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Abstract 
Patients suffering from amyotrophic lateral sclerosis (ALS), other muscular and 
neurodegenerative diseases or spinal cord injuries have difficulty communicating their 
intention to people. The recent developments in the field of technology and artificial 
intelligence give the patients a method to express themselves using brain-computer 
interfacing (BCI). BCI is aimed at establishing a direct communication channel between 
the brain and an external device (often a computer) bypassing the need for muscular 
control, including speech and gestures. One of the less common 
electroencephalography (EEG)-based paradigms relies on the motion-onset visual 
evoked potentials (mVEP), a lateralized potential over the parieto-occipital scalp area 
evoked in sync with the onset of a briefly moving stimulus to which the subject pays 
attention. In this work, the effect of the stimulus direction, the combination of the moving 
stimulus with the P300 paradigm and the feasibility for the use of mVEP in BCI is 
investigated in terms of both scalp activations and decoding performance. For the first 
time, a novel spatiotemporal beamforming algorithm is utilized, and its performance is 
compared to that of existing mVEP decoders. While a clear effect of stimulus direction 
on scalp activation is observed, this does not seem to be the case for BCI performance 
for any of the considered decoders. The combination of the mVEP and P300 paradigm 
does not show any influence on the scalp activation. This, combined with the increase in 
fatigue for the subject by focusing on flashing stimuli, makes the combination of mVEP 
and P300 unadvisable. Spatiotemporal beamforming has the advantage of being 
significantly less computationally expensive, and in this way more suitable for online BCI 
applications. Finally, a mVEP spelling console BCI was developed and tested. Test 
results show a large sensitivity to peripheral stimulation for mVEP. Thus, making the 
designed layout of the spelling interface a key factor in the creation of mVEP based BCI. 
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1. Introduction 
Patients suffering from amyotrophic lateral sclerosis (ALS), other muscular and 
neurodegenerative diseases or spinal cord injuries have difficulty communicating their 
intention to people. The recent developments in the field of technology and artificial 
intelligence give the patients a method to express themselves using brain-computer 
interfacing (BCI).  
 
Brain-computer interfacing has been witnessing growing interest in recent years as the 
applications are broad: from a communication tool [1] for the disabled to an augmented 
control facility in gaming [2], [3]. The most popular way to gauge brain activity is with 
electroencephalography (EEG) and for this non-invasive type of BCI several paradigms 
have been introduced [3]–[7]. A lesser known paradigm is based on the motion-onset 
visual evoked potential (mVEP), evoked by a suddenly and briefly moving target. It has 
been used to classify stimulus responses into target/non-target ones and in this way 
decode the user’s intention [8]–[11]. Utilizing a spatiotemporal beamformer, an advanced 
classification technique previously used for the classification of other paradigms [12]–
[16], an on-line spelling console was created. An advantage to the use of mVEP lies in 
the fact that, unlike other paradigms, the stimuli required to elicit mVEP is not as taxing 
on the eyes allowing the BCIs to be used for prolonged periods of time. 
 
In previous works at other research groups, such a spelling console has already been 
developed [10], [11], [17], [18]. The goal of this study is to create a similar BCI and 
compare the information transfer rate (ITR) to that of its predecessors.  
 
In the following pages, the development steps of the on-line spelling console BCI using 
mVEP and spatiotemporal beamforming is described. First, the technical background 
and terms used are explained in detail. Second, the materials and methods for data 
collection and signal processing are described. Third, the results of the experiments are 
analyzed. Last, these results are discussed and compared to other similar works.  
 
In this section, a detailed explanation of all aspects utilized in this work will be given. The 
first section attempts to give a basic overview of the workings of the brain. The second 
section will focus on the variations of event-related potentials (ERP) and the stimuli 
required to generate the response. The third section explains the classifiers used. The 
fourth section clarifies the definition of brain computer interfaces and the current day 
standards.  
 

1.1. Neural Background 
In computer science, a central processing unit (CPU) is the most vital part of any working 
system. The CPU controls workflow, ordering and ensures any circuit in the system 
receives the correct input and manages that circuits output. A human can be described 
as an incredibly complex system, which in turn requires an absurdly complex CPU: the 
brain.  
 
The brain is unarguably the most important organ in any complex organism. The organ 
controls the needs of the organism, creates a response for sensorial input, memory, 
emotions, … Researchers have only scratched the surface of the workings of the 
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complex organ and most functions and interconnections happening in the brain remain 
a scientific mystery.  
 
In this section, the setup of the brain will be explained starting from the workings of a 
neuron to the generation of action potentials responsible for ERP. All information is taken 
from [19]. 
 

1.1.1. Neurons 
If we stick to our analogy of the brain as a CPU, we could simplify a nerve cell or neuron 
as being one of the many transistors of the CPU. Neurons receive, conduct and transmit 
signals. Each neuron has a specific role in the nervous system, receiving and generating 
electrical signals from a variation of sources. The meaning and significance of a signal 
is dependent on the role of the cell. Several different neuron types and their signals are: 

- motor neuron: signals are commands for muscle contraction; 
- sensory neuron: signals are information of a stimulus type (e.g. light, force, heat, 

…) at a certain location; 
- interneuron: signals are part of the computation in the brain, generally a 

combination of sensory information and the generation of motor commands. 
In the follow section a basic explanation of neural functions is given. Starting with the 
layout of the cells and ending with the means used to communicate between each other.  
 

1.1.2. Sketching a nerve cell 
A neuron has three determining features: the cell body or soma, dendrites and an axon. 
The cell body is the biosynthetic center of the cell, containing the nucleus and almost all 
ribosomes. The dendrites and the axon are nerve fiber cells. The dendrites are 
branching, tubular cells which can be compared to antennae to create a large surface 
area for the reception of signal from other cells. The axon, which is generally single and 
longer than the dendrites, conducts action potentials (AP) away from the soma to distant 
targets. When the axon gets closer to its destination, it splits up into many axon terminals 
to distribute the signal to many destinations simultaneously.  
 
In Figure 1 an image of a neuron is shown. On the image the most key features of a 
nerve cell are displayed. Several other components shown are the myelin sheaths 
formed by glial cells (supportive cells) to form an insulator around the axon. The nodes 
of Ranvier are gaps in the myelin sheaths where the axon can be influenced by 
surrounding cell fluids. Myelination has two distinct advantages: 

1. action potentials travel faster along the axon and 
2. energy conservation (only need to be generated in the nodes of Ranvier). 

Conduction speed alongside an axon is correlated with the thickness of the axon. The 
signal being transported alongside the axon “jumps” from node to node.  
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Figure 1: typical neuron with features indicated [20]. 

 

1.1.3. Signal propagation 
When the action potential arrives at an axon terminal, more precisely the synapses of 
the axon terminal, it will cause a release of neurotransmitter molecules. The 
neurotransmitter is picked up by the dendrite of a nearby neuron and cause a new action 
potential, thus passing the signal on from cell to cell. In this section, a brief explanation 
of the transport of the action potential and chemical communication between cells will be 
given. 
 

1.1.4. Transport of the action potential 
The action potential enters a cell either through an external input (e.g. light-sensitive 
neurons with incident light) or through another neuron. The signal enters at the dendrite 
and must now travel alongside the membrane to the axon terminal to pass on the 
electrical pulse. How a neuron achieves the conduction requires a deeper insight into 
the cell membrane of a neuron.  
The cell membrane is riddled with channels permeable to a certain inorganic ion. A 
change in charge distributions alongside this membrane will cause a voltage difference 
or membrane potential. An increase in membrane potential is called depolarization, while 
a decrease is called hyperpolarization. The neural signaling depends on channels of 
which permeability is regulated by gated channels. There exist two types of gated 
channels: voltage-gated and ligand-gated. The voltage gated channels are required for 
the passing of the action potential. The ligand-gated channels are needed for the 
synaptic communication between cells. 
 
In figure 2 the driving force behind the signal propagation is depicted: the 𝑁𝑎ା-𝐾ା pump. 
The 𝑁𝑎ା-𝐾ା pump pumps 𝑁𝑎ା out and 𝐾ା in the cell using metabolic energy (ATP). 
Which causes the concentration of 𝐾ା to be much larger inside than outside the neuron 
and the concentration of 𝑁𝑎ା to be much larger outside the cell than inside. The 
difference in concentration causes a want for an influx of 𝑁𝑎ାand an efflux of 𝐾ା. The 
state at which the net current flow of ions is termed the resting potential. A neuron at rest 
is kept at rest by the 𝑁𝑎ା-𝐾ା pump since there exist leak channels through which ions 
escape the cell. The flow of ions is driven by a combination of a voltage gradient across 
a membrane and an ion concentration gradient. This electrochemical gradient is 0 if there 
is no net flow of ions through the channels and is determined by the Nernst equation 
which is: 

- 50 … 65 mV in case of 𝑁𝑎ା equilibrium potential (𝑉ே௔), 
- -70 … -100 mV in case of 𝐾ା equilibrium potential (𝑉௄). 
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The resulting net driving force, given a membrane potential V, is: 
- 𝑉 − 𝑉ே௔ , driving 𝑁𝑎ା into the cell and 
- 𝑉 − 𝑉௄ , driving 𝐾ା out of the cell. 

Together with the conductance of the membrane channels this net driving force controls 
the actual flow of each ion through the membrane. The conductance of a membrane is 
the ease by which an ion can pass through the membrane, comparable to a resistance 
for electrical current.  
 
Depolarization causes 𝑁𝑎ା channels to first open and afterwards become inactivated. 
The 𝑁𝑎ା channels are originally closed at resting potential. When the membrane 
potential rises, voltage gated 𝑁𝑎ାchannels open resulting in an influx of 𝑁𝑎ା ions. After 
approximately 0.5ms the channels shut again, even when the membrane is still 
depolarized. The 𝑁𝑎ାchannels are now in an inactivated stage and will remain so until 
either the membrane potential returns to resting state or a few milliseconds have passed. 
The influx of 𝑁𝑎ା ions causes the membrane to depolarize further, which in turn opens 
more voltage gated 𝑁𝑎ାchannels. The cycle continues until the 𝑁𝑎ା equilibrium is 
reached removing the drive for influx of 𝑁𝑎ା. The voltage-gated 𝐾ା channels are also 
opened when a membrane depolarization occurs, but open slower than their 𝑁𝑎ା 
counterparts. The 𝐾ା channels cause an efflux of 𝐾ା ions thus lowering the membrane 
potential and causing the 𝑁𝑎ାchannels to recover faster from their inactive state.  
 
The action potential is caused by the depolarization of the membrane when a certain 
threshold of activity is crossed. If the threshold is not surpassed, no 𝑁𝑎ାchannels will 
open, and the charge of the membrane potential will passively spread over the 
membrane. The action potential provides rapid long-distance communication. The action 
potential is regenerated throughout its journey to the axon terminal. The entire process 
is depicted in Figure 3.  
 

 
Figure 2: visual depiction of the  𝑁𝑎ା-𝐾ା pump [21]. 
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Figure 3: visual depiction of the propagation of an action potential alongside the cell membrane [22]. 

 

1.1.5. Extracellular 
The action potential has reached the axon terminal and now needs to be passed on to 
the neighboring neuron. The neurons are not connected however and there is need of a 
new signaling system to pass on the information. The axon terminal has a different type 
of channel: 𝐶𝑎ା voltage-gated channels. The 𝐶𝑎ା channels differ from the 𝑁𝑎ାchannels 
in the following ways: 

1. Permeable to  𝐶𝑎ା, 
2. Not as easily inactivated. 

The axon terminal also contains synaptic vesicles, containing neurotransmitter 
molecules.  
 
The action potential depolarizes the axon terminal as it reached the end of the axon. The 
axon terminal contains 𝐶𝑎ା voltage-gated channels which now open. The influx of 
𝐶𝑎ାinto the cell trigger the exocytotic release of a large amount of neurotransmitter 
molecules. The neurotransmitter is released in the synaptic cleft which is the space 
between an axon terminal of neuron A and a dendrite of neuron B. The dendrites of 
neuron B has ligand-gated channels which open when one of the neurotransmitter 
molecules binds to it. The ligand-gated channels allow a specific ion type (e.g. 𝑁𝑎ା) to 
pass through. The depolarization of the cell membrane has now begun. This is depicted 
in Figure 4.  
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Figure 4: detailed view of the synapse at the end of an axon of a neuron, depicted is the transfer of an 

action potential to a second neuron [23]. 

 
The action potentials in massive quantities (millions of neurons in close proximity firing 
simultaneously) will be measured as a brain wave by EEG. To note is that this was a 
very simple and limited explanation of how this complex process works, the entire 
description with all details is outside the limits of this work. For more information, please 
consult [19]. 
 

1.1.6. Brain waves 
The neurons firing action potentials create a brain wave. The brain waves, as other 
waves, are measured in cycles per seconds (Hertz (Hz)) or frequency of activity. 
Originally, researchers identified 4 types of brain waves and described their functions 
depicted in table 1 [24], [25]. The original waves were later divided into several other 
types [26]. An important fact to note here is that the classification of brain waves is more 
a convenience, brainwaves are not separate. All brain waves can be measured at any 
point, but the state of consciousness determines which one will be dominant. A list of 
supposed methods to alter the dominance of brain waves or “train” your brain to increase 
a certain type of brain wave is given in [27]. 
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Table 1: different brain waves, the frequencies of the brain waves and the function of the brain waves 

 
 

1.2. Variations of event-related potentials 
1.2.1. Introduction and definition 

Two facts have been established in the previous section. First, the brain waves resulting 
from action potential firing of neurons can be measured by EEG recording equipment. 
Second, certain brain waves contain information about the mental state and 
environmental stimuli. These statements alone do not help us much in the search for an 
EEG measurement viable for BCI classification. The most interesting cases for BCI are 
the responses time-locked to an easily reproducible event. The responses were termed 
event-related potentials. The reproducible events can be cognitive control operations, 
affective operations or memory-related operation [28]–[30]. The systems are distributed 
in various parts of the brain and are activated in different time intervals. The ERPs are 
measured using the same equipment as EEG, their meaning however is fundamentally 
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different. Visually evoked ERPs are a completely non-invasive, objective, and 
inexpensive investigation, which provides information about early functional changes of 
the visual pathway and visual brain cortex (sometimes recognizable prior to detectable 
morphological changes observed by imaging techniques). The interest in research for 
clinical diagnostics has increased in recent years after dropping post introduction of the 
MRI [31]. 
 
As previously stated, the equipment for recording ERP and EEG is the same. Amplitudes 
of raw EEGs can be very large (mainly due to slow drifts), larger than those seen in ERP 
(as ERP’s are filtered). The resulting signal-to-noise ratio is small for a single trial. To 
improve to SNR, EEG fragments or epochs are averaged over many trials. An epoch is 
part of the whole recorded EEG data consisting of a pre- and post-stimulus part. An ERP 
is obtained by averaging the epochs [29], [30]. ERP paradigms can be classified into 
large categories based on the system under study. The classes are: 

- sensory tasks, 
- motor tasks, 
- attention tasks, 
- emotion tasks, 
- memory tasks, 
- and cognitive control tasks. 

 
ERPs are elicited by several methods often used in research: dichotic listening tasks 
(different auditory tones are played), passive oddball tasks (“target” stimulus appears in 
a series of non-target stimuli), presenting the stimuli at different intensities (louder 
auditory cue or larger visual intensity), two-click paradigm (two auditory click are played), 
…Generally speaking, ERPs are modulated by [29], [30], [32]–[39]: 

- modality (e.g. visual, auditory, somatosensory), 
- physical features within the modality (e.g. position, spatial frequency, color, 

orientation), 
- stimulus category (e.g. living objects vs. nonliving objects, faces vs tools), 
- rate of stimulus presentation (e.g. varying stimulus intervals), 
- stimulus intensity (e.g. loudness of the acoustic stimulus, contrast). 

 
Each ERP occurs more dominantly in the part of the brain consistent with its function. 
An overview of the (right) side of the brain is given in Figure 5. Any references to brain 
regions are referring to this image. 
 
In this section, an overview of several visually-induced ERPs is given together with a 
brief explanation of their meaning and stimuli and any applications or diagnostic meaning 
they may have. The ERPs discussed are P300 and several variants of visually evoked 
potentials. Finally, it is important to note that all ERP variants are variable in either 
latency or magnitude for different subjects. 
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Figure 5: depiction of the right side of the brain with several locations indicated [40]. 

 

1.2.2. The P300 
The P300, first named so in [41], is parietocentral positivity which occurs when a subject 
detects and informative task-relevant stimulus [41]–[43]. The name spawns from the 
occurrence of the peak post-stimulus, i.e. the ERP is a positive peak elicited 300 ms 
post-stimulus in a young adult subject. The P300 can be triggered by both visual and 
auditory stimuli [42], [44], [45]. The P300 is most commonly investigated with “oddball” 
paradigms. Target-related responses are elicited in the parietal cortex, novelty-related 
activations mainly in the inferior parietal and prefrontal regions. Stimulus modality-
specific contributions come from the inferior temporal and superior parietal cortex for the 
visual and from the superior temporal cortex for the auditory modality [44]. The P300 
wave may represent transfer of information to consciousness [42]. A visual 
representation of the P300 is given in Figure 6.  
 
The amplitude of the P300 increases with lower probability and higher discriminability of 
targets. The latency increases when targets are harder to discriminate from standards 
but not when response times increase for other reasons [42], [44], [45]. As a direct 
consequence of this fact, the P300 has become a tool to separate the mental 
chronometry of stimulus evaluation from response selection and execution [30], [44], 
[46], [47]. The P300 amplitude decreases with age and is also lower in patients with 
decreased cognitive abilities [8], [42], [48].  
  
In diagnostic research it has been attempted to link the P300 response to genetic 
diseases and psychological disorders [29], [42], [44], [48]–[51]. The P300 has been 
reported to change in patients diagnosed with epilepsy [29], [50], schizophrenia [29], 
[50], depression [48], [49] and Parkinson’s disease [51]. Another use for the P300 is the 
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creation of brain computer interfaces for people suffering from motor and/or 
communication disabilities [4], [6], [52]–[56] and has recently been tested for gaming 
applications [2]. The P300 generation can be mentally draining on the subject utilizing 
the BCIs since the subject is required to focus on flashing stimuli which is an unfortunate 
side-effect. 

 
Figure 6: processed EEG recording of the target (blue) and the non-target (red) of an oddball paradigm 

clearly showing the P300. The x-axis displays the time given stimulus happens at 0, the y-axis displays the 
amplitude of the signal in microvolts. 

 

1.2.3. The visual evoked potentials (VEP) 
Several VEPs are elicited depending on the type of stimulus presented. The different 
types can be divided into temporal VEP (t-VEP) [9], [57], [58], frequential VEP (f-VEP) 
[5], [16], [59]–[62], code-modulated VEP (c-VEP) [13], [63]–[65] and motion VEP [2], [8], 
[9], [11], [17], [18], [31], [66]–[70]. These responses all share the trait that they are subject 
dependent. An example of each type will be briefly explained in terms of stimuli required 
to elicit the VEP and some of their applications.  
 
Flash VEPs, a type of t-VEP, are time-locked and phase-locked to flash onsets of gazed 
stimuli [58]. The response is elicited when a sequence of targets is flashed in a 
predetermined time pattern. The amplitude of the response is higher when the target is 
in the foveal visual field of the subject. Several targets, each flashing in a certain temporal 
pattern, can be flashed with the target being the response with the highest amplitude 
corresponding to the temporal pattern. An important thing to note is that stimuli must not 
overlap in order for this to work [9], [57], [58]. The phenomena has been used as a clinical 
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index to monitor anesthesia during surgical operation [71], [72], to indicate intracranial 
pressure [73], [74] and to alarm brain death [75], [76]. 
 
SSVEP, a type of f-VEP, are responses to a periodic visual stimulus recorded from the 
occipital area. Traditionally, the stimuli flicker between 6 and 30 Hz due to hardware 
restrictions (screen refresh rate and EEG bandwidth) [60], [61]. Previously, the targets 
must flicker at integer dividers of the screen refresh rate (usually 60 Hz) resulting in a 
limited number of possible targets and resulting information transfer rate [59]. However, 
several solutions have been offered to combat this limitation. First, a sampled sinusoidal 
stimulation profile where the stimuli are flickered at the same frequency but controlled by 
a phase shifted sinusoid. The method used a fuzzy logic classifier specifically designed 
for circular information [61]. Second, a profile with targets flickering at the same or 
varying frequency but at a different phase [7], [16], [77]–[79]. Applications are mainly BCI 
systems (e.g. spelling consoles) [5], [7], [16], [61], [77], [78] but several attempts have 
been made for integration within gaming [3]. Important to note is the need for exclusion 
of the alpha waves from the EEG signal as they interfere with the elicited response. 
 
The c-VEP paradigm presents the subject with a sequence of high and low stimulus 
intensity with varying duty cycles, termed the code. The selectable targets are 
represented by a unique lagged version of this code [13], [63]–[65]. An often used code 
is the m-sequence used in [64] which is a pseudorandom binary sequence that has an 
autocorrelation function close to a unit impulse function and is nearly orthogonal to its 
time lagged version. Application of c-VEP exist in the creation of BCI systems [13]. 
 
Motion visually evoked potentials are a term used for any ERP generated by motion. 
There exist several documented variations of the mVEP [31]. The most prominent and 
promising variant is the motion-onset VEP, having the largest amplitudes and most 
consistent recording conditions [11], [31], [66], [68], [69]. The counterparts of the motion-
onset VEP (mVEP refers to this from this point) is the motion-offset VEP which require a 
longer duration of motion which in turn causes adaptation [31], [80]. Motion-reversal 
VEPs represent responses to motion direction changes. The inter-subject variability of 
their shape makes them unusable for clear identification and classification [31], [52]. 
Steady-state motion-related VEPs using continuously moving stimuli also have a large 
inter-subject variability [31], [81]. mVEP is elicited when a translating line is presented in 
the field of focus. The movement must last between 120 and 200 ms followed by an inter 
stimulus pause lasting 60 ms. The stimulus consists of a negative peak around 200 ms 
post stimulus followed by a positive peak around 250-300 ms post-stimulus. Reports 
exists of a third positive peak 100 ms post stimulus [31] which is dominant when the 
subject becomes adapted to the stimulation sequence. To prevent the adaptation, the 
stimuli are shown in a random sequence. A visual representation is presented in figure 
7. Applications of mVEP are the creation of brain computer interfaces for people suffering 
from motor and/or communication disabilities [9], [10], [18], [67], [70], [82] and has 
recently been tested for gaming applications [2], [83]. 
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Figure 7: processed EEG recording of the target (blue) and non-target (red) response to motion-onset 

clearly showing the mVEP. The x-axis displays the time given stimulus happens at 0, the y-axis displays 
the amplitude of the signal in microvolts. 

1.3. Classifiers 
When a learning set L of multivariate observation are presented, supposing each 
observation is part of a predefined class k which has determining characteristics and a 
unique class label, the classes can be identified and distinguished using a classifier. A 
classifier requires two stages to be functional: 
 

- Training: information is presented in a learning set of labeled observations to 
create a function (termed classifier) that separates the predefined classes as 
much as possible. 

- Classification: new unlabeled observations are compared to the function to 
predict the class of the observation.  

 
In machine learning, the training and classification operations are named supervised 
learning techniques. Together they form the task of class prediction.  
 
The VEPs have dominant peaks elicited when the stimulus appears in the field of focus. 
The peaks can therefore be used to predict the target the subject is focusing on. The 
selection could be done manually, but the practical relevance of such a task would be 
limited and time-consuming. The automation of this process is done in the form of various 
classifiers. All visual BCIs, be it online or offline, utilize a classifier to predict the focus 
point of the subject. In this section several classifiers are compared for the classification 
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of mVEP: a support vector machine based on [84], stepwise linear discriminant analysis 
[85], peak picking and spatiotemporal beamformer [14]. 
 

1.3.1. Support vector machines 
Linear support vector machines (SVMs) are tools for tackling large-scale data-mining 
tasks containing large number of examples and features coupled with a parse data 
matrix [84]. This and the accuracy of the SVM makes it a valid, and often used, 
classification method for ERP signals [9], [10], [17], [18]. A negative feature of the SVM 
classifiers is the training time required, making fast algorithms preferable. Linear SVMs 
attempt to maximize the margin between classes of the data. Any datapoint that breaks 
this margin is given a penalty (denoted by 𝜉) and is termed a slack. Two loss functions 
for imposing penalties on slacks are penalizing slacks linearly (penalty = ξ) named 𝐿ଵ-
SVMs and penalizing slacks quadratically (penalty = ξଶ 2⁄ ) named 𝐿ଶ-SVMs. Although 
𝐿ଵ-SVMs are more popular since the method yields classifiers with less support vector 
leading to faster speeds. For linear SVMs the amount of support vectors is nullified when 
the final classifier is implemented using the weight vector in feature space [84]. The SVM 
described here is an 𝐿ଶ-SVM.  
 
A binary classification problem with training samples {𝑥௜, 𝑡௜}௜ୀଵ

௠  where 𝑥௜ ∈ ℝ௡ and 𝑡௜  ∈
{1,0}. To obtain a classifier of the form 𝑦 = 𝑤 ∗ 𝑥 + 𝑏, an 𝐿ଶ-SVM solves the following 
problem: 
 

min
(௪,௕)

ଵ

ଶ
∗ (‖𝑤‖ଶ + 𝑏ଶ) +

஼

ଶ
∑ 𝜉௜

ଶ௠
௜  given ∀௜: 𝑡௜(𝑤 ∗ 𝑥௜ + 𝑏) ≥ 1 − 𝜉௜    (1) 

 

Where C is the regularization parameter. 
௕మ

ଶ
 was added so the standard regularized least 

squares algorithms can be utilized. To apply the least square algorithm, (1) must first be 
transformed to an equivalent formulation by eliminating 𝜉௜ and dividing the objective 
function by C: 
 

min
ఉ

𝑓(𝛽) =  
ఒ

ଶ
∗ ‖𝛽‖ଶ +

ଵ

ଶ
∗ ∑ 𝑑௜

ଶ(𝛽)௜ఢூ(ఉ)     (2) 

 
Where 𝛽 = (𝑤, 𝑏), 𝜆 =

ଵ

஼
 , 𝑑௜(𝛽) = 𝑦௜(𝛽) − 𝑡௜, 𝑦௜(𝛽) = 𝑤 ∗ 𝑥௜ + 𝑏, 𝑎𝑛𝑑 𝐼(𝛽) = {𝑖: 𝑡௜𝑦௜(𝛽) <

1}. This SVM is further enhanced using a modified finite newton (MFN) algorithm [86]. 
MFN does iterations of the form: 
 

𝛽௞ାଵ = 𝛽௞ + 𝛿௞𝑝௞       (3) 
 
where 𝑝௞ is based on a second order approximation of the objective function at 𝛽௞: 
 

𝑝௞ = −𝐻(𝛽௞)ିଵ∇𝑓(𝛽௞).      (4) 
 
The step size 𝛿௞ is chosen to satisfy an Armijo condition that ensures convergence, it is 
found by applying an exact line search allowing the direct application of convergence 
results from nonlinear optimization theory. Traditionally 𝛿௞ is found by applying a halving 
method of line search in the [0,1] interval. Since f is not twice differentiable at 𝛽 where at 
least one of the 𝑑௜ is zero, 𝐻(𝛽) is taken to be the generalized Hessian defined by 𝐻(𝛽) =
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 𝜆 ∗ 𝐽 + 𝐶்𝐷𝐶 where J is the n x n identity matrix, C is a matrix whose rows are (𝑥௜
் , 1) 

and D is a diagonal matrix whose diagonal elements are given by: 
 

𝐷௜௜ = ቐ

   1                                                                       𝑖𝑓 𝑡௜𝑦௜(𝛽) < 1

   0                                                                       𝑖𝑓 𝑡௜𝑦௜(𝛽) = 1

   0                                                                       𝑖𝑓 𝑡௜𝑦௜(𝛽) > 1

    (5) 

 
The third property contributes greatly to the overall efficiency of the method since the 
indices satisfying 𝑡௜𝑦௜(𝛽) > 1 do not affect 𝐻(𝛽) and 𝑝௞. The 𝑡௜𝑦௜(𝛽) = 1 cases are set 
to zero to keep the least squares nature of the problem, traditionally this would be set to 
a specific element of the interval [0,1]. The change allows the algorithm to calculate the 
Newton point (𝛽௞ + 𝑝௞), i.e.  the solution of a regularized least squares problem, instead 
of the Newton direction (𝑝௞).  
 
Thus, at one iteration, given a point 𝛽௞ we set 𝐼௞ = 𝐼(𝛽௞) and minimize 𝑓ூೖ

 to obtain the 
Newton point, 𝛽 (𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑎𝑠 𝛽̅). Then a line search is performed in the interval [𝛽௞ , 𝛽̅] to 
yield the next Newton point. A step by step sequence is given below, proof for the 
convergence of the algorithm together with more details, are given in [84]. 
 

1. Choose a suitable starting 𝛽଴. Set k = 0, proceed to step 2 
2. Check if 𝛽௞ is the optimal solution of (2). If so, solution is 𝛽௞ else proceed to step 

3. 
3. Let 𝐼௞ = 𝐼(𝛽௞).  𝑆𝑜𝑙𝑣𝑒 

 
min

ఉ
𝑓ூೖ

(𝛽), 

 
 Let 𝛽̅ denote the solution. 

4. Perform a line search to decrease the objective function, 𝑓: 
 

min
ఉఢ௅

𝑓(𝛽), 

 
Where L = {𝛽 =  𝛽௞ + 𝛿൫𝛽̅ − 𝛽௞൯: 𝛿 ≥ 0}. Let 𝛿∗ denote the solution of this line 
search. Set 𝛽௞ାଵ = 𝛿∗(𝛽 − 𝛽௞) with k = k+1 and return to step 2. 

 
The training of the SVM in this work is achieved by first transforming the labeled data 
shaped in an (mxn)xr matrix into an rx(mn) matrix, with m the number of recording 
electrodes, n the number of time samples per trial and r the number of trials in a 
recording. The training data is then normalized, labeled with a target/non-target label and 
loaded into the classifier. The output is an (mxn)x1 vector consisting of the solution of 
the classifier described above. To perform classification on the experiment data, the data 
is split up into the data corresponding to each possible class (i.e. each direction) and 
multiplied with the trained vector resulting in a score for each possible class. The winning 
class is the one with the highest score. 
 

1.3.2. Stepwise linear discriminant analysis 
Linear discriminant analysis (LDA) follows Fisher’s assumption that both multivariate 
probability densities are multivariate Gaussian having arbitrary mean vectors and a 
common covariance matrix. i.e. take 𝑓ଵ(∙) to be a 𝑁௥(𝜇ଵ, Σଵ) density and 𝑓ଶ(∙) to be a 
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𝑁௥(𝜇ଶ, Σଶ) density making the homogeneity assumption that Σଵ = Σଶ = Σ௑௑. Information 
for this explanation is taken from [87]. The ratio of the two densities is now given by 
 

௙భ(௫)

௙మ(௫)
=

ୣ୶୮ {ି
భ

మ
(௫ିఓభ)೅ஊ೉೉

షభ (௫ିఓభ)}

ୣ୶୮ {ି
భ

మ
(௫ିఓమ)೅ஊ೉೉

షభ (௫ିఓమ)}
 ,     (6) 

 
the logarithm of this function then becomes: 
 

log௘
௙భ(௫)

௙మ(௫)
= (𝜇ଵ − 𝜇ଶ)்Σ௑௑

ିଵ𝑥 −
ଵ

ଶ
(𝜇ଵ − 𝜇ଶ)்Σ௑௑

ିଵ(𝜇ଵ + 𝜇ଶ)                             (7) 

= (𝜇ଵ − 𝜇ଶ)்Σ௑௑
ିଵ(𝑥 − 𝜇̅),     (8) 

 
where 𝜇̅ =

ఓభାఓమ

ଶ
. Given that the second term of (5) can be rewritten as  

 
ଵ

ଶ
(𝜇ଵ − 𝜇ଶ)்Σ௑௑

ିଵ(𝜇ଵ + 𝜇ଶ) = 𝜇ଵ
்Σ௑௑

ିଵ𝜇ଵ − 𝜇ଶ
்Σ௑௑

ିଵ𝜇ଶ   (9) 

 
it follows that  
 

𝐿(𝑥) = log௘{
௙భ(௫)గభ

௙మ(௫)గమ
} = 𝑏଴ + 𝑏்𝑥    (10)  

Is a linear function of x, where  
 

𝑏 =  (𝜇ଵ − 𝜇ଶ)Σ௑௑
ିଵ and      (11) 

 
𝑏଴ = −

ଵ

ଶ
{𝜇ଵ

்Σ௑௑
ିଵ𝜇ଵ − 𝜇ଶ

்Σ௑௑
ିଵ𝜇ଶ} + log௘

గభ

గమ
.    (12) 

 
Now x is assigned to Πଵif the logarithm of the ratio of the two posterior probabilities is 
greater than zero and otherwise assign it to Πଶ, Πଵ, Πଶ representing two different 
classes and 𝜋ଵ, 𝜋ଶ representing the probability of x being a part of the respective class: 
 

൜
𝑖𝑓 𝐿(𝑥) > 0 → 𝑎𝑠𝑠𝑖𝑔𝑛 𝑥 𝑡𝑜 Πଵ

𝑖𝑓 𝐿(𝑥) < 0 → 𝑎𝑠𝑠𝑖𝑔𝑛 𝑥 𝑡𝑜 Πଶ
 .    (13) 

 
Important to note is the boundary {𝑥 𝜖 𝑅்|𝐿(𝑥) = 0}, R being the regions occupied by the 
class. The resulting equation is linear in x defining a hyperplane that divides the two 
classes. Rule (13) is generally referred to as Gaussian linear discriminant analysis and 
the part of the function L(x) in (8) that depends upon x, 
 

𝑈 = 𝑏்𝑥 = (𝜇ଵ − 𝜇ଶ)்Σ௑௑
ିଵ𝑥,     (14) 

 
is known as Fisher’s linear discriminant function (LDF) [87]. The previous method works 
for only two classes, a method able to classify multiple target is required.  The sample 
space must be partitioned into K nonoverlapping regions 𝑅ଵ, 𝑅ଶ, … , 𝑅௞, such that 
observation x is assign to class Π௜ if 𝑥 𝜖 𝑅௜. The partition is to be divided as to minimize 
the number of misclassified instances. Note that k two class linear discriminant analyses 
will not work since it produces regions not belonging to any of the k classes. Let 
 

𝑃(𝑋 𝜖 Π௜) = 𝜋௜ 𝑤𝑖𝑡ℎ 𝑖 𝜖 [1, 𝐾],     (15) 
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be the probabilities of a randomly selected observation X belonging to each of the 
different classes in the population and let 
 

𝑝(Π௜|𝑥) = 𝑃(𝑋 𝜖 Π௜|𝑋 = 𝑥) =  𝑓௜(𝑥) 𝑤𝑖𝑡ℎ 𝑖 𝜖 [1, 𝐾],   (16) 
 
be the multivariate probability density for each class. The resulting posterior probability 
that an observed x belongs to the ith class is now 
 

𝑝(Π௜|𝑥) = 𝑃(𝑋 𝜖 Π௜|𝑋 = 𝑥) =  
௙೔(௫)గ೔

∑ ௙ೖ(௫)గೖ
಼
ೖసభ

.    (17) 

 
Directly following from (17) is that the highest 𝑓௜(𝑥)𝜋௜ corresponds to the highest probable 
class. Assuming that for every class Π௜ that 𝑓௜(∙) is the 𝑁௥(𝜇௜, Σ௜) density, where 𝜇௜ is an 
r-vector and Σ௜ is an (r x r) covariance matrix and that the covariance matrix for the K 
classes are identical, Σଵ = ⋯ =  Σ௞, and equal to a common covariance matrix Σ௑௑. The 
odds that x is assigned to Π௜ instead of Π௝ now becomes (similar to (8)) 
 

𝐿௜௝(𝑥) = log௘{
௙೔(௫)గ೔

௙ೕ(௫)గೕ
} = 𝑏଴௜ + 𝑏௜௝

் 𝑥,     (18) 

 
Where 
 

𝑏௜௝ =  (𝜇௜ − 𝜇௝)Σ௑௑
ିଵ and      (19) 

 
𝑏଴ = −

ଵ

ଶ
൛𝜇௜

்Σ௑௑
ିଵ𝜇௜ − 𝜇௝

்Σ௑௑
ିଵ𝜇௝ൟ + log௘

గ೔

గೕ
.    (20) 

 
The regression of a data set is the procedure where one attempts to model an equation 
to correspond with as many possible points of the given data set. There exists the 
backward elimination procedure which begins with the largest regression, using all 
variables, and subsequently reduces the number of variables in the equation until a 
decision is reached on the equation to use. There is also the forward selection procedure 
which attempt to achieve a similar conclusion working from the other direction, i.e. to 
insert variables in turn until the regression equation is satisfactory. The order of insertion 
is determined by using the partial correlation coefficient as a measure of the importance 
of variables not yet in the equation. The stepwise regression procedure, on which 
stepwise linear discriminant analysis (SWLDA) is based [85], is an improvement of the 
forward selection procedure. The improvements involve the reexamination of the 
incorporated variables at every stage. The variables added during an early stage may 
be superfluous at a later stage because of the relationship between it and several other 
variables now included in the regression.  
 
To calculate the relationship between the variables, an F criterion for each variable in 
the regression is evaluated at every stage and compared with a preselected percentage 
point of the appropriate F distribution. This method provides a judgement on the 
contribution made by each variable as thought it was the most recent variable added into 
the regression. The variables that do not meet the predetermined F criterion are 
subsequently removed from the regression model before calculation continues.  
 



 
  

17 
  

A step by step explanation for the procedure used by the algorithm is given below. Note 
that initialization of the algorithm requires a data set, an entry criterion and an exit 
criterion [88].  

1. The stepwise procedure starts with the simple correlation matrix and enters into 
the regression equation the X variable most highly correlated with the response, 
termed 𝑋ଵ. 

2. Using the partial correlation coefficients as before, it selects the next X to enter 
regression by picking the variable whose partial correlation with the response is 
highest, termed 𝑋ଶ. 

3. Given the newly formed regression equation 𝑌෠ = 𝑓(𝑋ଵ, 𝑋ଶ), the method now 
evaluates the contribution 𝑋ଵ would have had if 𝑋ଶ were to be added first into the 
equation. If the F value is found statistically significant, 𝑋ଵ is retained else it is 
removed. 

4. The algorithm returns to step 2 until no variables remain the meet the entry 
criterion. Afterwards it terminates and returns the regression equation.  

 
The training of the SWLDA in this work is achieved by first transforming the labeled data 
shaped in an (mxn)xr matrix into an rx(mn) matrix, with m the number of recording 
electrodes, n the number of time samples per trial and r the number of trials in a 
recording. The training data is then normalized, labeled with a target/non-target label and 
loaded into the classifier. The output is an (mxn)x1 vector consisting of the solution of 
the classifier described above. To perform classification, the unlabeled data is split up 
into the data corresponding to each possible label, averaged and multiplied with the 
trained vector resulting in a score for each possible class. The winning class is the one 
with the highest score. 
 

1.3.3. Peak picking 
Peak picking (PP) is a simple classification method which can be used when a class can 
be determined as the data containing the dominant negative or positive peak. The 
method was used in [67] to determine the focus point of the subject in a BCI by examining 
the most negative and positive peak within the expected temporal window. The algorithm 
implemented here is trained by calculating the temporal location of the minimum and 
maximum for the averaged test data and creating a search range with the respective 
locations as the center. Training is performed by calculating the minimum and maximum 
in the search range respectively naming the most negative and positive value as the 
peak corresponding to the mVEP. Classification is performed by searching within the 
trained range for the most negative and positive values, subtracting the minimum from 
the maximum and naming the highest value as the winner.  
 

1.3.4. Spatiotemporal Beamformer 
A system designed to receive spatially propagating signals often suffer from interference 
between the signals when the desired signal and interfering signals occupy the same 
temporal frequency band [89]. Using solely temporal filters, separating the signals would 
prove impossible. Given a different spatial source of each signal, a spatial filter may be 
used at the receiver to separate the signals. The design of early spatial filters allowed 
the formation of pencil beams in order to receive a signal radiating from a specific 
location and attenuate signals from other locations. This quality was termed “forming 
beams” [89]. A beamformer is a processor utilized with an array of sensors, collecting 
discrete spatial samples of propagating wave fields, and provides a versatile form of 
spatial filtering. Beamformers allow the separation of signals with frequential overlap 
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which originate from different spatial locations. Beamforming is applicable for the 
radiation and reception of energy. Spatial filtering utilizing beamformers has been 
implemented in radar, sonar, communication, imaging and several other fields [89]. 
 
Spatial filters can be designed for processing brain electrical activity pass information 
from a specified location while attenuating activity originating at other electrode locations. 
The power at the output of a spatial filter is an estimate of the neural power originating 
within the spatial passband of the filter. The calculation of multiple spatial filters, with a 
unique passband, allows for the creation of a map of neural power as a function of 
location. The output of the filter depicts a function of passband location. The spatial 
filtering method described in [90] is based on a linearly constrained minimum variance 
(LCMV) filtering.  
 
Motivation for the use of multivariate techniques for EEG analysis lie in the separation of 
overlapping ERP components. A multivariate filter combines the EEG signals from 
multiple electrodes into one representative value. Two performance criteria are used as 
an estimation of the output. The sensitivity, which is a measurement of correlation with 
the actual amplitude of the ERP, and the specificity, which is a measure for the lack of 
correlation with structured interfering signals [14]. The multivariate filter used in this study 
was based on the spatiotemporal LCMV beamformer described in [14]. The 
spatiotemporal beamformer (stBF) is an extension of the LCMV beamformer to be a 
spatiotemporal filter for estimating the amplitude of ERP components in sensor space.  
 
Beamformers take as input a spatiotemporal template of the component of interest. The 
LCMV beamformer was originally formulated a spatial filter 𝑤௦௣ 𝜖 ℝ௠௫ଵ with w 
representing a vector of the spatial filter and m the number of electrodes used for 
recording. When applied to the centered EEG signal S, it minimizes the variance of the 
result 𝑤௦௣

்  𝑆: 
 

𝑤௦௣ = 𝑎𝑟𝑔 min
௪ೞ೛

𝑤௦௣
் 𝑆൫𝑤௦௣

் 𝑆൯
்

= arg min
௪ೞ೛

𝑤௦௣
் ∑ 𝑤௦௣௦௣    (21) 

 
where Σ௦௣ 𝜖 ℝ௠௫௠ is the spatial covariance matrix of the signal S. To avoid trivial 
solutions of (21), a linear constraint on 𝑤௦௣ is implemented as follows: 
 

𝑎௦௣
் 𝑤௦௣ = 1      (22) 

 
where 𝑎௦௣ 𝜖 ℝ௠௫ଵ is the spatial activation pattern. Utilizing the method of Lagrange 
multipliers, the solution of (21) becomes 
 

𝑤௦௣ =
∑ ௔ೞ೛

షభ
ೞ೛

௔ೞ೛
೅ ∑ ௔ೞ೛

షభ
ೞ೛

.     (23) 

 
To expand the formulation of the LCMV beamformer into a spatiotemporal beamformer, 
let 𝑋 𝜖 ℝ(௠௡)௫௥ be a matrix consisting of r columns 𝑥௜, which are the column wise flattened 
versions of the corresponding EEG trials 𝑆௜ (i = 1, …, r), Σ 𝜖 ℝ(௠௡)௫(௠௡) be the covariance 
matrix of X, and 𝑎 𝜖 ℝ(௠௡)௫ଵ be a vector containing the column wise flattened version of 
the shape of the spatiotemporal activation pattern A. The spatiotemporal beamformer 
𝑤 𝜖 ℝ(௠௡)௫ଵ is the result of the minimization of the variance of 𝑤்𝑋 constrained by 𝑎்𝑤 =
1: 
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𝑤 =
ஊషభ௔

௔೅ஊషభ௔
,       (24) 

 
and applied to the data as a simple weighted sum: 
 

 𝑦 = 𝑠𝑤,      (25) 
 
where 𝑠 𝜖 ℝଵ௫(௠௡) indicates the concatenated rows of an epoch S and y represents the 
contribution of the activation pattern A in S. 
 
The training of the spatiotemporal beamformer in this work is achieved by first 
transforming the labeled data shaped in an (mxn)xr matrix into an rx(mn) matrix, with m 
the number of recording electrodes, n the number of time samples per trial and r the 
number of trials in a recording. The training data is labeled with a target/non-target label 
and loaded into the classifier. The output are the weights of the beamformer. To perform 
classification, the unlabeled data is split up into the data corresponding to each possible 
class, averaged and multiplied with the weights of the beamformer resulting in a score 
for each possible class. The winning class is the one with the highest score. 
 

1.4. Brain Computer Interfaces 
It has been established in previous chapters that many components are required for a 
brain computer interface to function. An in-depth explanation for the term has not been 
given. 
 
In this section, a definition for a brain-computer interface will be formulated together with 
the description of frequently used designs and a method to measure the information 
transfer rate will be given.  
 

1.4.1. Definition 
“Brain computer interfaces (brain machine interfaces, neuroprostheses) aim at creating 
a direct communication pathway between the brain and an external device, bypassing 
the need for an embodiment.”- Professor Van Hulle, BCI course at KULEUVEN.  
 
BCI could provide a significant improvement of the quality of life of neurologically 
impaired patients suffering from amyotrophic lateral sclerosis, stroke, brain/spinal cord 
injury, muscular dystrophy, etc. In recent years developments have been made to 
implement BCI in gaming and entertainment. BCI can differ in paradigm, classifier and 
recording method. The first two have already been described in this work whilst the last 
will be described here. 
 

1.4.2. Invasive and non-invasive BCI 
The difference between invasive and non-invasive BCI lies in the location of the 
electrodes and the recording surface area. An overview between the differences in given 
in Figure 8. For invasive recording, electrodes are implanted intracranially resulting in 
the best signal quality but carries risks associated with the invasive surgical procedure.  
 
Deep Invasive BCI can vary according to the depth of the implanted electrodes and 
mainly function on spike detection and spike sorting. Spike detection is performed by a 
variety of supervised or unsupervised method (e.g. window discriminator, power method, 
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principal component analysis (PCA), wavelets). Spike sorting, which is performed after 
spike detection, determines the number of captured neurons and assigns the different 
spikes to the neurons.  
 
The change in field potential, which is a measurement of the reaction of several neurons, 
was classically achieved by implanting wire electrodes into the brain. A more modern 
approach is achieved by implanting micro-electrode arrays into the brain (e.g. UTAH 
array, Michigan Probes and NeuroProbes). Not all electrodes can be read out 
simultaneously. Hence, electrodes are selected according to preference, Signal-to-noise 
ratio (SNR) or expert scores [91]. 
 
ElectroCorticoGraphy (ECoG) is a partially invasive method where the electrodes are 
placed directly on the cortical surface. The methods utilized in EEG analysis can also be 
used on ECoG. Several examples not yet discussed are Power Spectral Density (PSD) 
or Event-Related Desynchronization/Synchronization (ERD/ERS) analysis. PSD is a 
measure of how power in a signal changes as a function of frequency and can be used 
to identify the subjects specific most reactive frequency bands by studying the difference 
between reference periods and active ones. ERD/ERS studies the relative power of 
groups of neurons which are (de)synchronously active or inactive. ERD occurs when 
band power decreases with relation to baseline condition and ERS when band power 
increases. 
 
Non-invasive BCI most commonly use ElectroEncephaloGram recording. EEG is a 
measure of the brains voltage fluctuation as detected from scalp electrodes and 
approximates the cumulative electrical activity of neurons. EEG requires electrodes to 
be attached to the scalp and have the signal improved by applying conductive gel. The 
measured signal represents the difference between the voltages at two or more 
electrodes and hence requires a reference to identify significance (e.g. Single reference 
montage, Bipolar design, Common average reference (CAR)). The electrode placement 
is selected according to the regions on the scalp corresponding to the lobes of the brain. 
An overview of commonly used channels is given in Figure 9. EEG records mainly noise 
and is a 2-D representation of a 3-D reality which causes problems in the localization of 
the source of the electrical activity. In order to detect electrical activity of the brain from 
scalp recordings, it must be of sufficient strength and duration. The previously described 
action potentials when fired by neurons in close proximity, more precisely the post-
synaptic potentials, fit this role perfectly since a small dipole is generated by the external 
post-synaptic potential. Important to note is that artifacts of other activities (e.g. blinking, 
muscle contraction) are also measured and must be rejected or corrected in the signal.  
 
MagnetoEncephaloGraphy (MEG) measures the magnetic field surrounding the 
electrical dipole generated by the neurons in close proximity. The polarity is 
perpendicular to the current. If the current is running parallel to the scalp, the magnetic 
field exits the head from one side of the dipole and can be measured. If the current is 
perpendicular to the scalp, it cannot be measured. MEG is therefore more sensitive to 
the neurons parallel with the skull and makes source localization easier. The machine 
used to measure MEG is quiet, comfortable and doesn’t require gel but is expensive and 
heavy, making large scale application difficult.  
 
Functional Magnetic Resonance Imaging (fMRI) measures Blood Oxygenation Level 
Dependent (BOLD) signals which is an indirect measure of neural activity. When neural 
activity increases, so does the blood oxygen in this brain area which caused the fMRI 
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signal to increase. A region of interest is selected, and BOLD signal variance is studied 
following the presentation of a stimulus. An MRI is loud, heavy and expensive combined 
with a suboptimal temporal resolution (1 sample every few seconds) makes this method 
not feasible for large scale application.  
 
Near-InfraRed Spectroscopy (NIRS) is based on the near-infrared range of light 
(between 700 and 1000 nm) which can pass through the skin, bone and other tissue 
relatively easily. Oxygenated and deoxygenated hemoglobin and the mitochondrial 
enzyme cytochrome oxidase have absorption bands within this range. NIRS measures 
differences in oxygenated hemoglobin, reduced hemoglobin, total hemoglobin and 
cytochrome oxidase concentration. If a tracer is utilized, measurement of cerebral blood 
flow and cerebral blood volume is possible. Advantages of NIRS is the measurement of 
blood oxygenation whilst the disadvantages lie in its difficulty in use, limited recording 
time, suboptimal temporal resolution and sensitivity to movement artefacts.  
 

 
Figure 8: comparison between invasive and non-invasive recording methods showing depth, surface 

measured and signals [92]. 



 
 

22 
 

 
Figure 9: traditional layout of scalp recording sites for EEG [93]. 

 

1.4.3. Information transfer rate 
A BCI transfers information from the brain to a computer. The Information Transfer Rate 
is a measurement of the number of accurate bits that can be transferred from brain to 
computer within a time interval. ITR is calculated using the formula [5], [58], [78]: 
 

𝐼𝑇𝑅 = 𝑀 ∗ (logଶ 𝑁 + 𝑃 ∗ logଶ 𝑃 + (1 − 𝑃) ∗ logଶ
ଵି௉

ேିଵ
), 

 
with M the number of possible selections per minute, N the number of available targets 
and P the accuracy. The higher the value of ITR, the more information transferred per 
time interval. It is classically represented in bits/sec or bits/min. 
 

1.5. Conclusion 
In the past chapter, all required information to understand the technicalities of this work 
were described. First, a description of the generation of action potentials and the brain 
waves resulting from these action potentials. Second, various ERPs were described 
together with some examples of applications. Third, the classifiers utilized in this work 
were explained. Fourth, various possible BCIs were given. 
 
Neurons can be exited both by other neurons and external stimuli. When a large number 
of neurons fire, a brain wave is generated which has a different meaning depending on 
the frequency of the wave. The post synaptic potential can be measured by several non-
invasive measurements methods.  
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Many different types of VEP exists which are elicited following different stimuli. The 
stimuli are motion, code, frequency and time. The P300 is a different type of ERP caused 
by an oddball effect and is widely used in different BCI. The VEPs have different shapes 
and peaks which can be used for classification. 
 
Many classifiers exist, the ones described in this work are stBF, SVM, SWLDA and PP. 
Classification is the procedure of studying labeled data to create a model and using this 
model to predict the label of unlabeled data.  
 
BCI can vary in diverse ways: classification method, ERP, invasive and non-invasive. 
Invasive methods generate a better signal but have the risk of invasive surgery whilst 
non-invasive are easier to use but result in a noisy signal.   
 
This work will focus on an EEG BCI comparing stBF, SVM, SWLDA and PP as 
classification methods for the mVEP and ITR will be used as a comparison with several 
other mVEP BCI.   
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2. Materials and methods 
2.1. Introduction 

The goal of this work was the creation of an on-line spelling console BCI based on mVEP 
utilizing the spatiotemporal beamformer classifier. To make this achievable a few 
questions had to be answered: 

1. Can mVEP be classified by the spatiotemporal beamformer? 
2. Does the movement direction influence the results? 
3. Does adding other ERPs influence the results? 

When an answer to these questions was formulated, the on-line spelling console was 
developed and tested. The materials and methods used to collect and analyze data are 
described in this chapter. Each section will answer the questions above respectively 
ending with the implementation of the spelling console. 
 

2.2. Subjects 
For the three experiments 12 healthy subjects (7 female, 5 male, average 25.33 ± 3.88) 
were recruited to participate in this study. 8 subjects had never participated in an EEG 
experiment before and the remaining 4 had no previous experience with visual BCI. Prior 
to the experiments, participants read, and when they agreed, signed a consent form 
previously approved by the ethical committee of the university hospital UZLeuven. All 
participants had normal or corrected-to-normal vision and were remunerated for their 
participation. 
 
The testing of the BCI was performed on 2 healthy subjects (2 male) and underwent the 
experiment under similar conditions as listed above. A first proposal was tested on the 2 
subjects resulting in suboptimal results, followed by a second proposal which was only 
tested on 1 of the 2 previous subjects to study any improvement. 
 

2.3. Materials and statistics 
The materials used for the experiments and the BCI were similar for all recording 
sessions. The equipment used remained identical and is described here. The interface 
was depicted on a 1920x1080 VIEWPixx monitor at a 120Hz refresh rate. Subjects were 
seated approximately 70 cm from the screen. All experimental interfaces were written in 
Matlab (v2017b) using the Psychtoolbox extension to ensure precise timing [94]. EEG 
data was collected from the subjects using 32 active Ag/AgCl electrodes evenly 
distributed over the scalp, as depicted by the grey nodes in Figure 10, using a SynAmps 
RT device operating at a sampling rate of 2000 Hz and using Curry 7 [95] to collect the 
data. The GND and REF electrodes were placed at AFz and FCz respectively. 
 
For the three experiments, an EyeLink 1000 Plus device was used to track the gaze of 
the subjects to ensure correct behavior during the test. Important to note is that none of 
the data recorded by the eyetracker was included in the analysis of the classification 
performance.  
 
A pairwise comparison between the accuracies of the four classifiers and between the 
accuracies of the two movement types was performed using a Paired Wilcoxon sign-
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rank to determine significance between the classifiers and the movement types. The 
significance threshold was Bonferroni corrected and set to 0.0083 (=0.05/6) for the 
comparison of the different classifiers and set to 0.05 for the analysis between left 
translation (LT) and right translation (RT) and LT or RT and P300.  

 
Figure 10: recording sites used for all experiments and the spelling console. Grey nodes depict a used 

site, REF is put at FCz and GND at AFz. Channels are referenced w.r.t. the mastoids at TP9 and TP10. 

 

2.4. mVEP classification for left and right movement 
The experiments described in this section were designed to both answer the first and 
second question stated in the introduction of this chapter. The visual interface consisted 
of nine rectangular boxes (2.5 x 1.25cm) arranged in a 3 x 3 matrix, with a 6cm inter-
target distance. The experiment consisted of 10 blocks. At the beginning of each block, 
a fixation point (+) was shown in the center of one of the targets (cued target) and gazed 
at by the subject. The stimulation sequence consisted of a vertical line segment that 
started to traverse a pseudorandomly selected target for 140 ms; 60 ms after that the 
line segment of another target started to move (thus, 60 ms inter-stimulus interval). Each 
target was stimulated 10 times in a pseudorandom order during one block. Subjects were 
asked to mentally count the number of times the line segment of the cued target moved. 
Subsequent blocks were separated by a 600 ms break during which the fixation point 
was displayed on another target, which was then immediately gazed at by the subject. 
A visual representation of one set of blocks is given in Figure 11. In total, all targets were 
cued four times in pseudorandom order yielding a set of nine blocks. All subjects 
repeated the experiment twice, once with the stimulus (i.e. the traversing line) moving 
from left to right (RT), and once with the stimulus moving from right to left (LT). Both 
experiments were counterbalanced across subjects to nullify any fatigue. A visual 
representation of the LT and RT tests are given in Figure 12 and Figure 13 respectively. 
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Data processing for both experiments were performed offline. First the raw EEG signal 
was re-referenced to the average of the mastoid signal (TP9 & TP10) and bandpass 
filtered between 1 and 10 Hz using a 4th order Butterworth filter. The signal was then cut 
into 0.95-s epochs from 200 ms pre-stimulus onset for baseline correction to 750 ms 
post-stimulus onset, baseline corrected, downsampled to 50Hz and stored for further 
analysis. The procedure resulted in 3240 epochs of which 360 for each target direction, 
40 for the intended target and 320 for non-targets. Prior to classification, the 200 ms 
baseline was removed from the epochs as this interval did not contain any stimulus-
evoked activity. Important to note is that recording was performed on a separate machine 
than the one running the experiment to nullify interference.  
 
Training of the classifiers was performed by loading the epochs, which should contain 
the mVEP located between 0 and 500 ms post stimulus, into the classifier. The accuracy 
of the classifier was tested utilizing a stratified 4-fold cross-validation where one set of 
blocks was kept out of each validation run. The trials for 3 sets of blocks were labelled 
as target/non-target and loaded into the classifier for training after transforming the data 
in the required shape described for each classifier in chapter 2. The fourth, unlabeled, 
block was then classified (after transformation). Classification was performed by first 
averaging the epochs to each of the 9 targets, the actual number of averaged epochs 
used is a parameter in judging the decoder’s accuracy. The highest score resulting from 
classification was indicated as the target. The given label was afterwards compared to 
the actual target labels to determine the accuracy.  
 
Note that channel selection has shown to improve decoder accuracy, also for the 
beamformer [12], the mVEP is predominantly present over the occipital pole and 
contralateral for the LT and RT, hence, as a result, the following channels were selected, 
LT and RT respectively:  
 

{Oz, O1, PO3, P7, P3, Pz, CP1, CP5}, 
{Oz, O2, PO4, P4, P8, Pz, CP2, CP6} 
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Figure 11: visual representation of the timing schedule of one block, the experiments consisted of 10 

blocks. 

 
Figure 12: experiment with LT option. N is the target and stimulus passes through the target (left) and N is 

target and stimulus does not pass through the target (right). 

 



 
 

28 
 

 
Figure 13: experiment with RT option. N is the target and stimulus passes through the target (left) and N is 

target and stimulus does not pass through the target (right). 

 

2.5. mVEP and P300 
The data of the previous experiments was analyzed offline and based on the shape and 
consistency of the mVEP either LT or RT was selected as a comparative. The P300 
experiment was similar to the experiment of the respective movement described above 
but showed a sudden change in color together with the moving stimulus. A visual 
representation of the experiment is given in Figure 14. 6 of the aforementioned subjects 
were selected to undergo the rightwards movement variant of the P300 experiment for 
comparison and 6 were selected to undergo the leftwards movement. 
 
The experimental data was analyzed in an analogous way as described above resulting 
in an equilibrium in epoch size and count for each target. The training of the classifiers 
was performed in an analogous way as described and since the P300 channels where 
the P300 is predominantly measured are already included in the selected channels, 
these were left unaltered. Accuracy is calculated in an analogous way.  
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Figure 14: experiment with LT option combined with the P300 option. N is the target and stimulus passes 

through the target (left) and N is target and stimulus does not pass through the target (right). 

 

2.6. On-line spelling console 
The on-line spelling consoles used for comparison utilize a free-spelling setting [17], [18]. 
To make comparison fair and relevant the on-line spelling console must have a similar 
interface. For the on-line spelling console the schematic described in [1] is implemented. 
The first proposal interface shows 36 targets (1.5 x 1.5 cm) and were set 3 cm apart from 
their closest neighbor with a unique symbol depicted above each target. The second 
proposal showed 36 target (1x1 cm) and we set 4 cm apart from its nearest neighbor. 
To increase the number of possible selections per minute the stimuli were shown per 
column and row. A visual representation is presented in Figure 15 for training and Figure 
16 for the spelling interface 

The training data is stored on the system and training of the classifier is performed in a 
similar on-line capture was achieved by storing the recorded data of the entire training 
experiment and splitting the data into epochs similarly to the method described above. 
The on-line target selection was achieved by storing the recorded data per trial into a 
buffer, splitting the data into epochs, averaging and classifying the averaged epochs.  

The classifier was trained by letting each target be the cued target and stimulating each 
row and column 5 times in a pseudorandom order per target resulting in 30 on target 
stimuli for each row and column per target.  

To calculate the accuracy of the trained classifier the subject was asked to spell the 
following set of words which collectively contain each symbol on the interface: 

'1984','607','253','XRAY','WIVES','QUEUE','CLASH','BRAIN','JAZZ', 
'MOPED','FAKE','GOAT'. 

 
The subject was asked to focus on the box below the desired symbol. Each row and 
column were stimulated three times in a pseudorandom order and resulting data from 
each stimulation was averaged. The classifier was adapted to select the cross point 
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between the highest row and the highest column as the intended target. The predictions 
made by the classifier were stored and later compared to the actual prediction to 
calculate accuracy.  
 

 

Figure 15: spelling console training session for LT option. N is the focus target. Stimuli are depicted 
column wise (left) or row wise (right). Scale of image is not accurate. 

 

Figure 16:spelling console test session for LT option. Focus target is the desired letter. Stimuli are 
depicted column wise (left) or row wise (right). Scale of image is not accurate. 

2.7. Conclusion 
In this chapter, the materials and methods utilized in the experiments and for the 
implementation of the on-line spelling console were described. All interfaces were 
created in Matlab and utilized the same recording equipment, electrode layout and data 
analysis methods.  
 
Three experiments were designed to measure the feasibility of classification, effect of 
the movement direction and effect of the addition of other ERPs to the mVEP. The 
experiments were all similar and varied in a single detail to ensure relevance of the 
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results. 12 subjects performed each one of these experiments and allow for individual 
and population comparison.  
 
The on-line spelling console BCI based on mVEP was implemented in Matlab and 2 
subjects tested the functionality of two separate proposals. The first proposal had the 
target closer to their neighbours than the second. Several test words were chosen to 
measure accuracy of the spelling console BCI to allow for the calculation of the ITR for 
comparison to the previously implemented N200 mVEP spelling console BCIs.  
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3. Results 
3.1. Introduction 

In this chapter, the results of the previous experiments and on-line spelling console BCI 
will be presented in several figures and graphs. 
 

3.2. mVEP classification for left and right movement 
The decoding accuracies of stBF, SVM, PP and SWLDA classifiers for the left- and 
rightward line movements are shown in Figure 17. The averaged (across all subjects) 
activation pattern of the spatiotemporal beamformer for the left and right movements are 
shown in Figure 18. The average time required to train and perform classification for 
each decoder is listed in Table 2. The significance of the difference between the 
classification results for the classifiers for the left- and rightward movements are given in 
Tables 3 and 4. The significance of the difference between the classification results for 
the left- and rightward movements for the same classifier types is given in Table 5.  
 
From Figure 17 it is observed that classification performances are distinctively different 
from that of a random classifier and that, for both the left- and rightward movements, the 
performance of all classifiers further improve with the number of stimulus repetitions 
used. The stBF requires 3 repetitions to reach the 70% accuracy threshold often deemed 
necessity to establish reliable communication [96]. 
 
From table 3 and 4, it can be concluded that the stBF and SVM classifiers do not show 
a significant difference in accuracy but there is a significant difference between the stBF 
and SWLDA classifiers for the case of 3 repetitions for the leftward movement and for 2 
repetitions for the rightward movement. The PP classifier performed significantly worse 
than the other classifiers. When comparing the accuracy of the spatiotemporal 
beamformer to the accuracy of the SWLDA classifier, we notice a significant drop in 
accuracy for a small number of stimulus repetitions. An explanation for this can be the 
presence of peaks not caused by the stimuli but by previously mentioned artefacts (e.g. 
movement itself rather than the onset of it). The accuracies of the stBF obtained by the 
left- and rightward movement were not significantly different (p > 0.0083) for any of the 
numbers of stimulus repetitions.  
 
When studying the activation patterns in Figure 18, an interesting result is observed. The 
mVEP appears present throughout the scalp for the rightward movement case. The 
N200 peaks appear to shift 50 ms between the left and right side of the scalp areas. In 
contrast, the activation patterns for the left translation show only dominant mVEPs on 
the left side of the scalp. The N200 peak appears less dominant in the responses 
measured on the right side of the scalp. According to previous works, the leftward 
movement should be predominantly eliciting activations on the left side of the scalp while 
the right movement should be most dominant on the right side of the scalp [9], [19], [67].  
 
Judging from the results in Table 2, the average time required to train each classifier 
shows a vast increase in computation time for the SVM and SWLDA compared to the 
beamformer. The PP could be trained faster. The ratio depicted in the table shows the 
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division of the average computing time as divided by the average computer time of the 
spatiotemporal beamformer.  
 
The results in Table 5 show no statistically significant difference between the 
classification of signal resulting from the leftward or rightward movement. The direction 
of the movement of the on-line spelling console will thus be chosen according to the 
handedness of the person, giving left-handed subjects the RT and right-handed subjects 
the LT variation. 
 

 
Figure 17: boxplots of the accuracies for stBF (red), SVM (green), SWLDA (blue) and PP (black) for RT 
(left) and LT (right). Outliers are marked by dots. x-axis depicts the number of averaged blocks used for 

testing. y-axis depicts the accuracy ranging between [0,1]. 

 
Figure 18: averaged activation pattern over all subjects for the RT (left) and the LT (right). x-axis depicts 

the milliseconds after motion-onset. y-axis depicts the recording location. 
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Table 2:summed  training and testing times for each classifier in seconds together with the standard 
deviation. Ratio is the time divided by the average stBF time. 

 
 

Table 3: Wilcoxon sign rank test between the accuracies of the classifiers for the RT option. 

 
 

Table 4: Wilcoxon sign rank test between the accuracies of the classifiers for the LT option. 

 
 

Table 5: Wilcoxon sign rank test between the accuracies of the LT and RT options for each classifier. 

 
 

3.3. mVEP and P300 
The results from the previous section showed no significant difference between the 
prediction accuracy of the left and right translation for any classification method. 
However, the activation patterns of the spatiotemporal beamformer did show a difference 
between left and right. Hence, the two cases will be handled separately. 
 
The decoding accuracies of stBF, SVM, PP and SWLDA classifiers for the right- and 
P300 right line movements are shown in Figure 19 whilst the accuracies for the left- and 
P300 left line movements are depicted in Figure 20. The averaged (across all subjects) 
activation pattern of the spatiotemporal beamformer for the right- and P300 right line 
movements and for the left- and P300 left line movements are shown in Figure 21 and 
Figure 22 respectively. The significance of the difference between the classification 
results for the classifiers for the right- and P300 right movements are given in Table 6 
whilst the significance of the difference between the classification results for the 
classifiers for the left- and P300 left movements are given in Table 7.  
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From Figure 19 and 20 it is observed that classification performances are distinctively 
different from that of a random classifier and that, for both translation directions and their 
P300 counterparts, the performance of all classifiers further improve with the number of 
stimulus repetitions used. It is apparent that for the rightwards movement P300 variant 
the spatiotemporal beamformer requires 2 averages to reach the aforementioned 70% 
accuracy mark. However, the leftwards movement P300 variant doesn’t reach the 
threshold until 6 averages are included.  
From table 6 and 7, it can be concluded that the leftwards movement nor the rightwards 
movement and their P300 variant do not show a significant difference in accuracy.  
 
When studying the activation patterns in Figure 21, the same phenomena as before can 
be observed. The mVEP appears present throughout the scalp for the rightward 
movement case. The N200 peaks appear to shift 50 ms between the left and right side 
of the scalp areas. In contrast, the activation patterns for the left translation show only 
dominant mVEPs on the left side of the scalp. A more dominant positive peak is present 
in the activation pattern for the rightwards movement P300 compared to the normal 
rightwards movement. However, for the leftwards translation both the positive and 
negative peaks are more dominant compared to the leftwards movement P300 
counterpart. Due to the instability and the increase in fatigue of subjects resulting from 
the addition of the contrast variation the P300 variant was not utilized in the development 
of the spelling console. 
 

 
Figure 19: boxplots of the accuracies for stBF (red), SVM (green), SWLDA (blue) and PP (black) for RT 

(left) and RT and P300 (right) Outliers are marked by dots. x-axis depicts the number of averaged blocks 
used for testing. y-axis depicts the accuracy ranging between [0,1]. 
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Figure 20: boxplots of the accuracies for stBF (red), SVM (green), SWLDA (blue) and PP (black) for LT 

(left) and LT and P300 (right). Outliers are marked by dots. x-axis depicts the number of averaged blocks 
used for testing. y-axis depicts the accuracy ranging between [0,1]. 

 
Figure 21: averaged activation pattern over all subjects for the RT (left) and the RT and P300 (right). x-axis 

depicts the milliseconds after motion-onset. y-axis depicts the recording location. 

 
Figure 22: averaged activation pattern over all subjects for the LT (left) and the LT and P300 (right). x-axis 

depicts the milliseconds after motion-onset. y-axis depicts the recording location 
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Table 6: Wilcoxon sign rank test between the accuracies of the different classifiers for the RT and RT and 
P300 options. 

 
 
Table 7: Wilcoxon sign rank test between the accuracies of the different classifiers for the RT and RT and 

P300 options. 

 
 

3.4. On-line spelling console 
The previous results for the accuracy of the left and right translation allow for the 
calculation of theoretical offline ITR. Given the stimulus time was 200ms per stimuli and 
was run on 12 targets, this gives us 2400 ms per target. Calculate in 600ms for target 
swapping gives us an even 3000ms per target. In other words, at maximum efficiency 
20 targets per minute can be selected (=M). The number of possible targets was 36 in 
the spelling console. Given an accuracy of 80% we can now calculate the ITR: 
 

𝐼𝑇𝑅 = 20 ∗ (logଶ 36 + 0.8 ∗ logଶ 0.8 + 0.2 ∗ logଶ
଴.ଶ

ଷହ
) = 64.44 𝑏𝑖𝑡𝑠/𝑚𝑖𝑛. 

 
Table 8 and 9 and Figure 23 and 24 represent the results of the confusion of subject 1 
and subject 2 respectively. The accuracy of the on-line spelling console proved much 
lower for the first proposal. Showing an accuracy of 3.92% for subject 1 and 13.7% for 
subject 2. Analysis of the results show a large chance of the faulty target to be within 2 
squares of the selected target. The target column of subject 1 was predicted correctly 
19.61% of the cases whilst the rows were predicted correctly 3.92% of the cases. Subject 
2 had a correct prediction for the row 29.41% of the cases and correct the column 
correctly 39.22% of the cases. The results of these initial experiments caused a second 
proposal to be constructed where the targets were smaller and moved further apart to 
counter the confusion between row and column.  
 
Table 10 and Figure 25 depict the results of subject 2 on the second proposed interface. 
The accuracy has effectively doubled to 27.45%. The row was predicted correctly 33% 
of the cases whilst the column was predicted correctly 47.06% of the cases. The second 
interfaces results showed a decrease in faulty predictions by 27.28% showing not only 
an effect on the confusion by the classifier but also resolving any confusion resulting 
from the training session of the classifier.  
The on-line information transfer rate was calculated from the data of subject 2 for the 
second proposed method. The number of possible targets was set a 36. 51 targets were 
selected during 10.26-minute session. Thus, the number of selections per minute 
becomes 4.97. The accuracy was calculated to be 27.45% resulting in the ITR being: 
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𝐼𝑇𝑅 = 4.97 ∗ (logଶ 36 + 0.2745 ∗ logଶ 0.2745 + 0.7255 ∗ logଶ
଴.଻ଶହହ

ଷହ
) = 17.08 𝑏𝑖𝑡𝑠/𝑚𝑖𝑛. 

 
It is important to note with this result that firstly, one test using one subject is not a valid 
evaluation basis for any test. Secondly, BCI commonly require the subject to be trained 
before effective communication can be established.  
 

Table 8: confusion of subject 1 on the first proposed interface. 

 
 

Table 9: confusion of subject 2 on the first proposed interface. 

 
 

Table 10: confusion of subject 2 on the second proposed interface. 

%  
 

 
Figure 23: chance of the predicted target being in the vicinity of the actual target for subject one for the first 
proposed interface. The remaining predicted targets (52.94%) were not in proximity of the intended target. 
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Figure 24: chance of the predicted target being in the vicinity of the actual target for subject 2 for the first 

proposed interface. The remaining predicted targets (49.02%) were not in proximity of the intended target. 

 
 

 
Figure 25: chance of the predicted target being in the vicinity of the actual target for subject 2 for the 

second proposed interface. The remaining predicted targets (33.33%) were not in proximity of the intended 
target. 

3.5. Conclusion 
In this chapter, three questions were answered. The spatiotemporal beamformer is as 
accurate as other used classification methods in other works for the classification of the 
mVEP whilst showing a significant classifier training speed increase resulting in the 
possibility for on-line application.  
 
No significant difference was observed in the difference of the translation direction for 
classification accuracy for any of the classifiers. The on-line spelling console was set to 
correspond with the handedness of the subject. 
 
No significant difference was observed by the addition of a P300 component to the 
classification accuracy for any of the classifiers whilst an increase in fatigue rate was 
noted. The P300 variation was not used in the on-line spelling console.  
 
The on-line spellings console showed an ITR of 17.08 bits/min. The mVEP appears to 
show a strong sensitivity to peripheral stimulation. The distance between targets is thus 
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a crucial factor in the accuracy of the mVEP BCI. Note that more test must be performed 
on different subject to create a valid evaluation of the BCI. 
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4. Conclusion 
4.1. Discussion 

In this work, a spatiotemporal beamformer was used to classify mVEP responses in a 
multi-target BCI context. From the processed data we can conclude that the stBF shows 
no significant difference in accuracy compared to the SVM and SWLDA classifiers, 
previously used for mVEP classification. However, the big advantage is that the 
spatiotemporal beamformer can be training significantly faster. This renders the stBF a 
viable candidate for online BCI use. The peak picking method was reported to yield much 
higher accuracies which may be used as an indicator to how trained the subjects of the 
experiments were to mVEP-based BCI [9], [17]. Recently, deep neural networks and 
adaptive on-line classifiers have been used for the decoding of mVEP which may be 
compared to the stBF in an on-line setting [8], [10], [70].  
 
The mVEP template of the stBF for the leftward movement showed prominent responses 
over the left hemisphere; for the right hemisphere there was a dominant positive peak 
300-350 ms after stimulus onset. For the rightward movement, the mVEP was present 
over both hemispheres. The N200 response on the left side of the scalp showed a 
decrease in peak amplitude and a 50ms delay. The delay has, to my knowledge, not 
been documented before since most studies on mVEP focus on a set time point to depict 
the scalp signals [9]–[11]. The difference in accuracies between left and right translation 
proved insignificant. The choice was therefore concluded to be up to preference or 
handedness of the subject. A third option for translation exists in the contraction of the 
stimuli. The contraction was reported to elicit the strongest mVEP [9]. In the future this 
variant could be explored to study the significance between LT, RT and contraction.  
 
The combination of the mVEP and P300 paradigms did not show any significant 
improvement for accuracy of any classifier. The activation patterns for the right 
translation show and increase in positive amplitude and minor change in negative value 
when adding the P300; the activation pattern for the left translation showed a decrease 
in both positive and negative amplitudes. The accuracy for the addition of the P300 to 
the normal translation was insignificant. These results, combined with the increase in 
fatigue caused by the flashing stimuli of the P300 oddball, makes us conclude that a 
combination of the mVEP and P300 paradigms is best avoided.  
 
The results of the spelling console showed mVEP to be a sensitive paradigm to 
peripheral stimulation. A minimum distance between possible targets is advised when 
creating a mVEP-based BCI. The proposed BCI system would not require flashing which 
poses little discomfort and less fatigue on BCI users. Comparing the results of the on-
line BCI has proven difficult since most on-line mVEP BCI utilized a completely different 
interface layout for the presentation of the stimuli [2], [10], [17], [70]. Comparing the result 
of our offline ITR makes it one of the best variants for this interface [17], [18]. The 
comparison of the on-line mVEP based spelling console BCI to other variants using their 
interface would prove an interesting future work. The clever adaptation of the interface 
is a way to improve the ITR of the BCI. 
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4.2. Conclusion 
In this study, we have shown that the spatiotemporal beamformer is at par with the best 
mVEP classifiers for a larger quantity of averaged epochs. The difference in accuracy 
showed significant for a lower number for both the left and the right translation with the 
SWLDA classifier. The stBF performed on par with the SVM and significantly better than 
PP. However, the spatiotemporal beamformer requires a dramatically smaller training 
time making it a viable option for online BCI.  

The movement direction of the stimuli does not lead to a significant difference in accuracy 
when accounting for the difference in mVEP scalp distribution. The addition of the P300 
paradigm to the experiment did not show the expected results and is therefore ill-
advised.  

The creation of a mVEP-based spelling console can be achieved provided the interface 
keeps a minimum distance between targets due to the sensitivity of the paradigm. The 
implemented console can reach a higher information transfer rate when comparing it to 
similar mVEP-based spelling consoles for offline use. No online console using a similar 
interface was found for comparison. The speller needs more subjects and some 
alterations in interface before becoming a communication method for the disabled.  

Future works can be the testing of the spelling console on more subjects and eventual 
implementation on a tablet platform to be used by patients in hospitals. Several other 
interface layouts can be explored to study the effect on ITR. Other applications using 
mVEP BCI can also be explored. 
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