
AUTOMATED RECOGNITION OF
PEOPLE AND IDENTIFICATION OF
ANIMAL SPECIES IN CAMERA
TRAP IMAGES

word count: 22348

Laura Hoebeke
Student ID: 01302335

Promotors: prof. dr. Bernard De Baets, dr. ir. Michiel Stock

Tutor: dr. ir. Stijn Van Hoey

Master thesis submitted for obtaining the degree: Master of Science in Bioscience

Engineering: Land and Water Management

Academic year: 2017 - 2018



De auteur, promotoren en tutor geven de toelating deze scriptie voor consultatie beschik-

baar te stellen en delen ervan te kopiëren voor persoonlijk gebruik. Elk ander gebruik

valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de

verplichting uitdrukkelijk de bron te vermelden bij het aanhalen van resultaten uit deze

scriptie.

The author, promoters and tutor give the permission to use this thesis for consultation and

to copy parts of it for personal use. Every other use is subject to the copyright laws, more

specifically the source must be extensively specified when using results from this thesis.

Ghent, 8 June 2018

The promoters,

prof. dr. Bernard De Baets dr. ir. Michiel Stock

The tutor,

dr. ir. Stijn Van Hoey

The author,

Laura Hoebeke



DANKWOORD

Eerst en vooral wil ik graag mijn promotoren en tutor bedanken. Zij hebben de basis gelegd

van een vruchtbare samenwerking met het Instituut voor Natuur- en Bosonderzoek waar-

door ik de kans kreeg aan dit interessante onderwerp te werken tijdens het laatste jaar

van mijn opleiding tot bio-ingenieur. Mede dankzij hun begeleiding en advies heb ik mijn

masterproef tot een goed einde kunnen brengen. In het bijzonder wil ik graag Michiel be-

danken voor de vele tijd die hij in mij geïnvesteerd heeft om mijn werk wekelijks op te

volgen en bij te sturen waar nodig.

Stijn en Jim van INBO hebben er voor gezorgd dat ik over de nodige cameravalbeelden

en bijbehorende informatie beschikte. Ik kon ook altijd bij hen terecht wanneer ik met

vragen zat over cameravallen of over de beelden. Zonder geannoteerde beelden was deze

masterproef niet mogelijk geweest. Het spreekt dan ook voor zich dat iedereen die hieraan

meegewerkt heeft een vermelding verdient in dit dankwoord. In het bijzonder wil ik hiervoor

Jolien bedanken die het grootste deel van de data geannoteerd heeft. Werken met een

groot volume aan data bracht ook enkele technische complicaties met zich mee. Ik wil dan

ook graag Jan bedankten om mij hierin bij te staan. Stijn en Jim wil ik bedanken om mij

op weg te helpen met het gebruik van de GPU, een onmisbaar onderdeel voor het trainen

van het neuraal netwerk. Joris verdient hier ook zeker een vermelding aangezien hij altijd

klaar stond om problemen met GitHub en LaTeX te verhelpen. Bij technische problemen

met Python kon ik altijd rekenen op de hulp van mijn broer, Matthias. Daarnaast heeft hij

ook meermaals zijn ideeën gedeeld, gevraag en ongevraagd, tijdens gesprekken over mijn

masterproef.

Ten slotte wil ik ook heel graag mijn ouders bedankten. Zij hebben mij de mogelijkheid

geboden om een universitaire opleiding te volgen en hebben mij hierin onvoorwaardelijk

gesteund waardoor ik zonder veel problemen het eindpunt heb kunnen bereiken.

Laura Hoebeke

Juni 2018



SAMENVATTING

Cameravallen worden steeds vaker gebruikt om dieren in het wild te monitoren. Het grote

voordeel van cameravallen in vergelijking met andere methoden is dat zeer accurate data

verkregen kan worden zonder dat de dieren verstoord moeten worden door ze bijvoorbeeld

te merken of een halsband aan te doen om hun positie te kunnen volgen. Bovendien kan de

data ook verzameld worden zonder dat er iemand aanwezig moet zijn om te observeren.

Cameravalprojecten produceren echter grote hoeveelheden data die vaak nog manueel

verwerkt worden. Convolutionele neurale netwerken kunnen aangewend worden om dit

arbeidsintensieve proces grotendeels te automatiseren.

In deze masterthesis worden bestaande, handmatig gelabelde beelden van een cameraval-

studie uitgevoerd door het Instituut voor Natuur- en Bosonderzoek in samenwerking met

de Universiteit Hasselt gebruikt om een convolutioneel neuraal netwerk te trainen om de

beelden hiërarchisch te classificeren. Op deze manier kunnen cameravalbeelden automa-

tisch gelabeld worden of het netwerk kan geïntegreerd worden in annotatietoepassingen

om een suggestie te geven aan de gebruikers en zo het annotatieproces te versnellen.

Naast het bevestigen van de aanwezigheid van diersoorten kunnen de beelden ook andere

nuttige informatie bevatten, zoals de eigenschappen en het gedrag van een dier. Daarom

kan het nuttig zijn om de hulp in te roepen van vrijwilligers via citizen science om de grote

hoeveelheden cameravalbeelden te verwerken. Omdat de camera’s ook in openbare gebie-

den zoals natuurreservaten geplaatst worden, kan het zijn dat er toevallige voorbijgangers

op de cameravalbeelden staan. Omwille van privacyredenen kunnen beelden die mensen

bevatten echter niet openbaar worden gemaakt. Daarom zal het neuraal netwerk ook ge-

traind worden om mensen te herkennen zodat deze beelden automatisch uit de dataset

verwijderd kunnen worden. Hierna kunnen de beelden dan beschikbaar gesteld worden

aan vrijwilligers.



SUMMARY

Camera traps are increasingly being used in wildlife monitoring. The great advantage of

camera traps in comparison with other sampling methods is that very accurate data can

be collected without the animal being collared or tagged nor the researcher being present.

However, such camera trapping frameworks produce high volumes of pictures which often

need to be reviewed manually. Convolutional neural networks can be used to automate this

labour intensive process.

In this master thesis, existing manually labelled images from a camera trap study con-

ducted by the Research Institute for Nature and Forest in collaboration with Hasselt Uni-

versity are used to train a convolutional neural network to hierarchically classify animal

species. In this way, images can be automatically labelled or the network can be incorpo-

rated into annotation applications to provide a suggestion to the users and as such speed

up the annotation process.

In addition to conveying the presence or absence of species, the images may contain other

useful information, for example animal attributes and behaviour. Therefore, getting help

from wildlife enthusiasts via citizen science, may be desirable to review the large amounts

of data. However, since cameras are mounted in public spaces such as nature reserves,

there always exists the risk that passers-by have triggered the camera traps. For privacy

reasons, images showing people cannot be made public. Therefore, the neural network will

also be trained to recognize people to be able to automatically remove these images from

the dataset. After removing these images, the data can be made available to volunteers.
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CHAPTER 1

INTRODUCTION

Camera traps are increasingly being used in wildlife monitoring. The great advantage of

camera trapping compared to other sampling methods such as direct observation, trapping

and radio tracking, is that very accurate data can be collected without the animal being

collared or tagged nor the researcher being present. By using camera traps the cost, labour

and logistics of observation can be reduced. To review the camera trap images, researchers

can get help from wildlife enthusiasts via citizen science. Volunteers from the general public

annotate the camera trap images, usually via online citizen science platforms.

1.1 Problem statement

Camera trapping frameworks produce large numbers of images which often need to be

reviewed manually. This labour-intensive process is a limiting factor in the use of camera

traps. Camera trapping has greatly increased sampling, but analysing the images remains

a bottleneck in turning the data into information on animal presence, abundance and be-

haviour.

The use of citizen science is limited by the fact that for privacy reasons, images showing

people cannot be made public. When camera traps are mounted in public spaces such as

nature reserves, there always exists the risk that passers-by have triggered the camera.

The data therefore needs to be reviewed and images showing people need to be removed,

before the remaining images can be made available to volunteers.

1.2 Objectives of this research

The objective of this master thesis is to build an image classification model to speed up

the annotation process of camera trap images. The resulting model can be used to auto-

matically classify images or to provide suggestions to researchers or volunteers. Manually

labelled images from an ongoing camera trap survey from the Research Institute for Nature

and Forest (INBO) will be used to train a convolutional neural network. Firstly, the num-

ber of images that needs to be review manually can substantially be reduced by training
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a model to detect empty images. Furthermore, the network will be trained to identify the

animal species in the images. As citizen science can provide other useful information such

as animal attributes and behaviour, the network will also be trained to recognise humans.

In this way, images containing humans can be automatically removed from the dataset,

after which the data can be made available to the general public.

1.3 Outline of this dissertation

Chapter 2 contains an introduction to camera trapping for wildlife monitoring. The general

properties of camera traps are explained and a non-exhaustive overview is given of possi-

ble applications of camera trap images. In this chapter, also citizen science is touched upon

and examples of successful citizen science project are given. Chapter 3 gives an overview

of the available data. The structure of the camera trap images and their associated labels

is described. At the end of this chapter, an overview can be found of the observed bird

and mammal species. Chapter 4 starts with a general introduction on image classifica-

tion after which challenges inherent to the classification of camera images are discussed.

In Chapter 5, the preprocessing steps, applied to extract the regions of interest from the

camera trap images, are described. Chapter 6 gives a brief introduction to deep learning

after which the properties of neural networks, in particular convolutional neural networks,

are discussed. The classification tree used to hierarchically classify the images and more

information on this method can be found at the end of Chapter 6. In Chapter 7, the dif-

ferent steps taken during training of the convolutional neural network are described. The

performance of the network is evaluated using confusion matrices. The chapter ends with

a visualisation of different elements learnt by the neural network. This allows us to get a

better understanding of the internal operations and the behaviour of convolutional neural

networks.

The code is published via Zenodo1. This includes a tutorial on how to use the trained

network to classify new sequences and code to retrain the neural network itself.

1DOI: 10.5281/zenodo.1262684

2

https://zenodo.org/record/1262684


CHAPTER 2

CAMERA TRAPS FOR WILDLIFE

MONITORING

Camera traps are increasingly being used to study wildlife. This comes with some technical

and methodological challenges. In this chapter, the general properties of camera traps are

explained as well as their advantages and disadvantages. A non-exhaustive overview is

given of possible applications of camera trap images. Lastly, citizen science is touched

upon, which can be a helpful tool to review the large number of images camera trapping

surveys generate.

2.1 A brief history of camera trapping

Already in 1890 George Shiras developed a method using a tripwire and a flash system

allowing that wild animals be auto-photographed without disturbing them (Gomez et al.,

2017). Since the early 20th century, camera trapping of wildlife has been in practice

(Rowcliffe and Carbone, 2008). However, due to technical challenges and high costs, cam-

era traps did not become popular until the development of commercial camera systems in

the late 20th century (Swann et al., 2004). Nowadays, more complex systems are available,

using infrared beams as a triggering device. The modern camera traps are small, portable,

resistant to rough weather conditions and much more affordable (Gomez et al., 2017). As a

result, they are becoming a mainstream tool for wildlife monitoring (Rowcliffe and Carbone,

2008).

2.2 Passive infrared motion detector

Passive infrared sensors are nowadays the most commonly used type of sensor in camera

traps (Swann et al., 2011). They detect differences between the background temperature
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Figure 2.1: Reconyx HyperFire camera. Image from Reconyx (2013).

and the surface temperature of objects. The camera is triggered when a rapid change in

temperature occurs (Welbourne et al., 2016).

Infrared-triggered cameras are prone to two types of errors: false triggers (false positives)

and failure to photograph the animal (false negatives) (Swann et al., 2004). Thermal ra-

diation from non-target objects and the sensor itself causes background noise. Therefore,

a threshold is set to prevent false triggers (Swann et al., 2004). Nevertheless, in practice

false triggers still occur. Possible causes are wind or rain moving either vegetation or the

support of the camera, moving water, radiant heat in only a portion of the detection zone or

sunlight reflection (Swann et al., 2004). Also an animal that is within the detection zone but

outside the camera’s range or a time lag between the passing of an animal and the starting

of the camera causes false triggers (Swinnen et al., 2014). The background environment

consists of a thermally heterogeneous configuration of objects such as trees, shrubs and

grasses. These elements have different surface temperatures due to their different thermal

properties. This thermal heterogeneity of the environment may be a cause of false triggers

as moving objects that are warmer or cooler than background substrates, for instance a

branch or shrub, can cause the camera to be triggered (Welbourne et al., 2016). The rea-

sons for the second type of error, failure to photograph the animal triggering the camera,

are less obvious. In contrast to the false triggers, which are noticed when reviewing the im-

ages, there is often no clear explanation of why a unit has failed in the field (Swann et al.,

2004). The animal model trials performed by Swann et al. (2004) suggest that cameras

may not trigger due to subtle differences in animal speed or height.

2.3 Reconyx HyperFire camera

The images that will be used to train the neural network are taken by Reconyx HyperFire

cameras with a passive infrared motion detector, as depicted in Figure 2.1. This detector is

4
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Figure 2.2: Detection bands and zones of the HyperFire motion detector. Image from Reconyx (2013).

aligned with the camera lens so it only detects objects in the field of view of the camera.

The motion detector consists of two horizontal detection bands, located one above the other

(Figure 2.2). Each band is divided into six zones. According to the manufacturer two things

need to happen for the camera to take a picture. Firstly, an object with a temperature

different from the background temperature must be present within one of the detection

bands. Secondly, that object must be moving into or out of at least one of the twelve

motion detection zones (Reconyx, 2013). This means that in Figure 2.2, the deer to the far

right and the deer in the middle would trigger the camera, but not the deer to the far left

since it is above the detection bands.

The camera takes pictures during the day as well as at night. Switching between day

mode and night mode happens automatically. During the day, colour images are taken

(Figure 2.3a). At night, monochrome infrared images are taken using the night time infrared

illuminator (Figure 2.3b) (Reconyx, 2013).

2.4 Characteristics of camera traps

2.4.1 Advantages

The great advantage of camera traps in comparison with other sampling methods such

as direct observation, trapping and tracking, is that very accurate data can be collected

without the animal being collared or tagged nor the researcher being present. Camera

traps can be used to gain information on highly cryptic species and in difficult terrain where

other field methods are likely to fail (Rowcliffe et al., 2008). An additional advantage is that

the data can be reviewed by other researchers, unlike data produced by live-trapping or

observations (Swann et al., 2011).

5
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(a) Day (b) Night

Figure 2.3: Day mode colour image (a) and night mode monochrome infrared image (b).

Another major benefit is that the images from one study can be used in other studies, even

if they do not target the same species (Rowcliffe and Carbone, 2008). However, as stated

by many authors (e.g. Rowcliffe and Carbone (2008)), the impressive growth in camera

trapping studies is quite uncoordinated. Therefore, to fully exploit their enormous potential,

there is a need for greater integration and consensus. Burton et al. (2015), among others,

call for more thorough reporting of methodological details.

2.4.2 Disadvantages

In contrast to the advantages of camera traps, which are well-represented in scientific

literature, the disadvantages have received less attention (Swann et al., 2011). Most of the

issues appear when camera traps are used in the field. One of the most common issues

is the loss of data due to equipment failure, for example mechanical problems, improper

programming or battery failure (Swann et al., 2004). This is an even bigger issue when

using camera traps in remote areas, where it can take months before the failure is noticed

(Swann et al., 2011). On the other hand, camera traps mounted in public areas are subject

to theft and vandalism (Foster and Harmsen, 2012; Silver et al., 2004). Metal cases and

locks can be used to protect the camera against theft and damage by humans or large

animals (Rovero et al., 2013), as shown in Figure 2.4. Other issues users of camera traps

with passive infrared detectors have to deal with are false triggers and failure to photograph

the animal triggering the camera, as mentioned in Section 2.2. False triggers are rarely

reported although they give an important indication about the efficiency and expected

time effort necessary to process the images (Swinnen et al., 2014).

As for any wildlife survey method, camera trap surveys have to deal with sources of sam-

pling errors such as imperfect detection, where individuals or species present within a sam-

pling area are not always detected (Burton et al., 2015). Since camera traps target mobile

objects, they have to contend with imperfect detection at two spatial scales: animals pass-

ing through the relatively small camera detection zone may not be detected and animals

using some larger area that the camera is assumed to sample may not enter the detection
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Figure 2.4: Reconyx HyperFire camera in a security box. Image from Reconyx (2013).

zone (Burton et al., 2015). The probability of detection is affected by many factors oper-

ating across different scales, as illustrated by Burton et al. (2015) (see Figure 2.5). This

calls for a careful accounting of the relationship between detections and the underlying

ecological processes of interest (Burton et al., 2015).

2.5 Research applications of camera trap images

2.5.1 Examples of camera trap applications

Camera trap images have a wide range of possible applications. One of the most straightfor-

ward applications is using the images to confirm the presence of a certain animal species.

The absence of an animal can not be confirmed using camera traps. When an animal

is never captured on an image, this is only weak evidence for its absence and does not

necessarily mean that the animal is not present in the area where the camera is located.

Henschel et al. (2010) used camera traps to search for lions (Panthera leo). This species

is listed as vulnerable on the IUCN Red List of Threatened Species and the population is

still decreasing. They were able to confirm the presence of Panthera leo in two of the lion

conservation units surveyed in West Africa, but in none of the units in Central Africa, from

which they conclude that their result raises the possibility that no resident lion populations

exist in the units in Central Africa.

Other applications of camera traps include simple species inventories, the discovery of

new species, abundance estimations, conservation assessments and population dynamics

(Rowcliffe and Carbone, 2008). Tobler et al. (2015) for example developed a multi-session

multi-species occupancy model to improve estimates for species richness and occupancy

for a large data set, based on the total number of detections per species. The model can

be used to monitor mammal communities over time and investigate regional and temporal

7
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Figure 2.5: Factors affecting detection probability. Image from Burton et al. (2015).

patterns in the distribution and composition of communities and this in relation to natu-

ral or anthropogenic factors. Camera trap are also used to try to discover new species.

In 2005, a new species of elephant-shrew (Rhynchocyon), a small insectivorous mammal,

was described. It was discovered in the northern Udzungwa Mountains of Tanzania, based

on camera trap images (Rovero et al., 2008). Li et al. (2015) described a newly discov-

ered macaque species from Tibet by means of camera trap images. In southeastern Tibet,

macaques live in dense tropical or subtropical evergreen forests where they travel across

mountainous terrain. Since it was difficult to follow these unhabituated groups, they opted

to use camera traps to be able to compare characteristics of the local macaque populations.

Swinnen et al. (2014) also list studying niche separation, competitive exclusion, population

structure, foraging behaviour and biodiversity as possible applications. Survival and recruit-

ment estimations, monitoring populations and communities over time, analysis of habitat

associations, studying activity patterns, diet or reproduction, disease monitoring and mon-

itoring of wildlife crossings are mentioned by Rovero et al. (2013). In 2005, the first green

bridge in Flanders was constructed in Bierbeek, connecting the eastern and western part

of Meerdaalwoud. Figure 2.6 shows an aerial photo of this ecoduct. Camera traps were in-

stalled to monitor which animals were using the green bridge. The results showed that most

of the target species used the bridge and often even large numbers of them (Lambrechts

et al., 2013).

8
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Figure 2.6: Aerial photo of green bridge ’De Warande’ in Bierbeek (Flemish Brabant). Image from
Lambrechts et al. (2013).

In recent years, camera traps are also increasingly being used in documenting presence

of rare species, rare events and rare or melanistic individual animals (Swann et al., 2011).

Hedges et al. (2015) discovered a novel modification to infrared flash camera traps, which

always forces the camera into night mode. In this way, they were able to consistently and

clearly see the spots of melanistic leopards (Panthera pardus) in Malaysia (Figure 2.7). This

was an important finding since almost all leopards are melanistic in this country, which

made it nearly impossible to identify individuals using normal camera traps for estimating

leopard density.

2.5.2 Methodological challenges

The above examples show that the possible uses of camera trap image are endless. How-

ever, there are still some methodological challenges. As mentioned in Section 2.2, Swann

et al. (2004) confirmed the relationship between species body mass and the probability of

triggering cameras. From this they conclude that trap rates cannot be used as an index to

compare relative abundance across species. There are also factors other than abundance

that influence trapping rates, particularly animal movement rates, body size and patterns

of habitat use (Rowcliffe and Carbone, 2008). Therefore, early applications mostly relied on

individually recognisable animal species, often large cat species (Rowcliffe and Carbone,

2008). Capture-recapture models can be used for species with individually-distinct fur pat-

terns or artificial marks to estimate abundance and density. These models account for the

fact that not necessarily all animals in the study area are observed (Rovero et al., 2013).

Nowadays, methods are being developed to estimate the abundance and density of species

that cannot be individually identified, since the majority of wildlife species are not easily

individually identifiable. Rowcliffe and Carbone (2008) state that is must be possible to
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Figure 2.7: Example of a photograph of a melanistic leopard taken in daytime colour mode (a) and
with the camera forced into using the infrared flash (b). Image from Hedges et al. (2015).

control for the above-mentioned confounding variables and extract the underlying abun-

dance signal in trapping rate data. They proposed a method, the Random Encounter Model

(Rowcliffe et al., 2008), which aims to estimate the density of species based on the likeli-

hood that the camera detection zone is crossed by passing animals. Another model was

developed by MacKenzie et al. (2002), aiming at occupancy studies. They define occupancy

as the proportion of area, patches or sites occupied by a species. Their model estimates

site occupancy and detection probability based on repeated presence-absence surveys of

multiple sites. Their occupancy estimation accounts for the fact that it is possible that a

species is present but not detected.

2.6 Citizen science

To review the large amount of images resulting from camera trapping surveys, it may be

helpful to get help from volunteers. Wildlife enthusiasts can help identifying the animals

captured on the camera trap images. In addition, the images may contain other useful in-

formation, for example animal attributes and behaviour which the volunteers can indicate.

The time and effort volunteers invest in these projects is often vital for their success and

allows researchers to make meaningful contributions to the expansion of scientific knowl-

edge (Reed et al., 2013). The data obtained through citizen science can also be used to

eventually automate this process via machine learning.
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Figure 2.8: The Zooniverse2 interface for the Manatee Chat project. On the left of the screen, an audio
clip is displayed that can be played and on the right the user can select one of the proposed labels.

2.6.1 Virtual citizen science

Originally, citizen science referred to enlisting volunteers from the general public in gather-

ing scientific information themselves (Bonney et al., 2009) or by assisting researchers doing

fieldwork (Cohn, 2008). An example of such a project that relies on citizen science is the

annual counting of garden birds in Flanders during the last weekend of January, organised

by Natuurpunt. In 2018, 33 500 people participated and more than 600 000 birds were

recorded (Natuurpunt, 2018). Nowadays, volunteers can make use of the internet to par-

ticipate in scientific research, resulting in the rise of virtual citizen science. This also lowers

barriers for volunteers to participate in projects since they only need access to the citizen

science website to contribute to projects anywhere in the world (Reed et al., 2013). An

example of a successful virtual citizen science project is Foldit1, where protein folding was

turned into a game. In this way, volunteers playing the game discovered for example an

ideal protein structure before professional AIDS researchers working on the same problem

did (Khatib et al., 2010).

2.6.2 Citizen science platforms

Zooniverse2 is the world’s largest citizen science platform. It hosts a great diversity of

projects from various research disciplines such as biology, medicine, literature, arts, astron-

omy, archaeology and climatology (Reed et al., 2013). Research data is shown to volunteers

in the form of images, video and audio. A simple tutorial shows them how to perform the

1https://foldit.it
2https://www.zooniverse.org
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Figure 2.9: The Snapshot Serengeti website interface with all available species options (left) and filters
that help narrow users’ choices when classifying species (right). Image from Swanson et al. (2015).

required analysis so that they can then identify, classify, mark and label data as researchers

would do (Simpson et al., 2014). Figure 2.8 shows the interface of the Manatee Chat project

on Zooniverse, where volunteers need to identify and classify manatee calls. A big project

that partnered with Zooniverse is Snapshot Serengeti3. Figure 2.9 shows the online in-

terface with all available species options and filters that help narrow users’ choices when

classifying species. In Serengeti National Park (Tanzania), 225 cameras were deployed,

which produced 1.2 million sets of pictures. These images were classified by members of

the general public, resulting in 10.8 million classifications (Swanson et al., 2015). These

results show the power of citizen science platforms. To improve data accuracy, every im-

age was circulated to multiple users after which an algorithm was applied to aggregate the

individual classifications into a final ’consensus’ dataset. By validating the consensus clas-

sifications against images classified by experts, the labelling by volunteers was estimated

to be 96.6% accurate (Swanson et al., 2015).

Another upcoming citizen science platform is eMammal4, a data management system for

collecting, organizing and displaying camera trap images and associated metadata col-

lected by volunteers (McShea et al., 2016). In contrast to the Zooniverse projects, it is not

possible for volunteers to just classify the camera trap images available on the website.

This platform targets studies in which volunteers deploy cameras themselves and upload

and process the resulting images. However, on the website there are annotated camera

trap images available from projects around the world that one can explore.

3https://www.snapshotserengeti.org
4https://emammal.si.edu
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2.6.3 Motivation of volunteers

Reed et al. (2013) wanted to understand what motivates volunteers to participate in citi-

zen science projects. Therefore, they asked users of Zooniverse to fill out a web survey,

assessing various possible motives for their participation. They found that three factors are

important: social engagement, interaction with the website and helping. Social engage-

ment refers to the awareness of and interaction with other members of the Zooniverse

community. Also the tasks and skills involved motivate the volunteers. The second factor,

interaction with the website, comprises awareness, facility and enjoyment from using the

various features of Zooniverse projects. The third and last factor, helping, communicates

how participants experience positive feelings from helping or volunteering to participate

in Zooniverse (Reed et al., 2013). This is important information for scientists who want to

start a citizen science project since the success of these research projects often depends

on the rate of participation.

2.6.4 Education and awareness

Another development in the application of camera traps is the growing use for education. As

mentioned above, citizen science is a great tool for involving the general public in nature

research. In this way, also awareness is raised for the projects the images result from

(Swann and Perkins, 2014). The citizen science platform eMammal offers the opportunity to

schools to deploy camera traps and provide them with the necessary support. This allows

students to learn which animals live around their school and excite them about nature

(McShea et al., 2016).

Next to these additional positive effects that result from letting people deploy camera traps

themselves or help researchers classify their images, the images from camera trap surveys

are being used all over the world to excite people about wildlife. Images are a powerful tool

to promote conservation among citizens since they show parts of our world that usually

remain unseen (Swann and Perkins, 2014). The images are not only useful to raise global

environmental awareness, but also play a role in sensitizing local communities and building

conservation management capacity (Rovero et al., 2013).

2.6.5 Privacy considerations

Striving towards an open data policy and sharing data with the general public comes with

some important considerations. Nowadays, the protection of citizens’ private sphere is a

sensitive issue. When images from camera traps mounted in public areas are distributed,

there always exists the risk that passers-by have triggered the camera traps. Images

13
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showing people cannot be made public. Before the data can be made available to vol-

unteers, these images need to be removed from the dataset (Steenweg, 2016). This can

be automated by, for example, training a neural network to recognise people. Some coun-

tries already implemented restrictions on the use of camera traps, for example Austria

and Switzerland (Rovero et al., 2013). In Belgium, no specific rules exists yet for the de-

ployment of camera traps, but the general privacy regulations apply also to camera traps

(Privacycommissie, 2018). Furthermore, some studies may not want to release geograph-

ical locations of endangered or rare species for fear of increasing poaching or to prevent

enthusiasts from disturbing the animals and their habitat (Steenweg, 2016).
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CHAPTER 3

DESCRIPTION OF THE CAMERA

TRAP IMAGES

To train the image classification network to recognize humans and identify animal species,

training data is needed. This data consists of camera trap images and their associated

labels, indicating the manually annotated content of the images. In this chapter, the struc-

ture of the camera trap images and their associated labels is described. At the end of the

chapter, an overview is given of the observed bird and mammal species.

3.1 Study area

3.1.1 Hoge Kempen National Park

The images that are used to train the neural network result from an ongoing camera trap

survey from the Research Institute for Nature and Forest (INBO) in collaboration with Hasselt

University1. The camera traps (see Section 2.3) are mounted in the Hoge Kempen National

Park, located in the East of the Province of Limburg (Figure 3.1). This nature reserve consists

of more than 5700 hectares of pine forest and heathland (Regionaal Landschap Kempen en

Maasland, 2015) and is the first and only Belgian National Park (Jeanloz et al., 2016). The

camera trap survey is conducted to investigate natural and human factors influencing the

behaviour of wild boars (Sus scrofa). Wild boar is native to the Eurasian continent, but went

virtually extinct in Flanders several decades ago. The species was observed again in 2006

and is expanding rapidly ever since. On the one hand, this can be seen as a conservation

success. On the other hand, the return of wild boar gave rise to some challenges, inherent

to the fragmented nature in Flanders. Wild boars can have serious ecological, economic

and socio-cultural impacts. One of the most topical impacts of wild boar is the damage to

agricultural land and gardens. The Hoge Kempen National Park has a limited size and is

surrounded by urbanised area, increasing the chance of encounters between wildlife and

people (Hasselt University, 2015).

1https://www.uhasselt.be/FieldResearchCentre

https://www.uhasselt.be/FieldResearchCentre
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Figure 3.1: Location of the Hoge Kempen National Park in the East of the Province of Limburg. Image
from Jeanloz et al. (2016).

3.1.2 Sampling configuration

During twelve months, 40 camera traps are mounted in the National Park. Every month, the

cameras are moved to new locations. A careful sampling design is necessary to contend

with spatial variability. This can be addressed by defining a target population of sampling

units for inference (for example grid cells) and deploying cameras following a probability-

based design (Burton et al., 2015). To determine the location of the camera traps, an

imaginary grid with identical cells was placed over the study area, resulting in 640 possible

camera locations (Figure 3.2). The National Park was divided into 40 areas of equal size in

order to obtain an even distribution of the camera traps over the area. For every month,

a set of 40 sampling points was randomly selected, with one location in every zone (Fig-

ure 3.3). A camera trap mounted at a certain location is called a deployment. The dataset

used to train and evaluate the image classification network consists of the camera trap

images taken from May until September 2017. This corresponds to 134 deployments.

3.2 Camera trap images

3.2.1 Image sequences

When the camera is activated, a number of images are taken consecutively. By default the

camera takes three pictures per trigger, but this setting can be changed (Reconyx, 2013).

During the camera trap survey in the Hoge Kempen National Park, the number of pictures

per trigger was set at ten. These images are grouped into a sequence. When the first

round of ten images is completed, the camera checks whether there is still movement. If
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Figure 3.2: Sampling grid to determine the
camera locations.

Figure 3.3: Camera trap locations during the
first year. Every colour denotes a different set
of 40 locations.

so, a second round of ten images is taken. This process will continue until no more motion

is detected. Sequences of ten images that are taken immediately after one another, are

combined into one large sequence. A sequence therefore consists of at least ten images.

The camera switches automatically between night mode and day mode, taking respectively

monochrome infrared images and colour images (Reconyx, 2013).

3.2.2 Control images

Normally, the camera only takes images when it is activated by the motion detection sensor.

However, twice a day, every twelve hours, one image is taken without the camera being

activated by the motion detector. These images can afterwards be used to verify whether

the camera was working correctly, since equipment failure is one of the common issues

users of camera traps have to deal with (see Section 2.4.2). Otherwise, if there are no

images for a long period of time, it would be impossible to know if there were simply no

animals passing by or that the camera was malfunctioning. Because of the control images,

there is an image available at least every twelve hours. These images are also grouped into

a sequence when multiple control images were made consecutively, without any sequences

based on motion detection in between them.

3.3 Annotations

The camera trap images that are used to train the neural network are manually annotated

using Agouti2. This is an application for processing images from camera trap surveys,

developed by scientists of Wageningen University in collaboration with INBO. The images

are not individually annotated, but labels are assigned per sequence. The animal species,

2https://www.agouti.eu
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the number of animals and when possible also the sex and age of the animals are entered

into Agouti. Additional notes on the animal behaviour can be made. The presence of

humans and domestic animals is also indicated. Sequences taken during the set-up and

pick-up of the camera and blank sequences are marked.

Since only the sequences are labelled and not the individual animals or even the separate

images, only sequences that contain one animal species are used to train the network.

Sequences with more than one species are removed from the dataset. This situation is not

very common, resulting in seven of the 4316 sequences being removed from the dataset.

3.4 Overview of the data

The camera trap images that are used are taken from May until September 2017, at 134

locations (deployments) in the Hoge Kempen National Park. The dataset consists of 4316

sequences or almost 150 000 images. As mentioned above, seven sequences containing

more than one species are removed, resulting in 4309 remaining sequences. One sequence

containing horses and crows was removed as well as three sequences containing horses

and geese and three sequences containing roe deer and wild boars. Table 3.1 gives an

overview of the available sequences and observed species. Thirteen mammal species and

ten bird species were observed. The number of sequences per annotation is highly variable,

resulting in an unbalanced dataset (see Section 4.3).

3.4.1 Bird species

As can be seen in Table 3.1, most of the observed bird species only appear in a small number

of sequences. As determined by Swann et al. (2004), animal size and speed influences

trapping rates. Furthermore, in contrast to sequences containing large mammals, in most

of the bird sequences, only the first image(s) of the sequence contain(s) the bird, resulting

in even less images of birds. These images are also often not ideal images. Only part of

the bird is in the image or the bird is very close to the camera resulting in images being

out of focus or the opposite, the bird is far way from the camera. Figure 3.4 displays the

camera trap image of six bird species that most clearly shows the animal, illustrating this

problem. All of this makes it difficult to identify the bird species. Therefore, all ten observed

bird species are combined into one class.
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Table 3.1: Overview of the number of sequences per annotation. (Sequences containing more than
one animal species are discarded.)

Vernacular name Scientific name

Ass Equus asinus 8

Beech Marten Martes foina 17

Carrion Crow Corvus corone 3

Common Pheasant Phasianus colchicus 1

Domestic Cat Felis catus 14

Domestic Dog Canis familiaris 4

Eurasian Blackbird Turdus merula 24

Eurasian Jay Garrulus glandarius 1

Eurasian Red Squirrel Sciurus vulgaris 6

European Hare Lepus europaeus 10

Great Spotted Woodpecker Dendrocopos major 1

Great Tit Parus major 9

Greylag Goose Anser anser 15

Horse Equus caballus 30

House Sparrow Passer domesticus 10

Long-tailed Field Mouse Apodemus sylvaticus 8

Red Fox Vulpes vulpes 236

Sheep Ovis aries 9

Short-toed Treecreeper Certhia brachydactyla 1

Song Thrush Turdus philomelos 1

Western European Hedgehog Erinaceus europaeus 2

Western Roe Deer Capreolus capreolus 1282

Wild Boar Sus scrofa 190

Human 27

Blank 2092

PickupSetup 308

Total 4309
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Camera trap image available in the dataset that most clearly shows (a) the Eurasian
blackbird, (b) the Eurasian jay, (c) the house sparrow, (d) the short-toed treecreeper, (e) the great tit
and (f) the great spotted woodpecker. The great spotted woodpecker is sitting on the tree on the left
side of the image. The Eurasian jay is hidden in the grass in the bottom left corner of the image and
is nearly impossible to find, even when the image is enlarged.

3.4.2 Mammal species

Figure 3.5 shows camera trap images of all observed mammal species, except the domestic

cat and dog. These images were chosen to have a clear representation of the animal

species. In reality, not all images are perfect, as explained in Section 4.2. Therefore, for

some species even the most ideal image does not show the animal clearly. If needed,

rectangles were added to indicate the position of the animal.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3.5: All observed mammal species, except the domestic cat and dog: (a) ass, (b) beech
marten, (c) Eurasian red squirrel, (d) European hare, (e) horse, (f) long-tailed field mouse, (g) red
fox, (h) sheep, (i) Western European hedgehog, (j) Western roe deer and (k) wild boar. If needed,
rectangles were added to indicate the position of the animal.
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IMAGE CLASSIFICATION

To automatically recognise people and identify animal species, an image classification

model needs to be built. This model will assign a label to the camera trap images from a

fixed set of possible labels. When classifying camera trap images, there are some additional

challenges due to the environmental conditions in which the camera traps are mounted, the

behaviour of the animals and hardware limitations of the camera traps. Additionally, the

dataset is heavily imbalanced, meaning that some classes are much more common than

others. Finally, since the training data consist of annotated sequences, not individually la-

belled images, a suitable method needs to be selected to aggregate the predictions for the

individual images into one label for the whole sequence.

4.1 Image classification models

An image classification problem is the task of assigning a label from a fixed set of possible

labels to an input image. An image is actually just a large array of numbers which has to

be converted to one single label. The model assigns probabilities to the possible labels

after which the most likely label can be determined (Karpathy et al., 2016). In the case

of identifying animals in camera trap images, the possible labels are the different species

observed in the area. Note that when a new animal species occurs that has not been

observed before, this species will not be included in the labels available to the model and

therefore will not be classified correctly.

It would be an enormous task trying to specify the characteristics of each class so that an

object can be identified based on a set of rules. Therefore, the model is trained using many

manually labelled images of each class and in this way learns the visual appearance of each

class. This approach is referred to as a data-driven approach (Karpathy et al., 2016).

4.2 Challenges when classifying camera trap images

The task of visual recognition is trivial for humans, but comes with some challenges for

computer algorithms (Karpathy et al., 2016). When working with camera trap images, the
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image conditions become even more challenging (Yu et al., 2013). This results in automatic

classification of animal species in camera trap images still remaining a challenging problem

(Gomez et al., 2017). For camera trap images, the challenges can be subdivided in three

main groups: environmental conditions, animal behaviour related and hardware limitations

(Gomez et al., 2017). Figure 4.1 shows some examples of these challenges.

Environmental conditions refer to how the rough conditions the camera is mounted in, af-

fect the quality of the image. Since camera traps are deployed in a natural environment

with vegetation, many objects can occlude the target animals (Gomez et al., 2017). This

environment is not static (see Section 5.3), so even if there was no occlusion when placing

the cameras, it can appear at any moment, for example when branches are moved into

the field of view of the camera. Another challenge is the changing illumination conditions

whereby the colour of an object, the pixel values of the array, changes during the day

and between different days (Karpathy et al., 2016). Day and night have very different il-

lumination conditions but especially the transition between them causes problems (Gomez

et al., 2017). Figure 4.1f shows an example of overexposed regions caused by the sunlight.

Varying weather conditions such as rain are also examples of conditions that directly af-

fect hardware performance (Gomez et al., 2017). Figure 4.1e shows an image taken with

raindrops on the lens.

A vast majority of camera trap images do not contain the whole animal due to the above-

mentioned context occlusion or when the animal is too close to the camera or when a

part of the animal is simply outside the field of view of the camera (Karpathy et al., 2016).

Depending on the position of the animal, a picture can be taken from many different angles.

Another animal behaviour related challenge is that animals can move their bodies and

therefore do not always have the same shape and appearance (Karpathy et al., 2016). A

running roe deer for example will look different compared to his congener who is lying

down on the ground. Furthermore, important features to recognize a species can be hidden

because of the complex pose of the animal. Particularly for similar species this can be a

problem (Gomez et al., 2017). In addition, the size of animals of the same species can

vary in the image (Karpathy et al., 2016). An animal can have a larger extent in the image

because it is closer to the camera, but also the real size can vary between individuals of the

same species. Furthermore, an image may include multiple animals, even different species.

As explained in Section 3.3, sequences with more than one species were removed from the

dataset.

Challenges related to camera trapping hardware and selected parameters are blurred im-

ages and overexposed animals due to the infrared flash. This results in shape and fur

patterns being indistinguishable, increasing the difficulty of the classification task (Gomez

et al., 2017).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: Different camera trapping classification scenarios: (a) ideal, (b) occlusion due to context,
(c) auto-occlusion, (d) disturbing weather conditions, (e) raindrops on the lens, (f) poor illumination
conditions, (g) part of the animal, (h) animal close to the camera, (i) animal far away from the camera,
(j) overexposed animal, (k) blurred animal and (l) multiple animals and different sizes.
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An automatic species recognition system must be able to deal with all these challenging

conditions and classify an image only with partial information. Because of all the different

situations in which an animal can appear, the classification model must be invariant to all

these variations, but at the same time be sensitive to the variations between the different

classes (Karpathy et al., 2016).

4.3 The class imbalance problem

As mentioned in Section 3.4, the dataset is heavily imbalanced. There are big differences

between the number of sequences that are available to train the neural network to recog-

nise the different classes. This results in a significant difference between the prior prob-

abilities of the different classes. This situation is known as the class imbalance problem

(López et al., 2013). The problem of an imbalanced dataset is that models can limit their

predictions to the most frequent classes and still achieve a high level of accuracy. Often

it is in particular the smaller classes that one is interested in (Norouzzadeh et al., 2017).

For example, in the research project the training images result from, one is interested in

wild boar (Sus scorfa), appearing in only 190 of the 4309 sequences (see Table 3.1). Many

solutions have been proposed to deal with the class imbalance problem. Two commonly

used types of methods are data sampling and cost-sensitive learning (López et al., 2013).

4.3.1 Data sampling

The general principle of the data sampling approach is to preprocess the training data

and modify it in such a way that a more or less balanced set is obtained (López et al.,

2013). There are three types of resampling methods: undersampling, oversampling and a

hybrid method that combines under- and oversampling. When performing undersampling,

a subset of the original dataset is created by eliminating instances of the majority class.

However, the imbalanced class problem is generally associated with binary classification,

but the multi-class problem often occurs as well, for example when classifying camera trap

images. In this setting, there can be several minority classes, making it more difficult

to solve the imbalance problem, especially when using resampling methods (López et al.,

2013). The opposite of undersampling is oversampling, where a superset of the original

dataset is created by replicating some instances or by creating new ones based on the

existing ones. The major drawback of resampling methods is that potentially useful data is

discarded when performing undersampling or that the likelihood of overfitting is increased

when using oversampling (López et al., 2013).
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4.3.2 Cost-sensitive learning

This method incorporates solutions at both the data level and the algorithmic level. Cost-

sensitive learning takes into account the variable cost of a misclassification with respect

to the different classes. For classification tasks, the measure of performance is often de-

fined as the proportion of examples that the models correctly classifies (Norouzzadeh et al.,

2017). To conquer the imbalancedness of the dataset and avoid that the model achieves a

high performance by only learning the majority classes, higher costs are assigned to mis-

classification of examples from the minority classes (López et al., 2013). The challenge

when applying this technique is that a suitable cost matrix must be determined. These cost

values can be given by domain experts or can be derived from the data.

Norouzzadeh et al. (2017) propose a weighted loss approach for the classification of camera

trap images with imbalanced classes. A higher cost is put on misclassifying images from

rare classes and a lower cost on misclassifying examples of the frequent classes. The

importance ƒ of each class is computed as follows:

ƒ =
N

n
, (4.1)

with N the total number of images in the set and n the total number of images for each

class  in the training set. The weights  for each class are then calculated using the

following formula:

 =
ƒ

∑k
=1 ƒ

, (4.2)

with k the number of classes, so that the sum of the weights of all classes is equal to one.

When datasets are highly imbalanced, this approach could cause extremely high and low

weights, resulting in very small or very large gradients, which can be harmful to the learning

process. To avoid this, the gradients can be limited within a certain range (Norouzzadeh

et al., 2017). Section 6.4 explains how a neural network is trained, including the role of the

gradient in this process. The research of Norouzzadeh et al. (2017) shows that this method

to conquer the imbalancedness of the data can increase the accuracy for the rare classes,

while keeping the same level of accuracy for most of the other classes.

4.4 Classifying image sequences

The dataset contains labels for sequences, not individual images. However, the neural

network will be trained to classify images. The label of the sequence is assigned to every

image of the sequence. This introduces additional noise into the dataset since the animal
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is not always in every image of the sequence. Afterwards, the individual predictions need

to be aggregated to predict one label for the entire sequence. It should be possible to

train a neural network to directly classify sequences, but this causes challenges related

to sequences with different numbers of images and larger neural network sizes, amongst

other things (Norouzzadeh et al., 2017).

A possible way to aggregate the individual predictions is to simply select the most fre-

quently predicted label. An other possible approach is averaging the top-5 predictions of all

the images of the sequence, as described by Norouzzadeh et al. (2017). For each image,

the model outputs a probability distribution over all classes from which the top-5 guesses

can be selected. Across all images of the sequence, the probabilities are summed up by

class and divided by the total number of images N. The result is a vector of probabilities for

different classes, with a length varying from 5 to 5N. The final aggregate prediction is the

label with the highest probability. Norouzzadeh et al. (2017) found that the accuracy scores

for sequences consisting of two to three images are on average 0.5% higher than those for

individual images.
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In order to improve the performance of the neural network, it is helpful to select the regions

of interest of the camera trap images and feed only those to the input layer of the neural

network. In the case of camera trap images, the regions of interest of the image can be

an animal, a human or even a car in the background of the image when the camera is

positioned close to a road. The neural network architecture that will be used, requires fixed

input dimensions. Therefore, all extracted regions must have the same size. However,

in one camera trap image multiple areas can be selected, depending on the number of

interesting objects in the image and their size. In order to achieve this, the images are

preprocessed. The preprocessing is shown schematically in Figure 5.1 and is step by step

described in more detail in this chapter. The result of the different steps is illustrated by

means of an example sequence (Figure 5.2). This sequence consists of ten images and

shows a wild boar running across the field of view of the camera, from left to right.

5.1 Benefit of using segmented images

Gomez et al. (2017) compared the performance on a dataset consisting of manually seg-

mented images to the performance on the dataset containing the original camera trap

images, for eight different neural network architectures. For all network architectures, the

performance was higher when the segmented images were used. Another problem that

might occur when using the whole image as an input for the classifier, is that the predic-

tions are influenced by the background of the image. For example, Ribeiro et al. (2016)

found that their classifier could be misled by the presence of snow in the image when dis-

criminating between wolfs and huskies. Shane (2018) gives an example of a neural network

predicting the presence of sheep, just because the image shows hilly green fields, without

sheep being present. This is because of the way neural networks learn (see Section 4.1).

When a lot of the example images show sheep in hilly green fields, it is possible that the

classifier associates the label ‘sheep’ with the background, the green fields, and not with

the object of interest, the animal. So when a sheep shows up in a for the network unex-

pected place, it has a hard time classifying it (Shane, 2018).
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sequence

compute background image
using the median

compute difference image

apply minimum filter

threshold difference

extract (entended) area apply edge detection

apply minimum filter

apply binary closing

apply connected component labelling

extract (entended) area loop over objects

threshold object size

extract (entended) area
divide object over

multiple boxes

area ≤ box area > box

area ≤ box area > box

object ≤ box object > box

Figure 5.1: Preprocessing flowchart used to find the regions of interest in an image.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10)

Figure 5.2: Example sequence to illustrate the result of the different steps of the preprocessing.

An additional advantage of determining the regions of interest in the camera trap images,

not related to the performance of a neural network, is that a box can be drawn on the cam-

era trap image, indicating those region of interest. When images are manually processed,

finding the animal or deciding that there is no animal in the image is typically the most time

consuming part (McShea et al., 2016). Automatically drawing boxes around the regions of

interest may ease this process.

5.2 Size reduction

The original camera trap images have a resolution of 1920 by 1080. To reduce the com-

putational load of the preprocessing and when training the neural network, the dimensions

of the images are reduced 50%, resulting in images with a resolution of 960 by 540. This

size reduction might sound dramatic, but is barely noticeable, as shown in Figure 5.3. The

preprocessing was first optimized based on the original images. Afterwards, it was explored

how much the resolution of the images could be reduced without having an adverse effect

on the performance of the segmentation. The minimum and maximum pixel difference (see

Section 5.4.1) were changed in proportion to the size reduction, as well as the size of the

extracted area. The value of other parameters used during the preprocessing could remain

the same.

All of this was determined based on visual assessment. The regions of interest were not ex-

tracted from the images, but instead indicated on the image, making it possible to evaluate
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(a) Original (b) Resized

Figure 5.3: Original camera trap image (1920x1080) (a) and resized image (960x540) (b).

their position. A test set was composed containing 30 sequences with different situations

to determine the optimal operations and their parameters. This test set consists of se-

quences with one animal, sequences with multiple animals, sequences with small animals,

sequences with large animals, empty sequences (false triggers), sequences with humans,

sequences taken during the camera set-up, et cetera. In addition, for a final visual assess-

ment, the resulting boxes of five deployments were plotted on the images and evaluated.

5.3 Background image

To select the regions of interest in an image, a standard, background image is needed to

be able to determine which elements in the image are different compared to the normal

situation.

A possible approach is using the control images to compare the images to. These control

images are automatically taken every twelve hours without the camera being triggered to

be able to check if the camera is still working. These images thus represent the background

situation. However, during the day, the light changes and therefore also the shadow pat-

terns. This problem was also reported by Swinnen et al. (2014) who tried to discriminate

between recordings of target species and non-target recordings based on detecting vari-

ation (changes in pixel values) in the recordings. Furthermore also branches and leaves

close to the camera can be moved substantially by wind or by animals passing by. The

background is therefore not static and with the cameras being installed in a natural en-

vironment, the background situation may change significantly during the presence of the

camera trap and even during the small time window between an image and the closest con-

trol image. These changes were too big to be able to correct them, so the control images

were not usable to construct a background image.

An advantage of the way the camera works is that it takes at least ten pictures when it is

triggered. When it is still triggered after these ten images, it takes ten more images and

so on. Every image is thus part of a sequence of at least ten images. This sequence can
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(a) Median (b) Average

Figure 5.4: Background situation computed using the median (a) and the average (b). On the average
image (b) two horizontal red line are added to indicate the position of the remaining haze.

be used to construct a background image. Since the sequence is taken during a very short

time period, the light changes and other changes to the background are minor. Weinstein

(2015) uses a running average to represent the background, with a parameter controlling

the degree to which more recent frames contribute to the new background state. However,

Weinstein (2015) works with time-lapse videos and has a lot more frames available per time

unit than supplied by our camera trap. Also, since our camera only takes images when it is

triggered, except for the control images, the changes between sequences can be big due

to the different causes mentioned above. So instead of using a running average over all

the images of a deployment, the computation of the background image is restricted to the

images of the sequence and a new background image is constructed for every sequence.

In addition, since the smallest sequences only exist of ten images, a more robust measure

(Huber, 2011), the median, is used to determine the background situation instead of the av-

erage. Figure 5.4 illustrates the difference between the use of the median and the average

to compute the background for a sequence consisting of ten images. If one looks closely,

one can see that on the average image a haze of the roe deer running across the image

from left to right remains (in between the two red horizontal lines), while on the median

image the background situation is visible without any haze. The median value is a pixel

value that actually occurs in one of the images of the sequence, while the average value is

computed based on the pixel values of the sequence and therefore not necessary occurs in

one of the images of the sequence, resulting in a haze.

However, the very first step in the preprocessing of the images, before the median images

and differences can be calculated, is the removal of the borders. At the top and bottom

of the image, a black border is present. On those borders the metadata of the image,

such as the time and temperature, is stamped. These borders can simply be removed by

cropping the image. In all following steps, the cropped images are used. Figure 5.5 shows

the computed background image using the median for the example sequence.
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Figure 5.5: Computed background image for the example sequence (Figure 5.2) using the median.

5.4 Filtering

Before filtering, the difference images of the colour images are converted to greyscale

images, since for the remaining part of the preprocessing only the presence of differences

and their gradients are important (see Section 5.5.1). All further preprocessing is done

using greyscale images with only one channel, either original infrared greyscale images

or converted colour images. At the end of the preprocessing, when the location of the

regions of interest of the image is determined based on the greyscale images, the regions

are extracted from the original images.

The difference between an image and the median image of the sequence, the background

state, is only a first rough estimate of the regions of interest of the images. Not only

the objects of interest are different in comparison to the background image, also other

elements may have moved slightly during this small time period. Noise removal is therefore

necessary. A challenge when doing the noise removal is that the method has to be coarse

enough to remove for example moving leaves, which can occupy a large area on the image

when they are close to camera, but not too rough so that small objects of interest, for

example young wild boars, are not removed. Figure 5.6a shows the original, unfiltered

difference between the sixth image of the example sequence (Figure 5.2) and the median

image (Figure 5.5) and Figure 5.6b shows the difference after filtering.

5.4.1 Minimum filter

As a fist step to remove noise, a minimum filter is passed over the difference image. Based

on visual assessment of the result (see Section 5.2), a filter with a kernel size of nine was

selected. This means that the value of a pixel is changed to the lowest pixel value in the

nine by nine neighbourhood of this pixel.

When the difference between an image and the median background image is computed,

the absolute value of the difference is taken. The lowest value in the difference image is

therefore zero, indicating that there is no difference compared to the background state.

Pixel values higher than zero indicate a change compared to the background. When the
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(a) Unfiltered difference (b) Filtered difference

Figure 5.6: Difference between the sixth image of the example sequence (Figure 5.2) and the median
image (Figure 5.5) before and after filtering.

minimum filter is passed over the difference image, the value of all pixels is changed to the

lowest pixel value in their neighbourhood. When the neighbourhood of a pixel contains a

zero difference pixel, the value of that pixel is set to zero, removing some of the noise. The

minimum filter unfortunately not only removes noise, but also removes part of the object

if a zero difference pixels is in its neighbourhood. A kernel size of nine provides a good

balance between noise removal and not removing too many of the object pixels, especially

in the case of small objects.

After filtering, a minimum and maximum threshold is applied to the number of pixels that

are different compared to the background image. Images with too little difference are

discarded. When the number of pixels is too small, the difference is due to remaining noise

and not due to an object of interest. Differences larger than the upper threshold are mostly

images that are taken during the set-up or pick-up of the camera, whereby the camera

shakes and the field of view of the camera changes abruptly. This results in a useless

background image when computing the mean values and therefore (almost) every pixel will

be different, so no objects can be detected. Another possibility is that an animal appears

very close to the camera, occupying the whole image. Images with too much difference are

not processed further, but the whole image is divided into areas with a size equal to the

predefined size of the input images of the neural network.

5.5 Image segmentation

As mentioned before, all extracted areas must have the same predefined size. After the

first filtering step, the size of a rectangular area containing all pixels having a value larger

than zero is determined. If the dimensions of that area are smaller than the predefined

size, the extraction area is extended to fit the predefined size. If the dimensions are larger,

the area has to be subdivided into smaller parts. To do so, we will try to detect the different

objects in the difference image. Small objects, for example several young animals, might
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Figure 5.7: Result after edge detection and
subsequent filtering for the sixth image of the
example sequence (Figure 5.2).

Figure 5.8: Result after binary closing for the
sixth image of the example sequence (Fig-
ure 5.2).

be grouped together in one box, while larger objects, for example an animal close to the

camera, might have to be divided over more than one box.

5.5.1 Edge detection

To determine the position of the object, edge detection is used. Edge detection identifies

sharp discontinuities in an image. These discontinuities can be either changes in the image

intensity or in the first derivative of the image intensity (Senthilkumaran and Rajesh, 2009).

One of the most frequently used edge detection methods, Roberts Edge Detection (Senthilku-

maran and Rajesh, 2009), led to the best result, again based on visual assessment (see

Section 5.2). Roberts Edge Detection, also called the Roberts Cross operator, is based

on the approximation of the two-dimensional spatial gradient on an image by computing

the sum of the squares of the differences between diagonally adjacent pixels. The input

is a greyscale image and so is the output. The pixel values of the output represent the

estimated absolute magnitude of the spatial gradient at every point (Senthilkumaran and

Rajesh, 2009).

A disadvantage of the used edge detection method, is that it enhances noise. Therefore,

the output image is filtered again. This time a minimum filter with a kernel size of three

is used and passed twice over the image to remove noise. Figure 5.7 shows the result of

the preprocessing after edge detection and subsequent filtering for the sixth image of the

example sequence (Figure 5.2).

5.5.2 Binary closing

After edge detection, only the edges of the objects are highlighted. The result is not a

smooth edge surrounding every object, but multiple separate pieces of edge. These pieces

need to be connected to each other to construct the different objects in the image. This is

done using binary closing.
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Before applying binary closing to the result of edge detection and filtering, the greyscale

image is converted into a binary image. Pixel values of zero represent the background and

pixel values of one indicate the foreground.

Binary closing combines erosion and the opposite process of erosion, dilation. When an

erosion filter is applied to an image, the boundaries of foreground objects are eroded away.

A foreground pixel will only remain one if all the pixels in its neighbourhood are also one,

otherwise it is set to zero. The opposite process is dilation where a pixel value is set to one

if at least one pixel in its neighbourhood is one. It increases the size of an object (Haralick

et al., 1987). The neighbourhood of a pixel is defined by a structuring element, a matrix of

zeros and ones. Binary closing is in fact the erosion of the dilation of the image with the

same structuring element. Closing therefore fills holes smaller than the structuring element

(Haralick et al., 1987). The structuring element used here is a 20 by 20 fully-connected

kernel. The dilation step of the closing and then the erosion step are each repeated five

times. Figure 5.8 shows the result of applying binary closing for the sixth image of the

example sequence (Figure 5.2.)

5.5.3 Connected component labelling

The last step in selecting the regions of interest of the image and dividing them over boxes

of a predefined size, is to identify the different objects in the processed difference image.

This is done via connected component labelling. Two pixels are connected when they are

neighbours and have the same value (Haralick and Shapiro, 1985). All eight neighbours

of a pixel are considered. Remember that the result of binary closing, as the name sug-

gests, is a binary image. All foreground pixels and all background pixels have the same

value, respectively one and zero. The result of applying connected component labelling to

the output image of binary closing is an image in which all neighbouring foreground pixels

are grouped together, getting the same label. Since there is only one object in the exam-

ple sequence (Figure 5.2), all foreground pixels get the same value, resulting in the same

image as in Figure 5.8. When there are multiple objects, they each get a different label,

represented by their pixel values, resulting in the objects having different colours.

Before the objects can be extracted, a threshold is applied to the size of the objects to

remove any remaining noise. All objects that consist of a number of pixels smaller than the

threshold are discarded. If all objects fit in one box, only one rectangular part of the image

is extracted. When this is not the case, the individual objects are extracted. If a single

object is still too large, the object is divided over multiple boxes. Figure 5.9 shows the area

that will be extracted from the sixth image of the example sequence (Figure 5.2) and the

extracted part that will be passed to the neural network.
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(a) (b)

Figure 5.9: Area that will be extracted from the sixth image of the example sequence (Figure 5.2) (a)
and the extracted part that will be passed to the neural network (b).

5.6 Data after preprocessing

Table 5.1 gives an overview of the available sequences and observed species after pre-

processing the images. The last column of this table indicates the difference between the

number of sequences before and after preprocessing. These differences can be explained

by the minimum threshold that is applied to the number of pixels that is different compared

to the background situation. Images with too little difference are discarded, as explained

in Section 5.4.1. When all images of a sequence show too little difference, the whole se-

quence disappears. For the ’Blank’ sequences, this is the intention. However, as explained

in Section 5.4, there is a trade-off between noise removal and preserving objects of interest

that occupy only a small area of the image, for example small animals, parts of animals or

animals far away from the camera. Therefore, not all empty sequences are removed dur-

ing the preprocessing. For example, sequences resulting from the camera being triggered

by moving branches show a sufficient amount of difference compared to the background

image. Therefore, the neural network will be trained to recognise empty camera trap im-

ages. Also some sequences taken during the set-up or pick-up of the camera consist of

empty images or are not very different from the background situation. On the other hand,

also as a result of this trade-off, some objects of interest that occupy only a small area of

the image are lost during the preprocessing. This happened to some sequences containing

birds, including the only sequence containing an Eurasian jay. An image of this sequence

is shown in Figure 3.4b. As explained in Section 3.4.1, the images of birds are often not

ideal and birds are frequently very small in the pictures, resulting in birds being overlooked

during the preprocessing. The same applies to some sequences of very small mammals,

for example mice.
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Table 5.1: Overview of the number of sequences per annotation after preprocessing, divided between
day time colour images and night time infrared images. The second last column shows the number of
sequences before preprocessing (Table 3.1) and the last column indicates how many sequences were
lost during preprocessing.

After preprocessing Original dataset Difference

Annotation Day Night Total

Ass 4 3 7 8 1

Beech Marten 0 17 17 17 0

Carrion Crow 3 0 3 3 0

Common Pheasant 1 0 1 1 0

Domestic Cat 2 12 14 14 0

Domestic Dog 4 0 4 4 0

Eurasian Blackbird 22 1 23 24 1

Eurasian Jay 0 0 0 1 1

Eurasian Red Squirrel 5 1 6 6 0

European Hare 4 5 9 10 1

Great Spotted Woodpecker 1 0 1 1 0

Great Tit 9 0 9 9 0

Greylag Goose 14 0 14 15 1

Horse 23 5 28 30 2

House Sparrow 5 4 9 10 1

Long-tailed Field Mouse 0 5 5 8 3

Mouflon 9 0 9 9 0

Red Fox 24 203 227 236 9

Short-toed Treecreeper 1 0 1 1 0

Song Thrush 1 0 1 1 0

Western European Hedgehog 0 2 2 2 0

Western Roe Deer 580 685 1265 1282 17

Wild Boar 20 164 184 190 6

Human 18 8 26 27 1

Blank 1385 199 1584 2092 508

PickupSetup 215 5 220 308 88

Total 2350 1319 3669 4309 640
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CONVOLUTIONAL NEURAL

NETWORKS FOR IMAGE

CLASSIFICATION

Convolutional neural networks will be used to recognise people and identify animal species.

Nowadays, convolutional neural networks are the go-to technique for computer vision prob-

lems (Chollet, 2018). Although the area of neural networks was originally inspired by the

desire to model biological neural systems, it has diverged and become a successful tech-

nique for machine learning tasks (Karpathy et al., 2016). This chapter start with a brief

introduction to machine learning and deep learning, whereafter the architecture and train-

ing of neural networks is explained. Convolutional neural networks are highlighted, since

this is the type of neural network that will be used to classify the camera trap images. The

network will not be build and trained from scratch, but a pretrained neural network will be

adjusted to hierarchically classify the camera trap images.

6.1 Deep learning with neural networks

Deep learning is a specific subfield of machine learning. Machine learning applies a new way

of programming: instead of manually implementing data processing rules, the model distills

these rules automatically by looking at the data. A machine learning model is trained,

rather than explicitly programmed (Chollet, 2018). As explained in Section 4.1, the model

is presented with many labelled examples from which it learns the visual appearance of

each class. These learnt rules can then be applied to new images to predict their labels.

This stands in contrast to classical programming, where a human inputs rules and data is

processed according to these rules. Figure 6.1 visualises the difference between classical

programming and machine learning.

In deep learning, emphasis is placed on learning successive layers of increasingly meaning-

ful representations. This is usually done via neural networks, consisting of stacked layers.
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Figure 6.1: Difference in approach between classical programming and machine learning. Image from
Chollet (2018).

A deep network can be seen as a multistage information distillation operation. The inputs

are mapped to the targets via a sequence of simple data transformations in the layers. The

specifications of these transformations are stored in the layer’s weights. Training the net-

work means finding the appropriate weights for all layers so that the inputs are correctly

mapped to their associated labels (Chollet, 2018). Applications of deep learning include

near-human-level image classification, speech recognition and handwriting transcription.

Deep learning in also used to improve text-to-speech conversion, for autonomous driving

and in digital assistants such as Google Now and Amazon Alexa (Chollet, 2018).

6.2 Architecture of neural networks

Neural networks consist of several types of layers. These layers are the core building blocks

of the network and process the data. A layer can be seen as a filter for the data and extracts

representations out of this data. Neural networks are chains of mathematical operations,

layer by layer, which are just geometric transformations of the input data (Chollet, 2018).

The first layer of a network, receiving the input, is referred to as the bottom of the network,

while the last layer of the network, providing the output, is referred to as the top of the

network. Chollet (2018) presents an easily understandable analogy for a neural network

being a complex geometric transformation in a high dimensional space, implemented via a

sequence of simple steps. Imagine two sheets of paper crumpled together into a small ball.

That ball is the input data and each sheet represents a class in a classification problem.

The neural network will need to figure out a transformation of the paper ball to uncrumple

it, so that the two classes are easily separable. With deep learning, this is implemented

as a sequence of simple transpirations of the three-dimensional space, similar to what one

would do when uncrumpling a paper ball, one movement at a time.

Each layer of a network consists of individual neurons. These neurons have learnable

weights and biases. Every neuron receives input signals , computes a dot product with the

weights , adds a bias b and applies an activation function ƒ (·), determining the strength
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Figure 6.2: Mathematical model of a neuron. Image from Karpathy et al. (2016).

of the signal that is passed on to the next neuron (Karpathy et al., 2016). This process is

schematically shown in Figure 6.2 and is analogous to what happens in a biological neuron

in the central nervous system. In Figure 6.2, the terminology of the analogous biologi-

cal process is also mentioned. The activation function that is applied before the output is

passed on to the next layer adds a non-linearity to the model. Without it, the layers could

only learn linear transformations, since the composition of linear transformations is also

linear (Chollet, 2018). An activation function takes a single number and performs a non-

linear mathematical operation on it, depending on the type of activation function (Karpathy

et al., 2016). A commonly used activation function is the rectified linear unit (ReLU), which

computes the following function:

ƒ (t) =mx(0, t) ,

thresholding the activation at zero (Karpathy et al., 2016).

6.3 Convolutional neural networks

Figure 6.3 shows the difference between a regular neural network and a convolutional neu-

ral network. A neuron of a layer of a regular neural network is connected to every neuron

of the previous layer. When this type of architecture is be used for image classification, an

enormous number of weights would need to be learnt, since the dimensions of the input,

an image, are large. For example, when the input is an image that is 200 pixels wide, 200

pixels high and has three colour channels, the input layer will need to consists of 200 · 200

· 3 = 120,000 neurons. Since each neuron of the next layer is connected to every neuron

of this layer, this would lead to neurons having 120,000 weights. With layers consisting

of multiple neurons and a network consisting of multiple layers, the number of weights

will quickly become enormous. A convolutional network takes advantage of the fact that

the input is an image, a three-dimensional array of integers. The neurons of layers of a

convolutional neural network are arranged in three dimensions. Furthermore, a neuron is
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Figure 6.3: Difference in architecture between a regular neural network (left) and a convolutional
network (right). Images from Karpathy et al. (2016).

(a)

(b)

Figure 6.4: Spatial hierarchy of patterns learnt by convolution layers. Images from Norouzzadeh et al.
(2017) (a) and Chollet (2018) (b).

no longer connected to all neurons of the previous layer, but only to a small region of the

previous layer. When an image travels through the layers of the network, it is reduced to

a single vector containing the class scores (Karpathy et al., 2016). Based on these scores,

the probabilities of the possible labels, the most likely label can be determined.

Dense layers or fully-connected layers, where a neuron is connected to all neurons of the

previous layer, learn global patterns in their input feature space. Convolutional layers,

where a neuron is only connected to a small region of the previous layer, learn local pat-

terns, such as edges and textures. This gives convolutional neural networks two interesting

properties: they can learn spatial hierarchies in patterns and the patterns they learn are

translation invariant (Chollet, 2018). Translation invariant means that a certain pattern can

be recognised anywhere in the image, independent of where in the image it was learnt. This

is a useful characteristic for image classification, since the object of interest may change

position in the images. As explained in Section 4.2, camera trap images are often not ideal

images. Animals are shown in different positions, only part of the animal is in the image,

et cetera. Moreover, convolutional neural networks are able to learn spatial hierarchies of

patterns. This concept is shown in Figure 6.4. A first convolution layer will learn small pat-

terns, such as edges. A subsequent layer will be able to learn larger patterns, made of the
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Figure 6.5: Schematic representation of how a convolution works. Image from Chollet (2018).

features of the previous layer, and so on. In this way, the network can learn increasingly

complex features to classify the images (Chollet, 2018). In the example in Figure 6.4b, the

low-level features are combined into more high-level features, such as the animal’s eyes

and ears. Based on these high-level features, the image classification model can determine

what is in the picture. The process of extracting increasingly complex features is illustrated

in Section 7.4.1 and Section 7.4.2.

Figure 6.5 shows schematically how a convolution works. A window with predefined dimen-

sions, usually three by three or five by five, slides over the three-dimensional input feature

map and extracts at every location a three-dimensional patch of surrounding features. Each

patch is then transformed by computing the dot product between the patch and the matrix

containing the weights. This matrix is called the convolution kernel in Figure 6.5. The result

of this product is a one-dimensional vector. All these vectors are finally combined into a

three-dimensional output feature map, preserving their spatial location (Chollet, 2018).
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6.3.1 ResNet50

As mentioned earlier, the network that will be used to classify the camera trap image will

not be build and trained from scratch, but a pretrained convolutional neural network will

be adjusted to hierarchically classify the camera trap images. The pretrained network that

will be used is ResNet, more specifically ResNet50, consisting of 50 layers. ResNet is the

winning architecture of the 2016 ImageNet competition (Norouzzadeh et al., 2017) and was

trained on a subset of the ImageNet dataset, containing 1.8 million images belonging to

1000 classes (Wu et al., 2016). Four other pretrained convolutional neural networks avail-

able in Keras, InceptionV3, Xception, VGG16 and VGG19, were briefly tried, but ResNet50

performed remarkably better. Also other authors working on identifying animals in cam-

era trap images, such as Gomez et al. (2016), Norouzzadeh et al. (2017) and Gomez et al.

(2017), report ResNet performing best on their data.

ResNet is short for Residual Network. Residual learning was introduced to ease the train-

ing of very deep neural networks. The depth of a network is of crucial importance for its

performance, but with networks becoming deeper, a degradation problem occurred. With

the network depth increasing, accuracy got saturated and adding more layers to a suitable

deep model led to a higher training error. However, this degradation of the training accu-

racy is not caused by overfitting, but by deeper networks being more difficult to optimize

(Wu et al., 2016). This problem does not appear to be caused by vanishing or exploding

gradients (see Section 6.4), but by the network having a hard time learning the identity

mapping for certain layers. Residual learning offers a solution to this degradation problem.

Instead of letting the layers directly learn features, they learn residual functions. These

residual functions are the subtraction of the feature learnt from the input of that layer. The

reasoning behind this is that it may be easier for the network to learn zero mappings, where

M () = 0, instead of identity mapping, where M () = . This is realized by adding short-

cut connections to the network that perform identity mapping. The connections directly

connect the input of the n-th layer to the (n + k)-th layer, skipping one or more layers, as

shown in Figure 6.6. When the desired underlying mapping is M (), the building block (see

Figure 6.6: Building block for residual learning. Image from Wu et al. (2016).
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Figure 6.7: Architecture of ResNet34, a residual network with 34 parameter layers. Image from Wu
et al. (2016).
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Figure 6.8: Building block for ResNet34 (left) and ResNet50 (right). Image from Wu et al. (2016).

Figure 6.6) maps F (), where

F () = M () −  ,

with  being the input of the first layer of the building block. The original mapping thus

becomes F () +  and is reconstructed by adding the output of the shortcut connection to

the output of the building block (Wu et al., 2016). Wu et al. (2016) show that is it easier

to optimize the residual mapping than to optimize the original one, solving the degradation

problem for very deep neural networks.

Figure 6.7 shows the architecture of ResNet34, a residual network with 34 parametrized

layers. ResNet50 is constructed by replacing the building blocks of ResNet34, consisting

of two convolution layers, by a new building block consisting of three convolution layers,

as shown in Figure 6.8. This results in a network with 50 layers (Wu et al., 2016). A more

detailed overview of the architecture of ResNet50, including the dimensions of the different

layers, can be found in Dasgupta (2017).

6.4 Training a neural network

The process of training a neural network is represented in Figure 6.9. The input X, in our

case a region extracted from a camera trap image, is transformed through the layers of the

network, resulting in a predicted label Y′. To measure how far the output of the network

Y′ is from the true label Y, a loss function is used. This function computes a distance

score, indicating how well the network is performing. The loss will be high if the network

is doing a poor job of classifying the images and it will be low if it is doing well (Karpathy

et al., 2016). This loss score can then be used as a feedback signal to adjust the weights

so that the loss score is lowered. This adjustment is done by the optimizer (Karpathy

et al., 2016). To find the most suitable weights, the gradient of the loss is computed, with

regard to the network’s weights. By updating the weights in the opposite direction from the
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Figure 6.9: Dataflow when training a neural network. Image from Chollet (2018).

gradient, the loss decreases. To compute the gradient, advantage is taken of the fact that

all operations used in the network are differentiable (Chollet, 2018). As mentioned earlier,

a neural network function consists of many operations chained together. Each of these

operations has a simple known derivative. By recursively applying the chain rule to this

sequence of operations, the backpropagation algorithm is obtained (Karpathy et al., 2016).

The chain rule is a formula used to compute the derivative of the composition of functions:

d

d

�

ƒ
�

g ()
�

�

= ƒ ′
�

g ()
�

g′ () .

Backpropagation starts with the final loss value and works backwards to the bottom layers,

applying the chain rule to compute the contribution of each parameter to the loss value

(Chollet, 2018).

For a multiclass, single label classification problem, categorical cross entropy is recommend

as a loss function (Chollet, 2018). Cross entropy is a measure from the field of information

theory used to quantify the distance between probability distributions or when used as a

loss function, between the ground truth distribution and the class probabilities estimated

by the network (Chollet, 2018). The cross entropy between the true distribution p and the

estimated distribution q is defined as:

H(p, q) = −
∑



p logq

where















p = [p1, ..., pm] with
∑


p = 1 and p ¾ 0

q = [q1, ..., qm] with
∑


q = 1 and q ¾ 0

The true distribution is the distribution where all probability mass is on the correct class

(Karpathy et al., 2016). For example p = [0,1,0,...,0], when the second class is the true
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label of the image. As mentioned in Section 4.3, the data used to train the neural net-

work is highly imbalanced. Therefore, the loss will be weighted, putting a higher cost on

misclassifying images from rare classes and less cost on misclassifying images from fre-

quent classes. In this way, the model will pay more attention to images from the under-

represented classes (Norouzzadeh et al., 2017). The formula used to calculate the class

weights can also be found in Section 4.3.

6.5 Data augmentation

Data augmentation has been shown to be an effective, though simple technique to increase

the accuracy of classification tasks (Wang and Perez, 2017). Via data augmentation, more

training data is generated from existing training examples. This is done by augmenting the

examples via a number of random geometric transformations, such as cropping, rotating,

zooming in or out and flipping input images (Chollet, 2018). All these new variations of the

original input image can also be used to train the network. This is especially useful when

training a network on a small dataset. The problem that occurs when training on a small

dataset, is that the model has difficulty learning to generalize to new data, which leads

to overfitting. One way to reduce overfitting is using data augmentation to increase the

number of training examples (Wang and Perez, 2017). At training time, the input images

are augmented in such a way that the network never sees the exact same image twice

(Chollet, 2018). Figure 6.10 shows some augmented images, resulting from the region that

was selected after preprocessing (Figure 5.9b) of the sixth image of the example sequence

used in Chapter 5. This augmentation was done by rotating, flipping and shifting the image.

However, these augmented images are still heavily intercorrelated and based on the same

amount of information. Therefore, data augmentation does not completely counteracts

overfitting. To further reduce overfitting, other techniques can be adopted, such as adding

a dropout layer to the network. Here, one randomly drops out a number of output features

during training by setting them to zero (Chollet, 2018). When training the network, the

gradient indicates how each weight should be adapted, given what all other weights are

doing. This may lead to complex co-adaptations. By adding dropout and each time ignoring

a set of output features, the output features are decorrelated (Srivastava et al., 2014).

6.6 Transfer learning

Instead of building a network from scratch and trying to optimize randomly initialised

weights, a pretrained network can be used. This is a common and highly effective ap-

proach when working with a small image dataset. A pretrained network is a network that
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Figure 6.10: Augmentation of the selected region after preprocessing (Figure 5.9b) of the sixth image
of the example sequence used in Chapter 5 (Figure 5.2).

was previously trained on a large dataset (Chollet, 2018). A typical dataset used for this, is

the ImageNet dataset, consisting of more than 14 million labelled images and over 20,000

ambiguous categories (Stanford Vision Lab, 2016). The dataset contains mostly images of

animals and everyday objects. If the original dataset is large and general enough, the learnt

spatial hierarchical features can be used for many different image classification problems,

even when the new problem has completely different classes (Chollet, 2018). The ImageNet

dataset contains many different animals classes, so the features learnt from this dataset

will definitely be useful to classify wildlife in camera trap images. The pretrained network

cannot directly be applied to a new classification problem, but will need some small adap-

tations to predict the new labels well. Two approaches will be discussed: using bottleneck

features and fine-tuning.

6.6.1 Bottleneck features

A first approach is using the pretrained network to extract bottleneck features, representa-

tions learnt by the network, from the new input data. These features can then be passed

on the a linear classifier, which is trained from scratch to predict the new labels, based on

the features extracted by the pretrained network (Chollet, 2018). This is done by removing

the top of the pretrained network, which maps the extracted features to the class scores,

and replacing it by a few new layers that form a linear classifier and predict the scores for

the new labels (Karpathy et al., 2016).
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6.6.2 Fine-tuning

A second possible approach consists of not only replacing and training the top of the

network, but also fine-tuning the weights of other layers of the pretrained network. Fine-

tuning the pretrained network means slightly adjusting the weights so that the features

of the pretrained model are slightly adapted to make them more relevant for the new

classification problem. In principle, all layers can be fine-tuned, but to avoid overfitting the

network to the new, smaller dataset, it is recommended not to change the weights of the

bottom layers (Karpathy et al., 2016). Remember that the earlier layers extract local, low-

level features such as edges, colours and textures, whereas layers higher up extract more

high-level features, such as eyes and ears, as in the example of a cat (Figure 6.4b) (Chollet,

2018). The low-level features are more generic, whereas the more specialised features will

benefit from being fine-tuned to the new problem.

6.7 Hierarchical classification

Instead of directly modelling the different output classes, the network will learn to hierar-

chically classify the images. Figure 6.11 shows the classification tree that is used. The

explanation of the symbols used in this figure can be found in Table 6.1. First a distinction

is made between blank images and images that do contain something of interest. Subse-

quently, the latter group is divided into images containing animals and images that do not

contain animals. The images without animals are finally split in images with people or hu-

man activity and images made during the pick-up or set-up of the camera. For the images

with animals, a distinction is made between birds and mammals, after which the mammals

are further subdivided. Mammal species belonging to the order Rodentia (long-tailed field

mouse and Eurasian red squirrel), Lagomorpha (European hare) or Eulipotyphla (Western

European hedgehog) are classified as small mammals. Mammal species belonging to the

order Perissodactyla (ass and horse), Carnivora (red fox, beech marten, domestic cat and

domestic dog) or Artiodactyla (mouflon, western roe deer and wild boar) are classified as

large mammals. Birds are not further subdivided, as discussed in Section 3.4.1.

The network first models the conditional probabilities, as shown in Figure 6.11. These prob-

abilities are then converted to the class scores by adding a layer to the top of the network

with fixed weights. When modelling the conditional probabilities, the sum of the probabil-

ities of all children of a node must be equal to one. For example the sum of P(A|B̄) and

P(Ā|B̄) must be equal to one, but also the sum of P(Mose|S), P(Sqirrel|S), P(Hre|S) and

P(Hedgehog|S)must be equal to one (see Figure 6.11). When a node has only two children,

the conditional probability of one child is modelled, whereafter the conditional probability

of the second child can be computed by taking the complement of probability of the first
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Blank
P(B)

Not blank
P(B̄)

Animal
P(A|B̄)

Bird
P(D|A)

Mammal
P(M|A)

Small
P(S|M)

Long-tailed Field Mouse
P(Mose|S)

Eurasian Red Squirrel
P(Sqirrel|S)

European Hare
P(Hre|S)

Western European Hedgehog
P(Hedgehog|S)

Large
P(L|M)

Ass
P(Ass|L)

Horse
P(Horse|L)

Red Fox
P(Fox|L)

Beech Marten
P(Mrten|L)

Domestic Cat
P(Ct|L)

Domestic Dog
P(Dog|L)

Mouflon
P(Moflon|L)

Western Roe Deer
P(Deer|L)

Wild Boar
P(Bor|L)

No animal
P(Ā|B̄)

Human
P(H|Ā)

PickupSetup
P(P|Ā)

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 6.11: Hierarchical classification tree with the corresponding conditional probabilities. The ex-
planation of the symbols can be found in Table 6.1.
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Table 6.1: Symbols corresponding to the different hierarchical classes.

Symbol Class

B Blank

B̄ Not blank

A Animal

Ā No animal

D Bird

M Mammal

H Human

P PickupSetup

S Small mammal

L Large mammal

child, for example P(Ā|B̄) = 1 − P(A|B̄). When a node has more than two children, as is the

case for the small and large mammals, all children are modelled, but a softmax function

is applied to make the conditional probabilities add up to one. The following formulas are

used to convert the conditional probabilities to the class scores:

Level 1:

P(B) = P(B)

P(B̄) = 1 − P(B)

Level 2:

P(A) = P(A|B̄) P(B̄)

P(Ā) = P(Ā|B̄) P(B̄) =
�

1 − P(A|B̄)
�

P(B̄)

Level 3:

P(M) = P(M|A) P(A)

P(D) = P(D|A) P(A) =
�

1 − P(M|A)
�

P(A)

P(H) = P(H|Ā) P(Ā)

P(P) = P(P|Ā) P(Ā) =
�

1 − P(H|Ā)
�

P(Ā)

Level 4:

P(S) = P(S|M) P(M)

P(L) = P(L|M) P(M) =
�

1 − P(S|M)
�

P(M)
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Level 5:

P(Mose) = P(Mose|S) P(S)

P(Sqirrel) = P(Sqirrel|S) P(S)

P(Hre) = P(Hre|S) P(S)

P(Hedgehog) = P(Hedgehog|S) P(S)

P(Ass) = P(Ass|L) P(L)

P(Horse) = P(Horse|L) P(L)

P(Fox) = P(Fox|L) P(L)

P(Mrten) = P(Mrten|L) P(L)

P(Ct) = P(Ct|L) P(L)

P(Dog) = P(Dog|L) P(L)

P(Moflon) = P(Moflon|L) P(L)

P(Deer) = P(Deer|L) P(L)

P(Bor) = P(Bor|L) P(L)

These class scores can then be compared to the true labels in the loss function. The symbols

used in the above equations, the same symbols as in Figure 6.11, are explained in Table 6.1.

The final prediction is made by passing through the classification tree, whereby at every

split the branch with the highest probability is selected. In order to obtain the correct

prediction at a higher level, the lower predictions must also be correct. Simply selecting

the label with the highest score may lead to different results, especially since the output

classes are at different levels in the classification tree. Each time we move to a lower node

of the tree, an additional probability, a value smaller than or equal to one, is added to

the multiplication. Therefore, the child node always has a probability that is lower than or

equal to the probability of the parent node. To illustrate this, the calculation is done using

the probabilities in Figure 6.12. Starting at the top of the classification tree, ‘Not blank’ is

selected since P(B̄) > P(B). At the next split ‘No animal’ is selected since P(Ā|B̄) > P(A|B̄).

Finally ‘Human’ is selected since P(H|Ā) > (P|Ā). The final prediction is thus ‘Human’. On

the other hand, simply selecting the label with the highest probability would require the

following calculations:

P(A) = P(A|B̄) P(B̄) = 0.4 · 0.6 = 0.24

P(Ā) = P(Ā|B̄) P(B̄) = 0.6 · 0.6 = 0.36
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Blank
P(B) = 0.4

Not blank
P(B̄) = 0.6

Animal
P(A|B̄) = 0.4

Bird
P(D|A) = 0.1

Mammal
P(M|A) = 0.9

No animal
P(Ā|B̄) = 0.6

Human
P(H|Ā) = 0.9

PickupSetup
P(P|Ā) = 0.1

Level 1

Level 2

Level 3

Figure 6.12: First three levels of the hierarchical classification tree with randomly chosen probabilities
to illustrate how the final predictions are selected.

P(M) = P(M|A) P(A) = 0.9 · 0.24 = 0.216

P(D) = P(D|A) P(A) = 0.1 · 0.24 = 0.024

P(H) = P(H|Ā) P(Ā) = 0.9 · 0.36 = 0.324

P(P) = P(P|Ā) P(Ā) = 0.1 · 0.36 = 0.036

By combining the above calculations and Figure 6.12, the output probabilities are:

P(B) = 0.4

P(M) = 0.216

P(D) = 0.024

P(H) = 0.324

P(P) = 0.036

Selecting the label with the highest probability would thus result in ‘Blank’ and not ‘Human’,

the correct hierarchical prediction.

By hierarchically classifying the images and modelling the conditional probabilities, a pre-

diction can be made at every level, using the formulas above. When the network is unre-

liable at a certain level, rather then possibly misclassifying the image, the prediction can

be limited to the level above. For example, if the trained network has difficulty discrim-

inating between mice and hedgehogs, rather than possibly misclassifying the image, the

prediction can be made one level higher in the classification tree, indicating that there is

a small mammal in the image (see Figure 6.11). If small mammals are of interest for a re-
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search project, one can manually classify the image in more detail, if desired. On the other

hand, if the image contains nothing of interest, according to the prediction made by the

neural network, the image can be discarded. In this way, the manual workload is reduced

when processing camera trap images, while misclassification is mostly avoided. As shown

in Table 3.1, for some animal species, very few sequences are available, making it difficult

to train the network and validate its performance. For these classes, the prediction can be

restricted to a level higher than the individual species level, if needed.
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CHAPTER 7

RESULTS AND DISCUSSION

This chapter describes the different steps taken during training of the convolutional neural

network. The performance of the final network is evaluated and analysed at the different

levels of the hierarchical classification tree using confusion matrices. The confusion matri-

ces associated with this chapter can be found in Appendix A. Finally, to gain inside in the

behaviour of neural networks, different elements of what a convolutional neural network

learns are visualized.

7.1 Training, validation and test data

The available data is split in a training, validation and test set. The training set consists

of half of the sequences. The remaining half of the sequences is again split into two equal

parts to form the validation set and the test set. Splitting the data is done randomly, but

in a stratified fashion, based on the label of the sequences. In this way, the ratio of the

number of sequences per class is similar for the three data sets. As shown in Table 5.1,

there are only two sequences available of the Western European hedgehog, while the data

needs to be split into three parts. Therefore, one sequence is assigned to the training set

and the second sequence is assigned to both the validation and the test set. Table 7.1

gives an overview of the number of sequences and images of each class in the training,

validation and test set. The number of images refers the the number of extracted image

regions after preprocessing, not the number of camera trap images.

7.2 Training the neural network

7.2.1 Data augmentation

As explained in Section 6.5, data augmentation can be attempted to increase the network’s

performance. However, a disadvantage of using data augmentation in combination with

bottleneck features is that the training time strongly increases. When no augmentation

is applied, the bottleneck features can simply be extracted ones for all available images.
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Table 7.1: Overview of the number of sequences and images of each class in the training, valida-
tion and test set. The number of images refers the the number of extracted image regions after
preprocessing.

Sequences Images

Annotation Train Val Test Train Val Test

Ass 4 1 2 440 400 365

Beech Marten 8 4 5 43 10 47

Bird 31 16 15 1144 556 146

Blank 792 396 396 12300 7057 6987

Domestic Cat 7 3 4 59 14 55

Domestic Dog 2 1 1 24 3 21

Eurasian Red Squirrel 3 2 1 7 8 10

European Hare 4 3 2 15 24 12

Horse 14 7 7 2348 488 1500

Human 13 6 7 235 461 535

Long-tailed Field Mouse 3 1 1 15 1 6

PickupSetup 110 55 55 39922 19627 19749

Red Fox 113 57 57 1072 688 550

Sheep 5 2 2 344 357 715

Western European Hedgehog 1 1 1 2 3 3

Western Roe Deer 632 317 316 24729 10288 10840

Wild Boar 92 46 46 4445 1929 2239

Total 1834 918 918 87144 41914 43780

The computation of the bottleneck features of all images takes about ten hours when the

available graphics processing unit, a GTX 1080 Ti, is used. Thereafter, these bottleneck

features can be used as an input to train the new top of the network. Training will take a

few hours, depending on the number of epochs, the number of iterations over all training

data. Each image thus needs to be converted to a set of bottleneck features ones. These

features only depend on the pretrained network and can therefore be used multiple times

when trying to find the optimal parameters for the new top. When data augmentation is

applied, the network each time sees a slightly different version of the image. When enough

augmentation option are provided, for example a wide zoom range, a wide shift range and a

wide rotation angle, the network never even sees the exact same image twice by each time

combining a different zoom, shift and rotation. However, this means that a lot of different

bottleneck features will need to be extracted and that the bottleneck features cannot be

stored and reused for further training since the network each time sees a different version

of the images. This strongly increases the training time. The computation time is about

seven times higher, whereby hours of training turn into days. In addition, augmenting the

images also takes time and the more augmentation options, the more the training time

increases.
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Figure 7.1: Validation accuracy without data augmentation, with horizontal flipping and with horizontal
flipping combined with zooming.

Figure 7.1 shows the validation accuracy during training without data augmentation and

with two data augmentation options: horizontal flipping and horizontal flipping combined

with zooming. Training was ended early, after three days of training, before the accuracy

reached a plateau, since it was clear that the accuracy did not benefit from adding data

augmentation. Some other frequently used augmentation options such as rotating, shifting

and shearing the image were briefly explored. Their results are similar to those of zooming.

Figure 7.1 shows that the explored data augmentation options do not improve the network’s

performance. The results of horizontal flipping are similar to those without augmentation.

In addition, the training time strongly increases when applying augmentation. Therefore,

the further optimization of the network is done without data augmentation. Moreover, the

shorter training time allows for more training options to be explored.

A possible explanation for the fact that data augmentation is not improving the perfor-

mance of the network may be that the augmented images are still heavily intercorrelated,

because they come from a small number of original images. Data augmentation does not

produce new information. It only remixes existing information (Chollet, 2018). In addition,

the resulting augmented image may not contain the object of interest, for example when

zooming is applied, or the generated variations of the input data may deviate too much

from the real life appearance of the objects.

7.2.2 Weighted loss function

As explained in Section 4.3, because of the heavily imbalanced data set, the network can

limit its predictions to the most frequent classes, while still achieving a high level of accu-

racy. To conquer this, the loss is weighted, inversely proportional to the number of images

per class. The weights for each class, computed using Equation 4.1 and 4.2, are reported

in Table 7.2. To illustrate the importance of using weights or an other technique to conquer

the imbalancedness of the data, the network was also trained without weights. Figure 7.2

shows the validation accuracy of this experiment during training. The accuracy is higher
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Table 7.2: Class weights.

Class Weight

Ass 0.00261

Beech Marten 0.02673

Bird 0.00100

Blank 0.00009

Domestic Cat 0.01948

Domestic Dog 0.04789

Eurasian Red Squirrel 0.16418

European Hare 0.07662

Horse 0.00049

Class Weight

Human 0.00489

Long-tailed Field Mouse 0.07662

PickupSetup 0.00003

Red Fox 0.00107

Sheep 0.00334

Western European Hedgehog 0.57465

Western Roe Deer 0.00005

Wild Boar 0.00026

when no weights are applied. However, Figure A.1 in Appendix A shows the normalized

confusion matrix of the network trained without weighting. The diagonal of the normalized

confusion matrix indicates the proportion of images of the different classes that is correctly

classified. In Section 7.3, the performance of the network with weighting is discussed.

The three classes containing the most images are ‘Blank’, ‘PickupSetup’ and ‘Western Roe

Deer’, as shown in Table 7.1. This is reflected in the distribution of the predicted labels in

the normalized confusion matrix in Figure A.1. The columns of the matrix corresponding to

these classes contain a higher portion of the predictions, a result of the difference between

the prior probabilities of the classes. When the network is uncertain how to classify an im-

age of a smaller class, the best bet is to assign it to a frequently occurring class. The three

aforementioned large classes have the highest accuracy, respectively 0.81, 0.84 and 0.84.

The accuracy of the smaller classes is lower and for some classes even zero. The network

thus has a higher overall accuracy, but does not perform well for smaller classes.
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Figure 7.2: Validation accuracy during training when the loss function is weighted with the class
weights reported in Table 7.2 and when the loss function is not weighted.
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Figure 7.3: Validation accuracy during training when the gradient is clipped between -0.01 and 0.01
and when the gradient is not clipped.

7.2.3 Gradient clipping

As explained in Section 4.3.2, weighting the loss could cause extremely high or low gra-

dients when the data set is highly imbalanced, which is harmful to the learning process.

Therefore, Norouzzadeh et al. (2017) suggest clipping the gradient between -0.01 and 0.01.

Figure 7.3 shows the validation accuracy during training when the gradient is clipped be-

tween -0.01 and 0.01 and when the gradient is not clipped. This graph illustrates the limited

imbalancedness of the data set. Weighting the loss does not cause extremely high or low

gradients during training. Therefore, clipping the gradient does not affect the training pro-

cess, neither positively nor negatively. The data set used by Norouzzadeh et al. (2017)

however is much more imbalanced with more classes and extremer differences between

the number of images per class. The extremely low and high weights needed to compen-

sate this strong imbalancedness do give rise to extreme gradients.

7.2.4 Dropout layer

As explained in Section 6.5, a dropout layer is added to the top of the network to reduce

overfitting. To illustrate the influence of a dropout layer, the network is trained without a

dropout layer and with 50% dropout. Figure 7.4 shows the training and validation accuracy

of this experiment. The training accuracy is slightly higher without the dropout layer, but

removing the dropout layer has a negative impact on the validation accuracy. Hence, with-

out the dropout layer, the network is indeed overfitting on the training data. It models the

training data slightly better, but loses its ability to generalize to new data, resulting in a

lower performance on the validation data.

60



CHAPTER 7. RESULTS AND DISCUSSION

0 250 500 750 1000 1250 1500 1750 2000
epoch

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

with dropout
without dropout

(a) Training
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(b) Validation

Figure 7.4: Training and validation accuracy of the network with and without a 50% dropout layer.

7.2.5 Fine-tuning

Once the new top is trained, it is possible to fine-tune the layers of the convolutional base,

the pretrained network. It is important to first train the new top before starting to fine-tune

the weights of the pretrained network. Otherwise, fine-tuning could destroy the features

learnt by the pretrained network because the error signal propagating through the network

during training is too large when the weights of the top are not yet optimized (Chollet,

2018). As explained in Section 6.6.2, when working with small data sets, it is recommended

to only fine-tune the top layers of the pretrained network. Figure 7.5 shows the validation

accuracy of the network before fine-tuning and during fine-tuning of the last convolutional

building block of the pretrained base. This is just a small experiment to investigate the

possible benefit of fine-tuning. Due to the very large training times for fine-tuning, the

full potential of fine-tuning is not yet explored. Using the available GPU, training for just

100 epochs takes five days. Exploring the full potential of fine-tuning and exploring which

layers need fine-tuning to get the best result without overfitting would take months and is

therefore left for future work.
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Figure 7.5: Validation accuracy before fine-tuning and during fine-tuning.

7.2.6 Final neural network

The final network contains a dropout layer and is trained without data augmentation during

3000 epochs. Only the new top is trained. The convolutional base is not additionally fine-

tuned. The loss is weighted with class weights to correct for the imbalancedness of the data.

Clipping the gradient is not necessary since the data set is not that strongly imbalanced that

it causes extreme gradients.

Figure 7.6 shows the training and validation accuracy of the final model. The overall ac-

curacy on the test images is 0.80. The performance of the network is discussed in detail

in Section 7.3. Figure 7.7 summarises the architecture of the final model, consisting of the

base of ResNet50 with a new top. The two top layers, ‘softmax_layer’ and ‘cond_layer’ are

added to allow hierarchical classification. As explained in Section 6.7, a softmax function

is applied to make the conditional probabilities of the child nodes add up to one. The final

layer, ‘cond_layer’, converts the conditional probabilities to the final output probabilities of

the classes.
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Figure 7.6: Training and validation accuracy of the final model.
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Figure 7.7: Summary of the architecture of the final model.

7.3 Neural network performance

7.3.1 Predicting sequences

As explained in Section 4.4, the predicted labels of the individual images of a sequence

need to be aggregated to one label for the whole sequence, since the camera trap images

are annotated at sequence level. Two methods are explored: selecting the most frequently

predicted label and averaging the top-k predictions of all images of the sequence. In both

methods, the classification is done hierarchically, as explained in Section 6.7. Starting

at the top of the classification tree, the labels of the individual images are combine to

determine the predicted label of the sequence at the first level of the tree. If the prediction

at the first level is ‘Not blank’, the same process is repeated at the second level of the

tree and so on. The way the label of the sequence is determined, depends on the method

that is being used. In method one, the most frequently predicted label is selected. In

method two, the probabilities of the top-k predictions of every image are averaged over all

images of the sequences. The label of the sequences is then the prediction with the highest

average probability. The number of predictions k that is taken into account, depends on the

available nodes at a certain level. At level 1 to 4, each node has two child nodes so the

top-2 predictions are averaged. At level 5, the node ‘Small mammal’ has four children so

the top-4 is used. For the child nodes of ‘Large mammal’, the top-5 is used. Table 7.3

summarizes the results of both methods, as well as the results for the individual images.
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Table 7.3: Accuracy on the validation images and sequences (most frequent prediction and top-k
prediction) with the hierarchical predictions limited to the different levels.

Images Sequence labelling method

Frequency Top-k

Level 1 0.925 0.922 0.923

Level 2 0.872 0.912 0.913

Level 3 0.862 0.902 0.903

Level 4 0.862 0.894 0.895

Level 5 0.796 0.730 0.816

Table 7.4: Accuracy on the test sequences by averaging the top-k predictions with the hierarchical
predictions limited to the different levels.

Level 1 0.920

Level 2 0.899

Level 3 0.886

Level 4 0.882

Level 5 0.791

From this table we can conclude that averaging the top-k predictions leads to a higher

accuracy at all levels. This method will be used to compute the label of the sequences.

Table 7.3 also shows that the accuracy of the sequences, mostly based on multiple images,

is slightly higher than the accuracy of the individual images.

The selected method, averaging the top-k prediction, is applied to the test images to get

the accuracy of the network on the test sequences. The results are shown in Table 7.4.

7.3.2 Confusion matrices

The confusion matrices at the different levels of the classification tree provide insight into

which classes the network correctly predicts and which not. The confusion matrices and

normalized confusion matrices can be found in Appendix A. The label ‘Other’ comprises the

output classes located at a higher level. At level 2 and 3, ‘Other’ includes ‘Blank’. At level

4 and 5, ‘Other’ includes ‘Bird’,‘Human’ and ‘PickupSetup’.

Figure A.2 shows the confusion matrices at the first level of the classification tree. 83%

of the empty sequenced is classified correctly (true positive). In addition, less than 1%

of the sequences that are in reality not empty are labelled ‘Blank’ (false positive). This

combination of many true positive and few false positive predictions makes the network’s

predictions very suitable to remove the empty images from the data set. Because of the

low false positive rate, only a very small portion the data will get lost. On the other, because

of the high true positive rate, a lot of the empty images are removed. The predictions at
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the first level of the classification tree are thus very suitable to do a first clean-up of the

data. 49% of the sequences in the data set are empty, so automatically removing these

sequences is a first step to reduce the manual workload.

Figure A.3 shows the confusion matrices at the second level of the classification tree. Here,

a distinction is made between non-empty sequences containing animals and sequences

without animals. 96% of the sequences containing animals and 92% of the non-empty

sequences containing no animal are classified correctly. The predictions at this level can

also be used to clean up the data since only sequences containing animals are of interest.

Figure A.4 shows the confusion matrices at the third level of the classification tree. Se-

quences containing animals are subdivided into birds and mammals, while the non-empty

sequences without an animal are subdivided into sequences containing humans and se-

quences made during the pick-up and set-up of the camera. Figure A.4 shows that the

network has a hard time discriminating between ‘Human’-sequences and ‘PickupSetup’-

sequences. This was to be expected as the only difference between the humans in these

sequences is that the humans in ‘Human’-sequences are passers-by, while the humans in

‘PickupSetup’-sequences are involved in the camera trapping project. Therefore, it is rec-

ommended to restrict the hierarchical prediction at ‘No animal’ and not further subdivide

the sequences. This should not be a problem since all ‘No animal’-sequences need to be

removed from the data set. Figure A.4 also shows that the accuracy for sequences contain-

ing birds is low. The data set contains only few sequences with birds and as explained in

Section 3.4.1 these sequences are often not ideal and often only the first image(s) of the

sequence contain(s) the bird. The accuracy of the mammals however is 96%. Generally,

one is not interested in bird species if the configuration of the camera trapping framework

is optimized to capture mammals. Classifying the birds to species level will therefore not

be the main objective. However, improving the ability of the network to recognise birds

will prevent them for being misclassified as mammal species and contaminate those se-

quences.

Figure A.5 shows the confusion matrices at the fourth level of the classification tree, where

the mammal species are subdivided into small and large mammals. 97% of the sequences

containing large mammals are classified correctly. The accuracy for the small mammals

however is zero. None of the sequences containing small mammals are classified correctly.

The data set contains only few sequences with small mammals making it difficult for the

neural network to learn their appearance. As a result of the small number of sequences,

the test set consists of only five sequences with small mammals, making the performance

measures also unreliable.

Finally, Figure A.6 and Figure A.7 show the confusion matrix and the normalized confusion

matrix at the fifth level of the classification tree. As can be seen in Figure A.6, most of these
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output classes contain only a few sequences, making it difficult to draw reliable conclusions

about their accuracy. Figure A.6 shows that for some of the classes a high accuracy is

achieved, but for the class containing only a few sequences, this may have been a lucky

shot. The only animal species for which a sufficient number of sequences is available and

a good performance is achieved is Western roe deer. 88% of the sequences containing

deer are classified correctly. However, a lot of other animal species are misclassified as

‘Deer’. Therefore, the network can be used to extract the sequences containing deer, but

the selected sequences would need manual clean-up to remove the sequences that are

wrongly classified as ‘Deer’. The predictions at the final level of the classification tree need

further improvement, which requires more data. To have an overview of the accuracy of all

classes, independent of their level in the classification tree, Figure A.8 and Figure A.9 are

added to Appendix A, showing the confusion matrix and the normalized confusion matrix of

all output classes.

7.3.3 Examples of misclassified and correctly classified images

Figure 7.8 shows four images that are labelled incorrectly by the network. Figure 7.8a

contains a blurred deer occluded by a bush and is wrongly labelled as ‘Fox’. Figure 7.8b

and Figure 7.8c show a part of a boar and are respectively labelled ‘Fox’ and ‘Blank’. A

convolutional neural network is specialized in certain parts, features of animals to recognize

the species. When that part of the animal is not in the images, the network is not able to

recognize the species. To be able to correctly classify the image in Figure 7.8b, the network

should have a very good notion of the difference between the fur pattern of a fox and a

boar. Figure 7.8d contains a fox occluded by a bush and is wrongly labelled as ‘Blank’.

Because of the occlusion, the network is not able to recognize the fox’s head and identify

the animal. Figure 7.9 on the other hand shows two images that are labelled correctly,

while one would expect them to be difficult to classify. Figure 7.9a shows a blurry image of

a deer and in Figure 7.9b the deer is positioned is such a way that only its back is visible.

Nevertheless, the network is able to correctly classify the images.

7.4 Visualization of what a convolutional neural

network learns

By visualizing different elements of what a convolutional neural network learns, insight into

the internal operations and the behaviour of these complex models can be gained (Zeiler

and Fergus, 2014). A wide range of techniques have been developed to visualize represen-

tations learned by convolutional neural networks. Three of these techniques are applied in
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(a) Deer - Fox (b) Boar - Fox

(c) Boar - Blank (d) Fox - Blank

Figure 7.8: Examples of images that are labelled incorrectly by the network. The true label is indicated
in bold.

(a) Deer (b) Deer

Figure 7.9: Examples of images that are labelled correctly by the network.

this section: visualizing filters, visualizing intermediate activations and heat maps of class

activation.

7.4.1 Filters

As explained in Section 6.3 and illustrated in Figure 6.5, a convolution operation extracts

patches from the input features map. The same transformation is applied to all of these

patches, by means of the convolution kernel, resulting in a three-dimensional output feature

map (Chollet, 2018). In the original image, the depth stands for the different channels of

the image, representing the different colours. In the output feature map, the depth no

longer stands for different colours, but for different filters (Chollet, 2018). As explained
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(a) conv1 (b) pool1

Figure 7.10: Filter patterns of two early layers of ResNet50.

earlier, these filters encode specific aspects of the input data. Early layers learn small

patterns, while subsequent layers learn larger patterns, made from the features of the

previous layers. By visualizing these filters, one can find out what visual pattern each filter

is receptive to.

To find the pattern that a filter is meant to respond to, a randomly generated input image

is adapted in such a way that the response of the filter to that image is maximized. This

is done by applying gradient ascent to the values of the input image (Chollet, 2018). This

process is similar to minimizing the loss function by changing the weights in the opposite

direction of the gradient, when training the network, but now the loss function will be max-

imized by changing the pixel values of the image in the direction of the gradient. Finally,

the resulting values are postprocessed to turn them into a displayable image, since the

resulting pixel values are not necessarily positive integer values.

Figure 7.10 displays the filter patterns of two early layers of the neural network ResNet50.

Figure 7.10a displays the first convolutional layer at the bottom of the network and Fig-

ure 7.10b displays the subsequent max pooling layer (see Figure 6.7). These layers encode

simple patterns such as edges and colours and subsequently simple textures made from

combinations of these edges and colours. Figure 7.11 displays the first 16 filter patterns of

two higher layers of the neural network ResNet50. These layers are part of the last convo-

lutional building block. The patterns are much more complicated and start to look more like

natural patterns, such as leaves, fur patterns and eyes.
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(a) res5c_branch2b (b) res5c

Figure 7.11: First 16 filter patterns of two higher layers of ResNet50.

7.4.2 Intermediate activations

Another way to represent what neural networks learn, is visualizing the intermediate out-

puts. This helps to understand how successive layers transform their input. Given a certain

input image, the feature maps that are produced by the layers of the network can be dis-

played. This shows how the input is decomposed into different filters (Chollet, 2018). In

Section 7.4.1, the patterns to which the filters respond maximally are visualized. Here, the

results of applying the filters to an input image, the extracted features, are visualized. The

input image that is used, is shown in Figure 7.12. This image results from applying the

preprocessing steps described in Chapter 5 on a camera trap image.

Figure 7.13 shows the intermediate activations of two early layers of ResNet50 for the

input image. These layers are the same layers as in Figure 7.10, the first convolutional

layer at the bottom of the network and the subsequent max pooling layer (see Figure 6.7).

The intermediate activations clearly show that the early layers act as an edge detector.

The patterns of the layer displayed in Figure 7.10b are more complex then the patterns

Figure 7.12: Input image used to visualize intermediate activations.

69



7.4. VISUALIZATION OF WHAT A CONVOLUTIONAL NEURAL NETWORK LEARNS

(a) conv1 (b) pool1

Figure 7.13: Intermediate activations of two early layers of ResNet50 for the input image in Fig-
ure 7.12.

(a) res2c_branch2b (b) res2c

Figure 7.14: Intermediate activations of two higher layers of ResNet50 for the input image in Fig-
ure 7.12.

in Figure 7.10a. This results in more blank intermediate activations because the pattern

encoded by the filter is not found in the input image. However, the filters of the early layers

that are activated, retain almost all information present in the input image. This can also be

seen in Figure 7.13, where most of the area of the filter is activated, if the filter is activated.

Figure 7.14 shows the intermediate activations of two higher layers of ResNet50, belonging

to the third convolutional building block. Here, the activations begin to encode higher-level

features such as eyes and the antlers of the roe deer.
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Figure 7.15: Schematic representation of class activation mapping, based on a global average pooling
(GAP) layer. Image from Zhou et al. (2016).

7.4.3 Heat maps of class activation

A third way to help understand what neural networks learn is plotting heat maps of class ac-

tivation. These maps indicate which parts of an input image led the network to its prediction

(Chollet, 2018). In 2015, Zhou et al. (2016) showed that convolutional neural networks with

global average pooling layers trained for a classification task, can also be used for object

localization. A convolutional neural network with a global average pooling layer therefore

cannot only predict what object is contained in the image, but can also indicate the loca-

tion of that object. As shown in Figure 6.7, the top of the convolutional neural network

contains a global average pooling layer. This layer reduces the dimensions of the output

of the last convolutional layer, a three-dimensional matrix containing the extracted feature

maps. Each feature map is reduced to a single number by taking the spatial average of all

values of that feature map. A weighted sum of these average features is used to generate

the final output (Cook, 2017).

Each of the feature maps in the last convolutional layer preceding the global average pool-

ing layer acts as a detector for a different pattern in the image. To find out the location of

the object, these detected patterns need to be transformed to detected objects. To do so,

a class activation map is computed. This map indicates the discriminative image regions

used by the network to identify a class (Cook, 2017). A weighted sum of the feature maps

of the last convolutional layer of the network is computed to generate these class activation

maps (Zhou et al., 2016). This process is schematically shown in Figure 7.15. Each node of

the global average pooling layer corresponds to a different feature map. The contribution of

these feature maps to the predicted object class is expressed by the weights of the connec-

tion between the final layer and the global average pooling layer. Every node of this final
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(a) (b)

(c) (d)

Figure 7.16: Class activation maps superimposed on the original input images for object localization.

layer is connected to all the nodes of the global average pooling layer. To obtain the class

activation map, the contribution of each of the feature maps, the detected patterns, to the

final prediction is computed (Cook, 2017). This is done by multiplying the activation of the

feature maps of the last convolutional layer with the corresponding weights of the connec-

tion between the global average pooling layer and the layer generating the final output.

In Figure 7.15, the features maps ƒn are multiplied with the weights n of the connection

between the global average pooling layer and the final layer generating the predictions,

after which they are summed to form the activation map (Zhou et al., 2016). As shown in

Figure 7.15, the first filter does react to the boy’s face, but its importance is reduced by the

corresponding weight, resulting in the face not being important for the final prediction. The

region of the image containing the dog however is of importance for the final prediction.

Figure 7.16 shows the result of applying this technique to four images, extracted from

camera trap images by applying the preprocessing steps. In Figure 7.16a, Figure 7.16b

and Figure 7.16c, the network is able to detect the animals and human. As explained in

Section 6.6, ResNet50 was trained on the ImageNet dataset, a data set containing images

of many different animal classes, amongst other classes. Therefore, the features learnt by

this network are also useful to classify camera trap images. The network correctly predict

the label of the images in Figure 7.16a, Figure 7.16b and Figure 7.16c, respectively ‘Western

Roe Deer’, ‘PickupSetup’ and ‘Western Roe Deer’. In Figure 7.16d, the network has difficulty
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(a)

(b) (c)

Figure 7.17: Original camera trap image on which the region of interest determined by the preprocess-
ing step is indicated (a), class activation map of the full camera trap image (b) and class activation
map of the extracted image region (c).

detecting the small wild boar in the upper left corner. It seems distracted by the large trunks

in the image. However, the predicted label is still correct: ‘Wild Boar’.

To highlight the added value of applying the preprocessing steps, Figure 7.17 shows the

class activation map of a full camera trap image and of the image region extracted from this

camera trap image by applying the preprocessing steps. In Figure 7.17b, the full camera

trap image, the network is not able to detect the hindquarters of the Western roe deer,

while in Figure 7.17c, the network is able to localize the deer.
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CONCLUSIONS AND FUTURE

PERSPECTIVES

The convolutional neural network is able to identify 83% of the empty sequences that were

not yet removed during preprocessing. At the same time, less than 1% of the sequences

that are not empty are labelled ‘Blank’. This result shows that the neural network is suit-

able to do a first clean-up of the data by removing the empty sequences. This is a big

improvement to reduce the manual workload since about half of the sequences are blank

and deciding that there is actually no animal in the image, is typically the most time con-

suming part of manually processing the images. The main objective of this research was

to remove images containing passers-by so that the data can be made available for citizen

science. The network successfully recognises 92% of the non-empty sequences that where

triggered by human activity. The neural network is not yet able to reach a high performance

when classifying the images to species level, especially for the many smaller classes. How-

ever, the hierarchic nature of the classification method allows us to limit the prediction to

a higher level, achieving a better performance. Since removing the sequences contain-

ing humans can be automated, citizen science can be a helpful tool to identify the animal

species. Moreover, in this way, more labelled data is generated so that the performance

of the network can be improved. Collecting sufficient labelled data remains a persistent

challenge in computer vision applications.

To select the regions of interest in the camera trap images, the data is preprocessed. This

has been shown to be a useful step in the classification process. Moreover, preprocessing

already removes some of the blank images and images made during the pick-up or set-up

of the camera, containing nothing of interest. However, still some of the sequences that do

contain animals get lost during preprocessing. Further improvement of the preprocessing

algorithm could solve this problem. Another option is integrating the preprocessing steps

into the neural network. This would require new layers to be added to the bottom of the

pretrained network or building and training a neural network from scratch. More data would

allow the exploration of these options.
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A more thorough evaluation of data augmentation techniques and fine-tuning the network

could lead to further improvement of the performance. This is not yet done due to hardware

limitation, resulting in very large training times. Furthermore, the network now classifies

individual images, whereafter these predictions are aggregated to label the sequences. It

should be possible to train a neural network to directly classify sequences, but this causes

challenges related to sequences with different numbers of images and larger neural net-

work sizes that not have been solved. Finally, classifying sequences which contain multiple

animal species is an even bigger challenge that needs to be addressed in the future.
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illustrate the impact of imbalanced data.
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Figure A.2: Confusion matrix (a) and normalized confusion matrix (b) of the test sequences at the first
level of the classification tree.
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Figure A.3: Confusion matrix (a) and normalized confusion matrix (b) of the test sequences at the
second level of the classification tree.
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Figure A.4: Confusion matrix (a) and normalized confusion matrix (b) of the test sequences at the
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Figure A.5: Confusion matrix (a) and normalized confusion matrix (b) of the test sequences at the
fourth level of the classification tree.
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Figure A.6: Confusion matrix of the test sequences at the fifth level of the classification tree.
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Figure A.7: Normalized confusion matrix of the test sequences at the fifth level of the classification
tree.
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Figure A.8: Confusion matrix of the test sequences with all output classes.
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0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.35 0.50

Figure A.9: Normalized confusion matrix of the test sequences with all output classes.
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