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Samenvatting

Pathogene bacteriën worden in toenemende mate resistent tegen antibiotica. Door

een gebrek aan ontwikkeling van nieuwe klassen antibiotica, alsook door een groter

wordende resistentie, zijn er steeds minder middelen beschikbaar in de strijd tegen

bacteriën. Hierdoor stijgt al jaren de nood naar alternatieve en meer specifieke ther-

apeutische middelen. Een veelbelovende alternatieve oplossing voor dit probleem

zijn de natuurlijke vijanden van bacteriën, de bacteriofagen. Deze bacteriële virussen

infecteren vaak slechts één of enkele bacteriële species, of zelfs specifieke stammen.

Fagen gebruiken hiervoor specifieke eiwitten die een geschikte bacteriële host kun-

nen herkennen. In dit werk werd faag-host specificiteit bestudeerd met twee compu-

tationele technieken: optimal transport en machine learning. Hierdoor draagt dit werk

bij tot een beter begrip van faag-host specificiteit. Dit werk toont ook aan dat com-

putationele tools gebruikt kunnen worden om faag-host specificiteit op een nieuwe

manier te bestuderen. Deze tools kunnen potentieel voor verschillende applicaties

gebruikt worden.

Een van de centrale vragen in dit werk is of specifieke determinanten van faag-host

specificiteit geïdentificeerd kunnen worden in faag proteomen en proteïnen. Hier-

voor werd optimal transport gebruikt, een techniek om similariteit te meten tussen

faag proteomen en proteïnen. Als ’proof-of-concept’ werd deze techniek gebruikt

om afstanden te berekenen tussen faag proteomen om zo een classificatie boom te

construeren. Daarna werd optimal transport toegepast om afstanden te berekenen

tussen de proteïnen van drie fagen van de T7 virus groep. Hier werd geprobeerd

om de proteïnen te identificeren die uniek waren tussen de drie faag proteomen. Dit

werk toont aan dat afstanden berekend door optimal transport mogelijks een goede

similariteitsmaat kunnen zijn tussen proteïnen en proteomen.

De proteïnen die fagen gebruiken om hun host te herkennen zijn vaak gelegen op

zgn. tail fibers en/of tail spikes. In een tweede deel van dit werk werd tail fiber and

tail spike proteïne data gebruikt om bacteriële hosts te voorspellen m.b.v. machine

learning methoden. Verder werd getracht deze proteïnen te karakteriseren o.b.v. de

’features’ die belangrijk zijn in de predicties. De ontwikkelde methode is in staat

om drie verschillende bacteriële hosts te onderscheiden met accuraatheden tot 93%.

Echter, om deze methoden verder uit te breiden is een betere annotatie van eiwit



data noodzakelijk. Daarnaast toont dit werk aan dat faag-host specificiteit complex

is en het verschil in host specificiteit niet kan verklaard worden o.b.v. een beperkt

aantal eenvoudige eigenschappen.

Trefwoorden: faag-host specificiteit, tail fiber eiwitten, optimal transport, machine

learning.
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Summary

Pathogenic bacteria become increasingly resistant to antibiotics. The lack of discovery

of new classes of antibiotics along with the emerging resistance leads to a decreasing

number of therapeutic options. As a result, the need for alternative, more specific ap-

proaches keeps growing year by year. A promising alternative approach to this prob-

lem are the natural enemies of bacteria, bacteriophages. These bacterial virusses are

known to be highly specific to only one or a few bacterial species, or even particular

strains. Phages employ specific proteins to recognize a suitable bacterial host. In this

work, phage-host specificity is studied using two computational approaches: optimal

transport and machine learning. In doing so, this work contributes to a broader un-

derstanding of phage-host specificity. It also shows that computational tools can be

adopted to study host specificity in a new way. Potentially, these tools can be used

for various applications.

One of the central questions of this work was whether determinants of phage-host

specificity could be identified in phage proteomes and proteins. Therefore, optimal

transport was applied as a technique to measure similarities between phage pro-

teomes and proteins. As a proof-of-concept, the technique was first adopted to com-

pute distances between phage proteomes in order to construct a classification tree.

Secondly, optimal transport was used to compute distances between the proteins of

three phages of the T7 virus group. Here, it was attempted to identify the proteins

that are unique among the three phage proteomes. This work shows that distances

computed by optimal transport can be a good measure for similarity between pro-

teomes and proteins.

Often, the proteins used by phages to recognize a suitable bacterial host are located

on tail fibers and/or tail spikes. In the second part of this work, tail fiber and tail spike

protein data were used to predict bacterial hosts using machine learning methods.

Furthermore, it was attempted to characterize the tail fiber and tail spike proteins

based on features important in prediction. The methods developed in this work are

able to discriminate between three classes of bacterial hosts with performances of up

to 93%. However, to extend these methods even further, a better annotation of data

is needed. Additionally, this work shows that phage-host specificity is complex and



differences in host specificity can not be explained only based on simple characteris-

tics.

Keywords: phage-host specificity, tail fiber proteins, optimal transport, machine

learning.
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Introduction and outline

Introduction

Pathogenic bacteria continue to evolve and become resistant to new antibiotics. What

if by 2050, as much as ten million lives will be lost annually due to multidrug resistant

bacteria (ONeill et al., 2016)? Antibiotics are typically small molecules that inhibit

bacterial growth in some way. Because of their misuse and selective pressure on

bacterial communities, over the years bacteria have developed numerous resistance

mechanisms against these molecules. Examples are the metabolization or excre-

tion of these molecules, or changing the target to render the antibiotic ineffective

(Davies and Davies, 2010). As a result, classical discovery and development of new

antibiotics is becoming increasingly difficult. Particularly, the lack of discovery of new

classes of antibiotics along with the emergence and spread of resistance leads to a

decreasing number of therapeutic options, and even no options in case of pan-drug

resistant strains (Rossolini et al., 2014). Another problem is the disruptive effect

of broad-spectrum antibiotics on microbiota that have positive health effects (Ando

et al., 2015). Moreover, these beneficial bacteria can transfer resistance genes to

pathogenic bacteria via horizontal gene transfer, leading to an even faster pace of

resistance formation. As a result, the need for alternative, more specific approaches

keeps growing year by year.

A promising alternative approach to this problem are the natural enemies of bacte-

ria, bacteriophages. Every day, as much as half of all bacteria on earth are killed by

bacteriophages (Rohwer et al., 2009). These are bacterial viruses that can effectively

infect and lyse bacterial cells by coding specific enzymes that degrade the bacterial

cell wall. Phages themselves have been used to combat bacterial infections for many

decades, a treatment which is called phage therapy. However, regulatory issues to-

gether with the success of small molecules as antibiotics hampered the popularity

of this type of treatment (Wittebole et al., 2014). Today, there is a renewed inter-

est in phages, not only for their use in phage therapy, but also for specific proteins

they encode (Doss et al., 2017). Tail fiber and/or tail spike proteins are necessary to

specifically recognize a suitable bacterial host. Additionally, proteins are needed to

degrade the bacterial cell wall to escape the bacterial host. One class of enzymes that



degrades the bacterial cell wall are the endolysins (Schmelcher et al., 2012). These

proteins are all necessary to complete the lytic life cycle of these viruses. As bacteria

have continued to evolve, bacteriophages have coevolved with them.

By studying bacteria-phage interactions and the proteins involved, important proteins

can be identified and synthesized in the lab using recombinant DNA technology. With

the help of protein engineering, these proteins can be used as novel antibiotics (so-

called enzybiotics) or used for genomic engineering to create synthetic viruses with

modified tail fibers and/or tail spikes. Another use of tail fibers is the development

of customized pyocins or tailocins (Ghequire and De Mot, 2015). Tailocins are bacte-

riocins that kill bacteria by dissipating the membrane potential after binding to cell

surface receptors. These protein complexes highly resemble bacteriophage tail struc-

tures, in which host specificity is determined by the specific tail fiber protein (Yao

et al., 2017). However, in contrast to phages, these protein complexes cannot self-

replicate. Therefore, proteins such as enzybiotics, tail fibers and tailocins are more

appealing to the current regulatory framework, compared to phage therapy.

The aim of this project is to get a better understanding of the factors that are impor-

tant for host specificity of bacteriophages and to define general rules regarding host

specificity of bacteriophages. To do so, a computational approach will be adopted.

More specifically, phage-host interactions will be studied at two distinct levels: first at

the proteome level and subsequently at the level of specific proteins that are known

to be important for host specificity. The hypothesis is that by leveraging computa-

tional techniques, patterns can be uncovered that would otherwise not be identified

by studying these interactions one by one. These can provide valuable insights in

how phage-host specificity works at the protein level. At a later stage, the goal is to

translate the obtained knowledge to the field of synthetic biology for the design of

synthetic virusses with modified host specificity.

Outline of this dissertation

The first three chapters of this work comprise a series of bioinformatics analyses that

are carried out to better understand phage proteomes and how specific proteins are

important for specificity. Chapter one will start with a general overview of bacteria

and phage characteristics, as well as their interactions and why it is important to

study these interactions. In Chapter two, phages and their proteomes are discussed

in depth, and a mathematical framework called optimal transport is adopted to study

these proteomes. Chapter three discusses specific proteins that are known to be

important for specificity in bacteria-phage interactions and applies optimal transport

2



again to identify these proteins in different phage proteomes. Chapter four of this

work focuses on one type of phage protein that is known to be essential for host

specificity: tail fiber proteins. Machine learning methods are developed to predict the

bacterial hosts related to these proteins and try to discover patterns in these proteins

that are related to a difference in host specificity. At the end of each chapter, the

obtained results are discussed and useful insights are highlighted. Finally, a general

conclusion is presented and some future perspectives are elaborated upon.

3
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CHAPTER 1

How and why do bacteria and

phages interact?

1.1 Bacteriophage life cycles

A bacteriophage or phage is a virus that infects a bacterial cell. Every phage consists

at least of a viral genome composed of nucleic acid and a protein shell, the capsid,

surrounding the genome (Weinbauer, 2004). This complete entity is referred to as

the virion. Virions themselves have no metabolic or reproductional capabilities. In

order for phages to reproduce, the virions have to come in contact with a suitable

host. After finding a suitable bacterial host, the phage genome is injected into the

prokaryotic cell and the reproduction cycle can continue. Generally, there are two

methods for phages to reproduce: via the lytic lifecycle and/or the lysogenic lifecycle.

The type of viral lifecycle determines the type of interaction between the phage and

its host (Clokie et al., 2011). Figure 1.1 gives an overview of these two cycles.

Both cycles start with a fully assembled virion particle. The virion contains proteins

that specifically recognize the host which the phage is able to infect (Weinbauer,

2004). These are the proteins that determine host recognition and they are discussed

in more detail in chapter three. After the virion binds to the correct receptor, the

phage genome is translocated into the cytosol of the bacterial host cell. In a typical

lytic cycle, the host's metabolism is quickly redirected to start synthesizing phage

proteins and replicating phage genomes, while keeping the bacterial cell intact until

new virion particles are ready to exit the host. Often, transcription of genes starts

as soon as the first part of the genome has entered the host cell. The products of

these genes assist in further entry of the genome (e.g. nuclease inhibitors) as well

as in modifying the host's metabolism to better suit the needs of the phage (Cenens

et al., 2013). Phage protein production is highly regulated to be as efficient as pos-

sible (Youle, 2017). The bacterial metabolism will usually produce phage proteins

and genomes in specific quantities as to maximize the number of assembled virions

and minimize the duration in which the cycle is completed. Phage proteins usually



1.1. BACTERIOPHAGE LIFE CYCLES
 CHAPTER 13  Viruses, Viroids, and Prions 383

the biosynthesis of viral proteins begins. Any RNA transcribed in 
the cell is mRNA transcribed from phage DNA for the biosynthesis 
of phage enzymes and capsid proteins. The host cell’s ribosomes, 
enzymes, and amino acids are used for translation. Genetic con-
trols regulate when different regions of phage DNA are transcribed 
into mRNA during the multiplication cycle. For example, early 
messages are translated into early phage proteins, the enzymes 
used in the synthesis of phage DNA. Also, late messages are trans-
lated into late phage proteins for the synthesis of capsid proteins.

For several minutes following infection, complete phages 
cannot be found in the host cell. Only separate components—
DNA and protein—can be detected. The period during viral 
multiplication when complete, infective virions are not yet pres-
ent is called the eclipse period.

Maturation 1 32 4 5 6 7 8 9 10 In the next sequence of events, maturation 
occurs. In this process, bacteriophage DNA and capsids are 
assembled into complete virions. The viral components essen-
tially assemble into a viral particle spontaneously, eliminating 
the need for many nonstructural genes and gene products. The 
phage heads and tails are separately assembled from protein 
subunits, and the head is filled with phage DNA and attached 
to the tail.

Release 1 32 4 5 6 7 8 9 10 The final stage of viral multiplication is the release 
of virions from the host cell. The term lysis is generally used for 

this stage in the multiplication of T-even phages because in this 
case, the plasma membrane actually breaks open (lyses). Lyso-
zyme, which is encoded by a phage gene, is synthesized within 
the cell. This enzyme causes the bacterial cell wall to break down, 
and the newly produced bacteriophages are released from the host 
cell. The released bacteriophages infect other susceptible cells in 
the vicinity, and the viral multiplication cycle is repeated within 
those cells.

Bacteriophage Lambda (!): The Lysogenic Cycle
In contrast to T-even bacteriophages, some viruses do not cause 
lysis and death of the host cell when they multiply. These lyso-
genic phages (also called temperate phages) may indeed proceed 
through a lytic cycle, but they are also capable of incorporating 
their DNA into the host cell’s DNA to begin a lysogenic cycle. In 
lysogeny, the phage remains latent (inactive). The participating 
bacterial host cells are known as lysogenic cells.

We will use the bacteriophage λ (lambda), a well-studied ly-
sogenic phage, as an example of the lysogenic cycle (Figure 13.12).

1 32 4 5 6 7 8 9 10 Upon penetration into an E. coli cell,
1 32 4 5 6 7 8 9 10 the originally linear phage DNA forms a circle.

3A  This circle can multiply and be transcribed,
4A  leading to the production of new phage and to cell lysis (the 

lytic cycle).

Figure 13.12 The lysogenic cycle of bacteriophage λ in E. coli. 

Q   How does lysogeny differ from the lytic cycle?

Phage DNA
(double-stranded)

1 Phage attaches
to host cell and
injects DNA.

2 Phage DNA circularizes and enters
lytic cycle or lysogenic cycle.

OR

Lytic 
cycle

3A New phage DNA and
proteins are synthesized
and assembled into virions.

4A Cell lyses, releasing
phage virions.

Lysogenic 
cycle

4B Lysogenic bacterium
reproduces normally.

5 Occasionally, the prophage may
excise from the bacterial chromosome
by another recombination event,
initiating a lytic cycle.

Many cell
divisions

Prophage

Bacterial
chromosome

3B Phage DNA integrates within the
bacterial chromosome by recombination,
becoming a prophage.

Figure 1.1: Overview of the lytic and lysogenic cycles of bacteriophage λ in
E. coli.

In the lytic cycle, phages infect their host, inserting their genome in the host. The phage
genome is transcribed and copied while virion production is started. Once enough virions are
completed and packaged with a new copy of the phage genome, endolysins encoded by the
phage genome will result in lysis of the bacterial cell, releasing the progeny virions. In the lyso-
genic cycle, the phage genome is inserted after which it is stably integrated with the bacterial
chromosome, forming a prophage. This lysogenic bacterium can reproduce normally while
replicating the phage genome along with it. Triggerred by several conditions, the prophage can
excise out of the genome, to start a lytic cycle afterwards (Tortora et al., 2013).

self-assemble, after which the phage genome is packaged into the newly formed cap-

sid (Diaz-Munoz and Moskella, 2014). During protein production, transcription of the

phage genome typically also results in the production of endolysins. At the end of

the lytic cycle, these enzymes will degrade peptidoglycan in the cell wall of the host,

causing the cell to lyse (Weinbauer, 2004). New virions exit the cell and the lytic

cycle can repeat itself. Phages that reproduce only through means of the lytic cycle

are referred to as virulent or lytic phages. The number of occurring lytic cycles is esti-

mated at approximately 1025 every second, and they have been occurring for billions

of years (Youle, 2017).

In the lysogenic cycle, the phage genome is injected in the host cell but is not (com-

pletely) transcribed. Instead, the genome either forms a (self-replicating) plasmid or

integrates in the host genome. Integration is mediated by phage-encoded integrases.

These enzymes bind at specific locations in the host chromosome and subsequently

integrate the phage chromosome into the host genome by site-specific recombina-

tion. The integrated phage chromosome is now called a prophage and will replicate

along with the host genome while the bacterial host replicates. This process is called

propagation (Clokie et al., 2011).

6



CHAPTER 1. HOW AND WHY DO BACTERIA AND PHAGES INTERACT?

Because the pace of replication is more determined by the growth of the host, prophages

replicate markedly slower than virulent phages. This process continues for an indef-

inite period, sometimes for several thousands of generations. The prophage genes

needed for the lytic cycle are silenced, while other genes are expressed. The ex-

pression of these genes can sometimes benefit the bacterium in this interaction, for

example by blocking infection by related phages (Zinder, 1958). At a later stage, how-

ever, if survival of the host cell is threatened, the prophage excises from the bacterial

chromosome and resumes the lytic cycle. This switch is called prophage induction

and can be triggered by DNA damage to the host or external conditions (Clokie et

al., 2011; Cenens et al., 2013). Phages that are able to switch between a lytic and

lysogenic cycle are named temperate phages.

Only a few phages never undergo a lytic cycle (Youle, 2017). A third, less common

lifecycle, is one observed in some archaeal phages. It is a lifecycle in which the

bacterial cell's metabolism is also redirected towards assembly of new virions, but

with the difference that no lysis occurs at the end of the cycle. Instead, the host

continues to grow (more slowly than normal), while new virions continuously extrude

through the cell membrane. This cycle is sometimes referred to as the chronic life-

cycle (Weinbauer, 2004). Here as well, proteins are needed for specific recognition

of a suitable host. This type of lifecycle, however, limits the size of produced virions

and thus chromosome length. Phages with fewer genes generally possess less ca-

pabilities for host manipulation and defense against their host or external conditions

(Youle, 2017). Other authors, such as Cenens et al., mention two more phage lifecy-

cles, pseudolysogeny and carrier-state lifecycles. In both these lifecycles, the phage

neither starts a lytic cycle nor integrates into the host chromosome. This can provide

several benefits to the phage, such as protection of their genomic material from de-

teriorating conditions outside the host, preventing a lytic cycle when host recources

are scarce or avoiding complete dependence on the host's DNA damage response for

prophage induction (Cenens et al., 2013). In pseudolysogeny, the phage usually later

decides to continue with a lytic or lysogenic cycle. It is therefore not clear whether

pseudolysogeny represents an actual cycle or only a decision point in the life cycle

of temperate phages (Diaz-Munoz and Moskella, 2014). This might indicate that this

classification of viral lifecycles is an oversimplification of the actual diversity of viral

lifecycles (Weinbauer, 2004).
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1.2 The (dis)advantages of bacteria-phage

interactions

As all viruses explicitly need a host cell to replicate, the main benefit of bacteria-

phage interactions for the phage itself is the possibility of the propagation of its lin-

eage. Through a lytic cycle, virulent phages can produce large numbers of progeny

in a short period of time by benefiting from the host cell's metabolism and infras-

tructure. Temperate phages replicate slower in a lysogenic cycle and also need more

genes than virulent phages. Besides performing a lytic cycle, temperate phages also

need to decide what life cycle to follow, they have to be able to insert and excise from

the host chromosome, silence specific genes and monitor the host cell to know when

the lytic cycle can or has to be resumed. However, in environments with nutrient

limitation, growth of the bacterial host will be limited or non-existent. As nutrients are

also needed for virion production, delaying the lytic cycle in this scenario allows the

temperate phage to maintain replication, while waiting for better conditions. Choos-

ing lysogeny also protects the phage chromosome from UV radiation and ensures

survival when host abundance is low (Jiang and Paul, 1996).

Bacterial hosts can also benefit from bacteria-phage interactions in several ways.

Prophages protect the bacterium from infection by related phages by expressing

genes that block superinfection (i.e. additional infection by other phages), for ex-

ample by modifying cell surface receptors of the bacterial host. A lysogenic cycle is

also blocked for these related phages as the integration site in the bacterial chromo-

some is not available anymore (Susskind et al., 1974; Youle, 2017). A second benefit

is the bacterial diversity that arises from the infection with prophages. Prophages

frequently express metabolic genes, to help the host grow and replicate in adverse

conditions, which can be a competitive advantage (Cenens et al., 2013). These and

other genes can also be acquired by the bacterium itself when the genes needed for

excision of the phage chromosome lose their function due to mutations from repli-

cation errors. In that case, the prophage is no longer able to resume a lytic cycle,

and the defective prophage remains in the bacterial chromosome, while most of the

phage genes remain functional. These genes can benefit the bacterium, acting as

specialization genes that are not present in other strains of the species (Youle, 2017).

Thirdly, genes from the prophage chromosome can encode toxins and virulence fac-

tors that are essential to the pathogenicity of several bacterial strains. Nearly all

pathogenic bacteria carry at least one prophage, e.g. Vibrio cholerae and E. coli O157

(Ross et al., 2016). The encoded toxins can also serve as self-defense of the host

against the inside of food vacuoles of protists. Finally, phages contribute to bacterial
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evolution by enabling horizontal gene transfer through a process called transduction

(Diaz-Munoz and Moskella, 2014). This is the transfer of cellular genes from one bac-

terial host to another by phages. For successful transduction, DNA from the first host

has to be packaged inside a virion, the packaged DNA has to be delivered to a new

host cell and the DNA should finally be integrated in the new host's chromosome.

This process can be done in two ways, which are visualized in Figure 1.2. The first

way results after an imperfect excision of the prophage chromosome from the host

chromosome. Here, the prophage is cut in a way that includes some adjacent host

DNA. If the resulting virion infects a new cell and is inserted into the new bacterial

chromosome, the bacterial DNA from the first host is inserted as well. This type of

transduction only transfers bacterial genes that are adjacent to insertion and excision

sites of the phage chromosome. Therefore, it is called specialized transduction. A

second type of transduction can transfer any region of the bacterial chromosome. At

the end of a lytic cycle, phage packaging proteins can mistake bacterial DNA for the

phage chromosome and accidentally package this DNA inside a virion. Because there

is no restriction on what genes can be packaged this way, this type of transduction is

called generalized transduction (Trevors, 1999).

1.3 Coevolution of bacteria and their phages

Not every delivery of a phage chromosome results in a successful infection of the

host. As bacteria continue to evolve over time, they have developed numerous de-

fense mechanisms to stop phages from infecting them (Chaturongakul and Ounjai,

2014). Bacteria can reduce adsorption by modifying receptors, avoid takeover of the

cell's metabolism post-infection (e.g. via CRISPR-Cas adaptive immunity) or commit

suicide in which both the cell and phage die (Fineran et al., 2009; Diaz-Munoz and

Moskella, 2014). Reducing phage adsorption is the most studied process, as this can

be observed under laboratory conditions. Phages rely on bacterial receptors for recog-

nition of their hosts, and these receptors can be modified to avoid phage infection.

In coculture experiments of bacteria and their phages, bacteria with altered phage

receptors can rapidly take over the population. For example, the segment which is

recognized by the phage can be concealed without compromising the function of the

receptor. The recognized segment can also be modified by mutation. Mutation of

just one amino acid in a critical location can be sufficient to block phage recognition.

However, this alteration can reduce a bacterium's fitness in the environment as these

receptors are often responsible for nutrient uptake (Weitz et al., 2005). Even a minor

reduction in fitness can significantly reduce the bacterium's share in the population

over the long term. However, this mutation can be maintained as long as the benefits
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Figure 1.2: Transduction mechanisms in phage bacteria interactions that
result in horizontal gene transfer.

Generalized transduction (left) is the process in which, after phage infection, bacterial DNA
is packaged in a virion. If this virion infects a new host, crossing over of this bacterial DNA
can occur to the genome of a new (related) bacterial host. In specialized transduction (right),
bacterial DNA is packaged in a new virion as a consequence of imprecise excision of a prophage.
This virion can infect a new bacterial host as well, possibly transferring genes located next to
the prophage integration sites to a new (related) bacterial cell (Simon et al., 2010).

from reduced phage predation outweigh the disadvantages of reduced nutrient up-

take (Youle, 2017). Additionally, phages can evolve to come up with new strategies to

infect their host. The genes encoding the proteins needed for recognition are known

to be the fastest evolving genes in the phage genome. Lenski does note that evolu-

tion of this highly specific adsorption process might come with structural constraints

that are more serious than nutrient uptake restrictions of bacteria. Because of this,

there exists an asymmetry in the evolutionary potential of bacteria and their phages

(Lenski, 1984). Nevertheless, coevolution as a whole has been ongoing for billions of

years and this is one of the reasons that studying interactions between bacteria and

their phage is interesting.

While coevolution of virulent phages and their host is antagonistic, lysogeny can re-

sult in mutualistic coevolution (Lenski, 1984). Indeed, phages and bacteria also adopt

mechanisms from each other. After lysogeny, the inserted phage chromosome is

subject to the same rate of mutation as the bacterial chromosome. When such a mu-

tation results in the phage chromosome being unable to excise, the prophage remains
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present in the bacterial chromosome, while most of the genes remain intact. Bacteria

can use some of these genes, and gradually eliminate other genes that are not useful.

For example, major capsid proteins of defective prophages can evolve towards pro-

teins used by bacteria to build compartments that house bacterial enzymes (Youle,

2017). Compartmentalization in a metabolic pathway involving multiple steps can

increase the efficiency of production in this pathway. Some bacteria also use these

capsid proteins to produce virions containing bacterial DNA as a means of horizon-

tal gene transfer. As these modified virions still retain their original host specificity,

they are able to transfer genes between closely related host cells. However, because

these modified virions can only be released through cell lysis, this process is only

deployed under stress conditions. A third example is the adoption of phage tail struc-

tures by bacteria. Several hosts retain the phage tail gene cluster and modify these

tail structures to serve as so called pyocins or tailocins (Chaturongakul and Ounjai,

2014). These proteins can either puncture the cell membrane of target cells or inject

toxic substances into them. However, assembled tailocins are only released through

cell lysis, therefore tailocins are only produced when the cell is faced with irreparable

DNA damage (Youle, 2017). In this regard, tailocins provide the bacterial species as a

whole an increased resilience, particularly under stressful conditions (Diaz-Munoz and

Moskella, 2014).

Whether coevolution is a never-ending process can be debated. For example, phages

can still exist in a population of resistant bacterial hosts if sensitive hosts are present

and have a competitive advantage over resistant hosts (Lenski, 1984). On the other

hand, when bacteria mutate or conceal the receptor needed for phage recognition

without a reduction in fitness, these bacteria develop complete resistance, while

avoiding competitive disadvantages. In such a scenario, phage evolution may not

be able to catch up with resistant hosts and coevolution stops for this bacteria-phage

combination (Weitz, 2005). Still, there is substantial evidence that coevolution of

bacteria and their phages contribute to bacterial diversity as well as effect bacterial

virulence and bacterial evolvability (Diaz-Munoz and Moskella, 2014). It is also clear

that phages play a key role in the never-ending evolution of bacteria, and vice versa

(Chaturongakul and Ounjai, 2014).

1.4 Experimental approaches to determine

phage-host specificity

Over billions of years, coevolution has also determined phage host range (phage-host

specificity). Many phages are highly specific to only one or a few bacterial species,
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even particular strains. On the other hand, some phages do exhibit a broad host

range, even spanning different bacterial genera. This can be explained by the fact

that phages can also experience a reduction in fitness when evolving. Phages can

evolve to infect a broader range of hosts, but if this expansion in host range implies a

reduction in reproductional capabilities, these phages might not be able to compete

with other phages for a finite number of hosts. Host range probably also depends

on the environment in which bacteria and phages interact, which might explain why

some phages do continue to exhibit broader host range. For example, when host

abundance is low relative to the number of phages infecting these host, it is advanta-

geous to exhibit a broader host range (Koskella and Meaden, 2013).

Several laboratory methods exist to determine phage host range. Two commonly used

techniques are plaque assays and spot assays. In plaque assays, one or a few phages

(e.g. derived from an environmental sample and diluted) are inoculated with a grow-

ing bacterial culture. After repeated rounds of infection and bacterial lysis, plaque

formation (clearing) is observed for cells where phages are able to produce progeny.

In spot assays, a small volume of phage is placed on growing bacteria, after which

lysis of bacterial cells can be observed as a confluent clearing zone (Middelboe et al.,

2010). However, when a large number of phages absorb to the bacterial cell, lysis can

occur without infection, thus producing a false positive result (Edwards et al., 2016).

To avoid this, dilution series have to be made. Only true positive results will still pro-

duce individual plaques when diluted. In addition, both methods can produce false

negative results if temperate phages choose lysogeny over the lytic cycle. A third

option is a liquid assay, in which bacterial growth in liquid culture is measured by op-

tical density (OD). After addition of phages, bacterial growth will decrease relative to

a control when phage infection is successful. However, cell lysis forms debris that can

impact OD measurements. Phages can also be fluorescently labeled (viral tagging).

After adsorption of labeled phages to bacterial cells, the tagged bacterial cells can be

sorted using flow cytometry and identified using sequencing techniques (Mossier-Boss

et al., 2003). This method only measures phage adsorption, which does not neces-

sarily indicates a successful infection. Several other experimental approaches exist,

including PCR, fluorescence in situ hybridization (FISH) and sequencing, as discussed

by Edwards et al. (Edwards et al., 2016).

In general, different methods can give different results (Diaz-Munoz and Moskella,

2014). This is due to the fact that different methods depend on different steps of

the phage infection process. The presence of prophages or plasmids and bacterial

resistance mechanisms can all influence phage infection. Phage host range may well

neither be a stable nor binary characteristic (Diaz-Munoz and Moskella, 2014; Ross

et al., 2016). In addition, results from laboratory techniques may hardly be extend-
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able to phage host ranges in their native environment (Chaturongakul and Ounjai,

2014). Generally speaking, phage-host specificity is not a very well understood pro-

cess. Therefore, this work will attempt to contribute to this area by studying phage

proteomes in a bioinformatics and machine learning context. The following section

briefly describes the work that has already been done in this area.

1.5 Phage-host specificity in a computational

context

As the amounts of genomic and proteomic sequence data continue to increase dra-

matically, there is a need for computational tools to analyze this data. This presents

an opportunity to study biological organisms in a novel way by leveraging computer

tools. For example, sequencing an entire viral community (virome) may allow for the

identification of viruses in the community without culturing, hence avoiding culturing-

associated biases (Mokili et al., 2012). On the other hand, by avoiding culturing, a

direct link with its host is lost. As discussed in Section 1.4, determination of phage

host range in a laboratory environment presents several challenges and even ambi-

guities. But because of the fact that coevolution between bacteria and their phages

shapes their genomes and proteomes, in silico analyses of these data can serve as

worthy alternatives to study and determine phage-host specificity (Edwards et al.,

2016).

DNA sequence information can provide information regarding bacteria-phage interac-

tions in several ways. These include abundance profiles, genetic homology, CRISPR

spacers, exact matches between phage and bacterial genomes and oligonucleotide

profiles. Firstly, abundance profiles of phage and bacterial sequence across metage-

nomic datasets can provide information regarding phage host specificity. As phages

explicitly depend on their host for reproduction, phages will only be present in en-

vironments where corresponding bacterial hosts are also present. These abundance

profiles change over time. Changes in phage abundance coinciding with changes in

bacterial abundance can indicate an interaction between both (Stern et al., 2012).

One disadvantage of this method is that population dynamics can blur the correlation

between the abundance profiles of phages and their hosts. For example, antibiotic

treatments will decrease host abundance, while phages are still present. Genetic ho-

mology provides an alternative approach to predict bacteria-phage interaction (Modi

et al., 2013). Secondly, both lytic and temperate phages can incorporate bacterial

DNA into their chromosome due to errors in DNA packaging into the virion or exci-

sion of the prophage out of the bacterial chromosome. If this bacterial DNA provides
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a competitive advantage to the phage, natural selection will retain this DNA in the

phage chromosome. These homologous genes in phages and bacteria can be used

to predict bacteria-phage interaction, through sequence similarity searches (Edwards

et al., 2016). Thirdly, CRISPR spacers can also be used for this purpose (Stern et al.,

2012). Several, but not all bacteria, retain a short 25-75 base pair long nucleotide se-

quence (called spacer) of the phage in their genome. The CRISPR-Cas system provides

adaptive immunity to the bacterium (Horvath and Barrangou, 2010). Through se-

quence alignment, these spacers can be linked to the phages that infect the bacterial

cell of interest. Edwards et al. (2016) note that this approach strongly depends on the

number of mismatches allowed between spacer and phage genome. Finding an ap-

propriate CRISPR match is rare, but of strong significance if identified. Another point

of consideration is that CRISPR spacers are replaced over time, thus making these se-

quences more suitable for prediction of recent phage-host interactions (Horvath and

Barrangou, 2010). Yet another method of predicting bacteria-phage interaction is by

looking at exact matches between phage and host genome. This is especially use-

ful for temperate phages that integrate in the host genome. Prophage sequences as

a whole can be searched for directly in the bacterial genome. Prophage integration

sites also contain exact sequence matches. These integration sites consist of flank-

ing DNA (P and P' in the phage genome, B and B' in the bacterial genome), with in

between both ends a common core that is identical between phage and host (Hoess

and Landy, 1978). This common core does vary in length, and shorter sequence

matches can hardly be distinguished from random matches. Prophinder, a compu-

tational tool to predict prophages in bacterial genomes, takes this one step further.

The algorithm identifies phage-like coding sequences (CDSs) in the bacterial genome

by gapped BLASTP search. Subsequently, prophages are predicted based on regions

in the bacterial genome that are enriched in phage-like genes (Lima-Mendez et al.,

2008). One final approach to predict bacteria-phage interaction is through the use

of oligonucleotide profiles. Phages will adapt their nucleotide composition to cope

with intracellular nucleotide pools and tRNA availability as well as to avoid recog-

nition by host restriction enzymes (Pride et al., 2006). Comparing oligonucleotide

usage profiles of bacteria and phages by calculating the Euclidean distance between

these profiles can be used to predict phage-host relationships (Roux et al., 2015).

Edwards et al. (2016) assessed the predictive power of the above-mentioned meth-

ods by analyzing 820 phages with annotated hosts. In their study, homology-based

approaches resulted in the highest number of correct predictions to identify phage

hosts. Using exact matches tended to be the most informative, predicting the correct

host species in approximately 40% of the cases. Genetic homology using nucleotide

BLAST (BLASTN) performed only slightly worse in predicting the correct host species,

which was correct in 38.5% of the cases. On the other hand, homology-independent
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Figure 1.3: Results of the study by Edwards et al. which compared different
computational methods to predict bacteriophage-host relationships.

The figure shows the percentage of phages for which the host was correctly predicted (top
scoring hosts) across different used computational approaches.

approaches also seem to be appropriate for prediction of phage hosts. Additionally,

performances of about 40% still have a lot of room for improvement. An overview of

these results is given in Figure 1.3 (Edwards et al., 2016).

In another approach, Ahmed et al. (2009) used oligostickiness as a measure to predict

hosts of 25 phage species. Oligostickiness is a measure based on binding stability of

an oligonucleotide to a genome sequence. Indirectly, this is a measure of relaxed se-

quence similarity. Oligostickiness calculates the free energies of all possible hybridiza-

tion structures between an oligonucleotide at positions along a genome sequence. In

this regard, diverged (relaxed) sequences can still be analyzed because binding en-

ergy is more robust against mutations. Oligostickiness was used to calculate a similar-

ity score between genomes. This similarity score appeared to be significantly higher

between phage genomes and genomes of their known hosts as opposed to unrelated

bacterial genomes. Similarity scores even allowed to discriminate between virulent

phages and temperate phages (Ahmed et al., 2009).

As described in Section 1.1, phages use specific receptor binding proteins that bind

with bacterial receptors located on the cell surface. These receptor binding proteins

provide a link between phage and host. However, this is not a one-to-one relationship.

One bacterium may be able to be infected by multiple phages using multiple bacte-

rial receptors for phage adhesion (Chaturongakul and Ounjai, 2014). The question
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remains whether these receptor binding proteins possess unique characteristics that

enable to distinguish between different hosts. This is the main hypothesis of Chap-

ters three and four, which will elaborate on this question using different approaches.

However, Chapter two will first introduce a mathematical framework called optimal

transport that can be used to study phage proteomes and proteins, after which it will

be used to study phage-host specificity at the proteome level. Chapter three will then

discuss receptor binding proteins in more detail and apply optimal transport to the

proteomes of T7-like phages to identify unique elements in these highly similar pro-

teomes. Chapter four will specifically focus on certain receptor binding proteins and

apply machine learning algorithms to identify unique characteristics of these proteins,

which will be used to predict bacteria-phage interaction.
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CHAPTER 2

Phages and their proteomes

2.1 Characteristics of phage proteomes

Bacteriophages generally exhibit a highly specific host range. Therefore, they are

a viable option to control bacterial pathogens. However, in order to use them ef-

fectively, knowledge of phage biology and bacteria-phage interaction is needed. As

discussed in the previous section, studying phage genomes can considerably aid in

understanding bacteria-phage interactions. Studying phage proteomes can serve this

purpose as well.

Phages, and viruses in general, are spectacularly diverse in the nature and organi-

zation of their genetic material, gene sequences and encoded proteins (Simmonds

et al., 2017). In general, proteins are needed for DNA replication, integration (for

lysogenic phages), packaging, structural aspects (head and tail) and performing lysis.

This wide spectrum of proteins and protein functionalities results in an interplay with

proteins in host cells (ShengTao et al., 2011). Interestingly, the genes needed for

these different functionalities may be present in distinct modules in the genome, as

is the case for phages of Staphylococcus aureus (Kwan et al., 2005). It is the variation

in these proteins that allows bacteriophages to diversely interact with bacterial hosts.

Traditionally, the proteome composition of a specific virus is determined by cultivating

the virus, extracting proteins, separating those proteins by electrophoresis and finally

identifying the proteins through the use of immunoblotting or Edman degradation

(ShengTao et al., 2011). In more recent years, new methods have been developed and

subsequently used in viral studies. For example, two mass spectrometry approaches

have been widely used to study viral proteins: matrix-assisted laser desorption ion-

ization (MALDI) time of flight (TOF) mass spectrometry and liquid chromatography-

linked tandem mass spectrometry (LC-MS/MS). Both techniques are schematically

represented in Figure 2.1. Other approaches are also used, and most methods are

complementary to one another (Maxwell and Frappier, 2007).

Besides mass spectrometry, several other proteomic techniques can be used to study

virus-host interactions, in order to identify the proteins that allow viruses to infect
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Figure 2.1: Schematic representation of workflows for popular mass spec-
trometry techniques in viral protein studies.

The left part of the figure displays the use of liquid chromatography (LC) followed by two-
step mass spectrometry (MS/MS) as a way to characterize viral proteins. The right part of the
figure displays an alternative approach to study viral proteins, that uses gel electrophoresis
for protein separation, followed by MALDI-ToF MS to identify peptides of interest (Maxwell and
Frappier, 2007).

a host and replicate within it. Most often, yeast two-hybrid screenings are used to

screen for protein interactions, because of their simplicity and easy applicability to

relatively large cDNA libraries. However, results depend on the quality of the library,

as well as the expression levels of individual proteins and their ability to be trans-

ported to yeast nuclei. Another technique that is gaining popularity is tandem affinity

purification (TAP) tagging. However, studying protein interactions at a genome-wide

scale is difficult and time consuming. In general, just a fraction of viral proteins of

a small number of viruses have been studied to date. Thus, a wealth of information

on viruses and their interactions with hosts is not yet uncovered. This information

would likely lead to a broader biological understanding as well as possibly contribute

to technological innovation (Maxwell and Frappier, 2007). Specific computer analy-

ses can contribute to this broader understanding, by using publicly available online

data. In that way, computer analyses could also serve as starting point for functional

studies.
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One of the goals of this work is to study a new approach of comparing phage pro-

teomes and discovering similarities and differences in these proteomes. As a first

proof-of-concept of this new approach, it will be used for phage classification by con-

structing a bacteriophage species tree. For this reason, Section 2.2 will briefly discuss

the history of phage taxonomy. Afterwards, Sections 2.3 and 2.4 will explain the

method that will be used in this work.

2.2 Phage classification

Virus taxonomy started being addressed in 1965, when an international committee

was formed that later grew into what is now called the International Committee on

Taxonomy of Viruses (ICTV). Because no single homologous gene is shared by all bac-

teriophages, taxonomy based on a single gene (as is done for prokaryote classifica-

tion) is impossible. Instead, classical phage classification uses a classification scheme

written by David Bradley in 1967. Here, different virus families are defined based on

the nature of phage nucleic acid (dsDNA, ssDNA, ssRNA, dsRNA) as well as overall

virion morphology (tailed, polyhedral, filamentous, pleomorphic). The use of electron

microscopy, together with the discovery of different forms of nucleic acids are cen-

tral to this classification. Other properties used in classification include replication

characteristics in cell culture, serology, host range and more. As of today, the ICTV

still uses this classification scheme as the basis of virus taxonomy. Thus, classifying

a new virus still requires investigating these specific characteristics (Adriaenssens et

al., 2015; Simmonds et al., 2017).

In recent years, the focus in bacteriophage research has gradually shifted towards

genomics and proteomics (Lavigne et al., 2008). Today, there are many more viruses

known from sequence data alone than viruses that have been characterized exper-

imentally. Viruses that are of less importance to the economy or to society are not

likely to ever be fully experimentally characterized (Simmonds et al., 2017). As a

result, many of the completely sequenced phages in GenBank have not been added

to the official ICTV classification (Rohwer and Edwards, 2002). To close the gap be-

tween unclassified and classified phages, several new classification methods have

been proposed.

In 2002, Rohwer and Edwards studied 105 completely sequenced phage genomes.

After concluding that no single homologous gene is shared by every phage genome,

they developed a new taxonomic system based on the predicted phage proteome.

All predicted phage protein sequences were compared in a pairwise manner using
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BLASTP. Subsequently all proteins (per comparison) with an E-value1 (expectation

value) < 0.1 were aligned using CLUSTALW. The cutoff was arbitrarily set to 0.1. For

each alignment protein, distance scores were calculated using the PROTDIST tool

(part of PHYLIP software package). Finally, a proteomic distance score was calculated

from the sums of protein distance scores correcting for penalties in alignment, aver-

age length of proteins and the number of missing proteins. The resulting distance

matrix can then be used to construct a phage tree. Rohwer and Edwards dubbed this

approach the Phage Proteomic Tree. The authors argue that the more characteris-

tics two organisms share, the more closely related they are. In this regard, protein

sequences are an obvious choice to use in classification, when it is expected that re-

lated phages will have similar proteins. This hypothesis will also be used in this work

and will be elaborated upon further in this chapter (Rohwer and Edwards, 2002).

In 2008, Lavigne et al.presented their CoreExtractor.vbs and CoreGenes software

tools. Both tools are complementary to each other and provide a way of comparing

(total) genome similarity (at the protein level) by using BLASTX and iterative BLASTP.

The CoreExtractor tool analyses BLASTX output files of each viral gene of all phages

to be compared. All BLAST output files were searched for each phage name in the

analysis, and a matrix is returned that contains correlations based on the number of

gene products that are similar between phages. The CoreGenes tool is based on the

GeneOrder algorithm, which uses progressive iterative BLASTP to detect a common

set of proteins for up to five genomes. Finally, the outputs of CoreExtractor and Core-

Genes were converted to their relative correlation and reciprocally compared to form

an appropriate threshold value for minimum similarity. Their approach has been eval-

uated on 55 phage genomes from the Podoviridae family and, with the exception of

five proposed new genera, aligns with the classification schemes of the ICTV (Lavigne

et al., 2008).

In 2015, Adriaenssens et al. combined both genomic and proteomic comparisons to

classify previously unclassified members of the Siphoviridae family. In their approach,

trees based on the entire genome were constructed using ClustalW 2.0. In parallel,

proteomic trees were constructed using the Phage Proteomic Tree approach. Both

trees were used in a qualitative manner to identify clusters of phages. In each cluster,

a type phage was chosen. Afterwards, phages in the same cluster showing more than

95% DNA identity to the type phage were grouped in the same species. Finally, a

CoreGenes analysis was used to group phages into the same genus when over 40%

of proteins were shared between the phages. Several other research groups have

proposed other classification schemes. The two main reasons why research groups

keep developing new classification systems is the fact that the official classification
1The E-value is the number of alignments with a certain score S that are expected to occur in a database

search by coincidence.
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system is outdated and that there is no consensus on which newly developed system

is most appropriate (Addriaenssens et al., 2015).

As recent as 2017, a consensus statement endorsed by the ICTV identified the po-

tential of metagenomic data in characterizing the global virome. The purpose of the

consensus statement was to address the need for an easily applicable classification

system for newly sequenced viruses. A classification scheme solely based on metage-

nomics would be a substantial departure from the current basis of virus taxonomy (as

discussed earlier in this section). However, within a robust framework and with ap-

propriate quality control, viruses that are only known from metagenomic data can

now be incorporated in the official ICTV virus taxonomy. Indeed, as characteristics

of viruses are encoded in the genome, properly analyzed sequence data can provide

the necessary information for viral classification using ICTV's criteria (Simmonds et

al., 2017).

2.3 Alignment-free sequence analysis

Most commonly, either pairwise or multiple sequence alignment is used to quantify

similarity between sequences. For large-scale comparisons, these methods become

unfeasible due to large computational time and high memory consumption (Das et

al., 2017). Use of heuristics can circumvent these problems, for which BLAST and

FASTA are the two most known approaches (Vinga and Almeida, 2003). An alternative

is the use of alignment-free methods to quantify sequence similarity. Several of these

methods use the frequencies of words (also defined as a k-tuple or k-mer) occurring

in a sequence to capture sequence similarity by statistical testing. In a sequence X

of length n, a k-mer is defined as a subpart of the sequence with length k < n. The

counting of different k-mers in a sequence is usually performed by using a sliding

window of length k that runs over the sequence from position 1 to n-k+1 (Vinga and

Almeida, 2003). This results in a collection of m counts CXk for the sequence X, where

m = 1, ..., n − k + 1. This is given by Eq. (2.1).

CXk = (C
X
k,1, ..., C

X
k,m) . (2.1)

From this list of counts, k-mer frequencies can be calculated as the relative abundance

of every particular k-mer by dividing the count for that particular k-mer by the total

number of counts. Equation (2.2) is used for this calculation (Vinga and Almeida,

2003). Together, these frequencies can be seen as a discrete probability distribution,

as the frequencies add up to one.
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FXk =
CXk∑m

j=1 C
X
k,j

. (2.2)

In this work, k-mers will also be used to quantify sequence similarity by representing

proteins and proteomes as probability distributions of k-mers. These probability distri-

butions are then compared using a mathematical framework called optimal transport.

It is hypothesized that optimal transport will show to be a convenient alternative ap-

proach in alignment-free methods, in particular to study phage proteomes. This will

be elaborated upon further.

The distances between these probability distributions can subsequently be used to

construct a phage tree. One disadvantage of the use of an alignment-free method

based on proteomes is that extra information such as genome organization (i.e. the

ordering of genes in the phage chromosome) is not incorporated when comparing

phages.

2.4 Optimal transport as a way to compare phages

2.4.1 Introduction to optimal transport

Optimal transport is a mathematical framework that can be used to measure dis-

tances between mathematical functions, probability distributions or more general ob-

jects. It can also be used for interpolating probability density functions.

The optimal transport problem was initially formalized and studied by French mathe-

matician Gaspard Monge (Monge, 1781). Monge wanted to minimize the total amount

of work needed to transform a terrain with a particular landscape into another land-

scape. Mathematically, this problem translates into finding a function (if any) that

transforms the current landscape into the target landscape, while minimizing the

product of the amount of transported earth with the distance over which this earth

is transported (Lévy and Schwindt, 2017). The generality of this theory makes broad

applications of it possible, ranging from optimally dividing resources between facto-

ries to computer vision and, as studied in this work, comparing phages among each

other.

Optimal transport can be formally defined as follows. Given two vectors r and c of

dimensions n and m respectively, let U(r,c) be a polyhedral set of n × m matrices P

where the rows sum to r and the columns sum to c. This is expressed by Eq. (2.3):
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U(r,c) = {P ∈ Rn×m>0 | P1m = r, PT1n = c} . (2.3)

Intuitively, the set U(r,c) represents all the possible and valid ways of transporting

earth from r to c. An element P of U(r,c) is therefore often referred to as a transporta-

tion matrix. The optimal transport problem can then be defined by Eq. (2.4), where

the sum of the product of P and M represents the cost of mapping r to c using a n×m
cost matrix M:

dM(r,c) = min
P∈U(r,c)
∑
,j

PjMj . (2.4)

The goal is to minimize this cost, which then results in a metric dM(r,c) called the

Wasserstein distance. It can be interpreted as a distance, whenever M also represents

a distance matrix (Cuturi, 2013).

2.4.2 Optimal transport with entropic regularization

The minimization problem above can be solved relatively easy using linear program-

ming. However, the time complexity scales at least in O(d3og(d)) when computing

the distance between a pair of histograms of dimension d. The time complexity can

be improved substantially by adding a regularization term to the optimal transport

problem. This way, the linear problem is transformed into a strictly convex problem,

which can be solved much faster using the Sinkhorn-Knopp matrix scaling algorithm

(Cuturi, 2013). The modified version of the optimal transport is given by Eqs. (2.5)

and (2.6).

dλM(r,c) = min
P∈U(r,c)
∑
,j

PjMj − 1

λ
h(P) . (2.5)

with

h(P) = −∑
,j

Pj log(Pj) . (2.6)

Here, dλM(r,c) is called the Sinkhorn distance and h(P) is the entropic regularization

term, also termed the information entropy of P. A lower value of λ will result in

more regularization (more entropy), and vice versa. From a practical point of view,

regularization makes sense. A higher entropy will result in a more even, smooth joint

distribution. Finding such transportation plans is often more informative than finding

extreme plans that are not as likely to appear in real-world situations. However,
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when the objective is to calculate distances between probability distributions, a small

value of λ is often unwanted. Smoothing the distribution causes some approximation

errors (i.e. overestimating the actual distance) (Cuturi, 2013). Therefore, it might be

advantageous to use a higher value of λ. Section 2.6 will elaborate on the choice of

the value of λ.

2.4.3 Applying optimal transport to phage proteomes

In this work, optimal transport will be applied to phage proteomes at two distinct

levels. First, the optimal transport framework will be used to calculate similarity be-

tween phage proteomes in a pairwise manner. Phage proteomes are split up into

k-mers using a sliding window over the protein sequence. These k-mers thus repre-

sent overlapping parts of the full proteome sequence, each having a length of k. For

every proteome, k-mers are counted and these counts are subsequently normalized

to represent a probability distribution. These probability distributions can be com-

pared with optimal transport. Using Eqs. (2.5) and (2.6), the Sinkhorn distance is

calculated for every pair of phages. These distances are subsequently used to con-

struct a phage tree. Finally, the constructed phage tree will be compared to another,

more established method.

2.5 Data aqcuisition and data quality assessment

Proteome data was gathered from the UniProt Knowledge Database (UniProtKB) (The

UniProt Consortium, 2017). UniProtKB is the open-source alternative to the SwissProt

and trEMBL databases and is known for its high-quality protein data. In addition,

Uniprot provides a way to search for complete proteomes. The database provides

a set of 'reference proteomes', which have been selected among all proteomes in

a manual and algorithmic way, to have a decent quality based on several criteria.

Searching for the word 'phages' in the UniProt proteome database, and restricting

to 'reference proteomes' in the super kingdom of viruses, resulted in a set of 985

reference proteomes, which were downloaded from UniProt (November, 2017).

2.6 Constructing a phage distance tree

To first motivate the use of optimal transport as a way of comparing phage proteomes,

a relationship between Sinkhorn distances and pairwise local alignment scores was
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constructed using combinations of both low and high values for λ and k. More specif-

ically, the value of λ was either 0.1 (low) or 30 (high), while the value of k was

either 3 (low) or 15 (high). This relationship was computed to show whether Sinkhorn

distances, resulting from optimal transport, could be good measures for sequence

similarity (using alignment scores as a proxy for sequence similarity). If Sinkhorn

distances are a good measure for sequence similarity, it is expected for Sinkhorn dis-

tances to have an inverse relationship to alignment scores. Highly similar sequences

will have a high alignment score, and should have a small Sinkhorn distance. Con-

versely, sequences that are not alike have a low alignment score and should have a

high Sinkhorn distance. Because computing optimal transport for the entire dataset

would be too computationally expensive, one hundred proteins from the collected

dataset were sampled at random. These were compared in a pairwise manner using

both optimal transport and local alignment. The 985 reference proteomes consisted of

a total of 91193 proteins. To at least sample approximately 1% of the entire dataset,

this analysis was repeated ten times, each time sampling a new set of hundred pro-

teins from the dataset.

Furthermore, an optimal choice of the value of λ was based on the Pearson correlation

between the Sinkhorn distances and the pairwise local alignment scores of these hun-

dred proteins. For increasing values of λ and fixed value of k, hundred proteins were

sampled again and compared using optimal transport and pairwise local alignment.

Subsequently, the Pearson correlation was calculated between the resulting Sinkhorn

distances and alignment scores for each value of λ. Again, to at least sample a repre-

sentative number of proteins from the entire dataset, this analysis was repeated ten

times.

Subsequently, an appropriate value for k had to be chosen. In comparing entire pro-

teomes using k-mers, different values for k can lead to differences in tree topology

(Wu et al., 2009). Several research groups have reported different optimal values for

k (both at genomic and proteomic level) (Das et al., 2017; Mahmood et al., 2011; Wu

et al., 2009; Yu et al., 2010; Zhang, 2016). There is no consensus about a universal

optimal value of k, as k can be used in different methods and different measures can

be used to select the optimal value of k. This optimum might also be dependent on

the data used. Furthermore, the combination of using k-mers for protein compari-

son together with optimal transport is new, thus optimal values for k used in other

methods might be sub-optimal in this scenario. To cope with this, three values of k

were chosen ranging from low to high values. More specifically, the value of k was

either 3, 9 or 15. In the subsequent analyses, all three values were used to construct

phage trees (explained in the next paragraph) and the resulting trees were compared

to assess which value of k works best.
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Figure 2.2: Schematic overview of the followed steps to construct a phage
tree using Sinkhorn distances calculated with optimal transport.

First, proteomes of phages are collected. In a second step, each proteome is split up in k-mers
and each unique k-mer is counted. Subsequently, these counts are normalized to represent
probability distributions as vectors r and c. After constructing the cost matrix M based on
Hamming distances between the k-mers, optimal transport can be applied using the Sinkhorn-
Knopp algorithm. This results in a Sinkhorn distance for each pairwise comparison of two
phages. Finally, these distances are used to construct a phage tree with the neighor-joining
method.

Afterwards, part of the gathered data was used to construct a phage tree based on

Sinkhorn distances. More specifically, seven phages were chosen for their small pro-

teomes in order to minimize computational load. A general overview of the construc-

tion of the phage tree is visually represented in Figure 2.2. Every phage proteome

was compared to every other phage proteome in a pairwise manner by calculating

probability distributions from k-mer counts of each of the proteomes. These proba-

bility distributions represent the vectors r and c. The cost matrix M was constructed

based on Hamming distances2 between each of the k-mers in every two distributions

that were compared. Finally, using vectors r and c together with the cost matrix

M, optimal transport was applied using the Sinkhorn-Knopp algorithm. The resulting

Sinkhorn distances were used to contruct a phage tree based on neighbor-joining clus-

tering (Saitou and Nei, 1987). All data manipulation steps and optimal transport were

executed in Python. The workflow represented in Figure 2.2 was also implemented in

Python and is given in appendix B. All supporting scripts are also available in digital

appendix A.

Finally, the obtained trees (for different values of k) were compared to a tree con-

structed for the same seven phages based on an altered version (i.e. by calculat-

ing normalized tBLASTx scores between viral genomes) of the Phage Proteomic Tree
2The Hamming distance is calculated by counting the number of corresponding positions that don't

match between two strings
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method by Rohwer and Edwards (Rohwer and Edwards, 2002). More specifically, an

online tool called ViPTree was used to generate the proteomic tree (Nishimura et al.,

2017).

2.7 Results and discussion

2.7.1 Relationship between Sinkhorn distances and

alignment scores

Figure 2.3 shows the relationships between Sinkhorn distances and alignment scores

for on hundred proteins randomly sampled from the dataset using different combi-

nations of values for λ and k. This analysis was repeated ten times. The other nine

figures are given in Figures A.1 and A.2 of appendix A. There is a clear inverse rela-

tionship between Sinkhorn distances and alignment scores using a low value of k and

high value of λ. This is not unexpected. A high alignment score corresponds to highly

similar proteins, which should indeed correspond to a low Sinkhorn distance between

the k-mer probability distributions of these proteins. Furthermore, alignment tries to

match single amino acids. This process is approximated better by optimal transport

using a low value for k, corresponding to small k-mers, rather than a high value of

k. Additionally, using a high value for λ corresponds to a small amount of entropic

regularization, minimizing the overestimation of actual distance (without regulariza-

tion). No clear trend is observed in the two upper plots, using a low value of λ. This

indicates that using a high regularization might not work well in comparing proteins

and proteomes. The bottom-right plot, corresponding to a high value of k and a high

value of λ, also shows an inverse trend. However, this trend is less clear in compari-

son to the bottom-left plot, indicating that lower values of k might not work well when

constructing phage trees.

2.7.2 Tuning of λ

Figure 2.4 shows the Pearson correlation between the resulting Sinkhorn distances

and alignment scores for each value of λ, after comparing proteins via both optimal

transport and pairwise local alignment. As mentioned in Section 2.6, the analysis was

repeated ten times. Every line corresponds to one sampling of hundred proteins from

the dataset. From this plot, it is clear that higher values of λ correspond to a higher

correlation between alignment scores and Sinkhorn distances, indicating that the use

of higher values for λ is appropriate in optimal transport. The relationships converge
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Figure 2.3: Relationship between Sinkhorn distances and alignment scores
for combinations of low and high values of k and λ, using one hundred pro-
teins sampled at random from the dataset.

Hundred proteins from the collected dataset were sampled at random, and these were com-
pared in a pairwise manner using both optimal transport and local alignment. The plots above
show the alignment score in function of the Sinkhorn distance for pairwise comparison of the
proteins. In the upper-left plot, λ was equal to 0.1 and k equal to 3. In the upper-right plot, λ
was equal to 0.1 and k equal to 15. In the bottom-left plot, λ was equal to 30 and k equal to 3.
In the bottom-right plot, λ was equal to 30 and k equal to 15.

for values of λ larger than 30. Therefore, λ was chosen to be 30 in the subsequent

construction of phage trees.

2.7.3 Tree construction with optimal transport and

comparison with Phage Proteomic Tree

Using optimal transport with a value for λ of 30 and values for k of 3, 9 and 15,

three phage trees were constructed. Additionally, using ViPTree, a proteomic tree

was constructed (Nishimura et al., 2017). Figure 2.5 shows the resulting trees. It is

hard to know what the correct tree (i.e. the one representing the actual evolutionary

relationship) looks like. However, according to the ICTV classification, Pseudomonas

phage YuA, Mycobacterium phage Wonder and Streptomyces phage phiSASD1 should

cluster together as they are all part of the Siphoviridae family. Pseudomonas phage

F116 and Vibrio phage Vc1 are both part of the Podoviridae family. Furthermore,

Stenotrophomonas phage Smp131 is part of the Myoviridae family. Lastly, Bdellovib-

rio phage phiMH2K is an ssDNA phage part of the Microviridae family. The phage

tree (d) constructed based on the 'Phage Proteomic Tree' method matches the ICTV
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Figure 2.4: Pearson correlation between the resulting Sinkhorn distances
and alignment scores for each value of λ, after comparing proteins via both
optimal transport and pairwise local alignment.

Hundred proteins were sampled at random from the dataset, after which these were compared
using optimal transport and pairwise local alignment. For optimal transport, different values
of λ were used, ranging from 0.1 to 50. From the resulting Sinkhorn distances and alignment
scores, the Pearson correlation was calculated and plotted for each value of λ. The analysis
was repeated ten times, corresponding to the ten lines on the plot.

classification quite well. Surprisingly, Bdellovibrio phage phiMH2K clusters together

with Vibrio phage Vc1 while these phage are not even classified in the same order

according to the ICTV. Furthermore, this clustering is present in all four constructed

phage trees. Apparently, these phages do exhibit significant proteome similarity,

despite using a different type of genome (dsDNA vs. ssDNA). Considering the trees

constructed with optimal transport, none of themmatch exactly with the classification

of either the ICTV nor the 'Phage Proteomic Tree'. In tree (a), all three members of the

Siphoviridae family are present in different clusters. Moreover, both in tree (a) and

(b), Pseudomonas phage YuA and Mycobacterium phage Wonder appear to be more

similar to Vibrio phage Vc1 and Bdellovibrio phage phiMH2K instead of being similar

to Streptomyces phage phiSASD1.

Among the trees constructed with optimal transport, tree (c) corresponds best with

both the ICTV classification and the 'Phage Proteomic Tree'. This is surprising because

based on Figure 2.3 it would be expected for a low value of k to result in a tree that

resembles the 'Phage Proteomic Tree' better. The 'Phage Proteomic Tree' also uses

alignment (which is approximated best by using a small value of k in optimal trans-

port). Perhaps, at the proteome level, using small k-mers potentially works less well

because small identical k-mers can occur more often by chance. In addition, optimal
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transport uses the cost matrix M to compute the Sinkhorn distance. Because of this,

even similar (instead of exactly matching) k-mers influence the resulting distance.

As a result, the probability distributions computed from the k-mers can be biased

towards more similarity, resulting in a lower Sinkhorn distance. On the other hand,

larger identical k-mers are less likely to occur by chance, mitigating this effect.

Another remark here is that using optimal transport with regularization, the actual dis-

tances (as given by optimal transport without regularization) are still overestimated

by a tiny amount. A potential solution would be to substract the Sinkhorn distances

between each proteome and itself from the distance between both proteomes.

2.8 Conclusion

Chapter two shows the use of optimal transport to study biological data in a way that

was not attempted before. Proteomes of seven phages were compared in a pairwise

manner. From the resulting Sinkhorn distances, classification trees were constructed

and compared. The results indicate that optimal transport can be a decent measure

for similarity among proteomes and proteins. However, the optimal value of k is

still unclear. While lower values of k result in a higher correlation between Sinkhorn

distances and alignment scores, higher values of k seem more appropriate in con-

structing classification trees.

In the next chapter, optimal transport will be applied again, now at the protein level

to compare the proteomes of three T7-like phages. These phages all exhibit high

genome and proteome similarity but infect different hosts. By applying optimal trans-

port at the protein level, it is attempted to identify unique proteins across the T7-like

phage proteomes. Additionally, these unique proteins should in part correspond to

the proteins needed for different host specificity.
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CHAPTER 3

The importance of specific

proteins in bacteria-phage

interactions

3.1 Understanding phage specificity

A phage's host range is defined by the breadth of bacteria the phage is able to infect

(Hyman and Abedon, 2010). Host range and phage infectivity are known to depend

on several factors. These include adsorption, structural changes of both the phage

and the bacterial host, transport of DNA or RNA into the host cell and avoidance of

degradation of the nucleic acid. Therefore, infectivity is depended on the phenotype

of both phage and host. This infectivity, and thus the host range, can change over

time as phages and hosts co-evolve (Koskella and Meaden, 2013; Leite et al., 2017).

This co-evolution of phage infectivity versus bacterial resistance to phages has two

important consequences: shaping microbial communities and expanding genetic di-

versity among bacterial species. As phages are explicitly dependent on their hosts for

reproduction, host abundance is an important determinant of environmental fitness

of a phage. When abundance of suitable hosts is high, phages that are able to in-

fect this host will thrive, effectively bringing this host abundance down. This process

is known as the kill the winner hypothesis. As a consequence, microbial abundance

continuously changes in time. Additionally, phages also influence bacterial genetic

diversity. Indeed, phage-mediated horizontal gene transfer is an important factor in

bacterial evolution, which was discussed in Section 1.2 (Chaturongakul and Ounjai,

2014).

In addition, most phages infect only a subset of bacterial species. Moreover, many

phages seem to only infect a single species or even a few strains within a species.

Phages have a tendency to specialize on a small number of hosts. This is because

there is a trade-off between evolutionary fitness of the phage, and the broadness of

its host range. A broader mechanism of infectivity, leading to a broader host range,
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tends to be less efficient than specialized mechanisms that are optimal for infec-

tion of some specific host (Koskella and Meaden, 2013). On the other hand, phages

can expand their host range, for example in environments where there exists strong

competition for hosts. Oddly enough, some generalist phages fail to infect specific

species or strains within the genera that these phages can infect. This observation

indicates that specific rules regarding host range are complex. Finally, phage speci-

ficity also depends on environmental conditions such as local resources, temperature

and dosage of the phage (Koskella and Meaden, 2013).

Nevertheless, phage specificity is in part explained by specific phage proteins. These

proteins recognize and bind to certain receptors on the bacterial cell wall as the first

step to phage propagation (Samson et al., 2013). The next section explores bac-

terial receptors and their importance in the phage-host interaction. Thereafter, re-

ceptor binding proteins (RBPs) used by phages to interact with these receptors are

discussed in more detail. Afterwards, optimal transport will be adopted to compare

several phages that have similar genomes but nevertheless infect different hosts. The

hypothesis is that optimal transport can help identify the proteins that are unique in

these similar phages, among which proteins that are responsible for the difference in

host specificity are expected.

3.2 Bacterial cell surface receptors

Numerous bacteria possess cellular appendages or structural components that ex-

tend beyond the plasma membrane or outer membrane. Besides flagella and pili, the

outer membrane of Gram-negative bacteria consists of lipopolysaccharides, porins,

transport proteins and other membrane-associated or embedded proteins (Lindberg,

1973). On the other hand, Gram-positive bacteria mostly expose (lipo)teichoic acids

on the cell surface. Phages can utilize the components that are exposed on the cell

surface for phage adsorption (Rakhuba et al., 2010). For example, Salmonella phages

can recognize glycolipids, membrane proteins (OmpF, BtuB, TolC) or flagellar proteins

as receptors for phage adsorption (Chaturongakul and Ounjai, 2014). Figure 3.1 dis-

plays these various receptors of Salmonella.

The presence of specific components of these receptors can be essential to the phage

adsorption process. For example, the presence of D-glucose in teichoic acids of Bacil-

lus subtilis plays a key role in adsorption of phages specific to B. subtilis (Rakhuba et

al., 2010). Lastly, bacteria can also modulate the availability of their receptors (also

discussed in Section 1.3). Conformational changes or alterations in spatial distribu-

tions of the receptors can both lead to a reduced ability of the phage to adsorb to the
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Figure 3.1: Various receptors of Salmonella bacteria used for phage adsorp-
tion.

Salmonella phages can use various receptors for phage adsorption, including glycolipids, mem-
brane proteins such as OmpF, BtuB, TolC or flagella proteins (Chaturongakul and Ounjai, 2014).

bacterial cell surface (Moldovan et al., 2007). Some bacteria express phage receptors

in a stochastic manner. This can be a consequence of specific environmental condi-

tions or as a response to specific stimuli. Phages can cope with this stochasticity by

encoding multiple RBPs, which have affinity for different receptors on the cell surface,

or by mutations in specific genes related to these RBPs. Figure 3.2 shows how phages

can interact with different receptors using different RBPs. These remarks highlight

the biological complexity that can arise in phage-bacteria interactions.

3.3 Receptor binding proteins

Most reported bacteriophages belong to the order of the Caudovirales. These phages

contain, besides a chromosome and a capsid, also a tail. The order of the Caudovirales

is divided into three families based on distinct morphological traits of these tails. The

Siphoviridae family has long, flexible and non-contractile tails. The Myoviridae family

is characterized by long, rigid and contractile tails. Finally, the Podoviridae have short

and non-contractile tails (Ackermann, 2007).
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Figure 3.2: Phages can interact with different bacterial receptors by using
different receptor binding proteins.

Some bacteria express their cell surface receptors in a stochastic manner, corresponding to
differences in environmental conditions or specific stimuli. Phages are still able to interact
with such bacteria by encoding several receptor binding proteins that have affinity for different
receptors (Samson et al., 2013).

Although the three families have distinct tails, all of them possess two common prop-

erties. All tails form tubular channels through which the dsDNA chromosome exits the

capsid and all tails carry fibers or spikes. The RBPs of the Caudovirales, that recognize

potential hosts when virions come in contact with them, are located on these fibers

or spikes (Fokine and Rossmann, 2014). Because host recognition is an essential step

in phage propagation, these tail structures are known to be the most rapidly evolving

part of the phage genome (also discussed in Section 1.3). As a result, RBPs located

on the tail are spectacularly diverse and capable of recognizing almost every host

surface component (Charurongakul and Ounjai, 2014).

As phages cannot move independently, the adsorption process of phages to their

bacterial host is the result of random phage-host collision in environments where

both the phage and suitable host cells are present. Phage adsorption often implies

two steps (Dupont et al., 2004). First, contact with a primary receptor establishes a

weak and reversible bond. This brief interaction is often enough to encourage the

phage to start exploring the bacterial cell surface. In the second step, the phage

continues to locate its secondary receptor, which results in an irreversible binding

to the cell surface. Both steps include mechanisms that are specific for the phage-

host interaction (Rakhuba et al., 2010). In general, it is this irreversible binding that

triggers the release of the phage genome into the host cell (Moldovan et al., 2007;

Rakhuba et al., 2010). Additionally, phages that infect gram-negative bacteria may

be equipped with enzymes close to their RBPs that degrade the polysaccharides that
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constitute the outer membrane. It is only when the tail structure reaches the cell

membrane that genome delivery is triggered (Youle, 2017).

Phages that possess similar genomes can nevertheless infect different bacterial hosts.

An example of this was studied by Le et al., where two Pseudomonas aeruginosa

phages (PaP1 and JG004) were characterized at the genome level. These two phages

exhibit high genome similarity, despite having different hosts (at the subspecies

level). The reason for this is that both phages encode different RBPs. This can be

observed at the genomic level, which is visualized in Figure 3.3. At most genetic loci,

both phages appear remarkably similar. Some genetic loci, however, exhibit much

less similarity. These genes encode putative tail fiber proteins (Le et al., 2013).

In addition, Le et al. (2013) characterized spontaneous mutants of phage JG004 that

were capable of infecting the same P. aeruginosa host as phage PA1. By designing

primers to amplify the baseplate region and tail fiber region of one of these mutants,

the authors detected a single point mutation in an open reading frame (ORF) that

is predicted to encode a putative tail fiber protein. Finally, the authors constructed

a recombinant phage where the ORF responsible for encoding the putative tail fiber

protein of phage PaP1 was switched for the corresponding ORF of phage JG004. The

genetic loci for this phage are also visualized in Figure 3.3. The resulting recombinant

phage was tested on both its original host and the host of phage JG004 through a spot

assay and adsorption assay. Both assays showed the recombinant phage's ability

to infect phage JG004's host but not its original host. Together, these observations

demonstrate that RBPs are an essential determinant of phage-host specificity (Le et

al., 2013).

Other examples are the phages in the T7 supergroup. Scholl et al. (2014) performed

a genomic analysis of the closely related phages SP6 and K1-5. Phage SP6 infects

Salmonella typhimurium LT2 and phage K1-5 infects Escherichia coli serotypes K1 and

K5. In doing so, the authors found that both genomes differ the most in genes that are

likely responsible for encoding tail appendages. Two unique ORFs of phage K1-5 en-

code a lyase and endosialidase that allow the phage to degrade surface components,

which is essential for the interaction with E. coli strains K5 and K1, respectively. Nei-

ther of those proteins are present in phage SP6. However, this phage encodes a pro-

tein that strongly resembles tailspike proteins of Salmonella phages ST46T and P22.

Phage SP6 also encodes another protein that slightly resembles the endosialidase of

phage K1-5. The authors speculate that this protein is also part of the tail structure

and enables specificity towards another unknown bacterial host (Scholl et al., 2014).

Also concerning phages of the T7 group, Ando et al. engineered synthetic phages by

swapping single or multiple tail components between phages with both highly similar

and less similar genomes. Their results indicate that between the two closely related
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Figure 3.3: Visual representation of the genetic loci encoding baseplate
proteins, putative tail fiber proteins and endolysins for phages JG004, PaP1
and recombinant phage PaP1-rec1.

The genetic loci of phages JG004 and PaP1 differ mainly in the ORFs 84 and 69, encoding pu-
tative tail fiber proteins. By switching ORF84 with ORF69 in phage PaP1, the new recombinant
phage (PaP1-rec1) is now able to infect the host of JG004, but not the original host of PaP1
anymore (Le et al., 2013).

phages T7 and T3, the main determinant of host specificity is the C-terminal domain

of their tail fiber proteins. Switching only this C-terminal domain is sufficient to switch

host specificity between both phages. The authors also switched complete between

phage T7 and the less similar Klebsiella phage K11. Here, multiple tail components

(including the tail fiber protein) had to be switched in order to switch host specificity

between the phages (Ando et al., 2015).

3.4 Applying optimal transport at the protein level

In this section, optimal transport will be applied to study phage proteomes (i.e. sets

of proteins) at the level of the individual proteins. The goal of this chapter is to identify

proteins that are unique in a particular phage proteome and investigate whether these

identified proteins are related to host specificity. Two approaches can be adopted.

First, by studying phages with the same host, factors responsible for host specificity

can be identified if they are shared between different phages. However, two phages

can infect the same host in different ways, corresponding to different surface recep-

tors (Chaturongakul and Ounjai, 2014). The second approach is to study phages that

are closely related, but have different hosts nonetheless. Here, proteins that are not

shared between them are likely to be responsible for the difference in host specificity.

This approach was adopted in the two examples in Section 3.3. This strategy is the
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Table 3.1: Phage proteomes used for the comparison of proteins using optimal trans-
port. The table lists the proteome ID, taxonomy ID and protein count of these phages.

Proteome ID Organism Taxonomy ID Protein count

UP000000840 Enterobactera phage T7 10760 57
UP000008891 Erwinia phage vB_EamP-L1 1051673 51
UP000000335 Salmonella phage Vi06 866889 47

inverse of the first approach: now similar phages with different hosts are picked de-

liberately to find unique proteins. The second strategy will be adopted here for three

phages of the T7 virus group (also referred to as the T7-like phages). As explained

by Scholl et al., phages from the T7 group exhibit high genome similarity (Scholl et

al., 2014). However, some of these phages infect different bacterial genera. There-

fore, these phages form an interesting case to look for unique proteins among highly

similar proteomes. Additionally, the three particular phages were chosen for their

relatively good protein annotation in UniProt. The different phages are presented in

Table 3.1.

These phage proteomes are compared in a pairwise manner. For each proteome

pair (, j), proteins in each of the proteomes are represented by pp and pqj where

p = 1, ..., P and q = 1, ..., Q. Here, P and Q depict the number of proteins in proteomes

 and j, respectively. Every protein pp of proteome  is compared to every proteins pqj

of proteome j. Optimal transport was used for this comparison; in the same way it was

used before (described in Section 2.6). Every protein is split in overlapping k-mers,

which are counted. By normalizing these counts, a probability distribution (of k-mers)

for each protein is obtained. Just as in Section 2.6, these probability distributions

represent the vectors r and c, which can be compared by using optimal transport.

The cost matrix M is again implemented as the Hamming distances between every

pair of k-mers from different proteins. Based on Figure 2.3, the value of k was set to

3 and the value of λ was set to 30.

The probability distribution of each protein pp in the first proteome is then compared

to the probability distribution of every protein pqj in the second proteome. The result

of this comparison is a Sinkhorn distance dp,qj between every two proteins pp and pqj

of proteomes  and j, respectively. This Sinkhorn distance represents a measure for

similarity between the two proteins that were compared. For a pair of two proteomes

(, j), this results in a distance matrix, representing all pairwise distances between

every protein in the first proteome and every protein in the second proteome.

The specific goal of this chapter is to find unique proteins among three selected pro-

teomes of T7-like phages. A protein unique in one of the proteomes should have a

unique probability distribution in comparison to the probability distributions of the
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proteins it is compared to. When comparing this unique probability distributions to

the other distributions, it will result in large Sinkhorn distances. On the other hand, if

a protein matches to some protein in another proteome, the probability distributions

of the matching proteins will be alike, resulting in a smaller Sinkhorn distance com-

pared to distances between proteins that don't match. This smaller Sinkhorn distance

indicates similarity between the two matching proteins. Figure 3.4 visually represents

this method by depicting two proteins that are compared to another proteome in a

fictional example. The first protein (protein p) has some corresponding similar protein

in the proteome (consisting of ten proteins) which it is compared to. The second pro-

tein (protein q) is unique, i.e. it does not match with any protein in the proteome it is

compared to. The Sinkhorn distance is smaller between protein p and its correspond-

ing similar protein, relative to the other proteins it was compared to. The very light

color on the heat map (distance between protein p and protein d of the other pro-

teome) indicates this similarity. In the ideal case, the Sinkhorn distances from protein

q to the proteins in the other proteome will all be high as there is no corresponding

similar protein. All the colors in the second row of the heat map are then sufficiently

dark, indicating no similarity between protein q and the proteins it was compared to.

The method in this chapter will attempt to identify the proteins that have a match

in another proteome. By subsequently discarding these proteins, the unique proteins

(that don't match with any protein in another proteome) can be identified.

When using a small value of k, two long proteins could have similar probability dis-

tributions by chance. As explained in Section 2.7, this results in a lower Sinkhorn

distance, potentially leading to a false result (i.e. falsely identifying a match). To

avoid false results, a higher value of k could be chosen. However, this solution might

not be optimal as the correlation between alignment scores and Sinkhorn distances

decreases for higher values of k, as was previously shown in Figure 2.3. Another so-

lution is to statistically test whether the probability distributions of two proteins are

significantly more alike than expected by chance. Comparable to approaches used in

sequence alignment, one of the proteins can be randomly shuffled and its probability

distribution can be compared to the probability distribution of the other considered

protein (Lipman et al., 1984). Therefore, a thousand variants of the second protein

were constructed in which the AAs of the protein were randomly shuffled. Subse-

quently, optimal transport was used to compare these thousand variants to the first

protein using the same hyperparameters as before. The resulting thousand Sinkhorn

distances were then used to statistically test whether two proteins under consider-

ation were significantly more similar than expected by chance. More specifically, a

one-sample t-test was performed with the thousand Sinkhorn distances and the ob-

served Sinkhorn distance dp,qj using the SciPy package in Python (Jones et al., 2001).

As the interest lies in discriminating protein pairs with a significantly smaller Sinkhorn
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Figure 3.4: Visual representation of followed method for a fictional example
of two proteins from one proteome being compared to another proteome.

The figure displays the Sinkhorn distances (as heat map) for two proteins from one proteome
which were compared to ten proteins in some other proteome, by using optimal transport. Pro-
tein p has some corresponding similar protein in the other proteome. The comparison between
protein p and its similar protein d will result in a lower Sinkhorn distance, relative to the other
proteins that protein p was compared to. The very light color on the heat map indicates the
similarity between both proteins. Protein q has no corresponding similar protein in the other
proteome which means there will not be any Sinkhorn distance significantly smaller than the
Sinkhorn distances resulting from comparisons with other proteins in the proteome. Indeed, all
colors in the second row of the heat map are sufficiently dark, indicating no significant similarity
between protein q and any of the proteins in the other proteome.

distance from other protein pairs, the t-test was also one-tailed (i.e. testing whether

the observed Sinkhorn distance dp,qj is significantly smaller than the Sinkhorn dis-

tance expected by chance). By using the same value of k for both computing the ob-

served Sinkhorn distance and the thousand Sinkhorn distances expected by chance,

the effect of using a low value of k is canceled out.

However, the effect of random shuffling on protein structure and functionality also

has to be taken into account. Amino acids have a propensity to either reside in an

α-helix, β-sheet or neither of both. Shuffling proteins at random will most likely oblit-

erate these secondary and tertiary protein structures. Therefore, it is expected that

functional proteins are more similar when compared to each other than when com-

pared to random, likely non-functional proteins. Even if the difference in similarity

between both cases is small, it could be statistically significant. This represents a

shortcoming in the statistical testing. As a result, statistical testing can still falsely

identify a match while it might not be biologically relevant. To further discriminate

between these (small) significant differences and the larger differences between two

proteins that show relevant similarity, effect sizes were computed for every protein-

protein comparison. Effect sizes are computed by subtracting the mean of expected

distances from the observed distance and subsequently dividing by the standard de-

viation of the expected distances. These effect sizes indicate the magnitude by which

the observed Sinkhorn distance dp,qj deviates from the mean of expected distances

(obtained from the comparisons with shuffled variants). For proteins that show consid-

erable similarity, the Sinkhorn distance will be much lower than the mean of expected

distances, resulting in a high, negative effect size. As such, effect sizes allow for dis-
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crimination between statistically significant matches that are or are not biologically

relevant. All analyses were implemented in Python. The scripts and data used for

these analyses are given in digital appendix B.

Taken together, proteins that have a match somewhere in another proteome were

identified as having a significantly lower Sinkhorn distance for this match, measured

by the resulting p-value after statistical testing, as well as a high, negative effect size

for this match. These proteins were filtered out and the remaining proteins for each

proteome were identified as the unique proteins for that particular proteome. These

proteins were further investigated for their described biological function by manually

searching UniProt and NCBI databases, as well as literature. If the identified protein

did not have any known biological function, a BLASTP search was performed against

UniProt KB to discover similar proteins with known functions. These unique proteins

are further discussed in the section below.

3.5 Results and discussion

3.5.1 Identification of unique proteins in the comparison

between

Enterobacteria phage T7 and Erwinia phage vB_EamP-L1

Figure 3.5 shows the histogram of effect sizes (for every protein pair) in the com-

parison between Enterobacteria phage T7 and Erwinia phage vB_EamP-L1. The cut-

off value for biological relevance was chosen to be -2, indicating that the observed

Sinkhorn distance deviated more towards negative values at least two standard devia-

tions from it's expected value. The colors on the histogram indicate the discimination

between biologically relevant and non-relevant protein pairs. Every biologically rele-

vant protein pair had a p-value of approximately zero. The matrices with p-values and

effect sizes for this comparison are given in digital appendix B.

The left of Figure 3.6 displays the distance matrix resulting from the comparison of

Enterobacteria phage T7 with Erwinia phage vB_EamP-L1. The right side of the figure

visually represents the protein pairs that were labeled as significant after statistical

testing and applying a cutoff for effect size. In the Enterobacteria phage T7 proteome,

47 of 57 proteins had a significant and biologically relevant match in the proteome of

Erwinia phage vB_EamP-L1. Likewise, 44 of 51 proteins in the Erwinia phage vB_EamP-

L1 proteome had a significant and biologically relevant match in the Enterobacteria

phage T7 proteome. The proteins that are unique to one of both proteomes (i.e. not

having a significant match) are listed in Table 3.2.
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Figure 3.5: Histogram of the effect size of every protein pair resulting from
the comparison of Enterobacteria phage T7 and Erwinia phage vB_EamP-L1.

The figure shows the effect sizes for every pairwise comparison of the proteins of phages Enter-
obacteria phage T7 and Erwinia phage vB_EamP-L1. Protein pairs were labeled as biologically
relevant if their effect size was smaller than -2. Every biologically relevant protein pair had a
p-value of approximately zero.

In the list of unique proteins of Enterobacteria phage T7, about half of them have a

described biological function in either Uniprot or NCBI databases, which are given in

Table 3.2. Gene product (Gp) 0.4 has a role in the inhibition of host cell division. While

this protein is not essential for phage infectivity, it is able to increase competitiveness

of the phage by inhibiting the function of filamenting temperature-sensitive mutant

Z (FtsZ) division protein. By doing so, more resources are freed up for use by the

phage, which can create an advantage in environments where rapid phage replication

can lead to faster infection of more bacterial hosts (Kiro et al., 2013). Gp0.3 is a

protein that protects the phage host DNA by inhibiting nucleases employed by the

bacterial host (Studier, 1975). Additionally, protein 4.1 provides helicase and primase

functionalities necessary for DNA replication (Mendelman et al., 1992). Finally, protein

Gp17 is a tail fiber protein. As discussed in Section 3.1, tail fiber proteins interact with

host membrane receptors, allowing the phage to adsorb to its potential host (Cuervo

et al., 2013). Taken together, all these proteins are related to successful phage host

infectivity, either directly by providing ways to recognize host membrane receptors,

helping in cell lysis or redirecting host resources to virion assembly, or indirectly by

protecting the phage genome inside the host cell and aiding in DNA replication.

For proteins of Enterobacteria phage T7 that did not have a specified biological func-

tion or gene ontology, a BLASTP search against all proteins in UniProt KB was con-
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Figure 3.6: Distance matrix (left) and representation of protein pairs with
significantly lower Sinkhorn distance after statistical testing (right) for the
comparison of proteins in the phage proteomes of Enterobacteria phage T7
and Erwinia phage vB_EamP-L1.

The left panel of the figure shows the distance matrix resulting from the comparison of the
proteome of Enterobacteria phage T7 and Erwinia phage vB_EamP-L1. The right panel of the
figure shows a binary representation of the protein pairs with significantly lower Sinkhorn dis-
tance after statistical testing and applying cutoff for effect size. These significant protein pairs
were given a value of one, while non-significant protein pairs were given a value of zero.

ducted. For protein 7, BLASTP results showed 99.2% identity with proteins of different

Yersinia phages, with an E-value of 8e-96. These proteins were described either as

uncharacterized or as 'host range protein'. Protein 1.8 is 100% identical to some pro-

teins of several Yersinia phages with an E-value of 2.5e-33. However, the function

of all of these proteins is uncharacterized. It is surprising to see some proteins of

Enterobacteria phage T7 match with proteins of Yersinia phages, definitively as one

of those is described as important for host range. As Enterobacteria phage T7 and

phages of Yersinia clearly infect other bacterial hosts, it is unclear whether these pro-

teins are important for phage host specificity. On the other hand, one protein will most

often not be the single determinant of phage host range. Therefore, it is possible for

this protein to be important in phage infectivity for both Enterobacteria phage T7 as

well as phages of Yersinia, while the combination with other proteins unique in each

of the phages determines the unique phage host range of both. It would be interest-

ing to compare Enterobacteria phage T7 to Yersinia phages using optimal transport.

However, a lot of the proteins of these phages are uncharacterized or poorly charac-

terized. Therefore, this comparison was not further focused on. Protein 2.8 matched

with an uncharacterized protein of Erwinia phage FE44 with an identity of 88.5% and

an E-value of 3e-84. It also matched with an HNH endonuclease from Salmonella

phage BP12A with an identity of 74.1% and an E-value of 9.8e-73. Potentially, pro-

tein 2.8 recycles bacterial DNA by cleaving it, thus making it available for reuse in
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Table 3.2: Unique proteins found between the proteomes of Enterobacteria phage
T7 and Erwinia phage vB_EamP-L1 after comparison of both proteomes using optimal
transport.

(a) Enterobacteria phage T7

Protein ID Protein name Biological function

P03776 Gene product 0.4 Inhibition of host cell division
P03748 Tail fiber protein Gp17 Viral attachment to host cell
P03775 Classical restr. Gp0.3 Prevents degradation of T7 DNA by the host
P03782 Protein 4.1 DNA primase and helicase functionalities
P03750 Protein 7 Important for host range

P03794 Protein 1.8 Unknown
P03795 Protein 2.8 Putative HNH endonuclease

P03792 Protein 1.5 Unknown
P03789 Protein 19.2 Unknown
P03779 Uncharacterized protein 1.1 Unknown

(b) Erwinia phage vB_EamP-L1

Protein ID Protein name Biological function

G0YQ83 EPS depolymerase Depolymerizing extracellular polysaccharide

G0YQ42 Gp0.1 Unknown
G0YQ53 Gp1.65 Unknown
G0YQ68 Gp6.3 Unknown
G0YQ77 Gp13.5 Putative endonuclease

G0YQ44 G0.6 Unknown
G0YQ49 Gp1.07 Unknown

a: inferred via BLASTP.

assemblage of the phage genome. Proteins 1.5, 19.2 and uncharacterized protein 1.1

did not match with any protein with known function and did not have any annotation

linked to their function in the NCBI database.

In the unique proteins of Erwinia phage vB_EamP-L1, only one protein had a known

function. The EPS depolymerase is an enzyme that depolymerizes extracellular polysac-

charide. The enzyme matched with several proteins of other Erwinia phages, with

identity scores ranging from 57.2% to 66.6% and all having an E-value of approxi-

mately zero. One of these proteins was described as a tail spike protein, while the

other proteins were also described as EPS depolymerases. Protein Gp13.5 matched

with endonucleases from several other phages with identity scores ranging from

40.2% to 48.3% and E-values of 1.6e-15 to 1.7e-18. Furthermore, protein Gp1.07 only

matched with an inhibitor protein of Escherichia phage JSS1 with an identity score of

42.2% and an E-value of 4.6e-13. All other matches to protein Gp1.07 did not have

any specified function. Finally, proteins Gp0.1, Gp1.65, Gp6.3 and Gp0.6 did not have

a specified function and did not match with any protein with known function after

performing BLASTP. Additionally, these proteins were not annotated with any function

in the NCBI database.
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3.5.2 Identification of unique proteins in the comparison

between

Enterobacteria phage T7 and Salmonella phage Vi06

Figure 3.7 again shows the histogram of effect sizes (for every protein pair), this time

for the comparison between Enterobacteria phage T7 and Salmonella phage Vi06.

Here, based on visual inspection, the cut-off value for biological relevance was chosen

to be -4, which clearly separates extreme effect sizes from the rest. The colors on the

histogram indicate the discimination between biologically relevant and non-relevant

protein pairs. Every biologically relevant protein pair had a p-value of approximately

zero. The matrices with p-values and effect sizes for this comparison are given in

digital appendix B.

The left of Figure 3.8 displays the distance matrix resulting from the comparison of

Enterobacteria phage T7 with Salmonella phage Vi06. The right side of the figure

again represents the protein pairs that were labeled as significant after statistical

testing and applying a cutoff for effect size. In the Enterobacteria phage T7 proteome,

39 of 57 proteins had a significant match in the proteome of Salmonella phage Vi06.

In the Salmonella phage Vi06 proteome, 40 of 47 proteins had a significant match in

the Enterobacteria phage T7 proteome. The proteins that are unique to one of both

proteomes are listed in Table 3.3.

Nine out of 18 unique proteins found in the proteome of Enterobacteria phage T7

for this comparison were not identified in the earlier comparison with Erwinia phage

vB_EamP-L1. The DNA-directed DNA polymerase is an enzyme that replicates viral

genomic DNA (Tabor and Richardson, 1989). Protein kinase 0.7 modulates the hosts

metabolism to favor the virus replication cycle. It works with protein Gp2 to shut

off host transcription (Zillig et al., 1975). Protein 4.7 provides helicase and primase

functionalities necessary for DNA replication (Mendelman et al., 1992). After run-

ning BLASTP, results show significant matches between protein 7.7 and head-to-tail

joining proteins from Yersinia phage R and Yersinia phage Y. Both alignments had an

identity score of 99.2% with an E-value of 3.2e-91. Terminase is an enzyme necessary

for the translocation of viral DNA into empty capsids. The enzyme also possesses

an endonuclease activity to cut the translocated DNA strands at specific positions in

order to translocate exactly the same viral DNA in every empty capsid (Daudén et

al., 2013). Furthermore, protein 5.3 was annotated with GO:004518 which describes

endonuclease activity. The GO was inferred from electronic annotation1 through In-

terPro (Finn et al., 2017). BLASTP results however did not reveal a match with any
1Electronic annotation is an automated method of annotation, without curatorial judgement, see

http://geneontology.org/page/guide-go-evidence-codes

46



CHAPTER 3. THE IMPORTANCE OF SPECIFIC PROTEINS IN BACTERIA-PHAGE
INTERACTIONS

Figure 3.7: Histogram of the effect size of every protein pair resulting from
the comparison of Enterobacteria phage T7 and Salmonella phage Vi06.

The figure shows the effect sizes for every pairwise comparison of the proteins of phages En-
terobacteria phage T7 and Salmonella phage Vi06. Protein pairs were labeled as biologically
relevant if their effect size was smaller than -4. Every biologically relevant protein pair had a
p-value of approximately zero.

protein with known function. As such, the GO referring to nuclease activity should be

interpreted with caution. No match was found for proteins 0.5, 4.2, 19.3 and 0.6B.

Furthermore, these proteins did not have any function annotated to their record in the

NCBI database. The eight other unique proteins found in Enterobacteria phage T7 for

this comparison were already mentioned in the previous comparison.

For the Salmonella phage Vi06 proteome, 7 proteins were identified as being unique.

This is a lot less than the number of proteins identified as unique in the Enterobacteria

phage T7 proteome. However, Salmonella phage Vi06 possesses fewer proteins than

Enterobacteria phage T7, so it is expected to find more unique proteins in Enterobac-

teria phage T7. BLASTP analysis matched protein E1XUA1 matched with a putative

anti-sigma factor from Synechococcus phage S-CBS4 (identity score of 37.6%, E-value

of 2.9e-10). It also matched with a putative HNH endonuclease from Pseudomonas

phage ventosus (identity score of 34.0%, E-value of 4.9e-10). However, a lot of other

matches were uncharacterized proteins. Therefore, based on BLASTP results alone, it

is unclear what the function of protein E1XUA1 could be. Surprisingly, BLASTP results

show a match between protein E1XU98 and protein 4.2 of Enterobacteria phage T7,

which is also indicated as unique for Enterobacteria phage T7 in Table 3.3. The align-

ment has an identity score of 48.5% and an E-value of 6.5e-7. This false result could

be a consequence of the chosen cut-off value for effect size. When comparing Fig-
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Figure 3.8: Distance matrix (left) and representation of protein pairs with
significantly lower Sinkhorn distance after statistical testing (right) for the
comparison of proteins in the phage proteomes of Enterobacteria phage T7
and Salmonella phage Vi06.

The left panel of the figure shows the distance matrix resulting from the comparison of the
proteome of Enterobacteria phage T7 and Salmonella phage Vi06. The right panel of the figure
shows a binary representation of the protein pairs with significantly lower Sinkhorn distance
after statistical testing and applying cutoff for effect size. These significant protein pairs were
given a value of 1, while non-significant protein pairs were given a value of 0.

ure 3.5 with Figure 3.7, the cut-off value for effect size might be too strict for this com-

parison. Choosing a less negative cut-off value for effect size would potentially iden-

tify the protein pair E1XU98 protein 4.2 as significant match. Both proteins did not

have a specified biological function. Protein E1XUC6 is annotated with GO:004519,

which describes endonuclease activity (inferred through electronic annotation). After

performing BLASTP, the protein matches with several proteins with unknown func-

tions, as well as an HNH homing endonuclease from Pectobacterium phage PP74

(identity score of 51.4%, E-value of 1.1e-45). Endonuclease activity could be respon-

sible for cutting bacterial DNA, which frees up resources for phage replication. It could

also be responsible for correct packaging of the phage DNA inside the virion or site-

specific recombination (although this last activity is better described for integrases).

Protein E1XU90 matches with protein 1.8 of Enterobacteria phage T7 (identity score

of 47.1%, E-value of 3.8e-2). Additionally, protein E1XU82 matches with protein ki-

nase 0.7 of Enterobacteria phage T7 (identity score of 47.6%, E-value of 1.6e-23).

Again, these matches indicate a false result. The other proteins it matched with did

not have any specified function. Proteins E1XU81 did not match with any other pro-

tein with known function. As most of the unique proteins for Salmonella phage Vi06

in this comparison do not have a specified function, it is difficult to link these proteins

to phage host specificity. Additionally, Salmonella phage Vi06 is known to have a tail

fiber protein, which could not be identified as being unique for its proteome. BLASTP
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Table 3.3: Unique proteins found between the proteomes of Enterobacteria phage
T7 and Salmonella phage Vi06 after comparison of both proteomes using optimal
transport.

(a) Enterobacteria phage T7

Protein ID Protein name Biological function

P00581 DNA-directed DNA polymerase Replicates viral genomic DNA
P00513 Protein kinase 0.7 Modulate host metabolism
P03775 Classical restr. gp0.3 Prevents degradation of T7 DNA by the host
P03777 Protein 0.5 Unknown
P03797 Protein 3.8 Putative HNH endonuclease

P03782 Protein 4.1 DNA primase and helicase functionalities
P03796 Protein 7.7 Putative head-to-tail joining protein

P03786 Protein 4.7 DNA primase and helicase functionalities
P03783 Protein 4.2 Unknown
P03694 Terminase, large subunit gp19 Viral DNA translocation
P03794 Protein 1.8 Unknown
P03790 Protein 19.3 Unknown
P03795 Protein 2.8 Putative HNH endonuclease

P03799 Protein 6.3 Unknown
P03798 Protein 5.3 Nuclease activityb

P03778 Protein 0.6B Unknown
P03791 Protein 1.4 Unknown
P03789 Protein 19.2 Unknown

(b) Salmonella phage Vi06

Protein ID Protein name Biological function

E1XUC5 Uncharacterized protein Unknown
E1XUA1 Hypothetical phage protein (fragment) Unknown
E1XU98 Hypothetical phage protein Matches protein 4.2 of T7 phage

E1XUC6 Predicted endonuclease Endonuclease activityb

E1XU81 Uncharacterized protein Unknown
E1XU90 Conserved hypothetical phage protein Matches protein 1.8 of T7 phage

E1XU82 Uncharacterized protein Matches protein 0.7 of T7 phage

a: inferred via BLASTP; b: inferred from electronic annotation through InterPro.

results reveal that the predicted tail fiber protein of Salmonella phage Vi06 indeed

matched with the tail fiber protein Gp 17 of Enterobacteria phage T7 (identity score

of 83.8%, E-value of 3e-69). However, the alignment only extended until the 148th

residue of both proteins, while the tail fiber protein of Salmonella phage Vi06 is 657

AAs long and the tail fiber protein of Enterobacteria phage T7 is 553 AAs long. This

could indicate that both tail fiber proteins share a common N-terminal domain, but still

employ different functionalities related to the C-terminal domain(s). Indeed, a study

by Steven et al. (1988) suggests conservation of the N-terminal domain among tail

fiber proteins of different phages of the T7 group (Stevenet al., 1988). The C-terminal

domain of the tail fiber protein from Enterobacteria phage T7 is known to bind to the

cell-surface lipopolysaccharide receptor (Scholl et al., 2014). On the other hand, the

C-terminal domain of the tail fiber from Salmonella phage Vi06 is probably the key
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Figure 3.9: Histogram of the effect size for every protein pair resulting from
the comparison of Erwinia phage vB_EamP-L1 and Salmonella phage Vi06.

The figure shows the effect sizes for every pairwise comparison of the proteins of phages Er-
winia phage vB_EamP-L1 and Salmonella phage Vi06. Protein pairs were labeled as biologically
relevant if their effect size was smaller than -2. Every biologically relevant protein pair had a
p-value of approximately zero.

domain in recognition of the Vi capsular antigen (Park et al., 2012). The difference

in the C-terminal domain(s) could thus at least partially explain the difference in host

specificity.

3.5.3 Identification of unique proteins in the comparison

between

Erwinia phage vB_EamP-L1 and Salmonella phage Vi06

Figure 3.9 again shows the histogram of effect sizes (for every protein pair), this time

for the comparison between Erwinia phage vB_EamP-L1 and Salmonella phage Vi06.

The cut-off value for biological relevance was chosen to be -2, as a better cut-off

value could not be observed visually. The colors on the histogram again indicate

the discimination between biologically relevant and non-relevant protein pairs. Every

biologically relevant protein pair had a p-value of approximately zero. The matrices

with p-values and effect sizes for this comparison are given in digital appendix B.

The left of Figure 3.10 displays the distance matrix resulting from the comparison

of Erwinia phage vB_EamP-L1 with Salmonella phage Vi06. The right side of the fig-

ure again represents the protein pairs that were labeled as significant after statistical
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Figure 3.10: Distance matrix (left) and representation of protein pairs with
significantly lower Sinkhorn distance after statistical testing (right) for the
comparison of proteins in the phage proteomes of Erwinia phage vB_EamP-
L1 and Salmonella phage Vi06.

The left panel of the figure shows the distance matrix resulting from the comparison of the pro-
teome of Erwinia phage vB_EamP-L1 and Salmonella phage Vi06. The right panel of the figure
shows a binary representation of the protein pairs with significantly lower Sinkhorn distance
after statistical testing and applying cutoff for effect size. These significant protein pairs were
given a value of 1, while non-significant protein pairs were given a value of 0.

testing and applying a cutoff for effect size. In the Erwinia phage vB_EamP-L1 pro-

teome, 38 of 51 proteins have a significant match in the proteome of Erwinia phage

vB_EamP-L1. Likewise, 44 of 47 proteins in the Salmonella phage Vi06 proteome have

a significant match in the Erwinia phage vB_EamP-L1 proteome. The proteins that are

unique to one of both proteomes are listed in Table 3.4.

In the proteome of Erwinia phage vB_EamP-L1, thirteen proteins were identified as

unique in this comparison. Protein G0YQ46 was annotated with GO:0016301, which

describes kinase activity. BLASTP analysis also revealed matches to various protein

kinases of other phages (identity scores between 44.0% and 57.1%, E-values be-

tween 9.9e-40 and 6.6e-45). The identified HNH endonuclease was annotated with

GO:0004519, describing endonuclease activity. Proteins 0.65, 19.2, 5.8 and 1.6 did

not significantly match with any protein with known function. No proper annotation of

these proteins was found in the NCBI database as well. The other identified proteins

were already discussed in a previous comparison.

In the proteome of Salmonella phage Vi06, only three proteins were identified as

unique in the comparison to the proteome of Erwinia phage vB_EamP-L1. The first

protein was E1XUA1, which was already identified in the last comparison, and has an

unknown function. Protein E1XU80 has no specified function but BLASTP results re-

vealed a match to Gp0.4 from Enterobacteria phage T7 with an identity score of 71.8%
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Table 3.4: Unique proteins found between the proteomes of Erwinia phage vB_EamP-
L1 and Salmonella phage Vi06 after comparison of both proteomes using optimal
transport.

(a) Erwinia phage vB_EamP-L1

Protein ID Protein name Biological function

G0YQ43 Gp0.2 Unknown
G0YQ45 Gp0.65 Unknown
G0YQ53 Gp1.65 Unknown
G0YQ68 Gp6.3 Unknown
G0YQ90 Gp19.2 Unknown
G0YQ77 Gp13.5 Putative endonuclease

G0YQ63 DNA-directed DNA polymerase Unknown
G0YQ48 Gp1.05 Unknown
G0YQ46 Protein kinase Kinase activity (GOb)
G0YQ66 Gp5.8 Unknown
G0YQ51 HNH endonuclease Endonuclease activity (GOb)
G0YQ52 G1.6 Unknown
G0YQ49 Gp1.07 Unknown

(b) Salmonella phage Vi06

Protein ID Protein name Biological function

E1XUA1 Hypothetical phage protein (fragment) Unknown
E1XU80 Conserved hypothetical phage protein Matches gp 0.4 of T7 phage

E1XUA8 Host specificity protein A Matches protein 7 of T7 phage

a: inferred via BLASTP; b: inferred from electronic annotation through InterPro.

and E-value of 6.2e-13. As previously stated, Gp0.4 has a role in the inhibition of cell

host division, which results in more resources being available for phage replication.

Finally, protein E1XUA8 was only annotated as 'host specificity protein A' (mentioned

as predicted protein on UniProt). After performing BLASTP, protein E1XUA8 was found

to match with protein 7 of Enterobacteria phage T7 (identity score of 92.5%, E-value

of 4.7e-90). Protein 7 is only known to be important for host specificity as well (previ-

ously inferred via BLASTP). Again, the predicted tail fiber protein of Salmonella phage

Vi06 was not identified as unique. Likewise, the EPS depolymerase of Erwinia phage

vB_EamP-L1 was not identified as a unique protein. BLASTP results also reveal a sig-

nificant alignment spanning from residue 7 to residue 181 of the predicted tail fiber

protein of Salmonella phage Vi06. The identity score for this alignment was 32.4%,

the E-value was 3.6e-10. Although the identity score is less compared to the identity

score between the tail fiber proteins of Salmonella phage Vi06 and Enterobacteria

phage T7, there is again similarity in the N-terminal domains of both phages.
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3.5.4 Discussion of the comparisons between Enterobacteria

phage T7, Erwinia phage vB_EamP-L1 and Salmonella

phage Vi06

It was previously hypothesized that choosing a low value of k would not have an

impact on the results after statistical testing with the same low value of k. How-

ever, after observing the results, this statement could not be validated. Some pro-

teins significantly match with several other proteins, even after applying a cut-off

value for effect sizes. This is especially clear in the comparison between Erwinia

phage vB_EamP-L1 and Salmonella phage Vi06 where protein 18 from Erwinia phage

vB_EamP-L1 matches significantly with seven proteins from Salmonella phage Vi06.

This can be seen in the right panel of Figure 3.10. This is not expected from a bi-

ological perspective. In these comparisons, it was either expected for a protein to

match significantly with zero or only one protein (at least in comparison to matches

with the other proteins it was compared to). One possible explanation is that gene

duplication occurred in the genome of Salmonella phage Vi06. However, this number

of gene duplications seems unlikely. It would be interesting to apply optimal transport

to compare the proteins of Salmonella phage Vi06 with themselves to see whether

gene duplication occurred. As a result, very few proteins of Salmonella phage Vi06

were identified as unique, while considerably more proteins were found as unique in

the proteome of Erwinia phage vB_EamP-L1. In the other comparisons, the number of

identified unique proteins was also not equal in the respective proteomes. Whether

only the value of k or the combination of k and the value for the cut-off value for

effect sizes had an impact on this result is unclear. Further comparisons with different

values of k and cut-off value for effect sizes should be conducted to clarify this.

It is also clear that a lack of annotation of protein data hampers the complete inter-

pretation of the results. A considerable number of unique proteins had no specified

function. Therefore, it was not possible to interpret their possible role in host speci-

ficity. Some of the proteins that were identified as unique to a particular proteome

did exhibit functions related to factors that are known to be important in defining a

phage's host range. However, some proteins were identified as unique while BLASTP

results revealed it matched with a protein in the other proteome that was also iden-

tified as unique. These false results indicate the importance of manual interpretation

of the obtained results as well as the advantage of using complementary tools for in-

terpretation such as BLAST. False results could be avoided by using a less strict cut-off

for effect size. However, this could also lead to unique proteins not being identified

as such because of low similarities to other proteins.
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It was expected for tail fiber or related proteins to be identified as unique among the

different proteomes, because of their essential role in phage adsorption. However,

tail fiber proteins were only identified among the unique proteins in one comparison.

On the other hand, BLASTP analysis also identified these proteins as matching. More

specifically, these proteins share similarity in their N-terminal domains. These N-

terminal domains functions as anchors that attach the tail fiber to the baseplate of

the phage (Latka et al., 2017). Alignments of both tail fiber proteins of Enterobacteria

phage T7 and Salmonella phage Vi06 and the tail fiber protein of Salmonella phage

Vi06 with the EPS depolymerase of Erwinia phage vB_EamP-L1 are given in Figure

A.3 of appendix A. It is the C-terminal domain(s) that is unique in these proteins, and

they are responsible for differences in the attachment process of the phages to their

respective hosts. Because of the similarity in the N-terminal domain, the method used

here was not able to identify these proteins as unique. It is speculated that a higher

value of k, possibly together with a stricter cut-off for effect size, would result in the

identification of these tail fiber proteins and EPS depolymerase as unique proteins.

Furthermore, in the analyses above only three phages of the T7 virus group were

investigated. When this comparison would be extended to multiple or all members

of the T7 group that have a different bacterial host, it is likely that a lot less proteins

would be identified as unique if proteins were only identified as such when having no

similarity to any protein in phage proteomes related to different hosts. Possibly, the

C-terminal domain(s) of tail fiber proteins could then be identified more consistently.

However, these speculations were not investigated further.

Additionally, it would be interesting to investigate these tail fiber proteins further to

characterize the C-terminal domains in which they differ. Optimal transport could be

used to identify the k-mers that differ the most between these proteins. Repeating

this comparison for multiple values of k could possibly identify useful protein features

that are responsible for the difference in host specificity. Likewise, protein 7 from

Enterobacteria phage T7 and protein E1XUA8 from Salmonella phage Vi06 could be

investigated further to characterize the similarities and differences between these

proteins.

3.6 Conclusion

In conclusion, Chapter three shows the use of optimal transport to find unique pro-

teins among three related phages of the T7 virus group. This chapter shows that

optimal transport can be used to search for similarities and differences among pro-

teomes and proteins in a comparative way, by representing these proteomes or pro-

teins as probability distributions of k-mers. Moreover, both the results of Chapters
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two and three show that this method is appropriate to study biological systems to

discover new knowledge at the level of proteomes and proteins. However, it is also

clear that appropriate values for parameters as k and the cut-off for effect size are

not straightforward to choose. Because optimal transport compares probability dis-

tributions using the cost matrix M, exactly matching as well as similar k-mers among

proteins or proteomes influence the resulting Sinkhorn distance. Because of this, op-

timal transport computes similarity less strict compared to alignment. This could bias

the perception of similarity, especially when k is small, as discussed in Section 2.7. In

all cases, critical evaluation of the obtained results is necessary, and complementary

tools such as BLAST can aid in this evaluation.

The next chapter specifically focuses on tail fiber and tail spike proteins and studies

these proteins in more detail using machine learning techniques.

55



3.6. CONCLUSION

56



CHAPTER 4

Machine learning methods to

predict phage-host specificity

4.1 Scope of this chapter

In Section 3.3, tail fiber and tail spike proteins were discussed as an important de-

terminant of phage-host specificity. Therefore, these proteins will be used here to

further study host specificity using a machine learning approach. There are two main

objectives in this chapter. The first objective is to be able to correctly classify tail

fiber and tail spike proteins to their bacterial host. If this proves to be successful, the

second objective is to identify the protein characteristics that are most important for

this classification. In this way, the methods below could prove useful in predicting

bacteria-phage interactions, as well as in increasing the understanding of phage-host

specificity at the level of the specific proteins. Below, machine learning is briefly in-

troduced and work is described that has already been done in the area of predicting

bacteria-phage interactions using machine learning.

Machine learning is the field of research that involves the development of algorithms

that extract patterns from data (Bishop, 2006). An important problem studied in

machine learning is classification, which involves predicting a discrete or qualitative

response for each observation in a dataset (James et al., 2013). The central goal

here is to classify observations into one of K discrete categories Ck where k = 1, ..., K

(Bishop, 2006). In predicting bacteria-phage interactions, the goal then becomes to

predict a phage's host or a bacterium-phage interaction based on information of the

phage and/or the bacterium. This information is represented as so-called features,

from which the algorithms learn patterns in a process called training.

In a recent study, Leite et al. (2017) used machine learning to predict bacteria-phage

interactions based on protein data. The authors used protein-protein interaction

scores (i.e. sums of protein-domain interaction scores from the DOMINE database)

between proteins of both bacteria and their phages to predict whether or not a partic-

ular bacterium-phage pair could interact. This is an example of a binary classification
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problem, where the outcome of prediction is either interaction or no interaction. Pos-

tive interactions (i.e. bacteria and phages that are known to interact) were collected

from PhagesDB and Genbank databases. Negative interactions were created by ran-

domly selecting bacteria and phages in the positive dataset to form pairs that were

not present in the positive dataset and of which the bacteria belonged to another

species as the phage's known host. In total, a dataset containing 1065 positive and

equal number of negative interactions was constructed. Afterwards, the CDSs and

related proteins were gathered from the genomes of the bacteria and phages to con-

struct features. In addition to using protein-protein interaction scores, the authors

also included amino acid frequency, chemical composition and molecular weight of

the proteins as informative features. Their final predictive models reached accuracy,

sensitivity and specificity values of over 90%. The authors do mention several limi-

tations in the followed approach. Firstly, the diversity of the dataset was limited due

to the fact that most interactions involved only a single bacterial species, Mycobac-

terium smegmatis. Secondly, the predictions of interaction were made at the level of

phage species, while a large number of phages exhibit host specificity at the strain

level. As a predictive model only learns through use of data, this illustrates the im-

portance of sufficient quality of the dataset, as well as the nuances to make when

datasets are questionable in their quality. Nonetheless, machine learning approaches

to predict bacteria-phage interaction in silico still have value in increasing our under-

standing of phage-host specificity (Leite et al., 2017).

In this chapter, a slightly different method is used to study phage-host specificity.

Machine learning models are used to predict the bacterial host of phages based on

features specifically extracted from tail fiber and tail spike protein data. The machine

learning models in this work attempt to classify proteins in three different categories,

representing the host of their phage: Escherichia coli, Salmonella enterica or Kleb-

siella pneumoniae. From the coding and protein sequences of these tail fiber and

tail spike proteins, features are extracted which represent typical DNA- and protein

characteristics. These features are then used as input for the predictive models. In

addition, after classification itself, the features that are most important during clas-

sification are identified and further interpreted. This method is explained in detail in

the section below, after which the obtained results are interpreted and discussed.
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4.2 Use of tail fiber and tail spike protein data to

infer phage-host specificity

4.2.1 Tail fiber and tail spike protein data acquisition

Tail fiber and tail spike protein data was gathered from UniProt KB (The UniProt Con-

sortium, 2017). To start with, several keywords and Gene Ontology (GO) annotations

were identified that could indicate tail fiber or tail spike proteins. An overview of these

is given in Table 4.1. However, not all keywords and GO annotations were eventually

used in constructing the final dataset. Proteins annotated with GO:0098004 were dis-

carded because proteins related to the assembly of the tail fiber were not of interest.

Additionally, the GO:0046718 annotation completely overlapped with other GO anno-

tations. However, this GO might still be relevant if new protein entries are added to

Uniprot in the future. The other keywords and GO annotations were used to manually

query UniProt. Queries were restricted to the Caudovirales group of viruses to en-

hance the relevance of the results. Tail fiber and tail spike proteins are only expected

in tailed phages. On the other hand, to further enlarge the protein dataset resulting

from these queries, the results were clustered together with other proteins having at

least 90% sequence identity by mapping the results from UniProt to UniRef (Suzek et

al., 2015). These clusters, now containing the original protein sequences plus new

sequences, were mapped back to UniProt to be able to download the protein data. In

this way, new proteins were found that were not annotated to any of the gene ontolo-

gies or keywords that were searched for. Additionally, several tail fiber and tail spike

proteins related to K. pneumoniae were found in literature and manually searched for

on UniProt (Latka et al., 2017). After manually filtering out unwanted proteins that

were not of interest, a total of 425 protein sequences with unique identifiers were

downloaded from UniProt.

Several proteins did not have a specified bacterial host related to them. In a third

step, these missing hosts were added by searching for the phages (which these pro-

teins originate from) in the GenomeNet virus-host database, in the NCBI GenBank

database or in literature (Benson et al., 2013; Mihara et al., 2016). Subsequently, the

corresponding phages and their bacterial hosts were added to the dataset for each

protein. Bacterial hosts were only characterized at the species level due to lack of

sufficient strain information about the hosts. Afterwards, CDSs of the proteins were

added to the dataset by using the EMBL IDs of the entries and querying the Gen-

Bank database from within Python using BioPython functionalities (Cock et al., 2009).

Finally, a manual check of the dataset was performed to delete entries with undeter-
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Table 4.1: Keywords and Gene Ontologies that could be useful in the construction of
a tail fiber and tail spike protein dataset.

Keyword or Gene Ontology Description

KW-1161 Viral attachment to host cell
KW-1230 Viral tail fiber protein
GO:0019062 Virion attachment to host cell
GO:0046718 Viral entry into host cell
GO:0098004 Virus tail fiber assembly
GO:0098024 Virus tail, fiber
GO:0008233 Peptidase activity
GO:0008236 Serine-type peptidase activity
GO:0016798 Hydrolase activity, acting on glycosyl bonds
GO:0004553 Hydrolase activity, hydrolyzing O-glycosyl compounds

Table 4.2: Brief overview of the constructed tail fiber and tail spike protein dataset.

Dataset descriptor Example entry

Protein ID Q04830
Taxonomic ID 344021
EMBL ID AJ505988
Protein name Tail spike protein
Protein sequence MSTITQFPSGNTQYRIEFDYLARTFVVVTLVNSSNPTLNRVLEVGR...
Coding sequence ATGTCCACGATTACACAATTCCCTTCAGGAAACACTCAGTACAG...
Organism name Bacteriophage K1F
Host name Escherichia coli

mined amino acids (represented as the letter X) in their protein sequence and entries

that either did not have a reliable source for their CDS (e.g. supposedly, a tail fiber

protein was present in Drosophila species) or that had DNA sequences that did not

adequately match the protein sequence. The final dataset consisted of 411 entries

from various phages. A brief overview of the dataset is given in Table 4.2. The entire

dataset is given in a digital appendix C.

Finally, the dataset was explored to get a better sense of the diversity of the dataset.

A bar plot was generated to show the number of instances assigned to different bac-

terial hosts. The three largest groups of hosts in this dataset comprised Escherichia

coli, Salmonella enterica and Klebsiella pneumoniae. As these three bacteria are also

important human pathogens, the analyses below focused solely on the proteins corre-

sponding to these bacteria (Giske et al., 2008; Fabrega and Vila, 2013). The proteins

corresponding to other bacterial hosts were filtered out of the dataset. The remain-

ing dataset consisted of 330 entries. In this way, a multi-class classification could be

performed with three classes.
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4.2.2 Machine learning methods

The method used to construct machine learning models was implemented in Python.

More specifically, machine learning models were constructed using the Scikit-learn

package in Python (Pedregosa et al., 2011). The Python script is given in digital

appendix C.

After collection of relevant data, the second step was the construction of several fea-

tures that characterize the DNA and protein sequences in the dataset. An overview

of the different features is given in Table 4.3. In total, 133 features were constructed

based on the raw DNA sequences. These features included nucleotide frequencies,

GC-content, codon frequencies and codon usage bias. Codon usage bias was com-

puted by counting the occurence for each codon and subsequently dividing by the

total number of counts from synonymous codons (i.e. codons that correspond to the

same amino acid). Furthermore, 38 features were constructed based on the primary

protein sequence. More specifically, 20 features described the relative abundance

of amino acids. Fifteen more features desribed various physicochemical properties

of the sequences including molecular weight, iso-electric point, aromaticity and oth-

ers. Finally, three features described the secondary structure in terms of the fractions

of amino acids that are predicted to be present in an α-helix, β-sheet or turn. All

together, every protein entry in the dataset is now described by 171 features.

To explore the features and the classes they are related to, a principal component

analysis (PCA) was performed (Bishop, 2006). This is a dimensionality reduction tech-

nique that allows to visualize high-dimensional data by projecting the data orthogo-

nally in a lower-dimensional linear space that maximizes the variance of the projected

data. To avoid biases due to differences in scale, all features were standardized befor

the analysis. Afterwards, the first three components were plotted in two-dimensional

spaces to get a sense of how well all three classes were separable in a low number of

dimensions. Additionally, linear discriminant analysis (LDA) was used to compute the

linear discriminants on the standardized set of features. This can be seen a supervised

(i.e. using label information) dimensionality reduction technique to explore how well

data is separable in a low number of dimensions by plotting the linear discriminants.

The biggest difference between PCA and LDA is that LDA uses the different classes to

compute the linear discriminants, while PCA does not use class label information (i.e.

unsupervised) in computing the principal components. As a final exploratory analy-

sis, local pairwise sequence alignment was performed with every protein sequence in

the dataset. The resulting pairwise alignment scores were clustered and visualized in

Python. This provided an extra look at the raw protein sequences and how they are

related.
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Table 4.3: Overview of the different features used for classification of the tail fiber
and tail spike proteins.

(a) Features derived from DNA sequence.

Description # of features Reference

Nucleotide frequency 4 /
GC-content 1 Zhou and Liu, 2008

Codon frequency 64 Sastry et al., 2017
Codon usage bias 64 Roux et al., 2015

(b) Features derived from protein sequence.

Description # of features Reference

AA frequency 20 Al-Shahib et al., 2007
Molecular weight 1 Al-Shahib et al., 2007

Protein length 1 /
Iso-electric point 1 Hobohm and Sander, 1997

Aromaticity 1 Lobry and Gautier, 1994

Instability 1 Guruprasad et al., 1990

Flexibility 1 Vihinen, 1994

Aliphatic AA fraction 1 Sastry et al., 2017
Uncharged polar AA fraction 1 Sastry et al., 2017
Polar AA fraction 1 Sastry et al., 2017
Hydrophobic AA fraction 1 Sastry et al., 2017
Positively charged AA fraction 1 Sastry et al., 2017
Negatively charged AA fraction 1 Sastry et al., 2017
Sulfur containing AA fraction 1 Sastry et al., 2017
Amide containing AA fraction 1 Sastry et al., 2017
Alcohol containing AA fraction 1 Sastry et al., 2017
Fraction of AAs in α-helix 1 Sastry et al., 2017

Fraction of AAs in β-sheet 1 Sastry et al., 2017

Fraction of AAs in turn 1 Sastry et al., 2017

a: calculated via Biopython ProteinAnalysis utilities.

After the features were constructed and explored, several machine learning models

were selected to learn from the tail fiber and tail spike protein data. Both linear

and non-linear models were adopted as it was not known beforehand whether the

different classes could be separated by a linear boundary. Two linear models were

selected: logistic regression and LDA. Logistic regression was trained using L1 and

L2 regularization. These linear methods were chosen for their general applicability

in classification as well as their ease of interpretation. Furthermore, the two adopted

non-linear models were Random Forests (RFs) and Gradient Boosting (GB). These non-

linear methods can model more complex patterns in the dataset, which can possibly

result in more accurate predictions.

Subsequently, these models were trained using the available protein data. However,

all methods except for LDA have hyperparameters that can be adjusted (or tuned)

for optimal performance of the models. Training, tuning and testing of the different

models was done using nested four-fold cross-validation. A visual representation of
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this is given in Figure A.4 of appendix A. Four-fold cross-validation implies splitting

the dataset in four equal parts. Training and tuning is done using three parts of the

dataset, while the fourth part is kept for testing (i.e. to measure performance). This

can be repeated four times, each time measuring performance using a different part

of the dataset. Here, the cross-validation was also nested, consisting of an inner loop

and outer loop. In the outer loop, the data is split into four parts as explained above.

In the inner loop, the three parts allocated to training and tuning are split up again

in four subparts. Here, three of the subparts are used for training, while the fourth

subpart is used for tuning. For each split in the outer loop of the cross-validation,

this inner loop (the split into subparts) can also be repeated four times. Hence the

cross-validation is nested.

For logistic regression, the only hyperparameter that was tuned was the strength of

regularization (i.e. the magnitude of shrinkage of the parameter values to prevent

overfitting and reduce variance). In RFs, the number of trees in the forest and the

number of features to consider when making a split were the two hyperparameters

that were tuned. In GB, the number of boosting stages to perform was tuned as a hy-

perparameter. Every hyperparameter was tuned using accuracy as performance mea-

sure. However, in each testing phase, four performance measures were computed:

accuracy (Acc), precision (P), recall (R) and the F1-measure. After cross-validation, the

performance measures were averaged over the different folds of the cross-validation.

Subsequently, the different machine learning models were interpreted based on the

obtained performance measures.

As a final analysis, features that were important in the classification were identified

using three methods: logistic regression with L1 regularization, RF and a decision

tree. The L1 regularization applied in logistic regression shrinks the weights of dif-

ferent features, potentially to zero. Applying a strong regularization will shrink most

of the weight to zero, which enables to look at the non-zero weights as a measure

of feature importance. Because all features were standardized, these coefficients

can carefully be interpreted as a measure of feature importance. By increasing the

strength of regularization, more and more weights of features are forced to zero. Be-

cause of this property of L1 regularization, only the most important features remain

having non-zero coefficients at strong regularization. Additionally, feature importance

was measured by an RF model with 2000 trees. In the RF model, feature importance

is calculated as the Gini importance (Menze et al., 2009). The coefficients of the logis-

tic regression and the Gini importance for each feature were plotted and compared.

Finally, a pruned decision tree was constructed in R using the standardized features.

This pruned tree was plotted to visualize the most important features in the tree. The

R script is given in digital appendix C.
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Figure 4.1: Bar plot of different bacterial hosts in the dataset.

The bar plot shows the number of occurrences of each of the five largest bacterial species
linked to the tail fiber and tail spike proteins in the dataset. The occurrences of various other
bacterial species were all grouped in ’others’.

4.3 Results and discussion

4.3.1 Data exploration

Figure 4.1 shows the bar plot of the different bacterial hosts related to the tail fiber

and tail spike proteins present in the dataset. Clearly, most of the proteins are related

to E. coli hosts. The four other most abundant hosts are S. enterica, K. pneumoniae,

Shigella flexneri and Shigella sonnei. Various other bacterial species occur as well,

which were grouped in 'others'. As mentioned above, the proteins corresponding

to the three most abundant hosts were kept for further analysis and to train the

machine learning models on. In this way, the machine learning models were trained to

discriminate between three classes, corresponding to three major human pathogens.

All other proteins were omitted from the dataset.

Figure 4.2 shows the first three principal components of the data after applying PCA

on the entire (standardized) set of features. Plot (a) displays the first and second

principal components on the x-axis and y-axis, respectively. Plot (b) displays the

second and third principal components on the x-axis and y-axis, respectively. Both
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(a) (b)

Figure 4.2: Plots of the first, second and third principal components com-
puted using PCA on the entire set of features.

Plot (a) shows the first and second principal components on the x-axis and y-axis, respectively.
Plot (b) shows the second and third principal components on the x-axis and y-axis, respectively.
In both plots, the proteins were colored accoring to their related host.

plots show some variation among the different classes (hosts), but not enough to

make an adequate separation between the classes. The dimensionality reduction

obtained by PCA does not result in a proper separation of the different classes. This

indicates that the largest sources of variance are not the differences between the

classes. One reason why this might be expected is that some features show high

correlation among each another. For example, as tryptophan is only encoded by

the UGG codon, both these features are perfectly correlated. Including such highly

correlated features increases the contribution of the common underlying property to

the PCA. This results in the PCA overemphasizing this contribution. Removing these

highly correlated features from the data and subsequently repeating the PCA could

result in a better separation between the classes.

Figure 4.3 displays the first linear discriminant of LDA on the x-axis and the second

linear discriminant on the y-axis. The linear discriminants were computed using the

entire set of standardized features. Surprisingly, the linear discriminants of LDA are

able to almost perfectly separate the different classes in two dimensions. This is be-

cause LDA explicitely models the different classes as separate multivariate Gaussian

distributions and computes the linear discriminants in order to maximize the sepa-

ration between those distributions (James et al., 2013). As a result, the separation

between the three classes is almost perfect. However, there are three proteins that

correspond to S. enterica but appear much closer to proteins related to E. coli hosts.

These three are all proteins of Salmonella phage SG1. Additionally, no other proteins

of Salmonella phage SG1 are present in the dataset. Two of the three proteins are pre-

dicted tail fiber proteins, while the other is a predicted tail connector protein. BLASTP

results reveal that both predicted tail fiber proteins are remarkably similar to tail fiber
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proteins of various phages including Shigella phages, Escherichia phages, Yersinia

phages and a Citrobacter phage. More importantly, both tail fiber proteins are sim-

ilar to two proteins of the Enterobacteria phage T4. The first is short tail fiber gp12

(identity score: 93.7%, E-value of approximately zero) and the second is long tail fiber

proximal subunit gp34 (identity score: 63.6%, E-value of approximately zero). Gp12 is

an adhesion protein that binds irreversibly to lipopolysaccharides (LPS) on the cell sur-

face of E. coli (Weigele et al., 2003). Gp34 forms the proximal half of the long tail fiber

that connects to the baseplate of the virion (Cerritelli et al., 1996). The predicted tail

connector protein shows significant similarity to long tail fiber protein gp35 of Enter-

obacteria phage T4, with an identity score of 96.2% and an E-value of approximately

zero. Gp35 proposedly forms the hinge connecting the proximal and distal half of the

long tail fiber protein of T4. Potentially, the identified proteins of Salmonella phage

SG1 either target components that are shared across bacterial genera, or the proteins

constitute parts of tail fiber proteins that are not determinant for host-specificity. Cer-

ritelli et al. mention that there is evidence that gp34 is indeed conserved among tail

fiber genes of coliphages (Cerritelli et al., 1996). The same could be true for the other

identified proteins of Salmonella phage SG1. Another possibility is that these proteins

are falsely annotated to be Salmonella phage SG1 proteins. However, the reliability

of the host and protein annotation could not be verified. Therefore, these are merely

speculations. Further research should be conducted to characterize these proteins in

more detail.

Pairwise sequence alignment scores of all proteins in the dataset were used to per-

form hierarchical clustering. The results are visualized in Figure 4.4. The colors in

the heat map indicate the alignment scores. Higher alignment scores correspond to

higher similarity between the proteins. This cluster analysis indicates several things.

The proteins in cluster one seem considerably more similar than proteins in other

clusters. In this cluster, 37 proteins are related to E. coli, while one protein is related

to S. enterica. The latter is one of the tail fiber proteins from Salmonella phage SG1,

which was also identified previously using LDA. Cluster two also contains one pro-

tein related to S. enterica, while the rest belongs to E. coli. This is the tail connector

protein of Salmonella phage SG1, also previously mentioned. Cluster three shows

subclusters. This could indicate subspecies specificity, in which slightly different pro-

teins could interact with slightly different bacterial receptors. In this cluster as well,

one protein is present related to S. enterica. This is the second tail fiber proteins

of Salmonella phage SG1. Both LDA and cluster analysis thus identified the same

three proteins of Salmonella phage SG1 as being closely related to proteins that are

linked to E. coli as host. Most of the other proteins related to the host S. enterica

cluster together without observable subclusters. Strangely, the proteins related to

K. pneumoniae do not cluster together well. This could indicate that some bacterial
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Figure 4.3: Plot of the linear discriminants of LDA using the entire set of
features.

Plot of the first linear discriminant of LDA on the x-axis and the second linear discriminant
on the y-axis. The linear discriminants were computed using the entire set of standardized
features. Proteins were colored according to their related host.

receptors of K. pneumoniae are similar to receptors of E. coli, which corresponds to

the similarity in the proteins necessary for their recognition. Looking more generally

at the differences between clusters, the results indicate that phages infecting E. coli

can do so using different proteins, probably corresponding to different bacterial re-

ceptors (discussed in Section 3.2). One possible explanation is that these different

bacterial receptors are characteristics of different E. coli strains, further indicating

subspecies specificity. However, as strain info was not included in the analysis, no

conclusions can be made regarding subspecies specificity. Another possibility is that

the corresponding tail fiber or tail spike proteins are involved in different stages of

the adsorption process (as described in Section 3.3). Furthermore, as S. enterica is

closely related to E. coli, subclusters of proteins related to S. enterica would also be

expected, corresponding to different bacterial receptors on the surface of S. enterica.

This could be the result of a lack of diversity in the dataset. Including more proteins

related to both S. enterica and K. pneumoniae would allow for a more comprehensive

analysis of the clusters that they form.
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Figure 4.4: Hierarchically clustered heat map of the proteins in the dataset
based on their pairwise alignment scores.

The figure displays the protein sequences in the dataset after hierarchical clustering based on
their pairwise alignment scores. The colors in the heat map indicate the alignment scores.
Higher alignment scores correspond to more similar proteins. The colors at each branch of
the tree correspond to the bacterial host which the protein is related to. Red instances corre-
spond to E. coli as host, blue instances correspond to S. enterica as host and green instances
correspond to K. pneumoniae as host.

4.3.2 Model performance

Table 4.4 summarizes the resulting performance metrics for the different models used

in this method. Overall, all models show good and similar performances. Every model

scores above 88% across all performance metrics. These results demonstrate that

tail fiber and tail spike protein data is indeed appropriate to predict the bacterial host

that these proteins are related to. The best performing model is LDA. It consistently

outperforms the other models on all performance metrics. This indicates that a simple

linear decision boundary is sufficient to separate the different classes. On the other

hand, logistic regression is also a linear model though it has a lower performance,
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Table 4.4: Measured performance metrics for the different machine learning models
after four-fold nested cross-validation.

Accuracy Precision Recall F1

GB 0.90 0.91 0.90 0.89
LDA 0.93 0.93 0.93 0.92
RF 0.90 0.90 0.92 0.90
logistic (L1) 0.89 0.91 0.88 0.89
logistic (L2) 0.89 0.91 0.89 0.90

especially with L1 regularization. The difference between logistic regression and LDA

is that logistic regression models the probabilities of belonging to a particular class

by using the logistic function. Logistic regression does not assume a specific density

function for the different classes. On the contrary, LDA models the different classes as

separate multivariate Gaussian distributions. If these distributions are good approxi-

mations of the actual distributions, it can be expected for LDA to perform better than

logistic regression. Furthermore, the non-linear methods also perform slightly worse

than LDA. If a linear boundary is able to separate the classes, then linear methods

model this decision boundary more easily, which can result in them outperforming

non-linear methods (Hastie et al., 2001).

To further examine the performance of the best performing model, a confusion ma-

trix was computed for predictions with LDA, again using four-fold cross-validation. A

confusion matrix summarizes the number of instances in each actual class (corre-

sponding to the rows of the table) versus the number of instances predicted by the

model to be in each class (corresponding to the columns) (James et al., 2013). In

this way, the confusion matrix provides a simple way to identify the classes that are

most difficult to predict. Table 4.5 gives this confusion matrix for LDA. As an example,

of the 259 instances actually related to E. coli, LDA correctly predicts 253 instances

while falsely classifying four instances in the S. enterica class and one instance in

the K. pneumoniae class. Looking at the predicted class labels (columns), LDA mostly

has difficulty with classes E. coli and S. enterica, falsely classifying sixteen instances

to the E. coli class and six instances to the S. enterica class. Only two instances

were falsely classified as belonging to the K. pneumoniae class. Looking at the actual

classes, most errors were made for classes S. enterica and K. pneumoniae. Twelve out

of fourty-eight instances from the S. enterica class were falsely classified in another

class. Likewise, seven of twenty-four instances from K. pneumoniae were falsely clas-

sified in another class. Both classes are not abundant in the dataset. These results

indicate that a large number of instances (as is the case for the E. coli class), results in

a higher predictive power. Adding more proteins related to S. enterica and K. pneumo-

niae in the dataset would likely reduce the number of missclassified instances in these
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Table 4.5: Confusion matrix of predictions made using LDA. Rows represent the
actual class labels, while columns represent the predicted class labels.

E. coli S. enterica K. pneumoniae

E. coli 253 4 1
S. enterica 11 36 1
K. pneumoniae 5 2 17

classes. For this, better data annotation resulting from experimental characterization

of these proteins is needed.

Additionally, some remarks can be made regarding to the obtained results. As ma-

chine learning models only learn patterns from the data that were used to train these

models, limitations in the generalizability of the models mainly reside in the quality

and diversity of the dataset. Here, the dataset is both limited in size and biased to-

wards proteins needed for infection of a single species, E. coli. Therefore, it is likely

for the models to be limited in their generalizability due to limited diversity, especially

for the classes of S. enterica and K. pneumoniae that are only represented by a small

number of entries in the dataset. One factor that could add to this limited general-

izability is the fact that the dataset was extended by mapping the originally found

tail fiber and tail spike proteins to UniRef. Here, new proteins that were not anno-

tated properly were found by clustering the originally found proteins to new proteins

that were at least 90% identical. This biases the dataset towards sequences that are

higly alike and thus are more easily separable from other sequences. On the other

hand, as described above, performing BLASTP for the tail fiber proteins of Salmonella

phage SG1 identified several tail fiber proteins from phages infecting different bacte-

rial genera. Clustering the originally found proteins might have had the same effect,

thus improving the diversity of the dataset. It is not clear to what extent these bi-

ases in the dataset influence the performance of the models, though it is possible

that the models do not generalize well to new data. In any case, a more diversified

dataset would contribute further to a better understanding of phage-host specificity.

Furthermore, the classification performed here predicts bacterial hosts at the species

level. As explained before, a considerable number of phages exhibit specificity at the

strain level. However, public databases generally only mention a phage's host at the

species level. Therefore, it was chosen to perform this classification at the species

level.

4.3.3 Feature importance

The adopted machine learning approach can also be of value by looking at the fea-

tures that are most important in the classification. In doing so, the tail fiber and tail
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spike proteins used in these methods can be characterized based on the features used

to describe them. This could further increase the understanding of how phage-host

specificity works at the protein level or be used for the in silico design of tail fiber and

tail spike proteins for various applications.

The upper plot of Figure 4.5 displays the absolute values of the coefficients of logistic

regression with L1 regularization for every class. The lower plot displays the Gini im-

portance (from the RF model) for every feature. The magnitude of these coefficients

and Gini importances represent the importance of that particular feature in the clas-

sification. A larger magnitude indicates a higher importance of that feature in the

classification. Based on this result, the features identified as most important for each

of the models were the following:

• Features important in logistic regression: ACA codon frequency, CCC codon

frequency, GGG codon frequency, CCT codon frequency, GAG codon frequency,

glutamine (Q) frequency, isoleucine (I) frequency, fraction of AAs in α-helices

and the fraction of positively charged AAs.

• Features important in RF: ACA codon frequency, ATA codon frequency, CCC

codon frequency, GGG codon frequency, ACA codon usage bias, ACC codon us-

age bias, GGG codon usag bias, leucine (L) frequency, isoleucine (I) frequency,

fraction of AAs in α-helices and fraction of polar AAs.

As a third analysis, feature importance was also visualized by constructing a decision

tree in R. By pruning the tree, only the most informative features are considered

for making decisions. The pruned decision tree is visualized in Figure 4.6. Every

node in the tree represents a specific decision made by the decision tree in order to

discriminate between the different classes. Here, the most informative features were

the ATA codon frequency, the A nucleotide frequency, the fraction of uncharged polar

AAs, the fraction of AAs in α-helices and the G nucleotide frequency. The numerical

cut-off values are less interpretable as all features were standardized beforehand.

These cut-off values can thus only be interpreted as the magnitude of deviation from

the mean value of that particular feature in the dataset.

All three methods identify the fraction of AAs in α-helices as an important discrim-

inating feature. Furthermore, two out of three models identify the isoleucine (L)

frequency, the ACA codon frequency, the ATA codon frequency, the CCC codon fre-

quency and the GGG codon frequency as important discriminating features. These

six features are visualized both as histograms and in a pairwise manner in Figure 4.7.

Due to the large size of this figure, it is also given in digital appendix C. From the
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Figure 4.5: Plot of the feature importance calculated by logistic regression
(blue) and RF (orange).

The figure displays the feature importance as given by the coefficients of logistic regression
with L1 regularization in blue and the Gini importance of the features calculated by RF in or-
ange. The magnitude of these coefficients and Gini importances represent the importance of
that particular feature in the classification. After applying an arbitrary cut-off of 4, the peaks
from logistic regression represent the following features: ACA codon frequency (a), CCC codon
frequency (b), CCT codon frequency (c), GAG codon frequency (d), GGG codon frequency (e),
isoleucine (I) frequency (f), glutamine (Q) frequency (g), the fraction of positively charged AAs
(h) and the fraction of AAs in α-helices (i). Applying an arbitrary cutoff of 2.5, the features iden-
tified as important in RFs were ACA codon frequency (j), ATA codon frequency (k), CCC codon
frequency (l), GGG codon frequency (m), ACA codon usage bias (n), ACC codon usage bias (o),
GGG codon usage bias (p), isoleucine (I) frequency (q), leucince (L) frequency (r), the fraction
of polar AAs (s) and the fraction of AAs in α-helices (t).

histograms, it is clear that a single feature is not able to properly separate the three

different classes. However, some features might be adequate to properly separate

two of the classes. For example, the isoleucine frequency allows to separate proteins

related to E. coli from proteins related to S. enterica to a proper extent. Additionally,

the CCC codon frequency can also be used to separate the E. coli and S. enterica

classes to a certain extent. Considering the pairwise plots, again, none of the pairs of

features was able to separate the three different classes appropriately. This indicates

that biological rules are complex. A protein function is too complex to be described
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Figure 4.6: Plot of the pruned tree computed using the standardized fea-
tures.

The figure shows the pruned tree obtained in R using the standardized features. Every node
constitutes a specific decision made by the decision tree to discriminate between the different
classes.

Table 4.6: Measured performance metrics for the different machine learning models
after four-fold nested cross-validation using only the four most important features.

Acc P R f1

GB 0.90 0.89 0.90 0.89
LDA 0.90 0.87 0.90 0.88
RF 0.92 0.90 0.91 0.91
logistic (L1) 0.85 0.88 0.81 0.86
logistic (L2) 0.86 0.90 0.86 0.86

with simple features. Even though these features are important in classification, a

single characteristic or only a pair of characteristics of the protein or DNA sequence

will never be informative enough to explain the difference in host specificity.

Finally, the five models considered in Section 4.3.2 were trained, tuned and tested

again using only the four features identified as most important. The results are given

in Table 4.6. The results indicate that these features alone are capable of discriminat-

ing between the three different classes quite well, with performances varying from

around 81% to 92% across different metrics.

Together, this section shows that machine learning can be used to identify features

that are important in the discrimination of proteins related to the infection of different

hosts. However, as phage-host specificity is complex, one single feature or even a

set of two features is not informative enough to explain the difference in phage-host

specificity. Decision trees might be an informative visualization for which combination

of different features is used to disriminate between different classes. However, it is

harder to explain how these features biologically contribute to a difference in host

specificity.
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Figure 4.7: Pairwise plots of the four features identified as most important
by several models.

Visualization of the ACA codon frequency, ATA codon frequency, CCC codon frequency, GGG
codon frequency, isoleucine (I) frequency and the fraction of AAs in α-helices, both as his-
tograms and as pairwise plots. Every instance was colored according to the related bacterial
host.

4.4 Conclusion

In conclusion, this chapter introduced several machine learning methods that were

capable of discriminating between proteins related to the infection of three different

bacterial species based on features derived from the protein sequences and CDSs.

While this approach exhibits some limitations, the results above show that machine

learning can be used effectively to study phage-host specificity in an way that is

both original and informative. Accurate in silico predictions can further increase the

understanding of phage-host specificity. The biggest drawback is the lack of a diversi-

fied, large dataset from which the machine learning models learn patterns. A second

drawback is the lack of host annotation at the strain level. In addition, phage-host

specificity cannot completely be explained based on a limited set of features. On the

other hand, decision trees can still be practical to visualize the features that are hi-
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erarchically used to separate different classes. This could give a more detailed view

of which combination of characteristics explains the difference in host specificity to a

certain extent. Finally, a potential application of this analysis might also be the dis-

covery of falsely annotated proteins, or phages with tail fibers that could potentially

infect previously unknown hosts.
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CHAPTER 5

Conclusions and future

perspectives

5.1 Conclusions

In this work, phage-host specificity was studied in a computational context. One

of the central questions of this project was whether phage-host specificity could be

identified and explained at the proteome and protein level. Subsequently, the aim

of this project was to identify the factors determining phage-host specificity using

computational tools. More specifically, two computational techniques were used to

study phage proteomes and proteins: optimal transport and machine learning.

In Chapters two and three, optimal transport was used as a mathematical framework

to identify similarities and differences in biological data by representing these data

as probability distributions. As a proof-of-concept, the technique was first applied to

complete phage proteomes in order to construct a phage tree. The results indicate

that Sinkhorn distances can be a good measure for similarity among phages, provided

that appropriate values are chosen for the parameters k and λ. In Chapter three,

optimal transport was applied again at the level of specific proteins to reveal the dif-

ferences between three members of the T7 group of phages. Here, optimal transport

was combined with a threshold for statistical significance and a threshold for biolog-

ical significance to ultimately identify the proteins that were unique in phages with

similar proteomes but a different host. Although this method provides an original

strategy to assess the differences between related phages, several shortcomings still

have to be overcome to put this method to better use. A comparison between the

proteomes of Enterobacteria phage T7 and Erwinia phage vB_EamP-L1 with optimal

transport was able to identify the tail fiber protein and EPS depolymerase as unique

in both phages, respectively. On the other hand, some proteins were identified as

unique while BLASTP revealed significant matches to proteins in the phage proteome

that these were compared to. Potentially, false results can be prevented by using

a higher value for k and a more negative cut-off value for effect size. Additionally,
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repeating the analysis with more T7-like phages (that have a different host) and only

considering proteins as unique if they are unique among all comparisons could avoid

falsely identifying a protein as unique, while it is not necessarily linked to a difference

in host specificity.

In Chapter four, tail fiber and tail spike protein data were used to train several ma-

chine learning models. These models were used to predict the bacterial host related

to these proteins in a three-class classification setting. In addition, the proteins were

characterized based on the features that were considered as most important in clas-

sification. The results indicate that using tail fiber and tail spike data and machine

learning models are indeed informative in predicting bacterial hosts of the phages

that encode these proteins, more so than an alignment based approach. To conclude,

this method forms an interesting basis for future applications of phage-host predic-

tions.

Furthermore, machine learning models can be used to characterize protein data based

on the features that were constructed to train the models. Here, it became clear that

a simple set of features is not informative enough to discriminate between proteins

related to differents hosts. Although phages arguably constitute the most simple bi-

ological entities, the way their host specificity works can be complex. Nevertheless,

visualization tools such as decision trees can help discover what combination of fea-

tures discriminates proteins that are related to different bacterial hosts.

A final conclusion is that both an inadequate amount as well was an improper quality

of data (and annotation) is a serious bottleneck. Both the lack of protein annota-

tion and the absence of strain information regarding the bacterial hosts hampered a

more comprehensive biological interpretation of the analyses. A large proportion of

the identified unique proteins had no specified function, indicating a lack of proper

annotation in biological databases. Therefore, these proteins could not be linked to a

difference in phage-host specificity. This lack of knowledge on the biological function

of phage proteins also limited the number of tail fiber proteins to train machine learn-

ing models. Here, a more diversified dataset, particularly for the classes that were

not well represented, would likely result in a broader understanding of the difference

of host specificity between these classes of phage proteins. However, as data on

phages and their proteins become increasingly abundant, the tools developed in this

work will help to provide even more insight into phage-host specificity in the future. To

that extent, the next section explores some ideas and suggestions for future research

that build on the developed methods and analyses done in this project.
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5.2 Future perspectives

The two computational approaches used in this work provide new ways of exploring

phage proteomes and proteins to study phage-host specificity. As a result, there are

several possible extensions of this work. Below, three of those are elaborated upon.

5.2.1 Improving the developed computational methods and

datasets

A straightforward first step is to improve the developed methods. Several steps

can be optimized. Regarding optimal transport, k-mer length is a parameter that

should be studied in more detail. Although correlation between alignment scores

and Sinkhorn distances is higher for low values of k, it is hypothesized that higher

values of k would work better in the identification of unique proteins among phage

proteomes. Possibly, this could also result in a tree that is even more congruent to

the current references. Furthermore, the cut-off value for effect size used to identify

biologically relevant proteins with a significant match should be tuned to give more

relevant results. However, the identification of correct unique proteins depends on

the result of the value of k in combination with the cut-off value for effect size and

will differ according to the particular choice of phages. It would be interesting to re-

peat the analysis using a larger number of T7-like phages with different hosts. Instead

of comparing proteomes in a pairwise manner, every protein in one proteome could

instead be compared directly to every protein in all other proteomes with different

hosts. Finally, this work did not make use of the transportation matrix P∗. This matrix

could be a useful visualization tool to further study the (dis)similarities between the

k-mer distributions of proteins. For example, similar k-mers could be identified and

then mapped back to the protein sequences, which could prove useful in identifying

the determinants of host specificity at the level of specific domains.

With regard to the machine learning methods, one of the most important aspects

will be to improve on both the quantity and quality of the dataset. To start, a more

in-depth review of literature that characterizes tail fiber proteins could provide extra

proteins for the dataset. Furthermore, as biological databases are frequently updated,

automating the process of data gathering and preprocessing would be advantageous

and would also result in the expansion of the dataset. Another improvement would

be the addition of extra features based on secondary and tertiary structure of these

proteins. In general, a better representation of proteins could be advantageous for

predictions. One possible alternative representation is the use of embeddings, as

explained by Yang et al. (2018). The end goal would be to be capable of predicting
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the host based on new tail fiber sequences, for a large number of hosts. Additionally,

the goal would be to fully understand how tail fiber and tail spike proteins differ among

phages, both with the same host and different hosts. Machine learning models as well

as other tools such can help reach this goal.

5.2.2 An approach to identify tail fiber proteins in viral

metagenomics data

As there is no single homologous gene present in all phages, viral taxonomy is chal-

lenging. This is particularly problematic in a metagenomics context, in which only

sequence data is available. Most metagenomics studies use homology searches to

cope with this. However, viral metagenomics is often characterized by a large num-

ber of sequences having no significant similarity to any other sequence due to hetero-

geneity of viral genomes and low coverage of the global virome (Mokili et al., 2012;

Ren et al., 2017). As a result, it is not straightforward to identify viral sequences in

metagenomic data and dicriminate them from prokaryotic sequences. However, sev-

eral studies developed methods to be able to correctly distinguish viral sequences

from non-viral sequences.

Deaton et al. (2017) developed machine learning models that identify unknown se-

quences from a metagenomic sample as phage or non-phage using tetranucleotide

frequencies (Deaton et al., 2017). Another study by Ren et al. (2017) also used k-mer

frequency profiles to predict whether the contig (i.e. overlapping sequence reads in

a metagenome) represents a viral sequence or not (Ren et al., 2017). An interesting

addition to both approaches would be to predict tail fiber and tail spike genes from

metagenomic data. Identifying these genes could not only be useful to identify viral

sequences in metagenomic data but also to predict the bacterial host(s) from these

tail fiber and tail spike genes. Such a tool would require the construction of machine

learning models able to discriminate between tail fiber or tail spike genes and other

viral and non-viral genes. Subsequently, this tail fiber predictor tool could be coupled

to the machine learning models used in this work, to predict the bacterial host related

to this gene or protein.

One potential disadvantage of this method is the fact that it is still gene-based. If

no gene can be predicted from a contig, the method cannot make a prediction about

whether a tail fiber gene could be present in that contig. In addition, it remains an

open question whether tail fiber or tail spike genes or proteins could be sufficiently

distinguished from other viral and non-viral genes and proteins. Another challenge is

extending the developed machine learning models to make predictions for a larger

number of bacterial species. A less complex extension would be to make predictions
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at higher taxonomic levels. However, if this proves successful, potentially a lot of new

tail fiber proteins can be identified in otherwise unexplored data. These new tail fiber

sequences could be used to develop synthetic viruses and construct a phage bank of

synthetic phages, annotated with their predicted host. This would be advantageous

both to applications in phage therapy as well as the development of customized tai-

locins.

5.2.3 In silico design of synthetic tail fibers

Tail fiber and tail spike proteins have several applications, including specific detection

of pathogens1 or the development of synthetic viruses to edit microbial populations

(Ando et al., 2015). Therefore, another possible extension of this work is the use of the

developed machine learning methods for in silico protein engineering. The goal here

would be to design proteins with optimal characteristics for a specific application. One

way to aid in this development would be to use patterns and rules (e.g. distilled from

decision trees) to design proteins in silico. Another approach would be to optimize

proteins using machine learning models as cost function in optimization methods,

for example using Bayesian optimization (Cui and Yang, 2018). As these machine

learning have already learned patterns regarding the data that was used to train

them, using them as cost function in optimization looks like a promising approach to

design proteins with optimal characteristics in silico.

1www.biomerieux.com.au/industrial-microbiology/food/pathogen-detection
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APPENDIX A

Extra figures and tables



(a) (b)

(c) (d)

Figure A.1: Relationship between Sinkhorn distances and alignment scores
for combinations of low and high values of k and λ, using one hundred pro-
teins sampled at random from the dataset.

Four of nine extra analyses of sampling hundred proteins from the collected dataset. These
proteins were compared in a pairwise manner using both optimal transport and local alignment.
The figures above show the alignment score in function of the Sinkhorn distance for pairwise
comparison of the proteins. In the upper-left plots, λ was equal to 0.1 and k equal to 3. In the
upper-right plots, λ was equal to 0.1 and k equal to 15. In the bottom-left plots, λ was equal to
30 and k equal to 3. In the bottom-right plots, λ was equal to 30 and k equal to 15.
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(a) (b)

(c) (d)

(e)

Figure A.2: Relationship between Sinkhorn distances and alignment scores
for combinations of low and high values of k and λ, using one hundred pro-
teins sampled at random from the dataset, repeated nine times.

Four of nine extra analyses of sampling hundred proteins from the collected dataset. These
proteins were compared in a pairwise manner using both optimal transport and local alignment.
The figures above show the alignment score in function of the Sinkhorn distance for pairwise
comparison of the proteins. In the upper-left plots, λ was equal to 0.1 and k equal to 3. In the
upper-right plots, λ was equal to 0.1 and k equal to 15. In the bottom-left plots, λ was equal to
30 and k equal to 3. In the bottom-right plots, λ was equal to 30 and k equal to 15.
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(a)

(b)

Figure A.3: Pairwise sequence aligments of the tail fiber protein of
Salmonella phage Vi06 with the tail fiber protein of Enterobacteria phage
T7 (a) and the EPS depolymerase of Erwinia phage vB_EamP-L1 (b).

Output of the pairwise alignments of of the tail fiber protein of Salmonella phage Vi06 with the
tail fiber protein of Enterobacteria phage T7 (a) and the EPS depolymerase of Erwinia phage
vB_EamP-L1 (b) using UniProt. Both alignments only span across the N-terminal domain, indi-
cating that the C-terminal domain is responsible for the difference in host specificity.
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Figure A.4: Visualization of a nested four-fold cross-validation.

In a nested four-fold cross-validation scheme, an outer loop divides the dataset in four parts.
Three parts are used for training and tuning, while one part is used for testing. This division can
be repeated four times, where each time testing is done on a different part of the dataset. In
nested cross-validation, every iteration in the outer loop consists of an inner loop. In this inner
loop, the three parts used for training and tuning are split up into four equal parts. Similar to
the outer loop, the inner split can be repeated four times. In each iteration of this inner loop,
the tuning is done on a different part of the data.
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APPENDIX B

Python code used in methods

1 import numpy as np

2 import datetime as dt

3 from numba import jit

4 import scipy as sp

5 from Bio import SeqIO

6

7 def count_kmers(read, k, counts):

8 """

9 read is a sequence, k is the k-mer length, counts is a dictionary were all

10 k-mers and their counts will be stored in.

11 """

12 num_kmers = len(read) - k + 1

13 for i in range(num_kmers):

14 kmer = read[i:i+k]

15 if kmer not in counts:

16 counts[kmer] = 0

17 counts[kmer] += 1

18 return counts

19

20 @jit

21 def compute_optimal_transport(M, r, c, lam, epsilon=1e-8):

22 """

23 Computes the optimal transport matrix and Slinkhorn distance using the

24 Sinkhorn-Knopp algorithm

25

26 Inputs:

27 - M : cost matrix (n x m)

28 - r : vector of marginals (n, )

29 - c : vector of marginals (m, )

30 - lam : strength of the entropic regularization

31 - epsilon : convergence parameter

32

33 Output:

34 - P : optimal transport matrix (n x m)

35 - dist : Sinkhorn distance

36 """

37 n, m = M.shape

38 P = np.exp(- lam * M)

39 P /= P.sum()



40 u = np.zeros(n)

41 # normalize this matrix

42 while np.max(np.abs(u - P.sum(1))) > epsilon:

43 u = P.sum(1)

44 P *= (r / u).reshape((-1, 1))

45 P *= (c / P.sum(0)).reshape((1, -1))

46 return P, np.sum(P * M)

47

48 def optimal_transport_phages(org_lst, k, lam):

49 """

50 input:

51 - a list of phage names in the reference proteomes to compare

52 - k: length of k-mers

53 - lam: value for entropic regularization parameter

54

55 output: a matrix of pairwise Sinkhorn distances

56 """

57

58 distance_matrix = np.zeros((len(org_lst), len(org_lst)))

59

60 # first phage

61 for i in range(0,len(org_lst)-1):

62

63 phage1 = org_lst[i]

64 kmers_phage1 = {}

65

66 # get kmers from protein file

67 proteomes = open(r’phage_reference_proteomes.fasta’)

68 for seq in SeqIO.parse(proteomes, ’fasta’):

69 if phage1 in seq.description:

70 kmers_phage1 = count_kmers(str(seq.seq), k, kmers_phage1)

71

72 # get probability distribution

73 r = [kmers_phage1[x] for x in kmers_phage1.keys()] # counts

74 r_norm = [float(i)/sum(r) for i in r]

75

76 # code kmers as numbers for later use

77 coded1 = [[ord(y) for y in x] for x in list(kmers_phage1.keys())]

78 del kmers_phage1

79

80 # second phage

81 for j in range(i+1, len(org_lst)):

82 phage2 = org_lst[j]

83 kmers_phage2 = {}

84

85 # get kmers from protein file

86 proteomes = open(r’phage_reference_proteomes.fasta’)

87 for seq in SeqIO.parse(proteomes, ’fasta’):

88 if phage2 in seq.description:
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89 kmers_phage2 = count_kmers(str(seq.seq), k, kmers_phage2)

90

91 # get probability distributions

92 c = [kmers_phage2[x] for x in kmers_phage2.keys()] # counts

93 c_norm = [float(i)/sum(c) for i in c]

94

95 # build cost matrix M

96 coded2 = [[ord(y) for y in x] for x in list(kmers_phage2.keys())]

97 del kmers_phage2

98 M = sp.spatial.distance.cdist(coded1, coded2, metric=’hamming’)

99

100 # optimal transport

101 P, d = compute_optimal_transport(M, r_norm, c_norm, lam=lam)

102 del P

103 del M

104

105 distance_matrix[i,j] = d

106

107 return distance_matrix

108

109 # Tree construction using optimal transport for seven phages present in

phage_reference_proteomes.fasta

110 now = dt.datetime.now()

111 seven_phages = [’Pseudomonas phage YuA’, ’Pseudomonas phage F116’, ’Bdellovibrio

phage phiMH2K’, ’Mycobacterium phage Wonder’, ’Stenotrophomonas phage Smp131’, ’

Vibrio phage Vc1’, ’Streptomyces phage phiSASD1’]

112 distance_matrix = optimal_transport_phages(seven_phages, 3, 30)

113 print(dt.datetime.now()-now)

114

115 distance_matrix = np.loadtxt(’distmatrix_7phagesk15.txt’)

116 for i in range(0, distance_matrix.shape[0]-1):

117 for j in range(i+1, distance_matrix.shape[1]):

118 distance_matrix[j,i] = distance_matrix[i,j]

119 np.fill_diagonal(distance_matrix, 0)

120 seven_labels = [’PseudomonasYuA’, ’PseudomonasF116’, ’BdellovibrioPhiMH2K’, ’

MycobacteriumWonder’, ’StenotrophomonasSmp131’, ’VibrioVc1’, ’

StreptomycesPhiSASD1’]

121 dm = DistanceMatrix(distance_matrix, seven_labels)

122 tree = nj(dm)

123 ts = ete3.TreeStyle()

124 ts.show_branch_length = True

125 ete3.TreeNode.from_skbio(tree).render("%%inline", tree_style=ts)
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