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Abstract 

In a cocktail party scenario, with multiple talkers in a setting with a high amount of background 

noise, listeners with normal hearing can direct their attention to one speech stream and ignore 

the other sounds. This remarkable ability is based on the separate encoding of different speech 

streams, allowing attention-based gain control to enhance the attended stream. The organisa-

tion of the concurrent speech streams in the cortex affects the emergence of auditory evoked 

potentials (AEPs) and can be measured using brain imaging techniques. Auditory attention de-

tection (AAD) uses these brain recordings to decide which speaker a person is listening to. 

So far, most AAD researchers have decoded attention in a two-talker scenario. However, many 

acoustic environments contain more than two concurrent speech streams. Furthermore, only a 

few studies investigate the effect of background noise or other interfering factors. To start filling 

these gaps, this thesis applies AAD in a two-talker scenario with babble noise at different levels. 

Additionally, the separation angle between speakers is varied. The first two research questions 

assess the effect of both spatial separation and background noise on the decoding accuracy. The 

third research question examines a possible interaction effect between spatial separation and 

noise. The fourth research question studies the effect of individual differences on AAD perfor-

mance. Finally, the fifth research question connects the decoding accuracy to the subjective 

speech intelligibility ratings. 

The brain activity of 15 young adults with normal hearing was measured using 64-channel EEG. 

The experiment was split into different trials, during which the subjects listened to a story while 

ignoring a competing talker. Both separation angles and noise levels were varied so that all sub-

jects experienced every combination of these factors. After each trial, subjects estimated the 

intelligibility of the story part they just heard. Afterwards, subject-specific decoders were con-

structed using the leave-one-out method. 

High decoding accuracies were achieved, with a mean accuracy of 81.9% across all subjects 

(range 67.7-92.0%). Analyses showed that both separation angle and noise level had a significant 

effect on the decoding accuracy, just like the interaction between them. A smaller separation 

angle resulted in a lower AAD performance. For trials with babble noise, more noise resulted in 

lower decoding accuracies. Furthermore, individual differences accounted for much variance in 

AAD performance, although the decoding accuracy was not correlated with the subjects’ perfor-

mance on a speech-in-noise task. Finally, the subjective intelligibility was not significantly corre-

lated with the decoding accuracy, yet it was similarly affected by separation angles, noise levels, 
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and the interaction between them. Intelligibility was lowest for trials with a small separation 

angle and/or a high amount of noise. 

In conclusion, different acoustic parameters affected AAD performance. Decoding accuracy was 

not linked to subjective intelligibility, although the same parameters influenced these ratings. 

Individual differences indicated that the success of AAD is not the same for everyone. Future 

research should include more subjects, preferably adding hearing-impaired listeners and people 

from different age ranges, and focus on lifelike conditions that include different speaker orien-

tations, varying noise levels, and realistic stimuli. 
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Samenvatting 

In situaties waarin verschillende sprekers door elkaar heen praten, zijn normaal horende perso-

nen in staat om hun aandacht op één spreker te richten en de andere geluiden te negeren. Deze 

opmerkelijke vaardigheid steunt op het vermogen van de hersenen om elke geluidsbron apart 

te verwerken, en de corticale representatie van de gekozen geluidsbron te versterken. De men-

tale organisatie van de geluidsbronnen heeft een effect op de auditieve hersenrespons en kan 

daardoor via beeldvormingstechnieken worden opgemeten. Auditieve aandachtsdetectie (AAD) 

gebruikt zulke technieken om te bepalen naar welke spreker een persoon luistert. 

Tot nog toe hebben de meeste onderzoekers AAD toegepast in een scenario met twee sprekers. 

De meeste akoestische omgevingen bevatten echter meer dan twee geluidsbronnen. Bovendien 

houdt slechts een beperkt aantal studies rekening met het effect van achtergrondgeluid of an-

dere storende factoren. Om tegemoet te komen aan die bezwaren, past deze thesis AAD toe op 

een situatie met twee sprekers en verschillende niveaus van spraakruis. Bovendien werd de 

hoek tussen beide sprekers gevarieerd. De eerste twee onderzoeksvragen peilen naar het effect 

van directioneel horen en achtergrondgeluid op de accuratesse van de AAD. De derde onder-

zoeksvraag gaat in op de interactie tussen die factoren. De vierde onderzoeksvraag bekijkt het 

belang van individuele verschillen in het kader van AAD. De vijfde vraag verbindt de accuratesse 

met de subjectieve spraakverstaanbaarheid. 

De hersenactiviteit van 15 normaal horende jongvolwassenen werd gemeten via EEG, gebruik 

makend van 64 elektroden. Het experiment bestond uit verschillende stukjes of ‘trials’, waarin 

de deelnemers telkens naar een verhaal moesten luisteren terwijl ze de andere spreker negeer-

den. Zowel de hoek tussen beide sprekers als het niveau van de achtergrondruis veranderden 

tijdens het experiment, zodat elke combinatie van factoren aan bod kwam. Na elke trial moesten 

de deelnemers inschatten hoeveel spraak ze hadden verstaan. Achteraf werden de EEG-resulta-

ten voor elke deelnemer apart verwerkt. 

De gemiddelde accuratesse was 81.9% over alle deelnemers heen (bereik 67.7-92.0%). Zowel de 

hoek tussen de sprekers als het ruisniveau had een significant effect op de accuratesse, net als 

de interactie tussen beide. AAD was minder succesvol bij een kleinere scheidingshoek of bij een 

hoger ruisniveau. Individuele verschillen zorgden voor veel variatie in de scores, maar de gemid-

delde accuratesse per deelnemer correleerde niet met hun score op een spraak-in-ruis-test. De 

subjectieve spraakverstaanbaarheid correleerde ook niet met de accuratesse, maar werd wel 

op een gelijkaardige manier door de scheidingshoek, het ruisniveau en de interactie ertussen 
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beïnvloed. De spraakverstaanbaarheid was het laagst in situaties met een kleine scheidingshoek 

en/of een hoog ruisniveau. 

Het experiment toonde aan dat verschillende akoestische parameters een invloed hebben op 

AAD. De accuratesse was niet gelinkt aan de subjectieve maat voor spraakverstaan, maar ze 

werden wel door dezelfde factoren beïnvloed. Individuele verschillen toonden aan dat AAD niet 

voor iedereen even succesvol is. Toekomstig onderzoek zou meer deelnemers moeten testen, 

met bij voorkeur ook slechthorende patiënten en oudere personen. Bovendien moet het onder-

zoek gebaseerd zijn op realistische situaties, met verschillende posities van de sprekers, wisse-

lende ruisniveaus en uiteenlopende stimuli. 
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List of abbreviations 

This list provides the reader with an overview of the abbreviations used in the text. 

AAD Auditory attention detection 

ABR Auditory brainstem response 

AEP Auditory evoked potential 

AERS Auditory event representation system 

ASA Auditory scene analysis 

ASSR Auditory steady-state response 

BCD Bone conduction device 

BCI Brain-computer interface 

CI Cochlear implant 

CT Competing talker 

dB HL Decibel hearing level 

ECoG or ECochG Electrocochleography 

EEG Electro-encephalography 

ERP Event-related potential 

FFR Frequency-following response 

HA Hearing aid 

HRTF Head-related transfer function 

ILD Interaural level difference 

ITD Interaural time difference 

LEA Left ear advantage 

MEG Magneto-encephalography 
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MEI Middle ear implant 

MLR Middle-latency response 

MMN Mismatch negativity 

PTA Pure tone average 

REA Right ear advantage 

RON Reorienting negativity 

SNR Signal-to-noise ratio 

SRT Speech reception threshold 

SSA Stimulus-specific adaptation 
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Introduction 

The topic of this thesis is auditory attention detection (AAD). AAD is a fairly new technology, 

which analyses brain activity to decide which speaker a listener is paying attention to. In the 

future, this method may be used to improve the way a HA handles noise, by selectively amplify-

ing the speech stream the user is listening to. So far, research has shown that AAD can achieve 

robust results; however, it has mainly been tested in two-talker scenarios without background 

noise. This thesis fits in with a doctoral thesis by Neetha Das, who investigates the effect of more 

realistic conditions on AAD performance. Ultimately, the goal is to expand the applicability of 

AAD across all realistic listening conditions, so that it can successfully be implemented in HA 

technology. 

This thesis implements a two-talker scenario with varying levels of background noise and differ-

ent separation angles between both speakers. The purpose of this experiment is to discover 

whether spatial separation and background noise influence AAD performance. Furthermore, the 

relationship between decoding accuracy and subjective speech intelligibility under these circum-

stances is explored. Finally, it is important to know to what extent individual differences con-

tribute to the performance of AAD. To investigate these questions, an EEG experiment is set up 

to perform AAD on 15 healthy subjects with normal hearing. Subjects are asked to listen to a 

story, while ignoring a competing story. They must each listen to eight stories, with varying sep-

aration angles between both speakers and with different levels of babble noise in the back-

ground. After each part of the story, subjects must estimate what percentage of the narration 

they understood, to measure the subjective speech intelligibility. 

When analysing the experiment results, important differences between conditions can be found. 

This indicates that AAD is very context-dependent, and that earlier research on two-talker sce-

narios was probably overestimating the success rates of AAD. However, for most conditions, 

high decoding accuracies were achieved. An important side note is related to between-subject 

variability, which seriously affects AAD performance. These individual differences in decoding 

results are very relevant when considering the future application of AAD in HA technology and 

should therefore be explored in more detail. 

The social relevance of this work should not be underestimated. As very little evidence exists on 

the effectiveness of AAD in realistic acoustic environments, the results of this thesis could act as 

a starting point for future inquiries. To really map out the possibilities of this technology, lifelike 

situations should receive more attention in AAD research.  
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1 Literature review 

The first part of this thesis relates the present work to recent insights and developments in the 

field of audiology research. The first section considers the mechanisms underlying auditory per-

ception and attention, together with the interaction between them. It also includes information 

about hearing aids and their shortcomings. In the second section, the concept of auditory atten-

tion detection is explained, together with its potential to enhance hearing aid technology. The 

concluding section contains the research questions that are investigated in this work. 

1.1 Auditory perception and attention 

In this section, three elements relating to auditory perception and attention will be discussed: 

the mechanisms involved in the processing of auditory information, the important role of both 

bottom-up and top-down attention, and the differences between processing general auditory 

stimuli and understanding speech. The final paragraph discusses hearing loss, along with the use 

of hearing aids and the associated problems. 

1.1.1 Processing auditory information 

By working side by side with the brain, the human ear helps people understand the world around 

them and communicate with their environment. When a sound is generated, the vibrating air 

pushes against the eardrum, which converts acoustic vibrations to mechanical energy. Next, the 

ossicles in the middle ear transmit the movement to the oval window. When the oval window 

starts vibrating, the fluid inside the cochlea is set in motion, causing the basilar membrane inside 

the cochlea to vibrate as well. The vibrations have different amplitudes along the membrane, 

depending on the frequency of the sound. This frequency-specific movement evokes an electri-

cal response in the corresponding hair cells inside the cochlea. As a result, neural signals are sent 

through the auditory nerve towards the auditory cortex (McFarland, 2009; MED-EL, 2012). These 

signals implicitly carry information about the location of the hair cells, indicating the frequency 

of the sound. The higher levels of the central auditory system analyse the auditory information, 

integrating it over time and from different locations at once to determine the intensity of the 

sound and the temporal pattern or rhythm. At the end of this process, the sound is recognized 

as a banging door, a musical note, a dripping tap, or a fragment from a speech stream. 

The successive steps of auditory processing are reflected in the listener’s brain activity. It is 

therefore possible to map the processing of sound by measuring auditory evoked potentials 

(AEPs). AEPs are event-related potentials (ERPs) that can be measured in the first 500 ms after 

the onset of a sound. Depending on the time range they fit into, they are considered fast (0-20 
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ms), middle-latency (20-80 ms) or slow (80-500 ms) responses (Picton, 2013). First, the sound is 

processed in the cochlea and brainstem. The resulting early or fast responses are generated 

within 20 ms after the onset of a sound. A typical example of fast responses are so-called audi-

tory brainstem responses (ABRs), which are commonly used in neonatal hearing screening pro-

grams (Mason & Herrmann, 1998; van Straaten, 1999). When the auditory information reaches 

the auditory cortex, after about 20-80 ms, middle-latency responses (MLRs) are generated. The 

most important MLR-waveforms are labelled Na, Pa, and Nb. During further processing, late or 

slow responses emerge. In this time range, the P1, N1, P2, and N2 response components can be 

measured, as well as alpha, beta, and theta waves (Picton, 2013). 

Aside from this latency-based classification, AEPs can also be classified based on the type of 

stimulus that evokes them. A transient response marks a change in the stimulus, while a sus-

tained response lasts throughout the entire stimulus. When a stimulus changes repetitively, fol-

lowing responses emerge. Frequency-following responses (FFRs) track the frequency of the stim-

ulus, whereas envelope-following responses arise when the sound is modulated. If the stimulus 

undergoes periodic changes, like when a certain stimulus is rapidly repeated, the following re-

sponse becomes an auditory steady-state response (ASSR) (Picton, 2013; Picton, John, 

Dimitrijevic, & Purcell, 2003). 

1.1.2 The role of attention 

Attention is a complex process and can be split up into two parts: bottom-up attention, driven 

by the characteristics of the sound itself, and top-down attention, based on task demands and 

conscious selection. 

1.1.2.1 Bottom-up auditory attention 

In a complex stimulus, the most salient parts trigger a sensory-driven selection mechanism. This 

mechanism steers perception toward the most striking part of the stimulus and is called ‘bot-

tom-up attention’ (Kaya & Elhilali, 2014). To decide which stimuli are salient and should there-

fore receive attention, the brain uses predictive coding. It integrates information about the 

acoustic scene or stimulus over time to find regularities (Kaya & Elhilali, 2014; Winkler, Denham, 

& Nelken, 2009). If the actual stimulus deviates from what is predicted, it is marked as ‘deviant’. 

This irregularity is reflected in two types of brain responses: mismatch negativity (MMN), which 

is an ERP, and stimulus-specific adaptation (SSA), its single-neuron counterpart (Khouri & Nelken, 

2015). Both responses are part of the same deviance detection system in the auditory pathway. 

There is, however, a difference in their level of complexity. When the deviance corresponds to 
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a change in a simple acoustic feature, like frequency or location, it elicits a response in the mid-

dle-latency range (SSA) as well as an MMN. Changes in more complex regularities do not result 

in SSA but will still elicit MMN responses (Escera, Leung, & Grimm, 2014). 

The detection of an acoustic change in the stimulus thus leads to an MMN, which is a frontally 

distributed, negative component of the human ERP. The MMN peaks between 100 and 200 ms 

after the onset of a deviant sound, even in the absence of attention or when attention is directed 

toward another part of the stimulus (Näätänen & Escera, 2000), and it can even be elicited by 

relatively abstract changes, like phonological or grammatical errors (Näätänen, Paavilainen, 

Rinne, & Alho, 2007; Paavilainen, 2013). The MMN is often associated with a simultaneous en-

hancement of the N1 response and followed by an involuntary switch of attention to the de-

tected target. This attentional shift can be measured as a positive deflection in the ERP called 

‘P3a’ and is larger for new or rare sounds than for small changes in the stimulus (Berti, 2012; 

Escera et al., 2014; Rinne, Särkkä, Degerman, Schröger, & Alho, 2006). If the attentional shift is 

conflicting with the task at hand, it is followed by a reorienting negativity (RON) toward the 

relevant stream (Escera, Alho, Schröger, & Winkler, 2000; Schröger & Wolff, 1998). In some 

cases, changes in the acoustic scene occur without being noticed, which is called ‘change deaf-

ness’ (Vitevitch, 2003). The changes elicit middle-latency (Nb) or slow responses but do not re-

sult in an MMN or subsequent P3a response. In other words, they fail to activate the ‘normal’ 

change detection system (Puschmann et al., 2013; Sohoglu & Chait, 2016b). 

In complex acoustic scenes, containing multiple sound sources, a process called ‘auditory scene 

analysis’ (ASA) takes place (Bregman, 1990; Gutschalk & Dykstra, 2014). Different sound ele-

ments are separated, based on their frequency, location, or other features; this is called ‘segre-

gation’. Isolated sounds showing similar acoustic features over time are then joined together to 

form auditory streams (integration) (Deike, Denham, & Sussman, 2014; Gandras, Grimm, & 

Bendixen, 2017). The mechanisms underlying ASA are activated automatically, whether listeners 

are directing their attention toward the auditory scene or not (Sohoglu & Chait, 2016a). Schröger 

and his colleagues have proposed a conceptual framework, the auditory event representation 

system (AERS), which considers predictive coding to be the underlying mechanism for both the 

formation of auditory streams and the detection of deviant sounds (Schröger et al., 2014). The 

auditory streams are based on the identified patterns of regularity, and any difference between 

the predicted and actual stimulus is flagged as deviant (Winkler et al., 2009). This regularity en-

coding occurs at different levels of the auditory pathway, including the auditory brainstem and 

auditory cortex, and is reflected by electrophysiological responses like the FFR, SSA, MLR and 

MMN (Escera, 2011). 
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1.1.2.2 Top-down auditory attention 

The bottom-up processes linked to ASA, leading to a separate encoding of the attended and the 

unattended speech stream, can both precede and follow top-down attention. After the segre-

gation and integration processes take place, a listener can direct attention to one stream, while 

ignoring the others. This so-called ‘foreground-background selection’ is attention-driven and is 

reflected by a long-lasting ERP (Gandras et al., 2017). The selective attention can then alter the 

organisation of sensory input in the early stages of acoustic processing. It changes the way 

streams are organized, enabling the automatic change detection system to identify deviant 

events, even if they occur in the unattended stream. This detection is reflected in the emergence 

of an MMN (Sussman, Ritter, & Vaughan, 1998). 

An MEG study showed that concurrent auditory objects, like two speech streams, are separately 

encoded in the brain, allowing the listener to direct attention to one of them while suppressing 

the other (Ding & Simon, 2012b). This process is referred to as neural entrainment to the speech 

envelope, or envelope entrainment.  Selective attention to a specific stream can trigger a selec-

tive gain mechanism in the auditory cortex (Kerlin, Shahin, & Miller, 2010). Thus, when multiple 

speakers are talking simultaneously, it is possible to focus on one talker and understand what 

he or she is saying, even if the background noise is much louder than the speech itself. This 

phenomenon is called the ‘cocktail party effect’ (Cherry, 1953). In a multi-talker environment, 

the auditory system manages to successfully encode the attended speech stream, even with a 

competing talker nearby. The neural representation of this attended stream is processed sepa-

rately, regardless of any acoustic changes in the unattended stream (Ding & Simon, 2012a). The 

neural responses to the attended stream are enhanced, while responses to other sounds are 

suppressed (Christison-Lagay, Gifford, & Cohen, 2015; Ding & Simon, 2012b; Kong, Mullangi, & 

Ding, 2014). This selection results in increased stimulus processing speed (Folyi, Fehér, & 

Horváth, 2012). 

Attention affects the emergence of AEPs. For example, researchers have identified an endoge-

nous negative component (Nd) with an onset latency between 50 and 150 ms, which is linked to 

attention and is often referred to as ‘processing negativity’ (Näätänen, 1982; Power, Foxe, Forde, 

Reilly, & Lalor, 2012). For children, the Nd has longer onset and peak latencies than for adults, 

indicating that the attention allocation process is slower (Gomes, Duff, Barnhardt, Barrett, & 

Ritter, 2007). The Nd can overlap with the N1 wave, resulting in a larger N1 amplitude (Hansen 

& Hillyard, 1980), although both responses are independently generated (Alho, Teder, 

Lavikainen, & Näätänen, 1994; Michie, Bearpark, Crawford, & Glue, 1990). The Nd should not be 

confused with the MMN, which is mainly based on sensory memory and not caused by selective 
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attention. The MMN is a pre-conscious, automatic process, whereas the Nd is the result of a 

post-conscious, controlled process (Jemel, Oades, Oknina, Achenbach, & Röpcke, 2003). Fur-

thermore, in a complex acoustic environment with multiple sound sources, the AEP is organized 

differently compared to a single-source situation. This is reflected in a distinct negativity (N2d, 

260 ms after stimulus onset) and an anterior contralateral subcomponent (N2ac, 360 ms after 

onset) in the difference waveform (Lewald & Getzmann, 2015). 

1.1.3 Processing speech 

Certain stimulus properties can activate specific processing mechanisms in the brain. Evidence 

suggests that some regions in the brain are more selective to vocalisations than to other sounds 

(Fukushima, Saunders, Leopold, Mishkin, & Averbeck, 2014; Ghazanfar & Eliades, 2014), alt-

hough the localisation of these regions remains unclear (Bizley & Walker, 2009). This selective-

ness, which can be seen in other animals as well, applies to complex auditory objects that are 

important to the individual, based on learning processes (Poremba, Bigelow, & Rossi, 2013). In 

humans, it applies to speech (Vouloumanos, Kiehl, Werker, & Liddle, 2001). 

A well-known model describing the cortical processing of speech is the dual-stream model 

(Hickok & Poeppel, 2007). It splits the processing of speech into two pathways: the ventral 

stream, activating the right lexical conceptual representations, and the dorsal stream, linking 

the acoustic signals to the articulatory networks. The ventral stream is described as a bilaterally 

organised pathway, whereas the dorsal stream would be more left-hemisphere dominant. Other 

researchers have confirmed that speech is processed in both hemispheres, involving many dif-

ferent brain regions (de Heer, Huth, Griffiths, Gallant, & Theunissen, 2017). Some studies de-

scribe which brain regions are involved in specific parts of speech processing, like lexical or se-

mantical processing (e.g. Steinschneider et al., 2014). There is evidence for an asymmetry be-

tween both hemispheres, based the so-called ‘right ear advantage’ (REA). This means that 

speech arriving at the right ear is processed faster than speech coming from the left. However, 

the effect can be modulated by attention, by memory demands, or by a change in the stimulus 

properties (D’Anselmo, Marzoli, & Brancucci, 2016; Hiscock & Kinsbourne, 2011; Hugdahl & 

Westerhausen, 2016). 

1.1.3.1 External factors influencing speech perception 

Certain environmental factors can influence the processing of speech. For example, the pres-

ence of background noise or a high amount of reverberation in the room can interfere with the 

speech signal, reducing the amount of information that reaches the listener. Of these two fac-

tors, the noise level is the most important in determining speech intelligibility (Bradley, Reich, & 
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Norcross, 1999). Researchers found that increasing reverberation or background noise de-

creased speech understanding. The presence of noise also increased listening effort (Picou, 

Gordon, & Ricketts, 2016) and affected the amplitude of AEP’s (Billings, Tremblay, Stecker, & 

Tolin, 2009; Koerner & Zhang, 2015; Maamor & Billings, 2017). 

The direction of the speaker, especially relative to noise sources, is an important factor too when 

considering speech understanding. Due to the head shadow effect, speech coming from the 

front is easier to understand than speech coming from the back. However, a head-orientation 

benefit can be achieved by partially turning away from the speech source (Grange & Culling, 

2016). This benefit is due to spatial release of masking, allowing the listener to exploit binaural 

cues to enhance speech understanding (Culling, Hawley, & Litovsky, 2004). These binaural cues 

are based on the head-related transfer function (HRTF). By travelling around the head, sounds 

arrive in the opposite ear with a short delay and a lower amplitude. Additionally, each individual 

pinna has a different shape that influences the spectrum of the sound. The auditory system can 

detect and interpret these small interaural time (ITD) and level (ILD) differences to localise 

sounds. By spatially separating target and noise sounds, the ITD and ILD values increase, improv-

ing stream segregation and speech understanding (Dubno, Ahistrom, & Horwitz, 2002). 

In addition to acoustical factors, some speaker-dependent characteristics can also have a major 

influence on speech perception. For example, speakers can have a high-pitched or low-pitched 

voice, which sounds either loud or soft, and they can articulate either well or poorly. Different 

studies have shown that voice characteristics, dialect, and even voice familiarity can affect 

speech understanding (Ericson, Brungart, & Simpson, 2004; Jacewicz & Fox, 2013; Johnsrude et 

al., 2013). Furthermore, speakers use prosody to clarify or emphasize the meaning of their sen-

tences. Listeners use this prosodic information to interpret how words fit together in a sentence 

and which are the most important parts. Bögels and her colleagues found that erratic prosodic 

breaks can affect the processing of speech. This influence is worse in the case of superfluous 

prosodic breaks then when breaks are missing (Bögels, Schriefers, Vonk, Chwilla, & Kerkhofs, 

2013). In addition, the ERPs evoked by the onset of syllables can be affected by prosody, both 

during early perceptual processing and during the following lexical retrieval (Breen, Dilley, Devin 

McAuley, & Sanders, 2014). Others found that the processing of accentuation interacts with the 

retrieval of information from long term memory (Li & Yang, 2013). Thus, a clear and consistent 

prosody might help listeners to understand the message. 
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1.1.3.2 Internal factors influencing speech perception 

Apart from the external factors in the previous paragraph, speech perception is affected by in-

dividual differences in hearing abilities or cognitive skills as well. Listeners who are hearing-im-

paired or experience cognitive difficulties perform worse than listeners with normal hearing, 

especially in noise. Age may act as a mediating factor, as both hearing and cognitive abilities 

decline with age. For instance, stream segregation decelerates with aging listeners, which is re-

flected by increased MMN latencies for concurrent speech streams (Getzmann & Näätänen, 

2015). Elderly listeners also show reduced MMN amplitudes (Woods, 1992), along with delayed 

attentional control and reduced speech processing (Getzmann, Wascher, & Falkenstein, 2015). 

Furthermore, they expend more listening effort than younger listeners when listening to speech 

in noise (Anderson & Gagné, 2011). This is probably due to a reduced working memory capacity 

and a lower processing speed in elderly listeners (Desjardins & Doherty, 2012; Zekveld, Rudner, 

Johnsrude, & Rönnberg, 2013). 

Individual experience and training may also influence speech perception. Researchers have 

found that understanding speech in noise is harder for bilingual than for monolingual listeners 

(Tabri, Chacra, & Pring, 2011). In addition, bilingual listeners achieve better performance when 

listening to a speaker with an accent similar to their own, although this effect interacts with 

experience (Pinet, Iverson, & Huckvale, 2011). Musicians, on the other hand, show improved 

speech understanding in noise compared to listeners without musical training (Coffey, 

Mogilever, & Zatorre, 2017), possibly due to enhanced phonological representations and func-

tional connectivity in the brain (Du & Zatorre, 2017). This auditory processing benefit shows as 

soon as at primary school level (Habibi, Cahn, Damasio, & Damasio, 2016; Strait, Parbery-Clark, 

Hittner, & Kraus, 2012). 

1.1.4 Hearing difficulties 

1.1.4.1 Hearing loss 

Many things can go wrong in the auditory system. In the outer ear, a malformation of the ear 

canal or an excessive amount of earwax may obstruct the way for sound waves. In the middle 

ear, fluid can accumulate, reducing the movement of the tympanic membrane, or a congenital 

defect of the ossicles can block the transmission of the sound waves to the inner ear. On the 

level of the cochlea, congenital abnormalities or noise damage can impair the working of the 

hair cells. Any of these problems can result in hearing loss (Hearing Loss Association of America, 

2017). 
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Hearing loss can be either conductive, when the problem lies in the outer or middle ear, or sen-

sorineural, if something is wrong with the inner ear or with the auditory nerve. If the hearing 

loss is caused by problems in both the outer or middle and the inner ear, it is referred to as a 

mixed hearing loss. Hearing loss can also result from a damaged or missing auditory nerve. In 

this case, the patient suffers from retro-cochlear hearing loss (MED-EL, 2017; Sataloff, Sataloff, 

& Vassallo, 1980). When the hearing threshold of a patient is elevated by 25 dB or more, the 

patient is diagnosed with a hearing loss in that ear. If the hearing loss in the better ear exceeds 

40 dB for adults or 30 dB for children, it is referred to as a disabling hearing loss. Worldwide, 

more than 360 million people or 5% of the global population suffers from a disabling hearing 

loss (WHO, 2017). 

1.1.4.2 Hearing aids 

Hearing loss can be traced back to different problems, so different solutions exist as well. The 

most well-known type of hearing aid (HA) consists of four parts: a microphone, an amplifier, a 

receiver (or loudspeaker), and a battery. By leading a signal through this HA, sounds are ampli-

fied and presented at a higher intensity level. The amplification level is adjusted separately for 

each frequency band, depending on the hearing difficulties of the individual patient. Often, the 

amplifier also uses digital signal processing to improve the sound. This ‘basic’ HA technology 

exists in devices of different sizes, ranging from a relatively large body-worn HA to one that 

completely fits in the ear canal. These aids can be used by patients with different types of hear-

ing loss, like congenital hearing loss, presbycusis (hearing loss caused by aging) or noise-induced 

hearing loss (Dillon, 2012; Hougaard et al., 1995; Rodenburg, Huizing, Kapteyn, & Wanink, 1979). 

Next to the ‘standard’ device, as described above, other types of hearing aids are available. For 

example, problems in the outer and middle ear can be bypassed by using a bone conduction 

device (BCD) or a middle ear implant (MEI). With this type of HA, an implant presents the sound 

by vibrating either the bone of the skull itself, the ossicles, or the oval window. Afterwards, the 

cochlea processes the sound in a normal way. A BCD or MEI helps patients with a variety of 

problems, like a large conductive hearing loss, recurring middle ear infections, or a malformation 

in the middle or outer ear (Dillon, 2012). 

Finally, a cochlear implant (CI) overcomes sensorineural hearing loss. A CI converts sound waves 

into electrical signals, directly stimulating the hair cells inside the cochlea. This stimulation re-

sults in the excitation of the auditory nerve and sends a signal to the brain. However, this signal 

inevitably contains less information than a signal originating from a normal cochlea. For example, 

while healthy listeners can use thousands of inner hair cells to cover the entire audible frequency 
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range (roughly from 20 Hz to 20 kHz), the CI reduces the signal to a limited number of frequency 

bands, each activated by one electrode. Thus, the accurate tonotopy of the auditory system, 

enabling listeners to hear the exact pitch of a sound, is lost. CI users perceive different pitches, 

but only a limited number (Laneau & Wouters, 2004). Despite the obvious shortcomings, this 

type of HA is often the only solution for patients with severe hair cell damage or congenital 

deafness. However, if a patient suffers from retro-cochlear deafness, a CI is not an option either, 

as the problem originates from the connection to the brain itself. 

1.1.4.3 Problems associated with hearing aids 

Despite the recent tremendous improvements on HA technology, there is still a lot of work to 

do. HA users have reported multiple issues involving the adjustment to their HA (Bennett, 

Laplante-Lévesque, Meyer, & Eikelboom, 2017; McCormack & Fortnum, 2013). Inadequate in-

structions received from caregivers present a major problem. A lot of information needs to be 

conveyed, and it can take some time for new users to get accustomed to the HA (Dawes & Munro, 

2017). Adequate instructions and a well-organised follow-up system could address this problem 

(Solheim, Kværner, Sandvik, & Falkenberg, 2012; WHO, 2004). Furthermore, many reported 

problems relate to wrong expectancy patterns of HA candidates. They assume the HA will sub-

stitute the normal hearing most of them once had, obviously a wrong assumption. Other re-

searchers confirm the influence of expectancy patterns on general HA satisfaction (Dashti, Khiavi, 

Sameni, & Bayat, 2015; Meyer, Hickson, Khan, & Walker, 2014). The third major issue concerns 

the HA itself. Users sometimes find it too small to handle, they experience difficulties when 

changing the batteries or operating the buttons, or they forget to replace the batteries causing 

the HA not to work properly. Finally, and despite many breakthroughs in HA research, the HA 

does not perform well in difficult situations. For example, speech perception is difficult in the 

presence of background noise, music often sounds distorted, and directional hearing can be very 

challenging. 

One of those difficulties is linked to the way a HA handles noise. At the earliest stage of HA 

developments, the devices aimed at suppressing noise by maintaining level differences between 

background and nearby sounds. Later, a newly developed system selectively suppressed low 

frequency sounds with high intensities. Now, noise suppression is mainly regulated by complex 

processing algorithms analysing the acoustical environment and adaptively suppressing the 

noise. Unfortunately, the use of noise-reduction algorithms also reduces speech intelligibility in 

some listening environments (Hilkhuysen, Gaubitch, & Huckvale, 2013; Hu & Loizou, 2007), by 

eliminating important acoustic cues. For example, it was found that a commonly used noise sup-
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pression algorithm, based on adaptive directional microphones, could distort the binaural infor-

mation in sounds (Van den Bogaert, 2008). Various solutions have been proposed to enhance 

speech intelligibility. In an experimental design based on multichannel Wiener filters, including 

a communication link between both HA’s, better noise reduction and binaural cue preservation 

was achieved (Van den Bogaert, Doclo, Wouters, & Moonen, 2009). Another study used a train-

able algorithm that adapted to the preferences of each individual user, based on the preferred 

level of amplification and the degree of beamforming, for different acoustic conditions. Given 

the variation in preferred settings between subjects, the use of trainable algorithms may im-

prove individual HA satisfaction (Yoon et al., 2017). In CI users, researchers successfully im-

proved speech intelligibility by stimulating only those channels with a positive signal-to-noise 

ratio (SNR) (Hu & Loizou, 2010). 

Apart from risking distortion of the speech signal during noise suppression, the current algo-

rithms face another important problem: the identification of noise. When the sound is a com-

mon type of noise, like a car engine or a ventilation system, suppression mechanisms often suc-

ceed. However, in ambiguous situations where the distinction between ‘noise’ and ‘target’ is 

unclear, like when two people are talking simultaneously, the algorithm could accidently sup-

press the wrong part of the acoustic environment. The inconsistency in the classification of noise 

makes it a difficult problem to tackle. In these ambiguous situations, one possible solution is the 

use of intelligent enhancement, which could be accomplished by using a brain-computer inter-

face (BCI). A BCI steers the noise suppression algorithms towards the correct interpretation of 

sounds by using real-time brain activity. Determining which part of the auditory environment 

the user is listening to, and considering this part as ‘target’, can be achieved through auditory 

attention detection (AAD). 

1.1.5 Summary 

The processing of auditory information is organized in an ascending auditory pathway. The suc-

cessive steps are reflected in AEPs at different times, from fast (0-20 ms) to slow (80-500 ms) 

responses. When listening to a complex stimulus, the auditory system uses regularity encoding 

to divide the auditory scene into separate streams (ASA). Using predictive coding, the system 

can also apply the information about regularities to detect changes. Both ASA and the deviance 

detection system can lead to bottom-up attention: redirecting the focus of the listener based on 

the characteristics of a stimulus. In the case of top-down attention, the focus change results 

from a conscious decision. This selective attention influences the cortical organisation of the 
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streams, enhancing the chosen stream and suppressing the others, which is reflected in the elec-

trophysiological responses as well. During the processing of speech, a dedicated system is acti-

vated, which is assumed to be left-hemisphere dominant. Specific characteristics of the acous-

tical environment, the speech signal, or the listener can influence speech perception. For pa-

tients with hearing loss, different types of hearing aids are available, depending on the cause 

and severity of the hearing loss. Unfortunately, hearings aids cannot replace a normal auditory 

system, which is why many HA users experience difficulties in everyday listening situations. 

1.2 Auditory attention detection 

This section tackles auditory attention detection (AAD). First, the concept of AAD and the un-

derlying principles are explained. The second paragraph deals with recent findings in AAD re-

search. Finally, the future use of AAD is discussed. 

1.2.1 Detecting attention 

As auditory stimuli elicit neural responses, the processing of these stimuli can be studied using 

brain imaging methods. Most of these studies use electro-encephalography (EEG), magneto-en-

cephalography (MEG) or electrocorticography (ECoG). Because the neural representation of 

stimuli is stronger for stimuli receiving selective attention, brain activity can be recorded to 

achieve auditory attention detection (AAD). In other words, the analysis of a person’s brain ac-

tivity can help to determine what part of the stimulus he or she is paying attention to. 

When choosing a method to record brain activity for AAD purposes, the temporal resolution, 

staying within the range of milliseconds, plays the most important role. Three popular methods 

in AAD research are EEG, MEG, and ECoG. In EEG, on one hand, surface electrodes measure the 

electric activity of the brain. It is a non-invasive method with a high temporal resolution and a 

relatively low cost. The location of the electrodes is based on international placement systems. 

MEG, on the other hand, measures the magnetic fields generated by brain activity. MEG is a 

non-invasive method with a high temporal resolution as well, and it has a better spatial resolu-

tion than EEG. However, the method is more expensive than EEG and it is very sensitive to ex-

ternal noise, making it less suitable for everyday use. It also relies on heavy equipment, which is 

impractical for BCI purposes. Finally, ECoG is an invasive method placing electrodes directly on 

the brain surface, which means it can only be performed during brain surgery. Compared to EEG, 

the spatial resolution is better and it results in a clearer signal, but it is unsuitable for the use in 

healthy patients (Bera, 2015; Srinivasan & Nunez, 2012). As every method has it shortcomings, 
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careful selection based on the specific research goals is recommended (Lee, Larson, Maddox, & 

Shinn-Cunningham, 2014). Most AAD research is based on EEG and MEG recordings. 

After recording the brain activity, for example using EEG, the information is analysed with a so-

called ‘decoder’. Two types of decoders exist: subject-specific decoders, which are trained using 

data from a single subject, and pre-trained decoders, using combined data from different sub-

jects. If less than 15 minutes of data are available for each subject, a pre-trained decoder often 

shows the highest accuracy (Mirkovic, Debener, Jaeger, & De Vos, 2015). To train a decoder, a 

large amount of data is required. These data include EEG output as well as the stimuli used dur-

ing the EEG recording. As the auditory processing mechanisms result in a slight delay in the EEG 

signal, a time lag of typically 200-250 ms is added to the speech signals. The decoder learns to 

use the EEG data to reconstruct the envelope of the attended speech. To this end, it attributes 

a relative weight to each EEG channel, adjusting the different weights to maximise the correla-

tion between the reconstructed envelope and the attended speech. Ultimately, a set of decoder 

weights is formed, which helps the decoder to decode a new trial. By feeding the EEG data of 

the new trial into the decoder, an estimated envelope is formed. The reconstructed envelope 

can then be compared to both the attended and unattended speech stream and a decision can 

be made based on the highest correlation. The corresponding stream is then labelled as the 

‘attended’ speech. If the algorithm correctly identifies the attended talker, the decoding process 

is considered successful. The decoding accuracy indicates the percentage of correct decisions by 

the decoder (O’Sullivan et al., 2015). 

Most decoders are trained using the leave-one-out method. For a subject-specific decoder, this 

means a new set of decoding weights is calculated for each trial of the subject. Thus, in a data 

set containing 100 trials, the decoding weights for the first trial are created using trial 2 to 100. 

For the analysis of the 100th trial, the decoding weights are based on trial 1 through 99. Using 

this approach, the decoding weights vary slightly across trials. For a pre-trained decoder, which 

is used across subjects, the leave-one-out method means the decoding weights are based on 

the data of all subjects but one, before analysing the data of the remaining subject. 

1.2.2 Status of AAD research 

Since the first attempts to detect auditory attention, researchers have applied AAD in different 

situations, using a wide variety of stimuli and paradigms. Taking a closer look at their results 

shows that research choices can significantly influence AAD performance. For example, a study 

comparing different envelope extraction methods found relatively large differences in mean de-

coding accuracy (74.5-87.5%) between various extraction methods and recording times 
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(Biesmans et al., 2015). Choosing generic or subject-specific decoders can affect decoding results 

as well (e.g. 76.0-87.2%, in Das, Biesmans, Bertrand, & Francart, 2016). Consequently, it is im-

portant to consider the applied methods when designing AAD experiments and interpreting the 

results. 

In general, however, AAD can achieve robust results. While many experiments apply 64- or 128-

channel EEG, recent studies obtained acceptable decoding accuracies using down to 25, 10 or 8 

channels (Fuglsang, Dau, & Hjortkjær, 2017; Mirkovic et al., 2015; Zink, Baptist, Bertrand, Huffel, 

& Vos, 2016). Other researchers have experimented with shortened recording times, proving 

that 30 or even 10 seconds of data was enough to accurately identify the attended talker 

(Fuglsang et al., 2017; Zink et al., 2016). One study tested even shorter sample lengths, confirm-

ing that the accuracy increased with longer EEG recordings (Horton, Srinivasan, & D’Zmura, 

2014). 

When attempting to apply AAD to more realistic listening conditions, the classic paradigm using 

only two competing speech streams is insufficient. Most everyday environments contain multi-

ple sound sources, including different speech streams and interfering noise sources, sometimes 

with additional distortions due to reverberation. It is known that factors like background noise 

affect the auditory processing mechanisms (Koerner & Zhang, 2015). Therefore, simply assum-

ing that the experimental results from basic acoustic environments can be generalized to these 

situations would be a mistake. To meet these objections, recent studies incorporate more real-

istic conditions, by using lifelike stimuli or adding noise sources to the listening environment. 

For example, Das and her colleagues presented both dichotic and HRTF-filtered stimuli, finding 

that the latter resulted in higher AAD performance. The HRTF-filtered presentation was more 

realistic, which may have led to more efficient processing by the auditory system. Furthermore, 

as the speech streams were mixed in the HRTF-filtered condition, the separate streams were 

less clear, thereby reducing speech intelligibility. The authors believe this increased difficulty 

triggered selective gain mechanisms to enhance the representation of the attended stream and 

suppress the unattended stream, explaining the higher decoding accuracies (Das et al., 2016). A 

similar explanation was given by other researchers, who investigated the effect of different re-

verberation levels and that of multiple talkers. They found noise-robust cortical tracking of the 

attended speech stream, while the representation of the unattended stream deteriorated when 

reverberation or babble noise was added (Fuglsang et al., 2017). 
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1.2.3 Possibilities of AAD 

The development of AAD technology has the potential to solve some major issues in the field of 

audiology. For example, speech intelligibility can at present only be measured using a behavioral 

task, with listeners repeating the word or sentence they heard. However, this method is not 

usable with all patients, because it requires a high amount of attention and cooperation. Meet-

ing these limitations, measures of envelope entrainment have been studied as a valid alternative 

to standard speech perception tests (Commers, 2017; Goris, 2016). Recently, researchers suc-

cessfully connected neural speech representations to behavioral intelligibility measures using 

EEG (Vanthornhout, Decruy, Wouters, Simon, & Francart, 2018). 

AAD is likely to solve other problems as well. As mentioned before, the current hearing aid tech-

nology encounters major issues in the way noise suppression algorithms work. Starting from an 

analysis of the acoustic environment, the algorithm can successfully suppress stationary noise. 

But in a more complex situation, involving competing talkers as ‘noise’, the system might sup-

press the wrong talker. However, if the EEG of HA users could be recorded and analysed in real 

time, determining which speech stream they are listening to, the algorithm could use this infor-

mation to decide what parts of the auditory scene should be considered ‘target’ or ‘noise’. Sub-

sequently, the software could selectively amplify the attended speech stream, mimicking the 

attentional gain control in listeners with normal hearing (Kerlin et al., 2010). This type of brain-

computer interface (BCI) can improve speech perception in difficult hearing situations, like a 

conversation at a dinner table or a crowded party. 

Unfortunately, AAD technology is not yet ready for everyday use. Whereas most research is 

based on at least 64-channel EEG measurements and compares the reconstructed envelope to 

the clean speech signals, these conditions are unrealistic when considering everyday use of AAD. 

To implement AAD in HA software, brain responses should be measured and decoded instanta-

neously instead of afterwards, using a portable system instead of a traditional EEG set-up, and 

based on the actual acoustic signal instead of isolated streams. In view of these discrepancies, 

recent studies have investigated more practical and realistic applications of AAD technology. For 

example, Mirkovic and her colleagues tested a small EEG electrode grid that can be worn behind 

the ear (Mirkovic, Bleichner, De Vos, & Debener, 2016). Other researchers decoded the EEG 

using only mixed speech recordings, comparable to what a HA could register in real-time (Van 

Eyndhoven, Francart, & Bertrand, 2017). At the same time, possibilities for real-time decoding 

of the EEG are being explored (de Souza Ranaudo, de Sá, & Felix, 2012), along with real-time 
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modification of the speech streams, simulating the effect of selective amplification by AAD-

steered HA software (Bau, 2016). 

Clearly, there is still a lot of work to be done before AAD can be implemented in everyday HAs. 

Since the ultimate goal of this implementation is to improve HA performance, by enabling ade-

quate noise suppression and enhancing the attended speech stream, additional research is 

needed. For instance, when adjusting the gain for each stream to improve speech perception, it 

is important to keep the suppressed streams loud enough to allow successful attention switch-

ing. Yet it is currently unclear how large the gain difference should be to optimise speech under-

standing while leaving open the possibility to redirect attention. Furthermore, although AAD is 

mostly tested on young adults with normal hearing, little or no research is available for hearing 

impaired listeners or elderly people. However, given the age-related decline in cognitive skills, 

and the effect of hearing impairment on the processing of sounds, these populations need to be 

included in future AAD research. 

1.2.4 Summary 

In ‘auditory attention detection’ (AAD), electrophysiological correlates of attention are used to 

predict which speech stream a person is attending to. To this end, brain activity is recorded using 

brain imaging techniques like EEG and analysed by decoders. AAD can be used to successfully 

identify the attended speaker in different listening environments, although additional research 

is needed. Ultimately, BCI interfaces may improve HA performance by enabling selective gain 

adjustments for attended speech streams. 

1.3 Research questions 

This thesis investigates some factors that could influence the decoding accuracy when perform-

ing AAD with 64-channel EEG, in a two-talker scenario with background noise. The first factor is 

the position of both speakers, relative to the listener. To this end, four angular conditions are 

used, in which the attended and unattended speaker are each coming from different angles. The 

second factor is the amount of noise in the acoustic environment. To investigate this factor, 

babble noise is presented at different noise levels. Next, the interaction between both factors is 

investigated, along with individual differences in AAD performance. Finally, the link between 

speech intelligibility and decoding accuracy is explored. 
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1.3.1 Research question one: spatial separation 

What is the effect of spatial separation on AAD? 

a. How does the angular separation between speakers influence the effectiveness of AAD? 

b. Is there evidence for a right ear advantage in AAD performance? 

Spatial separation may influence the effectiveness of AAD. In general, a larger angle difference 

between both speakers might be linked to better AAD performance. Based on the concept of 

REA, overall performance might also be better if the attended speaker is situated at the right 

side of the listener. However, as REA findings so far are based on dichotic listening experiments 

(Hugdahl & Westerhausen, 2016), it may not impact the decoding accuracy in a diotic experi-

ment paradigm. 

1.3.2 Research question two: background noise 

How does the presence of babble noise influence AAD? Is there a difference in AAD performance 

for different noise levels? 

The presence of noise is expected to have a negative influence on AAD performance, with higher 

noise levels resulting in lower accuracy. The overall decoding accuracy is expected to be the 

highest when there is no noise present. 

1.3.3 Research question three: interaction between separation angle and noise 

How do speaker separation and noise levels interact when influencing AAD? 

The level of background noise might interact with the angle difference between both speakers. 

Background noise may have different effects, depending on the separation angle. 

1.3.4 Research question four: individual differences 

How important are individual differences between subjects? 

a. Are there individual differences in decoding accuracy? 

b. Can the subjects’ decoding accuracies be linked to their individual performances on a speech-

in-noise task? 

Given the differences between individuals, both in listening strategies and in physiological fac-

tors, a significant variability in AAD performance across subjects is expected. Additionally, sub-

jects with good speech-in-noise results (i.e. low SNRs) on the speech-in-noise task might have 

higher overall decoding accuracies. 
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1.3.5 Research question five: intelligibility versus decoding accuracy 

To what extent is the AAD performance connected to the estimated speech intelligibility? 

a. Does spatial separation influence the subjective intelligibility? 

b. What is the effect of background noise on the estimated speech intelligibility? 

c. Do spatial separation and background noise interact when influencing the intelligibility? 

d. How important are individual differences for the subjective intelligibility? 

e. Is there evidence for a connection between the intelligibility ratings and the corresponding 

decoding accuracies? 

The experienced speech intelligibility by listeners does not necessarily correlate with the actual 

AAD performance, since the intelligibility rating is a subjective measure, while the decoding ac-

curacy is based on objective results. Estimated intelligibility is expected to be the lowest for a 

10° separation angle and the largest for a 180° angle. Furthermore, the presence of background 

noise may affect speech intelligibility, with more noise resulting in lower estimated intelligibility 

rates. Both factors might interact when influencing the subjective intelligibility, in the same way 

or differently than for the decoding accuracy. There may also be individual differences in sub-

jective intelligibility. Additionally, the intelligibility may be linked to the individual’s threshold on 

a speech-in-noise task, with lower thresholds going together with higher intelligibility ratings. 

Finally, a correlation between intelligibility and AAD performance seems plausible; however, this 

correlation may be weak because understanding speech is no prerequisite for a cortical repre-

sentation of the speech stream. 
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2 Method 

The experiment sessions were scheduled between October 12th and November 16th, 2017. All 

sessions took place in the audio cabins in the Experimental Oto-Rhino-Laryngology (ExpORL) of-

fice of KU Leuven. 

2.1 Participants 

A total of 15 subjects were recruited. All participants were native Flemish speakers between 20 

and 25 years old (range 20;01-25;02 yrs., mean age 22;05 yrs.). They received no financial reward 

for their participation. All subjects declared they had normal hearing, which was confirmed by 

calculating pure tone averages (PTAs) for both ears. In addition, their speech reception threshold 

(SRT) for Matrix-sentences in babble noise had to be below -7 dB SNR to participate. In Table 1, 

the age, gender, hearing thresholds, and SRT of each subject is displayed. 

Table 1. Subjects. 

Number Age Gender PTA (left) PTA (right) SRT 

1 20;01 yrs. female 10 dB HL 12 dB HL -8,6 dB SNR 

2 23;07 yrs. female 5 dB HL 12 dB HL -8,8 dB SNR 

3 22;09 yrs. female 5 dB HL 8 dB HL -9,0 dB SNR 

4 21;10 yrs. female 3 dB HL 5 dB HL -9,1 dB SNR 

5 22;06 yrs. female 2 dB HL 2 dB HL -8,8 dB SNR 

6 20;11 yrs. female 7 dB HL 7 dB HL -7,2 dB SNR 

7 23;01 yrs. female 8 dB HL 5 dB HL -7,7 dB SNR 

8 21;00 yrs. female 12 dB HL 8 dB HL -9,8 dB SNR 

9 20;04 yrs. female 7 dB HL 2 dB HL -8,9 dB SNR 

10 22;04 yrs. female 2 dB HL 0 dB HL -8,8 dB SNR 

11 22;04 yrs. female 12 dB HL 10 dB HL -7,9 dB SNR 

12 24;09 yrs. female -4 dB HL -4 dB HL -8,1 dB SNR 

13 25;02 yrs. male 5 dB HL 7 dB HL -9,1 dB SNR 

14 22;05 yrs. male 10 dB HL 3 dB HL -8,1 dB SNR 

15 24;00 yrs. female 5 dB HL 10 dB HL -9,3 dB SNR 

 

2.2 Equipment 

2.2.1 Stimuli  

2.2.1.1 Pure tone audiometry 

Standard sinusoidal tones of different frequencies were used for obtaining pure tone thresholds. 

The tested frequencies included 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and 8000 Hz. 
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2.2.1.2 Speech recognition test 

The speech stimuli for the speech-in-noise test consisted of standard Matrix test sentences, read 

by a female talker (Houben et al., 2014). The noise was made up of two parts: a competing talker 

(CT), narrating a story, and babble noise. Thus, it resembled the noise used in the AAD experi-

ment. 

2.2.1.3 AAD in noise experiment 

The stimuli consisted of Flemish short stories, read by female speakers. All stories were adapted 

from www.radioboeken.eu and are listed in Table 2. After processing a part of the data, it be-

came clear that one story, 2a (‘De gamba’), had systematically lower decoding accuracies than 

the other stories. Therefore, it was replaced with a different story, 2b (‘In de zon kijken’), which 

was used with subjects 12-15 only. Unfortunately, it became clear afterwards that the story cho-

sen to replace it resulted in lower performance as well. A comparison between the accuracies 

for each story can be found in Appendix A. In a prior run of the experiment, some stories had to 

be excluded too, because of low intelligibility results, the extensive use of difficult or uncommon 

words, or non-Flemish parts in the story. 

Table 2. Stories. 

Number Title Author 

1 Honing Kristien Hemmerechts 

2a De gamba Thomas Gunzig 

2b In de zon kijken Anne Provoost 

3 Een krokodil aan de tong trekken Saskia De Coster 

4 Lena Charlotte Therssen 

5 Het bestaat Annelies Verbeke 

6 Het meisje en de kat Rachida Lamrabet 

7 De tuin Kamiel Vanhole 

8 De volle schort Diane De Keyzer 

 

The stories were presented at 65 dB SPL. The presentation of each story was split up into four 

parts, hereafter called ‘clips’, lasting 2 to 5 minutes each. The root mean square of intensity 

(RMS) was normalized per clip. Silent gaps exceeding 300 ms were truncated to 300 ms. Each 

story was paired with another story and used twice: once as attended speech and once as unat-

tended speech. Both stories were presented simultaneously with varying angle differences, us-

ing a head-related transfer function (HRTF) to make the listening task more realistic (Das et al., 

2016). In addition to a competing talker (CT), babble noise was used in some conditions. The 
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noise consisted of 36 speakers, divided over 9 directions (4 talkers each) using HRTF. The spec-

trum of the babble noise had its spectrum matched with that of the average spectrum of all the 

speakers. The power of each babble source was balanced so that the SNR equalled the power of 

a speaker, divided by N times the power of a babble source, with N = 36 (number of speakers in 

the babble). 

Three different SNRs of varying speech intelligibility were used when babble noise was pre-

sented. The chosen levels were based on the results of earlier speech intelligibility behavioral 

tests. The story speech material from both the attended speaker and the CT was presented at 

SRT50, SRT50 + 3 dB and SRT50 + 6 dB. The estimated value for SRT50 (speech reception threshold) 

was based on subjective speech intelligibility ratings for stories, averaging -8,470 dB SNR for the 

angular setup [-90°, 90°]. Based on previous research, a conversion term of +1,363 dB was added 

to account for the difference between objective and subjective SRT values, calculated from com-

parable measures using Matrix sentences. This process resulted in an estimated objective SRT50 

value of -7,107 dB SNR, referred to as SNR3. For SNR2, 3 dB was added to improve speech intel-

ligibility, so speech was presented at -4,107 dB SNR. The easiest noise condition, SNR1, used a 

signal-to-noise ratio of -1,107 dB SNR. 

2.2.2 Software and hardware 

For the pure tone audiometry, the equipment consisted of standard headphones and an Orbiter 

922-2 audiometer (Madsen Ltd.). The PTA’s were calculated manually. The SRT assessment used 

E-A-R-TONE 3A insert earphones (3M) and a Hammerfall DSP Multiface II (RME). The user inter-

face for the speech recognition test was constructed using APEX software (Francart, 2008), 

which also computed the SRT (in dB SNR) after each list. 

For the AAD experiment, the complete BioSemi ActiveTwo-system was used (BioSemi, 2002). 

Brain potentials were measured using two sets of pin-type active electrodes, with 32 electrodes 

each. Additionally, a CMS (common mode sense) and DRL (driven right leg) electrode formed a 

feedback loop, replacing the typical ground electrode of other EEG systems. All electrodes were 

fitted in 10/20-labelled head caps, using Signa Gel (Parker Laboratories) to connect the elec-

trodes to the scalp. During the experiment, the sensor-signals were digitized with a 24-bit reso-

lution, using an ActiveTwo AD-box. The optical data were converted to USB output by the USB2 

Receiver, which also controlled the input the subject received. Finally, ActiVIEW software 

(BioSemi, 2016) displayed the signals from each of the 64 channels, while indicating the pres-

ence of auditory input with triggers. Thus, the researcher could track the progress of each story 

part. 
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The EEG was split up into 30-second intervals afterwards and decoded on a subject-specific 

leave-one-out basis, following the method described by Biesmans using MATLAB software 

(Biesmans, Das, Francart, & Bertrand, 2017). In addition to the ActiveTwo set-up, the audio cabin 

was equipped with a screen, a computer mouse, and a microphone. This set-up allowed the 

subject to read instructions, answer questions, control the beginning of each trial and communi-

cate with the experiment leader. The user interface was again constructed using APEX software 

and stimuli were presented through ER-1 insert earphones (Etymotic Research). 

2.3 Research method 

After receiving information about the goal and progress of the experiment, subjects signed two 

informed consent forms. Both forms had been approved by the KU Leuven ethical committee. 

2.3.1 Pure tone audiometry 

To verify that all subjects had normal hearing, a standard pure tone audiometry was performed. 

Subjects were seated in a soundproof booth. They were fitted with headphones and asked to 

raise their hand when they heard a sound. Pure tone air conduction thresholds were recorded 

using the Hughson-Westlake method. Afterwards, the PTA was calculated as the average thresh-

old for the 500, 1000 and 2000 Hz tones. Subjects with a PTA above 20 dB HL were excluded 

from the rest of the experiment. Subjects with normal PTAs but high thresholds on specific fre-

quencies underwent additional otoscopy and tympanometry to confirm normal hearing. 

2.3.2 Speech recognition test 

In the same soundproof booth, subjects were seated in front of a computer screen. After receiv-

ing verbal instructions about the test, they were fitted with insert phones. Through the insert 

phones, subjects were presented with both CT (left ear) and babble noise. The target speech, 

consisting of Matrix sentences, was presented to the right ear at an initial SNR of -15 dB. After 

each sentence, subjects had to select the correct words on the screen. Using an adaptive proce-

dure, the SNR was varied to obtain the SRT, which is the SNR level at which the subject could 

understand 50% of the target speech. Each subject completed at least two training lists and one 

test list, taking the learning effect for SRT’s in fluctuating noise into consideration (Rhebergen, 

Versfeld, & Dreschler, 2008). 
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2.3.3 AAD in noise experiment 

2.3.3.1 Preparation 

Subjects were seated on a chair outside the audio cabin. After measuring their head circumfer-

ence, a BioSemi head cap was placed on their head. The cap was positioned according to the 

international 10/20-system, by placing the Cz electrode in the middle between the nasion 

(bridge of the nose) and the inion (midline occipital protuberance) and between both preauric-

ular points. Consequently, a conductive gel was injected in the electrode gaps on the cap and 

the electrodes were clicked in place. 

After fitting the electrode cap, subjects were positioned in a comfortable chair in an electromag-

netically shielded, sound proof room. After connecting the electrodes to the computer interface, 

the impedance of each electrode was verified, and some extra gel was added if necessary. Sub-

jects were fitted with insert phones, which were clipped to the chair for stability, and received 

instructions about the task at hand. 

2.3.3.2 AAD in noise 

When the set-up was completed, subjects were presented with some basic instructions on the 

screen. Next, they could see a diagram indicating the angular position of two speakers: one of 

them green, the other red. They were requested to focus their attention on the story coming 

from the green speaker while ignoring everything else. First, they listened to a 5-second test 

scenario with only the green speaker, to direct their attention to the right angle. They were then 

sequentially presented with four trials with different SNRs, each comprising one out of four suc-

cessive story clips. After each trial, subjects were asked to solve a multiple-choice question about 

the story part they had just listened to. The questions encouraged them to focus on the task, 

but no feedback was given about their responses. Subjects also had to estimate their speech 

intelligibility rate, answering the question “How many percent of the words did you understand 

correctly (e.g. 27%)?”. They were presented with an illustration of a ruler ranging from 0 to 100, 

on which they could mark the estimated percentage. Finally, a screen indicated that subjects 

could make remarks or ask questions. The experiment leader could hear them through a micro-

phone, installed next to the subjects, and answer by typing directly on the screen. If everything 

was well, subjects could proceed to the next trial when ready. 

The experiment consisted of four angular conditions: -5° and +5° (a); +30° and +90° (b); -30° and 

-90° (c); -90° and +90° (d). There was one ‘test block’ for each angular condition. A test block 

consisted of two parts: in the first part, the attended talker came from one direction, while in 

the second part, the subject had to focus on the talker coming from the other direction. Each 
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part started with a 5-second test scenario, followed by four trials: one without babble noise and 

three with varying SNR levels. After four trials, the story was finished, and the subject was in-

structed to switch attention to the other talker. At the end of each test block, there were two 

additional trials, which were in fact repetitions of the trials without babble noise from the first 

and second part. For these additional trials, participants did not have to answer any questions. 

The presentation order was randomised between subjects for the test blocks (angular conditions) 

and the trials containing babble noise (SNR1, SNR2 and SNR3). More information on this ran-

domisation process can be found in Appendix B. The duration of the trials varied over the angular 

conditions. Quiet trials took 4 minutes in condition (a) and (d), while lasting only 2 minutes in 

condition (b) and (c). Noise trials took 5 minutes or 2,5 minutes respectively. 

A typical angular condition (test block) looked like this: 

Example: angular condition a 

direction -5° -5° -5° -5° -5° +5° +5° +5° +5° +5° -5°/+5° 

session test quiet SNR1 SNR2 SNR3 test quiet SNR1 SNR2 SNR3 quiet 

duration 5’’ 4’ 5’ 5’ 5’ 5’’ 4’ 5’ 5’ 5’ 8’ 

 

Example: angular condition c 

direction -30° -30° -30° -30° -30° -90° -90° -90° -90° -90° -30°/-90° 

session test quiet SNR1 SNR2 SNR3 test quiet SNR1 SNR2 SNR3 quiet 

duration 5’’ 2’ 2,5’ 2,5’ 2,5’ 5’’ 2’ 2,5’ 2,5’ 2,5’ 4’ 

 

2.4 Data-analysis 

2.4.1 Available data 

Data were recorded for 64 channels, with a sample rate of 8192 Hz. The trials lasted 138 minutes 

in total, thus resulting in 4,341 x 109 data points for each subject. For analysis purposes, each 

trial was split up in a series of 30-second intervals. The intervals were bandpass-filtered between 

1 to 9 kHz before analysing them separately, resulting in 276 decoding results (one for each 30-

second interval) for each subject. 
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2.4.2 Analysis method 

Data were analysed using the statistical software R (R Core Team, 2017) and RStudio (RStudio 

Team, 2016). The analysis methods were selected using the decision tree from Discovering sta-

tistics using R (Field, Miles, & Field, 2012). The assumptions for parametric tests are discussed 

in Appendix C. 

2.4.2.1 Linear mixed-effects model for decoding accuracy 

Based on the hypothesis, AAD performance might be affected by speaker positions and back-

ground noise. To investigate the effect of these factors, a linear mixed-effects model (LME) was 

constructed. This model incorporated separation angle and noise level as fixed factors, along 

with the interaction between them. To account for between-subject variability, subject was 

added as a random effect. 

2.4.2.2 Post-hoc analyses 

Based on significant effects, indicated by an ANOVA of the LME model, the performance differ-

ence within the corresponding variables was confirmed using Friedman’s ANOVA. Next, Wil-

coxon signed-rank tests were carried out to further explore the differences. To correct for mul-

tiple post-hoc analyses, adjusted p-values were calculated using the Benjamini-Hochberg cor-

rection. Thus, post-hoc analyses were carried out for separation angle (10°, 60°, or 180°) and 

noise level (∞, -1.1, -4.1, or -7.1 dB SNR). Additionally, the mean accuracy for each side of at-

tended speaker (left or right) was compared using another Wilcoxon signed-rank test. 

2.4.2.3 Analysing the effect of individual differences 

To answer the fourth research question, considering individual differences in AAD performance 

across subjects, a Kruskal-Wallis test was performed. This test assigned ranks to all the accuracy 

scores in a data set before adding them together for each subject. Next, the total rank was com-

pared across subjects. Additionally, Kendall’s tau was used to see if the mean AAD accuracy for 

each subject could be linked to their performance on the speech-in-noise task. 

2.4.2.4 The relationship between speech intelligibility and AAD performance 

The final research question focussed on the relationship between the subjective speech intelli-

gibility and the measured AAD accuracy. First, the effect of spatial separation and background 

noise on the estimated intelligibility was studied. To this end, the LME model was reconstructed, 

but this time with the estimated speech intelligibility as predicted variable. Second, the correla-

tion between the intelligibility and the accuracy was calculated using Kendall’s tau. The analyses 

for individual differences, as described above, were repeated for intelligibility ratings as well.  
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3 Results 

The third part of this thesis contains the results of the statistical analyses. All analyses are de-

scribed using both the statistical results and the corresponding graphs. The interpretation and 

discussion of these results follow in chapter four. 

3.1 Factors influencing AAD performance 

A linear mixed-effects model (LME) was constructed to test the effect of spatial separation and 

background noise on AAD performance. The model predicted the decoding accuracy based on 

the separation angle between both speakers and the amount of babble noise, while incorporat-

ing the interaction between them. After presenting the LME model, the effect of each factor is 

further explored using post-hoc Wilcoxon signed-rank tests. 

3.1.1 Linear mixed-effects model for decoding accuracy 

In general, high decoding accuracies were achieved. The mean accuracy across all subjects was 

81.9%, with a range from 67.7% to 92.0%. To investigate what factors influenced these decoding 

accuracies, a linear mixed-effects model fit by restricted maximum likelihood was constructed. 

In this model, separation angle and noise level were considered fixed factors, along with the 

interaction between them, whereas the subject was treated as a random factor. The accuracy 

of this model was tested using ANOVA, of which the results are given in Table 1. Both the sepa-

rate factors and the interaction between them are significant. 

Table 1. ANOVA for linear mixed-effects model to predict decoding accuracy. 

variable df F p 

(intercept) 1, 454 2306.478 p < 0.001 
separation angle 2, 454 11.130 p < 0.001 
noise level 3, 454 17.236 p < 0.001 
angle * SNR 6, 454 3.611 p = 0.002 

 

3.1.2 The effect of spatial separation 

After determining a significant effect of spatial separation on AAD performance, post-hoc tests 

were used to explore the difference between separation angles and sides. 

3.1.2.1 The effect of the separation angle 

Based on the LME model described above, the separation angle between both speakers has a 

significant effect on AAD accuracy (F2,454 = 11.130, p < 0.001). In other words, the mean decoding 

accuracy varied across separation angles. This was confirmed using Friedman’s ANOVA (χ²2 = 10, 
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p = 0.007). Figure 1 compares the AAD performance across separation angles, with each box 

containing the mean accuracy of every subject for the corresponding angle. 

 

Figure 1. Decoding accuracies for each separation angle. 

Multiple Wilcoxon signed-rank tests were performed post-hoc to compare the performance 

across different separation angles. The analysis results are listed in Table 2, along with the effect 

measures and the Benjamini-Hochberg adjusted p-values. Decoding accuracies were signifi-

cantly worse for a 10° separation angle than for larger angles (60° or 180°). There is no evidence 

for different accuracies in 60° versus 180° separation angles. 

Table 2. Wilcoxon signed-rank tests for decoding accuracy across separation angles. 

pair of angles W p r corrected p 

10°-60° 7 0.001 -0.593 0.003 
10°-180° 13 0.008 -0.482 0.012 
60°-180° 48 0.525 -0.116 0.525 

 

3.1.2.2 The right ear advantage 

Another Wilcoxon signed-rank test was performed to compare the decoding accuracy between 

trials with the attended speaker coming from either the right or the left side. As the trials with 

a 60° separation angle had both speakers on the same side, the data from these trials were 

excluded. Figure 2 shows the distribution of the mean accuracy for each side from every subject. 

Performance was worse for speech coming from the right side of the head (W = 113, p = 0.001, 

r = -0.593). Appendix E contains a further exploration of this difference. 
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Figure 2. Decoding accuracies when the attended speaker is on the left or on the right side. 

3.1.3 The effect of background noise 

The second research question focussed on background noise as an influencing factor in AAD 

performance. The four conditions in the experiment are no noise (+∞ dB SNR), SNR1 (-1.1 dB 

SNR), SNR2 (-4.1 dB SNR), and SNR3 (-7.1 dB SNR). The difference in AAD accuracy between 

different noise levels is confirmed by the LME model (F2,454 = 17.236, p < 0.001), as well as by 

Friedman’s ANOVA (χ²3 = 25.245, p < 0.001). Figure 3 supports these analyses, by comparing the 

mean accuracy for every subject across the four noise levels. 

 

Figure 3. Decoding accuracies for each noise level. 

Again, multiple Wilcoxon signed-rank tests were performed post-hoc to compare the perfor-

mance across different noise levels. The results are listed in Table 3, along with the associated 

effect measures and the post-hoc corrected p-values. Decoding accuracies were highest in the 



36 

 

condition with a low amount of noise (SNR1), even in comparison to the no noise condition. 

Performance in the SNR2-condition was comparable to that of the no noise condition and sig-

nificantly better than that of the SNR3-condition. Finally, accuracies were significantly higher in 

the condition without noise than in the SNR3-condition. 

Table 3. Wilcoxon signed-rank tests for decoding accuracy across noise levels. 

pair of noise levels W p r corrected p 

SNR0 – SNR1 3 0.001 -0.586 0.002 
SNR0 – SNR2 32 0.121 -0.283 0.121 
SNR0 – SNR3 100 0.022 -0.420 0.026 
SNR1 – SNR2 82.5 0.011 -0.466 0.017 
SNR2 – SNR3 120 0.001 -0.617 0.002 
SNR2 – SNR3 105 0.001 -0.596 0.002 

 

3.1.4 The interaction between separation angle and noise 

The third research question studied the interaction between separation angles and noise levels. 

The LME model indicated that the interaction between both factors had a significant effect on 

decoding accuracies (F6,454 = 3.611, p = 0.002). Figure 4 demonstrates this effect by comparing 

the accuracy distribution between the different noise levels, for each separation angle. Every 

box contains the mean accuracy for a specific combination of factors for each subject. The as-

terisks mark significant differences. Given that the pattern of significant comparisons is different 

for each separation angle, there must be an interaction effect between both factors. 

 

Figure 4. Decoding accuracies for each noise level, compared across separation angles. 

Figure 5 shows the predicted decoding accuracies on a population level, based on the LME model. 

There is a clear effect of both separation angle (evidenced by different mean scores across the 
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facets) and noise level (based on the differences in predicted accuracy across noise levels). Fur-

thermore, it supports the existence of an interaction effect, as the shape of the predicted line is 

different for each facet. For example, whereas the accuracy is highest in the noise-free condition 

for the 10° angle, the accuracy is highest in the SNR1-condition (-1.1 dB SNR) for the larger angles. 

 

Figure 5. Predicted decoding accuracies for each noise level, compared across separation angles. 

The relevance of the interaction between separation angles and noise levels can be seen in Fig-

ure 6. It shows the difference in the predicted decoding accuracy, when either accounting for 

the interaction effect or not. As a result, a positive value on the graph indicates that the decoding 

accuracy increased due to the interaction between both factors. Conversely, a negative value 

marks a lower predicted accuracy. The difference is compared across noise levels and separation 

angles. The graph shows that the decoding accuracy could be up to 10% lower or higher due to 

the interaction effect. 

 

Figure 6. Difference in predicted decoding accuracies with and without the interaction effect. 
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3.2 Individual differences in AAD performance 

Next, the individual performance of the subjects was explored. Both the variability in overall 

decoding accuracy and the potential link with the individual’s performance on a speech-in-noise 

task were studied. 

3.2.1 Variability among subjects 

A Kruskal-Wallis test measured the difference between participants. The test indicated that the 

AAD performance varied significantly across subjects (χ²14 = 60.732, p < 0.001). Figure 7 shows 

this as well. It contains the decoding accuracy for each combination of separation angles and 

noise levels, compared across subjects. 

 

Figure 7. Decoding accuracies for each subject. 

After applying the Kruskal-Wallis test, a multiple comparisons test was used to check for individ-

ual differences in performance. This test revealed that the accuracies of two subjects (number 

12 and 14) were significantly worse than average. Subject 12 had lower accuracies than subjects 

2, 7, 8, 9 and 10. The AAD performance for subject 14 was worse than for subjects 8 and 9. In 

other words: the highest average decoding accuracies were achieved for subjects 9 and 8, while 

the lowest average accuracies were found with subjects 12 and 14. 

3.2.2 The connection between AAD performance and speech-in-noise thresholds 

Kendall’s tau was applied to tie the mean decoding accuracy for each subject to their perfor-

mance on the speech-in-noise task. A small negative correlation was found, but it was not sig-

nificant (τ = -0.105, p = 0.313). The scatterplot in Figure 8 shows the relationship between the 

subjects’ mean decoding accuracies across all conditions and their SRTs on the speech-in-noise 
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task. The blue line indicates that in general, subjects with lower speech-in-noise thresholds had 

slightly higher decoding accuracies. 

 

Figure 8. Relationship between mean decoding accuracy and speech-in-noise threshold of indi-

vidual subjects. 

To further explore this connection, the correlation was calculated for each separation angle. 

However, none of these correlations was significant either. 

3.3 Factors influencing the subjective intelligibility 

The final research question looked at the difference between AAD performance and the subjec-

tive speech intelligibility, as estimated by the subjects. To this end, the previous analyses were 

repeated, but this time with intelligibility as dependent variable. Furthermore, the relationship 

between accuracy and intelligibility was studied. 

3.3.1 Linear mixed-effects model for subjective intelligibility 

A new LME model was constructed to predict the subjective intelligibility, using separation angle, 

noise level and their interaction as fixed factors, and adding subject as a random factor. Again, 

the model was evaluated using ANOVA. Based on the results in Table 4, both the separate factors 

and the interaction between them are significant. 

Table 4. ANOVA for linear mixed-effects model to predict intelligibility. 

variable df F p 

(intercept) 1, 454 2249.130 p < 0.001 
separation angle 2, 454 30.901 p < 0.001 
noise level 3, 454 404.357 p < 0.001 
angle * SNR 6, 454 3.892 p < 0.001 
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3.3.2 The effect of spatial separation and background noise 

After determining a significant effect of both spatial separation and background noise on intel-

ligibility, post-hoc tests were used to explore these effects. 

3.2.2.1 The effect of the separation angle 

The separation angle between speakers had a significant effect on the subjective intelligibility 

(F2,454 = 30.901, p < 0.001). This was confirmed using Friedman’s ANOVA (χ²2 = 7.600, p = 0.022) 

and is visualised in Figure 9, in which every box contains the mean accuracy for each subject for 

the corresponding separation angle. 

 

Figure 9. Subjective intelligibility for each separation angle. 

Using multiple Wilcoxon signed-rank tests, the difference between separation angles was tested. 

Table 5 contains the results, indicating that the intelligibility rates significantly increased with 

larger separation angles. 

Table 5. Wilcoxon signed-rank tests for subjective intelligibility across separation angles. 

pair of angles W p r corrected p 

10°-60° 24 0.041 -0.373 0.041 
10°-180° 19 0.018 -0.432 0.027 
60°-180° 13 0.005 -0.508 0.015 

 

3.1.2.2 The right ear advantage 

Another Wilcoxon signed-rank test was performed to compare the intelligibility between trials 

with the attended speaker coming from either the right or the left side. Figure 10 compares the 

mean intelligibility per subject for attended speech coming from the left or right side, indicating 

that there was no significant difference between both sides (W = 63, p = 0.890, r = -0.025). 
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Figure 10. Subjective intelligibility when the attended speaker is on the left or on the right side. 

3.2.2.3 The effect of the noise level 

The amount of background noise had a significant effect on the subjective intelligibility (F3,454 = 

404.357, p < 0.001). This was confirmed using Friedman’s ANOVA (χ²3 = 45, p < 0.001) and is 

demonstrated in Figure 11. Each box contains the mean accuracy per subject for the correspond-

ing noise level. 

 

Figure 11. Subjective intelligibility for each noise level. 

Multiple Wilcoxon signed-rank tests showed a significant decrease in intelligibility with every 

increase in noise level (W = 120, p < 0.001, r = -0.732, corrected p < 0.001, for all pairwise com-

parisons). Intelligibility ratings were highest in the condition without noise (mean = 89.4%) and 

lowest in the condition with the highest amount of noise (mean = 17.9%). 
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3.2.2.4 The interaction between separation angle and noise 

The LME model indicated that the interaction between separation angles and noise levels sig-

nificantly affects the subjective intelligibility (F6,454 = 3.892, p < 0.001). Figure 12 compares the 

intelligibility between noise levels for each separation angle. The boxes contain the mean de-

coding accuracy for each subject for the specific combination of factors. 

 

Figure 12. Subjective intelligibility for each noise level, compared across separation angles. 

Based on the LME model, the intelligibility can be predicted for each combination of separation 

angles and noise levels. Figure 13 shows these predictions for each noise level, within each sep-

aration angle. The general shape of this graph is similar within each separation angle, with in-

creasing noise levels resulting in decreasing intelligibility. However, small differences do exist 

between the graphs, consistent with an interaction effect. 

 

Figure 13. Predicted intelligibility for each noise level, compared across separation angles. 
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Again, the relevance of the interaction effect is explored using a line plot. Figure 14 marks the 

difference in the predicted intelligibility, when either considering the interaction effect or not. 

Positive differences represent an increase in the intelligibility ratings due to the interaction ef-

fect. Again, the differences are compared across noise levels and separation angles. Based on 

the graph, the interaction effect may result in up to 20% higher intelligibility ratings for trials 

without noise. For trials with the highest noise level, it shows a 10 to 20% decrease in intelligi-

bility due to the interaction between both factors. This effect is stronger for trials with larger 

separation angles. 

 

Figure 14. Difference in predicted intelligibility with and without the interaction effect. 

3.3.3 Individual differences in intelligibility ratings 

Given the relevance of individual differences for the decoding accuracy, these differences may 

also affect the subjective intelligibility. This was studied together with the potential link between 

the intelligibility ratings and the individual’s performance on a speech-in-noise task. 

3.3.3.1 Variability among subjects 

To measure the difference between participants, a Kruskal-Wallis test was performed. There 

was no significant variation in intelligibility ratings between the subjects (χ²14 = 7.958, p = 0.892). 

Figure 15 shows the subjective intelligibility for each combination of separation angles and noise 

levels, compared across subjects. There are no relevant differences between subjects, which 

could be confirmed using a multiple comparisons test. 
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Figure 15. Subjective intelligibility for each subject. 

3.3.3.2 The connection between intelligibility ratings and speech-in-noise thresholds 

To find out whether the mean intelligibility rating for each subject could be tied to their perfor-

mance on the speech-in-noise task, Kendall’s tau was applied. This resulted in a small but insig-

nificant negative correlation (τ = -0.295, p = 0.070). Figure 16 shows the relationship between 

the subjects’ mean intelligibility ratings across all conditions and their SRT’s on the speech-in-

noise task. The blue line shows that on average, subjects with lower speech-in-noise thresholds 

rated the intelligibility slightly higher than subjects with higher thresholds. However, this trend 

was not significant. 

 

Figure 16. Relationship between mean intelligibility rating and speech-in-noise threshold of indi-

vidual subjects. 

The connection was further explored by calculating a correlation for each separation angle. Only 

for 60° angles, this produced a significant result (τ = -0.467, p = 0.008, corrected p = 0.023). 
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3.3.4 The connection between AAD performance and subjective intelligibility 

Based on the analyses above, there are some clear differences between the decoding accuracies 

on one hand and the subjective intelligibility of speech on the other hand. The most important 

difference can be found in the effect of background noise, which affects accuracy and intelligi-

bility differently. However, there might still be a connection between both measures. To test 

this hypothesis, Kendall’s tau was calculated on a data set containing a mean decoding accuracy 

and an averaged intelligibility rating for each unique combination of a separation angle, a noise 

level, and a subject. These values are represented as 180 dots (‘data points’) in the scatterplot 

in Figure 17. 

Although a positive correlation between both factors was expected, this correlation was not 

significant (τ = 0.209, p = 0.99). Figure 17 indicates this weak connection with a blue line, show-

ing that slightly higher intelligibility ratings were found in trials that were more successfully de-

coded. The figure also demonstrates that even with low intelligibility rates (below 50%), rela-

tively high decoding accuracies could be achieved (mean accuracy 75%). For the lowest intelligi-

bility rates (below 10%), decoding accuracies varied between 45% and 85% (mean accuracy 63%). 

Ultimately, about 3% of all data points (n = 5) represented decoding accuracies below chance 

level (55%). In general, decoding results are higher than could be expected based on the subjec-

tive intelligibility, given the many trials (n = 36) with intelligibility rates below 20%. 

 

Figure 17. Relationship between decoding accuracy and subjective intelligibility. 
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4 Discussion 

In this part of the thesis, the results from the different analyses are interpreted. After discussing 

the research questions separately, a general conclusion is drawn. 

4.1 The effect of spatial separation 

Both the decoding accuracy and the subjective speech intelligibility were influenced by spatial 

separation of the sound sources. Subjects found it easier to understand a speaker if the separa-

tion angle with the competing talker was large. Thus, intelligibility was higher for a 180° separa-

tion angle than for a 60° angle, and intelligibility rates were lowest for a 10° angle. This was 

reflected in the decoding accuracy as well: performance was worse when speakers were sepa-

rated by a 10° angle, compared to a 60° or a 180° angle. 

When listening to two or more concurrent speech streams, the brain segregates and integrates 

the auditory information from each stream using acoustic features. These features, like funda-

mental frequency or binaural cues, are essential to successfully encode each speech stream 

(Darwin, 2005). To prevent the use of fundamental frequency as a cue, the experiment included 

only stories read by female voices, making sure that the pitch was similar for each stream. Bin-

aural cues, like ITDs and ILDs, were manipulated by varying the separation angle between both 

speakers. When the separation angle was small, spatial unmasking was limited due to small in-

teraural differences, thus making it difficult to distinguish the sound sources. This was indicated 

by decreasing intelligibility ratings as the separation angle between the speakers diminished, in 

keeping with previous findings on spatial separation (Ericson et al., 2004). 

As expected, the decoding accuracy decreased too with smaller separation angles, consistent 

with previous findings (Zhang, Lu, Wu, & Li, 2014). With the two sound sources closer together, 

the acoustic features of each stream are more similar, making it harder for the brain to sepa-

rately encode each stream. Thus, as the encoded patterns were harder to distinguish, AAD be-

came less successful. The difference between 60° and 180° separation angles was not significant, 

which might be related to the effort made by subjects. As the 180° condition was easiest in terms 

of speech intelligibility, maybe subjects did not have to pay close attention to understand the 

story. The 60° angle, however, had both speakers on the same side of the head, thereby reducing 

binaural cues and requiring more attentional compensation mechanisms from the subjects. Al-

ternatively, the non-significance of this result could also be attributed to the limited number of 

participants (n = 15). 
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In addition to the separation angle, the effect of spatial separation was further explored in 

search of a potential REA. As the REA is associated with faster processing of speech coming from 

the right side, this might affect subjective intelligibility and AAD performance. Yet, previous re-

search found evidence for a changing ear advantage depending on the focus of attention, which 

may influence the results (D’Anselmo et al., 2016). Given the diotic instead of dichotic presen-

tation of the stories, however, the effect may not be measurable at all (Hiscock & Kinsbourne, 

2011; Kimura, 1961). Indeed, no evidence for such an effect could be found when comparing 

the intelligibility ratings for each side of the attended speaker. With respect to the decoding 

accuracy, results were higher when the attended speech stream came from the left side, at least 

for trials with a 10° or 180° separation angle, indicating a possible left ear advantage (LEA). How-

ever, individual exploration of the decoding accuracies showed an LEA for twelve subjects and 

an REA for the three others, indicating that the difference could probably be attributed to indi-

vidual variability and measurement artefacts. From that point of view, the ‘evidence’ for an 

overall left ear advantage is probably just a coincidental finding. 

4.2 The effect of background noise 

The amount of background noise had a significant effect on both decoding accuracy and subjec-

tive speech intelligibility. As the background noise increased, subjects found it harder to under-

stand speech, resulting in lower intelligibility ratings. At the same time, decoding accuracies de-

creased with additional noise, although performance was better with a little background noise 

(-1.1 dB SNR) than with no noise at all. 

The impact of noise on speech perception is obvious: it adds acoustical energy to the auditory 

scene, resulting in energetic masking. Increasing the relative intensity of the noise, compared to 

the target speech, reduces the intelligibility (Ericson et al., 2004). Some types of noise may also 

cause informational masking, meaning the noise itself distracts the listener. For example, 

whereas stationary noise only provides energetic masking, babble noise may also capture the 

listener’s attention because of its meaningful content. Additionally, acoustic similarities be-

tween target and masking sounds may heighten the cognitive load with respect to streaming. 

Although all types of background noise interfere with speech processing, some types therefore 

divert a listener’s attention more than others (Larsby, Hällgren, Lyxell, & Arlinger, 2005). A study 

by Zhang et al. (2016) showed an increased need for cortical processing in informationally com-

plex backgrounds. Thus, attentional masking itself may influence brain activity (Manan, Yusoff, 

Franz, & Mukari, 2017; Wiegand, Heiland, Uhlig, Dykstra, & Gutschalk, 2018; Zhang et al., 2014). 

Finally, distracting background noise, like the babble noise used in the experiment, may disrupt 
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the normal streaming processes. Whereas attention-based gain improves the representation of 

the attended stream (Ding & Simon, 2012a; Kerlin et al., 2010; Kong et al., 2014), salient features 

of the competing stream may lead to involuntary bottom-up attention, temporarily distracting 

the listener (Kaya & Elhilali, 2014). 

Keeping this in mind, the effect of background noise on speech intelligibility is easy to compre-

hend. Additional noise resulted in more energetic and informational masking, making it harder 

to understand the attended speech stream. Furthermore, if the noise distracted the listener, the 

attended stream may have been lost for a short period of time, making it even more difficult 

afterwards to focus on the intended speaker. Thus, the intelligibility rates decreased with in-

creasing noise levels, as expected. 

To explain the effect of noise on the decoding accuracy, an analogous explanation can be given, 

at least when comparing the trials containing babble noise. With increasing energetic and infor-

mational masking, listeners struggled to focus on the attended speech stream. If they got dis-

tracted and lost their focus, this could have resulted in contamination of the speech represen-

tation in the brain. Additionally, the informational masking itself may have affected the cortical 

activity, making it harder for the decoder to accurately extract the attended speech envelope. 

However, this theory does not account for the slight decrease in accuracy for no-noise trials. 

Gordon-Hickey and her colleagues found that the accepted noise level is higher in multi-talker 

backgrounds than with one competing talker. They attributed this finding to a relatively higher 

amount of informational masking in the single-talker background, compared to more energetic 

masking in a multi-talker background (Gordon-Hickey, Moore, & Estis, 2012). If their hypothesis 

is valid, the explanation above may also apply to the no-noise condition after all. Although trials 

in this condition contained no additional background noise, the presence of the competing talker 

resulted in informational masking that was perhaps more distracting than the babble noise in 

the other trials. This distraction may have interfered with the cortical representation of the at-

tended stream. Apart from this masking effect, some alternative explanations may account for 

the lower decoding accuracy in the trials without background noise. 

First, because subjects found no-noise trials easier in terms of speech intelligibility, they may 

have adapted different listening strategies that required less cognitive resources. This may have 

resulted in less attentional gain control to track the attended stream, making the cortical repre-

sentations harder to decode. This theory is partially supported by a study from Papesh and her 

colleagues. They found that in some cases, a low amount of background noise may result in 

enhanced AEPs compared to a quiet condition (Papesh, Billings, & Baltzell, 2015). This finding 



50 

 

may explain why the decoding accuracy is higher in trials with babble noise, compared to the 

no-noise trials. 

Secondly, a different explanation may be found in the experiment design. Since the trials with-

out noise always contained the first part of a new story, subjects may simply have found these 

parts less captivating. Additionally, as each story was narrated by a different speaker, subjects 

may have needed some time to adapt to this new voice, as voice familiarity can benefit speech-

in-noise performance (Johnsrude et al., 2013). Furthermore, the analysis treated all trials with-

out noise equally, although some trials were presented after each test block and contained a 

repetition of the first part of the story. These trials might have been less interesting to the lis-

teners, receiving less attention than the other trials. In that case, their more passive listening 

attitude would have resulted in smaller AEPs, thus affecting the AAD performance (Zhang et al., 

2016). 

4.3 The interaction effect between separation angle and noise 

As both the separation angle and the noise level influenced the subjective intelligibility and the 

decoding accuracy, it made sense to look for an interaction effect between these parameters. 

Indeed, the LME models indicated that the factors interacted for both intelligibility and accuracy. 

The intelligibility ratings showed a steady decline with increasing noise levels or decreasing sep-

aration angles. The effect of the interaction between both factors was explored by comparing 

the predicted intelligibility rates from the LME, with or without the interaction effect. Figure 14 

showed that for trials with low noise levels, the predicted intelligibility was higher when ac-

counting for the interaction effect. Especially for large separation angles (60° and 180°), the in-

telligibility could be up to 20% higher for low noise levels, pointing to a combined positive effect 

of both factors. For the 10° separation angle, a similar increase in intelligibility could be found, 

possibly indicating that listeners benefit from the absence of noise in difficult listening situations. 

Conversely, the predicted scores were lower than expected for trials with a high noise level 

across all separation angles, showing the dominant impact of high-level background noise. Again, 

this effect was larger for large separation angels. A possible explanation is that compensational 

mechanisms (based on the spatial separation between speakers) were not sufficient in high 

noise levels, causing the intelligibility results to drop. 

As discussed before, AAD accuracies were generally highest for trials with a small amount of 

babble noise (-1.1 dB SNR). Performance dropped for trials with a medium amount of babble 

noise (-4.1 dB SNR), resulting in comparable accuracies to the trials without noise. Performance 
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was lowest for trials with a high amount of noise (-7.1 dB SNR). However, this pattern varied 

across separation angles, as shown in Figure 4. To explore this variation, Figure 6 showed the 

estimates from the LME are calculated with and without factoring in the interaction effect. In 

general, the interaction effect had less influence on the decoding accuracy than on the subjec-

tive intelligibility. For 10° trials, it resulted in an additional decrease in accuracy for increasing 

noise levels. This may indicate the existence of a cumulative negative effect of both a small sep-

aration angle and high noise levels on the cortical tracking of speech. For the 180° trials, the 

opposite trend could be found, although the difference equalled 5% at most. Trials with back-

ground noise had slightly higher decoding accuracies due to the interaction effect. Perhaps lis-

teners could exploit the spatial separation of both speech streams to partially compensate for 

the effect of background noise. Finally, for 60° trials in low levels of background noise, the accu-

racy was up to 10% higher when accounting for the interaction effect. Again, the spatial separa-

tion between both speakers may have aided the speech-in-noise perception of the subjects. 

In conclusion, spatial separation and background noise interacted when influencing both intelli-

gibility and decoding accuracy. This is consistent with the previous finding that the interaction 

between babble noise and perceptual separation affected the cortical representation of speech, 

by promoting selective auditory attention (Zhang et al., 2014). Furthermore, changes in both the 

characteristics of the competing speech and the spatial separation between target and noise 

sources are known to interact when influencing speech perception and cognitive load (Zekveld, 

Rudner, Kramer, Lyzenga, & Rönnberg, 2014). It is also known that binaural cues can aid speech 

perception in noise (Shabtai, Nehoran, Ben-Asher, & Rafaely, 2017). Although these research 

findings support the results discussed above, caution is recommended when interpreting the 

results. As the number of subjects was limited (n = 15) and between-subjects variability was 

large, the measured values may not be reliable. Furthermore, many processing mechanisms in 

the auditory system are not yet fully understood, so that certain undetected effects may have 

been overlooked when explaining these results. 

4.4 The effect of individual differences 

The fourth research question focussed on individual differences in AAD performance. The use 

of subject-specific decoders was appropriate due to the large amount of available data for each 

subject. Even so, substantial accuracy differences could be found between subjects. In terms of 

subjective intelligibility, no individual differences were found. The individual differences in both 

accuracy and intelligibility could not be tied to the subjects’ performance on the speech-in-noise 

task. 
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There were significant individual differences in AAD performance, with mean accuracies ranging 

from 68% to 92%, resulting in an overall mean accuracy of 82%. These results are similar to 

previous research findings from comparable experiments. For example, O’Sullivan reported a 

mean decoding accuracy of 89%, with individual means ranging from 57% to 100% (O’Sullivan 

et al., 2015). Horton mentioned a mean accuracy of 82%, with subject-specific results ranging 

from 73% to 93% (Horton et al., 2014). Another study found subject-specific accuracies between 

65% and 95% (Van Eyndhoven et al., 2017). Mirkovic reported a mean decoding accuracy of 85% 

(Mirkovic et al., 2015). Other researchers found average accuracies of 82% (Biesmans et al., 

2017), of 87% (Das et al., 2016), and of 92% (Zink et al., 2016), depending on the research design. 

For two subjects, the decoding accuracies were significantly higher than average, and for two 

others they were lower. The source of this variability is unclear. The inter-subject differences 

may have been caused by varying levels of interest in the stories, variable impedances of the 

EEG electrodes, individual degrees of attention and fatigue, limb movement disturbing the EEG 

recordings and so on. Furthermore, each subject possibly used slightly different listening strat-

egies to focus on the indicated speaker, which may have been compatible with AAD in varying 

degrees. Additionally, as the randomisation process ensured that the order of the conditions 

varied across subjects, this may also have influenced their learning curves, affecting their overall 

AAD performance. In general, research shows that BCI effectiveness differs across subjects, due 

to the adapted strategies, the task-related experience, and unexplained individual differences 

(Kober, Witte, Ninaus, Neuper, & Wood, 2013; Neumann & Birbaumer, 2003). 

With regard to the intelligibility, no differences could be found between the subjects. This find-

ing is unsurprising, as each subject would have interpreted the rating scale according to his or 

her own performance, using a broad range of ratings. Furthermore, the experiment design en-

sured that the listening task would be difficult for every subject, regardless of their speech-in-

noise reception thresholds, by including high levels of background noise. As a result, all subjects 

would have understood almost nothing during the most difficult trials. 

There was no evidence for a connection between the subjects’ SRT and decoding accuracy. How-

ever, AAD appeared to be slightly more successful for subjects with lower SRTs. To check 

whether the separation angle influenced the significance of the result, the correlation was cal-

culated separately for each separation angle. These analyses resulted in non-significant correla-

tions as well. Given the limited variation in SRTs, this was only to be expected. The lack of evi-

dence for a connection could be due to the small number of participants (n = 15), the fact that 

they were all young adults with normal hearing (i.e. thresholds below 20 dB HL), or the strict 
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speech-in-noise selection criterion (requiring an SRT of -7 or lower to participate). It is also pos-

sible that the results are not connected at all, because the underlying tasks are quite different. 

During the speech-in-noise test, subjects had to listen to Matrix-sentences before selecting the 

appropriate words on a screen. The performance of each subject was tested using a behavioral 

measurement, and the results could be influenced by guessing or by accidently clicking on the 

wrong box on the screen. To obtain the decoding accuracy, the subject’s EEG was analysed to 

reconstruct the attended speech envelope. Next, the speech envelopes of both speakers were 

compared to the reconstructed envelope, in a mathematical comparison following an objective 

measure. The results could unintentionally be influenced by electrode impedances, irrelevant 

brain activity due to limb movement or other thought processes, or distortion of the EEG signal 

in the transfer to the computer. In other words, the sources of ‘unrelated’ variability were dif-

ferent for each test. 

Furthermore, a study by Houtgast & Festen (2008) showed that overall, a combination of PTA, 

age, and temporal processing skills can account for about 70% of variability in SRTs. A review 

paper from the same year, based on 20 experimental studies, concluded that the SRT was mainly 

influenced by hearing loss, with an additional effect of some cognitive abilities; probably working 

memory, although the results differed across the studies (Akeroyd, 2008). Thus, in young adults 

with normal hearing, like the subjects tested in the experiment, it is difficult to explain the be-

tween-subjects variance, since no cognitive skills were explicitly tested. As a result, connecting 

their SRT to their mean decoding accuracy is, at least for the time being, not plausible. 

Finally, the individuals’ SRTs could not be linked to their subjective intelligibility ratings. Only for 

60° separation angles, a significant negative correlation could be found. It is unclear why this is 

the case. As described above, an SRT below -7 dB SNR was required to participate, making it 

harder to study individual differences. The significant result for the 60° separation angle may 

therefore reflect an accidental finding. Conversely, the lack of evidence for a general connection 

between speech-in-noise performance and speech intelligibility may be due to the limited num-

ber of subjects. 

4.5 The connection between subjective intelligibility and decoding accuracy 

The final research question compared the subjective intelligibility ratings to the AAD perfor-

mance. Most intelligibility results have already been discussed above, indicating that spatial sep-

aration and background noise had a similar effect on the intelligibility as they had on the decod-

ing accuracy. Individual differences were less relevant for intelligibility than for decoding accu-

racies, and the mean intelligibility ratings could not be linked to the subjects’ performance on a 
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speech-in-noise task. Thus, only the last part of this research question remains: is there a con-

nection between the subjective intelligibility on one hand and the decoding accuracy on the 

other? 

A small but insignificant positive correlation could be found, indicating that AAD performance 

tended to be higher for trials with high intelligibility ratings. Again, this could be explained by 

the small number of subjects, resulting in a dataset that may not be large enough to identify 

such a connection. Furthermore, the intelligibility ratings were very subjective, as each subject 

was free to interpret the scale as he or she wished. Some may have considered ‘0’ to equal not 

understanding most of the story, why others regarded ‘0’ as the absolute zero – the point at 

which they couldn’t even properly track the attended speech stream anymore. Additionally, 

given the considerable amount of between-subjects variability in AAD performance, this may 

have concealed any connection between intelligibility and accuracy. 

Alternatively, the non-significance may be explained by the inclusion of trials without back-

ground noise. These trials had lower decoding accuracies than the trials with a low amount of 

babble noise, although the intelligibility ratings were higher. To check whether this discrepancy 

could account for the lack of correlation between both values, the correlation was calculated 

again based on trials with background noise only. However, even though the magnitude of the 

correlation increased, it remained insignificant (τ = 0.441, p = 0.99). 

4.6 Methodological shortcomings of the experiment 

Although several hypotheses could be supported with statistically significant test results, the 

current experiment has a few important shortcomings. They can be split up into two parts: the 

participant group and the experiment design. 

The most important issue is the limited number of subjects that were tested. This limitation was 

due to the time schedule of the researchers involved, the availability of the sound proof cabins, 

and the scope of this thesis. However, it may have resulted in less accurate conclusions on the 

presence and relevance of certain effects. Furthermore, the subjects included only young adults 

with normal hearing. This strict selection of participants resulted in a very homogeneous group, 

making the interpretation of the results more straightforward, but leaving the generalisation of 

the results more problematic. 

The second issue is related to the experiment design. The experiment allowed for a comparison 

of AAD performance for multiple subjects across different noise levels and separation angles. A 

randomized, balanced design made sure that each story could be used in two different angular 
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conditions, depending on the subject number (see Appendix C). However, the speaker location 

of each story did not change within an angular condition. For a specific angular condition, a cer-

tain story would always come from the same angle. Furthermore, the short and long stories 

were not interchanged. Due to this incomplete randomisation, there might have been an unde-

tected effect of the story that was used. In addition, post-experiment analyses revealed a differ-

ence in performance depending on the story that was used (see Appendix A). These design flaws 

may have influenced the results unnoticed, interfering with a successful and well-founded inter-

pretation. 

4.7 Suggestions for future research 

To gain a better insight into the effectiveness of AAD in different circumstances, more research 

is needed. With an eye to the intended use of AAD in HA technology, some important advance-

ments are necessary. Future research should focus on three important issues: technical con-

straints, realistic situations, and selection of the subjects. 

The first issue is related to technical constraints associated with AAD. The experiment in this 

thesis used 64-channel EEG recordings, requiring careful preparation of the subjects and the use 

of gel to improve electrode contact. However, to make AAD available for everyday use, small 

and portable EEG alternatives should be developed. Furthermore, this study used offline decod-

ers that compared two clean speech signals to the reconstructed envelope. Unfortunately, in 

realistic situations, clean speech signals will not be available. Decoders should instead be able 

to compare the reconstructed envelope to (a processed version of) the mixed signal. These tech-

nical issues are beyond an audiologist’s perspective but should be dealt with nonetheless. 

The second issue concerns the application of AAD in lifelike situations. So far, AAD research has 

mainly focussed on two-talker scenarios. By adding babble noise and varying the separation an-

gle between both speakers, the experiment in this thesis attempted to create more realistic 

situations. Even so, additional variation is necessary to understand the effectiveness of AAD in 

everyday acoustic environments. For example, the three separation angles should be comple-

mented with additional angles, preferably comparing absolute speaker positions within separa-

tion angles as well. Moreover, this thesis applied babble noise at four levels (no noise, -1.1, -4.1, 

-7.1 dB SNR), but this only serves as a first exploration of the effect of background noise. By using 

various noise levels, including positive SNRs, along with different types of noise, more compre-

hensive results could be found. Finally, this thesis ignored several other factors that could influ-

ence AAD performance, such as reverberation, additional concurrent speech streams, male 

speakers, foreign languages... These factors encompass many future research possibilities. 
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Finally, the third issue lies within the selection of the subjects. This experiment, as most of the 

other AAD research, exclusively employs young adults with normal hearing. However, as hearing 

difficulties and cognitive skills have a major influence on speech perception, they probably affect 

AAD as well. For example, studies show that AEPs are affected by hearing loss, but also by age, 

and that the effect of noise interacts with the individual’s hearing status (Maamor & Billings, 

2017; Oates, Kurtzberg, & Stapells, 2002). Based on these findings, it is very important to extend 

AAD research to other populations, like hearing impaired subjects and subjects with different 

ages. Including these populations may yield valuable insights into the effectiveness of AAD, 

which could be relevant to the population of young adults with normal hearing as well. 

In conclusion, there is still room for a lot of research on the topic of AAD. The technology has 

great potential, but more information is needed before it can be used in everyday applications. 

4.8 Summary 

Spatial separation had an important effect on both speech intelligibility and decoding accuracy, 

with larger separation angles resulting in higher scores on both measures. The level of back-

ground noise had a significant effect as well: intelligibility ratings decreased as the noise level 

increased, and a similar influence could be found on the decoding accuracy. However, AAD per-

formance was slightly lower for trials without babble noise. Spatial separation and background 

noise also interacted when affecting speech intelligibility and AAD performance, possibly reflect-

ing additive positive or negative effects, or compensational mechanisms in difficult listening con-

ditions. Individual differences between subjects accounted for a major amount of variance in 

AAD performance. Still, there was no evidence for a correlation between the SRT and accuracy 

from individual subjects. The intelligibility ratings were similar across subjects and could not be 

linked to their SRTs either. Subjective intelligibility and decoding accuracy were not correlated.   
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Conclusion 

AAD is a relatively new topic in audiology research. Many studies only aimed to prove that de-

tecting attention based on brain imaging is possible, and that decoders succeed at identifying 

the attended speaker in a two-talker scenario. Yet eventually, researchers want to apply AAD to 

HA systems to solve (or lessen) noise-related problems. With this in mind, studies using a two-

talker scenario without background noise are not very realistic. 

The goal of this thesis was to study the effectiveness of AAD in more lifelike listening conditions. 

To this end, AAD was performed in a two-talker scenario, but this time with varying separation 

angles between both speakers and using different levels of background noise. The objective was 

to answer multiple research questions: what is the effect on AAD performance of spatial sepa-

ration, background noise, and the interaction between them? How important are individual dif-

ferences when it comes to decoding accuracy? Can the decoding accuracy under different cir-

cumstances be linked to subjective intelligibility ratings? 

During the experiment, brain activity from 15 subjects with normal hearing was recorded using 

64-channel EEG. Subject had to listen to a story, narrated by a female speaker, while ignoring 

the story told by a competing talker. The speakers were spatially separated by a 10°, 60°, or 180° 

angle. In some trials, babble noise was added at varying levels (-1.1, -4.1, or -7.1 dB SNR). To 

complete every combination of separation angles and noise levels, all subjects listened to eight 

stories. After each story part, subjects had to estimate how much they had understood from the 

narration before the noise level changed. The EEG data were analysed separately for each sub-

ject, constructing a subject-specific decoder by the leave-one-out method. This was done for 

each 30-second interval, before summing the decoding accuracies within each story part. After-

wards, the decoding accuracies were combined with the intelligibility ratings for analysis pur-

poses. 

Using an LME model to predict the decoding accuracy, the effect of the separation angle, the 

level of background noise, and the interaction between them could be investigated. All three 

factors significantly influenced AAD performance. Larger separation angles resulted in higher 

decoding accuracies. Higher noise levels decreased the decoding accuracies; however, perfor-

mance in the no-noise condition was worse than in trials with babble noise at -1.1 dB SNR. De-

coding accuracies were slightly higher in trials with the attended speaker on the left side of the 

listener. 
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To compare these results to the intelligibility ratings, a new LME model was constructed to pre-

dict the subjective intelligibility. In this model, the same factors were significant, including the 

interaction between them. Larger separation angles had higher intelligibility ratings, and as 

noise levels increased, the reported intelligibility dropped accordingly. The side of the attended 

speaker did not influence the ratings. Although the correlation between the decoding accuracy 

and the subjective intelligibility was not significant, they are both influenced by the same char-

acteristics of the acoustic environment. 

Finally, individual differences in AAD performance across subjects were significant as well. Alt-

hough decoding accuracies covered a large range for all subjects, some had markedly lower or 

higher performance than others. These differences could not be tied to their performance on a 

speech-in-noise task; however, given the small number of participants and the strict selection 

criteria including their speech-in-noise performance, this is not surprising. Intelligibility ratings 

were similar across subjects and could not be linked to their speech-in-noise performance either. 

When reading about AAD and carrying out an experiment using this technology, it is impossible 

to not be amazed by this fascinating topic. It is almost incredible what the technology is already 

capable of right now: reading people’s minds to know what or who they are listening to. For the 

time being, there certainly are some limitations, but researchers are working hard to overcome 

these issues. I believe it is only a matter of time until AAD can be done in real-time, with portable 

EEG set-ups, and with high success rates. At that point, the technology has the potential to over-

come a large remaining problem in HA development: intelligent noise suppression. 

Of course, there are yet some challenges that must be accepted. As mentioned above, current 

research mostly uses 64-channel EEG-caps, which is not suitable for everyday use. Furthermore, 

the high reported decoding accuracies are mainly based on two-talker scenarios without noise, 

in which decoders have the clean speech signals at their disposal to compare the reconstructed 

envelopes to. These results may paint a too positive picture. However, some promising results 

have been reported in more realistic conditions, preparing the way for more research in lifelike 

situations. 
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Appendix A: Comparison of the stories used in the AAD experiment 

To check whether all stories were equally difficult, the mean intelligibility ratings for each subject 

were compared across stories. A Friedman’s ANOVA indicated a significant variation in the intel-

ligibility ratings (χ²7 = 63.622, p < 0.001). A multiple comparisons test showed that especially 

stories 2 and 3 were harder to understand than the other stories. Figure 18 supports this result. 

 

Figure 18. Subjective intelligibility for each story. 

To identify an effect of the stories on the AAD performance, the subjects’ mean decoding accu-

racies were also compared using Friedman’s ANOVA. Again, the scores differed significantly 

across stories (χ²7 = 27.731, p < 0.001), as can be seen in Figure 19. A multiple comparisons test 

showed that performance was significantly worse for story 2 than for stories 1, 4, 5 and 8. 

 

Figure 19. Decoding accuracies for each story. 

  



 

 

Appendix B: Randomisation 

The order of the angular conditions, the stories, and the signal-to-noise ratios were randomised 

for each subject. The result of this randomization is displayed in Table 6. A thorough exploration 

of this table shows that for every subject, the course of the experiment differed on one or more 

dimensions from the others. Each part of the randomisation process will be discussed below. 

Table 6. Order of the stimuli for each subject. 

Subject Noise conditions Angular conditions 

1 1-2-3 2-3-1-4 

2 2-3-1 3-2-4-1 

3 3-1-2 4-2-3-1 

4 1-2-3 1-3-4-2 

5 2-3-1 2-1-3-4 

6 3-1-2 4-1-3-2 

7 1-2-3 4-2-1-3 

8 2-3-1 3-1-2-4 

9 3-1-2 4-2-1-3 

10 1-2-3 2-1-4-3 

11 1-2-3 1-3-2-4 

12 3-1-2 3-1-4-2 

13 1-2-3 1-2-3-4 

14 2-3-1 1-3-2-4 

15 3-1-2 1-2-3-4 

 

First, the stories were combined into four pairs. Two of these pairs consisted of long stories 

(19 minutes each), the two others were short stories (9,5 minutes each). Two possible variations 

emerged: the presentation order of the stories within a pair could be inversed, and each story 

pair could be used in either of two angular conditions. To subjects with an odd number, the odd 

story was presented first (1-2, 3-4, 5-6, 7-8), whereas for subjects with an even number, this 

pattern was reversed (2-1, 4-3, 6-5, 8-7). This order also determined the angular condition of 

each story pair and each story’s angle. For odd numbers, story 1 was used in angular condition 1, 

coming from a -5° angle. As a result, story 2 was presented coming from a 5° angle. In condition 2, 

stories 3 (30°) and 4 (90°) were presented. Condition 3 contained stories 5 (-30°) and 6 (-90°), 

whereas condition 4 presented stories 7 (-90°) and 8 (90°). For even numbers, this was reversed. 

In angular condition 1, stories 8 (5°) and 7 (-5°) were presented. Condition 2 used stories 6 (90°) 

and 5 (30°), condition 3 had stories 4 (-90°) and 3 (-30°), and condition 4 contained stories 2 (90°) 

and 1 (-90°). This distribution is shown by Table 7. 



 

 

Table 7. Distribution of the stories. 

Participant 
number 

Angular 
condition 

Story A Story B 

Odd 1 1 (-5°) 2 (5°) 

 2 3 (30°) 4 (90°) 

 3 5 (-30°) 6 (-90°) 

 4 7 (-90°) 8 (90°) 

Even 1 8 (5°) 7 (-5°) 

 2 6 (90°) 5 (30°) 

 3 4 (-90°) 3 (-30°) 

 4 2 (90°) 1 (-90°) 

 

Next, the sequence of the noise conditions was chosen. The first trial was always presented 

without babble noise, but for the second to fourth part of each story, babble noise of different 

levels was added. For the first subject, this sequence was SNR1-SNR2-SNR3, as shown in Fout! 

Verwijzingsbron niet gevonden. as ‘1-2-3’. For the second subject, it was changed to SNR2-

SNR3-SNR1 (‘2-3-1’). The third subject was assigned the sequence SNR3-SNR1-SNR2 (‘3-1-2’). 

This combination of three sequences was then repeated for the other subjects. Due to a human 

error during the experiment, the noise sequence of subject 11 did not comply with this routine; 

instead, the subject followed the sequence from subject 10. 

Finally, the angular condition order for each subject was defined. Four conditions, without any 

order restrictions, resulted in 24 possible sequences. The computer randomly assigned a se-

quence to each subject. As a result, some sequences were used twice. 

 

  



 

 

Appendix C: Assumptions for parametric tests 

To determine whether parametric tests could be used, four assumptions had to be checked: 

normal distribution, homogeneity of variance, interval data and independence. First, the mean 

decoding result was calculated for each trial, i.e. the performance of a subject for each combi-

nation of angular condition, attended speaker, and noise level. This resulted in a new variable, 

decoding accuracy, which contained 480 values and was used for all subsequent analyses. As 

the subjective intelligibility had been rated for each trial, no further manipulations were neces-

sary. 

Decoding accuracy 

The decoding accuracy was not normally distributed, since the values could only vary between 

0 and 100. The Shapiro-Wilk normality test confirmed that the decoding accuracy was signifi-

cantly not-normal (W = 0.843, p < 0.001). This result is supported by the histogram in Figure 20, 

which contains the mean decoding accuracy for each unique combination of a separation angle, 

a noise level, an attended direction, and a subject (as explained above). The overall mean accu-

racy was 0.82, with a standard deviation of 0.20. The value for skewness was -1.411 and kurtosis 

equalled 1.870, indicating a heavily left-tailed distribution (left-skewed, leptokurtic distribution). 

 

Figure 20. Histogram of decoding accuracies. 

The distribution was also visualised separately for each factor. Figure 21 contains the mean de-

coding accuracy per subject for each separation angle. Figure 22, on the other hand, shows the 

mean decoding accuracy per subject for each noise level. 



 

 

 

Figure 21. Histogram of mean decoding accuracies per subject, for each separation angle. 

 

Figure 22. Histogram of mean decoding accuracies per subject, for each noise level. 

Secondly, the homogeneity of variance was investigated. To this end, the Levene’s test for ho-

mogeneity of variance was carried out. The variances were similar for the different subjects 

(F14,465 = 1.507, p = 0.104). However, the variance in decoding accuracy was significantly different 

across separation angles (F2,477 = 5.821, p = 0.003), across sides (F1,478 = 10.594, p = 0.001), and 

across noise levels (F3,476 = 12.453, p < 0.001). 

Thirdly, the assumption of interval level data was checked. Although the original data points are 

binary, because the decoder either makes a right (1) or wrong (0) decision, the decoding accu-

racy is based on a mean value and can therefore be considered an interval variable. Thus, the 

third assumption was met. Finally, the independence of the data was determined. In a repeated-

measures design, this means that there is independence across subjects. Since every subject was 

tested separately, there was no contact between subjects and the independence was assured. 



 

 

In conclusion, as the accuracy data had a non-normal distribution and there was heterogeneity 

of variance, non-parametric tests had to be used. 

Subjective intelligibility 

For the subjective intelligibility, the values were again limited between 0 and 100, and could 

therefore not be normally distributed. This was confirmed by a Shapiro-Wilk normality test (W 

= 0.934, p < 0.001). The histogram in Figure 23 contains one intelligibility rating for each unique 

combination of a separation angle, a noise level, an attended direction, and a subject. 

 

Figure 23. Histogram of subjective intelligibility. 

Next, the distribution was visualised separately for both separation angle and noise level. The 

resulting histograms show a mean intelligibility rating per subject, either for each separation 

angle (Figure 24) or for each noise level (Figure 25). 

 

Figure 24. Histogram of mean subjective intelligibility per subject, for each separation angle. 



 

 

 

Figure 25. Histogram of mean subjective intelligibility per subject, for each noise level. 

Secondly, the Levene’s test for homogeneity of variance was carried out. The variances were 

similar for the different sides of the attended speaker (F1,478 = 0.208, p = 0.649). However, the 

variance in intelligibility was significantly different across separation angles (F2,477 = 5.640, p = 

0.004), across noise levels (F3,476 = 19.963, p < 0.001), and across subjects (F14,465 = 3.122, p < 

0.001). 

Thirdly, the data had to be measured at interval level at least. Since subjects had to rate the 

intelligibility on a continuous scale from 0 to 100, this assumption was met. Finally, as each sub-

ject was tested separately, the independence of the results was assured. 

In conclusion, based on the non-normal distribution of the intelligibility ratings and the hetero-

geneity of variance for some factors, non-parametric tests were used. 

  



 

 

Appendix D: Coefficients for the LME model predicting accuracy 

To predict the decoding accuracy, a linear mixed-effects model fit by restricted maximum likeli-

hood was constructed. This model included separation angle, noise level, and the interaction 

between them as fixed factors. Furthermore, it considered subject as a random factor. Based on 

this model, mean predicted accuracies were constructed for each of the fixed factors. These 

estimates are given in Table 8, Table 9, and Table 10. 

Table 8. Accuracy estimates for separation angle. 

separation angle estimate 95% confidence interval standard error 
  lower upper  

10° 0.754 0.706 0.801 0.022 
60° 0.835 0.795 0.876 0.019 
180° 0.851 0.804 0.899 0.022 

 

Table 9. Accuracy estimates for noise level. 

noise level estimate 95% confidence interval standard error 
  lower upper  

SNR0 0.807 0.758 0.856 0.023 
SNR1 0.879 0.830 0.928 0.023 
SNR2 0.837 0.788 0.885 0.023 
SNR3 0.731 0.682 0.780 0.023 

 

Table 10. Accuracy estimates for the interaction between separation angle and noise level. 

interaction estimate 95% confidence interval standard error 
  lower upper  

10° - SNR0 0.831 0.755 0.908 0.036 
10° - SNR1 0.823 0.747 0.900 0.036 
10° - SNR2 0.730 0.653 0.807 0.036 
10° - SNR3 0.630 0.553 0.707 0.036 
60° - SNR0 0.804 0.745 0.863 0.027 
60° - SNR1 0.920 0.861 0.979 0.027 
60° - SNR2 0.883 0.825 0.942 0.027 
60° - SNR3 0.733 0.675 0.792 0.027 
180° - SNR0 0.785 0.709 0.862 0.036 
180° - SNR1 0.893 0.817 0.970 0.036 
180° - SNR2 0.897 0.820 0.973 0.036 
180° - SNR3 0.830 0.753 0.910 0.036 

 

To further evaluate the model, the residuals were investigated. Figure 26 displays the standard-

ized residual for each fitted value. Since these values are not randomly scattered, forming a 

pattern instead, the model may not be a perfect fit for the data. 



 

 

 

Figure 26. Linear mixed-effects model for decoding accuracy. 

The median residual equalled 0.068, with an interquartile range of -0.098 to 0.109. A Shapiro-

Wilk normality test, together with the histogram in Figure 27, indicated that the residuals are 

not normally distributed (W = 0.938, p < 0.001). However, the Q-Q plot in Figure 28 is acceptable. 

In conclusion, the model is not a perfect fit but can be used for analyses nonetheless. It may be 

possible to improve the model by treating the noise level as a numeric factor and/or excluding 

the trials without noise. However, this possibility was not explored in this work. 

 

Figure 27. Histogram with residuals from LME for predicting accuracy. 



 

 

 

Figure 28. Q-Q-plot with residuals from LME for predicting accuracy. 

  



 

 

Appendix E: Exploration of the right ear advantage 

In the first research question, the effect of spatial separation was investigated. It was hypothe-

sized that a right ear advantage (REA) might be represented in the data. However, global analysis 

of the AAD accuracies for the 10° and 180° separation angles revealed no REA; on the contrary, 

a small left ear advantage was found. To explore this finding, post-hoc analysis with multiple 

Wilcoxon signed-rank tests was used to check whether the effect was the same for each sepa-

ration angle. The distributions of the mean decoding accuracy of each subject, labelled as be-

longing to a left- or right-sided attended speaker and grouped within each separation angle, are 

visualized in Figure 29. 

 

Figure 29. Decoding accuracies for each attended side, compared across separation angles. 

Table 11 shows the statistical results for each separation angle. For both 10° and 180° separation 

angles, accuracies were significantly higher when the attended speaker was on the left side of 

the subject. The effect was larger for 10° angles. 

Table 11. Wilcoxon signed-rank tests for side of attended speaker. 

separation angles W p r corrected p 

10° 101 0.021 -0.420 0.041 
180° 96.5 0.041 -0.373 0.041 

 

  



 

 

Appendix F: Coefficients for the LME model predicting intelligibility 

A second LME model was constructed to predict the subjective intelligibility, again fit by re-

stricted maximum likelihood. The model was based on the same fixed factors: separation angle, 

noise level, and the interaction between them. Subject was again added as a random factor. 

Table 12, Table 13, and Table 14 contain the mean predicted accuracies for each factor. 

Table 12. Intelligibility estimates for separation angle. 

separation angle estimate 95% confidence interval standard error 
  lower upper  

10° 0.461 0.424 0.498 0.017 
60° 0.518 0.490 0.547 0.013 
180° 0.625 0.588 0.662 0.017 

 

Table 13. Intelligibility estimates for noise level. 

noise level estimate 95% confidence interval standard error 
  lower upper  

SNR0 0.895 0.857 0.933 0.018 
SNR1 0.626 0.588 0.665 0.018 
SNR2 0.429 0.391 0.468 0.018 
SNR3 0.189 0.151 0.228 0.018 

 

Table 14. Intelligibility estimates for the interaction between separation angle and noise level. 

interaction estimate 95% confidence interval standard error 
  lower upper  

10° - SNR0 0.894 0.827 0.961 0.031 
10° - SNR1 0.536 0.469 0.603 0.031 
10° - SNR2 0.293 0.226 0.360 0.031 
10° - SNR3 0.122 0.055 0.189 0.031 
60° - SNR0 0.890 0.841 0.939 0.023 
60° - SNR1 0.613 0.564 0.662 0.023 
60° - SNR2 0.424 0.375 0.473 0.023 
60° - SNR3 0.147 0.098 0.196 0.023 
180° - SNR0 0.902 0.835 0.969 0.031 
180° - SNR1 0.729 0.662 0.796 0.031 
180° - SNR2 0.570 0.503 0.637 0.031 
180° - SNR3 0.298 0.232 0.365 0.031 

 

The residuals were checked to evaluate the model. In Figure 30, the standardizes residuals are 

plotted for each fitted value. The data points are not scattered randomly, suggesting that the 

model may not be a perfect fit for the data. 



 

 

 

Figure 30. Linear mixed-effects model for subjective intelligibility. 

The median of the residuals equalled 0.008, with an interquartile range of -0.098 to 0.095. A 

Shapiro-Wilk normality tests indicated that the residuals may not be normally distributed (W = 

0.992, p < 0.001). However, the histogram in Figure 31 and the Q-Q plot in Figure 32 look ac-

ceptable. Thus, the applied model may not be perfect, but it is still useful for analysis purposes. 

 

Figure 31. Histogram with residuals from LME for predicting intelligibility. 



 

 

 

Figure 32. Q-Q-plot with residuals from LME for predicting intelligibility. 
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