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Abstract 

As integrated measures become more and more prevalent to accomplish energy-efficient 
districts, the tools to evaluate newly developed technologies are evolving from the scale of one 
individual dwelling to the scale of an entire district or even larger. Although smart metering and 
large-scale monitoring would provide the most accurate view of the actual situation, these data 
are mostly not available due to privacy issues. Moreover, these models are not well suited to 
examine new technologies since they cannot be evaluated before the application. Instead, 
district energy simulations are often employed, making use of data on the building geometries 
and additional information about amongst others the building envelope qualities. Since 
simulating every dwelling individually requires a lot of data — which was, until recently, not 
always available —, various researchers have examined methods to simplify the model. Two of 
these methods comprise the application of archetypes — such as the European research 
project TABULA developed for amongst others Belgium — or sample buildings.  
As the data availability is expanded and the computational capabilities are increasing, detailed 
simulations of every dwelling in the district individually have become a feasible approach. 
Especially, since simulations based on the TABULA archetypes can cause a significant 
reduction in precision compared to the results of detailed simulations — based on the 
complete GIS data approach. However, these simulations still require a considerably long 
calculation time.


A reduction of this calculation time could be a significant incentive for studies based on district 
energy simulations. Therefore, an improved method is developed and investigated in this work: 
the tailor-made clustering approach. Based on the available geometric and statistical data, the 
building stock of the examined district is divided into specific tailor-made clusters of which one 
representative building is selected and simulated. The results of these simulations are 
subsequently scaled up to each represent the entire corresponding cluster. The main goal of 
this work is to examine whether district energy simulations based on tailor-made clusters 
generate sufficiently accurate simulations compared to the complete GIS data approach 
without drastically increasing the complexity of the model.  
First, the implementation of the approach is examined. Since the potential variables — based 
on which the clustering can happen— are highly depending on the data availability and the 
specific conditions of the particular case study, not all previously applied variables in other 
studies are qualified. The potential variables in this case study are explained and the sets that 
generate the most accurate results for each defined use case are selected based on a linear 
multivariate regression of the results of the model based on the complete GIS data approach. 
To select the most suited cluster technique, the two most used techniques — k-means 
clustering and hierarchical agglomerative clustering — are compared to each other. K-means 
clustering appeared to generate the most accurate results in every examined use case. 
Then, the accuracy of the tailor-made clustering approach is analysed for each use case and 
compared to reported errors in some other studies which are making use of archetypes or 
sample buildings. The developed approach generates estimations with errors of about ten 
percent when the stock is still divided into a limited number of clusters. Although this is not 
proven since the case studies are different, the developed approach seems to generate more 
accurate estimations of the simulations based on the complete GIS data approach than the 
approaches that make use of archetypes or sample buildings. The errors made by the 
developed approach can be placed into perspective by mentioning the errors made by the 
simulation itself, which are of the same order of magnitude.  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Samenvatting 

Naarmate geïntegreerde maatregelen steeds vaker voorkomen om energie-efficiënte wijken te 
realiseren, evolueren ook de tools om nieuwe technologieën te beoordelen, van de schaal van 
één individuele woning naar de schaal van een volledige wijk of zelfs groter. Ondanks dat 
slimme metingen en monitoring op grote schaal het meest accurate beeld van de werkelijke 
situatie zouden vormen, zijn deze gegevens meestal niet beschikbaar omwille van de privacy. 
Bovendien zijn deze modellen niet het meest geschikt om nieuwe technologieën te beoordelen, 
aangezien ze deze niet kunnen evalueren voor de toepassing ervan. In de plaats daarvan 
worden vaak energiesimulaties van wijken toegepast, waarbij gebruik gemaakt wordt van 
gegevens over gebouwgeometrieën en bijkomende informatie in verband met onder andere de 
kwaliteit van de gebouwschil. Aangezien het simuleren van elke woning afzonderlijk een grote 
hoeveelheid gegevens vereist — die tot voor kort niet altijd beschikbaar waren —, is er veel 
onderzoek gedaan naar methodes om het model te vereenvoudigen. Twee van deze methodes 
houden de toepassing in van archetypes — zoals bijvoorbeeld het Europese onderzoeksproject 
TABULA voor onder andere België ontwikkelde — of van voorbeeldgebouwen. 
Aangezien de beschikbaarheid van gegevens uitgebreid is en de verwerkingscapaciteit van 
computers aan het toenemen is, worden gedetailleerde simulaties van elke individuele woning 
in de wijk een haalbaardere aanpak. Zeker omdat de simulaties gebaseerd op de TABULA-
archetypes een significante reductie van de precisie kunnen veroorzaken in vergelijking met de 
resultaten van de gedetailleerde simulaties — gebaseerd op de ‘volledige GIS data aanpak’. 
Deze simulaties vereisen echter nog steeds een aanzienlijke rekentijd.


Een vermindering van de rekentijd zou een significante stimulans kunnen betekenen voor 
studies gebaseerd op energiesimulaties van wijken. Daarom is er een verbeterde methode 
ontwikkeld en onderzocht in dit werk: de ‘op-maat-gemaakte cluster aanpak’. Op basis van de 
beschikbare geometrische en statistische gegevens, wordt het gebouwenpark van de 
onderzochte wijk in specifiek gevormde clusters onderverdeeld, waarvan er telkens één 
representatief gebouw geselecteerd en gesimuleerd wordt. De resultaten van deze simulaties 
worden vervolgens opgeschaald, zodat ze elk de bijhorende volledige cluster 
vertegenwoordigen. Het hoofddoel van dit werk is het onderzoeken of energiesimulaties van 
wijken gebaseerd op specifiek gevormde clusters voldoende accurate simulaties kunnen 
genereren, vergeleken met de ‘volledige GIS data aanpak’, zonder de complexiteit van het 
model drastisch te verhogen.  
Eerst wordt de implementatie van de aanpak bestudeerd. Aangezien de potentiële variabelen 
— op basis waarvan de clustering kan gebeuren — sterk afhankelijk zijn van de beschikbare 
gegevens en de specifieke condities van de case study, komen niet alle variabelen, die eerder 
gebruikt werden in andere studies, in aanmerking. De potentiële variabelen voor deze case 
study worden toegelicht en de sets die de meest accurate resultaten opleveren voor elke 
gedefinieerde use case worden geselecteerd aan de hand van een meervoudige lineaire 
regressieanalyse van de resultaten van het model gebaseerd op de ‘volledige GIS data 
aanpak’. Om de meest geschikte clustertechniek te bepalen, worden de twee meest 
toegepaste technieken — k-means clustering en agglomeratieve hiërarchische clustering — 
met elkaar vergeleken. K-means clustering blijkt de meest accurate resultaten te genereren in 
elke onderzochte use case. 
Daarna wordt de accuraatheid van de ‘op-maat-gemaakte cluster aanpak’ geanalyseerd voor 
elke use case en vergeleken met gerapporteerde fouten in een aantal andere studies, die 
gebruik maken van archetypes of voorbeeldgebouwen. De ontwikkelde aanpak genereert 
benaderingen met fouten van ongeveer tien procent wanneer het gebouwenpark nog steeds in 
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een beperkt aantal clusters is onderverdeeld. Ondanks dat het niet bewezen is, omdat de case 
studies verschillen, lijkt de ontwikkelde aanpak een accuratere benadering te genereren van de 
simulaties gebaseerd op de ‘volledige GIS data aanpak’ dan de aanpak met archetypes of 
voorbeeldgebouwen. De fouten gemaakt door de ontwikkelde aanpak kunnen in perspectief 
geplaatst worden door de fouten aan te halen die veroorzaakt worden door het simuleren zelf, 
welke van dezelfde grootteorde zijn.  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1. Introduction 

1.1 Context and problem statement 

In the current circumstances of cl imate change, 
environmental pollution and depletion of fossil fuel resources, 
energy efficient dwellings and renewable energy resources 
have become more and more important topics. The 
International Energy Agency (2017) reported that between 
1971 and 2015 the total final energy consumption more than 
doubled and that the residential sector is responsible for 22 
percent of this consumption (Figure 1). The residential sector 
is hence the third largest consumer of all sectors. To reach 
the by politics imposed targets (United Nations Framework 
Convention on Climate Change, 2015), integrated measures 
become more prevalent in addition to the previously already 
established energetic renovations, such as supplementary 
insulation of individual buildings.


Renewable energy resources such as solar panels or wind 
energy are increasingly used for both distributed and 
centralised generation. Furthermore, smart electricity grids or 
district heating networks, as ways to plan the energy supply, 
are more and more explored to optimally fulfil the demand at every moment (Sokol, Cerezo 
Davila and Reinhart, 2017). Smart electricity grids are energy networks relying on digital 
communication in order to integrate distributed energy storage and demand side flexibility, so 
that the balance between the fluctuating demand and supply can be optimised. 
Demonstrations of these smart grids on a large scale are, according to the International Energy 
Agency (2011), urgently needed to explore solutions that can be implemented on the existing 
electricity infrastructure. The fourth generation of district heating networks are presented as the 
thermal equivalent of these smart electricity grids. District heating networks redistribute local 
heat resources, that otherwise would be wasted, to meet the local heat demands (Werner, 
2017). As the temperature is significantly reduced and storage is added in the fourth generation 
thermal networks, they are able to harvest low-cost and CO2-neutral production resources. 
Therefore, these networks show strong potentials to be possible heat supplies in the future 
world but the assessment and implementation hereof need to be broadened in order to amass 
global benefits (Werner, 2017). The implementation of integrated measures — shifting from the 
scale of one individual dwelling to the scale of an entire district or even larger — thus will 
become impossible to disregard in the cityscapes of the near future. The design operation and 
optimisation of future energy systems is therefore becoming increasingly complex and the 
analysis of energetic behaviours is also evolving from the scale of an individual building to the 
scale of an entire district. Likewise, the tools to evaluate possible new measures will have to 
follow this evolution in scale.


Formerly, the main focus was on tools to assess individual dwellings during the design phase 
or refurbishments in order to meet the energy performance regulations of buildings (EPB) 
(Allacker, 2010). Whereas these tools were sufficient to evaluate the individual measures, the 
upcoming integrated measures demand more integrated evaluation tools. As Allegrini et al. 
(2015) explained: “neither the building nor the system can be fully understood in isolation”. 
Therefore, the dwellings must be considered as elements in the urban energy systems to 
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evaluate the interactions between the buildings and the system. Integrated district energy 
simulations are consequently gaining importance. Various studies concentrate on models and 
modelling approaches to assess district energy systems (Allegrini et al., 2015; Kavgic et al., 
2010; Swan and Ugursal, 2008). The techniques to model district energy consumptions consist 
of different approaches, which can be divided into two categories: top-down and bottom-up 
techniques (Swan and Ugursal, 2008). Top-down techniques make use of data on the total 
energy consumption of the residential sector to evaluate the characteristics of the sector as a 
whole, while bottom-up techniques approach the modelling on the scale of individual 
dwellings. The results of the energy consumptions of one dwelling or a group of dwellings are 
then extrapolated to a region or nation. Since top-down techniques concentrate on the 
interaction between the energy sector and the economy and lack information on technological 
details, bottom-up techniques are better suited to evaluate technological measures (Kavgic et 
al., 2010).


These bottom-up techniques can be further divided in statistical models and engineering 
models or models based on building physics (Kavgic et al. 2010; Swan and Ugursal, 2008). 
Where statistical models rely on historical data, physical models estimate the energy 
consumption based on quantitative data of physically measurable variables. Smart metering 
and large-scale monitoring to gather data on the individual energy consumption would 
generate the most accurate view of the actual consumption but this data is rarely available due 
to privacy issues (Ghiassi and Mahdavi, 2016a; b). However, the usage of this data is not 
always an appropriate approach for evaluations of new measures or technologies, because 
only the existing situations can be examined but new technologies cannot be evaluated before 
the application (Swan and Ugursal, 2008). Due to these drawbacks of using measured data, 
simulations of the integrated scenarios are often employed. The scenarios can be simulated 
using data on the building geometry with additional data on the quality of the building envelope 
and the user profiles. Data on the building geometry can be obtained from geospatial data 
models, which are embedded in geographic information systems (GIS). For example, Caputo, 
Costa and Ferrari (2013) made use of the “buildings’ map” for information on the geometries of 
the Italian building stock and the national standards for additional data on amongst others the 
building envelope materials and buildings’ systems to simulate the impact of energy policies. 
Another example out of the various studies is the work of Page, Dervey and Morand (2014), for 
which they are using GIS datasets for information on amongst others the year of construction, 
the building use and footprint and national building regulations to specify the building fabrics 
and user profiles.  
Making use of GIS data, both static and dynamic district energy simulations can be executed. 
Where static simulations generate monthly or yearly values of the energy consumption of the 
dwellings, dynamic energy simulations offer the opportunity to consult the energy consumption 
in more detail and examine interactions in the system (Remmen et al., 2016). That way the time 
dimension is also included in the simulations, enabling to examine how long a certain amount 
of energy is used within a district — using a load duration curve — and when — through the 
energy demand profile.


To execute bottom-up energy simulations, a paramount quantity of data is required. First, the 
geometry input data must contain information about the building envelope areas, orientations 
and inclinations and the window-to-wall ratios. Besides that, additional data can be used to 
determine the non-geometric building properties. To examine a district, either all the data on 
the buildings in this district has to be collected or a simplified representation of the district 
must be introduced. Since the process of data collection for larger amounts of buildings is an 
intensive step (Reinhart and Cerezo Davila, 2016) and the availability of the necessary 

�2



information was inadequate until recently, researchers have developed methods to simplify the 
representation of the building stock, using for example archetypes or sample buildings. The 
first method comprises the application of archetypes. Hereby, the building stock is subdivided 
into groups of buildings that exhibit a similar energetic behaviour, based on a specific set of 
energy performance-related variables (Swan and Ugursal, 2008). This set of variables differs for 
each research, depending on the specific conditions and available data. Each group of 
buildings is exemplified by an archetype — a not-necessarily-existing building or “building 
definition” (Reinhart and Cerezo Davila, 2016) which approaches the average of all the 
buildings in the group and represents them all. The energy-related properties of the archetypes 
are determined and the results hereof are scaled up by multiplying them by the number of 
buildings in the groups (Swan and Ugursal, 2008). The other method to simplify the building 
stock contains the usage of sample buildings. Instead of non-existing archetypes, this 
technique makes use of actual sample buildings to represent the entire building stock (Swan 
and Ugursal, 2008). The sample buildings are simulated and the results — appropriately 
weighted — are used to estimate the energy consumption of the regional or national housing 
stock. Since archetypes are predefined, they can only contain a limited variety. In contrast to 
the use of sample buildings, with which a higher degree of variety can be reached if the sample 
size is sufficiently large. Nevertheless, the application of this technique has been limited, 
according to Swan and Ugursal (2008), since it is data intensive.


An example of the archetype approach, which is employed in Belgium, is the European 
research project TABULA. TABULA has specified archetypes for 13 different nations, which are 
operable in the whole country (Cyx et al., 2011). For Belgium, TABULA contains 30 archetypes 
developed by VITO, which are considered as “typical” for the Belgian context. These 
archetypes are defined based on six construction periods and five building types of which 
three single-family dwellings and two apartments (Cuypers et al., 2014). The distinction 
between these single-family housing types is made based on the number of neighbours, as the 
archetypes are specified as a detached, semi-detached and terraced house. The distinction 
between the apartment types is mainly made based on compactness, as Cuypers et al. (2014) 
stated that the factor with a major influence on the energy consumption of an apartment is the 
total area through which the apartment is in contact with the outdoor climate. Therefore 
TABULA distinguishes a strongly enclosed and an exposed apartment. As Protopapadaki, 
Reynders and Saelens (2014) explained, the properties of each archetype — such as the U 
value of various components of the building envelope, the floor area, the heated volume, the 
total loss area and the system properties — are derived from national statistics and should 
therefore represent the average of the whole country (Cyx et al., 2011).


Since the geospatial databases have been expanded over the last decades and became more 
accessible to the public (Reinhart and Cerezo Davila, 2016), the availability of the necessary 
information on the building geometry is expanded. Moreover, the capabilities of computers are 
increasing rapidly (Swan and Ugursal, 2008), through which detailed calculations based on the 
entire set of data by now have become a feasible approach. Especially because the application 
of archetypes can cause a considerable reduction in precision of the district energy simulations 
compared to these detailed calculations, which include simulations of each building 
individually. De Jaeger, Reynders and Saelens (2017) reported that the application of the 
archetypes defined by TABULA underestimated the peak power of the examined district with 
26 percent for the detached dwellings and with 95 percent for the terraced buildings. The total 
energy use was underestimated by three to 80 percent respectively. TABULA has investigated 
the building stock of the whole country and defined a limited number of typical geometries. 
However, these geometries do not always correspond to the building geometries of each 
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particular district. For example, the dimensions of a terraced house in an old city centre are 
unlikely to be identical to the dimensions of a terraced house in a suburban neighbourhood. 
Since all buildings are represented as an exact copy of an archetype, simulations based on the 
archetypes defined by TABULA can be less representative or can result in a distorted view of a 
particular district. As a large difference in the results of calculations based on the TABULA 
approach compared to detailed calculations based on the entire set of data is demonstrated 
(De Jaeger, Reynders and Saelens, 2017), the detailed calculations are preferred above the 
TABULA approach. Since this complete dataset approach — from here referred to as complete 
GIS data approach — contains the detailed calculation of each dwelling individually, the 
disadvantage of this approach is the still considerably long calculation time.


A reduction of the considerably long calculation time with the complete GIS data approach 
could be a significant incentive for studies based on district energy simulations. An improved 
method could most likely combine the advantages of both approaches — the complete GIS 
data approach and the approach with archetypes or sample buildings: by making use of the 
available GIS and statistical data, specific tailor-made clusters could be determined for each 
case separately. Clusters are groups of, in this case, dwellings which show similar energetic 
behaviour within one cluster, whereas the behaviours differ between separate clusters 
(Manning, Raghavan and Schütze, 2009a). For each of these clusters, one building could be 
selected to represent the entire cluster, similar to the purpose of an archetype. These 
representative buildings should match the average of the clusters as good as possible and 
should therefore be the buildings the closest to the centre of each cluster. That way, only a 
limited number of buildings would have to be simulated to calculate the energy demand of the 
entire district, but these buildings would thereby represent the specific building stock of the 
particular case as accurate as possible.  
This approach already has been applied by Ghiassi et al. (Ghiassi and Mahdavi, 2016b) to a 
district in Vienna, containing 750 dwellings. They used Multivariate Cluster Analysis (MCA) to 
divide the building stock. Subsequently, from each cluster a representative building was 
selected, on which detailed energy-related simulations were performed. The results from these 
simulations were used to represent the entire district by multiplying them by the number of 
buildings in each corresponding cluster. With this approach, Ghiassi et al. (Ghiassi and 
Mahdavi, 2016b) developed an interface between the available GIS data and the buildings 
standards, valid in Vienna, Austria, on the one hand and the explicit requirements for energetic 
simulations on the other hand. Only a limited number of buildings were specifically selected to 
represent the entire district. Depending on the applied cluster technique and the particular 
scenario, Ghiassi (Ghiassi and Mahdavi, 2017) investigated situations where the building stock 
was divided into six to 21 clusters with errors of the annual heating demand prediction for the 
entire stock of zero to 17 percent.


The clustering of the building stock must happen based on a number of variables. These 
variables must represent the energetic performance of the dwellings in such a way that the 
building stock will be subdivided into groups of dwelling which behave energetically similar. 
Preceding studies each made use of a different set of variables to make the distinction 
between the defined archetypes. The sets of variables are depending on the specific 
conditions and the availability of the data and on which variables have a major influence — 
according to the researchers — on the energetic behaviour in the particular case study. The 
European research project TABULA, like previously explained, made use of the construction 
period and the number of neighbours or the compactness to demarcate the different 
archetypes for Belgium. Ghiassi et al. (2015) determined the set of variables that they used, 
based on physical and contextual properties of the dwellings. The main terms in the heat 
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balance of the buildings were looked at to determine the most relevant variables. Besides 
those variables, they pre-divided the building stock based on the user profiles. Jones et al. 
(2001, in: Ghiassi et al., 2015; Swan and Ugursal, 2008) studied a county borough in the United 
Kingdom and for that they used age groups and several geometrical variables — like the built 
form, footprint, floor area, exposed end areas, height and window-to-wall ratio — but also 
information on the HVAC systems, the user profiles and the location to make the distinction 
between the archetypes. Huang and Broderick (2000, in: Ghiassi et al., 2015; Swan and 
Ugursal, 2008) distinguished 16 different regions in their study in the USA and made use of the 
construction periods, housing typologies, user profiles and the different climate zones to 
delimit their archetypes. Shimoda et al. (2004, in: Swan and Ugursal, 2008) defined dwelling 
types and household types to determine archetypes for Osaka, Japan. For another study 
executed in Asia — in Hong Kong —, Wan and Yik (2004, in: Swan and Ugursal, 2008) only 
delineated one archetype. To introduce variety, they rearranged the floor plan layout and 
orientation and applied various family types and user profiles to this dwelling. The use of 
various variables in each study shows that the selection of the variables is not unambiguously 
and is strongly depending on the specific conditions of the particular study but also on the 
availability of the data.


To execute the clustering itself, multiple techniques exist. Since the energetic behaviour of 
dwellings depends on numerous variables, it is necessary that the applied cluster technique is 
able to incorporate multiple criteria based on which the clusters will be divided (Ghiassi, 2017). 
Moreover Ghiassi (2017) desired to maintain control over the number of clusters and therefore 
employed Multivariate Cluster Analysis (MCA), which includes various techniques that divide a 
multivariate data space into separate homogeneous groups. Although these techniques are 
widely used in various scientific fields, Ghiassi (2017) stated that the potential of clustering 
towards building stock classification has not sufficiently been explored. For this specific 
application of dividing the building stock into coherent groups of which the dwellings show an 
energetically similar behaviour, the optimal number of clusters cannot be known in advance. 
Therefore cluster techniques for which the number of clusters does not need to be specified 
beforehand seem more interesting. However, the number of clusters will then have to be 
determined afterwards. After the selection and simulation of the representative buildings or 
archetypes, the results of these buildings must be scaled up to represent the entire building 
stock. This can happen by simply multiplying the results of each representative building by the 
number of buildings in that cluster or by taking the geometry of the individual buildings into 
account. In this way, the variations in energetic behaviour of the dwellings in one cluster might 
be met by diversifying the results by means of the building geometries.


1.2 Research questions 

To reduce the considerably long calculation time for district energy simulations based on the 
complete GIS data approach, the improved method that combines the advantages — called 
the tailor-made clustering approach — is examined. The main research question is formulated 
as follows:


Can district energy simulations based on tailor-made clusters generate sufficiently 
accurate simulations compared to the complete GIS data approach without 
drastically increasing the complexity of the model?


To be able to implement this tailor-made clustering approach, following aspects need to be 
investigated: 
The variables based on which the clustering of the building stock will happen are depending on 
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both the specific conditions and the availability of the data. Therefore, following questions have 
been explored:


Which variables are used in previous studies? Are these variables also applicable 
with the available datasets in Belgium? And which set of variables yields the most 
accurate estimation of the model based on the complete GIS data approach?


To determine which of the various cluster techniques is to be applied and if the geometry of the 
buildings needs to be taken into account to diversify the results, following questions are 
examined:


Which cluster technique yields the most accurate estimation of the detailed model? 
Which way of upscaling diversifies the results in the best way?


To validate the approach, the accuracy of a model based on the tailor-made clustering 
approach needs to be examined. Therefore, the errors made by the tailor-made clustering 
approach compared to the complete GIS data approach are quantified exactly and following 
questions are posed:


What is the accuracy of the model based on the tailor-made clustering approach 
compared to the model based on the complete GIS data approach? And is this 
tailor-made clustering approach more accurate than a random clustering and 
selection of representative buildings?


1.3 Overview 

The chapters of this work follow the arrangement of the foregoing research questions.


In chapter 2, the methodology is first described. To be able to assess the developed tailor-
made clustering approach, the results of this approach are compared to the results of the 
complete GIS data approach. A couple of scenarios or use cases are considered, which are 
assuming an interest in different energy key performance indicators (KPIs). The first scenario 
considers an interest in all three defined energy KPIs: peak power as well as energy demand 
for SH as specific energy demand. The second use case suggests a scenario with interest only 
in peak power and the third use case only in energy demand for SH. The workflow of both the 
complete GIS data approach and the tailor-made clustering approach are described in detail. 
Finally, the reference scenario is clarified. The applied data sources in this work are explained 
and the investigated case study of the Boxbergheide in Genk is introduced.


In chapter 3, the selection of the set of variables for each examined use case is explained. To 
determine the set of variables, first a literature study was performed to examine which 
variables have been used in previous studies. Then, the available datasets in Belgium and the 
specific conditions of the particular case study are reviewed. Subsequently, linear multivariate 
regression of the results based on the complete GIS data approach is used to select the most 
optimal set of variables for the defined scenarios. As verification of the election, the selected 
set of variables for each scenario is compared with the variances of the defined variables in the 
clusters when clustered based on the energy KPI(s).


In chapter 4, the clustering of the building stock and the upscaling of the results to the entire 
stock are explained. To cluster the building stock, two cluster techniques are most obvious to 
deliberate according to a literature study: k-means and hierarchical clustering. First, these 
techniques are described in more detail. Then, the results of simulations based on each of 
these techniques are compared to each other and the technique that generates the most 
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accurate estimation of the detailed reference scenario — being k-means clustering — is 
determined. Subsequently, the most accurate way of scaling the results up to the entire stock 
is investigated. The results of the representative buildings can be scaled up in several ways: 
simply by multiplying them by the number of buildings in each cluster or scaled with a 
geometric property of the buildings, such as the volume of the building, the floor area or the 
footprint. Which way of upscaling generates the most accurate approach, depends on the 
energy KPI itself, the  use case and the number of clusters.


In chapter 5, the accuracy of the tailor-made clustering approach is discussed. The errors 
made by the tailor-made clustering approach are calculated as the deviations of the results 
based on this approach compared to the results of the complete GIS data approach. These 
deviations are partly depending on the ‘errors’ made by the generalisation of the building stock 
because of the clustering. Besides that, the deviations are also depending partly on the fact 
that the selected set of variables is only estimating the energetic behaviour of the dwellings. 
The fraction of the errors that is due to the clustering is examined by executing a clustering 
based on the results — the energy KPIs — of the complete GIS data approach. The additional 
fraction that is caused by the estimation of the energetic behaviour by the set of variables is 
determined by a comparison of these errors with the errors of the clustering based on the 
variables. Whether the tailor-made clustering approach is a useful approach, is verified by 
comparing the results with the results of a random clustering of the building stock and a 
random selection of representative buildings. Thereafter, the errors made by the developed 
approach are compared to errors made in other studies using archetypes or sample building 
and by detailed simulations relative to the actual situations.


Finally in chapter 6, the conclusions of this work are recapitulated and the aspects that have to 
be further investigated are formulated.


1.4 Scope 

Since district energy simulations can involve various distinct aspects and focuses, not all of the 
possible elements are taken into account. The scope of this work is limited to only the 
residential buildings of the examined district — the Boxbergheide in Genk, Belgium —, as the 
residential sector is the third largest energy consumer of all sectors (International Energy 
Agency, 2017). Additionally, to simplify the simulations, only the energy demand for space 
heating is considered in this work — since heating comprises roughly half of the total energy 
consumption in Belgium (Heat Roadmap Europe, 2017) — and the presence of ideal heating 
systems is adopted. To be able to focus on the development of the approach, varying user 
profiles are not taken into account, but a standard occupant is simulated in each dwelling, 
according to the ISO 13790 standards (International Organization for Standarization, 2008). 
Finally, it must be stated that just one case study is examined, concentrating on three defined 
energy KPIs — peak power, energy demand for space heating (SH) and specific energy 
demand (see chapter 2). Therefore, no general conclusions can be proven that are valid for 
every other district or energy KPI. Moreover, the case study is impacting the findings of the 
steps in the implementation of the approach, like for example at the selection of the sets of 
variables. This will have to be taken into account when drawing conclusions.  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2. Methodology 

The developed tailor-made clustering approach consists of sequential steps, illustrated in the 
figure below (Figure 2). To divide the building stock into specific tailor-made clusters, the 
approach uses a set of variables derived from the available geospatial dataset and additional 
statistical data. When the clusters are determined, from each cluster a representative building 
— which is located the closest to the centre of the cluster — is selected and dynamically 
simulated. Finally the results of the representative buildings are scaled up to represent to entire 
examined district — which contains in this case study only the residential single-family houses 
of the analysed neighbourhood of the Boxbergheide in Genk.  
The tailor-made clustering approach is assessed by comparing the results based on this 
approach with the results based on the detailed simulations of the complete GIS data 
approach. This assessment has been executed based on a couple of scenarios or use cases. 
These use cases assume different interests in defined energy-related key performance 
indicators (energy KPIs). To investigate several divergent aspects of the energetic behaviour of 
the dwellings, following energy KPIs have been defined: peak power [kW] — being the 
maximum energy demand of a dwelling needed for space heating at any specific moment —, 
energy demand for space heating (SH) [kWh] — being the total demand of energy required for 
space heating during the simulated time period of one year — and specific energy demand 
[kWh/m2] — being the energy demand for space heating per surface unit of the floor area of 
each dwelling in order to eliminate the dependency on the size of the dwelling. The first defined 
scenario depicts a general study which assumes an interest in all three defined energy KPIs. 
The second scenario portrays a more specific study and only assumes an interest in peak 
power and the third only in energy demand for SH.


The following sections in this chapter explain both applied approaches in detail: first the 
workflow of the complete GIS data approach — which is used to calculate the results of the 
reference scenario — is described and then the workflow of the developed tailor-made 
clustering approach. Subsequently, the reference scenario is clarified. The applied data 
sources for the particular case study are reviewed and the ascribed user profiles are explained. 
Additional data on the construction periods is reported. And finally, the investigated 
neighbourhood is shortly presented and the results of the reference scenario are displayed.
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2.1 Complete GIS data approach 

The complete GIS data approach comprises a detailed simulation of each individual dwelling in 
the building stock, therefore making use of the complete GIS dataset. The workflow of this 
approach is illustrated in the figure below (Figure 3) and is mainly relying on the open-source 
program TEASER (Remmen et al., 2016). The software tool, called “Tool for Energy Analysis 
and Simulation for Efficient Retrofit”, is developed to execute the conversion process from 
CityGML datasets to ready-to-use building energy simulation models in Modelica. As the 
available GIS dataset in Belgium contains information on building geometries written according 
to CityGML, this tool is used to translate the information on the geometries supplemented with 
additional statistical data to simulation models. However, some adjustments have been made 
to prepare the tool for application in Belgium (De Jaeger, Reynders and Saelens, 2017). The 
previously German statistical data have been replaced by Belgian data. In addition, the 
common walls of terraced and semi-detached dwellings are identified and further included in 
the calculations to avoid major overestimation of the energy demand of these dwellings. Finally, 
the export to the IDEAS library — which is explained in the next paragraph — is implemented 
since this library is deployed.


As the first step in the workflow of the approach, the GIS dataset is imported and enriched with 
statistical data on the quality of the building envelope and the user profiles. Subsequently, 
TEASER generates a building energy simulation model in Modelica of each dwelling 
individually, which is used to execute the dynamic simulations in OpenIDEAS. OpenIDEAS is an 
open framework developed for integrated district energy simulations (Baetens et al., 2015). The 
building model in IDEAS contains six main object types: a zone and five types of building 
components — a window, an outer wall, an inner wall, a boundary wall and a slab on the 
ground (Jorissen et al., 2018). For each of these object types, IDEAS has written fundamental 
heat transfer equations and includes variables on the characteristics of the component. 
Through ‘ports’, components are connected and can interact with each other. In this approach, 
each dwelling is modelled as a two-zone building: the ground floor is assumed to be the day 
zone and the upper floors the night zone. Then, OpenIDEAS is making use of the simulation 
program Dymola to solve the equations. For each zone, the demanded inside-temperature 
profile is simulated based on the ascribed user profile — which is identical for each dwelling, 
since the same deterministic occupant behaviour and the presence of an ideal heating system 
is adopted. The outside-temperature profile is derived from the average temperature profile of 
the specific location. With these temperature profiles and taking the building envelope 
characteristics into account through the variables included in the IDEAS components, the 
energy demand profile is calculated for each dwelling individually.  
Finally, the results of these simulations are interpreted and converted into multiple key 
performance indicators (KPIs). The results comprise values for every ten minutes of the energy 
demand [kW] for space heating of the dwelling, presented as a graph showing the energy 
demand in function of the time. Following KPIs, related to the energy performance, are 
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calculated: peak power [kW], energy demand for SH [kWh], specific energy demand [kWh/m2] 
and overheating risk [Kh]. The maximum value of the results is saved as the KPI peak power. To 
determine the energy demand for SH, the function is integrated over the entire range of the 
time. Specific energy demand is calculated as the energy demand divided by the floor area of 
each dwelling and overheating risk is evaluated as the time that the indoor temperature 
exceeded 25 degrees (De Jaeger, Reynders and Saelens, 2017).


2.2 Tailor-made clustering approach 

The workflow of the tailor-made clustering approach is illustrated in the figure in the 
introduction (Figure 2). First, the GIS data is imported and enriched with statistical data on the 
building envelope characteristics and the user profiles, using TEASER (Remmen et al., 2016) 
similar to the workflow of the complete GIS data approach. Then, some additional steps are 
integrated in the workflow. The set of variables based on which the clustering will happen — 
selected as explained in chapter 3 —, is calculated and subsequently applied to execute the 
clustering. To finalise the clustering, the number of clusters has to be specified and is therefore 
determined in function of the desired degree of accuracy — as described in chapter 5. 
Subsequently, from each cluster a representative building — the building the closest to the 
centre of the cluster — is selected. From these limited number of dwellings TEASER generates 
a building energy simulation model in Modelica as in the previously described workflow, which 
is then used to dynamically simulate the representative building. Finally, the results of the 
simulations of all the representative buildings are interpreted and converted into energy KPIs to 
then scale them up to the entire building stock.


2.3 Reference scenario 


2.3.1 Applied data sources 
The Grootschalig Referentiebestand (GRB) 
consists of a geographical dataset with 
geometric information on the building stock 
in Level of Detail 1 (LOD1) for the whole of 
Flanders, Belgium. LOD1 means that the 
surface of the ground floor is extruded over 
the average height of the building (Figure 4). 
For some cities, like for example Genk, 
there already exists a model in LOD2. This 
is a more detailed dataset in which the rear 
buildings and the pitched roofs are also 
modelled (Figure 4). Naturally, with this 
dataset a more accurate model of the real 
situation can be simulated. Besides this 
geometric information, the buildings have 
some attributes, such as type — main 
building or outbuilding —, street name or 
house number (De Wolf, 2017).


Additional information is derived from statistical data. Based on the prevailing Belgian 
standards,  TABULA defined the compositions of each construction element — like the roof, 
outer and inner walls, slabs on the ground and windows — for every construction period 
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Figure 4. Representation of a dwelling in different Levels 
of Detail (LOD). (Vlaamse overheid, 2018)



separately (Cuypers et al., 2014). This information is subsequently used to compose the 
applied IDEAS library (Jorissen et al., 2018). The distinguished construction periods are from 0 
until 1945, from 1946 until 1970, from 1971 until 1990, from 1991 until 2005 and from 2006 
until 2011. For example, an outer wall from a dwelling built between 1946 and 1970 is defined 
as: eight centimetres façade masonry, ten centimetres air cavity, 14 centimetres load bearing 
masonry and two centimetres plaster.  
As there is no data available on the actual occupant behaviours and for the sake of simplicity 
since varying user profiles are not the focus of this work, the user profiles are assigned based 
on the standards. In every dwelling, the same occupant behaviour is modelled, according to 
the ISO 13790 standards. Since only space heating is considered in this case study, the 
occupant behaviour only includes requirements on the temperature set points and the internal 
gains. These temperature set points consist of a desired indoor air temperature of 21 degrees 
in occupied periods during the days, 18 degrees during the nights and 16 degrees in 
unoccupied periods. The internal gains include the heat generated by other internal sources 
than those intentionally used for space heating — such as metabolic heat from occupants, 
dissipated heat from appliances and lighting devices, heat dissipated form or absorbed by 
water or sewage systems and by heating, cooling or ventilation systems and finally, heat from 
or to processes and goods (International Organization for Standarization, 2008). 
Provisionally, the GRB does not contain any information about the construction period of the 
dwellings. The construction periods have a substantial impact on the energetic performances, 
since the additional information, derived from the statistical data, is assigned based on these 
construction periods. Thus far, every dwelling was assigned the same construction period and 
the construction year was set at the standard value of 1980. Because of the substantial impact 
on the energetic behaviour, the actual construction periods of the dwellings in the district of the 
case study were checked manually (Map 1).


2.3.2 Case study: Boxbergheide, Genk 
The case study includes the central part of the Boxbergheide in Genk. This is a residential 
district, mainly consisting of single-family dwellings, which is the focus of this work. Therefore, 
only the single-family dwellings in this neighbourhood are taken into account in this study. The 
case study covers 1230 dwellings with sufficient diversified orientations and all existing data of 
these dwellings is available. The Boxbergheide was established as a garden district shortly 
after the second World War to provide better living conditions for mine workers (Molemans, 
1998). Because of these circumstances, most dwellings in the district were erected in the same 
period — between 1947 and 1970 — and have a very similar appearance. During the period of 
1971 until 1990, a number of streets were completed. In some other streets, there are more 
modern dwellings from the latest construction period and even some parcels unbuilt (Map 1) 
(Verhelst, 2016; Vlaamse overheid, 2017).  
The district has been simulated using the complete GIS data approach as reference scenario. 
The results of this simulation, interpreted to KPIs, can be seen in following maps (Map 2 to 4). 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Map 2. Peak power [kW] for space heating of single-family dwellings in the Boxbergheide.
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Map 4. Specific energy demand [kWh/m2] for space heating of single-family dwellings in the Boxbergheide.
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3. Variables 

As stated in the introduction, a lot of research initiatives already used several variables to 
demarcate their archetypes. But since each initiative used a different set of variables, the 
selection of the set of variables to cluster the building stock is not unambiguously defined. The 
method applied in this work to select the most accurate set of variables out of the possible 
options for each examined use case, is explained in this chapter. 
First, a literature study was performed and a summary of the applied variables in a collection of 
relevant studies is given to determine all the possible variables. Subsequently, the available 
datasets in Belgium and the specific conditions of the particular case study in a suburban 
Flemish neighbourhood are reviewed and the potential variables for this case study are 
described. Then, linear multivariate regression of the energy KPIs of the reference scenario — 
calculated with the complete GIS data approach — is executed to determine a ranking of the 
defined variables for each KPI individually. The striking aspects in the ranking of the variables 
are subsequently discussed. Since the optimal number of variables cannot be deduced from 
the linear regression, a number of sets of variables, derived from this linear regression, are 
compared to each other by stacking out the root mean square errors in function of the number 
of clusters. Finally, the selected sets of variables for each use case are verified by comparing 
the variances of the variables in the clusters from a clustering based on the energy KPIs of the 
reference scenario with the variances of the variables in the entire building stock. Generally, the 
variables in the sets, based on which the clustering will happen, tend to have a smaller 
distribution in the clusters from the clustering based on the energy KPIs, which is confirming 
the influence of these variables on the KPIs.


3.1 Literature study 

Several researchers have already defined archetypes based on a set of variables. These sets of 
variables were different in each study, adequate for the specific conditions and case study. For 
example, the European research project TABULA made, for the Belgian building stock, the 
distinction between the archetypes based on construction periods — with corresponding 
insulation standards — and typologies (Cuypers et al., 2014). Ghiassi et al. (2015) opted for the 
following five variables, based on a study of heat balances of dwellings: effective average 
envelope U value, effective window-to-wall ratio, thermal compactness, heated volume and 
effective floor height. Huang and Broderick (2000, in: Swan and Ugursal, 2008) defined 
archetypes based on the housing typology, construction period, use and climate zone. Caputo, 
Costa and Ferrari (2013) used more variables to demarcate the archetypes: the construction 
period, compactness, heated volume, total loss area, floor area, number of stories, window 
area and the use. While Page, Dervey and Morand (2014) limited the variables to the 
construction period and the use. In this way, 32 relevant studies have been enumerated by 
Ballarini, Corgnati and Corrado (2014), Ghiassi et al. (2015) and Swan and Ugursal (2008). 
All the applied variables in these studies can be subdivided into a number of categories (Table 
1). Most of these variables are geometric, but not all of these are directly derivable from GIS 
data. For instance, when working with an LOD2 model, the window-to-wall ratio is not only 
depending on the geometric variable total loss area, but is also determined by the construction 
period based on statistical data. Besides geometric variables, researchers also used 
environmental factors — such as climate zone or exposure —, operational parameters — 
dealing with the use and occupancy —, present heating and cooling systems, thermal quality 
of the building envelope and other variables — such as the construction period and function of 
the ground floor. Most frequently applied variables in the reviewed studies are typology or built 
form, construction period, use and climate zone (Table 1).


�16



3.2 Selection of sets of variables 

Due to the restricted availability of the data and the environmental conditions, not all variables 
applied by other researchers can be used in this particular case. As the scope of this work is 
limited to modelling the same occupant behaviour in every dwelling following the ISO 13790 
standards (International Organization for Standardization, 2008), the operational parameters — 
use and occupancy — cannot be applied. The environmental factors can also be disregarded, 
since there is no distinction in separate climate zones in Belgium and the density of the urban 
area and the exposure is negligible in this case study, which is typical for suburban 
neighbourhoods in Belgium. Since only the energy demand required for space heating is taken 
into account and ideal systems are adopted in this work, the variables dealing with the systems 
do not apply. Furthermore, there is no information available about the maintenance state and 
air tightness of the buildings. As the focus of this work is on single-family dwellings, all 
buildings have the same function of the ground floor — private dwellings — and construction 
method — typical Flemish brick walls which only differ in composition depending on the 
various construction periods. The models in LOD2 do not contain information about the density 
or position of the internal thermal mass and all stories are estimated to have the same height.
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Table 1. Enumeration of occurred variables in previous studies with their number of appearances, subdivided into 
categories. (Ballarini, Corgnati and Corrado, 2014; Ghiassi et al., 2015; Swan and Ugursal, 2008)



Based on the remaining variables, following eleven potential variables have been defined:

Footprint, which contains the surface area of the ground floor of the dwelling;

Floor area, which is the surface area of all the floors of the dwelling accumulated;

Total loss area, the total area of the building envelope through which the dwelling is in contact 

with the outside climate;

Number of stories, calculated as the height of the dwelling divided by three meters — the 

average height of one story —, if this variable is not specified in the GIS dataset;

Heated volume, the entire inside volume of all the dwelling parts, since there is no information 

on which spaces are heated and insulated and which not;

Compactness, calculated as the total loss area divided by the heated volume;

Loss-to-floor-area ratio, another way to express the compactness of the dwellings, calculated 

as the total loss area divided by the floor area;

Typology, which makes a distinction between detached, semi-detached or terraced houses, in 

this case determined by the number of neighbours;

Window area, which is the surface area of all window openings in the entire building envelope 

accumulated;

Window-to-wall ratio, calculated as the window area divided by the total loss area;

Construction period, which contains the periods defined by TABULA.  

To determine which combinations of these defined variables will generate the most accurate 
model for the three use cases, two aspects have been investigated. First, linear multivariate 
regression is used to compose a ranking in importance of the variables for each energy KPI. 
Since this method cannot be used to conclude the optimal number of variables for the use 
cases, the optimal number is determined by comparing the root mean square errors in function 
of the number of clusters for each possible number of variables.


3.2.1 Linear multivariate regression 
The first step consists of a linear multivariate regression analysis for each energy KPI 
individually. Applying the method of ordinary least squares (OLS), the model is given by the 
equation below (Hutcheson, 2011):


� 


with �  the regression coefficient for every predictor �  or variable, �  the value of the variables 
for dwelling � ,  �  the unobserved scalar random variables or deviations for dwelling �  and �  the 
estimated value of the investigated energy KPI for dwelling � .

Subsequently, the presumable accuracy of all possible models is weighted relative to the other 
models for that energy KPI, making use of the Akaike Information Criterion (AIC), converted by 
Banks and Joyner (2017) to be combined with OLS, according to following equation:


� 


with �  the “number of independently adjusted parameters within the model” (Akaike, 1974) or 
the number of variables, �  the number of dwellings in the building stock and the Residual Sum 
of Squares (RSS) calculated with following equation:


� 


yi =
n

∑
p= 1

apxip + ϵi

ap p xip
i ϵi i yi

i

AIC = 2n+ N ln ( RSS
N )

n
N

RSS =
N

∑
i= 1

(KPIi − yi)2
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where �  is the actual value of the investigated energy KPI and �  the estimated value by the 
model for dwelling � .

Prior to the calculation of OLS and AIC, the mutual correlations between the variables are 
examined using a correlation matrix. The matrix shows the linear relationship between each 
two variables, calculated as Pearson correlation coefficients. When two variables show a high 
correlation ( � ), only one of them is taken into account in the multivariate regression. 
Heated volume showed a high correlation with floor area ( � ) and total loss area 
(� ) and is therefore not taken into account.


The graphs indicate that the accuracy of the models is growing with an increasing number of 
variables until eight variables, as the AIC is decreasing. At eight variables, the AIC reaches a 
minimum for every KPI, although this only comprises a very small difference of about 1 on the 
order of magnitude of 1000 or 10000 (Table 2). However, the graphs show a clear ‘elbow’ at 
three, four or five variables. Hence, after that certain number of variables, adding an extra 
variable will not decrease the AIC a lot and is argued not to be that interesting anymore. 
Although these graphs give the impression that the sets of eight variables will generate the 
most accurate model, the next paragraph will explain that there is a lower optimum number of 
variables. Therefore, linear multivariate regression can only be used to compose a ranking in 
importance of the variables for each energy KPI and not to unambiguously select the optimal 
set of variables for each use case. The ranking of the variables is made based on which 
variable is added to the most accurate combination of each number of variables and is shown 
in following table for each KPI (Table 2).


KPIi yi
i

ρ > 0,9
ρ = 0,89

ρ = 0,91
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Figure 5. Graphs showing the AIC in function of 
the number of variables of the best possible 
combination for that number of variables (Table 
2), for each energy KPI: peak power (top left), 
energy demand for SH (top right) and specific 
energy demand (bottom left). The lower the AIC, 
the more accurate the model estimates the 
actual situation.
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best combination of variables

peak power energy demand for SH specific energy demand

1 total loss area (4951) construction period (22221) construction period (8057)

2 total loss area and 
construction period (3229)

total loss area and 
construction period (20168)

loss-to-floor-area ratio and 
construction period (6404)

3 floor area, total loss area and 
construction period (2655)

footprint, total loss area and 
construction period (19603)

footprint, loss-to-floor-area 
ratio and construction period 
(6010)

4 footprint, floor area, total loss 
area and construction period 
(2509)

footprint, floor area, total loss 
area and construction period 
(19578)

footprint, total loss area, loss-
to-floor-area ratio and 
construction period (5836)

5 footprint, floor area, total 
loss area, window-to-wall ratio 
and construction period 
(2485)

footprint, total loss area, 
window-to-wall ratio, window 
area and construction period 
(19517)

footprint, total loss area, 
loss-to-floor-area ratio, 
compactness and 
construction period (5751)

6 footprint, floor area, total 
loss area, window-to-wall 
ratio, window area and 
construction period (2446)

footprint, floor area, total loss 
area, window-to-wall ratio, 
window area and 
construction period (19485)

footprint, total loss area, 
loss-to-floor-area ratio, 
compactness, window area 
and construction period 
(5744)

7 footprint, floor area, total 
loss area, number of stories, 
window-to-wall ratio, 
window area and 
construction period (2445)

footprint, floor area, total 
loss area, compactness, 
window-to-wall ratio, 
window area and 
construction period (19458)

footprint, total loss area, 
number of stories, loss-to-
floor-area ratio, 
compactness, window area 
and construction period 
(5739)

8 footprint, floor area, total 
loss area, number of stories, 
loss-to-floor-area ratio, 
window-to-wall ratio, 
window area and 
construction period (2442)

footprint, floor area, total 
loss area, number of stories, 
compactness, window-to-
wall ratio, window area and 
construction period (19439)

footprint, total loss area, 
number of stories, loss-to-
floor-area ratio, 
compactness, typology, 
window area and 
construction period (5739)

9 footprint, floor area, total 
loss area, number of stories, 
loss-to-floor-area ratio, 
compactness, window-to-
wall ratio, window area and 
construction period (2443)

footprint, floor area, total 
loss area, number of stories, 
compactness, typology, 
window-to-wall ratio, 
window area and 
construction period (19440)

footprint, floor area, total loss 
area, number of stories, 
loss-to-floor-area ratio, 
compactness, typology, 
window area and 
construction period (5741)

10 footprint, floor area, total 
loss area, number of stories, 
loss-to-floor-area ratio, 
compactness, typology, 
window-to-wall ratio, 
window area and 
construction period (2444)

footprint, floor area, total 
loss area, number of stories, 
loss-to-floor-area ratio, 
compactness, typology, 
window-to-wall ratio, 
window area and 
construction period (19440)

footprint, floor area, total 
loss area, number of stories, 
loss-to-floor-area ratio, 
compactness, typology, 
window-to-wall ratio, window 
area and construction period 
(5743)

number 
of 
variables 
(� )n

Table 2. Combinations of variables with the lowest AIC for every number of variables, for each energy KPI. The 
additional variable(s) with respect to the previous combination of variables is (are) noted in italic. The value of the 
AIC —rounded to a unit— for these combinations is shown between brackets.



Construction period, total loss area and footprint appear to be important variables for all three 
energy KPIs (Table 2). The importance of the construction period for the energetic behaviour of 
a dwelling is straightforward, since several properties of the dwellings which are not included in 
the GIS dataset — such as the quality of the building envelope or the window area — are 
assigned based on the construction period. Additionally, the total loss area is another variable 
with an important influence on the energetic behaviour. This variable, together with the quality 
of the envelope, is responsible for  the amount of heath being lost to the outside environment. 
Total loss area is somewhat less important for the specific energy demand, since the 
dependency on this KPI of the size of the dwellings has been eliminated by dividing by the 
floor area. The correlation between total loss area and floor area amounts to � . As the 
dependency on the floor area has been eliminated, the importance of the total loss area is 
hence decreased. Finally, footprint emerges as a ‘pseudo-variable’ since this variable cannot 
offer an unambiguous explanation for the energetic behaviour but contains correlations with 
multiple other variables such as floor area ( � ), total loss area ( � ) and heated 
volume (� ). 

The variable floor area has an important influence on both peak power and energy demand for 
SH, but not on specific energy demand. The floor area is an unambiguous indication of the size 
of the dwellings, which plays a crucial role in the determination of peak power and energy 
demand for SH. As mentioned before, the dependency on this variable has been eliminated for 
specific energy demand. 
The variable loss-to-floor-area ratio appears to have an important influence in the determination 
of the specific energy demand, but not so much of peak power and energy demand for SH. 
Moreover, compactness seems as well to be more important for specific energy demand than 
for the two other KPIs. This can be explained by the meanings of the KPIs: where peak power 
and energy demand for SH depend highly on the size of the dwelling, this dependency has 
been eliminated for the specific energy demand. Instead, the composition of the dwelling 
becomes more important for the determination of this KPI.


On the other hand, both typology and number of stories appear to have little impact on none of 
the three KPIs. These variables tend to give insufficient information about the energetic 
behaviour of the dwellings. Typology — here defined as number of neighbours — does not give 
any indication about the size of the dwelling nor about the composition of the plan dealing with 
the form of the dwelling. As the shared walls are no part of the total loss area since they are 
considered to be adiabatic, the number of neighbours is not adding any information. Although 
number of stories is supposed to predict some information about the size, the correlation 
between number of stories and floor area amounts to �  and between number of stories 
and heated volume only to � . This variable does not seem to predict that much about 
the size, which can be explained by the variance in the building stock: most buildings have two 
or three stories and only a few one or four. As the variance of this variable might be more 
spread out in other case studies, the ability to represent the size of a dwelling might augment 
and hence the importance might increase.


3.2.2 Determination of optimal number of clusters 
The impression that the sets of eight variables are generating the most accurate models — 
caused by the minimal values of the AIC —, appears to be incorrect when these sets are 
applied to cluster the building stock, as both techniques are working differently. AIC selects the 
combination of variables which generates the multidimensional ‘plane’ with the lowest 

ρ = 0,83

ρ = 0,48 ρ = 0,61
ρ = 0,56

ρ = 0,48
ρ = 0,23
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distances between the ‘plane’ and the actual data points. The more variables, the more 
nuances can be placed in the formula of OLS and therefore the more possibilities to lower the 
distances between the ‘plane’ and the data points. Although the multivariate regression 
denotes the sets with eight variables as those that will generate the most accurate model, not 
all the variables in the sets contribute as much as the others to the accuracy of the model. The 
variables lower on the ranking assist less to the explanation of the energetic behaviour of the 
dwellings than those at the top. However, the variables are not weighted when applied for 
clustering and all variables are considered accordingly equivalent. Consequently, when several 
dwellings possess values for a less influential variable that are extremely similar, these 
dwellings might end up in the same cluster without taking the more significant variables into 
account. Thus, the optimal number of clusters cannot be concluded using only multivariate 
regression, but also depends on the mutually relative importance of the variables. 
The optimal number of clusters achieves a balance between the improvements of the model by 
adding an extra variable and the relative importance of the variables in terms of the 
contribution to the explanation of the energetic behaviour. This optimal number of variables is 
determined for each use case by executing the clustering for several numbers of variables, 
using the best combination for that number of variables (Table 2), and plotting the root mean 
square errors (RMSEs) in function of the number of clusters for all these combinations.


Use case Peak power 
When only the energy KPI peak power is important, the set of variables can be chosen based 
on only the ranking of variables for this KPI. With the RMSEs in function of the number of 
clusters staked out in graphs, a clear preference for the set of three variables can be noticed 
(Figure 6). For both ways of upscaling — with the number of buildings in the clusters or scaled 
with the floor area of the buildings (see chapter 4) — the clustering with the set of three 
variables generates the lowest errors. Therefore, the set of variables applied for use case Peak 
power comprises next variables:


Use case Energy demand for SH 
If there is only interest in energy demand for SH, the set of variables can again be chosen 
based on the ranking of variables for this KPI. When the various sets of variables are stacked 
out relative to each other, no definite preference is observed (Figure 7). If the results are scaled 
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Figure 6. Graphs showing the root mean square errors in function of the number of clusters for sets of several 
numbers of variables for the use case Peak power. The results are scaled up with either the number of buildings 
(left) or scaled with the floor area of the buildings (right).

footprint, total loss area and construction period



up with the number of buildings, the set with two variables shows the lowest RMSEs but also 
an erratic course (Figure 7, left). Therefore, the set with three variables appears to be the most 
reliable set with the lowest RMSEs. If less than 15 clusters are required, scaling with the 
volume of the buildings will lower the RMSEs (see chapter 4). Also in this case the set of three 
variables appears to generate the most accurate and reliable model (Figure 7, right). Thus, the 
set of variables applied for use case Energy demand for SH comprises next variables:


Use case Peak power, energy demand for SH and specific energy demand 
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floor area, total loss area and construction period

Figure 7. Graphs showing the root mean square errors in function of the number of clusters for sets of several 
numbers of variables for the use case Energy demand for SH. The results are scaled up with either the number of 
buildings (left) or scaled with the volume of the buildings (right).

Figure 8. Graphs showing the root mean square 
errors in function of the number of clusters for 
sets of several numbers of variables for the use 
case Peak power, energy demand for SH and 
specific energy demand. The results are scaled 
up according to the best possible way for each 
energy KPI (see chapter 4). Peak power with the 
area of the buildings (top left), energy demand for 
SH with the volume of the buildings (top right) 
and specific energy demand with the number of 
the buildings (bottom left).



When all three energy KPIs are important for the research, the set of variables must be a 
combination of the ranking of the variables for peak power as well as energy demand for SH as 
specific energy demand. Peak power and energy demand for SH are both mainly depending on 
the size of the dwellings and therefore a similar ranking of the variables is manifested. Specific 
energy demand is depending more on the composition of the dwellings and introduces slightly 
different variables as most important. When the results for several sets of variables are stacked 
out, a set of four variables — which combines both the size and the composition of the 
dwellings — and one of five variables come forward as the most accurate sets for all three 
energy KPIs (Figure 8). Since adding the fifth variable does not generate lower RMSEs, the set 
of four variables is selected for the use case Peak power, energy demand for SH and specific 
energy demand and comprises next variables:


3.3 Verification by means of comparing variances of variables 

Whether the variables which come forward as most influential based on the linear multivariate 
regression for each use case appear to be also most dominant in a clustering based on the 
results, can be verified by examining the variances of the variables in the clusters of a 
clustering based on the energy KPI(s) relative to the variances in the entire building stock. 
Since the rankings deduced from the AICs suggest which variables have the most influence on 
the energy KPIs, it is to be expected that the clusters of a clustering based on these energy 
KPIs show a narrower distribution of the most important variables. How much narrower the 
distribution in each cluster is relative to the distribution in the entire building stock, is 
calculated for each variable as follows:


� 


with �  the standard deviation in each cluster, �  the standard deviation in the entire 
building stock and �  the ratio of these two standard deviations. The lower this ratio is, the 
smaller the distribution in the cluster.

Additionally, a ratio of the differences in means is determined for each variable according to the 
formula below:


� 


where �  is the mean of the entire stock, �  the mean of each cluster individually and 
�  the standard deviation of the entire stock. In this way, �  contains the ratio of how 
far the mean of a cluster deviates from the mean of the entire stock divided by the average 
deviation in the entire stock. The more this ratio diverges from zero, the more the distribution in 
the cluster is located in the extreme values of the distribution of the entire stock —below zero, 
at the maximum values and above zero, at the minimum values.


Which variables have the most divergent distributions can be determined using the t-test by 
stating as null hypothesis — which should be contradicted — that the mean of �  — �  — 
equals one. The actual mean of the � s is determined as follows:


� 


σratio = σclu ster

σstock

σclu ster σstock
σratio

Δμratio = μstock − μclu ster

σstock

μstock μclu ster
σstock Δμratio

σratio μ0
σratio

μ = 1
N

N

∑
i= 1

σratio,i
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with �  the number of dwellings in the entire building stock and �  the ratio of the standard 

deviation for the cluster to which dwelling �  belongs. In this way, the number of dwellings in 
each cluster is taken into account, so that more weight is given to the larger clusters.

Subsequently, the t-value is calculated for each variable according to following formula:


� 


with �  the standard deviation of all the � s. The lower the t-value, the less likely the null 

hypothesis is valid. This means that the mean of �  is lower than one — the lower the t-
value, the lower the � s and thus the more the distributions in the clusters are smaller than 
the distribution in the entire building stock. Therefore, the variables with the lowest t-values are 
the most dominant in the clustering based on the energy KPI(s).


For each use case and a certain number of clusters, the ratio of the standard deviation and the 
ratio of the difference in mean has been calculated per cluster for every defined variable (Figure 
9 to 11). Then, the most dominant variables were searched using the t-test (Table 3 to 5). The 
findings with these results are more elaborately discussed in the following paragraphs.


3.3.1 Use case Peak power 
The preference for the set of three variables is quite apparent in this use case. When the stock 
is divided into 15 clusters, the difference in performance of the investigated sets is clearly 
noticeable (Figure 6). Therefore, the selected set of three variables is verified for a division of 
the stock in 15 clusters. When the � s are stacked out, ordered by a decreasing number of 
buildings in the clusters, it can be noted that the most of the clusters have a �  significantly 
lower than one for the following variables: floor area, total loss area, heated volume, window 
area and construction period (Figure 9). The largest clusters show the lowest � s for the 
variables floor area and window area. For the variables footprint, floor area, total loss area, 
heated volume and window area the �  is diverging the most from zero but for clusters of 
average to small sizes. The variables with the lowest t-values are floor area, total loss area, 
heated volume — which is related to floor area ( � ) and total loss area ( � ) — 
and construction period (Table 3). This finding largely confirms the ranking based on AICs and 
the selected set of variables.


3.3.2 Use case Energy demand for SH 
The preference for the set of three variables in this use case is not as apparent as the previous 
use case. But when the stock is divided into 25 clusters, this set generates noticeably lower 
RMSEs than the other investigated sets (Figure 7). The selected set of three variables is 
therefore verified at this number of clusters. The variables with a �  significantly lower than 
one are floor area, total loss area, heated volume, window area and construction period (Figure 
10). The variables with a �  diverging the most from zero are footprint, floor area, total loss 
area, heated volume, window area and construction period. The distributions show a very 
similar course as the distributions for the use case Peak power, which is corresponding with 
the similar ranking of variables (Table 2). Construction period appears to have a much larger 
influence on the energy demand for SH than on the peak power, what again can be found back 
in the higher position of construction period in the ranking for energy demand for SH than in 

N σratio,i
i

t = μ − μ0
σ

N

σ σratio,i
σratio

σratio

σratio
σratio

σratio

Δμratio

ρ = 0,89 ρ = 0,91

σratio
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this for peak power. The variables with the lowest t-values are floor area, total loss area, heated 
volume and construction period (Table 4). Although footprint is one of the variables in the set, 
the t-value is rather high compared to the other variables. This could be due to the fact that 
footprint emerges as a ‘pseudo-variable’ and contains correlations with other variables, such 
as floor area, total loss area and heated volume, which do have a very low t-values.


3.3.3 Use case Peak power, energy demand for SH and specific energy demand 
The RMSEs of the clustering based on the selected set of four variables do not differ that much 
from those of the clustering based on the set of five variables. Therefore, the additional variable 
in the set of five variables — namely floor area — will most likely also come forward as an 
important variable. When the building stock is divided into 15 clusters, the clustering based on 
the selected set generates the lowest RMSEs (Figure 8). Therefore, the distribution of the 
variables is again verified for a division of the stock based on all the energy KPIs into 15 
clusters. The variables for which the � s are significantly lower than one are floor area, total 
loss area, loss-to-floor-area ratio, heated volume and construction period (Figure 11). For the 
variables footprint, floor area, total loss area, loss-to-floor-area ratio, heated volume and 
window area the �  is diverging the most from zero. The variables with the lowest t-values 
are floor area, total loss area, loss-to-floor-area ratio and construction period (Table 5). This 
finding is again largely confirming the selected set of variables based on the ranking made by 
the linear multivariate regression. Besides variables containing information about the size of the 
dwellings, also loss-to-floor-area ratio appears as a dominant variable for this use case and the 
dependency on the heated volume is less important. Again, the variable footprint has a 
relatively high t-value and seems to be not very dominant, but the same annotation can be 
made that footprint emerges as a ‘pseudo-variable’ and contains correlations with other 
variables dealing with the dwelling size.


σratio

Δμratio

�26

variable t-value

footprint -14,31

floor area -123,90

total loss area -107,05

number of stories -43,28

loss-to-floor-area 
ratio

-29,16

compactness -6,36

typology -23,66

heated volume -102,55

window-to-wall 
ratio

-17,50

window area -59,37

construction period -62,52

Table 3. T-values, rounded to 
two decimal digits, for every 
defined variable when clustered 
based on the energy KPI peak 
power.

variable t-value

footprint -20,46

floor area -72,86

total loss area -86,31

number of stories -49,26

loss-to-floor-area 
ratio

-84,08

compactness -22,52

typology -24,84

heated volume -66,44

window-to-wall 
ratio

-21,32

window area -71,12

construction period -224,69

Table 5. T-values, rounded to 
two decimal digits, for every 
defined variable when clustered 
based on the energy KPIs peak 
power, energy demand for SH 
and specific energy demand.

variable t-value

footprint -12,85

floor area -28,66

total loss area -41,34

number of stories -23,49

loss-to-floor-area 
ratio

-7,24

compactness -7,20

typology -13,22

heated volume -31,43

window-to-wall 
ratio

-16,26

window area -29,03

construction period -96,11

Table 4. T-values, rounded to 
two decimal digits, for every 
defined variable when clustered 
based on the energy KPI energy 
demand for SH.
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3.4 Conclusion 

To demarcate archetypes, a wide variety of variables has been used by various researchers. 
The selection of the set of variables that generates the most accurate estimation of the 
reference scenario is thus not unambiguously defined. Which variables are qualified to be used, 
depends on both the availability of the data and the specific conditions of the particular case 
study. Since the examined district in this work is a Flemish suburban residential 
neighbourhood, variables such as the density of the urban area, exposure and climate zones 
cannot be used to cluster the building stock. Moreover, only the energy demand required for 
space heating is taken into account and ideal heating systems are adopted, thus the variables 
dealing with the present heating and cooling systems are also not qualified. In this way, eleven 
potential variables have been specified out of the enumerated variables which were formerly 
used in other relevant studies: footprint, floor area, total loss area, number of stories, loss-to-
floor-area ratio, compactness, typology, heated volume, window-to-wall ratio, window area and 
construction period. Naturally, if the conditions of the case study were different or if the 
available data contained other or additional information, other potential variables would have 
been possible.


The most influential of these eleven potential variables for each of the three defined energy 
KPIs — peak power, energy demand for SH and specific energy demand — are determined 
making use of a linear multivariate regression analysis of these energy KPIs. The linear 
regression is proposing a ranking in importance of the potential variables. The construction 
period is for all three KPIs ranked as one of the most important variables. Additionally, the 
variables dealing with the size of the dwellings appear for both peak power and energy 
demand for SH to be most important — such as footprint, floor area and total loss area —, 
whereas variables such as compactness and loss-to-floor-area ratio are ranked much lower. 
For specific energy demand, this turns out opposite. The variables dealing with the 
composition of the dwellings — like loss-to-floor-area ratio — have much more influence since 
the dependency on this KPI on the size of the buildings has been eliminated by dividing by the 
floor area. The variables number of stories and typology are listed lowest in the ranking, since 
they tend to contain insufficient information about the size or the composition of the dwellings. 
The variances of the number of stories in this case study are rather limited, since most 
dwellings have either three or four stories. Therefore, this variable does not indicate enough 
about the dwelling size to be an important variable for the clustering. But if the variances of this 
variable would be larger in another case study, the ranking might be different. Variables with a 
smaller distribution might be eliminated out of the ranking and others might occur higher on the 
list. To determine an absolute ranking of the potential variables for each energy KPI, other case 
studies with different variances will have to be examined.


The linear multivariate regression proposes the sets of eight variables as most accurate, but 
this turns out to be incorrect when these sets are applied for the clustering, as both techniques 
are working differently. Since the variables are not weighted when applied to execute the 
clustering and not all variables are equally responsible for the explanation of the energetic 
behaviour, the variables lower on the ranking should not be included in the selected sets. To 
determine the optimal number of variables for each use case, several sets of different numbers 
of variables are compared to each other and sets of three or four variables occur as the sets 
that generate the most accurate estimation of the reference scenario. For the use case Peak 
power, the most accurate set contains following variables: floor area, total loss area and 
construction period. For the use case Energy demand for SH, the set is very similar: footprint, 
total loss area and construction period. For the use case Peak power, energy demand for SH 
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and specific energy demand, the set contains a combination of the variables, highest in 
ranking, of the three KPIs: footprint, total loss area, loss-to-floor-area ratio and construction 
period.  
Finally, the selected sets of variables for each use case are verified by comparing the variances 
of the variables in clusters, made by a clustering based on the energy KPIs which are important 
for the use case, with the variances of the variables in the entire building stock. The findings of 
these verifications tend to confirm the selected sets and the rankings suggested by the linear 
regression, since the variables in the sets show a smaller distribution in the clusters than in the 
entire stock. Therefore, they are most likely connected with the KPIs based on which the 
clustering happened. Only the variable footprint did not show a significantly smaller 
distribution, but this can be explained by understanding this variable as a ‘pseudo-variable’. 
This means that this variable does not unambiguously define the energetic behaviour but 
contains correlations with other variables, like floor area, total loss area and heated volume.


Although only limited use cases and energy KPIs are examined in this work, this chapter 
presents a generally usable method to determine a ranking of the defined potential variables 
for any energy KPI. Based on this ranking, the optimal set of variables can easily be 
established by comparing several options, taking the ranking of all the KPIs of interest into 
account. As previously explained, the potential variables and the rankings of the variables 
might differ when examining another case study. To make general conclusions on the most 
accurate set of variables based on which the clustering will happen for several energy KPIs, 
other case studies will have to be examined.  
Additionally, the scope of the approach can be expanded to the application of varying user 
profiles, by making use of the StROBe module — Stochastic Residential Occupancy 
Behaviour. This module is generating simulations of residential human behaviour based on 
stochastic data in order to implement a divergent user profile in each dwelling (Baetens et al., 
2015). Before this variable is qualified to be applied to cluster on, the profiles must be 
summarised into one value which can be determined without the knowledge of the results of 
the energy simulations. Then, the importance of this additional variable relative to the other 
defined variables can be examined using the method presented in this chapter. 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4. Clustering of the building stock 

Since clustering of data is a widely applied method to gain insight into the characteristics of 
the data, various techniques to execute the clustering have been developed. The techniques 
that are qualified to be applied for the clustering of a building stock for the purpose of this 
work, must be able to cluster based on multiple variables, since the energetic behaviour of a 
dwelling is depending on several aspects. Therefore Ghaissi (2017) made use of Multivariate 
Cluster Analysis (MCA), which comprises various techniques that divide a multidimensional 
data space into homogeneous groups.  
First, a literature study was executed to determine which techniques are qualified for this 
application. To gain insight in the process of the techniques, the two most applied and 
therefore most elaborated techniques — k-means and agglomerative hierarchical clustering — 
are explained. Then, to prevent undesirable weighting of the variables due to the different 
orders of magnitudes of the values, the data is either standardised — using the z-score formula 
— or normalised  — converted to a range between zero and one — before the clustering is 
executed. Subsequently, the most accurate technique and method to standardise or normalise 
the data is selected based on a comparison of the root mean square errors of all four options.


After the clustering and the simulation of one representative building of each cluster — the 
building the closest to the centre of the cluster —, the results of these representative buildings 
must be scaled up to each represent the entire cluster. The upscaling of the results can happen 
in several ways: either by multiplying them by the number of dwellings in each cluster or taking 
a geometrical property of the dwellings into account and diversifying the results by scaling 
them with the property. 
Which way of upscaling generates the most accurate results is depending on the energy KPI, 
but also on the use case and the number of clusters. After a certain number of clusters the 
scaling of the results by a geometrical property is not recommended anymore, since the errors 
are higher than the errors made by multiplying by the number of buildings in the clusters. This 
is discussed in detail in the penultimate section of this chapter. 


4.1 Literature study 

Clustering of objects is a technique that is widely used to understand the characteristics of the 
objects and identify them with a type and is applied in various scientific disciplines (Rokach 
and Maimon, 2010). The purpose of clustering implies that objects — or in this application 
dwellings — with similar features are grouped in one cluster so that the clusters are coherent 
internally and that objects with dissimilar features belong to different clusters (Manning, 
Raghavan and Schütze, 2009a). Since the dwellings in one cluster are supposed to exhibit 
similar energetic behaviour, it is acceptable to represented all the dwellings in one cluster by 
one dwelling which is located the closest to the middle — or ‘centroid’ — of this cluster. 
Since the notion of a cluster is not unambiguously defined, many different cluster techniques 
have been developed (Rokach and Maimon, 2010). However, most used cluster techniques can 
be divided into two groups: centroid-based or partitioning cluster methods and connectivity-
based or hierarchical cluster methods. The main difference between these two groups contains 
the moment of deciding the number of clusters and thus how the centroids of the clusters are 
elected. Centroid-based cluster techniques depart from randomly selected centroids and thus 
the number of clusters must be defined in advance to determine how many centroids must be 
selected. These techniques can also be appointed as “flat clustering techniques”, since they 
create “a flat set of clusters without any explicit structure that would relate clusters to each 
other” (Manning, Raghavan and Schütze, 2009a). Whereas with connectivity-based techniques 
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the number of clusters is decided after the clustering and therefore the positions of the 
centroids are intrinsic to the data collection. Clustering with these techniques creates a 
hierarchy between the separate clusters (Manning, Raghavan and Schütze, 2009a). Ghiassi 
(2017) describes this distinction between the groups as “whether or not the identified clusters 
are nested”.


The most widely used en thus elaborated centroid-based cluster technique is k-means 
clustering because of its simplicity and efficiency (Manning, Raghavan and Schütze, 2009a). 
This technique is explained in the next paragraph. Hierarchical clustering comprises methods 
that approach the clustering either top-down — divisive hierarchical clustering — or bottom-up 
— agglomerative hierarchical clustering (Rokach and Maimon, 2010), which is explained in the 
subsequent paragraph.


4.1.1 K-means clustering 

K-means clustering starts with the random selection of �  centroids, with �  being the 
predetermined number  of clusters. Each data point is assigned to the nearest centroid and the 
Residual Sum of Squares (RSS) is calculated for each cluster according to following equation 
(Geyer, Schlüter and Cisar, 2016; Manning, Raghavan and Schütze, 2009a):


� 


with �  being every data point in cluster �  and �  the centroid of that cluster. Then, the 
overall RSS is computed:


� 


The RSS is a measure to determine how well the centroids represent all the data points in the 
clusters (Manning, Raghavan and Schütze, 2009a): the smaller RSS, the smaller the distances 
between each data point in the cluster and the centroid and thus the better the clustering. 

k k

RSSi = ∑
x∈Ki

(x − xi)2

x ∈ Ki Ki xi

RSS =
k

∑
i= 1

RSSi
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Figure 12. Visualisation of k-
means clustering for an example 
w i t h t w o c l u s t e r s i n t w o 
dimensions. After nine iterations 
the positions of the centroids 
converge and the clustering is 
done. (Manning, Raghavan and 
Schütze, 2009a)

random selection of two centroids assignment of each data point to 
the nearest of these two centroids

positions of the centroids and the 
distribution in clusters after nine 
iterations

recalculation of the positions and 
movement of the centroids

movements of the centroids in the 
nine iterations



Therefore, the goal of k-means clustering is to minimise this RSS and since �  is fixed, this 
comes to the same as minimising the average inner squared Euclidean distance. 
When the RSSs of each cluster have been calculated, the positions of the centroids are 
redetermined to minimise the RSSs. Subsequently, the data points are again assigned to the 
closest centroid to then recalculate the RSS. This method is iteratively repeated until the final 
distribution has been reached (Figure 12).  
K-means clustering is reported as a method with complexity of O(NKd), where N is the number 
of buildings, K the number of clusters and d the dimensions. This means that the calculation 
time will increase linearly with the number of buildings and therefore k-means emerges as a 
suitable method for clustering a large building stock (Geyer and Schlüter, 2017).


4.1.2 Agglomerative hierarchical clustering 
Agglomerative hierarchical clustering does not need a predetermined number of clusters, since 
this method starts with assigning a cluster to each data point individually. Then, the two closest 
clusters are merged together. This similarity measure can be calculated in several ways: using 
single-link, complete-link or average-link clustering (Manning, Raghavan and Schütze, 2009b; 
Rokach and Maimon, 2010). For single-link clustering, the distance between two clusters is 
determined by the — in this case — Euclidean distance between the two nearest data points 
(Figure 13, left). For complete-link clustering, the distance is calculated in the opposite way: the 
distance between two clusters is equal to the longest distance between any point of one 
cluster and any point of the other cluster (Figure 13, middle). Finally, the distance for average-
link clustering is calculated as the average distance of every member of one cluster to every 
member of the other cluster (Figure 13, right). The way of determining the distances at 
complete-link clustering generates the most compact clusters (Rokach and Maimon, 2010) and 
offers therefore the most interesting perspectives for this application.  
The two clusters with the smallest mutual distance are merged together. This step is repeated 
until only one cluster remains. The steps are usually displayed in a dendrogram, where each 
horizontal line represents a merging of two clusters with the value at the vertical axis as the 
similarity between those two clusters (Figure 14). In this way, agglomerative hierarchical 
clustering automatically goes through every possible number of clusters and the desired 
number of clusters can be defined by ‘cutting’ the dendrogram at a certain height — the height 
that represents the desired inner distance of the clusters.  
The computational complexity is a disadvantage of this method, since this amounts to O(N2) 
with N the number of buildings. This means that the calculation time will increase quadratically 
with the number of buildings and this method is therefore less suited to cluster large building 
stocks (Geyer and Schlüter, 2017).


k
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Figure 13. Visualisation of the ways of calculating the distance between two clusters: single-link (left), complete-
link (middle) and average-link clustering (right). (Manning, Raghavan and Schütze, 2009b)



4.2 Selection of cluster technique 

Since the variables do not all have the same order of magnitude, the values of the variables 
have to be rescaled before the clustering can happen to prevent undesirable weighting. The 
most common methods to rescale the values are either standardising or normalising the data.  
Standardisation of the values will convert the mean to zero and the standard deviations to 
minus and plus one and can be executed using the z-score formula (Steinley and Brusco, 
2008):


� 


where �  is the value of the variable �  for dwelling � , �  the mean of variable � , �  the 

standardised value of variable �  for dwelling �  and �  the standard deviation of variable 

� , with �  calculated as follows:


� 


with �  the number of dwellings of the entire building stock.

Normalising the data implies that the values are converted to a range between zero and one 
and can be determined using following formula:


� 


where �  is the minimum value of variable �  for all dwellings, �  the maximum value of 

variable �  and �  the normalised value of variable �  for dwelling � .


Both cluster methods — k-means and agglomerative hierarchical clustering — are executed 
using standardisation as well as normalisation and are evaluated compared to each other. To 
perform k-means clustering, the Python package Scikit-learn has been used (Pedregosa et al., 
2011) and to execute the hierarchical clustering the module hierarchy from the clustering 

xij,stand =
xij − xj

Var (xj)

xij j i xj j xij,stand

j i Var (xj)

j Var (xj)

Var (xj) =

N
∑
i= 1

(xij − xj)2

N
N

xij,norm =
xij − xj,min

xj,max − xj,min

xj,min j xj,max

j xij,norm j i
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Figure 14. Dendrogram of an 
a g g l o m e r a t i v e h i e r a r c h i c a l 
clustering, with the indices of the 
data points at the horizontal axis 
and the distances at the vertical 
axis. The clustering with the desired 
number of clusters, for example 
seven, can be determined by 
‘cutting’ the dendrogram. (Geyer, 
Schlüter and Cisar, 2016)



package of Scipy (scipy.cluster) has been applied (Scipy community, 2018). The clustering is 
executed for every number of clusters in a range from one to 40 clusters and the root mean 
square errors (RMSEs) are stacked out in function of the number of clusters (Figure 15 to 17). If 
an improvement would occur, the results of the energy KPIs are scaled with the geometrical 
properties of the dwellings which generates the lowest RMSEs for that energy KPI, clustering 
method and use case to make sure that in every case the best possible results are compared.
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Figure 15. Graph showing the root mean square errors 
in function of the number of clusters for the energy KPI 
peak power in the use case Peak power, comparing 
both cluster methods and standardisation versus 
normalisation. The results generated with hierarchical 
clustering and normalisation are scaled with the 
volume of the dwellings.

Figure 16. Graph showing the root mean square 
errors in function of the number of clusters for the 
energy KPI energy demand for SH in the use case 
Energy demand for SH, comparing both cluster 
methods and standardisation versus normalisation. 
None of the results are scaled with a geometrical 
property of the dwellings.

Figure 17. Graphs showing the root mean square 
errors in function of the number of clusters for the 
energy KPIs peak power (top left), energy demand 
for SH (top right) and specific energy demand 
(bottom left) in the use case Peak power, energy 
demand for SH and specific energy demand, 
c o m p a r i n g b o t h c l u s t e r m e t h o d s a n d 
standardisation versus normalisation. The results 
for the energy KPI peak power are scaled with the 
floor area of the dwellings and the results for the 
energy KPI energy demand for SH generated with 
standardisation are also scaled with the floor area 
and with normalisation are scaled with the volume 
of the dwellings.



For all use cases — Peak power (Figure 15), Energy demand for SH (Figure 16) and Peak 
power, energy demand for SH and specific energy demand (Figure 17) — k-means clustering in 
combination with normalisation appears to be the method that generates the lowest RMSEs for 
all energy KPIs which are of interest in the particular use case — up to about one kW lower 
than the second best method for peak power, about 1900 kWh lower for energy demand for 
SH and about ten kWh/m2 lower for specific energy demand.


The better performance of normalisation, compared to standardisation, can be comprehended 
from the definitions. Whereas normalisation transforms the values of every variable to a range 
exactly from zero to one, standardisation converts the values in the range of the standard 
deviations to the exact range from minus to plus one. This means that the standardised values 
of the data points smaller or larger than the standard deviations are lower or higher than minus 
or plus one. But in this way, standardising the variables grants unintentionally more weight to 
the variables with these larger values and these are not necessarily the variables who are the 
most influential in the determination of the energy KPIs. Moreover, standardisation with the z-
score assumes a normal distribution of the data and thus makes a mistake with the variables 
that do not have this normal distribution, while normalisation does not make this assumption.


4.3 Upscaling to the entire building stock 

After the clustering, one building of every cluster is selected as the representative building and 
is then simulated. Since these buildings are each supposed to represent the entire cluster, the 
interpreted results of these simulations can be applied to all the dwellings in every cluster and 
thus are scaled up to the entire building stock by multiplying them by the number of dwellings 
in each cluster. Since the energy KPIs are partly depending on geometrical properties of the 
dwellings, it could be that scaling the results with a geometrical property — such as the floor 
area, the volume or the footprint of the building — might improve the overall results. To scale 
the results, the results of the representative buildings are divided by the geometrical property 
of these representative buildings and then multiplied by the property of the actual buildings. 
For every energy KPI, it has been examined whether the scaling with one of these last-
mentioned geometrical properties decreases the RMSEs or just the upscaling by multiplying by 
the number of buildings generates the lowest errors. This has been investigated for both the 
clustering based on the energy KPIs themselves as based on the defined sets of variables (see 
chapter 3).


When the building stock is clustered based on the energy KPIs, scaling the results with any 
geometrical property does not improve the RMSEs (Figure 18 to 20). This phenomenon can 
conveniently be comprehended by considering what the clustering based on the energy KPIs 
comprises. The dwellings with the most similar results are grouped together in a cluster, 
regardless the properties of the dwellings which are explanatory for the energetic behaviour of 
the buildings. This implies that dwellings with both a large and a small floor area might end up 
in the same cluster while still having very similar results. When these results are scaled with for 
example the floor area, they are adjusted in a way that worsens the results and therefore 
enlarges the RMSEs. This can also be seen in the graphs on the next page (Figure 18 to 20). 
Scaling the results up by multiplying by the number of buildings generates in every case the 
lowest RMSEs and the most smooth course. Scaling the results with either the floor area or the 
volume of the buildings enlarges the RMSEs and generates a more erratic course, while scaling 
with the footprint of the buildings causes an extremely erratic course and even larger RMSEs. 
This indicates that there is no direct connection at all between the geometric property footprint 
and the specified energy KPIs.
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Figure 18. Graphs showing the root mean square errors in function of the number of clusters for the energy KPI 
peak power in use case Peak power, energy demand for SH and specific energy demand (left) and use case Peak 
power (right). The results are scaled up with either the number of buildings or scaled with a geometrical property 
of the buildings: floor area, volume or footprint. The RMSEs of the results scaled with footprint in both use cases 
are higher than the range of the graphs.

Figure 20. Graphs showing the root mean 
square errors in function of the number of 
clusters for the energy KPI specific energy 
demand in use case Peak power, energy demand 
for SH and specific energy demand. The results 
are scaled up with either the number of buildings 
or scaled with a geometrical property of the 
buildings: floor area, volume or footprint.

Figure 19. Graphs showing the root mean square errors in function of the number of clusters for the energy KPI 
energy demand for SH in use case Peak power, energy demand for SH and specific energy demand (left) and use 
case Energy demand for SH (right). The results are scaled up with either the number of buildings or scaled with a 
geometrical property of the buildings: floor area, volume or footprint. The RMSEs of the results scaled with 
footprint in use case Peak power, energy demand for SH and specific energy demand (left) are higher than the 
range of the graph.



When the building stock is clustered based on the defined sets of variables, scaling the results 
with a geometrical property does improve the RMSEs. Which way of upscaling generates the 
best results is depending on the energy KPI, the use case and the number of clusters and is 
discussed in the following paragraphs for each energy KPI individually.


4.3.1 Peak power 
The RMSEs of the energy KPI peak power in the use case Peak power, energy demand for SH 
and specific energy demand can be decreased by scaling the results with the floor area of the 
buildings (Figure 21, left). Scaling with the volume of the buildings does also improve the 
RMSEs, but from 16 or more clusters, this scaling factor generates higher RMSEs than the 
factor floor area. In the use case Peak power, scaling with the factor floor area does also 
decrease the RMSEs until a certain number of clusters — in this case study until five clusters 
(Figure 22, right). Although the RMSEs are lower for two and three clusters when scaled with 
the volume of the buildings, this scaling factor shows a more erratic course. Therefore, scaling 
with the factor floor area achieves a more reliable improvement.


From six or more clusters, scaling with a geometrical property does not improve the results 
anymore in the use case Peak power (Figure 21, right). This could be explained by the following 
hypothesis. Scaling the results causes both improvements and additional errors, since the 
energy KPI peak power is depending on the floor area but not only on this property. Dividing 
the building stock in more clusters causes the clusters with a wide distribution of the floor area 
to split, since floor area is one of the variables in the set based on which the clustering 
happens (see chapter 3). The clusters that are not further split up most likely have a small 
distribution of the variables in the set, like floor area. Therefore, scaling with the floor area in 
these clusters does not improve the results, since the differences in the energy KPI peak power 
in these clusters are not depending on the floor area anymore but on other factors. The more 
clusters there are, the more clusters with a small distribution of the floor area exist and the 
more clusters for which there are caused more additional errors than improvements by scaling 
with the floor area. From a certain number of clusters —in this case from six— the additional 
errors are larger than the improvements and from then scaling with the factor floor area is not 
recommended anymore.
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Figure 21. Graphs showing the root mean square errors in function of the number of clusters for the energy KPI 
peak power in use case Peak power, energy demand for SH and specific energy demand (left) and use case Peak 
power (right). The results are scaled up with either the number of buildings or scaled with a geometrical property 
of the buildings: floor area, volume or footprint. The RMSEs of the results scaled with footprint in use case Peak 
power (right) are higher than the range of the graph and therefore not visible on the figure.



This hypothesis can be investigated by examining the distributions of the floor area in the 
clusters of the clusterings based on the defined set of variables, taking the number of 
dwellings in each cluster into account. Therefore, the ratios of the distributions of each variable 
in the clusters relative to the distributions of each variable in the entire building stock are 
calculated in the same way as described in chapter 3, using following formula:


� 


The lower the � , the smaller the distribution in the cluster compared to the distribution in 
the entire stock. To determine how many dwellings are part of a cluster for which the 
distribution of the floor area is still sufficiently wide, the number of dwellings in the clusters with 
a �  larger than 0.75 are counted. These clusters contain dwellings with a distribution of the 
floor areas up to 75 percent of the distribution in the entire stock and will therefore most likely 
introduce larger improvements by the scaling with the floor area than additionally made errors.


When the building stock is divided into five clusters, clusters 2, 3 and 5 have a �  larger 
than 0.75 (Figure 22, left). In this way, 409 dwellings are part of clusters with a rather wide 
distribution of the floor area (Table 5, see page 43). When the stock is divided into 15 clusters, 
scaling the results with the floor area is not improving the RMSEs anymore. Therefore, the 
number of dwellings in clusters with a wide distribution of the floor area should be significantly 
lower. Only clusters 6 and 4 have a �  higher than 0.75 (Figure 22, right), which makes that 
only 66 dwellings are part of clusters with a rather wide distribution of the floor area (Table 6, 
see page 43). 
Since the improvement by scaling the results with the floor area in the use case Peak power, 
energy demand for SH and specific energy demand is still valid when the building stock is 
divided into for example 25 clusters, the number of dwellings in clusters with a wide 
distribution should still be sufficiently high when the stock is divided into 25 clusters. The 
number of dwellings in clusters with a �  higher than 0.75 equals 437 when the building 
stock is divided into five clusters — clusters 4, 3 and 2 (Figure 23, left and Table 7, see page 
43)— and 162 when the building stock is divided into 25 clusters — clusters 4, 17, 9, 18, 19, 
21, 6 and 24 (Figure 23, right and Table 8, see page 43). Although the building stock is divided 
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Figure 23. Charts showing the ratios 
of the standard deviation and of the 
difference in mean stacked out, 
ordered by a decreasing number of 
buildings in the clusters for the floor 
area in the use case Peak power, 
energy demand for SH and specific 
energy demand for five (left) and 25 
clusters (right).

Figure 22. Charts showing the ratios of 
the standard deviation and of the 
difference in mean stacked out, 
ordered by a decreasing number of 
buildings in the clusters for the floor 
area in the use case Peak power for 
five (left) and 15 clusters (right).



in more clusters than the situation where the stock was divided into 15 clusters in the use case 
Peak power, still more dwellings are part of a cluster with a rather wide distribution of the floor 
area. Therefore, these findings tend to confirm the posed hypothesis.


4.3.2 Energy demand for SH 
The results of the energy KPI energy demand for SH can also be improved in the use case 
Peak power, energy demand for SH and specific energy demand by scaling them with the 
volume of the buildings (Figure 24, left). Again, in the use case that concentrates only on the 
energy demand for SH, the results can be decreased by scaling them with the volume of the 
buildings but only up to a certain number of clusters — in this case study up to 12 clusters 
(Figure 24, right). 
The same hypothesis as for the KPI peak power is checked for the KPI energy demand for SH: 
the number of dwellings in clusters with a �  for the variable volume larger than 0.75 are 
counted for several situations.  
For the use case Peak power, energy demand for SH and specific energy demand, the 
improvement of the scaling with the volume is still valid when the building stock is divided into 
for example 25 clusters and thus the number of dwellings in clusters with a rather wide 
distribution of the volume should still be sufficiently high. When the stock is divided into five 
clusters, the clusters 4, 3 and 2 show a �  larger than 0.75 (Figure 25, left). This makes that 
437 dwellings are part of a cluster with a rather wide distribution of the volume, for which the 
results will most likely be improved by a scaling with this dwelling property (Table 7, see page 
43). When the stock is divided into 25 clusters, still 120 dwellings are part of a cluster with a 
�  larger than 0.75 — clusters 17, 9, 18, 19, 21, 6 and 24 (Figure 25, right and Table 8, see 
page 43). Again, the hypothesis seems to be correct.  
For the use case Energy demand for SH, scaling with the volume is decreasing the errors when 
the building stock is divided into five clusters but not anymore when the stock is divided into 
25 clusters. Therefore, the number of dwellings in clusters with a rather wide distribution of the 
volume should be significantly lower when the stock is divided into 25 clusters. When divided 
into five clusters, clusters 3, 4 and 5 show a �  larger than 0.75 (Figure 26, left) and 437 
dwellings are part of these clusters (Table 9, see page 43). When the stock is divided into 25 
clusters, clusters 19, 6, 17, 20, 23, 7, 25, 12 and 13 have a �  above 0.75 (Figure 26, right) 
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Figure 24. Graphs showing the root mean square errors in function of the number of clusters for the energy KPI 
energy demand for SH in use case Peak power, energy demand for SH and specific energy demand (left) and use 
case Energy demand for SH (right). The results are scaled up with either the number of buildings or scaled with a 
geometrical property of the buildings: floor area, volume or footprint.



and contain 189 dwellings accumulated (Table 10, see page 43). In contrast with the previously 
discussed energy KPI peak power, the number of dwellings is still quite large. The posed 
hypothesis does not apply in this situation.  
Whether the hypothesis is therefore false or rather the given explanation is not the only 
influence to determine if the scaling is still improving the results or not, is not clear. In contrast 
with the situation for the KPI peak power, the scaling factor volume is not included in the set of 
variables based on which the clustering has happened. This might involve an explanation of 
the difference but has to be examined further. Moreover, why exactly these dwelling properties 
are improving the results and when this improvement is not valid anymore, should also be 
investigated further to be able to draw general conclusions.


4.3.3 Specific energy demand 
In contrast to the other KPIs, the RMSEs of the energy KPI specific energy demand cannot be 
decreased by scaling the results with any geometrical property of the dwellings (Figure 27). 
Simply multiplying the results by the number of buildings in each cluster generates the lowest 
RMSEs. This confirms the previously mentioned statement that the energy KPI specific energy 
demand is not directly depending on the size of the dwellings but rather on the composition of 
the plan (see chapter 3). Therefore, scaling the results with properties related to the size will 
only introduce additional errors and no improvements.
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Figure 27. Graphs showing the root mean 
square errors in function of the number of 
clusters for the energy KPI specific energy 
demand in use case Peak power, energy demand 
for SH and specific energy demand. The results 
are scaled up with either the number of buildings 
or scaled with a geometrical property of the 
buildings: floor area, volume or footprint.

Figure 25. Charts showing the ratios of 
the standard deviation and of the 
difference in mean stacked out, 
ordered by a decreasing number of 
buildings in the clusters for the volume 
in the use case Peak power, energy 
demand for SH and specific energy 
demand for five (left) and 25 clusters 
(right).

Figure 26. Charts showing the ratios of 
the standard deviation and of the 
difference in mean stacked out, 
ordered by a decreasing number of 
buildings in the clusters for the volume 
in the use case Energy demand for SH 
for five (left) and 25 clusters (right).
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cluster-
number

number of 
buildings

cluster 15 277

cluster 1 216

cluster 5 168

cluster 11 96

cluster 12 86

cluster 9 75

cluster 2 68

cluster 3 50

cluster 6 40

cluster 8 39

cluster 13 34

cluster 14 26

cluster 4 26

cluster 7 25

cluster 10 4

cluster-
number

number of 
buildings

cluster 4 590

cluster 1 231

cluster 2 172

cluster 3 144

cluster 5 93

cluster-
number

number of 
buildings

cluster 2 576

cluster 1 217

cluster 3 186

cluster 4 138

cluster 5 113

cluster-
number

number of 
buildings

cluster 24 175

cluster 11 134

cluster 4 130

cluster 2 98

cluster 3 94

cluster 8 79

cluster 10 73

cluster 19 49

cluster 16 49

cluster 21 48

cluster 9 47

cluster 6 46

cluster 5 39

cluster 17 31

cluster 20 27

cluster 22 20

cluster 18 20

cluster 14 16

cluster 1 11

cluster 23 9

cluster 7 9

cluster 25 8

cluster 15 8

cluster 12 6

cluster 13 4

cluster-
number

number of 
buildings

cluster 1 572

cluster 5 221

cluster 4 190

cluster 3 135

cluster 2 112

cluster-
number

number of 
buildings

cluster 5 172

cluster 10 131

cluster 3 97

cluster 23 90

cluster 2 88

cluster 8 82

cluster 7 68

cluster 22 62

cluster 25 48

cluster 13 45

cluster 4 42

cluster 16 41

cluster 20 37

cluster 17 37

cluster 9 31

cluster 11 30

cluster 12 26

cluster 14 23

cluster 15 21

cluster 18 13

cluster 19 12

cluster 21 11

cluster 6 11

cluster 1 7

cluster 24 5

Tables 5 to 10. Number of 
dwellings in each cluster for 
several use cases and number of 
c l u s t e r s , o r d e r e d b y a 
decreasing number of dwellings. 
The use case and the number of 
clusters is specified at each 
table.

Table 5. Use case Peak power 
— five clusters

Table 7. Use case with all energy 
KPIs — five clusters

Table 9. Use case Energy 
demand for SH — five clusters

Table 6. Use case Peak power 
— 15 clusters

Table 8. Use case with all energy 
KPIs — 25 clusters

Table 10. Use case Energy 
demand for SH — 25 clusters



4.4 Conclusion 

Out of the numerously developed multivariate cluster techniques, the two most applied and 
therefore also best elaborated techniques — k-means and agglomerative hierarchical 
clustering — have been evaluated compared to each other. Additionally, to avoid undesirable 
weighting of the variables because of the differences in order of magnitude, the data has to be 
rescaled before the clustering is executed. The data can be either standardised — using the z-
score formula — or normalised — converting the data points to the exact range from zero to 
one. The four possible options — combining the both cluster methods and the options to 
rescale the data — have been tested and the clustering of normalised data using the k-means 
technique appeared to generate in every use case the most accurate results for all the energy 
KPIs of interest. The better performance of the normalisation is most likely due to the rescaling 
of the data by this method to the exact same range for every variable, while rescaling with the 
z-score formula the range is depending on how much the extrema diverge from the standard 
deviations. In this way, the variables with larger extrema are weighted as more important 
although this might not be the most influential variables.


When the clustering is executed and the representative buildings are selected and simulated, 
the results of these simulations have to be scaled up to represent the entire examined building 
stock. This upscaling can happen by simply multiplying the results of each representative 
building by the number of dwellings in the corresponding cluster or by taking a geometrical 
property, dealing with the size of the dwellings, into account. Since the energetic behaviour of a 
dwelling is depending on the geometry, scaling the results with these properties might 
decrease the errors. The investigated situations demonstrate that the peak power and the 
energy demand for space heating (SH) both can be improved by scaling with respectively the 
floor area or the volume of the buildings. This finding seems to be explainable since both these 
energy KPIs are mainly depending on the size of the dwellings (see chapter 3). The specific 
energy demand  for space heating on the other hand cannot be improved by scaling with any 
of the investigated dwelling properties. This is confirming the previously described explanation 
that the dependency on specific energy demand of the size of the dwelling is eliminated by 
dividing by the floor area. Whether the specific energy demand might be improved making use 
of another dwelling property, which is more related to the composition of the dwelling, will have 
to appear out of further research.


However, the improvement by the scaling of the results for the energy KPIs peak power and 
energy demand for SH depends on the number of clusters but also on the use case. For the 
use case Peak power, energy demand for SH and specific energy demand, the errors of both 
KPIs are decreased by the scaling for each number of clusters from one to 40. But for the use 
cases with only interest in one KPI, the improvement only applies for a limited number of 
clusters. After a certain number of clusters, the most accurate way to scale the results up is 
just by multiplying by the number of dwellings in each cluster. Following hypothesis has been 
posed: since the energy KPI not only depends on one property, scaling the results with a 
geometrical property both implies improvements and additional errors. Due to the limited 
amount of dwellings in clusters with a rather wide distribution of the property after a certain 
number of clusters, the improvement by scaling the results can only be made for this limited 
number of dwellings and the improvements no longer compensate the additional errors. This 
hypothesis has neither been demonstrated nor rejected. For the KPI peak power the reasoning 
appeared to be correct, but not for the KPI energy demand for SH. To fully understand which 
way of upscaling and until which number of clusters the scalings might improve the results, this 
technique of diversifying the results has to be further investigated in detail.  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5. Accuracy of the tailor-made clustering approach 

To investigate the accuracy of the developed tailor-made clustering approach, the root mean 
square errors (RMSEs) of the results based on this approach compared to the results of the 
reference scenario — based on the complete GIS data approach — are analysed. Part of those 
errors is caused by the clustering and the generalisation of the results of the representative 
buildings to all the dwellings in each corresponding cluster. This fraction can be examined by 
analysing the RMSEs that occur when the building stock is clustered based on the energy KPIs 
themselves. Additionally, the other part of the errors is due to the confined estimation of the 
energetic behaviour of the dwellings by the selected set of variables. This fraction can be 
derived from the difference between the RMSEs of the clustering based on the energy KPIs 
and the RMSEs of the clustering based on the set of variables. In order to determine the 
distinction between the use case with interest in all three energy KPIs and the case where only 
one KPI is considered, the three use cases are consecutively discussed, taking the possible 
improvements by a scaling with a geometrical property into account (see chapter 4). 
Subsequently, to validate the tailor-made clustering approach, the errors made by this 
approach are compared to the errors made by a random clustering of the building stock and a 
random selection of a representative building out of each cluster.


Then, the accuracy of the tailor-made clustering approach is summarised and compared to the 
accuracy of district energy simulations based on archetypes or sample buildings. The RMSEs 
made in this work are compared with the reported errors in several previous studies. 
Additionally, to put the errors made by the tailor-made clustering approach relative to the 
reference scenario — based on the complete GIS data approach — in perspective, the 
reported errors made by a detailed calculation based on the GIS dataset in some previous 
studies are mentioned. Although no general conclusions can be made because the works do 
not comprise the same case study, the tailor-made clustering approach seems to be able to 
generate quite accurate estimations of the reference scenario in this work.


5.1 Use case Peak power, energy demand for SH and specific energy demand 

In following paragraphs, the deviations of the results based on the tailor-made clustering 
approach compared to the results of the reference scenario based on the complete GIS data 
approach are analysed for the use case Peak power, energy demand for space heating (SH) 
and specific energy demand. First, to determine the fraction of the errors due to the 
generalisation by the clustering, the RMSEs of the clustering based on the energy KPIs are 
discussed. Subsequently, the RMSEs of the clustering based on the selected set of variables 
(see chapter 3) are compared with the first RMSEs. For two of the three energy KPIs the results 
can be improved by scaling them with a geometrical property of the dwellings — being the 
floor area for the KPI peak power and the volume of the buildings for the KPI energy demand 
for space heating (SH) (see chapter 4). Finally, the tailor-made clustering approach is being 
validated by a comparison of the RMSEs with those of a clustering based on a random 
selection of clusters and representative buildings. To be able to compare the RMSEs of the 
different KPIs, they are plotted in percentages (Figure 28 to 30). These percentages are 
calculated by dividing the RMSE with the average value over the entire building stock of each 
energy KPI — which are 34.64 kW for peak power, 32373.44 kWh for energy demand for SH 
and 130.40 kWh/m2 for specific energy demand.
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5.1.1 Clustering based on the energy KPIs 
When the clustering is executed based on the energy KPIs themselves and the results are 
scaled up with the number of buildings, the RMSEs show the same course for all three KPIs 
(Figure 28 to 30, left). When the building stock is divided into 15 clusters, the estimation of the 
KPIs exhibits an error of approximately ten percent. When the stock is split into 40 clusters, the 
RMSEs remain just above five percent for each KPI. This same course is logical, since equal 
value is granted to each KPI as they are normalised and not weighted to perform the 
clustering. 
Although scaling the results of the clustering based on the energy KPIs with the floor area or 
the volume of the dwellings only introduces additional errors (see chapter 4), the RMSEs do not 
deteriorate enormously by these scalings. The RMSEs of the KPI peak power still show a 
smooth course that is about one percent higher than the RMSEs when the results are not 
scaled (Figure 28, right). The RMSEs of the KPI energy demand for SH are somewhat more 
erratic and are about five percent worse than the RMSEs of the clustering based on the set of 
variables (Figure 29, right). However, the errors do not increase enormously which indicates 
that the clustering based on the KPIs contains somehow clusters where the results are similar 
but can still be improved by scaling them with the geometrical property. This is most likely due 
to the fact that the clustering is concentrating on three KPIs which ensures that the dwellings in 
a cluster include a variation of the actual values of the results. This variation can then be 
estimated by the scaling of the results.


5.1.2 Clustering based on the set of variables 
The clustering based on the set of variables generates a similar course for peak power and 
energy demand for SH (Figure 28 to 29, left). When the building stock is divided into ten 
clusters, the RMSEs amount to somewhat less than 20 percent. At 20 clusters it amounts to 
approximately 15 percent and at 40 clusters to about 12 percent. With this, the additional error 
made by the estimation of the energetic behaviour with the set of variables amounts to about 
seven percent for these two energy KPIs. The results of specific energy demand perform 
slightly better (Figure 30). With the building stock split into ten clusters, the RMSE of specific 
energy demand for space heating amounts to approximately 15 percent. At 20 clusters it 
comes down to 13 to 14 percent and at 40 clusters to about ten percent. Thus, the additional 
error made by the set of variables for specific energy demand is four percent. This implicates 
that the selected set of variables approaches the behaviour of the specific energy demand 
somewhat better than those of the two other energy KPIs.  
However, the error of peak power and energy demand for SH can be improved by scaling the 
results with a geometrical property (see chapter 4). When scaled with the floor area of the 
dwellings, the RMSEs for the energy KPI peak power can be partially compensated (Figure 28, 
right). When the stock is divided into ten clusters, the RMSE is on approximately 15 percent. At 
20 clusters it amounts to 11 to 12 percent and at 40 clusters to about eight percent. The 
improvement decreases with the number of clusters, but overall the scaling reduces the 
RMSEs with five to two percent. Therefore, the scaling ensures that peak power is slightly 
better estimated than specific energy demand, since this KPI cannot be improved by a scaling. 
The performance for the energy KPI energy demand for SH can also be improved by a scaling 
with the volume of the dwellings (Figure 29, right). If the stock is split into ten clusters, the 
RMSE amounts to approximately 15 percent. At 20 clusters it amounts to about 13 percent and 
at 40 clusters to somewhat more than ten percent. Again, the improvement decreases with the 
number of clusters, even faster than with the KPI peak power. At 40 clusters, the improvement 
is almost negligible, but still this improvement ensures that energy demand for SH is as well 
estimated as the specific energy demand.
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Figure 28. Graphs showing the root mean square errors in percentages in function of the number of clusters for 
the energy KPI peak power in use case Peak power, energy demand for SH and specific energy demand. The 
results are scaled up with either the number of buildings (left) or scaled with the floor area of the buildings (right).

Figure 29. Graphs showing the root mean square errors in percentages in function of the number of clusters for 
the energy KPI energy demand for SH in use case Peak power, energy demand for SH and specific energy 
demand. The results are scaled up with either the number of buildings (left) or scaled with the volume of the 
buildings (right).

Figure 30. Graphs showing the root mean 
square errors in percentages in function of the 
number of clusters for the energy KPI specific 
energy demand in use case Peak power, energy 
demand for SH and specific energy demand. The 
results are scaled up with the number of 
buildings.



5.1.3 Validation by a random selection 
When the building stock is randomly divided into clusters and all the dwellings in each cluster 
are represented by a randomly selected building of that cluster, the RMSEs show a very erratic 
course (Figure 28 to 30). This means that the better results for certain numbers of clusters — 
where a lower RMSE occurs — are rather coincidental and therefore these results are not really 
reliable. Moreover, the RMSEs of the random clustering are a lot higher than those of the 
clustering based on the set of variables. The errors are fluctuating around 40 to 50 percent for 
the KPI peak power (Figure 28, left), around 50 to 60 percent for energy demand for SH (Figure 
29, left) and around 50 to 55 percent for specific energy demand (Figure 30). The results for the 
KPI peak power can be slightly improved by scaling them with the floor area of the dwellings 
so that they fluctuate between 35 and 40 percent (Figure 28, right). But also in this way the 
errors remain significantly higher than the errors made by the tailor-made clustering approach. 
Therefore, a random clustering does not generate reliable results for the district simulated in 
this work, while the tailor-made clustering approach produces smaller errors. To be able to 
generally conclude that the developed approach is more accurate than a random clustering, 
other districts will have to be examined. The actual accuracy of this approach depends on the 
number of clusters and can thus partially be chosen in function of the needs of the study.


5.2 Use case Peak power 

The results of one energy KPI can be further improved by focussing on just this KPI. Since the 
results of the other KPIs are somewhat deteriorated, this only has to be considered if only this 
KPI is of interest. In the following paragraphs, the results of the use case Peak power will be 
discussed, similarly to the results of the previous use case. First, the clustering based on the 
KPI itself is reviewed to examine the error made by the clustering. Then, the additional error 
made by the estimation of the energetic behaviour with the set of variables is investigated by 
compering the results of the clustering based on the energy KPI with the results of the 
clustering based on the selected set of variables. Again, the RMSEs are plotted in percentages 
(Figure 31 to 32).


5.2.1 Clustering based on the energy KPI 
When the building stock is clustered based on the energy KPI peak power, the RMSE curve of 
this KPI — scaled up with the number of buildings — approaches zero with an increasing 
number of clusters (Figure 31, left). Already at five clusters the RMSE drops below ten percent 
and at ten clusters it reaches five percent. If there is only interest in this one KPI, the clustering 
can reach an optimal division of the building stock to approach the results of this KPI. The 
variations of the KPI peak power for the dwellings in one cluster, that occurred in the previously 
discussed use case, are no longer present since the cluster technique can focus on only one 
input factor to divide the building stock.  
However, the other KPIs show a much worse course of the RMSEs. The errors for both energy 
demand for SH (Figure 32, left) and specific energy demand for space heating (Figure 32, right) 
made by the clustering based on the KPI peak power are even higher than the errors made by 
the clustering based on the selected set of variables. Although this set is selected only based 
on the ranking for the KPI peak power, the variables still contain some ability to explain the 
results of the two other KPIs since they likewise depend on these variables to greater or lesser 
extent. Where the course of the RMSEs for specific energy demand approximately approaches 
the course of the RMSEs of the random clustering, the errors made for energy demand for SH 
are a lot lower — fluctuating around 25 percent. This indicates that the KPI energy demand for 
SH is somehow linked to the KPI peak power, while this is absolutely not the case for the KPI 
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specific energy demand. This is also apparent from the ranking of the variables (see chapter 3): 
the most important variables for peak power are very similar to those for energy demand for 
SH and concentrate mainly on the size of the dwellings — floor area and footprint —, while 
those for specific energy demand emphasise also on the composition of the plan — loss-to-
floor-area ratio.


5.2.2 Clustering based on the set of variables 
The clustering based on the selected set of variables generates additional errors from about 
seven to eight percent (Figure 31, left). When the building stock is divided into ten clusters, the 
RMSE amounts to approximately 13 percent. At 20 clusters it amounts to about ten percent 
and at 40 clusters to somewhat less than eight percent. The additional errors are similar to 
those for the previous use case, which means that the set of variables selected for the use 
case Peak power estimates the behaviour of this energy KPI as well as the set for the previous 
use case is estimating the behaviour of all the KPIs combined. However, the improvement by 
only concentrating on peak power decreases with the number of clusters: at ten clusters this 
improvement is about seven percent, at 20 clusters about five percent and at 40 clusters only 
about two percent. Thus, if the desired degree of accuracy is large and more than 40 clusters 
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Figure 31. Graphs showing the root mean square errors in percentages in function of the number of clusters for 
the energy KPI peak power in use case Peak power. The results are scaled up with either the number of buildings 
(left) or scaled with the floor area of the buildings (right).

Figure 32. Graphs showing the root mean square errors in percentages in function of the number of clusters for 
the energy KPIs energy demand for SH (left) and specific energy demand (right) in use case Peak power. The 
results are scaled up with the number of buildings.



are needed, concentrating on only the KPI peak power will not improve the results anymore. 
Up to five clusters, the RMSEs can be decreased by scaling the results with the floor area of 
the dwellings. This reduces the RMSE at two clusters from about 29 percent to only 18 
percent. But since this reduction of the RMSEs can only be applied up to a certain number of 
clusters, the improvement of the results — scaled with the floor area — by concentrating on 
one KPI compared to the results — also scaled with the floor area — of the previous use case 
diminishes. Yet, concentrating on only the KPI peak power still generates somewhat lower 
RMSEs, but only less than one percent.  
The estimation of the KPIs that are not of interest in this use case are, logically, somewhat 
worse than in the previous use case. The RMSEs of energy demand for SH — scaled up with 
the number of buildings — are about one to two percent higher than those for the previous use 
case — scaled with the volume of the buildings —, despite the somewhat more erratic course 
(Figure 32, left). The errors of specific energy demand — both scaled up with the number of 
buildings — are about five percent higher (Figure 32, right). Again, this indicates the link 
between the KPI peak power and energy demand for SH and the discrepancy between peak 
power and specific energy demand. The curves do not show a similar course as the RMSEs of 
a random clustering since the set of variables is still including some explanation of the two 
other KPIs.


5.3 Use case Energy demand for SH 

Besides the use case Peak power, the scenario of interest in only the KPI energy demand for 
space heating (SH) is also investigated. In the following paragraphs, the results of this use case 
will be discussed like the previous use cases. The results of the clustering based on the energy 
KPI itself are first examined to investigate the error made by the generalisation of the 
clustering. Then, the results of the clustering based on the set of variables are discussed to 
identify the additional error made by the estimation of the set. Here too, the RMSEs are plotted 
in percentages (Figure 33 to 34).


5.3.1 Clustering based on the energy KPI 
The RMSEs of the KPI energy demand for SH made by the clustering based on the KPI itself — 
scaled up with the number of buildings — also approach zero when the number of clusters 
increases (Figure 33, left). Again, the error amounts to somewhat more than ten percent when 
the building stock is divided into five clusters and to about five percent at ten clusters. This is 
the same course as the RMSEs from the KPI peak power in the previous use case. The 
clustering is again reaching an optimal division of the building stock to estimate the results of 
the energy KPI energy demand for space heating (SH).  
The RMSEs of the other energy KPIs are higher and show a much more erratic course (Figure 
34). However, the errors for both KPIs lie under the errors of a random clustering and therefore 
both KPIs are somehow related to the energy demand for SH. As explained previously, both 
peak power and energy demand for SH mainly depend on the size of the dwellings. The 
clustering based on the KPI energy demand for SH is therefore indirectly also taking peak 
power into account. Since specific energy demand is determined based on the energy demand 
for SH (see chapter 2), the clustering based on the energy demand for SH is again indirectly 
including a connection with the specific energy demand. The RMSEs for peak power — 
fluctuating between 15 and 25 percent — are smaller than those for specific energy demand — 
which fluctuate between 30 and 40 percent. The link between the KPIs energy demand for SH 
and peak power is thus larger than the link between energy demand for SH and specific energy 
demand.
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5.3.2 Clustering based on the set of variables 
The additional errors made by the estimation of the energetic behaviour by the set of variables 
amount to about nine to ten percent (Figure 33, left). When the building stock is divided into ten 
clusters, the RMSE is approximately 17 percent. At 20 clusters the error amounts to about 14 
percent and at 40 clusters to circa nine percent. With this, the estimation of the energy demand 
for SH by the selected set of variables is somewhat less accurate than the estimations in the 
other use cases, where the additional errors amount to about seven percent. Again, the 
improvement by only concentrating on energy demand for SH is decreasing with the number of 
clusters: at ten clusters the improvement is about three percent and from 20 clusters on, this 
improvement only amounts to one percent. The improvement of the results for the KPI energy 
demand for SH by only concentrating on this KPI is lower than the improvement for the KPI 
peak power — as described in the previous section. This illustrates the somewhat lesser 
estimation of the KPI energy demand for SH by the selected set of variables for this use case 
than the estimation of peak power by the corresponding set of variables for the previously 
discussed use case.  
Up to 12 clusters, the RMSEs can be decreased by scaling the results with the volume of the 
dwellings. Here, the same determination applies as in the use case Peak power: the 
improvement of the results — scaled with the volume — for the use case with only interest in 
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Figure 33. Graphs showing the root mean square errors in percentages in function of the number of clusters for 
the energy KPI energy demand for SH in use case Energy demand for SH. The results are scaled up with either the 
number of buildings (left) or scaled with the volume of the buildings (right).

Figure 34. Graphs showing the root mean square errors in percentages in function of the number of clusters for 
the energy KPIs peak power (left) and specific energy demand (right) in use case Energy demand for SH. The 
results are scaled up with the number of buildings.



the energy demand for SH relative to the results — also scaled with the volume — for the use 
case with interest in all three energy KPIs decreases. This is due to the fact that the 
improvement by the scaling in the use case Energy demand for SH can only be applied up until 
12 clusters and in the use case Peak power, energy demand for SH and specific energy 
demand this improvement is still possible at 40 clusters. But concentrating on only the energy 
demand for SH generates still somewhat lower RMSEs —of about one percent — for this KPI 
than the first discussed use case, which combines an interest in all three energy KPIs. 
However, when a high degree of accuracy is desired and more than 40 clusters are needed, the 
slight improvement of the results for the energy demand for SH by only concentrating on this 
KPI might not be interesting enough to consider this use case, since in this way the results of 
the other KPIs are less accurate.  
The RMSEs of peak power — when scaled up with the number of buildings — are about one 
percent higher than in the use case with interest in all three KPIs — also scaled with the 
number of buildings (Figure 34, left). The ranking of variables for energy demand for SH and for 
peak power are very similar. Therefore, the KPI peak power is indirectly also taken into account 
in this use case. However, the results of the KPI peak power can be improved in the use case 
Peak power, energy demand for SH and specific energy demand by scaling them with the floor 
area of the dwellings. Then, that use case is performing significantly better — about five 
percent. The RMSEs of specific energy demand fluctuate around 25 percent and are thus 
unreliable. Although the clustering based on the KPI proved that energy demand for SH and 
specific energy demand are related, this does not appear in the clustering based on the set of 
variables.


5.4 Summary of the accuracy and comparison with previous studies 

The number of clusters required to achieve a certain degree of accuracy is summarised for 
each energy KPI in the table below (Table 11). The best possible way of upscaling for each KPI 
in each use case has been taken into account. An estimation of the results of the complete GIS 
data approach with a root mean square error (RMSE) of less than 20 percent is achieved with 
already two or three clusters for the KPIs peak power and energy demand for space heating 
(SH) in both use cases with an interest in these KPIs. The RMSEs of the KPI specific energy 
demand are declining less rapidly at the lower number of clusters and thus six clusters are 
required to reach an error less than 20 percent. The use cases with interest in only one KPI will 
achieve the potential desired degree of accuracy at a lower number of clusters than the use 
case Peak power, energy demand for SH and specific energy demand. Although the exact 
RMSEs of the KPIs between both of the use case with an interest in the KPI are not very 
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energy KPI use case ≤ 20% ≤ 15% ≤ 10%

peak power Peak power, energy demand for 
SH and specific energy demand

2 clusters 11 clusters 31 clusters

Peak power 2 clusters 9 clusters 22 clusters

energy 
demand for 
SH

Peak power, energy demand for 
SH and specific energy demand

3 clusters 10 - 11 clusters > 40 clusters

Energy demand for SH 2 clusters 9 - 11 clusters 30 - 35 clusters

specific 
energy use

Peak power, energy demand for 
SH and specific energy demand

6 clusters 12 - 13 clusters 40 clusters

Table 11. Summary of the number of clusters required when a certain degree of accuracy is desired, for each 
energy KPI in all possible use cases.



distinct, the use cases with only one KPI of interest reach a maximum error of ten percent at a 
significantly lower number of clusters. This is due to the reducing decrease in RMSE with an 
increasing number of clusters, which generates a flattening curve. Estimating the KPI energy 
demand for space heating (SH) with high degree of accuracy requires more clusters than the 
two other KPIs. Moreover, in the previous section the lesser approach of the KPI energy 
demand for SH by the selected set of variables is remarked. Therefore, it can be concluded 
that this KPI is harder to estimate than both other KPIs.


To validate the errors made by the tailor-made clustering approach, the reported errors of some 
previous studies are discussed. Shimoda et al. (2004) classified the building stock of Osaka, 
Japan, into 55 family types, two dwelling types and ten floor area groups. They summarised 
the family types into 23 categories and demarcated 20 archetypes based on the floor area 
groups and the dwelling types. As the residential building stock of Osaka contains 1128 
dwellings, the defined archetypes consist of 1.77 percent of the stock. Converted to the 
examined stock in this case study, would mean that the building stock is divided into 22 
clusters. Shimoda et al. (2004) reported that the statistical value of the total energy 
consumption — taking electricity for heating, cooling, domestic hot water, lighting, kitchen and 
other appliances into account — was underestimated with 18 percent. When the building stock 
in this case study is divided into 22 clusters, the root mean square error (RMSE) relative to the 
reference scenario — based on the complete GIS data approach — in the use case energy 
demand for space heating (SH) amounts to 12.4 percent. However, the comparison of these 
percentages must be considered with some caution, since the case studies contain different 
conditions and data availabilities, distinct scopes of the calculation of the energy demand and 
Shimoda et al. (2004) use various family types while this case study applied the standard user 
profile in each dwelling. Above all, the verification of the results by Shimoda et al. (2004) 
happened with a comparison with the statistical values and in this work with the values from 
the complete GIS data approach as statistical values are not available. 
Dall’O’, Galante and Torri (2012) examined the residential building stock of Carugate, Italy, 
which contains approximately 1230 apartment buildings. They classified the building stock 
based on the construction period and selected a certain number of sample buildings out of 
each class, depending on the fraction of apartment buildings belonging to the class. The total 
number of sample buildings amounts to 93, which comes down to 7.5 percent of the building 
stock. Converted to a building stock which contains 1230 dwellings, this would mean that the 
stock is divided into 92 clusters. Dall’O’, Galante and Torri (2012) reported an accuracy of the 
developed method of approximately ten percent for the calculation of the total energy demand 
for heating and domestic hot water. This accuracy was determined relative to the actual energy 
consumption supplied by the gas distributor. An accuracy degree of RMSEs less than ten 
percent for energy demand for SH in this work is reached at a much lower number of clusters 
in both use cases. However, the comparison of the accuracies must again be considered with 
caution, since the case studies are not equal and the errors in the method of Dall’O’, Galante 
and Torri (2012) are reported relative to the actual data, while in this work, they are relative to 
the results of the complete GIS data approach.


Some researchers documented the errors by simulations based on detailed 3D city models of 
the building stock. Orehounig et al. (2011, in: Ghiassi et al., 2015) for example estimated the 
energy consumption of a village of about 100 dwellings based on two approaches. They 
categorised the building stock based on the use and the construction periods and generated 
archetypes. This simplified approach resulted in an estimation of the actual values with a 
deviation of 25 percent. Then, they modelled each dwelling in detail and simulated them. This 
approach generated an estimation with approximately eight percent of deviation from the 
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actual values. This means that a simulation based on a simplified archetype approach 
generates about 17 percent higher deviations than a detailed calculation. 
Nouvel et al. (2013) compared detailed calculations of two districts in Germany, using an LOD1 
model for the case study of Grünbühl in Ludwigsburg and an LOD2 model for the case study of 
Rintheim in Karlsruhe. Taking the energy demand for space heating and domestic hot water 
into account, they reported an overestimation by the simulations of the actual values of 21 
percent when the building stock is modelled in LOD1. Moreover, they indicate high 
uncertainties of the results on the level of an individual building. When the stock is modelled in 
LOD2, the overestimation of the total simulated heating demand of the entire district amounts 
to only seven percent. 
Although the case studies are not comparable, these reported deviations between detailed 
calculations and actual measured values might place the errors made by the tailor-made 
clustering approach into perspective. As a detailed calculation generates a deviation of about 
seven to eight percent of the actual situation, an error of less than ten percent made by the 
tailor-made clustering approach might be also acceptable. Especially when a model of LOD1 is 
used, the errors of the tailor-made clustering approach are less influential than those of the 
simulation itself. However, it is not examined whether the errors of the tailor-made clustering 
approach are complementary to those of the complete GIS data approach or if they partly 
compensate these. To exactly determine the errors made by the developed tailor-made 
clustering approach relative to the actual situation, further research and an extension of the 
data availability is required.


5.5 Conclusion 

The measured root mean square errors (RMSEs) of the results based on the tailor-made 
clustering approach compared to the results based on the complete GIS data approach are 
investigated and discussed. The errors are partly depending on the generalisation of the results 
of the representative buildings by the clustering and partly on the estimation of the energetic 
behaviour by the sets of variables. Examining the errors of the clusterings based on the KPIs 
themselves in the three defined use cases showed that clustering based on one factor — one 
KPI in this case — is creating optimal clusters to estimate the results, reaching an RMSE of 
nearly zero percent when the building stock is divided into 30 or 40 clusters. When the 
clustering happened based on three KPIs, the minimum possible RMSE achieved with a limited 
number of clusters increases from zero to five percent. This is easily understood since the 
distribution of the values differ for each KPI and thus the clustering cannot focus on only one 
factor anymore. Since this is exactly the purpose when the clustering happens based on the 
set of variables, this is absolutely no disadvantage.  
The additional errors made by the estimation of the energetic behaviour by the sets of variables 
are variating with the number of clusters and amount to about eight percent for the KPI peak 
power in the use case Peak power and to about ten percent for the KPI energy demand for SH 
in the use case Energy demand for SH. In the use case Peak power, energy demand for SH 
and specific energy demand, the additional errors are lower since the RMSEs of the clustering 
based on the KPIs amount to more. The distribution of the focus of the clustering when 
clustered based on the KPIs is partly compensated by the fact that each variable contains 
some information about every energy KPI. Therefore, each variable will partly vouch for every 
KPI. This explains the lower additional errors, in the use case with an interest in all the KPIs, of 
about seven percent for the KPIs peak power and energy demand for SH and about four 
percent for the KPI specific energy demand.
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To reach a certain degree of accuracy for the KPI energy demand for SH, more clusters are 
required than for the other two KPIs, in both the use case with interest in all the KPIs as in the 
use cases with an interest in only one KPI compared to each other. Moreover, the improvement 
of the results by only concentrating on the energy demand for SH instead of on all the KPIs is 
lower than the improvement when concentrated on the KPI peak power. This indicates that the 
set of variables selected for the use case Energy demand for SH is estimating the KPI less 
accurately than the set for the use case Peak power.  
More generally, also applies that if the tailor-made clustering approach needs to be further 
specified to generate more accurate results, investigating the possibilities of several variables 
is more useful than examining other cluster techniques. The clustering is quite optimally 
dividing the building stock into groups taking all the specified variables or KPIs into account, 
while the selected sets of variables are highly depending on the particular case study. The 
availability of the data might be extended in the future or the varying user profiles can be taken 
into account. When the case study contains another district, the specific conditions might 
differ. Therefore, further examination of the sets of variables will most likely yield more 
improvement of the accuracy of the tailor-made clustering approach.


As the root mean square errors (RMSEs) are diminishing with an increase of the number of 
clusters, the desired degree for a particular study can be prompted and will regulate the 
required number of clusters. To be able to determine the required number of clusters based on 
the prompted degree of accuracy, further research is needed. Since only one case study is 
investigated, no general conclusions on the link between the number of clusters and the errors 
of the model can be made. As the approach will have to be able to guarantee the minimum 
accuracy, a lot more case studies will have to be examined.


The developed tailor-made clustering approach is validated by means of a comparison with the 
errors of a random clustering of the building stock and a random selection of a representative 
building for each cluster. Since the RMSEs of the random clustering are significantly higher and 
the curve of these errors show a much more erratic course, the tailor-made clustering 
approach is able to estimate the results of the complete GIS data approach much more 
accurately and moreover, more reliably. 
In addition, the errors made by this approach are compared to reported errors in other works, 
made by an approach based on archetypes or sample buildings. Although it is not proven 
since the case studies are different, the results of the tailor-made clustering approach create 
the impression that this approach is generating a more accurate estimation of the results based 
on the complete GIS data approach than the archetype or sample building approaches. 
Finally, the errors of the tailor-made clustering approach compared to the reference scenario — 
based on the complete GIS data approach — can be placed into perspective by mentioning 
the errors of models based on a detailed calculation — similar to the complete GIS data 
approach — and the actual values of energy consumption. The reported errors of detailed 
calculations amount to about seven percent when the building stock is modelled in LOD2. The 
errors of the tailor-made clustering approach with a limited number of clusters are of the same 
order of magnitude. When the stock is modelled in LOD1, the energy consumption is 
overestimated by 21 percent. Then, the errors of the tailor-made clustering approach are less 
influential than the ones made by the simulation. Therefore, the errors of the tailor-made 
clustering approach might also be acceptable. However, as explained in the previous section, 
these errors might be complementary to those of the simulations. To exactly determine the 
errors made by the tailor-made clustering approach compared to the actual values, the data 
availability will have to be extended before further research can happen. 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6. Conclusions and future research 

As integrated measures become more and more prevalent on the scale of districts or even 
larger, the application of district energy simulations is steadily ascending. Several researchers 
have elaborated methods to simplify the modelling of the building stock and with that the 
simulations themselves. Since the data availability and the computational capabilities are 
expanding, simulations based on detailed calculations of each dwelling individually — 
appointed as the complete GIS data approach — are preferable. However, these simulations 
still require a long calculation time. Therefore, this work investigated the newly developed 
tailor-made clustering approach and following research question was posed:


Can district energy simulations based on tailor-made clusters generate sufficiently 
accurate simulations compared to the complete GIS data approach without 
drastically increasing the complexity of the model?


To answer this question, two aspects have been distinguished: the implementation of the 
developed approach and the accuracy of the results generated by this approach. First, the 
implementation of this approach was examined posing two groups of sub-questions. The 
clustering happened based on specific sets of variables, which have been determined for each 
defined use case in chapter 3. The selection of the cluster technique itself and the upscaling of 
the results to the entire building stock are discussed in chapter 4. Subsequently, the accuracy 
of the tailor-made clustering approach was investigated in chapter 5. The errors of the tailor-
made clustering approach relative to the reference scenario — based on the complete GIS 
data approach — are discussed and validated by comparing them with a random clustering 
and selection of representative buildings. Finally, to place the errors into perspective, reported 
errors of previous studies are described.


6.1 Variables 

A literature study revealed that researchers each have used several different variables in 
previous studies to demarcate archetypes. Therefore, the selection of the set of variables 
based on which the clustering must happen is not unambiguously defined. First, all the applied 
variables in a collection of previous studies are enumerated. Since the possibility to apply a 
variable to execute the clustering is highly depending on the case study, the potential variables 
in this work are determined and explained. Whether or not a variable is qualified to be applied, 
is depending on both the data availability and the specific conditions of the particular case 
study. As the case study in this work comprises a suburban Flemish neighbourhood and only 
the energy demand for space heating is taken into account, variables dealing with the present 
systems, operational parameters and environmental factors are not eligible. In this way, 
following eleven potential variables have been defined: footprint, floor area, total loss area, 
number of stories, loss-to-floor-area ratio, compactness, typology, heated volume, window-to-
wall ratio, window area and construction period.


Then, a method to determine which of these potential variables are most influential in the 
explanation of the energetic behaviour of the dwellings — expressed in three defined energy 
KPIs, being peak power, energy demand for SH and specific energy demand — is described. 
To obtain a ranking of the variables for each KPI, a linear multivariate regression of the results 
of the reference scenario was executed for the KPIs individually. The construction period came 
forward as an important variable for every KPI. For both the KPIs peak power and energy 
demand for SH, the most influential variables contain mainly information about the size of the 
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dwellings — such as floor area, footprint and total loss area —, whereas the KPI specific 
energy use is rather explained by variables dealing with the composition of the dwellings — like 
loss-to-floor-area ratio. This is a logical outcome, since the dependency on the KPI specific 
energy use from the size of the dwelling is eliminated by dividing the energy demand for SH by 
the floor area of the dwellings.  
Although the linear multivariate regression is suggesting the sets of eight variables as most 
accurate sets to estimate the results of the reference scenario, the most optimal sets to 
execute the clustering appear not to be the sets of eight variables. Instead, the optimal number 
of variables, used to execute the clustering, is about three or four, which is determined by 
comparing several sets of variables with divergent numbers of variables. For each use case, 
the set of variables, which generates the most accurate results, is selected. The clustering for 
the use case Peak power happened based on the floor area, total loss area and construction 
period. For the use case Energy demand for SH, the set contains the footprint, total loss area 
and construction period. The set of variables for the use case Peak power, energy demand for 
SH and specific energy demand is compiled out of the rankings for the three KPIs and includes 
the footprint, total loss area, loss-to-floor-area ratio and construction period.


Finally, which variables are the most influential in each use case is verified by examining the 
distributions of the variables in the clusters of a clustering based on the energy KPIs of interest 
in the particular use case. The distribution of every variable is compared to the distribution of 
the variable in the entire building stock. If the distribution is significantly smaller, the variable 
contains a strong link with the explanation of the KPIs of interest in the use case. Generally, the 
findings of this verification tend to confirm the sets selected by the applied method. Only the 
variable footprint does not show a significantly smaller distribution in the use cases Energy 
demand for SH and Peak power, energy demand for SH and specific energy demand. This can 
be explained by understanding this variable as a ‘pseudo-variable’, which does not contain a 
direct connection with the explanation of the KPIs, but includes correlations about several 
other variables dealing with the size of the dwellings — like floor area, total loss area and 
heated volume.


6.2 Clustering of the building stock 

The two most applied and thus most elaborated multivariate cluster techniques — being k-
means clustering and agglomerative hierarchical clustering — are described and have been 
applied. Before the clustering can be executed, the data has to be rescaled using either 
standardisation or a normalisation to avoid undesirable weighting of the variables based on 
which the clustering will happen. To perform the standardisation, the z-score formula has been 
used and the normalisation converts the data into a range from exactly zero to one. The results 
of the four possible methods are compared to each other. Using the k-means cluster technique 
to cluster normalised data appeared to generate the most accurate results for every KPI of 
interest in the three examined use cases. The preference for normalisation is due to the fact 
that this method scales the data into the exact same range and therefore weighing all the 
specified variables as equal, while standardisation is giving a larger weight to the variables with 
more spread extrema, which are not necessarily the variables that are mostly determining the 
energetic behaviour.


When the clustering is executed and the representative buildings are selected and simulated, 
the results of these simulations have to be scaled up to represent the entire building stock. This 
upscaling can happen by multiplying the results of each representative building by the number 
of dwellings in the corresponding cluster or by taking a geometrical property of the dwellings 
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into account. Since the energetic behaviour depends on the geometry of the dwellings, the 
results can be diversified by scaling them with a geometrical property dealing with the size of 
the dwellings. Whether or not this diversification is improving the results, is different for each 
KPI, use case and number of clusters. The results for the KPI peak power can be improved by 
scaling them with the floor area of the dwellings and the results for the KPI energy demand for 
SH by scaling with the volume of the dwellings. Since both KPIs mainly depend on the size of 
the dwellings — which also appeared from the ranking of the variables —, the improvement by 
scaling with these geometrical properties is easily understood. The KPI specific energy 
demand cannot be improved by scaling with any of the examined properties. Since the 
dependency on this KPI on the size of the dwellings is eliminated, it seems logical that scaling 
with a property that is dealing with the size is not improving the results.


As mentioned, the improvement by scaling with a geometrical property does not account for 
every number of clusters in any use case. In the use case Peak power, energy demand for SH 
and specific energy demand, the results of the KPIs peak power and energy demand for SH 
are improved by scaling them with the geometrical properties for every examined number of 
clusters from one to 40. However, in the use cases with interest in only one energy KPI, no 
improvements are made anymore after a certain number of clusters. In the use case Peak 
power, the results for the KPI of interest are improved up to six clusters and in the use case 
Energy demand for SH, up to 12 clusters. A hypothesis is posed that this could be explained 
by means of the number of dwellings in clusters with a rather wide distribution of these 
variables. Since the KPIs are not only depending on one variable, both improvements and 
additional errors are made when the results are scaled with a geometrical property. The 
clusters with a wide distribution of the geometrical property, used to scale the results, most 
likely introduce more improvements than additional errors, while this is the opposite in clusters 
with a narrow distribution. Therefore, when the building stock is divided in a lot of clusters and 
only limited number of dwellings are part of a cluster with a rather wide distribution of the 
property, the additional errors are no longer compensated by the improvements and the scaling 
is no longer recommended. This hypothesis is neither rejected nor proven, since the 
examination of the KPI peak power tends to confirm this but the KPI energy demand for SH 
not. To be able to draw general conclusions or to explain this phenomenon with certainty, more 
research is required. Which way of upscaling generates the most accurate results, how these 
results can be diversified introducing improvements and up until which number of clusters this 
improvements applies, has to be further investigated by examining other case studies and use 
cases. However, as the results of the upscaling by multiplying by the number of dwellings are 
already quite accurate, the urge of this further research must be nuanced.


6.3 Accuracy of the tailor-made clustering approach 

The root mean square errors (RMSEs) of the results based on the tailor-made clustering 
approach relative to the results based on the complete GIS data approach can be caused by 
different aspects. A fraction of the errors is due to the generalisation of the results of the 
representative buildings to the entire stock by the clustering and another fraction is created by 
the estimation of the energetic behaviour by the selected sets of variables. The errors 
generated by the clustering of the stock based on one of the energy KPIs showed that the 
applied cluster technique — k-means clustering — is capable of dividing the building stock in 
nearly perfect groups to estimate the results of the reference scenario. When more factors — in 
this case three KPIs — are taken into account, the clustering can no longer focus on one 
factor, which makes that the groups are not containing dwellings with exactly the same results 
for one KPI anymore and therefore the errors increase. But since the sets of variables consist 
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of factors that should all be taken into account, this is exactly what is desired when the 
clustering is executed based on the sets of variables.  
The additional errors caused by the sets of variables are more significant in the use cases with 
interest in only one KPI than the errors due to the clustering. In the use case Peak power, 
energy demand for SH and specific energy demand, these additional errors are lower than in 
the other use cases, since the fraction caused by the clustering is higher. The distribution of 
the focus when clustered on the three energy KPIs, which generated this higher fraction of the 
clustering, is partly compensated by the fact that each variable contains some information on 
every KPI.


As the applied cluster technique manages to divide the building stock with a very high 
accuracy based on the given factors, the selected sets of variables should be the first 
consideration of further examination if the accuracy of the tailor-made clustering approach has 
to be improved. When another case study is investigated, the list of potential variables will be 
different and therefore, the selected sets of variables will have to be adjusted. Moreover, due to 
the data availability and specific conditions of the particular case study in this work, a lot of 
previously applied variables could not be examined. Thus, more progress is possible in the 
selection of sets of the variables than in the cluster technique. Especially the energy KPI energy 
demand for SH is estimated the least accurately by the set of variables for the use case that 
concentrates on only this KPI.


The accuracy of the results is increasing with the number of clusters. Therefore, the desired 
degree of accuracy for a particular study can be prompted by the researchers and will define 
the required number of clusters. However, since only one case study and three use cases have 
been examined, this link cannot be generalised based on these results. To be able to guarantee 
at least the prompted degree, the link between the accuracy and the therefore required number 
of clusters has to be further investigated based on a lot more case studies.


The tailor-made clustering approach is validated by a comparison with results of a random 
clustering and selection of representative buildings. The errors generated by this random 
clustering are in every situation a lot larger and the curves show an erratic course, which 
indicates that the results of this random clustering are not reliable. The tailor-made clustering 
approach generates clearly a more accurate estimation of reference scenario based on the 
complete GIS data approach. 
The reported errors of simulations based on archetypes or sample buildings in previous studies 
are discussed and compared to the errors of the tailor-made clustering approach. Although this 
is not proven since the case studies are different, the developed approach seems to generate 
more accurate estimations of the simulations based on the complete GIS data approach than 
the approaches that make use of archetypes or sample buildings, when the number of clusters 
equals the number of archetypes or sample buildings used in the other case studies, taking the 
differences in number of dwellings in the entire stock into account. 
Finally, the errors made by the developed approach are placed into perspective by mentioning 
the reported errors in some other studies of detailed simulations — similar to the complete GIS 
data approach — compared to the actual energy consumptions. When the building stock is 
modelled in LOD2, the errors made by the tailor-made clustering approach are of the same 
order of magnitude as the errors made by the simulation. When the stock is modelled in LOD1, 
the errors by the developed approach are a lot less influential than those by the simulations. 
Thus, the errors by the tailor-made clustering approach might be also acceptable. However, 
herewith must be stated that the errors by the developed approach might be complementary to 
those by the simulations.
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6.4 General conclusion and future research 

As only one particular case study is examined, the scope of this work cannot prove general 
conclusions on the developed tailor-made clustering approach. However, in order to be able to 
generalise the findings, the described method to test the approach can easily be used to 
investigate multiple other case studies and scenarios. The approach did already demonstrate 
that it is able to generate accurate results compared to the reference scenario — based on the 
complete GIS data approach — with a strong simplification of the complex model. 
When other case studies are investigated, the potential variables will be different since they are 
strongly depending on the data availability and the specific conditions of the case study. 
Therefore, the variables will be ranked in a different order for each KPI and other sets of 
variables might appear as most accurate for the defined use cases. Additionally, it is possible 
that the proposed ways of upscaling will not be the most accurate in other case studies. 
Especially, the number of clusters, for which it is not recommended anymore to scale the 
results using a geometrical property of the dwellings, will almost certainly not be the same as in 
this work. Besides that, examining other use cases concentrating on other KPIs or other 
combinations might be interesting to expand the scope of the developed approach.


Although this is not taken into account in this work, the user profiles seem to have a large 
influence in the demarcation of archetypes by various other researchers. Instead of determining 
the demanded temperature set points based on the ISO 13790 standards, the StROBe module 
— Stochastic Residential Occupancy Behaviour — can be used to simulate the residential 
human behaviour based on stochastic data and in this way implement divergent user profiles 
(Baetens et al., 2015). Then, further research is required to investigate the importance of this 
additional potential variable. Moreover, it must be examined how this variable can be translated 
to one summarising value for each dwelling in order to be able to use this variable to execute 
the clustering. Of course, this value must be able to be determined without requiring the 
knowledge of the results. When the varying user profiles are added to the approach, the 
constraint that every household demands the same temperature set points at the same 
moments will be eliminated and a more realistic simulation of the actual situation can be 
modelled.


Thus far, the accuracy of the developed approach is only examined on the scale of the entire 
district. The errors are calculated for each dwelling individually and then accumulated to 
discuss the accuracy of the approach in general. To ascertain that the approach is also 
generating acceptable errors on the scale of the individual dwellings, the errors must be 
examined for each dwelling separately. Additionally, it is not yet determined whether districts of 
another scale demand the same number of clusters to achieve the same accuracy or if this is 
adapting with the number of dwellings in the district. Finally, the investigated district in this 
work has some very particular characteristics due to the construction situation. Therefore, it 
still has to be ascertained that the findings in this work also do apply to other — less 
monotonous — districts. 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