column 
Variability MaxQuant MaxLFQ MaxQuant MaxLFQ 
Inter-prep  124 116 66 98 
Inter-run 95 [6 – 129] 119 [107 – 120] 23 [5 – 72] 117 [109 – 123] 

Table 2 Number of proteins detected with a CV below 20% at different levels. 

Figure 8 Distribution of the variation on the intensity of proteins detected in samples depleted with the ProteoSpin™ 

or Pierce™ column. The distribution of the inter-prep variability on the intensity of proteins detected in samples depleted 

with the ProteoSpin™ (in black) or Pierce™ column (in grey) is illustrated a) when data was analysed with the standard 

MaxQuant algorithm and b) the MaxLFQ algorithm.  

Abbreviations: prep, preparation 

Abbreviations: CV, coefficient of variation; prep, preparation 
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3.2 Choice of Sample Source and Analytical Algorithm 

 

3.2.1 Protein Yield 

 
A first important measure to consider when comparing sample sources for biomarker discovery is the 
number of identifications. The median total number of distinct proteins retrieved after three runs was 

Figure 9 Distribution of the inter-run variability on the intensity of proteins detected in samples depleted with the 

ProteoSpin™ or Pierce™ column. The distribution of the inter-run variability on the intensity of detected proteins in 

samples depleted with the ProteoSpin™ or Pierce™ column is illustrated for each sample separately when data was 

analysed using the standard MaxQuant algorithm and the MaxLFQ algorithm. The red line indicates the 20% variation 

cut-off that was used in this thesis. 

Legend: Dashed line, median; dotted lines, quartiles 

Figure 10 Distribution of the range of the inter-run variability on the intensity of proteins detected in samples depleted 

with the ProteoSpin™ or Pierce™ column. The distribution of the range of the inter-run variability on the intensity (the 

maximum CV subtracted with the minimum CV for each protein) of detected proteins in samples depleted with the 

ProteoSpin™ or Pierce™ column is illustrated when data was analysed using the standard MaxQuant algorithm and the 

MaxLFQ algorithm.  

Legend: Dashed line, median; dotted lines, quartiles 

Abbreviations: CV, coefficient of variation 
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significantly higher in PBMCs compared to plasma (950 [932 – 1029] vs 196 [191 – 198]; p = 0,0179; 
Figure 11a). This significant difference remained stable when the samples were analysed using the 
MaxLFQ algorithm (628 [579 – 974] vs 139 [133 – 168]; p = 0,0357; Figure 11a). Moreover, analysis 
with the MaxLFQ algorithm resulted in a significant decrease in the total number of identifications in 
plasma (p = 0,0079), but not in PBMCs (p = 0,400).   
 
Similar to the optimisation phase for sample preparation of plasma, detection stability is pivotal when 
comparing different sample sources. The number of proteins identified in all runs of a sample was 
significantly higher in PBMCs compared to plasma (743 [705 – 903] vs 171 [165 – 174]; p = 0,0357; 
Figure 11b). This significant difference remained stable when data was analysed with the MaxLFQ 
algorithm (p = 0,0357, Figure 11b). Moreover, the MaxLFQ algorithm significantly decreased the 
number of proteins identified in all runs of a sample in plasma (116 [109 – 118]; p < 0,0079). This 
decrease was not significant in PBMCs (437 [404 – 553]; p = 0,1000). 

3.2.2 Retrieval Reliability of Abundance Variability 

 

The variability on detected protein abundances was calculated to assess which sample source would 
yield the most reliable results. As can be concluded from Figure 12, the overall variation is larger in 
PBMCs compared to plasma (depleted with the ProteoSpin™). However, PBMCs generated a higher 
number of proteins with an inter-run variability below 20% than plasma (p = 0,2500; Table 3). 
Moreover, MaxLFQ positively influenced the number of proteins identified in PBMCs for which the 
inter-run variability was below 20% (p = 0,4000; Table 3; Figure 12), similar to plasma samples (p = 
0,1349; Table 3; Figures 9 and 12). This number remained larger in PBMCs compared to plasma (p = 
0,0179; Table 3). Also the number of proteins identified in PBMCs for which the inter-individual 
variability was below 20% increased when the MaxLFQ algorithm was used (Table 3; Figure 13). 
Unfortunately, the preliminary data was not sufficient to assess all types of variability. Therefore, the 
inter-prep and inter-individual variability could not be determined for PBMCs and plasma, 
respectively.  
 
The median range of the inter-run variability was higher in plasma samples (65,04% [21,30% – 
124,80%]) compared to PBMCs (30,41% [0,15% – 146,30%]; Figure 14). This difference remained stable 

Figure 11 Number of proteins detected in PBMCs using the standard protocol and plasma using the optimised protocol. 

Displayed are a) the median total number of distinct proteins detected after three runs in plasma samples prepped with 

the optimised protocol (in black) and PBMC samples prepped with the standard protocol (in grey) when samples were 

analysed with the standard MaxQuant algorithm or the MaxLFQ algorithm and b) the median number of proteins that 

were detected in all runs of plasma samples prepped with the optimised protocol (in black) and PBMC samples prepped 

with the standard protocol (in grey). The minimum and maximum number of identifications are indicated by the error 

bars. 

Legend: *: p-value ≤ 0,05 

Abbreviations: PBMCs, peripheral blood mononuclear cells 
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when data was analysed with MaxLFQ (Figure 14). Moreover, MaxLFQ decreased the median range of 
the inter-run variability across different samples in PBMCs (12,61% [0,43% – 96,84%]; Figure 14) and 
plasma (11,15% [0,69% – 49,22%]; Figure 14).    
 
 

 PBMCs Plasma 
Variability MaxQuant MaxLFQ MaxQuant MaxLFQ 
Inter-prep  NA NA 124 116 
Inter-run 277 [75 – 439] 433 [323 – 561]* 95 [6 – 129] 119 [107 – 120]* 
Inter-individual 153 248 NA NA 

 

 

 

Legend: NA, not applicable; *, p-value < 0,05 

Abbreviations: CV, coefficient of variation; PBMCs, peripheral blood mononuclear cells; prep, preparation 

Table 3 Number of proteins detected with a CV below 20% at different levels. 

Figure 13 Distribution of the inter-individual variability on the intensity of proteins detected in PBMCs when analysing 

data with MaxQuant and MaxLFQ. The distribution of the inter-individual variability on the intensity of proteins detected 

in PBMCs is illustrated when data is analysed using the standard MaxQuant algorithm (in grey) and the MaxLFQ algorithm 

(striped pattern).  

Abbreviations: PBMCs, peripheral blood mononuclear cells 

Figure 14 Distribution of the range of the inter-run variability on the intensity of proteins detected in PBMCs and 

plasma. The distribution of the range of the inter-run variability on the intensity (the maximum CV subtracted with the 

minimum CV for each protein) of detected proteins in PBMCs and plasma is illustrated when data was analysed using the 

standard MaxQuant algorithm and the MaxLFQ algorithm.  

Legend: Dashed line, median; dotted lines, quartiles 

Abbreviations: CV, coefficient of variation 
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 3.3 Effect of the Length of the LC Gradient on the Number of Identifications in Plasma 
 
Plasma samples that were depleted with the ProteoSpin™ column  were used to test variable LC 
gradient lengths and data was analysed using the standard MaxQuant algorithm. Although a small 
decrease in the number of identifications was observed when the gradient was increased from 155 to 
180 minutes (186 vs 160), this number increased again when the gradient was lengthened to 240, 300, 
360 and 440 minutes (233, 219, 236, 235, respectively; Figure 15). Therefore, there seems to be a 
positive effect of the length of the LC gradient on the number of identifications, reaching a maximum 
at 240 minutes. As each data point of this experiment was obtained from only one replicate of one 
sample, significant differences could not be determined. Moreover, the effect of the length of the LC 
gradient on the number of identifications in PBMCs could not be assessed due to the COVID-19 
lockdown. 

 Figure 15 Effect of the gradient length on the number of identifications in plasma. Displayed are the number of proteins 

that are identified in plasma samples dependent on the length of the LC gradient. 

Abbreviations: LC, liquid chromatography 

Figure 12 Distribution of the inter-run variability on the intensity of proteins detected in plasma and PBMCs. The 

distribution of the inter-run variability on the intensity of proteins detected in plasma and plasma is illustrated for each 

sample separately when data was analysed using the standard MaxQuant algorithm and the MaxLFQ algorithm. The red 

line indicates the 20% variation cut-off that was used in this thesis. 

Legend: Dashed line, median; dotted lines, quartiles 

Abbreviations: PBMCs, peripheral blood mononuclear cells 
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Table 4 Demographics of MDD, BD-D, BD-M and SZ patients and healthy controls. 

3.4 Demographics 
 

Group-mean differences were not significant for age, gender, BMI and smoking. Moreover, HDRS 
scores indicate that all patients showed more depressive symptoms than HCs. More specifically, MDD 
and BD-D patients had the highest HDRS scores. The positive scale of the PANSS indicated that 
psychotic symptoms were only present in SZ patients. The same patient group scored highest on the 
YMRS for manic symptoms. The YMRS score of SZ and BD-M patients differed significantly from those 
of MDD patients, BD-D patients and healthy controls. Demographic variables and symptom scores are 
presented in Table 4. 
 
  

HC MDD BD-D BD-M SZ 

N 6 5 3 4 4 

Age 32 ± 8,56 28,6 ± 10,95 24,67 ± 3,06 36,5 ± 11,5 34,5 ± 11,5 

Gender (M/F) 2/4 1/4 1/2 1/3 1/3 

BMI 25,9 ± 3,01 24,74 ± 4,4 24,67 ± 2,84 31,42 ± 2,8 25,68 ± 6,14 

Smoking 3 1 2 2 3 

HDRS 1 ± 1,55 20,2 ± 1,79* 21 ± 3,46* 10 ± 6,68 14 ± 4,32* 

PANSS-P 7 ± 0 7 ± 0 7 ± 0 7 ± 0 20,25 ± 4,03* 

YMRS 0,17 ± 0,41 1,6 ± 1,52 2,67 ± 2,31 13,5 ± 0,58* 18,25 ± 1,5* 

 

 

 

 

 

3.5 Identification of Biomarker Candidates for Differential Diagnosis 

 

In total, 4271 proteins were identified, of which 2651 were detected in each sample and thus selected 

for further analysis. Log2 fold change expression ratios compared to HCs were calculated for each 

experimental group. The highest number of differentially expressed proteins (DEPs) were identified in 

BD-D patients (141 DEPs) followed by BD-M patients (138 DEPs), MDD patients (125 DEPs) and SZ 

patients (92 DEPs). When comparing patient groups with each other, 133 proteins were differentially 

expressed between MDD and BD-D patients while 115 proteins were differentially expressed between 

BD-M and SZ patients. 

 

DEPs were only included in the lists of biomarker candidates when its log2 fold change expression ratio 

was larger than two SD to i) the patient/patient mean log2 fold change expression ratio and ii) the 

patient/HC mean log2 fold change expression ratio in at least one of the two patient groups. This modus 

operandi resulted in the identification of 67 biomarker candidates for differential diagnosis of MDD 

and BD-D patients (Table 5) and 78 biomarker candidates for differential diagnosis of BD-M and SZ 

patients (Table 6), as illustrated by the red outlines in Figure 16. Biomarkers candidates that are 

differentially expressed in all three comparisons are indicated by the black outlines in Figure 16. The 

biomarker candidates lists have 24 biomarker candidates in common. 

 

Interestingly, two of the biomarker candidates for differential diagnosis of BD-M and SZ patients 

(Apolipoprotein C-III (APOC3) and HLA class I histocompatibility antigen, B-7 alpha chain (HLA-B7)) 

were found to be contra-regulated in these pathologies. APOC3 showed to be down-regulated in BD-

M patients (-0.24 fold change in expression from HCs) and up-regulated in SZ patients (0.23 fold change 

Data are presented as mean ± SD; * p < 0.05;  significantly different from healthy controls. 

Abbreviations: BD-D, bipolar patients in a depressive state; BD-M, bipolar patients in a manic state; BMI, body mass index; 

F, female; HC, healthy controls; HDRS, Hamilton Depression Rating Scale; M, male; MDD, major depressive disorder 

patients; n, sample size; PANSS-P, positive scale of the Positive And Negative Syndrome Scale; SZ, schizophrenia patients, 

YMRS, Young Mania Rating Scale 
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Table 5 List of biomarker candidates ranked according to the largest discriminatory potential between MDD and  BD-D 
patients. 
  

in expression from HCs) while HLA-B was down-regulated in SZ patients (-0.32 fold change in 

expression from HCs) and up-regulated in BD-M patients (0.35 fold change in expression from HCs). 

Although not one biomarker candidate for differential diagnosis of MDD and BD-D patients was contra-

regulated in these experimental groups, 16 biomarkers candidates showed a significant log2 fold 

change in expression for both experimental groups in the same direction (i.e. either up- or down-

regulated). This was also the case for 21 biomarker candidates for differential diagnosis of BD-M and 

SZ patients. Even more interestingly, 7 of the 24 overlapping biomarker candidates (Cathelicidin 

antimicrobial peptide; Granzyme H; Granulysin (Fragment); Lactotransferrin; Bactericidal 

permeability-increasing protein; Neutrophil gelatinase-associated lipocalin; Keratin, type I cytoskeletal 

9) were differentially expressed in all patient groups compared to controls. Four of these proteins were 

up-regulated and three were down-regulated in all patient groups.  

 

 

Protein 
MDD/BD-D 

2SD = 0,1647 
MDD/HC 

2SD = 0,1797 
BD-D/HC 

2SD = 0,2173 

HLA class I histocompatibility antigen, A-24 alpha chain  0,6365 0,0769 -0,5595 

Keratin, type II cytoskeletal 1  0,6253 -0,1888 -0,8141 

HLA class I histocompatibility antigen, B-18 alpha chain  0,6217 -0,0052 -0,6269 

Keratin, type I cytoskeletal 9  0,5759 -0,2284 -0,8043 

HLA class I histocompatibility antigen, A-2 alpha chain  0,4704 0,0306 -0,4398 

Histone H2A type 1  0,4620 -0,4962 -0,9582 

Keratin, type I cytoskeletal 10  0,4321 -0,0968 -0,5288 

High mobility group nucleosome-binding domain-containing protein 4  0,3720 0,0557 -0,3163 

HD domain-containing protein 2  0,3667 -0,0306 -0,3973 

Galectin-10  0,3286 0,3278 -0,0008 

Figure 16 Venn diagrams representing the number DEPs identified in PBMCs of MDD, BD-D, BD-M and SZ patients and 

their overlap. Each circle contains the number of proteins that were differentially expressed between the indicated 

experimental groups. Moreover, the diameter of each circle is correlated with this number (diameter increases when the 

number of DEPs in that circle is larger). The numbers in overlapping areas of the circles represent the numbers of proteins 

that were differentially expressed in those comparisons. DEPs that were included in the lists of biomarker candidates are 

indicated by the red outlines. The black outlines mark proteins that are differentially expressed in all comparisons. 

Abbreviations: BD-D, bipolar patients in a depressive state; BD-M, bipolar patients in a manic state; DEPs, differentially 

expressed proteins; HC, healthy controls; MDD, major depressive disorder; PBMCs, peripheral blood mononuclear cells; 

SZ, schizophrenia  
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Beta-hexosaminidase  0,3241 -0,2927 -0,6168 

Hemoglobin subunit gamma-1  0,3038 0,5891 0,2853 

HLA class I histocompatibility antigen, Cw-1 alpha chain  0,2943 0,3098 0,0155 

Keratin, type II cytoskeletal 2 epidermal  0,2553 -0,1003 -0,3556 

40S ribosomal protein S28  0,2534 0,2547 0,0013 

Histone H2A type 2-C  0,2533 0,0337 -0,2196 

Neutrophil gelatinase-associated lipocalin  0,2530 0,5785 0,3255 

OCIA domain-containing protein 2  0,2491 -0,3010 -0,5501 

DNA dC->dU-editing enzyme APOBEC-3C  0,2472 0,1871 -0,0601 

Mitogen-activated protein kinase 13  0,2445 -0,0001 -0,2446 

Histone H1.4  0,2417 0,2590 0,0173 

Parathymosin  0,2413 0,0103 -0,2309 

Hemoglobin subunit gamma-2  0,2333 0,3311 0,0977 

PHD finger protein 6  0,2303 -0,1533 -0,3836 

Protein IWS1 homolog  0,2299 -0,1645 -0,3943 

Peptidyl-prolyl cis-trans isomerase G  0,2244 -0,0559 -0,2804 

39S ribosomal protein L28, mitochondrial  0,2243 0,0025 -0,2218 

Carcinoembryonic antigen-related cell adhesion molecule 8  0,2204 0,2657 0,0453 

Alpha-ketoglutarate-dependent dioxygenase FTO  0,2180 -0,0655 -0,2835 

Bactericidal permeability-increasing protein  0,2172 0,5281 0,3109 

Lactotransferrin  0,2093 0,5972 0,3878 

RNA-binding protein 42  0,2093 -0,0229 -0,2322 

N-sulphoglucosamine sulphohydrolase  0,2063 -0,0455 -0,2519 

Cytochrome b-c1 complex subunit 9  0,2038 -0,2341 -0,4379 

ADP-ribosylation factor-like protein 8B  0,2020 0,3181 0,1160 

Granzyme K  0,1999 -0,0261 -0,2260 

Cathelicidin antimicrobial peptide  0,1993 0,7006 0,5013 

Macrophage migration inhibitory factor  0,1974 -0,1647 -0,3621 

Protein LSM14 homolog A  0,1955 -0,0557 -0,2512 

Histone H2B type 3-B  0,1919 -0,1083 -0,3002 

Liver carboxylesterase 1  0,1916 -0,1151 -0,3067 

E3 ubiquitin-protein ligase RNF123  0,1888 -0,0515 -0,2403 

ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2  0,1885 -0,0893 -0,2779 

WD repeat-containing protein 43  0,1755 -0,2546 -0,4301 

Solute carrier family 35 member F6 0,1752 -0,0732 -0,2484 

Mitochondrial-processing peptidase subunit alpha  0,1734 -0,1452 -0,3187 

Granzyme H  0,1708 -0,4005 -0,5713 

Transcription factor BTF3 homolog 4  0,1707 -0,0557 -0,2264 

Tyrosine-protein phosphatase non-receptor type 7 (Fragment)  0,1704 -0,1009 -0,2712 

Non-histone chromosomal protein HMG-17  0,1685 -0,1175 -0,2860 

Granulysin (Fragment)  0,1653 -0,3879 -0,5531 

Sulfotransferase 1A1  -0,1747 -0,2174 -0,0427 

Prenylcysteine oxidase-like  -0,1783 0,0939 0,2721 

GTPase IMAP family member 5  -0,1788 -0,2275 -0,0487 

Platelet glycoprotein VI  -0,2016 -0,2013 0,0003 

Endoplasmic reticulum aminopeptidase 2  -0,2115 -0,4551 -0,2437 

Tropomyosin beta chain  -0,2296 0,0154 0,2450 
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Table 6 List of biomarker candidates ranked according to the largest discriminatory potential between BD-M and  SZ patients. 
  

Trem-like transcript 1 protein  -0,2369 -0,6264 -0,3895 

Tubulin beta-3 chain  -0,2431 -0,3591 -0,1160 

HLA class I histocompatibility antigen, B-41 alpha chain  -0,2634 0,0285 0,2919 

Bardet-Biedl syndrome 12 protein  -0,2769 -0,2607 0,0163 

HLA class I histocompatibility antigen, A-68 alpha chain  -0,3004 -0,0024 0,2980 

cGMP-inhibited 3',5'-cyclic phosphodiesterase B  -0,3542 -0,3100 0,0442 

Retinoblastoma-like protein 1  -0,3908 0,1767 0,5675 

Plexin-A4  -0,3922 -0,2250 0,1671 

Interferon-induced GTP-binding protein Mx1  -0,4527 -0,1016 0,3511 

HLA class II histocompatibility antigen, DRB1-16 beta chain  -0,5935 -0,0193 0,5742 

 

 

 

 

Protein 
BD-M/SZ 

2SD = 0,1585 
BD-M/HC 

2SD = 0,1925 
SZ/HC 

2SD = 0,1922 

HLA class I histocompatibility antigen, B-7 alpha chain  0,6693 0,3480 -0,3213 

HLA class I histocompatibility antigen, A-34 alpha chain  0,5097 0,4055 -0,1042 

Alanine--tRNA ligase, mitochondrial  0,4497 0,4428 -0,0069 

40S ribosomal protein S21  0,2967 0,2236 -0,0731 

Neutrophil defensin 1  0,2924 0,9423 0,6499 

C-C motif chemokine 5  0,2824 0,3363 0,0539 

Calumenin  0,2757 0,2655 -0,0102 

40S ribosomal protein S28  0,2623 0,2177 -0,0446 

Myristoylated alanine-rich C-kinase substrate  0,2313 0,2657 0,0344 

Pre-mRNA-splicing factor SYF1  0,2067 0,2137 0,0070 

Aldo-keto reductase family 1 member C3  0,2003 -0,0080 -0,2083 

Granzyme H  0,2001 -0,2364 -0,4365 

Platelet basic protein  0,1960 0,2282 0,0323 

Ubiquitin-conjugating enzyme E2 D1  0,1940 0,2290 0,0350 

Macrophage migration inhibitory factor  0,1689 -0,1112 -0,2802 

H(+)/Cl(-) exchange transporter 3  0,1669 0,4618 0,2949 

Cathepsin G  0,1620 0,5093 0,3473 

Solute carrier family 2, facilitated glucose transporter member 1  -0,1615 0,0950 0,2565 

Kynurenine--oxoglutarate transaminase 3  -0,1630 -0,2009 -0,0379 

E3 ubiquitin-protein ligase TRIM22  -0,1726 -0,2934 -0,1209 

Peroxiredoxin-2  -0,1727 0,0229 0,1956 

Protein S100-A8  -0,1733 0,4675 0,6407 

Mitochondrial carrier homolog 1 (Fragment)  -0,1743 -0,3177 -0,1434 

Eukaryotic elongation factor 2 kinase  -0,1743 -0,6258 -0,4515 

COMM domain-containing protein 4  -0,1792 -0,3078 -0,1286 

Haptoglobin  -0,1798 0,0273 0,2071 

Lysosomal alpha-glucosidase  -0,1813 -0,3132 -0,1319 

Carbonic anhydrase 1  -0,1818 0,0233 0,2051 

Apolipoprotein A-I  -0,1846 -0,2726 -0,0880 

Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial  -0,1911 -0,2822 -0,0911 

Small nuclear ribonucleoprotein E  -0,1939 -0,2548 -0,0610 

Legend: red, increased expression in pathology compared to HCs; green, decreased expression in pathology compared to HCs;  
Abbreviations: BD-D, bipolar patients in a depressive state; HC, healthy controls; MDD, patients with major depressive disorder 



45 
 

Legend: red, increased expression in pathology compared to HCs; green, decreased expression in pathology compared 
to HCs;  
Abbreviations: BD-M, bipolar patients in a manic state; HC, healthy controls; SZ, schizophrenia patients 

  

Keratin, type I cytoskeletal 9  -0,1973 -0,4589 -0,2616 

Cytochrome b-c1 complex subunit 9  -0,1973 -0,3178 -0,1205 

Condensin complex subunit 1  -0,1991 -0,3029 -0,1038 

HLA class I histocompatibility antigen, alpha chain E  -0,2041 -0,3558 -0,1518 

Protein S100-P  -0,2061 0,3571 0,5631 

HLA class I histocompatibility antigen, A-24 alpha chain  -0,2084 -0,3915 -0,1831 

HLA class I histocompatibility antigen, A-2 alpha chain  -0,2151 -0,2707 -0,0556 

Putative beta-actin-like protein 3  -0,2194 -1,0643 -0,8449 

Carcinoembryonic antigen-related cell adhesion molecule 8  -0,2202 0,3197 0,5399 

CAP-Gly domain-containing linker protein 2  -0,2228 -0,1947 0,0281 

Band 3 anion transport protein  -0,2231 -0,0006 0,2225 

Nicotinamide phosphoribosyltransferase  -0,2270 -0,0183 0,2086 

Arylsulfatase B  -0,2294 -0,2125 0,0169 

Phospholipase D3  -0,2538 -0,2402 0,0136 

Bactericidal permeability-increasing protein  -0,2559 0,4348 0,6907 

Zinc finger protein 648  -0,2593 0,2296 0,4889 

Phosphomevalonate kinase  -0,2640 -0,0555 0,2085 

Rap guanine nucleotide exchange factor 3  -0,2687 -0,2445 0,0243 

cGMP-inhibited 3',5'-cyclic phosphodiesterase B  -0,2699 -0,2781 -0,0081 

AP2-associated protein kinase 1  -0,2741 -0,2967 -0,0226 

Histone H2A type 2-C  -0,2773 -0,2280 0,0493 

Lactotransferrin  -0,2825 0,5031 0,7856 

Gamma-tubulin complex component 2  -0,2828 -0,0728 0,2100 

Protein Mpv17  -0,2880 -0,5827 -0,2947 

Apolipoprotein C-I  -0,2884 -0,3912 -0,1028 

HLA class I histocompatibility antigen, B-18 alpha chain  -0,2895 -0,4689 -0,1794 

Hemoglobin subunit beta  -0,2896 0,2293 0,5189 

Hemoglobin subunit alpha  -0,3023 0,1906 0,4928 

Tubulin beta-3 chain  -0,3033 -0,3280 -0,0247 

AP-3 complex subunit sigma-1  -0,3067 0,0331 0,3398 

Non-histone chromosomal protein HMG-17  -0,3244 -0,1968 0,1276 

Catechol O-methyltransferase  -0,3259 -0,0974 0,2285 

Zinc finger ZZ-type and EF-hand domain-containing protein 1  -0,3411 -0,0943 0,2468 

Granulysin (Fragment)  -0,3436 -0,5838 -0,2403 

Sulfotransferase 1A1  -0,3454 -0,2381 0,1073 

Selenium-binding protein 1  -0,3492 -0,0419 0,3073 

Bardet-Biedl syndrome 12 protein  -0,3760 -0,1611 0,2149 

Cathelicidin antimicrobial peptide  -0,4017 0,5550 0,9567 

Protein S100-A12  -0,4063 0,2271 0,6333 

Matrix metalloproteinase-9  -0,4075 0,3411 0,7487 

Retinoblastoma-like protein 1  -0,4267 0,3676 0,7944 

Hemoglobin subunit gamma-2  -0,4323 0,0840 0,5162 

Neutrophil gelatinase-associated lipocalin  -0,4469 0,4932 0,9401 

Apolipoprotein C-III  -0,4737 -0,2457 0,2281 

HLA class II histocompatibility antigen, DRB1-11 beta chain  -0,5360 -0,5064 0,0296 

Galectin-10  -0,6977 -0,1375 0,5602 

Hemoglobin subunit gamma-1  -0,7167 0,1511 0,8678 
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Table 7 Characteristics of the protein-protein interaction network 

based on biomarker candidates for differential diagnosis. 

3.6 Pathway Analysis 

 

Pathway analysis was performed to identify biological functions that are differentially affected 

between the pathologies of interest. A gene set was considered to be significantly enriched when the 

q-value  was below 0,05. 143 and 307 significantly enriched gene sets were identified in MDD or BDD 

patients compared to HCs, respectively (data not shown). When comparing expression values of MDD 

and BD-D patients with each other, 499 gene set were significantly enriched (data not shown). 139 of 

those were also enriched when expression values of either MDD or BD-D patients were compared to 

HCs (Table S2 in Supplementary materials). Interactions between these pathways are visualised in 

Figure 17. 39 gene sets did not show any interactions with other significantly enriched gene sets (i.e. 

single nodes) and were therefore not included in Figure 17.  

 

After correction for multiple testing, no gene sets were identified as being significantly enriched when 

expression values of BD-M and SZ patients were compared. In case BD-M or SZ patients were compared 

to HCs, 63 and 76 gene sets were enriched, respectively (data not shown). 

 

3.7 Network Analysis 

 
Protein-protein interactions between biomarker candidates for differential diagnosis of MDD and BD-
D patients (Figure 18), on the one hand, and BD-M and SZ patients (Figure 19), on the other, were 
generated via the STRING database. Network characteristics are summarised in Table 7. Hubs and 
bottlenecks of both networks are displayed in Table 8. The protein-protein interaction network of 
biomarker candidates for differential diagnosis of MDD and BD-D patients consists of four hub- 
bottlenecks. This is the case for 10 biomarker candidates for differential diagnosis of BD-M and SZ 
patients, of which none overlapped with those for differential diagnosis of MDD and BD-D patients. 
Hub-bottleneck proteins are highlighted in blue-greenish in Table 8. 
 
These networks were also subjected to cluster analysis, which resulted in the identification of seven 
clusters in both networks. Subsequently, functional enrichment analysis was performed on each of 
these clusters separately. The results of these analyses as well as the characteristics of the clusters are 
summarised in Table 9 for biomarker candidates for differential diagnosis of MDD and BD-D patients 
and Table 10 for biomarker candidates for differential diagnosis of BD-M and SZ patients. 
 
 
 
 

 
MDD/BD-D BD-M/SZ 

Number of nodes 58 70 

Number of edges 35 118 

Isolated components 23 20 

Highest degree 4 14 

Average number of neighbours  1,207 3,086 

Cluster coefficient 0,230 0,297 

Network density 0,021 0,045 

Abbreviations: BD-D, bipolar patients in a depressive state; BD-M, 

bipolar patients in a manic state; MDD, major depressive disorder; 

SZ, schizophrenia  
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Figure 17 Interaction network of gene 

sets that are differentially enriched 

between MDD and BD-D patients. This 

network visualises the interactions 

(edges) between significantly enriched 

gene sets (nodes) when MDD and BD-D 

patients are compared. The size of each 

node is in function of the size of the gene 

set (larger diameter with increasing  gene 

set size) and the node colour corresponds 

to the direction in which the gene sets are 

regulated. The width of edges 

corresponds to the number of 

overlapping genes within the gene sets 

(wider edge with increasing number of 

overlapping genes). 

Abbreviations: BD-D, bipolar patients in a 

depressive state; MDD, major depressive 

disorder; PTM, post-translation 

modifications 

Figure 18 Protein-protein interaction network based on biomarker candidates for differential diagnosis of MDD and 

BD-D patients. This network visualises the interactions (edges) between biomarker candidates for differential diagnosis 

of MDD and BD-D patients (nodes). The name of each node corresponds to the gene from which the biomarker candidate 

is derived. Moreover, the size of each node is in function of its degree (larger diameter with increasing  degree) and the 

node colour corresponds to the log2 fold change expression ratio of that protein when comparing MDD to BD-D patients. 

The width of edges corresponds to the STRING confidence score (wider edge with increasing confidence score). 

Abbreviations: BD-D, bipolar patients in a depressive state; MDD, major depressive disorder  
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MDD/BD-D BD-M/SZ 

Rank Hubs Bottlenecks  Hubs Bottlenecks 

1 Histone H2A type 2-C Histone H2A type 2-C Haptoglobin C-C motif chemokine 5 

2 
Bactericidal 

permeability-increasing 
protein 

Bactericidal 
permeability-increasing 

protein 

Cathelicidin antimicrobial 
peptide 

Haptoglobin 

3 
Histone H2B type 3-B 40S ribosomal protein 

S28 
Neutrophil gelatinase-

associated lipocalin 
Hemoglobin subunit beta 

4 
Keratin, type II 

cytoskeletal 2 epidermal 
Granzyme K Protein S100-A8 Granulysin 

5 
Lactotransferrin Sulfotransferase 1A1 Matrix 

metalloproteinase-9 
Hemoglobin subunit 

alpha 

6 
Histone H2A type 1 Peptidyl-prolyl cis-trans 

isomerase G 
Cathepsin G Neutrophil gelatinase-

associated lipocalin 

7 
Keratin, type I 
cytoskeletal 10 

Cytochrome b-c1 
complex subunit 9 

Lactotransferrin HLA class I 
histocompatibility 

antigen, alpha chain E 

8 
Keratin, type I 
cytoskeletal 9 

Histone H2B type 3-B Hemoglobin subunit beta Cathelicidin antimicrobial 
peptide 

9 
Histone H1.4 Bardet-Biedl syndrome 

12 protein 
Protein S100-A12 Matrix 

metalloproteinase-9 

10 
40S ribosomal protein 

S28 
Trem-like transcript 1 

protein 
Platelet basic protein Protein S100-A12 

11 
Neutrophil gelatinase-

associated lipocalin 
Prenylcysteine oxidase-

like 
Hemoglobin subunit 

alpha 
Apolipoprotein A-I 

12 
Cathelicidin antimicrobial 

peptide 
Non-histone 

chromosomal protein 
HMG-17 

C-C motif chemokine 5 Cathepsin G 

Figure 19 Protein-protein interaction network based on biomarker candidates for differential diagnosis of BD-M and 

SZ patients. This network visualises the interactions (edges) between biomarker candidates for differential diagnosis of 

BD-M and SZ patients (nodes). The name of each node corresponds to the gene from which the biomarker candidate is 

derived. Moreover, the size of each node is in function of its degree (larger diameter with increasing  degree) and the 

node colour corresponds to the log2 fold change expression ratio of that protein when comparing BD-M to SZ patients. 

The width of edges corresponds to the STRING confidence score (wider edge with increasing confidence score). 

Abbreviations: BD-M, bipolar patients in a manic state; SZ, schizophrenia 

Table 8 Top 20% hubs and bottlenecks of both networks containing biomarker candidates for differential diagnosis. 
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Cluster # Nodes # Edges # Genes Category Description q-value 

1 5 7 

5 Reactome Pathways Neutrophil degranulation 0,0055 

5 GO Component Extracellular region 0,0086 

5 GO Component Secretory granule lumen 0,007 

4 GO Component Specific granule lumen 0,0086 

4 Reactome Pathways Antimicrobial peptides 0,0099 

2 4 6 

4 UniProt Keywords Chromosome 0,002 

4 UniProt Keywords Hydroxylation 0,002 

4 UniProt Keywords DNA-binding 0,0032 

4 GO Component Nucleosome 0,0044 

4 UniProt Keywords Methylation 0,0072 

3 UniProt Keywords Nucleosome core 0,0072 

3 KEGG Pathways Alcoholism 0,0081 

3 KEGG Pathways Systemic lupus erythematosus 0,0081 

3 Pfam Core histone H2A/H2B/H3/H4 0,0081 

3 
Pfam Histone-like transcription factor 

(CBF/NF-Y) and archaeal histone 
0,0081 

3 UniProt Keywords Citrullination 0,0094 

3 GO Component Nuclear chromatin 0,0102 

4 UniProt Keywords Nucleus 0,0159 

4 GO Component Nuclear lumen 0,0192 

3 InterPro Domains Histone H2A/H2B/H3 0,0203 

3 InterPro Domains Histone-fold 0,0203 

4 GO Process Chromatin organization 0,0206 

2 KEGG Pathways Necroptosis 0,0243 

2 Pfam C-terminus of histone H2A 0,0243 

4 GO Function DNA binding 0,0373 

3 UniProt Keywords Isopeptide bond 0,0412 

4 UniProt Keywords Acetylation 0,0469 

3 UniProt Keywords UbI conjugation 0,0469 

3 4 6 

4 SMART Domains Intermediate filament protein 1,3E-4 

4 Pfam Intermediate filament protein 2,5E-4 

4 InterPro Domains Intermediate filament protein 7,5E-4 

4 
InterPro Domains Intermediate filament protein, 

conserved site 
7,5E-4 

4 InterPro Domains Intermediate filament, rod domain 7,5E-4 

4 Reactome Pathways Formation of the cornified envelope 7,5E-4 

4 UniProt Keywords Coiled coil 0,0019 

4 UniProt Keywords Intermediate filament 0,0019 

4 UniProt Keywords Keratin 0,0019 

13   Neutrophil defensin 1 Neutrophil defensin 1 

14 
  Bactericidal 

permeability-increasing 
protein 

Band 3 anion transport 
protein 

Table 9 Characteristics of the clusters and results of the functional enrichment analyses for biomarker candidates for 
differential diagnosis of MDD and BD-D patients. 
  

Legend: blue-greenish, hub-bottleneck proteins 

Abbreviations: BD-D, bipolar patients in a depressive state; BD-M, bipolar patients in a manic state; MDD, major depressive 

disorder; SZ, schizophrenia  
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4 GO Component intermediate filament 0,005 

3 UniProt Keywords Ichthyosis 0,0076 

3 GO Component Cornified envelope 0,009 

4 GO Function Structural molecule activity 0,0098 

3 GO Function Structural constituent of epidermis 0,0112 

4 UniProt Keywords Disease mutation 0,0128 

4 GO Process Cornification 0,0179 

2 Pfam Keratin type II head 0,0182 

3 GO Process Peptide cross-linking 0,0182 

2 InterPro Domains Keratin, type I 0,0273 

2 InterPro Domains Keratin, type II 0,0273 

2 InterPro Domains Keratin type II head 0,0273 

2 KEGG Pathways Estrogen signaling pathway 0,0364 

2 UniProt Keywords Palmoplantar keratoderma 0,039 

4 4 3 NA NA NA NA 

5 4 3 NA NA NA NA 

6 3 2 NA NA NA NA 

7 3 2 2 SMART Domains Trypsin-like serine protease  0,0192 

 

 

 

 

Cluster # Nodes # Edges # Genes Category Description q-value 

1 15 61 

15 GO Process Exocytosis 6,17E-5 

15 GO Process Immune response 6,19E-5 

15 GO Process Neutrophil activation 6,17E-5 

14 GO Process Neutrophil degranulation 7,25E-5 

14 Reactome Pathways Neutrophil degranulation 7,48E-5 

15 Reactome Pathways Immune System 1,6E-4 

14 GO Component Extracellular region 3,6E-4 

14 GO Component Secretory granule 3,6E-4 

12 GO Component Secretory granule lumen 3,6E-4 

14 GO Component Cytoplasmic vesicle part 3,6E-4 

13 GO Component Cytoplasmic vesicle lumen 3,6E-4 

12 GO Process Defense response 0,0025 

11 GO Component Extracellular space 0,0043 

14 GO Component Intracellular organelle lumen 0,0043 

13 GO Process Response to external stimulus 0,0072 

14 GO Process Response to stress 0,0082 

12 UniProt Keywords Secreted 0,0165 

12 GO Process Multi-organism process 0,0177 

11 GO Process Response to other organism 0,0187 

9 UniProt Keywords Antimicrobial 0,0201 

11 UniProt Keywords Disulfide bond 0,0201 

10 GO Process Response to bacterium 0,0236 

9 GO Process Defense response to bacterium 0,0272 

8 UniProt Keywords Antibiotic 0,0287 

Table 10 Characteristics of the clusters and results of the functional enrichment analyses for biomarker candidates for 
differential diagnosis of BD-M and SZ patients. 
  

Abbreviations: BD-D, bipolar patients in a depressive state; MDD, patients with major depressive disorder; NA, not applicable 



51 
 

6 GO Component Tertiary granule lumen 0,0298 

9 GO Process Antimicrobial humoral response 0,0424 

2 9 15 

4 Pfam Globin 0,0235 

8 UniProt Keywords Acetylation 0,0338 

6 GO Component Cytosolic part 0,0376 

3 3 3 

3 Reactome Pathways Interferon gamma signaling 0,0051 

2 SMART Domains Immunoglobulin C-Type 0,0202 

2 Reactome Pathways ER-Phagosome pathway 0,0269 

2 Reactome Pathways Endosomal/Vacuolar pathway 0,0269 

2 Reactome Pathways Immunoregulatory interactions 
between a Lymphoid and a non-
Lymphoid cell 

0,0269 

2 Reactome Pathways Interferon alpha/beta signaling 0,0269 

2 Reactome Pathways Antigen Presentation: Folding, 
assembly and peptide loading of class 
I MHC 

0,0269 

4 3 2 NA NA NA NA 

5 4 3 NA NA NA NA 

6 5 7 

3 KEGG Pathways Cholesterol metabolism 0,0139 

4 GO Component High-density lipoprotein particle 0,0192 

5 GO Component Extracellular region 0,0389 

3 GO Component Very-low-density lipoprotein particle 0,0389 

3 GO Component Spherical high-density lipoprotein 
particle 

0,0389 

3 GO Component Chylomicron 0,0389 

7 3 3 NA NA NA NA 

 

 

 

 

  

Abbreviations: BD-M, bipolar patients in a manic state; NA, not applicable; SZ, schizophrenia patients 
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4. Discussion 
 

As has already been recognised for decades, the lack of objective diagnostic biomarkers for major 

psychiatric disorders impedes psychiatric healthcare. Therefore, many studies aimed to fill this gap by 

assessing various biological features of psychiatric patients. However, psychiatric diagnostics remains 

hampered by the high degree of subjectivity involved in the process, which may partially be a result of 

the modus operandi implemented in previous studies. To this day, biomarker discovery was mainly 

based on differentiating patients with a defined psychiatric disorder from healthy controls rather than 

differentiating psychiatric patients with different, though clinically similar, disorders. The latter 

approach will generate biomarkers that are clinically useful because the challenge within psychiatric 

diagnostics lies within differentiating these patients from each other. Hence, this thesis was focussed 

on biomarker discovery for differential diagnosis of, on the one hand, MDD and BD-D patients and, on 

the other hand, BD-M and SZ patients. 

 

An optimised protocol is necessary to generate reliable results and increase the likelihood of finding 

biomarker candidates. Therefore, the first objective of this thesis was to optimise the protocol for 

sample preparation of plasma samples as well the LCMS protocol. However, one should keep in mind 

that the optimisation phase of this study was rather limited and thus does not provide a solid optimised 

protocol for sample preparation of plasma. Subsequently, the performance of the optimised protocol 

for plasma samples was compared to the standard protocol for PBMCs to assess which sample type 

provides a better sample source in terms of biomarker discovery.  

 

Additionally, this thesis included the analysis of protein profiles obtained from PBMCs of the previously 

mentioned patient populations. The approach used in this thesis allowed to identify pathology-related 

biomarker candidates by overlapping log2 fold change expression ratios between patient groups with 

those of patient groups compared to healthy controls. Moreover, pathway and network analysis 

enabled to extract biological information from these biomarker candidates. 

 

4.1 Performance of the ProteoSpin™ and Pierce™ Depletion Column  

 

The success of biomarker discovery partially relies on the number of biomarker candidates that can be 

detected. The more proteins are identified, the greater the change that one of the identified proteins 

is differentially expressed and thus a potential biomarker candidate. Therefore, the number of 

identifications is an important measure to consider when optimising a protocol for this purpose. 

Moreover, a high quality biomarker should be detected in most (if not all) samples in a stable manner. 

Hence, the number of proteins that were detected in all runs and the CV at multiple levels were also 

assessed.  

 
To the best of my knowledge, this thesis was the first to compare the performance of the ProteoSpin™ 
and Pierce™ column. The ProteoSpin™ column outperformed the Pierce™ column at all levels. Samples 
that were prepped with the ProteoSpin™ column generated a larger number of identifications after 
three runs, a larger number of proteins identified in all runs of a sample and a larger number of proteins 
with a CV below 20%. Proteins detected with a CV above 20% would not be reliable biomarker 
candidates and would thus not be withheld in the discovery phase of a study aiming to identify 
biomarkers.  
 

To get an estimate of the variation on the inter-run variability across different samples, the range of 
the inter-run variability was assessed at protein level by subtracting the highest inter-run CV with the 
lowest. Conflicting with the other results, the median range of the inter-run variability of samples 
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depleted with the Pierce™ column was lower compared the one of samples depleted with the 
ProteoSpin™ column. As can be deduced from Figure 9, this may be caused by one sample depleted 
with the ProteoSpin™ column showing a deviant distribution of the inter-run variability compared to 
the other samples that were depleted with this column. The majority of proteins detected in this 
sample had a CV above 60% whereas the majority of proteins were detected with an inter-run 
variability below 40% in the other samples depleted with the ProteoSpin™ column. When this sample 
was removed from the dataset, the median range of the inter-run variability dropped below 20%.  
Hence, the deviating distribution of the inter-run variability in one sample caused the large median 
range of the inter-run variability in samples depleted with the ProteoSpin™ column. A larger sample 
size is necessary to conclude whether the distribution of the inter-run variability in this sample is an 
exception or a common phenomenon. 
 
When data were analysed with the MaxLFQ algorithm, the performance of both depletion columns 
was similar. The effect of MaxLFQ was assessed because it showed to quantify protein abundances 
more accurately [168], as evidenced by the decreased median inter-run variability across all samples 
and range of the inter-run variability for both depletion columns. However, it also decreased the 
number of identifications after three runs and the number of proteins that were detected in all runs 
for both depletion columns. Nevertheless, the MaxLFQ algorithm decreased the overall variation at all 
levels and thus generated more reliable results. This is consistent with results obtained by Zhao et al.,  
who analysed seven commonly-used label-free quantification methods. They reported that MaxLFQ 
quantified proteins more accurately and precisely than the other methods [199]. The same results 
were obtained in various other studies [168, 200-202]. However, the authors of a recently developed 
(April 2020) method reported that their method outperforms MaxLFQ when data is used for 
differential expression analysis, as will be the case in a biomarker discovery phase [203]. Thus, this 
method should be investigated in a benchmarking study that is not performed by any of the authors 
of included methods to decide which method performs best. 
 
Although COVID-19 interfered with the data collection that was necessary to conclude which protocol 
yields better results for biomarker discovery, the ProteoSpin™ column and the MaxLFQ algorithm seem 
to be the better choice based on the results that are available at the moment. As the comparison of 
these depletion columns was never made before, additional experiments are necessary to support this 
observation. These experiments should at least include samples from different test subjects. This way, 
the inter-individual variability can also be assessed. Additionally, the inter-prep variability should be 
assessed in a more profound manner by using multiple aliquots of different test subjects. Using a larger 
sample size will also allow to integrate the results of both depletion columns and analytical algorithms 
via a two-way ANOVA. The small sample size available in this thesis is a major limitation which caused 
that certain assumptions made by this test (e.g. normality) could not be guaranteed. Therefore, 
differences were assessed via a non-parametric test. 
 

4.2 Effect of the Length of the LC Gradient on the Number of Identifications 

 

As stated earlier, the number of identifications is an important measure to consider when optimising 

a protocol for biomarker discovery. Even though the speed and sensitivity of mass spectrometers 

improved in the last years, peptides in complex samples remain undetected as many peptides  

simultaneously elute from the LC column [204]. Therefore, several chromatographic parameters have 

been varied and their effect on the number of identifications has been investigated intensively in the 

last years [164, 205, 206]. Increasing the length of the gradient that is applied to elute the peptides 

proved to positively influence the number of identifications [164, 165]. However, this modification of 

the protocol also increases the total running time, which could become very large when many samples 

have to be analysed. Therefore, a trade-off should be made between the gradient length and the total 

running time. As total running time depends on the number of samples, the number of runs per sample 
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and the gradient length, it is in essence a trade-off between the coverage of the true biological 

heterogeneity, the quantitative precision and the number of identifications. 

 

The positive effect of increasing the length of the LC gradient on the number of identifications can be 

explained by the effect of the length of the LC gradient on the peak capacity, which is correlated with 

the number of identifications. The peak capacity of an LC column is defined by the number of 

components that can be separated and dependent on the length of the LC gradient and the column 

length [206, 207]. Both Kocher [206] and Gilar [207] et al. found that the peak capacity increases with 

an increasing gradient length. Moreover, Kocher et al. identified a linear relation between the peak 

capacity and the number of identifications and thus also an increased number of identifications with 

an increasing gradient [206]. 

 

This part of the experimental set-up was largely affected by the COVID-19 lockdown. Therefore, the 

results obtained during this thesis are not sufficient to draw any conclusions, even though there seems 

to be an increasing trend of the number of identifications dependent on the gradient length reaching 

a maximum at 240 minutes. An unexpected phenomenon occurred at 180 minutes, where the number 

of identifications dropped to 160 compared to 186 when a gradient of 155 minutes was applied. This 

may potentially be caused by the fact that samples used to test the 180-440 minutes gradients 

underwent 2 freeze-thaw cycles whereas the sample used to test the 155 minutes gradient only had 

1. However, multiple studies have investigated the effect of freeze-thaw cycles on protein abundances 

and reported that these were not affected after up to eight cycles. Unfortunately, the number of 

identifications dependent on the number of freeze-thaw cycles was not reported in these studies [208, 

209]. Nevertheless, this phenomenon may also be explained by the fact that the number of 

identifications varies in between runs, as evidenced by the variation on the number of identifications 

when samples that were used in this experiment were analysed with the gradient of 155 minutes 

(protocol described in section 2.1.1.4). These samples yielded between 180 and 189 identifications per 

run. Based on the results available at the moment (notwithstanding the fact that these are not 

sufficient!), a gradient of 240 minutes would be the best choice considering that a longer gradient does 

not increase the number of identifications further. However, this decision should also take into account 

whether or not upscaling the length of the LC gradient is feasible in terms of increased running time 

and costs associated with it, which is dependent on the sample size that will be used in the biomarker 

discovery phase. 

 

The following steps were part of the original experimental set-up but could not be executed due to 

COVID-19. Hence, they should be taken to further optimise this part of the protocol. First, the effect of 

the gradient length on the number of identifications should be assessed using samples from multiple 

test subjects, multiple aliquots per test subject and multiple runs per aliquot, offering the possibility 

to objectively quantify variation at multiple levels. This approach allows to decide which gradient 

length is best in terms of the number of identifications, variation on the number of identifications and 

total running time. Moreover, this information should be combined with the estimate of variation on 

protein intensities, both on a technical and biological level. This way, the number of required runs and 

aliquots per test subject that are necessary to allow accurate quantification of protein abundances can 

be determined. Furthermore, this enables the possibility to perform a power analysis, providing 

information about the sample size that is essential to detect a significant difference. Second, the 

optimisation phase should mimic the situation of a biomarker discovery phase as much as possible. In 

the biomarker discovery phase, many samples will have to be prepped before they can be analysed by 

the LCMS. It is not feasible to prep all samples simultaneously and immediately load them onto the 

LCMS. Therefore, prepped samples will have to be stored at -20°C and thawed before being loaded 
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into the LCMS. Although this thesis already implemented this approach, the variation on the number 

of freeze-thaw cycles was inevitable due to time limitations, which may have affected the results. As 

all internships within university buildings were suspended because of the COVID-19 outbreak, a choice 

had to be made between not assessing this parameter at all or using samples with a different number 

of freeze-thaw cycles. 

 

4.3 Should we opt for Plasma or PBMCs as a Source for Biomarker Discovery? 

 

As biomarkers should ideally be easily accessible, many studies focused on biomarker discovery using 

plasma. However, proteomic analysis of plasma is associated with some challenges because of its high 

complexity and large dynamic range of protein abundances [157, 158]. PBMCs might be an interesting 

sample source for biomarker discovery because they yield a higher number of proteins than plasma 

[121]. Additionally, they are proposed to be a neural probe, which makes them specifically interesting 

for biomarker discovery in brain disorders, including psychiatric disorders [127]. Therefore, the results 

obtained from LCMS analysis of plasma and PBMCs were compared with each other in terms of 

quantitative and qualitative endpoints. 

 

Similar to the results obtained by Končarević and colleagues [121], LCMS analysis of PBMCs resulted in 

a higher number of identifications compared to plasma. However, the number of proteins identified in 

this thesis is substantially lower for both sample sources. Končarević and Coppens and colleagues 

identified more than 4000 proteins in PBMCs whereas more than 1000 proteins are regularly identified 

in plasma [121, 147, 210-212]. This discrepancy in the number of identifications can be explained by 

the fact that these studies use extensive fractionation systems. Although these approaches yield a 

higher number of identifications compared to the approach used in this thesis, these approaches also 

substantially increase running time, which is not feasible when a large sample size should be analysed 

(as will be the case in a study focused on biomarker discovery). Furthermore, an increased running 

time inevitably limits the number of runs that can be applied for each sample. As this is an important 

step to reach high quantitative precision, applying multiple runs per sample is as important as the 

number of identifications. Studies using a one-dimensional fractionation approach reported less 

protein identifications (150-500 for plasma, 400-2000 for PBMCs) [213-217], which were comparable 

with the 348 and 1077 proteins that were identified in plasma and PBMCs this thesis. 

 

Although the quantification of protein abundances was characterised by a larger overall variation in 

PBMCs than in plasma, the number of proteins that are useful for biomarker discovery (i.e. proteins 

that are quantified with an inter-run variability below 20%) was larger in PBMCs. Similar to plasma, this 

number increased when data were analysed using the MaxLFQ algorithm. Therefore, PBMCs and the 

MaxLFQ algorithm seem to be the better choice for biomarker discovery even though the data 

collected during this thesis are not sufficient to draw solid conclusions. 

 

Specifically, two important measures could not be compared due to the limited availability of data, 

namely the inter-individual and intra-individual variability. Although these are intellectual measures 

and not technical ones (like inter-run and inter-prep variability), they are valuable when deciding which 

sample source provides the best characteristics for biomarker discovery. As previously mentioned, a 

biomarker should allow for a stable detection to be clinically useful and thus, variation on protein 

abundances across individuals and within the same individual over time should be limited. Proteins 

showing a highly variable abundance across individuals and within the same individual over time would 

impede the detection of true biological differences and should thus be excluded for biomarker 

discovery [218]. As two test subjects were used to test the standard protocol for sample preparation 
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of PBMCs, the inter-individual variability could be assessed in this sample source, albeit in a very 

superficial manner. The mean inter-individual variability of protein abundances quantified in this thesis 

was 48,83% when data were analysed with the standard MaxQuant algorithm and dropped to 24,58% 

when the MaxLFQ algorithm was used. The latter was comparable with results obtained by Maes et al. 

(28%), who investigated the inter-individual variability on protein abundances in PBMCs of a control 

elderly population consisting of 24 individuals [218]. However, the results of Maes et al. were obtained 

with 2D-gel electrophoresis (2D-GE) and might thus not be directly comparable with results obtained 

via another technique. Nevertheless, the strong decreased mean inter-individual variability when data 

were analysed with the MaxLFQ algorithm is another argument for the use of this algorithm instead of 

the standard MaxQuant algorithm. The inter-individual variability of plasma proteins has also been 

estimated before via 2D-GE using plasma samples derived from 11 individuals. The researchers 

reported a median inter-individual variability of protein abundances in plasma of 23% [219]. 

 

4.4 Interesting Biomarker Candidates 

 

This thesis also included data analysis of protein expression levels of patients with major psychiatric 
disorders that were obtained in a proof-of-concept study. The aim of this proof-of-concept study was 
to assess the potential of PBMCs to serve as a sample source for biomarker discovery in major 
psychiatric disorders. The sample size is too small to validate identified biomarker candidates because 
it does not represent the heterogeneity in true patient populations. Most likely, biomarker candidates 
will change when this study is replicated with a decent sample size. However, data were analysed as if 
it was obtained from a larger sample size to acquire hands-on experience with the bioinformatic 
methods that would have been used in the original experimental set-up. Thus, the results of this study 
should be taken with a (large) grain of salt. Nevertheless, the results provide valuable information 
regarding the usability of PBMCs for biomarker discovery in psychiatry and may pave the way towards 
a shift of which sample source to use for this purpose.  
 
The most interesting biomarker candidates for differential diagnosis are those that show to be contra-

regulated in the disorders they should discriminate. Unfortunately, this was only the case for two 

proteins that showed to be differentially expressed between BD-M and SZ patients. In contrast, 16 

biomarker candidates for differential diagnosis of MDD and BD-D patients and 21 biomarker 

candidates for differential diagnosis of BD-M and SZ patients were differentially expressed in the same 

direction for both experimental groups. In this case, protein expression levels should be sufficiently 

distinct between the experimental groups to allow for their discrimination, as was a criteria to be 

defined a biomarker candidate in this study. Although proteins that do not meet this criteria cannot 

distinguish the experimental groups, they may provide valuable insight in overlapping underlying 

disease mechanisms. 69 of such proteins were differentially expressed in MDD and BD-D patients while 

this was the case for 60 proteins when comparing BD-M and SZ patients. 41 of these proteins were 

differentially expressed in all patient groups and could thus be potentially a result of underlying disease 

mechanisms that major psychiatric disorders have in common.  

4.4.1 Contra-Regulated Proteins  

 

As previously mentioned, two biomarker candidates were found to be contra-regulated, both for 

differential diagnosis of BD-M and SZ patients. These biomarker candidates are the most interesting 

because they indicate that a biological process linked to that protein might be differentially affected in 

the disorders of interest. Interestingly, the identified contra-regulated proteins were among the 

biomarker candidates with the highest discriminatory potentials, as expected. HLA-B7 was ranked 

number three based on the magnitude of the log2 fold change expression ratio between BD-M and SZ 
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patients whereas APOC3 was ranked sixth. Even though literature does not provide a direct link 

between HLA-B7 and psychiatric disorders, it can be linked to the immune hypothesis which postulates 

that psychiatric disorders may be caused by immunological deviations (for review see [220, 221]). This 

matter is discussed more thoroughly in section 4.5. 

 

APOC3 is a protein that binds various types of lipids, such as chylomicrons and very low density 

lipoproteins, and is in this way a key player in the transport and metabolism of these hydrophobic 

molecules [222]. Whereas elevated plasma levels of this protein have already been linked to an 

increased risk of cardiovascular disease [223-225], more recent studies also found altered levels in 

psychiatric disorders. The present study identified significantly increased expression levels of APOC3 

in SZ patients. These results are consistent with those of Boiko et al., who also reported a correlation 

between APOC3 serum levels and the presence of metabolic syndrome in SZ patients [226], and 

Domenici et al., who also detected altered levels in MDD patients [114]. Additionally, Knöchel and 

colleagues stated that this increase was also present in plasma of the same patient population as well 

as BD patients [227]. However, this study detected decreased APOC3 levels in BD-M patients, as was 

also reported by Herberth et al. in general BD patients [146]. APOC3 levels remained unaltered in MDD 

and BD-D patients.  

 

4.4.2 Hub-Bottleneck Proteins in the Protein-Protein Interaction Networks of Biomarker Candidates 

 

Hub-bottleneck proteins have a high degree as well as a high betweenness centrality and are thus likely 

to be essential elements of the network [192, 193]. Therefore, these biomarker candidates may 

represent critical communication points between affected biological processes. According to the 

literature, hub-bottleneck proteins in the protein-protein interaction network of biomarker candidates 

for differential diagnosis of MDD and BD-D patients have not been directly linked to psychiatric 

disorders yet and are thus not discussed below. Likewise, hub-bottleneck proteins in the protein-

protein interaction network of biomarker candidates for differential diagnosis of BD-M and SZ patients 

that did not show any link to psychiatry are not discussed8. Interestingly, all hub-bottleneck proteins 

that have already been linked to psychiatric disorders are involved in the immune system. 

 

Haptoglobin, which among others binds free haemoglobin and acts as a positive acute phase protein 

[228], was ranked the number one hub and number two bottleneck protein within the protein-protein 

interaction network of biomarker candidates for differential diagnosis of BD-M and SZ patients. 

Consistent with the results obtained in this thesis, numerous studies reported increased haptoglobin 

levels in plasma as well as serum and whole blood of SZ patients [107, 229-234]. However, this thesis 

did not identify aberrant abundances of this protein in MDD, BD-D and BD-M patients whereas other 

studies reported increased levels in plasma of these patients [114, 120, 232, 235, 236]. 

 

Two other hub-bottleneck proteins within the network of biomarker candidates for differential 

diagnosis of BD-M and SZ were cathelicidin antimicrobial peptide (CAMP) and neutrophil gelatinase-

associated lipocalin (LCN2), both involved in the innate immune response against bacterial infection 

[237, 238]. These proteins were up-regulated in all patient groups compared to controls, but most in 

SZ patients where they demonstrated the highest and second highest log2 fold change of all detected 

proteins. Interesting is that these proteins were able to differentiate MDD and BD-D patients as well 

 
8 Proteins were only considered to be linked to psychiatry when experimental evidence was provided for that 
specific protein. Evidence linking family members of the protein to psychiatry was not considered a direct link 
due to a restricted number of pages. 
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as BD-M and SZ patients from each other and that they showed a consistent rank order of the 

magnitude of the log2 fold change. The protein abundances of these biomarker candidates differed the 

most in SZ followed by MDD, BD-M and BD-D. This may offer the possibility to differentiate these four 

patient groups by a single biomarker. However, this was not examined in this thesis because it went 

beyond the scope of this project. Various studies have already found deviant abundances of both 

proteins in psychiatric patients. Similar to our results, the majority of these studies report an increase 

of protein abundances in MDD, BD and SZ [239-242]. However, some studies also demonstrated 

decreased CAMP levels and a large variation on this measure in patient as well as control groups [239, 

240, 243]. Therefore, CAMP might not be a reliable biomarker candidate. 

 

Another hub-bottleneck protein that has already been linked to psychiatric disorders is matrix 

metalloproteinase-9 (MMP9), which is mainly involved in the structural organisation of extracellular 

matrix  but can also be linked to the immune system [244-246]. This protein was found to be up-

regulated in all patient groups compared to controls, but only showed differential expression between 

BD-M and SZ patients and not between MDD and BD-D patients. The involvement of MMP-9 in 

psychiatric disorders has been extensively investigated, both on gene and protein expression level. All 

studies reported results consistent with those obtained in this thesis [112, 114, 247, 248]. Among 

others, two studies reported an up-regulation of MMP9 gene expression in PBMCs of SZ patients [249, 

250]. These increases might be caused by the presence of a polymorphism in the MMP9 gene. 

Researchers demonstrated that the polymorphism with a higher transcriptional activity (T allele) was 

more frequently detected in bipolar patients compared to controls, in which the other polymorphism 

(C allele) was more common [248]. However, the opposite is true for SZ patients while they also exhibit 

increased gene and protein expression of MMP9 [114, 249-251]. 

 

Protein S100A12 (S100A12), a calcium-binding protein mainly involved in the immune system [252], 

and neutrophil defensin 1 (DEFA1), released during the immune response against pathogens [253], 

were both identified as biomarker candidates for differential diagnosis of BD-M and SZ patients and 

hub-bottleneck proteins. Additionally, both protein were up-regulated in all patient groups compared 

to controls. Multiple studies have also detected increased levels of this protein or its gene expression 

in MDD, BD and SZ patients [254-257], including two studies investigating these measures in PBMCs of 

SZ patients [152, 258].  

 

Limited evidence was found to link C-C chemokine 5 (CCL5) to psychiatric disorders. Although this study 

only detected altered expression levels of CCL5 in BD-M patients, a review did not identify any links 

between CCL5 and BD nor did the literature search performed by the author of this thesis [259]. Other 

studies detected CCL5 abundances in MDD and SZ patients that deviate from healthy controls. 

However, some studies reported increased expression values whereas others report a decrease [107, 

114, 260-262]. 

 

4.5 Affected Pathways, Processes and Systems 

 

The results of this thesis clearly link altered immune functioning to psychiatric disorders. First, multiple 

proteins that were identified as biomarker candidates for differential diagnosis (e.g. HLA family, DEF1A, 

S100A12, CAMP and LCN2) play an important role the immune system. Second, pathway analysis of 

expression values of MDD and BD-D patients implicated that multiple immune- related gene sets were 

significantly enriched and thus differentially altered between these patient groups. Finally, clustering 

and subsequent functional enrichment analysis of both protein-protein interaction networks of 

biomarker candidates for differential diagnosis identified multiple clusters within those networks that 
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are involved in the immune system. Such alterations of immune-related processes in psychiatric 

disorders have been recognised for more than a century. The earliest studies date from the 19th century 

and reported there may be a relation between psychotic and acute infectious illnesses [220]. 

Nowadays, the ‘immune hypothesis’ is one of the many theories put forward aiming to explain the 

aetiology of major psychiatric disorders (for review see [221]). Nevertheless, the results of this thesis 

were obtained from cells that are key players of the immune system and should thus be interpreted 

carefully when linking them to the ‘immune hypothesis’. 

 

Next, pathway analysis of expression values of MDD and BD-D patients revealed that various 

translation- and post-translational modification (PTM)-related gene sets were enriched. In the top 10 

of significantly enriched gene sets, 7 are related to these biological functions. Moreover, they are all 

upregulated, implicating that expression levels of proteins involved in these processes are higher in 

MDD compared to BD-D. Various studies further support the fact that translation as well as post-

translational modification might be affected in MDD patients [263-268]. Nevertheless, functional 

enrichment analysis of clusters within the network of biomarker candidates for differential diagnosis 

of MDD and BD-D patients did not yield the same results. As pathway analysis takes into account 

expression values of all detected proteins while network analysis only works with biomarker 

candidates, this discrepancy may potentially be explained by the fact that individual proteins involved 

in enriched gene sets related to translation and PTM might not have a large effect whereas their 

combined effect can be more profound. 

 

Another biological function that was represented by many significantly enriched gene sets when 

expression values of MDD and BD-D patients were compared was the interaction between cells. Gene 

sets included in this overarching term include cell adhesion in terms of the organisation of extracellular 

matrix as well as in terms of platelet aggregation. Whereas platelet aggregation could not be linked to 

psychiatric disorders and may be a result of contamination, cell adhesion-related gene sets have 

already been identified to be significantly enriched in MDD patients [269, 270]. However, another 

study stated that expression levels of cell-adhesion molecules were altered in PBMCs of BD-D patients 

but not in MDD patients compared to controls [271]. In the present study, both patient groups 

demonstrated differential expression profiles leading to the identification of cell adhesion-related 

gene sets. In the brain, such gene sets are involved in neural plasticity [272, 273], which has also been 

proposed to be a pathophysiological mechanism underlying psychiatric disorders [274-276]. 

 

Surprisingly, pathway analysis of expression values in MDD and BD-D patients identified several 

significantly enriched gene sets that are related to the muscular system, more specifically gene sets 

related to cardiomyopathy and muscle morphogenesis. Although these gene sets were first considered 

to be rather unexpected results, a literature search revealed that similar gene sets have already been 

identified as significantly enriched in MDD patients and people with suicidal behaviour [267, 269, 270]. 

Moreover, researchers found that one particular single-nucleotide polymorphism (SNP) located within 

the cardiomyopathy associated 5 (CMYA5) gene was associated with a risk for MDD and SZ [277-279]. 

However, the results in this thesis implicate that the dysregulation of the muscular system lies within 

BD-D and SZ patients compared to controls whereas these gene sets were not detected to be 

significantly enriched in MDD and BD-M patients compared to controls. Nevertheless, people suffering 

from these major psychiatric disorder are at increased risk to develop cardiovascular diseases [16, 280-

286]. 

 

Besides pathway analysis, protein profiles were also analysed via network analysis. In the network of 

biomarker candidates for differential diagnosis of MDD and BD-D patients, several biomarker 
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candidates, of which four are core components of histones9, clustered together and generated 

significantly enriched terms related to epigenetics after functional enrichment analysis. These terms 

include methylation and acetylation, which are the most well-known epigenetic processes and can 

both occur on histones. Epigenetics-related terms as well as expression levels of members of the 

histone family have been reported to be altered in major psychiatric disorders [287-290]. These 

alterations could be related to each other because epigenetics influences expression levels without 

changing the DNA sequence itself. Interesting is that epigenetics can modify gene and thus also protein 

expression in response to environmental stimuli, which may be an explanation for the episodic nature 

of many psychiatric disorders [291].  

 

Functional enrichment analysis of cluster 6 in the protein-protein interaction network of biomarker 

candidates for differential diagnosis of BD-M and SZ patients highlighted that there were some 

differences in these patient groups with regard to lipid metabolism. Indeed, literature suggests that 

lipid metabolism is dysregulated in SZ as well as BD patients [292-296]. In SZ patients, an altered lipid 

metabolism might be a result of their antipsychotics used to alleviate psychotic symptoms as the 

development of metabolic syndrome is a major side effect of most antipsychotics [297]. However, an 

altered lipid metabolism was also detected in drug-naïve SZ patients [295, 296]. The cluster generating 

lipid metabolism-associated terms consisted of three members of the apolipoprotein, which have been 

reported to be differentially regulated in psychiatric patients many times [108, 109, 120, 226, 227, 

298]. However, these studies reported opposing results with regard to whether they are up- or down-

regulated.  

 

Lastly, four proteins of the keratin family were identified as biomarker candidates for differential 

diagnosis of MDD and BD-D patients and clustered together in the protein-protein interaction network 

thereof. However, no evidence was found that members of the keratin family are expressed in PBMCs. 

Hence, the detection of these proteins is probably a result of contamination via skin cells [299]. 

 

4.6 Protein-Protein Interactions between Biomarker Candidates for Differential Diagnosis 

 

Protein-protein interactions were more profound for biomarker candidates for differential diagnosis 

of BD-M and SZ patients than those for differential diagnosis of MDD and BD-D patients. In the former 

network, the majority of biomarker candidates were connected with each other (Figure 19), either 

directly or indirectly10, whereas biomarker candidates are only connected to few others in the latter 

network (Figure 18). This is further supported by the results of NetworkAnalyzer, which indicate that 

the number of edges, highest degree and average number of neighbours are higher in the network of 

biomarker candidates for differential diagnosis of BD-M and SZ patients. The protein-protein 

interaction network obtained from these biomarker candidates is consistent with the theory of the so 

called ‘disease module hypothesis’. This hypothesis states that disease genes or gene products tend to 

interact and cluster with each other instead of showing no interaction at all [300]. Moreover, the ‘local 

hypothesis’ postulates that directly interacting proteins may be involved in the same biochemical 

process [301] and Barabási et al. hypothesised that disorders are mostly caused by the interaction of 

affected pathobiological processes [192].  

 

 
9 Histones are core components of nucleosomes, in which DNA is packed around histones to reduce its length. 
10 A direct interaction is present between neighbours while proteins that interact indirectly are connected to 
each other via (a) node(s) in between. 
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This raises the question if there could be a major network of underlying biological differences between 

BD-M and SZ patients while this is not the case for MDD and BD-D patients. However, approximately 

75% of all possible protein-protein interactions are not detected or examined yet [302]. Hence, 

interactions between the smaller protein-protein interaction networks created by biomarker 

candidates for differential diagnosis of MDD and BD-D patients may not have been identified yet. This 

hypothesis is not in line with the results obtained via pathway analysis. As previously mentioned, 

network analysis demonstrated that the majority of biomarker candidates for differential diagnosis of 

BD-M and SZ patients interact with one another and thus indicated that these proteins might be 

involved in the same biological processes, according to the ‘local hypothesis’. It was therefore 

suspected that pathway analysis would identify significantly enriched gene sets that were similar to 

those identified with the STRING enrichment of clusters in the protein-protein interaction network. 

However, pathway analysis did not yield any significantly enriched gene sets when expression values 

of BD-M and SZ patients were compared. The opposite was true when expression values of MDD and 

BD-D patients were compared where pathway analysis identified 499 significantly enriched gene sets. 

 

4.7 Future Perspectives 

 

Ideally, a biomarker discovery study should include the follow-up of drug-naïve patients11. This study 

design would allow for the protein profiling of samples of the same patients before and after treatment 

and therefore creates the possibility to only withhold biomarker candidates when they are 

differentially expressed in both conditions. Moreover, it would enable to evaluate the stability of 

biomarker candidates throughout time. This approach guarantees that the biomarker (panel) can 

discriminate patients independent of their drug status or the time point in the disease course at which 

the diagnostic test is performed, which may be specifically important when the biomarker (panel) has 

only just been implemented in the clinic due to the fact that many patients probably won’t be drug-

naïve at the time point they are biologically diagnosed. Additionally, future studies should, preferably, 

simultaneously investigate protein profiles of the same experimental groups as were included in this 

thesis when aiming to identify biomarker candidates for differential diagnosis of MDD and BD-D 

patients, on one hand, and/or BD-M and SZ patients, on the other. This approach allows that biomarker 

candidates are selected based on their potential for differential diagnosis between clinically similar 

pathologies, which is the most challenging in clinical practice.  

 

In the present study, biomarker candidates were defined as proteins that showed to be differentially 

expressed between two patient groups as well as between either of those patient groups and HCs. 

Therefore, this approach enables that clinical biomarking can be performed following two strategies, 

as stated by Coppens and colleagues [147]. A first strategy (Strategy A) requires that the protein 

abundances of biomarker candidates are determined in a large cohort of HCs, allowing a reference 

range and threshold value to be set for each biomarker candidate. This strategy can be used for 

proteins which show to be contra-regulated or differentially regulated in either of the pathologies 

compared to HCs. In the latter case, the fold change expression ratio should be less than 1 SD to the 

mean fold change expression ratio in one of the patient groups and more than 2 SD in the other (i.e. 

considered differentially expressed in this thesis). In each list of biomarker candidates for differential 

diagnosis identified in this thesis, 35 proteins meet this criteria. Additionally, two biomarker candidates 

for differential diagnosis of BD-M and SZ patients were contra-regulated, meaning that 72 biomarker 

 
11 A drug-naive patient is considered as a patient that has not received drugs prescribed to alleviate symptoms 
related to the disorders of interest yet. 
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candidates identified in this thesis would be eligible for further validation using the strategy based on 

a HC reference range. 

 

A second strategy (Strategy B) for biomarker selection and validation would be applicable to proteins 

that show to be significantly dysregulated in both pathologies compared to controls as well as in 

comparison with each other. Similar to the first strategy, this strategy also requires that reference 

ranges of protein abundances are determined. However, instead of determining a reference range of 

protein abundances in healthy controls, this type of biomarker candidates demand that the reference 

ranges of protein abundances in both patient groups are set using a large cohort of patients. Biomarker 

candidates showing the greatest discriminatory potential between the two comparative pathologies 

would be best suited for this strategy.  

 

Biomarker candidates that show to be significantly contra-regulated (validated via Strategy A) or 

significantly dysregulated in both pathologies (validated via Strategy B) take into account fold change 

expression ratios of both pathologies. Therefore, these types of biomarkers would probably prove to 

be more specific and sensitive than biomarker candidates that are only significantly dysregulated in 

one of the pathologies. Nevertheless, extensive follow-up research is necessary, no matter which type 

of biomarker candidate is selected for further validation. A first step consists of the protein profiling of 

PBMCs derived from a larger cohort to identify true biomarker candidates. Next, these biomarker 

candidates should be validated, preferably by using single or multiplex enzyme-linked immuno-assays 

as such techniques allow low-threshold implementation in the clinic. The following step consists of 

establishing reference ranges for biomarker candidates that passed through the previous steps. 

Depending on to which of the previously described strategies the biomarker candidate belongs, these 

reference ranges should be determined in either a large cohort of HCs (Strategy A) or both patient 

populations (Strategy B). In a final step, these reference ranges can then be used to assess the 

discriminatory performance of the biomarker candidate via the comparison of the biological and the 

‘subjective’ diagnosis in a large cohort of patients. The subjective diagnosis should preferably be based 

on the opinion of at least two experienced psychiatrists12 and the results of multiple diagnostic 

instruments and questionnaires. This way, the biomarker candidate’s accuracy, sensitivity and 

specificity can be determined. 

 

The abovementioned strategies and validation steps are only applicable for single biomarkers. 

However, single biomarkers have not been implemented in the clinic because they showed to be non-

specific, possibly because of their inability to represent complex underlying disease mechanisms [118]. 

In case single biomarkers do not provide an accuracy, sensitivity and specificity sufficient for 

implementation in clinical practice, protein profiles of patients and HCs may be used to extract 

biomarker panels from, an approach that has already been applied successfully in various research 

areas [303-307]. If this approach still yields disappointing results, a last resort might be to start from 

the biological information instead of the diagnostic labels as we know them today, meaning that 

patients will be clustered together based on their protein profiles. These protein profiles might then 

be used to classify patients even though these classifications might not overlap with the current 

diagnostic categories. This approach has also been widely used, specifically in the context of disease 

subtyping, and yielded valuable information in many cases [308-311]. Both approaches make use of 

machine learning algorithms, supervised in the former case (e.g. support vector machine) and 

unsupervised in the latter (e.g. cluster analysis). 

 
12 A third psychiatrist should be consulted in case the opinion of only two psychiatrists is originally included and 
they do not agree on the diagnosis. 
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5. Conclusion 
 

Major psychiatric disorders are among the most debilitating disorders, costing patients and global 
economy trillions of dollars each year. Although biomarker discovery in psychiatry has been a subject 
undergoing intense study in the last decades, biological measures are still lacking in psychiatric 
diagnostics. Therefore, the study designs that are generally used in biomarker discovery may have to 
be revised. Only few studies focused on differential diagnosis of major psychiatric disorders instead of 
comparing psychiatric patients only to healthy controls while the former is of utmost importance in 
clinical practice.  
 
This thesis provided preliminary data indicating that breaking the golden standards in biomarker 
discovery may be considered. First, one should look beyond samples sources that are classically used 
in biomarker discovery. This thesis implicates that PBMCs may offer better characteristics for 
biomarker discovery than plasma. Furthermore, PBMCs generated a considerable number of proteins 
that are differentially expressed between psychiatric disorders with similar clinical presentations. 
Hence, they may prove to be a valuable sample source in biomarker discovery for differential diagnosis 
of major psychiatric disorders. 
 
Extensive research is necessary to improve psychiatric healthcare, starting with biomarker discovery 
for diagnostic as well as prognostic and therapeutic purposes. Research should primarily be focused 
on solving the most challenging aspect of psychiatric healthcare, namely differential diagnosis of 
psychiatric disorders with clinically similar presentations. Next, these results can aid in the 
development of new therapeutics. By implementing objective, biological measures, the quality of 
psychiatric healthcare will increase, which will in turn lead to a decreased disease and economic 
burden caused by these debilitating afflictions.   
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8. List of Abbreviations 
 

2D-GE  2D-Gel Electrophoresis 
APA  American Psychiatric Association 
APOC3  APOlipoprotein C-III 
AUC  Area Under the Curve 
BD  Bipolar Disorder 
BD-D  patients with Bipolar Disorder in a Depressive state 
BD-M  patients with Bipolar Disorder in a Manic state 
BMI  Body Mass Index 
CAMERA Correlation Adjusted MEan RAnk gene set test 
CAMP  Cathelicidin AntiMicrobial Peptide 
CCL5  C-C chemokine 5 
CMYA5  CardioMYopathy Associated 5 
CSF  CerebroSpinal Fluid 
CV  Coefficient of Variation 
DALY  Disability-Adjusted Life Year 
DEFA1  neutrophil defensin 1 
DEP  Differentially Expressed Protein 
DSM-5  Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 
ELISA  Enzyme-Linked Immuno Sorbent Assay 
F  Female 
GABA  Gamma-AminoButyric Acid 
GBD  Global Burden of Disease 
GWAS  Genome-Wide Association Studies 
HC  Healthy Control 
HDRS  Hamilton Depression Rating Scale 
HLA-B7  HLA class I histocompatibility antigen, B-7 alpha chain 
HPPP  Human Plasma Proteome Project 
ICD-10 International Statistical Classification of Diseases and Related Health Problems, 10th 

Edition 
iTRAQ Isobaric mass-Tag labelling for Relative and Absolute Quantitation 
LC  Liquid Chromatography 
LCN2  neutrophil gelatinase-associated lipocalin 
LCMS  Liquid Chromatography – Mass Spectrometry 
M  Male 
MS  Mass Spectrometry 
MDD  Major Depressive Disorder 
MMP9  Matrix MetalloProteinase-9 
N  Sample size 
NA  Not Applicable 
PANSS  Positive And Negative Syndrome Scale 
PANSS-P Positive scale of the Positive And Negative Syndrome Scale 
PBMC  Peripheral Blood Mononuclear Cell 
PTM  Post-Translation Modifications 
S100A12 protein S100A12 
SD  Standard Deviation 
SNP  Single-Nucleotide Polymorphism 
SZ  SchiZophrenia 
WHO  World Health Organization 
WMH  World Mental Health 
YLD  Years Lost due to Disability 
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YLL  Year of Life Lost 
YMRS  Young Mania Rating Scale 
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Supplementary Materials 
 

1. Visual Representation of Experimental Procedures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure S3 Visual representation of the selection of DEPs.  
Abbreviations: DEPs, differentially expressed proteins 

Figure S1 Visual representation of the extraction of PBMCs from whole blood. 
Abbreviations: min, minutes; PBS, phosphate buffered saline; PBMCs, peripheral blood mononuclear cells 

Figure S2 Visual representation of the extraction of plasma from whole blood. 
Abbreviations: min, minutes; rpm, rounds per minute 
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2. MaxQuant Parameters 

 

Group-specific parameters Global parameters 

Type Protein quantification 

Type Standard Label min. ratio count 2 

Modifications Peptides for quantification Unique + razor 

Variable modifications Oxidation (M); 
Acetyl (Protein N-
term); Phospho 
(STY)  

Use only unmodified peptides 
and … 

Yes 

Fixed modifications Carbamidomethyl 
(c) 

Modifications used in protein 
quantification 

Oxidation (M); Acetyl 
(Protein N-term); 
Carbamidomethyl (c) 

Max. number of modifications 
per peptide 

5 Discard unmodified 
counterpart peptides 

Yes 

Instrument Advanced ratio estimation Yes 

Instrument type Orbitrap MS/MS analyser 

First search peptide tolerance 20 FTMS MS/MS match tolerance 20 

Main search peptide tolerance 4,5 FTMS MS/MS match tolerance 
unit 

ppm 

Peptide tolerance unit ppm FTMS MS/MS de novo 
tolerance 

10 

Individual peptide mass tolerance Yes FTMS MS/MS de novo 
tolerance unit 

ppm 

Isotope match tolerance 2 FTMS MS/MS deisotoping 
tolerance 

7 

Isotope match tolerance unit ppm FTMS MS/MS deisotoping 
tolerance unit 

ppm 

Centroid match tolerance 8 FTMS top peaks per Da 
interval 

12 

Centroid half width 35 FTMS top x mass window (Da) 100 

Centroid half width unit ppm FTMS de-isotoping Yes 

Time valley factor 1,4 FTMS higher charges  Yes 

Isotope valley factor 1,2 FTMS water loss Yes 

Isotope time correlation 0,6 FTMS ammonia loss Yes 

Theoretical isotope correlation 0,6 FTMS dependent losses Yes 

Recalibration unit ppm FTMS recalibration No 

Use MS1 centroids No ITMS MS/MS match tolerance 0,5 

Use MS2 centroids No ITMS MS/MS match tolerance 
unit 

Da 

Intensity dependent calibration No ITMS MS/MS de novo 
tolerance 

0,25 

Min. peak length 2 ITMS MS/MS de novo 
tolerance unit 

Da 

Max. charge 7 ITMS MS/MS deisotoping 
tolerance  

0,15 

Min. score for recalibration 70 ITMS MS/MS deisotoping 
tolerance unit 

Da 

Cut peaks Yes ITMS top peaks per Da interval 8 

Gap scans 1 ITMS top x mass window (Da) 100 

Table S1 Settings of MaxQuant parameters 
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Advanced peak splitting No ITMS de-isotoping No 

Intensity threshold 0 ITMS higher charges Yes 

Check mass deficit  Yes ITMS water loss Yes 

Intensity determination Value at 
maximum 

ITMS ammonia loss Yes 

Digestion ITMS dependent losses Yes 

Digestion mode Specific ITMS recalibration No 

Enzyme Trypsin/P TOF MS/MS match tolerance 40 

Max. missed 2 TOF MS/MS match tolerance 
unit 

ppm 

Label-free quantification TOF MS/MS de novo tolerance 0,02 

Label-free quantification LFQ TOF MS/MS de novo tolerance 
unit 

Da 

LFQ min. ratio. count 2 TOF MS/MS deisotoping 
tolerance 

0,01 

Fast LFQ Yes TOF MS/MS deisotoping 
tolerance unit 

Da 

LFQ min. number of neighbours 3 TOF top peaks per Da interval 10 

LFQ average number of 
neighbours 

6 TOF top x mass window (Da) 100 

Skip normalization No TOF de-isotoping Yes 
 

  TOF higher charges Yes 
 

  TOF water loss Yes 
 

  TOF ammonia loss Yes 
 

  TOF dependent losses  Yes 
 

  TOF recalibration No 
 

  Unknown MS/MS match 
tolerance 

0,5 

 
  Unknown MS/MS match 

tolerance unit 
Da 

 
  Unknown MS/MS de novo 

tolerance 
0,25 

 
  Unknown MS/MS de novo 

tolerance unit 
Da 

 
  Unknown MS/MS deisotoping 

tolerance 
0,15 

 
  Unknown MS/MS deisotoping 

tolerance unit 
Da 

 
  Unknown top peaks per Da 

interval 
8 

 
  Unknown top x mass window 

(Da) 
100 

 
  Unknown de-isotoping  No 

 
  Unknown higher charges Yes 

 
  Unknown water loss Yes 

 
  Unknown ammonia loss Yes 

 
  Unknown dependent losses Yes 

 
  Unknown recalibration No 

 
  Advanced 

 
  Calculate peak properties No 
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  Decoy mode Revert 

 
  Use for occupancies Normalized ratios 

 
  Epsilon score for mutations Yes 

 
  Evaluate variant peptides 

separately  
Yes 

 
  Disable MD5 No 

 
  Max mods in site table 3 

 
  Andromeda cache size 350000 

 
  Use series reporters No 

 
  MS2 precursor mass shift 0 

 
  Complementary ion ppm 20 

 
  Identification 

 
  PSM FDR 0,01 

 
  Protein FDR 0,01 

 
  Site decoy fraction 0,01 

 
  Min. peptides 1 

 
  Min. razor + unique peptides 1 

 
  Min. unique peptides 0 

 
  Min. score for unmodified 

peptides 
0 

 
  Min. score for modified 

peptides 
40 

 
  Min. delta score for 

unmodified peptides 
0 

 
  Min. delta score for modified 

peptides 
6 

 
  Main search max. 

combinations 
200 

 
  Base FDR calculations on delta 

score 
No 

 
  Razor peptide FDR Yes 

 
  Second peptides Yes 

 
  Match between runs Yes 

 
  Match time window (min) 0,7 

 
  Match ion mobility window 0,05 

 
  Alignment time window (min) 20 

 
  Alignment ion mobility 1 

 
  Match unidentified features No 

 
  Dependent peptides No 

 
  Label-free quantification 

 
  Separate LFQ in parameter 

groups 
No 

 
  Stabilize large LFQ ratios Yes 

 
  Require MS/MS for LFQ 

comparisons 
Yes 

 
  iBAQ No 

 
  Advanced site intensities  Yes 
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Abstract 

 
Introduction: Current diagnoses in psychiatry are solely based on the evaluation of clinical presentation by 

the treating psychiatrist. This results in a high percentage of misdiagnosis and consequential inefficient 

treatment; especially with regard to major depressive disorder (MDD), depression in context of bipolar 

depression (BD-D), bipolar disorder with manic symptoms (BD-M) and psychosis in the context of 

schizophrenia (SZ). Objective biomarkers allowing for efficient discriminatory diagnostics are therefore 

urgently needed. 

Methods: Peripheral blood mononuclear cell (PBMC) proteomes of patients with MDD (n= 5) , BD-D (n= 3), 

BD-M (n= 4) and SZ (n =4) and of healthy controls (HC; n = 6) were analyzed by state-of-the-art mass 

spectrometry. Proteins with a differential expression of >2 standard deviation (SD) expression fold change 

from HC and between either MDD vs. BD-D or BD-M vs. SZ were subsequently identified as potential 

discriminatory biomarkers. 

Results: In total, 4271 individual proteins were retrieved from HC. Of these, about 2800 were detected in all 

patient and HC samples. For objective discrimination between MDD and BD-D, 66 candidate biomarkers were 

found. In parallel, 72 proteins might harbour biomarker capacity for differential diagnostics of BD-M and SZ. 

A single biomarker was contraregulated vs. HC in each pair of comparisons. 

Discussion / Conclusion: With this work, we provide a register of candidate biomarkers with potential 

capacity to objectively discriminate MDD from BD-D and BD-M from SZ. Although concerning a proof-of- 

concept study with limited sample size, these data provide a stepping-stone for follow-up research on the 

validation of true discriminatory potential and feasibility of clinical implementation of the discovered 

biomarker candidates. 



85 
 

Introduction 

 
Psychotic and mood disorders are amongst the most prevalent and debilitating psychiatric illnesses. Partial 

overlap in clinical presentation of these disorders often renders diagnostic differentiation between these 

illnesses problematic to virtually unfeasible. Illustratively, depressive episodes occur both in context of 

unipolar depression (major depressive disorder, MDD) and of bipolar depression (bipolar disorder, BD) with 

studies reporting the presence of an actual diagnosis of BD-D in 31% to up to 69% of patients misdiagnosed 

with unipolar depression 1,2. Often, also phenotypical distinction between manic and psychotic symptoms 

remains cumbersome3. Clinically utilized but arguably less valid intermediate disease types such as 

schizoaffective disorder4, mood disorder with psychotic symptoms, schizophrenia with depressive episodes,... 

and high levels of comorbidity in psychiatric disorders 5 further confound accurate diagnostics. As the different 

syndromes each require a specific therapeutic strategy, erroneous diagnoses may lead to severely increased 

and/or prolonged patient suffering. Antidepressant monotherapy for example, is in general relatively 

ineffective for treating bipolar depression6. Consequently, treatment guidelines for this population advise the 

primary administration of antipsychotics and mood stabilizers all or not in combination with an antidepressant 

7. Unfortunately, Viktorin et al.8 demonstrate that 35% of bipolar patients in Sweden were treated with 

antidepressant monotherapy with the risk of switching to mania only occurring in these patients, while being 

absent in patients treated with antidepressant add-on to a mood stabilizer. 

In parallel, also when suffering from comorbid psychotic symptoms bipolar patients are often misdiagnosed. 

A recent study reports numbers as high as 61% of BD patients with psychotic symptoms to receive an initial 

other diagnosis, with 21% of misdiagnoses concerning a subtype of schizophrenia 9. Although antipsychotics 

(AP) are in general effective in treatment of mania 10, the resulting absence of any type of mood stabilizer in 

BD-M patients treated with AP can result in a substantial increase in the duration of untreated illness of bipolar 

patients and frequent relapses or rapid cycling 11. 

The above illustrates the cruciality of accurate diagnostics and underscores the urgent need for biomarkers 

enabling objective discriminatory diagnosis of unipolar vs. bipolar depression and of manic vs. psychotic 

episodes. Although several studies have investigated the potential of different types of biomarkers to 

categorize patients as either MDD or BD-D, so far, no studies have successfully identified a clinically usable, 

https://paperpile.com/c/mexrzM/WlY0E%2BLeVTj
https://paperpile.com/c/mexrzM/zhmWu
https://paperpile.com/c/mexrzM/Kx50
https://paperpile.com/c/mexrzM/HzvKr
https://paperpile.com/c/mexrzM/8T8UO
https://paperpile.com/c/mexrzM/G9N5V
https://paperpile.com/c/mexrzM/hZs06/?noauthor=1
https://paperpile.com/c/mexrzM/80vWc
https://paperpile.com/c/mexrzM/tz6Gt
https://paperpile.com/c/mexrzM/QcCFw


86 
 

highly predictive biomarker using hypothesis-driven, targeted approaches (for review see Goossens et al., 

subm. and 12). Non-targeted biomarker identification avenues (the so-called -omics approaches) however, 

might reveal novel molecules with high discriminatory potential that have thus far not been related to any of 

the investigated pathologies. 

A biomarker qualifies as clinically useful if it is easy to obtain, allows for stable and accurate detection and is 

present in high quantities in at least 1 of the comparative groups. As peripheral blood mononuclear cells 

(PBMC) are effortlessly collectable and intracellular protein levels are less fluctuating than those of free- 

circulating plasma/serum proteins 13–16, mapping of the PBMC proteome of MDD vs. BD-D and BD-M vs. SZ 

patients might prove a promising strategy for novel discriminatory biomarker discovery. 

Therefore, this project aims to elucidate discriminatory biomarkers for unipolar vs. bipolar depressive, manic 

and psychotic symptoms in context of MDD, BD and SZ by performing large-scale non-targeted liquid 

chromatography - mass spectrometry (LCMS) proteomics on PBMC of patients with either of the 

aforementioned disorders. 

 
Methods 

 
Patient selection 

 
MDD patients (n=5), BD patients in a depressed state (BD-D; n=3), BD patients in a manic state (BD-M; n=4), 

schizophrenic patients with active positive symptoms (n=4) were recruited from the Psychiatric Hospital 

Duffel. In addition, 6 age- and gender matched healthy controls (HC) were recruited via advertising. Diagnosis 

was made according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and 

confirmed by the Mini international neuropsychiatric interview (MINI) version 5.0.0. Inclusion criteria were: 

men and women between the ages of 18 and 55; for patients: a score of ≥17 or more on the Hamilton 

Depression Rating Scale (HDRS) for depressed patients (both MDD and BD-D); a score of ≥13 on the Young 

Mania Rating Scale (YMRS) for manic patients; a total score of ≥14 on the positive scale of the Positive and 

Negative Syndrome Scale (PANSS) with either a score of ≥5 on at least 1 item or a score of ≥4 on at least 2 

psychotic items (P2, P3, P5). Exclusion criteria were: recent occurence or a history of chronic inflammatory 

disorders, autoimmune diseases, acute physical diseases and substance dependence (in the last 6 months) and 

https://paperpile.com/c/mexrzM/v9eGt
https://paperpile.com/c/mexrzM/C5bCD%2BMFz1x%2B5Bkum%2BpadPo
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additionally for HC: a history of psychiatric disorders and having a first-degree relative with a history of 

psychopathology. All clinical scales were assessed by trained personnel and patients were matched to 

controls for age, gender, smoking status and body mass index. 

The study was approved by the local ethics committee. All participants gave their written consent to take 

part in the study. 

Collection of PBMC 

 
Venous blood was collected sober between 7:30 and 10 AM in EDTA-coated collection tubes. Gradient 

centrifugation was performed using Histopaque-1077 (Sigma-aldrich, Missouri, USA) for 20 minutes at 700g 

and room temperature without brakes. Subsequently, the buffy coat was collected and washed 2 times with 

phosphate buffered saline (PBS;Thermo Fisher Scientific, Perth, United Kingdom). Finally, the supernatant 

was discarded en cells were stored dry at -80°C until LCMS analysis. 

Quantitative Proteomics 

 
Multiplexed iTRAQ (isobaric mass-tag labeling for relative and absolute quantitation) mass spectrometry 

liquid chromatography (LCMS) was performed as described hereafter. PBMC samples were solubilized in a 

protein extraction buffer (composition: 8 M urea, 2 M thiourea, 0.1% SDS and 50 mM triethylammonium 

bicarbonate). Next, protein concentrations were quantified using RC DC protein assays (Bio-Rad; California, 

USA). Equal amounts of proteins from each sample were then reduced by tris-2-carboxyethyl phosphine and 

alkylated by 5-methyl-methanoethiosulphate and finally subjected to trypsin digestion. The resulting 

peptides from each sample were labelled using iTRAQ reagents (Sciex, Massachusetts, USA) following the 

manufacturer's instructions. PBMC samples of HC and patient samples were then spread randomly across three 

different octaplex iTRAQ LC runs. To improve LC-MS/MS proteome coverage, samples were subjected to a 

2D-LC fractionation system (Dionex ULTIMATE 3000, ThermoScientific, Massachusetts, USA). Peptide mixes 

were fractionated on a strong cationic exchange chromatography column (1 mm x 150 mm polysulfoethyl 

Aspartamide (California, USA, Dionex)) separated subsequently carried on a nano-LC C18 column (200 Å, 2 

μm, 75 μm × 25 cm). The nano-LC is coupled online to a QExactive™-Plus Orbitrap(ThermoScientific) mass 

spectrometer (MS). The nano-LC eluents were infused to the Orbitrap mass- spectrometer with a capillary at 

1.7 KV on a nano-ESI source at a flow rate of 300 nl/min. Data dependent acquisition in positive ion mode 
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was performed for a selected mass range of 350-1800 m/z at the MS1 level with a resolution of 140,000 and 

at the MS2 level with a resolution of 17,500. The raw data were analyzed by Proteome Discoverer 2.1 

Software (ThermoScientific) using Sequest HT as the search engine against the human UniProt/SwissProt 

database. The threshold of confidence was set above 99% ensuring a false discovery rate of less than 1%. The 

list of identified proteins, containing iTRAQ ratios of expression levels over control samples, was generated. 

Proteome Discoverer 2.1 employs a global analytical methodology. 

Statistical analyses 

 
For demographics, group mean differences were calculated by ANOVA with Tukey honest significant 

differences (HSD) post-hoc comparisons for numerical data and with Fisher exact test for categorical variables 

(gender, smoking status). All analyses were performed using JMP® version 13 (SAS, Cary, North Carolina 

27513, USA). 

Only data of those proteins that were detected in all HC and patient samples were used. Using GraphPad Prism 

analysis of the distribution scope of the acquired MS data we only allowed datasets to transition to further 

levels of analysis if we found the mass level data to be normally distributed. All raw iTRAQ ratios 

(condition:Con) were log2 transformed before calculating the mean abundance ratio per experimental group. 

Subsequently, the fold change expression ratios of log2 transformed mean abundances of patient samples 

over HC on the one hand, and MDD over BD-D and BD-M over SZ were calculated. Finally, only proteins were 

withheld as biomarker candidates that showed fold change expression ratios of >2 standard deviations to the 

patient/HC or patient/patient abundance mean. 

Our proteomic analysis pipelines and methodologies have previously been demonstrated to be both rigorous 

and able to generate highly effective and significant data outputs that give actionable high-dimensionality data 

appreciation 17–24. 

Results 

 
Demographics 

 
After screening, 5 MDD patients, 3 BD-D patients, 4 BD-M patients and 4 SZ patients fulfilled all inclusion 

criteria. In parallel, 6 age and gender matched healthy controls were included. No significant between-group 

differences were found for age, gender, BMI and smoking status (Fisher exact, Tukey Honest significant 

https://paperpile.com/c/mexrzM/J6L9%2BUS0b%2B4Q8D%2Bht6x%2BLq7L%2BGMYM%2B2GWQ%2BHvxq
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difference). All patients except for 1 medication free MDD patient used some type of 

psychopharmacotherapeutics. Six patients (n = 3 SZ, n = 1 BD-M, n = 1BDD, n = 1 MDD) were on monotherapy, 

while all other patients (72%) took at least 2 different psychopharmacological drugs. For an overview of 

medication status per disorder, see supplementary table 1. 

 

 MDD BD-D BD-M Sz 

Antidepressants     

SSRI 2 1 1  

SNRI 2    

MAOI     

TCA 1    

Other AD 3    

Mood stabilizers 
(Lithium, 
valproate) 

  
2 

 
3 

 

Antipsychotics 2 1 4 3 

Benzodiazepines  1 2 2 

 
Supplementary table 1: Medication status of included patients. SSRI = selective serotonin reuptake inhibitor, 
SSNR= selective serotonin & norepinephrine reuptake inhibitor, TCA = tricyclic antidepressant, MAOI = 
monoamine oxidase inhibitor. 

 
Compared to controls, all patients showed more depressive symptoms as measured by the Hamilton 

depression rating scale (HDRS). Among patient groups, BD-D and MDD had significantly higher HDRS scores 

than BD- M patients. As expected, psychotic symptoms as quantified by the Positive and Negative Syndrome 

Scale (PANSS) were only detected in SZ patients. SZ patients further scored highest on the Young mania rating 

scale (YMRS) for manic symptoms, followed by BD-M patients who in their turn differed significantly from 

bipolar depressed patients. No manic symptoms were demonstrated in MDD patients or HC. Demographic 

variables and symptom scores are presented in table 1. 

 HC MDD BD-D BD-M SZ 

n 6 5 3 4 4 

Age 32 ± 8,56 28,6 ± 
10,95 

24,67 ± 
3,06 

36,5 ± 11,5 34,5 ± 11,5 

Gender (M/F) 2/4 1/4 1/2 1/3 1/3 

BMI 25,9 ± 3,01 24,74 ± 4,4 24,67 ± 
2,84 

31,42 ± 2,8 25,68 ± 6,14 

Smoking 3 1 2 2 3 

HDRS 1 ± 1,55 20,2 ± 
1,79* 

21 ± 3,46* 10 ± 6,68 14 ± 4,32* 

PANSS-P 7 ± 0 7 ± 0 7 ± 0 7 ± 0 20,25 ± 4,03* 
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YMRS 0,17 ± 0,41 1,6 ± 1,52 2,67 ± 2,31 13,5 ± 
0,58* 

18,25 ± 1,5* 

Table 1: Demographics of patients with major depressive disorder (MDD), bipolar depression (BD-D), mania 
(BD-M) and schizophrenia (SZ) and healthy controls (HC). Data are presented as mean ± SD; * p < 0.05; 
significantly different from healthy controls. 

 
Protein retrieval capacity and differential expression from controls 

 
To determine potential diagnostic discriminators for patients with either MDD, BD-D, BD-M or SZ, the 

proteomes of patients’ peripheral blood mononuclear cells (PBMC) were mapped and compared with those 

of age and gender matched healthy controls. 

Quantitative proteomic analysis led to the total detection of 4271 individual proteins in HC. Of these, about 

90% were also found in the 4 psychiatric traits (PT). To ensure identification of biomarkers with highest 

certainty of retrieval, we subsequently quantified the number of HC-detected proteins that were only present 

in all individuals for each experimental group and found a similar detection rate of ~70% for all experimental 

groups and HC. As pathological biomarkers are preferably distinguishing between the PT and HC, we last 

calculated the number of proteins detected in all patients per PT that were differentially expressed from 

controls. Differentially expressed proteins (DEP) were defined as proteins showing a >2 standard deviation 

(SD) fold change in expression from controls and on average ~5% DEP were found for all PT. Specifically, BD-

D had the highest number of DEP (167), followed by MDD (132 DEP), BD-M (125 DEP) and SZ (102 DEP) (Table 

2). 

 HC 

n = 6 

MDD 

n = 5 

BD-D 

n = 3 

SZ 

n = 4 

BD-M 

n = 4 

 
Total number of proteins detected 

 
4271 

(100%) 

 
3954 

(93%)° 

 
3918 

(92%)° 

 
3918 

(92%)° 

 
3954 

(93%)° 

Total number of proteins detected in all 
patients 

3197 (75%) 2780 (70%) 2806 (72%) 2806 (72%) 2651 (67%) 

DEP vs. HC (+/-2 2SD fold change from HC) NA 132 (5%) 167 (6%) 102 (4%) 125 (5%) 

Table 2: Protein retrieval capacity and differential expression per condition. HC: healthy controls; MDD: 

major depressive disorder; BD-D: bipolar disorder, depressed state; BD-M: bipolar disorder, manic state. °: 

only proteins that were also detected in HC. 

 
Diagnostic biomarkers discriminating unipolar from bipolar depression 

 
As clinical presentation of depressive symptoms hardly allows to discern the underlying pathology to be either 
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MDD or BD, as such rendering adequate therapeutic intervention difficult, objective discriminative biomarkers 

are urgently needed. Therefore, we investigated which proteins showed both the greatest differential 

expression in patients with depressive symptoms vs. HC and in MDD vs. BD-D. Again, proteins with a fold 

change expression of >2SD were considered as substantially differentially expressed. Of the proteins showing 

differential expression from HC in either depressive condition, 66 reached the 2SD significance threshold for 

differential expression between MDD and BD-D and are as such potential discriminatory biomarkers for MDD 

vs. BD-D. Only 1 protein was found to be significantly contraregulated in MDD vs. BD-D. Interestingly, this 

concerns the protein HLA class II histocompatibility antigen, DRB1-16 beta chain (HLA-DRB1), a protein from 

the HLA-II class, which had been extensively implicated in several psychiatric disorders. HLA-DRB1 expression 

was significantly (i.e. >2 SD expression fold change from HC) downregulated in MDD (-0.21 fold change in 

expression from HC) while being significantly upregulated in BD-D (0.38 fold change expression from HC). 

Moreover, of the 65 additional discriminatory biomarkers, 7 more proteins were HLA molecules, confirming 

them to be of major interest with regard to the physiopathology of depressive disorders. 

A list of all 66 discriminatory biomarkers for MDD and BD-D can be found in table 3. 
 

Protein MDD/BDD 

2SD = 0.16 

MDD/HC 

2SD = 0.19 

BDD/HC 

2SD = 0.21 

HLA class I histocompatibility antigen, A-24 alpha chain 0.64 0.11 -0.53 

Keratin, type II cytoskeletal 1 0.63 -0.01 -0.64 

HLA class I histocompatibility antigen, B-18 alpha chain 0.62 0.14 -0.48 

HLA class II histocompatibility antigen, DRB1-16 beta chain -0.59 -0.21 0.38 

Keratin, type I cytoskeletal 9 0.58 -0.06 -0.63 

HLA class I histocompatibility antigen, A-2 alpha chain 0.47 -0.02 -0.49 

Histone H2A type 1 0.46 -0.62 -1.09 

Interferon-induced GTP-binding protein Mx1 -0.45 -0.05 0.40 

Keratin, type I cytoskeletal 10 0.43 0.04 -0.39 

Plexin-A4 -0.39 -0.38 0.01 

Retinoblastoma-like protein 1 -0.39 0.19 0.58 

High mobility group nucleosome-binding domain-containing 

protein 4 0.37 0.13 -0.25 

HD domain-containing protein 2 0.37 -0.04 -0.41 

cGMP-inhibited 3',5'-cyclic phosphodiesterase B -0.35 -0.42 -0.07 

Galectin-10 0.33 0.41 0.08 

Beta-hexosaminidase 0.32 -0.33 -0.65 

Hemoglobin subunit gamma-1 0.30 0.64 0.33 

HLA class I histocompatibility antigen, A-68 alpha chain -0.30 -0.02 0.28 
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Non-histone chromosomal protein HMG-14 0.30 0.20 -0.09 

HLA class I histocompatibility antigen, Cw-1 alpha chain 0.29 0.30 0.00 

Bardet-Biedl syndrome 12 protein -0.28 -0.33 -0.06 

NCK-interacting protein with SH3 domain -0.27 -0.21 0.06 

CAP-Gly domain-containing linker protein 2 -0.26 -0.22 0.05 

Keratin, type II cytoskeletal 2 epidermal 0.26 0.00 -0.25 

40S ribosomal protein S28 0.25 0.29 0.04 

Histone H2A type 2-C 0.25 0.04 -0.21 

Neutrophil gelatinase-associated lipocalin 0.25 0.53 0.27 

OCIA domain-containing protein 2 0.25 -0.22 -0.47 

Mitogen-activated protein kinase 13 0.24 0.02 -0.22 

Tubulin beta-3 chain -0.24 -0.60 -0.36 

Histone H1.4 0.24 0.29 0.04 

Trem-like transcript 1 protein -0.24 -0.71 -0.47 

Hemoglobin subunit gamma-2 0.23 0.36 0.13 

PHD finger protein 6 0.23 -0.10 -0.33 

Protein IWS1 homolog 0.23 -0.15 -0.38 

Tropomyosin beta chain -0.23 0.00 0.22 

Peptidyl-prolyl cis-trans isomerase G 0.22 -0.09 -0.32 

39S ribosomal protein L28, mitochondrial 0.22 -0.01 -0.23 

Carcinoembryonic antigen-related cell adhesion molecule 8 0.22 0.27 0.05 

Alpha-ketoglutarate-dependent dioxygenase FTO 0.22 -0.04 -0.26 

Bactericidal permeability-increasing protein 0.22 0.52 0.30 

Endoplasmic reticulum aminopeptidase 2 -0.21 -0.45 -0.24 

Lactotransferrin 0.21 0.60 0.39 

RNA-binding protein 42 0.21 0.00 -0.21 

N-sulphoglucosamine sulphohydrolase 0.21 -0.11 -0.31 

Platelet glycoprotein Ib alpha chain -0.21 -0.23 -0.03 

Cytochrome b-c1 complex subunit 9 0.20 -0.26 -0.46 

ADP-ribosylation factor-like protein 8B 0.20 0.35 0.15 

Platelet glycoprotein VI -0.20 -0.24 -0.04 

Cathelicidin antimicrobial peptide 0.20 0.63 0.43 

Protein disulfide-isomerase A5 -0.20 -0.24 -0.04 

Macrophage migration inhibitory factor 0.20 -0.11 -0.31 

HLA class II histocompatibility antigen, DRB1-11 beta chain -0.19 -0.46 -0.26 

Histone H2B type 3-B 0.19 -0.06 -0.25 

Liver carboxylesterase 1 0.19 -0.12 -0.31 

E3 ubiquitin-protein ligase RNF123 0.19 -0.06 -0.25 

HLA class I histocompatibility antigen, B-7 alpha chain 0.19 -0.08 -0.27 

Histone H1.2 0.18 0.20 0.02 

GTPase IMAP family member 5 -0.18 -0.26 -0.08 

Prenylcysteine oxidase-like -0.18 0.13 0.31 

WD repeat-containing protein 43 0.18 -0.24 -0.42 

Mitochondrial-processing peptidase subunit alpha 0.17 -0.12 -0.29 
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Granzyme H 0.17 -0.35 -0.52 

Tyrosine-protein phosphatase non-receptor type 7 (Fragment) 0.17 -0.08 -0.25 

Protein preY, mitochondrial 0.17 -0.05 -0.21 

Granulysin (Fragment) 0.17 -0.34 -0.51 

 

Table 3: Hierarchically ranked expression ratios of proteins that are differentially expressed between MDD 

and BD-D on the one hand and between either MDD and HC or BD-D and HC on the other. Proteins are 

hierarchically ranked according to the largest discriminatory potential between MDD and BD-D. Significant 

differential expression was defined as > 2SD expression fold change; red: increased expression in pathology 

vs. HC; green: decreased expression vs. HC; greyed out: non-significant differential expression from HC. 

 
Diagnostic biomarkers discriminating manic from psychotic patients 

 
Also manic and psychotic symptom presentations are not always readily discernible based on clinical 

phenotype and would benefit from objective biological categorization. Therefore, PBMC proteomes of patients 

with either manic symptoms within the spectrum of bipolar disorder or psychotic symptoms within the 

spectrum of schizophrenia were compared to identify symptom-specific discriminatory biomarkers. Of the 

2651 proteins retrieved in all BD-M and SZ patients, 72 proved to be both significantly differentially expressed 

between BD-M and SZ on the one hand and between either of the pathologic conditions and HC on the other. 

Again, one protein (apolipoprotein C-III, APOC3) was found to be significantly contraregulated in BD-M vs. SZ. 

APOC3 is involved in triglyceride homeostasis and was downregulated in BD-M (-0.24 fold change in 

expression from HC) and upregulated in SZ (0.23 fold change in expression from HC). Three other proteins 

were however more strongly distinctiving BD-M from SZ, irrespective of their expression in control 

individuals. While APOC3 showed a downregulation of -0.47 in BD-M over SZ, these fold changes were 

stronger in hemoglobin subunit gamma-1 (-0.72 fold change expression BD-M / SZ), galectin-10 (-0.70 fold 

change expression BD-M / SZ) and HLA class II histocompatibility antigen, DRB1-11 beta chain (-0.54 fold 

change expression BD-M / SZ). 

A list of all 72 discriminatory biomarkers for BD-M and SZ can be found in table 4. 
 

Protein 
BD-M/SZ 

2SD = 0.16 

BD-M/HC 

2SD = 0.20 

SZ/HC 

2SD = 0.21 
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Hemoglobin subunit gamma-1 -0.72 0.20 0.91 

Galectin-10 -0.70 -0.05 0.64 

HLA class I histocompatibility antigen, B-7 alpha chain 0.67 0.16 -0.51 

HLA class II histocompatibility antigen, DRB1-11 beta chain -0.54 -0.79 -0.26 

HLA class I histocompatibility antigen, A-34 alpha chain 0.51 0.32 -0.19 

Apolipoprotein C-III -0.47 -0.24 0.23 

Alanine--tRNA ligase, mitochondrial 0.45 0.47 0.02 

Neutrophil gelatinase-associated lipocalin -0.45 0.44 0.89 

Hemoglobin subunit gamma-2 -0.43 0.11 0.54 

Retinoblastoma-like protein 1 -0.43 0.38 0.81 

Matrix metalloproteinase-9 -0.41 0.39 0.80 

Protein S100-A12 -0.41 0.22 0.62 

Cathelicidin antimicrobial peptide -0.40 0.49 0.89 

Bardet-Biedl syndrome 12 protein -0.38 -0.23 0.14 

Selenium-binding protein 1 -0.35 0.03 0.38 

Granulysin (Fragment) -0.34 -0.54 -0.19 

Zinc finger ZZ-type and EF-hand domain-containing 

protein 1 -0.34 -0.05 0.29 

Non-histone chromosomal protein HMG-17 -0.32 -0.05 0.27 

AP-3 complex subunit sigma-1 -0.31 -0.02 0.29 

Tubulin beta-3 chain -0.30 -0.57 -0.27 

Hemoglobin subunit alpha -0.30 0.21 0.51 

40S ribosomal protein S21 0.30 0.23 -0.06 

Neutrophil defensin 1 0.29 1.02 0.73 

Hemoglobin subunit beta -0.29 0.28 0.57 

HLA class I histocompatibility antigen, B-18 alpha chain -0.29 -0.32 -0.03 

Apolipoprotein C-I -0.29 -0.44 -0.15 

Protein Mpv17 -0.29 -0.57 -0.28 

Gamma-tubulin complex component 2 -0.28 -0.07 0.21 

Lactotransferrin -0.28 0.51 0.79 

C-C motif chemokine 5 0.28 0.26 -0.02 

Histone H2A type 2-C -0.28 -0.22 0.06 

Calumenin 0.28 0.22 -0.06 

cGMP-inhibited 3',5'-cyclic phosphodiesterase B -0.27 -0.39 -0.12 

Rap guanine nucleotide exchange factor 3 -0.27 -0.27 -0.01 

Phosphomevalonate kinase -0.26 -0.04 0.22 

40S ribosomal protein S28 0.26 0.26 -0.01 

Zinc finger protein 648 -0.26 0.26 0.52 

Bactericidal permeability-increasing protein -0.26 0.43 0.68 

Phospholipase D3 -0.25 -0.23 0.03 

Myristoylated alanine-rich C-kinase substrate 0.23 0.30 0.07 

Nicotinamide phosphoribosyltransferase -0.23 0.00 0.22 

Band 3 anion transport protein -0.22 0.04 0.26 

CAP-Gly domain-containing linker protein 2 -0.22 -0.26 -0.04 



95 
 

Carcinoembryonic antigen-related cell adhesion molecule 

8 -0.22 0.32 0.54 

Putative beta-actin-like protein 3 -0.22 -1.07 -0.86 

HLA class I histocompatibility antigen, A-2 alpha chain -0.22 -0.32 -0.10 

HLA class I histocompatibility antigen, A-24 alpha chain -0.21 -0.36 -0.15 

Pre-mRNA-splicing factor SYF1 0.21 0.23 0.03 

Protein S100-P -0.21 0.32 0.52 

HLA class I histocompatibility antigen, alpha chain E -0.20 -0.40 -0.20 

Granzyme H 0.20 -0.18 -0.38 

Condensin complex subunit 1 -0.20 -0.31 -0.11 

Cytochrome b-c1 complex subunit 9 -0.20 -0.34 -0.15 

Keratin, type I cytoskeletal 9 -0.20 -0.29 -0.09 

Ubiquitin-conjugating enzyme E2 D1 0.19 0.25 0.05 

Small nuclear ribonucleoprotein E -0.19 -0.22 -0.03 

Ubiquinone biosynthesis monooxygenase COQ6, 

mitochondrial -0.19 -0.37 -0.18 

Apolipoprotein A-I -0.18 -0.29 -0.11 

Carbonic anhydrase 1 -0.18 0.03 0.22 

Lysosomal alpha-glucosidase -0.18 -0.35 -0.17 

Haptoglobin -0.18 0.04 0.22 

COMM domain-containing protein 4 -0.18 -0.29 -0.11 

Eukaryotic elongation factor 2 kinase -0.17 -0.61 -0.44 

Mitochondrial carrier homolog 1 (Fragment) -0.17 -0.39 -0.21 

Protein S100-A8 -0.17 0.53 0.70 

Peroxiredoxin-2 -0.17 0.05 0.22 

E3 ubiquitin-protein ligase TRIM22 -0.17 -0.26 -0.09 

Tubulin alpha-8 chain (Fragment) 0.17 -0.09 -0.26 

Macrophage migration inhibitory factor 0.17 -0.06 -0.22 

H(+)/Cl(-) exchange transporter 3 0.17 0.33 0.17 

Cathepsin G 0.16 0.55 0.38 

Solute carrier family 2, facilitated glucose transporter 

member 1 -0.16 0.12 0.28 

Table 4: Expression ratios of proteins that are differentially expressed between BD-M and SZ on the one 

hand and between either BD-M and HC or SZ and HC on the other. Proteins are hierarchically ranked 

according to the largest discriminatory potential between BD-M and SZ. Significant differential expression was 

defined as > 2SD expression fold change; red: increased expression in pathology vs. HC; green: decreased 

expression vs. HC; greyed out: non-significant differential expression from HC. 

Discussion 

 
With this work, we aimed at establishing a list of potential biomarkers that show great promise in objectively 

categorizing patients with MDD vs. BD-D on the one hand, and BD-M vs. SZ on the other. Non-targeted LCMS-



96 
 

based proteomics of patient PBMC revealed 66 proteins that may enable biological tracking of depressive 

symptoms to either a unipolar or bipolar depression context. Likewise, 72 proteins might biologically 

differentiate between manic and psychotic symptoms. For both comparisons, a single protein was found to be 

significantly contraregulated vs. HC between the 2 pathologies. In case of depression, this concerns the HLA 

class II histocompatibility antigen, DRB1-16 beta chain. When comparing differential expression vs. HC 

between BD-M and SZ, only apolipoprotein C-III was found to be significantly contraregulated. 

By identifying proteins that both differ between the 2 comparative diseases and between either of the 

pathologies and healthy individuals, our data allow for 2 methods of clinical biomarking. The first method 

would be to utilize proteins that show contraregulation or differential regulation in either of the pathologies 

vs. HC. With this approach, a reference range of these proteins should be determined in a large cohort of HC 

that can subsequently be used as threshold value for patient samples. Preferably, we suggest the potential HC-

based biomarker proteins to either show contraregulation vs. HC (i.e. HLA-DRB1-16b for MDD vs. BD-D and 

APOC3 for BD-M vs. SZ) or show less than 1 SD fold change differential expression in 1 of the 2 comparative 

pathologies while being significantly dysregulated in the other. Specifically, for MDD vs. BD-D, 35 proteins 

show < 1 SD fold change expression in either of the 2 pathologies and > 2SD fold change expression in the 

other and could thus be further validated as HC-based biomarkers for discriminatory diagnosis of MDD and 

BD-D (see Supplementary table 2). 

Biomarker MDD vs. HC Biomarker BD-D vs. HC 

Plexin-A4 ↓ Keratin, type II cytoskeletal 1 ↓ 

cGMP-inhibited 3',5'-cyclic 

phosphodiesterase B ↓ Keratin, type I cytoskeletal 9 ↓ 

Galectin-10 ↑ 

HLA class I histocompatibility antigen, A-2 alpha 

chain ↓ 

Non-histone chromosomal protein HMG-14 ↑ Interferon-induced GTP-binding protein Mx1 ↑ 

HLA class I histocompatibility antigen, Cw-1 

alpha chain ↑ Keratin, type I cytoskeletal 10 ↓ 

Bardet-Biedl syndrome 12 protein ↓ HD domain-containing protein 2 ↓ 

NCK-interacting protein with SH3 domain ↓ 

HLA class I histocompatibility antigen, A-68 alpha 

chain ↑ 

CAP-Gly domain-containing linker protein 2 ↓ Keratin, type II cytoskeletal 2 epidermal ↓ 

40S ribosomal protein S28 ↑ Histone H2A type 2-C ↓ 

Histone H1.4 ↑ Mitogen-activated protein kinase 13 ↓ 

Carcinoembryonic antigen-related cell ↑ Tropomyosin beta chain ↑ 
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adhesion molecule 8 

Platelet glycoprotein Ib alpha chain ↓ Peptidyl-prolyl cis-trans isomerase G ↓ 

Platelet glycoprotein VI ↓ 39S ribosomal protein L28, mitochondrial ↓ 

Protein disulfide-isomerase A5 ↓ Alpha-ketoglutarate-dependent dioxygenase FTO ↓ 

Histone H1.2 ↑ RNA-binding protein 42 ↓ 

GTPase IMAP family member 5 ↓ Histone H2B type 3-B ↓ 

  E3 ubiquitin-protein ligase RNF123 ↓ 

  

HLA class I histocompatibility antigen, B-7 alpha 

chain ↓ 

  

Tyrosine-protein phosphatase non-receptor type 7 

(Fragment) ↓ 

  Protein preY, mitochondrial ↓ 

Supplementary table 2: Overview of HC-based potential biomarkers for MDD (left) and BD-D (right). ↓: 

significant downregulation vs. HC; ↑: significant upregulation vs. HC. 

 
With regard to objectively discerning BD-M from SZ, 31 proteins show < 1 SD fold change expression in either 

of the 2 pathologies and > 2SD fold change expression in the other and could thus be further validated as HC-

based biomarkers for discriminatory diagnosis of BD-M and SZ (see Supplementary table 3). 

Biomarker BD-M vs. HC Biomarker SZ vs. HC 

Alanine--tRNA ligase, mitochondrial ↑ Galectin-10 ↑ 

40S ribosomal protein S21 ↑ Selenium-binding protein 1 ↑ 

HLA class I histocompatibility antigen, B-18 alpha chain ↓ 

Zinc finger ZZ-type and EF-hand 

domain-containing protein 1 ↑ 

C-C motif chemokine 5 ↑ 

Non-histone chromosomal protein 

HMG-17 ↑ 

Histone H2A type 2-C ↓ AP-3 complex subunit sigma-1 ↑ 

Calumenin ↑ Gamma-tubulin complex component 2 ↑ 

Rap guanine nucleotide exchange factor 3 ↓ Phosphomevalonate kinase ↑ 

40S ribosomal protein S28 ↑ 

Nicotinamide 

phosphoribosyltransferase ↑ 

Phospholipase D3 ↓ Band 3 anion transport protein ↑ 

Myristoylated alanine-rich C-kinase substrate ↑ Carbonic anhydrase 1 ↑ 

CAP-Gly domain-containing linker protein 2 ↓ Haptoglobin ↑ 

HLA class I histocompatibility antigen, A-2 alpha chain ↓ Peroxiredoxin-2 ↑ 

Pre-mRNA-splicing factor SYF1 ↑ Tubulin alpha-8 chain (Fragment) ↓ 

Keratin, type I cytoskeletal 9 ↓ Macrophage migration inhibitory factor ↓ 

Ubiquitin-conjugating enzyme E2 D1 ↑   

Small nuclear ribonucleoprotein E ↓   

E3 ubiquitin-protein ligase TRIM22 ↓   

Supplementary table 3: Overview of HC-based potential biomarkers for BD-M (left) and SZ (right). ↓: 

significant downregulation vs. HC; ↑: significant upregulation vs. HC. 
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An alternative strategy to clinically implement proteins retrieved in this study as discriminatory 

biomarkers is to determine reference ranges for a large cohort of patients from both comparative 

pathologies in order to be able to quantifiably categorize patients to either of the 2 diagnostic 

groups. As this approach would per definition require biomarkers that show the largest discrepancy 

between the 2 comparative pathologies, the proteins ranked highest in the respective MDD / BD-

D and BD-M / SZ biomarker lists (see tables 3 and 4) would theoretically show the largest predictive 

potential. Although considerably more time- and effort consuming, this approach would 

undoubtedly prove more sensitive and specific than less robust but considerably faster HC-based 

biomarker optimization. 

Both approaches however, require thorough follow-up research in order to affirm true biomarker 

capacity of the candidate proteins identified within this project. In a first step, reproducibility of 

the results should be substantiated in a larger training cohort of patients as this project concerned 

a proof of concept with a limited sample size. Subsequently, retrieval capacity of the confirmed 

biomarker candidates by more efficient and accessible antigen-based methods like single or 

multiplex enzyme-linked immuno-assays (ELISA) should be evaluated as this would be the 

technology of choice for low-threshold implementation in clinic. For those candidate biomarkers 

retrievable as such, reference ranges should then be established for either a large HC or both 

patient populations and lastly, the predictive capacity of the final selection of candidate biomarkers 

is to be determined by comparing the accuracy rate of blind objective diagnostication of a large 

test sample of patients based on biomarker quantification with the phenotypical diagnosis made 

by the treating psychiatrist. If none of the above individual candidate biomarkers prove valid in 

having sufficient predictive capacity, machine learning algorithms might be applied to these data 

to distill a molecular fingerprint composed of differential regulation of multiple markers. 

Although this cross-sectional study has merit in aiming to objectively discriminate between the 

aforementioned diagnoses to determine adequate treatment regimens, it does not provide 

information on biomarker stability throughout time. Longitudinal follow-up studies could provide 
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insight in biomarker fluctuation according to disease course and moreover, potentially reveal 

biomarkers correlating to either disease state or treatment effectiveness. Of note, correlation 

analyses on our data revealed no correlation between the 5 most discriminating MDD vs. BD-D 

proteins and HDRS on the one hand, and between the 5 most discriminating BD-M vs. SZ proteins 

and either the YMRS or the PANSS-P clinical scales on the other (data not shown). This is to be 

expected as both BD-D and MDD patients would score high on the HDRS and likewise, BD-M and 

SZ patients would have some overlap in YMRS and PANSS-P scoring. 

As the aim of this study is to find biomarkers that are readily accessible, peripheral blood cells were 

chosen as investigation medium. This implies that at the current study stage we do not have any 

information on the biomarker’s distribution in the brain. As some biomarkers might be subject to 

active transport across the blood- brain barrier following excretion from PBMC, they might 

additionally function as disease-related state or trait biomarkers in the brain. We are however 

hesitant to draw any definite pathophysiological conclusions from our data as this project concerns 

intracellular protein detection in peripherally circulating blood cells and may therefore be of little 

representative value for central mechanistic neurobiological processes. Notwithstanding, several 

of our biomarker candidates have already been implicated in psychiatric afflictions. With 16 out of 

the total of 138 (11%) potential biomarkers for MDD vs. BD-D and BD-M vs. SZ, the human leukocyte 

antigen (HLA) family is highly represented in our candidate list. HLA proteins are cell-surface 

proteins originating from the major histocompatibility (MHC) gene locus that regulate the body’s 

immune responses and are present on all bodily cells except red blood cells. Notably, a recent study 

has indicated that the strongest genetic association for the risk of schizophrenia development is 

linked to greater expression of the complement component 4 (C4) A allele, contained on the MHC 

locus 25. Although associations between certain HLA haplotypes and mood disorders and 

schizophrenia have been extensively described 26–30, the potential of HLA peptides or proteins as 

predictive diagnostic biomarkers has to our knowledge never been explored. In parallel, a 

considerable number of diagnostic protein candidates are involved in immune processes. While 

https://paperpile.com/c/mexrzM/byRnS
https://paperpile.com/c/mexrzM/j3tYi%2BqY754%2BtYobW%2BgvDPA%2Bnzyjx
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this is not unexpected considering the immune mediating function of PBMC, it is in line with the 

recently re-emerging hypotheses on the role of increased inflammatory processes in mediating 

psychiatric afflictions (for review see 

31–33,34,35). 

 
Some contemplations might be taken into account when considering these data. First, as mentioned 

above, this project concerns a proof of concept study regarding the feasibility of proteome-based 

diagnostics in objectively discriminating MDD from BD-D and BD-M from SZ. While our small data 

cohort was able to generate distinctive and actionable data streams it is clear that further more 

advanced studies with considerably bigger patient cohorts will be more desirable for predictive 

diagnostic activities. These studies are currently underway in our laboratory. 

Additionally, patients in this study had been recently started on medication, which might in itself 

influence 

protein expression. Replication in drug-free patients and investigation of the potential influence of 

different types of psychopharmacological treatment regimens on expression of PBMC biomarkers 

in larger cohorts are envisaged. Lastly, we only considered proteins as candidate biomarkers if they 

were not only strongly differentially expressed between the 2 comparative pathologies, but were 

in addition also significantly dysregulated when compared to healthy individuals. In theory, it could 

be expected that some proteins with high pathological discriminative capacity would fall within the 

2 SD fold change expression requirement with HC and are thus not registered in our final biomarker 

candidate bank. 

Nonetheless, we believe that this work provides a major stepping stone towards imminent 

implementation of objective biological discriminatory diagnostics in the field of clinical psychiatry. 
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4. Significantly Enriched Gene Sets 

 

 
Gene set Direction P-value Q-value 

REACTOME_RRNA_PROCESSING Up 3,2993E-07 1,5870E-04 

GNF2_DAP3 Up 1,5379E-05 3,3564E-03 

GNF2_FBL Up 2,1436E-05 4,3028E-03 

REACTOME_FORMATION_OF_FIBRIN_CLOT_CLOTTING_CASCADE Down 4,2025E-05 7,1262E-03 

GO_NUCLEAR_TRANSCRIBED_MRNA_CATABOLIC_PROCESS Up 7,8034E-05 1,0819E-02 

GO_NUCLEAR_TRANSCRIBED_MRNA_CATABOLIC_PROCESS_NONSENSE_ME
DIATED_DECAY 

Up 1,0155E-04 1,2532E-02 

GO_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE Up 1,2837E-04 1,4905E-02 

GO_STRUCTURAL_CONSTITUENT_OF_RIBOSOME Up 1,6969E-04 1,7619E-02 

GO_CYTOSOLIC_RIBOSOME Up 1,7831E-04 1,7943E-02 

GO_RIBOSOMAL_SUBUNIT Up 1,8956E-04 1,8576E-02 

KEGG_RIBOSOME Up 2,5244E-04 2,2594E-02 

REACTOME_NONSENSE_MEDIATED_DECAY_NMD Up 2,5946E-04 2,2671E-02 

GO_RIBOSOME Up 3,6075E-04 2,6516E-02 

MODULE_32 Up 3,7526E-04 2,7309E-02 

REACTOME_SELENOAMINO_ACID_METABOLISM Up 4,8309E-04 3,2471E-02 

REACTOME_RESPONSE_OF_EIF2AK4_GCN2_TO_AMINO_ACID_DEFICIENCY Up 4,8993E-04 3,2471E-02 

GO_RIBOSOMAL_LARGE_SUBUNIT_BIOGENESIS Up 5,0161E-04 3,2572E-02 

REACTOME_EUKARYOTIC_TRANSLATION_ELONGATION Up 5,3237E-04 3,3822E-02 

GSE6269_HEALTHY_VS_STAPH_PNEUMO_INF_PBMC_DN Down 5,5766E-04 3,4590E-02 

GNF2_ST13 Up 7,6828E-04 4,1566E-02 

REACTOME_REGULATION_OF_EXPRESSION_OF_SLITS_AND_ROBOS Up 7,6888E-04 4,1566E-02 

REACTOME_COMMON_PATHWAY_OF_FIBRIN_CLOT_FORMATION Down 8,2857E-04 4,3107E-02 

GO_PLATELET_ACTIVATION Down 6,8600E-15 1,6169E-10 

GO_PLATELET_AGGREGATION Down 1,6805E-14 1,9804E-10 

GO_HOMOTYPIC_CELL_CELL_ADHESION Down 1,3729E-13 1,0786E-09 

REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION Down 1,0779E-12 6,3517E-09 

GO_PLATELET_DEGRANULATION Down 2,4127E-12 1,1373E-08 

REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2 Down 8,4149E-11 3,3057E-07 

WIERENGA_STAT5A_TARGETS_DN Down 1,3680E-10 4,6061E-07 

GO_RNA_PROCESSING Up 1,7100E-10 5,0380E-07 

GO_PLATELET_ALPHA_GRANULE Down 2,7492E-10 7,2000E-07 

GO_WOUND_HEALING Down 4,5939E-10 1,0828E-06 

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM Down 1,4131E-09 3,0280E-06 

GO_RESPONSE_TO_WOUNDING Down 4,2857E-09 6,3134E-06 

REACTOME_PLATELET_ADHESION_TO_EXPOSED_COLLAGEN Down 4,6810E-09 6,4161E-06 

REACTOME_HEMOSTASIS Down 4,8998E-09 6,4161E-06 

GO_MRNA_PROCESSING Up 9,4458E-09 1,1718E-05 

GO_COAGULATION Down 1,1565E-08 1,2980E-05 

REACTOME_PLATELET_AGGREGATION_PLUG_FORMATION Down 1,4117E-08 1,5125E-05 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA Up 1,4912E-08 1,5281E-05 

RAGHAVACHARI_PLATELET_SPECIFIC_GENES Down 1,5908E-08 1,5623E-05 

GO_REGULATION_OF_PLATELET_ACTIVATION Down 1,9876E-08 1,7659E-05 

Table S2 Significantly enriched gene sets when expression values of MDD and BD-D patients are compared. 
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GO_RNA_SPLICING Up 2,0229E-08 1,7659E-05 

TENEDINI_MEGAKARYOCYTE_MARKERS Down 2,5560E-08 2,0774E-05 

HECKER_IFNB1_TARGETS Down 3,1587E-08 2,4016E-05 

KEGG_FOCAL_ADHESION Down 5,6252E-08 3,8996E-05 

GO_REGULATION_OF_HOMOTYPIC_CELL_CELL_ADHESION Down 7,9136E-08 5,1076E-05 

GO_REGULATION_OF_PLATELET_AGGREGATION Down 9,5881E-08 5,7947E-05 

GSE45365_HEALTHY_VS_MCMV_INFECTION_CD11B_DC_DN Down 1,4737E-07 8,4721E-05 

GO_CELL_MATRIX_ADHESION Down 1,5166E-07 8,5107E-05 

KEGG_DILATED_CARDIOMYOPATHY Down 1,7156E-07 9,4041E-05 

KEGG_ECM_RECEPTOR_INTERACTION Down 2,4680E-07 1,2927E-04 

GO_REGULATION_OF_BODY_FLUID_LEVELS Down 2,5856E-07 1,3248E-04 

GO_PLATELET_ALPHA_GRANULE_LUMEN Down 3,6585E-07 1,7246E-04 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION Down 6,0594E-07 2,6448E-04 

GO_CELL_SUBSTRATE_ADHESION Down 6,3037E-07 2,6842E-04 

GSE45365_WT_VS_IFNAR_KO_BCELL_MCMV_INFECTION_DN Down 6,6424E-07 2,7467E-04 

SRF_Q5_01 Down 1,8848E-06 7,0514E-04 

GO_ACTOMYOSIN Down 3,2447E-06 1,0925E-03 

GO_REGULATION_OF_EXOCYTOSIS Down 3,4386E-06 1,1415E-03 

GO_ACTIN_FILAMENT_BUNDLE Down 4,0076E-06 1,2501E-03 

GO_SUBSTRATE_ADHESION_DEPENDENT_CELL_SPREADING Down 4,0826E-06 1,2501E-03 

CHEN_LVAD_SUPPORT_OF_FAILING_HEART_UP Down 4,8863E-06 1,4765E-03 

GSE34156_TLR1_TLR2_LIGAND_VS_NOD2_AND_TLR1_TLR2_LIGAND_24H_
TREATED_MONOCYTE_UP 

Down 5,6186E-06 1,6554E-03 

REACTOME_SMOOTH_MUSCLE_CONTRACTION Down 6,3190E-06 1,8387E-03 

GO_STRUCTURAL_CONSTITUENT_OF_MUSCLE Down 7,6511E-06 2,0296E-03 

REACTOME_INTEGRIN_SIGNALING Down 7,6528E-06 2,0296E-03 

SRF_Q4 Down 7,6639E-06 2,0296E-03 

GO_REGULATION_OF_WOUND_HEALING Down 7,9476E-06 2,0361E-03 

GO_NEGATIVE_REGULATION_OF_PLATELET_ACTIVATION Down 9,0763E-06 2,2758E-03 

GO_NEGATIVE_REGULATION_OF_PLATELET_AGGREGATION Down 9,0763E-06 2,2758E-03 

GO_RAB_PROTEIN_SIGNAL_TRANSDUCTION Down 9,6363E-06 2,3659E-03 

GO_EXTRACELLULAR_MATRIX_BINDING Down 1,0090E-05 2,4268E-03 

GO_NEGATIVE_REGULATION_OF_HOMOTYPIC_CELL_CELL_ADHESION Down 1,0720E-05 2,5522E-03 

REACTOME_GRB2_SOS_PROVIDES_LINKAGE_TO_MAPK_SIGNALING_FOR_I
NTEGRINS 

Down 1,2351E-05 2,8823E-03 

GO_EXOCYTOSIS Down 1,2750E-05 2,9462E-03 

JISON_SICKLE_CELL_DISEASE_UP Down 1,3061E-05 2,9888E-03 

GSE6269_HEALTHY_VS_FLU_INF_PBMC_DN Down 1,4020E-05 3,1514E-03 

GNATENKO_PLATELET_SIGNATURE Down 1,5887E-05 3,4070E-03 

PASINI_SUZ12_TARGETS_DN Down 1,8740E-05 3,8745E-03 

REACTOME_RAB_GERANYLGERANYLATION Down 1,9188E-05 3,9328E-03 

REACTOME_P130CAS_LINKAGE_TO_MAPK_SIGNALING_FOR_INTEGRINS Down 2,0182E-05 4,1007E-03 

GO_REGULATION_OF_RESPONSE_TO_WOUNDING Down 2,1708E-05 4,3028E-03 

GSE34156_NOD2_LIGAND_VS_TLR1_TLR2_LIGAND_6H_TREATED_MONOCY
TE_DN 

Down 2,1724E-05 4,3028E-03 

GO_REGULATION_OF_COAGULATION Down 2,6462E-05 5,0708E-03 

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION Down 2,7519E-05 5,2308E-03 

SRF_01 Down 2,8081E-05 5,2313E-03 
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GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN3_THYMOCYTE_UP Down 2,9824E-05 5,3254E-03 

GO_MYOFILAMENT Down 3,0496E-05 5,4044E-03 

RICKMAN_HEAD_AND_NECK_CANCER_F Down 3,7914E-05 6,5278E-03 

GO_SECRETION Down 3,7943E-05 6,5278E-03 

REACTOME_MAP2K_AND_MAPK_ACTIVATION Down 4,6405E-05 7,5956E-03 

REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_TO_CYTOPLASM Up 4,7481E-05 7,6260E-03 

GSE29949_CD8_POS_DC_SPLEEN_VS_DC_BRAIN_DN Down 4,7792E-05 7,6260E-03 

GO_GTPASE_ACTIVITY Down 4,7885E-05 7,6260E-03 

GO_MRNA_EXPORT_FROM_NUCLEUS Up 5,2305E-05 7,9538E-03 

GO_POSITIVE_REGULATION_OF_EPITHELIAL_CELL_MIGRATION Down 5,4870E-05 8,2136E-03 

GO_GUANYL_NUCLEOTIDE_BINDING Down 6,6419E-05 9,7236E-03 

GO_PIGMENT_GRANULE Down 7,0604E-05 1,0147E-02 

GO_MUSCLE_FILAMENT_SLIDING Down 8,1006E-05 1,1166E-02 

PID_INTEGRIN1_PATHWAY Down 8,3585E-05 1,1386E-02 

GO_SECRETORY_VESICLE Down 8,4056E-05 1,1386E-02 

MANALO_HYPOXIA_UP Down 8,8864E-05 1,1641E-02 

GSE34156_UNTREATED_VS_24H_NOD2_LIGAND_TREATED_MONOCYTE_D
N 

Down 9,7214E-05 1,2188E-02 

HALLMARK_MYOGENESIS Down 9,8260E-05 1,2254E-02 

REACTOME_STRIATED_MUSCLE_CONTRACTION Down 1,0545E-04 1,2945E-02 

GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION Down 1,0997E-04 1,3361E-02 

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP Down 1,1962E-04 1,4168E-02 

GO_SECRETORY_GRANULE Down 1,4686E-04 1,6483E-02 

GO_POSITIVE_REGULATION_OF_EXOCYTOSIS Down 1,5919E-04 1,7368E-02 

GO_GDP_BINDING Down 1,6220E-04 1,7457E-02 

REACTOME_MUSCLE_CONTRACTION Down 1,6696E-04 1,7490E-02 

REACTOME_EPH_EPHRIN_SIGNALING Down 2,2239E-04 2,0396E-02 

GO_PROTEIN_ACTIVATION_CASCADE Down 2,2841E-04 2,0706E-02 

GSE22886_NAIVE_CD8_TCELL_VS_DC_DN Down 2,5722E-04 2,2671E-02 

GO_DNA_TEMPLATED_TRANSCRIPTION_ELONGATION Up 2,5970E-04 2,2671E-02 

REACTOME_SIGNALING_BY_MODERATE_KINASE_ACTIVITY_BRAF_MUTANT
S 

Down 2,7537E-04 2,3272E-02 

GO_FIBRONECTIN_BINDING Down 2,8319E-04 2,3586E-02 

GO_MAST_CELL_ACTIVATION Down 2,8826E-04 2,3673E-02 

GSE22886_NAIVE_CD4_TCELL_VS_DC_DN Down 2,9300E-04 2,3716E-02 

GSE24142_DN2_VS_DN3_THYMOCYTE_FETAL_UP Down 2,9481E-04 2,3716E-02 

GO_MUSCLE_ORGAN_MORPHOGENESIS Down 2,9859E-04 2,3938E-02 

GO_SMOOTH_MUSCLE_CELL_MIGRATION Down 3,0276E-04 2,4071E-02 

MODULE_131 Down 3,0369E-04 2,4071E-02 

GO_CARDIAC_MUSCLE_TISSUE_MORPHOGENESIS Down 3,2078E-04 2,4877E-02 

GO_CELL_ACTIVATION Down 3,5647E-04 2,6369E-02 

HSF1_01 Down 4,3158E-04 3,0096E-02 

SRF_Q6 Down 4,4267E-04 3,0687E-02 

REACTOME_RHO_GTPASES_ACTIVATE_PAKS Down 4,5418E-04 3,1119E-02 

GO_CELL_SURFACE Down 5,0543E-04 3,2694E-02 

GSE10325_CD4_TCELL_VS_BCELL_DN Down 5,3567E-04 3,3911E-02 

GSE3982_NEUTROPHIL_VS_NKCELL_UP Down 5,5297E-04 3,4480E-02 

PID_EPHRINB_REV_PATHWAY Down 5,9476E-04 3,5945E-02 
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HALLMARK_COAGULATION Down 6,1391E-04 3,6819E-02 

SMIRNOV_CIRCULATING_ENDOTHELIOCYTES_IN_CANCER_UP Down 7,3662E-04 4,0555E-02 

GSE22886_NAIVE_CD4_TCELL_VS_MONOCYTE_DN Down 7,7184E-04 4,1630E-02 

REACTOME_TRANSPORT_OF_MATURE_MRNAS_DERIVED_FROM_INTRONL
ESS_TRANSCRIPTS 

Up 7,8223E-04 4,1891E-02 

GSE24142_DN2_VS_DN3_THYMOCYTE_UP Down 8,9116E-04 4,4869E-02 

GO_PHAGOCYTOSIS Down 9,9905E-04 4,8155E-02 

 

 

 

 


