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Abstract

Ecophysiological models for crop growth are widely used to simulate crop yield and grain quality
under a range of environmental and crop management conditions. These models incorporate
many basic principles of plant ecophysiology, but they often do not yet accommodate for the
increasing knowledge in plant genetics and genomics. There is still an important knowledge
gap between genotype and phenotype due to the complex regulation of physiological properties
like drought. This regulation is also heavily influenced by environmental factors like vapour
pressure deficit and temperature.

By combining the results of a proteomic analysis with the ecophysiological model, the proteins
that are differentially expressed can be linked to different variables that are hard to measure,
but easy to simulate. In this study, the models of Penman-Monteith, Cropsyst and HydGro
were combined to simulate the water balance in a wheat plant. More precisely, transpiration,
water uptake, storage and transport during well watered and water deficit conditions were
compared. To do this, several parameters were measured both in the environment and of the
plant itself, like air temperature, humidity, soil moisture and stem sap flow. The physiological
changes when the plant adapts to drought stress are discussed and linked to the changes in
protein content. Moreover, a drought index is constructed that differentiates between drought
caused by a high atmospheric demand and drought caused by a soil water deficit.

In this research, we prove that the process of grain filling has to be incorporated in the HydGro
model to accurately simulate drought in wheat. We also show that the increase and decrease
in stem diameter as a response to water transport in wheat differs from trees.
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Samenvatting

Ecofysiologische modellen voor de groei van gewassen worden vaak gebruikt om de opbrengst
en graankwaliteit te simuleren onder verschillende omgevings- en management condities. Deze
modellen zijn gebaseerd op verschillende basis principes van de planten ecofysiologie, maar zij
houden vaak nog geen rekening met de toenemende kennis in de plantengenetica. Er is nog
altijd een kennishiaat tussen het genotype en fenotype van de plant door de complexe regulatie
van fysiologische responsen zoals droogte. Deze regulatie is bovendien sterk beïnvloed door
omgevingsfactoren zoals de vapour pressure deficit en de temperatuur.

Door het combineren van een proteoomanalyse met een ecofysiologisch model kunnen de
proteïnen die differentieel tot expressie werden gebracht, gelinkt worden aan verschillende
variabelen die misschien moeilijk te meten zijn, maar gemakkelijk te simuleren. In dit
onderzoek werden de modellen van Penman-Monteith, Cropsyst en HydGro gecombineerd om
de water balans in een tarwe plant te simuleren. Meer bepaald transpiratie, wateropname,
-opslag en -transport in goed bewaterde en in droogte condities werden vergeleken. Hiervoor
werden verschillende parameters gemeten zowel in de omgeving als in de plant zelf, zoals
luchttemperatuur, luchtvochtigheid, bodem watergehalte en sapstroom in de stengel. De
fysiologische veranderingen wanneer de plant zich aanpast aan droogte worden besproken en
gelinkt aan de veranderingen in proteïne inhoud. Bovendien werd een droogte index opgesteld
dat een onderscheid maakt tussen droogte door een droge lucht en droogte door watertekort.

In dit onderzoek wordt aangetoond dat het proces van korrelvulling moet opgenomen wor-
den in het HydGro model om droogte correct the kunnen simuleren in tarwe. Bovendien
wordt gedemonstreerd dat het zwellen en krimpen van de stengeldiameter als gevolg van
watertransport in tarwe verschilt van bomen.
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Chapter 1

Introduction

Ecophysiological models for crop growth are widely used to simulate crop yield and grain quality
under a range of environmental and crop management conditions. These models incorporate
many basic principles of plant ecophysiology, but often they do not yet accommodate for
the increasing knowledge in plant genetics and genomics. Incorporating genetic information
could improve our understanding in the control of physiological processes and increase the
simulation accuracy by incorporation of an additional process (White, 2006). Furthermore, by
simulating the effect of a combination of genes, one could design new ideotypes, specifically
adapted for future climates or new areas.

Cereals constitute the basic staple foods of humankind and it is a cheap source of protein. Due
to the constant increase in population, there is an everlasting increase in demand, and pressure
on resources will increase even further. Meanwhile, quality, plant health, food safety and
respect for the environment are becoming increasingly important to the consumers, making
plant production systems evolve regularly (Génard et al., 2016). Scientists and breeding
companies need to ensure yield stability, while at the same time increase productivity. Crop
cultivation will need to extend to less favourable soils. Moreover, in the face of climate change,
breeders not only need to develop varieties for the current environments, but also need to think
forward and adapt the current varieties to even more extreme conditions (Xu & Buck-Sorlin,
2016).

Wheat is one of the most important crops worldwide. In important wheat growing areas in
the world, high temperatures often arise at the end of the growing season. This can lead to
drought stress during the grain filling period (Araus et al., 2008), also known as ‘terminal
drought’ (Reynolds et al., 2005). It is a major reason for yield losses since it results in a poor
grain set (Farooq et al., 2014).
In the face of global warming, regions where drought prevails will only increase both in
frequency and in duration. Heat waves are also very likely to occur more often and last longer,
this in combination with more intense and extreme precipitation events (IPCC, 2014). A
thorough understanding of the molecular and physiological mechanisms of drought adaptation
can lead to more resistant, high yielding crops in these environments. At the moment, most of
the knowledge is based on the model plant Arabidopsis thaliana.
There is an urgent need to better understand the molecular basis of drought regulation in
crops like wheat. Since wheat is a hexaploid, genetic research is cumbersome and slowly
evolving. Integrating differential expression of genes within growth models can accelerate the
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2 CHAPTER 1. INTRODUCTION

learning process and quickly point out key regulating genes.

In this research the wheat cultivar Hartog was used to study drought and its regulation during
grain filling. Soil moisture and sap flow were measured to indicate drought in the plants. Since
the atmosphere is a major determinant in the water demand of the plant, several athmospheric
parameters were also measured. The wheat plants were monitored in a well watered condition
as a control and in a water deficient condition to study drought. But more importantly, an
ecophysiological model was built based on the already existing models of Penman-Monteith
(Allen et al., 1998), Cropsyst (Stöckle & Nelson, 2003) and HydGro (Steppe et al., 2006).
Measurements of air temperature, net radiation and humidity serve as an input to calculate
potential and actual transpiration of the wheat plant, while sap flow measurements are the
input to determine a whole array of physiological variables, the most important being the
sap flow to the storage compartments and the waterpotentials of the xylem and storage
compartments. These are all calculated for the stem, the leaves and the ear separately.
With the simulations of the potential transpiration and the sap flow measurements, a first
draft of a drought index was created that is able to distinguish drought caused by a high
atmospheric demand from drought due to soil water deficit.
In a second part of this research, proteins were extracted and analysed with liquid chromatog-
raphy and mass spectrometry at different time points during the drought stress. The change
in proteins and their concentration was then linked to different physiological parameters in
the plant, both measured and simulated. The goal was to see if proteins that are important to
the drought response of the plant could be identified and linked to physiological parameters,
both measured and simulated.

This research is a first attempt to combine genetic information with ecophysiological modelling
and to prove the additive benefits of bringing these two research fields together. Incorporating
the genetic regulation within the model was not yet achieved since the experimental design
did not allow for this, but it is a logical next step in future research. However, by building and
using an ecophysiological model, we were able to show a methodology to link hard-to-measure
parameters in the plant to the expression of stress-induced proteins, something that indicates
the benefit of using models in genetic research.



Chapter 2

Literature study

2.1 Wheat growth

Wheat (Triticum aestivum L.) can be classified as winter or spring wheat. The former needs
vernalization, while the latter has limited vernalization requirements for normal development
and can be planted after winter (Simmons et al., 1995).
Wheat growth can be described in 9 to 11 stages, depending on the source. A popular system
for describing these stages is the decimal code, also called the Zadoks system, in which the
first digit refers to the principal stage. The second digit subdivides the principle stages into
sub-stages. This staging system is however not completely chronological, making it unsuitable
for modelling. Instead the Feekes-Large system is used, which is based on growing degree days.
It is less detailed, but makes it possible to determine the growth stage based on the thermal
time accumulation (Simmons et al., 1995; Zheng et al., 2014).

Growth starts at the germination of the sown kernel (Figure 2.1). The coleoptile is formed
and when it emerges from the soil at the emergence stage, it stops growth. At the same time,
the first true leaf pushes through (Simmons et al., 1995).
During the juvenile stage, more nodes, leaves and tillers are formed. Tillers arise at the point
of attachment of the coleoptile and the lower leaves on the main shoot. On average, a wheat
plant will produce up to eight or nine leaves and three tillers, but this number differs for
different varieties and field conditions.
Floral initiation starts when the head, or the ear, is formed inside the flag leaf (the last
leaf). It is still microscopically small at this time, but the floral structures and kernels
are initiated. When the formation is complete, the top internodes of the main stem begin
elongating (‘jointing’ stage), starting from the fourth internode. The last stem segment, the
peduncle, carrying the ear elongates the most. At the time it reaches its final length, the
individual florets prepare to be fertilized. The ear is still enclosed by the flag leaf, which shows
now a swelling, typical for the ‘boot’ stage.
Finally, the ear is pushed out in the ‘heading’ stage. A few days later, flowering and (mostly
self-) pollination begins in the middle of the ear and progresses up and down (Simmons et al.,
1995; Zheng et al., 2014).
The ‘grain filling’ stage consists of three phases. First, the number of endosperm cells increases
without much weight gain. This stage is guided by hormones and negatively influenced by
temperature and drought stress (Hess et al., 2002; Ho, 1988). Second, the kernels begin
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accumulating starch an proteins rapidly until their maximum dry weight. And finally, they
lose much of their water content, making the kernels brown and hard. High temperatures
decreases the grain weight and shortens the grain filling period (Dias & Lidon, 2009).
Maturity of the plant is reached when the head and peduncle lose their green colour (Simmons
et al., 1995; Zheng et al., 2014).

Figure 2.1: Different growth stages of in this case barley, but the same principle applies to wheat
(Simmons et al., 2013).

2.2 Drought resistance

2.2.1 Morphological and physiological drought adaptation

Of all the environmental abiotic stresses (drought, cold, high salinity, etc.), drought or water
deficit is the most severe limiting factor of plant growth and crop production (Seki et al.,
2001). Drought is the condition in which the amount of available water in the environment
does not meet the requirement of the plant due to high transpiration rates (Tuberosa, 2012).
Light interception by the leaves and stomatal opening causes plant transpiration. In case of
water deficit, this transpiration can lead to drought stress.
Drought resistance is then the capacity of the plant to maintain biomass accumulation under
a given soil water deficit (Luquet et al., 2016).

The availability of water in the soil-plant-atmosphere continuum (SPAC) is expressed in terms
of water potential. Water is transported from high to low water potentials. All water potential
values in the SPAC are negative with the atmosphere having the lowest value. This means that
water flows from the soil through the plant and evaporates by the leaves into the atmosphere
through suction forces exerted by the atmosphere. This force is called the vapour pressure
deficit (VPD). The flow rate of water between two organs depends on the water potential
difference (∆ψ) and the hydraulic resistance (R; Elfving et al., 1972; De Swaef et al., 2012).
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Drought resistance is often linked to water use efficiency (WUE). WUE has several different
definitions when used for different purposes (Tambussi et al., 2007). Overall, it expresses the
amount of dry matter produced per unit of invested water.
WUE is a major determinant in grain yield under drought stress (Passioura, 1977). Normally,
a better (higher) WUE means the plant uses the scarce water supply more efficiently which
leads to a higher biomass. Yet in cereals, it can be negatively correlated with grain yield when
water is plentiful (Blum, 2005, 2006, 2009). In some cases, a lower WUE (more wasteful with
water) means that the plant is able to extract more water from the soil whilst maintaining
a higher stomatal conductance. Photosynthesis is therefore higher which results in a higher
yield (Merah, 2001; Blum, 2006, 2009; Tuberosa, 2012). When soil moisture is limited however,
these plants will not support biomass accumulation for long (Tambussi et al., 2007; Barnabas
et al., 2008).
This shows that WUE cannot be equated to drought tolerance, since it is the ratio of two
agronomic entities (yield and crop water use) that are not necessarily linked. Instead, it can
merely be used as an indication for drought tolerance (Blum, 2005; Tuberosa, 2012).

Plant mechanisms to overcome water deficiencies do not necessarily coincide with an increased
ability of cells to survive tissue dehydration (Cushman & Bohert, 2000). Instead, drought
resistance is expressed in terms of tolerance and avoidance traits (Levitt, 1972; Luquet et al.,
2016).

Drought avoidance

Blum (2005) defines drought avoidance as the conservation of a high plant water status or
cellular hydration under the effect of drought. Drought can be avoided by an enhanced capture
of soil moisture and limited crop water loss (Blum, 2005). This is achieved both in the long
and short term.

In the long run, early vigour is important to optimize WUE. It establishes a fast ground cover,
deep rooting system and reduces early loss of water due to evaporation. This way, more stored
water will be available to the plant in later developmental stages (Slafer et al., 2005; Richards,
2006). Excessive early growth can however cause an early depletion of soil moisture, so there
is always a trade-off (Tuberosa, 2012). An improved early vigour has however already led to
better yielding wheat varieties (Asseng et al., 2003).
The root size and architecture is important to access the water stored in the soil when water
is limited or when competition between neighbouring plants limits the accessibility (Sharp
et al., 1988; King et al., 2009; Tuberosa, 2012).
Flowering time is the most critical factor for a plant to adapt to environments differing in
water availability and distribution (Richards, 2006). It allows the plant to start the grain filling
stage when water availability is starting to reduce. For annual crops in temperate regions like
wheat, the genetic basis is quite complex, as the flowering time is not only influenced by water
availability but also by temperature and day length (Distelfeld et al., 2009; Salvi et al., 2011).
Other small adaptations of the plant are an increased epicuticular wax layer to increase the
crop albedo (Holmes & Keiller, 2002) and hence decrease the transpiration. Albedo is the
reflection of the radiative energy by the canopy (Blum, 2005). So by increasing the albedo,
less energy is intercepted by the plant, leading to a reduced transpiration.
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Plants can avoid drought stress in an immediate way by affecting plant water demand, light
interception, photosynthetic conversion, transpiration efficiency and the control of various gas
exchanges (Luquet et al., 2016). The stomata close, leaf growth is ceased and early senescence
is started (Tardieu, 2003). These adaptations reduce water loss by transpiration. However,
also photosynthesis and growth is reduced (Reymond et al., 2003), since the diffusion of CO2
is also diminished. In other words, during the regulation of the stomata, there is a trade-off
between the photosynthetic gain and water loss (Cowan & Farquhar, 2012; Katul et al., 2010;
Manzoni et al., 2011; Medlyn et al., 2011; Prentice et al., 2014; Sperry et al., 2016).
While the older leaves are selectively killed, stomatal conductance and photosynthesis is
retained as long as possible in the younger leaves by osmotic adjustment (OA; Blum, 2005).
OA is the metabolic process in response to drought stress resulting in a net increase in
intercellular solutes (Morgan, 1984; Zhang et al., 1999; Serraj & Sinclair, 2002). This ensues
water import and thus cell turgor maintenance. In wheat, OA has been shown to sustain yield
under drought (Ali et al., 1999; Blum et al., 1999; Fan et al., 2008; Izanloo et al., 2008). Yet
genotypes with a high capacity to adjust osmotically are likely to show reduced growth rates,
due to the high metabolic cost of these osmolytes (Munns, 1988; Serraj & Sinclair, 2002; Palta
et al., 2007).

Overall, the reduction in growth under drought stress can have two origins, sink limitation
and source limitation, and depends on the level of drought stress (Luquet et al., 2016). Under
moderate drought stress, plants will store their internal reserves. ABA (abscisic acid, see
Section 2.2.2) stimulates enzymes for sucrose-to-starch conversion (Yang et al., 2004). Starch
is not osmotically active, so the cell water demand will decrease, making the sinks less water
and nutrient demanding (sink limitation).
At higher water deficiencies, bio-accumulation is hindered due to the reduced photosynthesis.
Growth ceases simply because of the lack of nutrients and water (source limitation; Luquet
et al., 2008, 2016; Pantin et al., 2011). At this moment, ABA suppresses the rate of cell
division in endosperm for example to prevent further damage (Myers et al., 1990).

Since yield is the main goal in crop development, it is the aim of most research groups to
develop plants that are not simply tolerant to water deficit, but optimize the trade-off between
water use and biomass accumulation (Tardieu, 2003). This would not necessarily require a
greater photosynthetic potential, but could also result from a better storage management
(improved sink limited growth; Luquet et al., 2016).
For example, plants displaying the limited-transpiration trait show a higher yield in almost all
environments (Sadok & Sinclair, 2010; Sinclair et al., 2016). This trait constrains the plant
transpiration under high atmospheric VPD conditions, conserving early-season soil water for
the seed filling stage (Sinclair et al., 2016).

Drought tolerance

When the previous adaptations do not prevent severe dehydration, the plant defence starts
and processes classified under drought tolerance mechanisms are invoked. This way, the plant
is able to maintain (partial) functionality in the dehydrated state (Blum, 2005). The purpose
of the drought tolerance mechanisms is survival of the plant, rather than maintaining growth.

Extreme cases of drought tolerance (also termed dehydration or desiccation tolerance) are
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known in resurrection plants (Blum, 2005). They are able to enter a dormant state that
ensures their survival when no, or little, water is present. Other examples in which drought
tolerance effectively protects and saves the plant in the long term are rare. At the base of this
scarcity is the selection (both natural and by man) of avoidance traits over tolerance traits as
the main strategy for dealing with drought (Blum, 2005).

The few known tolerance mechanisms comprise remobilization of stem water-soluble carbohy-
drates (WSC) and accumulation of molecular protectants (Tuberosa, 2012).
To nullify the negative effects of post-anthesis drought on grain filling, WSC can be remobilized
from the leaves and stem to the grains (Blum, 1998; Rebetzke et al., 2008). Thus even when
photosynthesis has arrested due to stress, effective grain filling still occurs (Blum, 2005).

2.2.2 Molecular control and genetic pathways

Hormones are important regulators in the adaptation of plants to their environment, including
stress. Changes in auxin and ABA (abscisic acid) have been shown in drought experiments.
As mentioned before, the plant will regulate its growth when confronted with water deficit.
Auxin is an important phytohormone that regulates plant development during drought (Ludwig-
Müller, 2011; Sharma et al., 2015). Auxin Response Factors (ARFs) are upregulated in the
flag leaves of stress tolerant wheat genotypes (Liu et al., 2016, 2017). These bind to conserved
elements within the promoters of auxin-responsive genes (Hagen & Guilfoyle, 2002; Guilfoyle
& Hagen, 2007).

For a long time, ABA has been known to be the main signal in immediate stress responses
(Seki et al., 2002; Rabbani et al., 2003; Christmann et al., 2006; Adie et al., 2007; Christmann
et al., 2007; Ton et al., 2009). Its levels increase during stress and decrease again when the
stress is relieved (Zeevaart, 1980). Moreover, this response is rather quick, as already 4 to 5
hours after the stress, maximum ABA levels are reached (Zeevaart, 1980).
How a reduction in soil water potential is translated into physiologically active ABA levels
is still largely unknown (Raghavendra et al., 2010). A hydraulic signal is induced primarily
in vascular tissues by drought, but also other stresses like cold and high salinity can start
this signal. It is then transported rapidly through the vascular tissue to the leaf cells and
grain tissues where it induces ABA synthesis (Christmann et al., 2007). The ABA targets
are mainly ion channels and transcription factors, activating the ABA-responsive genes. A
common result of ABA signalling are the changes in transcription patterns of the responsive
genes that will be thus up or down regulated. Not only genes for drought tolerance, like
guard cell responses, root growth and osmoregulation, but also genes for seed development are
affected (Sharp et al., 1988; Zhu, 2002; Sirichandra et al., 2009).

For example, when drought is perceived by the plant, ABA mediates stomatal closure. Several
ion and proton channels are activated in the guard cells. This depolarizes the guard cell
plasma membrane (Levchenko et al., 2005; Siegel et al., 2009; Sirichandra et al., 2009). Water
is transported out of the cells and turgor pressure weakens, enabling stomatal closure (Figure
2.2a).

In case of transcriptional regulation, transcription factors are phosporylated by protein kinases
and thus activated (Johnson et al., 2002; Zhu et al., 2007). Two different ABA-dependent
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pathways exist here (Yamaguchi-Shinozaki & Shinozaki, 1993; Riera et al., 2005). In the first
pathway, the promoters of the drought-inducible genes contain an ABA-Responsive Element
(ABRE; Shinozaki & Yamaguchi-Shinozaki, 2000, see also Figure 2.2b). These motifs are
target binding sites for the b-zip transcription factors (ABFs or ABRE-Binding Factors; Choi
et al., 2005; Finkelstein et al., 2005). Binding of the transcription factor will activate the gene.
In the second pathway, ABA induces an AP2-type and MYC/MYB transcription factors
(Yamaguchi-Shinozaki & Shinozaki, 2006, see also Figure 2.3). The corresponding drought-
responsive genes have MYC/MYB recognition sequences (Urao et al., 1993; Abe et al., 1997,
2003).

Figure 2.2: ABA-signaling pathways. (a) regulation of ion channels in stomatal closure. (b) activation
of drought-responsive genes (Raghavendra et al., 2010).

However, also an ABA-independent response pathway has been identified (Yamaguchi-Shinozaki
& Shinozaki, 2005, see also Figure 2.3). There, the DREB (DRE-Binding) transcription factors
recognize the DRE/C core motif (Dehydration Responsive Element C repeat; Riera et al.,
2005). What induces these transcription factors is not yet known.
Riera et al. (2005) conclude that the ABA-based signalling pathway is the predominant factor
in primary or rapid responses to drought. This was proven by Finkelstein et al. (2002) and
confirmed by Riera et al. (2005), were all mutants affected in their drought tolerance had an
altered sensitivity towards ABA. This was either due to an affected ABA biosynthesis or due
to an altered perception. These mutants were the base for identifying key regulatory genes
(Riera et al., 2005).

By changing its gene expression, a plant under water deficit will repress cell growth and
photosynthesis while activating respiration. They will also bring about the accumulation of
osmolytes and stress tolerance proteins, as already mentioned in Section 2.2.1.
The different induced genes will not be summarized or explained in this work. In short, the
drought-inducible genes of Arabidopsis and rice can be classified into two groups (Rabbani
et al., 2003; Shinozaki et al., 2003). The first group are the regulatory proteins. These are the
transcription factors and protein kinases, some of which have already been discussed. They
arrange further regulation of signal transduction. The second group includes the functional
proteins e.g. enzymes for osmolyte biosynthesis, water channel proteins and many more (see
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Figure 2.3: Crosstalk among several ABA-independent and ABA-dependent stress responsive path-
ways (Riera et al., 2005).

Figure 2.4).

Often, the genes induced as a response to drought are also responsive to high salinity and cold
(Seki et al., 2002), suggesting cross-talk between the different signalling pathways.
Further downstream of the signalling pathway, a striking similarity leading to cross-talk is the
shared core motif (DRE/C) in both promoters of dehydration-responsive and cold-responsive
elements (Yamaguchi-Shinozaki & Shinozaki, 1994; Haake et al., 2002). So transcription
factors like DREB or CBF (Cold Binding Factor), can either be activated by drought ór cold
but can induce the expression of both response elements (Figure 2.3). Crosstalk is also possible
with biotic stresses (Cheng et al., 2013).

2.3 Crop models

Crop models have been in use for decades to simulate and predict physiological processes
and genetic traits (Duncan et al., 1978; Landivar et al., 1983a,b; Elwell et al., 1987) and to
understand crop responses to environmental and management changes.
Mechanistic crop simulation models describe photosynthesis, respiration, translocation and
partitioning (Boote et al., 1998). Integration of these processes returns biomass accumulation
and yield over time (Boote et al., 2016). Ecophysiological models include environmental
variables like temperature, relative humidity, water and soil nitrogen availability (Boote et al.,
2016). These environmental inputs influence the processes within the crop, e.g. timing of
flowering, onset of reproductive growth, rate of leaf node appearance, leaf area expansion,
height increase,... But these traits are also shaped by the genetic make-up of the plant species
or even the plant cultivar (see also G×E interaction in Section 2.4). The different values of
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Figure 2.4: Function of drought-inducible genes in stress tolerance and response (Shinozaki &
Yamaguchi-Shinozaki, 2007).

the model parameters are considered to represent genetic diversity. They are therefore called
cultivar-specific parameters. One set of parameters represents one genotype (Tardieu, 2003).

2.4 Modelling genotype by environment interaction

A genotype cultivated under different environmental conditions, yields different phenotypes.
This is called phenotypic plasticity and is visualized by reaction norms (DeWitt & Scheiner,
2004). The reaction norms of different genotypes can be parallel, but can also be non-
parallel. This indicates the existence of genotype by environment (G×E) interaction (Finlay
& Wilkinson, 1963; van Eeuwijk et al., 2005). An extreme (and most important) form of
G×E interaction is cross-over interaction, where the ranking of the genotypes varies with the
environmental conditions (Baker, 1988; Crossa et al., 2004; Bustos-Korts et al., 2016).
The existence of G×E interaction means that when a genotype is known (phenotypic evaluations
of that genotype in other environments) and when an environment is known (evaluations
of other genotypes in that environment), it does not mean one can necessarily predict its
phenotype in that environment (Bustos-Korts et al., 2016).

In plant breeding, the assessment of this G×E interaction is one of the major foci and is
very hard and time consuming to detect with the classical methods. Until recently, this was
primarily done with statistical models, but crop models are becoming amply accurate to
account for environmental and management effects (Boote et al., 2016). Bustos-Korts et al.
(2016) explain how the phenotype yij can be predicted by means of a linear mixed model
(LMM), either via the fixed part of the model, or the random part (underlined):

yij = µj + xiαj + βizj +GEij + eij (2.1)
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where yij is the phenotype of genotype i in environment j. For prediction via the fixed part,
one needs molecular markers (xi) and environmental covariables (zj). Instead of molecular
markers, pedigree information can also be used (Crossa et al., 2010). The slopes, αj and βi, are
estimated via a regression analysis. This requires enormous amounts of phenotypical data. For
prediction via the random part, one needs correlations among genotypes and environments.

Of course, crop growth models would simplify these methods: the output is modelled by
interaction between physiological parameters and environmental information (Chapman et al.,
2002; Hammer et al., 2002, 2006, 2010; Chapman, 2008). Boote et al. (2016) propose in addition
that by using crop models, dynamic phenotypes can be predicted in new environments, where
statistical models are limited to the same environment.

2.5 Modelling genes

The goal of modelling genes is to predict phenotypic performance as a function of genes,
transcripts, proteins and even metabolites (Boote et al., 2016). White & Hoogenboom (2003)
identified six levels of genetic detail that can be included in plant growth and development
models (Table 2.1). Most crop models like APSIM (Zheng et al., 2014), CROPGRO (Boote
et al., 1998), BEANGRO (Hoogenboom et al., 1994) and Cropsyst (Stöckle et al., 2003)
correspond to level 3. They discriminate between cultivars through cultivar-specific parameters
like maximum grain size or maximum expected transpiration. These parameters are also called
‘genetic coefficients’ (White & Hoogenboom, 1996), ‘model-input traits’ (Yin et al., 2000)
or ‘genotype-specific parameters’ (GSP; Boote et al., 2016). They are usually determined
empirically through calibrations using phenotypic data (White, 2006; Boote et al., 2016).
By substituting the cultivar-specific parameters with the effects of certain alleles, one can
upgrade a model from level 3 to level 4. Most current models are on level 3. Level 4 is being
developed in several research groups (Baldazzi et al., 2016). Level 4 gives the benefit that
the parameters can be estimated using genetic data obtained through a simple marker or
other genetic analysis. If all genetic coefficients could be described like this, calibration would
become redundant.

Table 2.1: Different levels of genetic detail in crop models (White & Hoogenboom, 2003).

(1) Generic model with no reference to species.
(2) Species-specific model with no reference to genotypes.
(3) Genetic differences represented by cultivar-specific parameters.
(4) Genetic differences represented by specific alleles, with gene

action/gene effects represented through linear effects on model
parameters.

(5) Genetic differences represented by genotypes, with gene action
explicitly simulated based on knowledge of regulation of gene
expression and effects of gene products.

(6) Genetic differences represented by genotypes, with gene action
simulated at the level of interactions of regulators, gene-
products, and other metabolites.
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Different approaches for implementing information from conventional genetics and genomics
are possible. The two most common approaches are gene-based modelling and QTL-based
modelling. They are classified as classical approaches, where the model parameters are specified
as a function of gene or QTL effects respectively using simple empirical relations (Baldazzi
et al., 2016). These are further discussed in Sections 2.6.1 and 2.6.2. They result in a level 4
of the classification according to White & Hoogenboom (2003).
New approaches, in which complete regulatory networks are integrated, are starting to develop
under the name of crop systems biology (see Section 2.7). They respond to level 5 and 6 of
the classification.

2.6 Classical approaches

2.6.1 Gene-based modelling

In gene-based modelling the linear equations, replacing the cultivar-specific parameters,
represent additive and epistatic gene effects. An important example is the GeneGro model
developed by Hoogenboom et al. (2004), which uses the effect of merely seven genes in common
bean (Phaseolus vulgaris) to replace all 30 cultivar-specific parameters in the BEANGRO
model (Hoogenboom et al., 1994). The independent variables reflected gene loci and were
assigned a value of 1 for homozygous dominant loci and 0 for recessive loci. An example of a
linear equation would be (for the photoperiod sensitivity slope, PPSEN):

PPSEN = 0.004 + 0.0154 × Ppd+ 0.036 ×Hr − 0.0104 × Ppd×Hr (2.2)

with Ppd and Hr the expression values (0 or 1) of the genes for ‘basic photoperiod response’
and ‘enhanced effect of Ppd’ respectively (Hoogenboom et al., 2004). GeneGro simulated
growth and development as well as BEANGRO, but has the advantage that no field calibration
data is necessary (Hoogenboom et al., 2004). Moreover, validation experiments with 17 new
cultivars in new environments revealed that GeneGro could successfully simulate performances
of new genotypes in new environments. G×E interaction was partially explained (White, 2006;
see also Section 2.4).

More recently, this approach has also been included into the soybean simulation model
CROPGRO-soybean (Messina et al., 2006). Six loci were used to characterize the effect on
growth and development. Zheng et al. (2013) demonstrated that the flowering time of spring
wheat genotypes could be modelled using different allelic combinations of only two genes,
VRN1 and Ppd-D1. Bogard et al. (2014) did the same for winter wheat while using major
genes and SNPs (single nucleotide polymorphisms) derived from association mapping.

Even though modelling of genes directly gives a much larger opportunity of interpreting the
regulation mechanism on a molecular level, not many examples like this exist in literature,
due to the lack of known regulating genes. Only a few, if any, important genes are known for
the trait and cultivar of interest. This is still not enough to use as input parameters in an
ecophysiological model, which is why modelling of QTLs is more common.
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2.6.2 QTL-based modelling

QTLs, or Quantitative Trait Loci, are loci on the genome that show a strong correlation to a
certain quantitative trait in a population of segregating progenies generated from a biparental
cross (Edmeades et al., 2004). The loci are identified using expressions of molecular markers
and various statistical procedures to detect an association between the quantitative traits
and those markers (Kearsey & Farquhar, 1998). Although a QTL is defined as a specific
genetic position on the chromosome, a lot of ambiguity concerning this position exist due to
uncertainties in mapping and statistical procedures. So it might be more accurate to view a
QTL not as a point locus, but as a region defined by a confidence interval. A typical QTL
region could therefore contain up to a few hundred genes (Edmeades et al., 2004). If a QTL
matches a classical locus, gene-based and QTL-based approaches overlap (White, 2006).

QTLs are often used in strictly statistical models. These models can predict the phenotype
of a plant with any combination of alleles present in the model, without extra experiments.
However, because a QTL model has no explicit environmental inputs, it can only be used
in the same climatic scenario as that in which the QTLs were detected (Boote et al., 2016).
When studying stress responses, the QTLs of the trait are compared in a control and stressed
treatment (e.g. Teulat et al., 1998; Sanguineti et al., 1999; Hirel et al., 2001). This method has
however the disadvantage of resulting in non-stable QTLs, because it is impossible to exactly
reproduce environmental conditions in terms of temperature, soil water status and VPD. This
means there will always be differences in the climatic scenarios between experiments, so that
one cannot determine if a QTL-effect is due to the difference in alleles or in environment. This
drawback can be overcome by incorporating an ecophysiological model, provided that the
QTL analysis is performed on the parameters of the ecophysiological model (Reymond et al.,
2003; Tardieu, 2003).

The main advantage in using QTLs instead of genes, is that no major genes have to be identified,
which are still often missing and remains difficult. That is why examples in literature on the
integration of QTL information in growth models are so numerous.
For example, for barley (Hordeum vulgare L.), first growth and development and later also
phenology, were successfully modelled using QTLs (Yin et al., 2000; Struik et al., 2005).
Nakagawa et al. (2005) used a similar approach for the flowering response of rice (Oriza sativa
L.). The response to temperature and water deficit was elucidated for maize (Zea mays L.) by
Reymond et al. (2003), using an ecophysiological model for leaf expansion (see also paragraph
2.8). Germination and early growth of Medicago truncatula was modelled in response to
temperature and water potential by Brunel et al. (2009). Laperche et al. (2006) simulated
nitrogen adaptation in winter wheat and Quilot et al. (2005) peach fruit quality. Amelong
et al. (2015) predicted maize kernel number and Reuning et al. (2015) Arabidopsis stomatal
conductance. All models were based on the QTLs they found in a segregating population to
co-localize with their trait of interest.

Yet also difficulties arise that are inherent to all QTL analyses (Kearsey & Farquhar, 1998;
Edmeades et al., 2004). First, possible epistatic effects are often not considered. This occurs
when the alleles of one locus influence the expression of those on another locus. Second,
validation and evaluation of G×E interaction remains a demanding task, even with the
integration into ecophysiological models. Third, false positives among the candidate genetic
markers proves to be difficult to detect. And finally, one preferably needs large population sizes
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(>250 individuals or lines) to reliably detect QTLs (Charmet, 2000; Hackett, 2002; Bernardo,
2004; Schon et al., 2004). Phenotyping these large populations would require a large amount
of work and effort. High-throughput phenotyping methods are promising, but remain costly
and are not yet able to phenotype most traits (Xu & Buck-Sorlin, 2016).
Moreover, populations of biparental crosses are usually necessary to detect QTLs, although
this can be overcome if one has a large population with variation on the quantitative trait
(Gebhardt et al., 2004).

2.6.3 Quantitative proteomics to represent the genetic input

In recent years, the genetic analysis of quantitative traits through QTLs has seen rapid
advances due to the development of many molecular genetic techniques. The use of markers
based on SNPs is widely adopted in the molecular breeding of crops due their abundance in
the genome and the possibility of high-throughput analysis (Mammadov et al., 2012).
As Hammer et al. (2004) suggest however, by quantifying the proteins present in the plant,
we are not focussing on the complex gene networks, but rather on their final outcome. The
proteins are the performers of the information flow of genes in the plant, they are the end
result. The challenge here lies in the limited, and maybe less accurate, methodologies available.
There have been a few proteomic studies on drought in wheat (Hajheidari et al., 2007; Caruso
et al., 2009; Peng et al., 2009; Kamal et al., 2010; Bazargani et al., 2011). Most of them
however, use 2D gel-based methods. Only in recent years, mass spectrometry has become
more important (Ford et al., 2011).

The use of proteomics to study drought resistance in plants is not new, however the inclusion
of proteomic results in plant models have not yet been reported in literature. Using proteins
as the genetic input in ecophysiological models has its benefits. No prior knowledge of the
plants genome is necessary, nor of its regulating genes. No primers must be developed, no
DNA samples purified in bacterial cultures, no genes isolated and sequenced.
This reduces the time from sampling to genetic (or in this case proteomic) data from several
months to a single day. Moreover, the gene product itself is measured, not the genes, giving
more specific information on the physiological processes and consequences of the drought stress
on a cellular level. Genes are always present, but it is the gene product that results in the
final phenotype.

2.7 Plant biology and crop systems biology

The previous approaches all explain relatively simple traits with well-defined influences of some
dominant environmental factor, e.g. vapour pressure deficit (Yin et al., 2016). Moreover, they
do not implement any knowledge on the molecular regulatory networks. With an increasing
number of methods developed for genetic analysis and high-throughput techniques, it is
becoming possible to model genetic responses in specific processes or to even model complete
networks of genes, proteins and other molecules (corresponding to level 5 and 6 respectively
in Table 2.1). They are often called multi-scale models, since the processes on the molecular
level are upscaled to the plant, or even crop level.
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Level 5 (plant biology) is still rarely encountered and is restricted to model species (e.g.
Arabidopsis thaliana in Welch et al., 2003, 2016; Beemster et al., 2006; Kuchen et al., 2012).
For other species, not enough genes are known concerning the physiological processes that are
modelled (Baldazzi et al., 2016).
Plant systems biology (level 6) differs from plant biology (level 5) in that it has a ‘systems
approach’. This means that a system is defined as a network of interacting elements receiving
certain inputs and producing certain outputs. It moves from the genome level upwards,
starting from bio-informatics to modelling single organelles, cells or specific processes (White,
2006).
A decade ago, level 6 was only achieved in case of unicellular organisms (Tomita et al., 1999).
Only recently, an example has emerged in the model plant Arabidopsis thaliana (Band et al.,
2012). The authors explained the dynamics of cell elongation in the roots by simulating the
movement of the gibberellin hormone and a complex signalling network for the distribution of
DELLA proteins. However, these examples are rare, and interactions with the environment
have not yet been taken into account (Baldazzi et al., 2016).

In multi-scale models, one can choose to analyse gene regulatory networks or metabolic
networks (Metabolic Pathway Analysis; Baldazzi et al., 2016). In the former, a gene can be
represented as a binary switch (Boolean model) that can be either on (value 1) or off (value 0).
Depending on the state of certain genes in the model, other genes can be switched on or off.
These transitions are expressed as logical rules. An extension of the Boolean formalism are the
logical models. Gene states or transcription factor levels are represented as p discrete values
(0, 1, 2, ..., p). Gene activation/ inactivation is now level-dependent. In piece-wise linear
models, a time-continuous description of the gene regulation is modelled (see also Snoussi,
1989; Wittmann et al., 2009).
Metabolic Pathway Analysis takes into account the stoichiometry of the metabolites and the
thermodynamics of biochemical interactions to describe all possible steady-state behaviours of
the system (Schilling et al., 2000; Schuster et al., 2000; Papin et al., 2003; Baldazzi et al., 2016).
Plants are, however, subject to environmental fluctuations so that a steady-state assumption
might not be accurate. A kinetic model of the system, in which metabolite concentrations
change over time according to, for example, a Michaelis-Menten kinetic, is more appropriate.
To determine the appropriate rate law however requires a lot of experience and is extremely
expensive, so only small metabolic networks are described (Baldazzi et al., 2016).

Eventually, the goal is to model entire plants or ecosystems, although a lot of problems and
difficulties still arise. Often, there is a lack of knowledge and characterization of specific genes
or loci controlling the traits, including epistatic interactions and pleiotropic effects (different
phenotypic characteristics influenced by a single gene; Baldazzi et al., 2016). The complexity
increases by several orders of magnitude when upscaling to whole organisms (Hammer et al.,
2004). Baldazzi et al. (2016) state that the complexity of the genetic control accounted for
in models is usually the inverse of the complexity of the modelled system. This means that
integrating the effect of many genes is possible at the cellular level, but becomes too complex
at plant level. The authors propose to trace the main hubs at the lower levels of organization
and quantify their effects at the higher levels. They also state it is not necessary to represent
the action of each gene, but rather the action of an entire gene group by a model parameter.
The number of parameters in a process-based model can be thus restrained.
Hammer et al. (2004) suggest that not focusing on the complex gene networks, but on
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higher order control, might be more appropriate when the goal is to understand overall plant
performance. It is the flow of information across the different plant organs that allows the
plant to adapt to the prevailing environment. Although this information is contained in the
genetic make-up, there is a lot of redundant information in the genome that accumulated
through evolution. Tardieu (2003) started this vision by stating that a plant will react in a
predictable way to a given environmental condition and that we only need to find the highest
level of organization which still explains the variability. He called this a ‘meta-mechanism’.

In future light, integrating multi-scale models into ecophysiological models can help explaining
the complex interplay between different spatial and temporal environmental influences and the
genetic control of agronomically important traits (Baldazzi et al., 2016). It might even identify
interesting molecular mechanisms useful for breeding techniques, or can offer a framework for
interpreting omics data, all at a low computational cost. See Section 2.9 for more explanation.

2.8 Modelling drought
Some important efforts have been made in characterizing major gene loci that are important
for drought in wheat (see summary Table in Farooq et al. (2014)). These include for example
QTLs for osmoregulation, leaf senescence, grain number, etc. Yet efforts to include these in
models have been absent. The genetic basis for drought resistance has never been implemented
in a wheat crop model, even though a lot of research has been done on the genetic control and
networks in model plants (see paragraph 2.2.2).

For maize (Zea mays) and Arabidopsis thaliana, there have been some efforts to analyse the
genetic response of water deficit and implementing this in an ecophysiological model (Reymond
et al., 2003; Tardieu, 2003). When modelling drought resistance, one has to decide what
the application of the model will be. Because dependent on the phenological stage and the
duration of the drought stress, the plant will administer different strategies and therefore
probably also different genetic or signalling pathways. When water deficit lasts for only a
short period, plants that maintain their growth, photosynthesis and development and empty
their water supply, will result in better yields. However, when drought stress persists, these
plants will reach death before the end of the crop cycle. Plants that save water during the
first stages of their development at the expense of biomass accumulation will survive these
conditions. But then, these plants risk being overgrown by plants with faster water use and
development (Tardieu, 2003).

In maize (Zea mays), the effect of temperature, VPD and soil water status on the leaf elongation
rate (LER) has been established. Response curves were drafted for different recombinant
inbred lines. By then linking the slopes of these curves to a QTL analysis, the QTLs influencing
the dependency of the environment on the LER could be determined. This way, 74% of the
variability of LER could be accounted for (Reymond et al., 2003).
Reuning et al. (2015) identified the QTLs influencing the minimum stomatal conductance
in Arabidopsis thaliana, important for transpiration. This was done both in dry and wet
conditions to include variation across environments.

These examples, however, situate at the fourth level of Table 2.1; the models contain QTLs, but
they do not integrate our understanding of the genetic control of drought resistance. Pursuing
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plant systems biology to simulate whole plants still proves to be too difficult, especially for
wheat, where availability of data on genotypes and field performance still appears limiting
(White, 2006).

2.9 Applications and benefits of modelling genes and crop sys-
tem biology

The applications of integrating genomic information into ecophysiological models can be
subdivided into roughly three classes. First, it can aid in genomic selection and marker assisted
breeding. Second, it might simulate the impact of changing environments, managements and
genotypes or cultivars. And last, it could give us new insights in underlying processes both on
the sub-cellular level as on the crop level.

2.9.1 Breeding and genomic selection

In genomic selection, first a training set of genotypes is both phenotyped and genotyped
based on genetic markers. Then, this data is translated into a statistical model. New superior
genotypes can finally be chosen based on the phenotypic prediction that is made with genetic
marker data from breeding material that has not been phenotyped (Hammer et al., 2016). Up
until now, these predictions where dependent on the environment the model was made for,
because G×E interaction was not accounted for. But by integrating these statistical models
into ecophysiological models, the phenotypic predictions are concordant in any environment.
Marker-assisted selection (MAS) can also be accelerated by integrating crop modeling. When
the markers are chosen as parameters in the model, they can be ranked according to their
contribution to the desired trait. Gu et al. (2014b) used a marker-based version of the
GECROS model to rank the markers that determined yield component traits. By using this
model, they could identify additional markers that a multiple regression method did not detect.

The reverse is also possible; by performing a sensitivity analysis, the genotype-specific parame-
ters that are most important for the development of the trait of interest, can be identified
(for examples, see Semenov & Halford, 2009; Suriharn et al., 2011; Singh et al., 2012). This is
also called ‘dissecting a complex trait into physiological component traits’ (Yin et al., 2016),
whereby a genotype-specific parameter is such a component trait. Among complex traits, we
understand for example yield, nutrient use efficiency, total height or total biomass. These
complex traits are often integrated, cumulative outcomes, dependent on many fluctuating
processes over time (Boote et al., 2016).
Hammer et al. (2016) termed this ‘shortening the phenotypic distance’. For complex traits,
the phenotypic distance is often too large, meaning it is impossible to scale the gene network
to the phenotype or to predict the phenotype based directly on the genetic information. This
is due to the complexity and the magnitude of the regulating gene network and the G×E
interactions (Sinclair et al., 2004). When a single-gene transformation directly affects the plant
phenotype however, the phenotypic distance is said to be short (Hammer et al., 2016). The
phenotypic distance can be shortened by dissecting complex traits to more robust sub-traits,
or component traits. Often these component traits are difficult to phenotype using the normal
phenotyping methods, but they can be modelled based on easily phenotyped traits that are
used as inputs in crop ecophysiology and functional whole plant modelling.
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For example, Gu et al. (2014b) dissected yield into seven easily measured physiological input
parameters, like seed dry weight and maximum plant height. QTL loci for these parameters
were then identified. To find direct loci for the yield trait would have been nearly impossible.

Since the complex traits are often cumulative outputs, another way of dissecting these traits
would be to consider the derivatives, or in other words, the rate of change. An example of this
approach, is the research by Reymond et al. (2003) and Tardieu et al. (2005). They modelled
the reduction in leaf area under water deficit. The QTLs found for leaf area were dependent on
the growing environment, meaning that at least one environmental variable was not accounted
for in their model. Instead, the leaf expansion rate was only dependent on temperature, VPD
and the plant water status. All these variables were addressed in the model, so by moving
from the level of leaf area to the leaf expansion rate, the environment context dependency was
eliminated (Hammer et al., 2016).

The genes influencing these component traits can thus be sought after. Or one can first assess
the potential value of a trait via modelling. Then, a direct search for alleles that lead to
this trait will accelerate the breeding process. One can even look for expression of the trait
in existing germplasm (Sinclair et al., 2016), eliminating the need to develop a segregating
population which takes a significant amount of time. Sinclair et al. (2016) performed such
simulation studies to assess the potential benefit of the limited-transpiration trait in soybean
(Glycine max L.), mentioned in Section 2.8. When they found candidate lines with this
component trait in existing germplasm, they investigated the physiology of the trait. These
candidate lines resulted in breeding lines with a superior performance under water-limited
conditions.

Another interesting application of a quantitative genetic analysis is virtual breeding (Xu & Buck-
Sorlin, 2016). In these methods, ‘virtual chromosomes’ containing the QTL-information along
with recombination frequencies are recombined according to the rules of sexual reproduction.
This way, it is possible to produce a large number of recombinant genotypes. By combining this
method with growth models, the performances of the genotypes can be tested under different
(virtual) climatic conditions. Xu et al. (2011) integrated QTL information on internode
extension into an ecophysiological model of rice (Oryza sativa). In a follow-up study (Xu et al.,
2012), the model was extended for virtual breeding and named Ricebreeder (Xu & Buck-Sorlin,
2016).
Very important in breeding is the design and testing of ideotypes: genotypes that are specifically
adapted to a set of environmental conditions or management practices of particular interest
(Donald, 1968; Andrivon et al., 2013). This subject is further discussed in Section 2.9.2.

2.9.2 Simulating the effect of new environments or new genotypes

As mentioned before, combining quantitative genetics and growth models can accelerate
traditional breeding (Uptmoor et al., 2008). The development of different phenotypes can
not only be modelled under observed conditions, but also environmental conditions that have
not been experimentally tested. Even new genotypes that only exist in silico can be virtually
tested in different environments (Reymond et al., 2004). The effect of mutations can be
monitored, even before genetic manipulations are performed (Tardieu, 2003; Génard et al.,
2010, 2016).
This will lead to the identification of ideotypes. See Génard et al. (2016) for examples of the
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design of ideotypes via process-based simulation models (PBSM). With the integration of a
growth model, one can now virtually test ideotypes with a wide adaptation to a wide set of
environments versus ideotypes that have a narrow adaptation to a limited set of environments.
In traditional breeding, the decision of developing a widely adapted versus narrow adapted
plant has to be made in advance of the breeding program.

Integrated models can also be used to assess whether a trait can be improved within the existing
germplasm (Chenu et al., 2009; Luquet et al., 2016). When the regulating genes (or QTLs) for
a certain trait have been identified, the different existing alleles can be recombined to give non-
existing genotypes, but genotypes that cán be generated by marker-assisted breeding. Thus,
large hypothetical recombinant populations can be assembled. Their respective hypothetical
phenotypes can then be simulated by a process-oriented crop model. This was done by
Chenu et al. (2009) for the QTLs controlling the leaf elongation rate (LER) and the anthesis-
silking-interval (ASI) in maize (Zea mays). They identified new QTL combinations that were
advantageous or disadvantageous to yield under multiple environments (Boote et al., 2016). A
similar approach was used by Luquet et al. (2016), only here, not genes but cultivar-specific
parameters were recombined into a new, virtual population. After all, these parameters can be
regarded as genotype-dependent traits. The parameters were chosen within the observed range
of the real plants. Both real and virtual rice plants were subjected to three water treatments.
The authors concluded that there is a substantial margin for potential genetic improvement of
vigour with unchanged drought resistance.
Stam (1998) and Yin et al. (2016) express however their concerns regarding this approach.
The assumption that genes, QTLs or alleles (or representative cultivar-specific parameters) can
be recombined at will in a single genotype is not appropriate. It ignores the possible existence
of constraints, feedback mechanisms and correlations among the traits. Examples are a tight
linkage between the genes so they cannot be easily separated during breeding, or pleiotropy,
the fact that a single gene can affect multiple traits (Yin et al., 2016). This might reduce the
interest of breeders to adopt the results of model-based approaches in their breeding programs.
Therefore, a profound understanding of the inheritance of the model parameters within the
breeding framework is required (Stam, 1998).

The impact of a changing environment, management or cultivar can be simulated on a large
scale. For example, Sinclair et al. (2010) simulated the impact of the limited-transpiration
trait (mentioned in Section 2.9.1) on the soybean production in the USA.
In the face of climate change and global warming, crop modeling and crop systems biology
will become increasingly important to breeders. Developing a new cultivar usually takes 10
to 12 years and, faced with the rapid climate change, breeders do not have access yet to the
climatic conditions of even the near future (Semenov & Halford, 2009). Modelling techniques
can help quantify future threats.

2.9.3 Understanding physiological processes

By integrating the effects of alleles or genes over time and space, one can easily evaluate the
effect of changes in a single gene or trait (Gu et al., 2014a; Yin et al., 2016). In the model, the
other traits can simply be kept constant, something that is impossible in a ‘real’ experiment.
For example, by upscaling the effect of an increased leaf photosynthetic rate to the crop level,
Gu et al. (2014a) could prove that crop yield can be improved significantly. Such a correlation
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between crop yield and leaf photosynthetic rate was long disputed in literature.

G×E interactions (see Section 2.4) could show where interaction between a physiological trait
and the environment is present. This can lead to a better understanding of the regulation of
certain cellular processes.
Co-localization of genes or QTLs for different traits might provide some insight in the processes
that control them. For example, Quilot et al. (2005) found that the QTLs for peach fruit
quality co-localized on the genetic map with QTL for fruit size and sugar content. Similarly,
because the QTLs for leaf elongation and anthesis-silking interval in maize co-localized, Welcker
et al. (2007) hypothesized that the traits might be regulated by the same process. Chenu et al.
(2009) used these genes to produce a hypothetical recombinant population (see Section 2.9.2).

2.10 Future prospects of crop systems biology

Yin & Struik (2007) proposed a two-step road map for crop systems biology. Currently we are
only in the juvenile phase of the first step (Yin & Struik, 2016).
The first step will mainly consist in improving our simulation models so they describe the
individual processes more mechanistically (Yin & Struik, 2016). They should be detailed
in their biochemical and physical description of the processes at the cellular level. Then,
these processes should be integrated and scaled up to the crop level so that only conservative
mechanisms such as energy and water transfer and carbon and nitrogen metabolism are at
the basis of the processes. At the cellular level, these conservative models will be applicable
to all different crops. The parts of mechanisms that show genetic variation can be modified
according to the crop and the genetic information available.
In conclusion, the models should be robust for a variety of genotypes, species and environments,
while at the same time allow easy phenotyping of the component traits, preferably in a high-
throughput manner.
The second step mainly abides in the ‘omics’-progression (Yin & Struik, 2016). As our
understanding of genomic, transcriptomic and proteomic methods and outputs improves
and high-throughput technologies become available, the modelling can go down to lower
organizational levels. Summary models of only a particular metabolism or process will
increasingly become available (Yin & Struik, 2016). It is then only a matter of time before
they are embedded into crop systems biology models. It will thus become possible to model
complete genetic regulatory pathways and metabolite networks in an environmental context
and go down to lowest level possible.

Many different submodels will have to be combined, all having different temporal, spacial and
structural scales. So multi-scale modelling will become inevitable in crop systems biology.
Ultimately, it may develop into a highly computer-intensive discipline (Yin & Struik, 2016).
The benefits and applications of the integration of genetic profiles into ecophysiological models
are endless. Not only can it provide a biological interpretation of the molecular control of plant
processes and phenomena such as genotype-by-environment (G×E) interaction, epistatis and
pleiotropy, its applications in breeding programs, crop management and genetic engineering
are numerous.



Chapter 3

Model description

In this study, two models were built that are linked through only one variable: the leaf water
potential, ψxleaf . The first is a combination of the Penman-Monteith evapotranspiration model
(Allen et al., 1998) and the Cropsyst water uptake model (adopted from Camargo & Kemanian,
2016). This model simulates the actual transpiration of the plant based on a few atmospheric
measurements and the soil water potential.
The second model is a variation on the water flow and storage model HydGro developed in
Steppe et al. (2006) and Steppe et al. (2008). In the model, the wheat plant is divided into
three main compartments: the stem, the leaves (simulated as one big leaf) and the head,
consisting of the peduncle and the ear. The roots are not considered. The leaf and the head are
both linked to the stem (Figure 3.1). The HydGro model simulates water transport between
the different compartments and calculates the related water potentials and diameters of the
stem and the head (or rather the peduncle).

The model was implemented using the plant modelling software PhytoSim (Phyto-IT BVBA,
Mariakerke, Belgium). This software also provides modules for simulation, sensitivity and
identifiability analysis, calibration and uncertainty analysis.

3.1 Penman-Monteith, the evapotranspiration submodel

Penman-Monteith (PM) is a widely known and often used model for estimating crop evapo-
transpiration based on environmental data. The Food and Agricultural Organization of the
United Nations (FAO) developed a standard PM method known as the FAO-56 PM (Allen
et al., 1998). This model calculates the reference potential evapotranspiration (ET0,pot) of
a standard hypothetical crop using input data of solar radiation, air temperature, relative
humidity and wind speed. By using a genotype-specific parameter, the crop coefficient (Kcrop),
this ET0,pot is then scaled to the crop of interest. The standard model however calculates the
evapotranspiration on a daily basis and per area of crop, so the calculated ET0,pot was altered
to g h−1 instead of mmday−1 and was divided by the density of the crop to result in values
that apply to a single plant.
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The resulting Penman-Monteith equation is

λET0,pot =
∆(Rn −G) + ρacp

V PD
ra

∆ + γ(1 + rs
ra

)
k

dcrop
(3.1)

with λ the latent heat of water vaporization at air temperature (MJ kg−1), Rn the net radiation
(Wm−2), G the soil heat flux (Wm−2), V PD the vapour pressure deficit of the air (kPa), ρa
the air density at constant pressure (kgm−3), cp the specific heat of the air (MJkg−1 ◦C−1),
∆ the slope of the saturation vapour pressure curve at air temperature (kPa ◦C−1), γ the
psychrometric constant (kPa ◦C−1), rs and ra the bulk surface and aerodynamic resistances
respectively (sm−1), k the conversion factor to the unit g h−1 and dcrop the density of the
crop (m−2), in this case the density of the plants in the pot.
This equation will calculate the potential evapotranspiration of a hypothetical reference crop
with an assumed height of 0.12m and an albedo of 0.23. By making these assumptions, the
different parameters in equation 3.1 can be determined solely based on relative humidity, wind
speed and air temperature. The equations for ∆, λ, γ and ρa were taken from the model by
Zweifel et al. (2002) and Zweifel et al. (2007) and will not be repeated here.

The soil heat flux G is often small compared to Rn, so it will be ignored in this study.
The V PD is calculated according to Jones (1992):

es = 0.6108 exp( 17.27 ∗ Tair
Tair + 237.3) (3.2)

ea = es
RH

100 (3.3)

V PD = es − ea (3.4)

with es the saturated vapour pressure (kPa), ea the actual vapour pressure (kPa), Tair the
measured air temperature (◦C) and RH the measured relative humidity.
The aerodynamic resistance (ra) is estimated based on the reference grass and becomes

ra = 208
uwind

(3.5)

with uwind the wind speed (m s−1). This variable was measured at three time points in the
greenhouse and each time measured at 0.00m s−1. To avoid numerical errors, the value was
taken at a constant value of 0.005m s−1 .
The bulk surface resistance (rs) is approximated by

rs = rl
LAIactive

(3.6)

with rl the bulk stomatal resistance of a well-illuminated leaf (sm−1) and LAIactive the leaf
area actively contributing to the surface heat and vapour transfer (m2 m−2). Since the pot
containing the plants was not surrounded by other plants, heat and vapour transfer was not
greatly hindered and LAIactive was simply approximated by the LAI (Leaf Area Index). Both
rl and LAI were used as constant values based on measurements during a previous experiment.
However, these values only apply to well-watered conditions and are expected to change
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radically during the drought treatment since stomatal resistance will increase significantly and
LAI will decrease as early senescence progresses. Normally, a moving window calibration would
neutralize this accumulating error. New values for Kcrop are then calculated each day. This
genotype-specific parameter will then not be constant, but changing every day representing
the variable stomatal resistance and LAI. Unfortunately, a moving window calibration was
not possible for reasons explained in Chapter 6.

The actual plant potential evapotranspiration is then simply determined as follows

ETpot = Kcrop × ET0,pot (3.7)

3.2 Cropsyst, the transpiration submodel

Cropsyst is a cropping systems simulation model that simulates growth and yield of different
crops in different soil types and different management systems (Stöckle & Nelson, 2003). There
are many similar models available, but what made Cropsyst interesting to use alongside the
HydGro model, is that it uses water potentials to calculate certain variables. For example, it
estimates the water potential of the leaves based on soil moisture data to determine when the
stomata will close. Since the leaf water potential is simulated more accurately by HydGro,
this variable was used instead of Cropsysts own calculations.

Cropsyst equations were used to calculate the actual plant transpiration from the potential
evapotranspiration. This was done in two steps. In the first step, the potential transpiration
Trpot is calculated via Stöckle & Nelson (2003):

Trpot = Fractcover,green × ETpot (3.8)

where Fractcover,green is the fraction of incident radiation intercepted by the crop green leaf
area. Trpot is expressed in g h−1, like ETpot.
The actual transpiration Tract (also in g h−1) is then determined in the second step by the
stomatal conductance. When the leaf water potential ψleaf falls under a certain threshold
ψLsc, transpiration is reduced as the stomata are (partially) closed. For leaf water potentials
under the permanent wilting point (ψLpwp), transpiration stops (Camargo & Kemanian, 2016).
This is expressed as

Tract =


Trpot, ψxleaf > ψLsc

Trpot
ψx

leaf −ψLpwp

ψLsc−ψLpwp
, ψleaf < ψLsc

0, ψleaf < ψLpwp

(3.9)

with ψLsc the leaf water potential at stomatal closure (MPa) and ψLpwp the leaf water potential
at permanent wilting point (MPa). ψxleaf (MPa) is the leaf xylem water potential, als simulated
by HydGro (see secion 3.3).
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3.3 HydGro, the water storage submodel

HydGro is a water transport and storage model originally developed for trees (Steppe et al.,
2006, 2008), but the main principles should be applicable to all plants. The model consists of
two submodels. The first submodel uses measurements of sap flow and soil water potential
to describe water transport between the different plant organs and between the xylem and
storage tissue within one organ.
The second submodel simulates the variation in stem diameter, as these organs will shrink
and grow daily when the storage tissues are depleted and refilled again (reversible grow) or
when irreversible growth occurs. Measurements of this diameter variation can then be used
for calibration of the model.

In the wheat model, three different plant compartments are considered (Figure 3.1). Each
plant organ consists of a xylem compartment (flow path) and of a storage compartment, which
consists of all the living cells around the xylem vessels that are able to store water. Water will
flow from the soil through the roots (not considered here) to the stem xylem. This flow rate is
represented by Fstem and expressed in g h−1. In a similar way, Fhead represents the flow rate
from the stem xylem to the peduncle and ear xylem and Fleaf is then the flow rate to the leaf
xylem.
Within each plant organ, water flow is also possible between the storage tissue and the
xylem, since these tissues are hydraulically connected (Simonneau et al., 1993; Génard et al.,
2001; Steppe et al., 2006). These flows can attribute to the daily transpiration stream and
are represented by fstem, fhead and fleaf for the stem, head and leaf, respectively, and also
expressed in g h−1. These flows contribute to the filling and depletion of the storage tissue,
which means they must have a variable water content. These are represented by Wstem, Whead

and Wleaf and expressed in g.

One of the main concepts in the sap flow model, is the van den Honert (1948) principle based
on Ohm’s law. It states that water is transported from a high to a low water potential (read
more negative) over a hydraulic resistance, Rx (MPah g−1). All different compartments are
therefore characterized by a water potential (ψxorgan for the xylem compartments and ψsorgan
for the storage compartments) and expressed in MPa. The water flow between the organs can
thus be expressed as

Fstem = ψroot − ψxstem
Rx

(3.10)

Fhead = ψstem − ψxhead
Rx

(3.11)

Fstem =
ψstem − ψxleaf

Rx
(3.12)

where ψroot is the water potential in the roots (MPa). Since this organ is not modelled,
an estimation based on ψsoil is made by multiplying its value with ksoil, a proportionality
parameter that is to be calibrated (De Pauw et al., 2008). This results in

ψroot = ksoilψsoil (3.13)

This correction is dual. First, it takes into account the fact that the water in the soil
surrounding the roots will be addressed and depleted first when water uptake starts (Tuzet
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Figure 3.1: Scheme of the water flow and storage in the wheat model. Light grey areas represent the
xylem compartments, while dark grey the storage compartments.

et al., 2003). The soil water potential in that region will therefore be lower than that in the
bulk soil. Second, it considers the decrease in water potential due to water transport through
the roots.
In earlier models, the hydraulic resistance within the xylem, Rx, was considered a constant
parameter. Baert et al. (2015) improved this by stating that the hydraulic resistance is related
to ψsoil, or rather ψroot according to

Rx = r1exp((ψroot)2r2) (3.14)

with r1 and r2 proportionality parameters.

In a similar way as the xylem water transport, the water flow between the xylem and storage
tissues can be expressed as

forgan =
ψxorgan − ψsorgan

Rs
(3.15)

with Rs the hydraulic exchange resistance (MPah g−1) taken as a constant parameter. This
flow is positive when the storage tissues are refilled and negative when water is withdrawn.
The water potential in the storage compartments ψsorgan is calculated according to its water
content Worgan. HydGro is a hydraulic system approach, which means it assumes a variable
capacitance (Steppe et al., 2006). This capacitance changes with the water content of the
storage compartment, as represented by a desorption curve. ψsorgan is then calculated according
to Zweifel et al. (2000) and Zweifel et al. (2001).

ψsorgan =
ψsmin,organ

1 + exp(Worgan−k1,organ

k2,organ
)

(3.16)



26 CHAPTER 3. MODEL DESCRIPTION

with ψsmin,organ (MPa) the minimal water potential of the storage compartment, k1,organ the
amount of stored water at the inflection point and k2,organ an index for the rate of change of
ψsorgan at the inflection point. As suggested by Zweifel et al. (2001), these parameter values
were chosen different for the stem and head compartment. Since there are no measurements
of the leaf thickness, the parameters for the desorption curve of the leaf are impossible to
determine. They were therefore equalised to the stem parameters.

The variable capacitance of the storage tissues can be calculated as follows

Corgan = dWorgan

dψsorgan
(3.17)

This expresses the ratio of the change in water mass to the change in water potential in the
storage tissues.
As water flows from and to the storage tissues, their water content will change according to

dWorgan

dt = forgan (3.18)

The preceding equations all apply to a single plant organ. How the submodules are connected
is as follows. Root water potential ψroot and stem sap flow Fstem are used to calculate the
different variables and flows in the stem segment leading to values for the stem xylem water
potential ψxstem.
These values together with the measurements of the peduncle sap flow, Fhead, are used as
inputs to calculate the dynamics in the head segment.
Stem xylem water potential is also used for the simulation of the leaf. However, no measure-
ments of leaf sap flow, Fleaf , are available. This variable is simply determined by a water
mass balance over the stem segment:

Fleaf = Fstem − fstem − Fhead (3.19)

This of course, assumes no transpiration losses by the wheat stem.

In the second submodel of HydGro, the diameter variation of the base of the stem and of the
peduncle is simulated to compare with the measured diameter values for calibration. These
variables are implemented in the model as Douter,stem and Douter,head respectively, but will be
denoted as simply Dstem and Dhead in this report. Steppe et al. (2006) made the simplification
of representing the xylem and the storage compartment as two coaxial cylinders. This is apt
for trees since there, the xylem is indeed cylindrical and surrounded by the storage tissues. In
wheat, however, the vascular tissue is arranged in bundles surrounding a hollow core (Hamman
et al., 2005). The bundles are embedded within the storage tissue. This could imply that the
diameter of wheat changes differently with water potential compared to trees.
Since the equations for this submodel remained almost unchanged compared to Steppe et al.
(2006), they will not be repeated here. Instead, a short explanation on the mechanism and
dynamics is given.

When water is transported into the storage compartments of the plant, the water potential will
increase (i.e. a smaller negative value). The turgor pressure (positive pressure potential) will
also increase, pushing cells and the diameter outwards. This process is reversible as water can
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flow back from the storage cells to the xylem. When the turgor however, reaches a threshold
value Γ (MPa), the cells grow irreversibly. These calculations are based on Lockhart’s equation
(1965).
The pressure potential, ψsp,organ, is calculated based on the simulated values for the water flow
to the storage compartments, forgan, in the first submodel of HydGro. As long as forgan is
positive, water flows to the storage cells and the pressure potential increases. These values
in turn serve for the calculation of the diameter variation of the xylem compartment (inner
cylinder) and the stem (outer cylinder).
In the model, the same parameter values were used for the stem compartment and for the
head compartment, as they both simulate diameters of the stem. The only exception was
the parameter ε0, a proportionality constant determining how strongly the tissue responds to
changes in the pressure potential. During test simulations, it became clear that the peduncle
and the main stem respond differently to changes in sap flow making it necessary to distinguish
both responses by considering separate parameters: ε0,stem and ε0,head.
As mentioned above, the diameter changes in wheat stems could differ significantly from those
in trees. This quickly became clear during test simulations. Simulated diameter variation
was much larger than what was measured. A factor, fdiameter was therefore included in the
equations to reduce this simulated variation and make calibration possible. An interpretation
of this factor is given in Chapter 6.





Chapter 4

Materials and methods

4.1 Plant material and experimental setup
In this experiment, 18 wheat plants of the Hartog cultivar were used immediately after the
heading stage. Twenty wheat plants were sown on January 30, 2017 (Day of Year; DOY 30) in
two pots containing 4 L potting soil. They were grown in a phytotron with a constant ambient
temperature of 20 ◦C and a day/night cycle of 13/11 h. Only nine plants per pot grew. At the
elongation stage, the plants were refertilised with NPK 6-6-7 suspension fertiliser. The ears
appeared between March 29, 2017 and April 3, 2017 (DOY 93). At this point the plants were
transferred to a small glasshouse compartment (2m width × 2.5m length × 4m height) at the
faculty of Bioscience Engineering in Ghent. Temperature in the glasshouse was controlled at a
minimum of 21 ◦C. Along with the natural solar radiation in the glasshouse, the plants were
also illuminated with artificial light (SON-T, Philips, Eindhoven, Netherlands) at a day/night
cycle of 12/12 h.
One pot was used for the control treatment (further called ‘control plant’) and stood in a
layer of water at all times to minimize influences in sap flow measurements. Soil moisture was
kept at a constant value of 60% (volumetric soil moisture level).
The second pot was used for the drought treatment (further called ‘drought-stressed plant’).
In this pot, soil moisture was kept at 60% for 8 days and between April 11, 2017 and April
19, 2017 these plants were watered only a few times to start the drying process. On April 19,
2017 the sensors showed stable measurements and the plants were watered for the last time.

4.2 Microclimatic and soil measurements

Microclimate

For the PM submodel (Section 3.1), several atmospheric input variables that have a major
impact on plant development are necessary. Temperature and relative humidity were measured
with a humidity/temperature sensor (type EE08, E+E Elektronik, Engerwitzdorf, Austria).
The sensor was installed 1m above the plants. Photosynthetically active radiation (PAR)
was measured using a quantum sensor (QS2-715, Delta-T Devices, Cambridge, U.K.). Net
radiation was measured with a net radiometer (Q-7.1, Campbell Scientific, Logan, UT-US). The
quantum sensor and net radiometer were installed just above the ears. Finally, atmospheric
CO2 concentration was measured using a carbon dioxide probe (CARBOCAP GMP343,
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Vaisala, Vanha Nurmijärventie, Finland) placed at the height of the leaves, 30 cm away from
the plants.
All continuous measurements mentioned here and below were scanned with a data logger
(CR1000 and AM16/32 Multiplexer, Campbell Scientific, Logan, UT-US).

Soil moisture

An input of the HydGro submodel in Chapter 3 is the soil water potential, ψsoil. This can be
measured using a tensiometer, but since this device is rather large it could not be used in our
experiments. Instead, the volumetric water content (VWC) was measured using soil moisture
sensors (VWC EC5, Decagon, Pullman, WA-US). These sensors need to be calibrated for each
soil type. To this end, the potting soil was dried in an oven to reach a moisture level of 0%.
Water was then added in discrete steps to eventually reach the maximum moisture level. At
each step, the signals of the sensors (in mV) were recorded and two samples of the same volume
were taken. The exact gravimetric moisture level of the samples was determined by weighing
and drying. To obtain the VWC, the results were multiplied by the density of the potting soil
(0.343 g/cm3). This way, a linear relation could be deduced between the volumetric moisture
levels and the measured volt signal. The calibrations used are listed in Table 4.1.

Table 4.1: Calibration of the EC5 soil moisture sensors. x represents the measured signal in mV,
while y represents the volumetric soil moisture level.

Sensor Calibration R2

EC5/1 y = 0.0011865x− 0.4242 0.9652
EC5/2 y = 0.0011570x− 0.4139 0.9624
EC5/3 y = 0.0011650x− 0.4101 0.9677
EC5/4 y = 0.0012373x− 0.4454 0.9618

To deduce the water potential from the VWC, a water retention curve (or pF curve) should
be used. There are several models available for sand, clay and loamy soils (Tuller & Or, 2003),
but for potting soil, a pF curve has to be determined empirically.
In the laboratory of Plant Ecology, such data for potting soil was available and used here
to calculate the soil water potential. The relation between pF and VWC was determined
empirically based on data points.

pF = 0.5687VWC−1.053 (4.1)

ψsoil = −10pF (4.2)

with VWC, the volumetric water volume (between 0 and 1) and ψsoil the soil water potential
(MPa).
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4.3 Plant measurements

4.3.1 Continuous measurements

For each treatment, one plant was equipped with in situ physiological measurements. The
sensors were installed on April 7, 2017 (DOY 97). A schematic layout of these sensors is
presented in Figure 4.1a, whereas Figure 4.1b shows a picture of the practical installation.
Sap flow rates were measured using custom 3D-printed miniaturized sap flow sensors (ExoBeat).
Two sensors per plant were installed: one at the base of the main stem just above the second
leaf (Fstem) and one on the peduncle (above the flag leaf, Fhead).
Right above these sap flow sensors, stem diameter variations were measured using dendrometers
(Solartron type DF5.0, Solartron Metrology, Bognor Regis West Sussex, UK) and leaf clips
(Leaf Sensor, Leaf-Sen, Petach Tikva, Israel). The Solartrons measured the diameter variation
at the base of the stem (Dstem), while the leaf clips measured the peduncle diameter variation
(Dhead). The sensors were tightly attached to metal rods using strings (Figure 4.1b). A few
experiments showed that a tight mounting system was required to avoid anomalies when
disturbing the plants for watering and sampling (data not shown). Initial values of the stem
diameters were measured with an electronic calliper (RS Pro 150mm Digital Calliper, RS
Componants, Corby, UK).
In a side experiment, two types of dendrometers were tested for temperature dependency: Eco-
matik (type DF, Ecomatik, Munich, Germany) and Solartron. To this end, the dendrometers
were installed on a stainless steel rod, of which the exact diameter change could be calculated.
The Ecomatiks often measured constant values for periods of 12 hours, which could not be
explained and which did not appear in the Solartron measurements. This led us to decide to
use the Solartrons in the final experiment. The Solartrons were calibrated for temperature
according to von der Crone et al. (non published). The value for the thermal sensor coefficient
(σSol) determined by von der Crone et al. (non published) could not be adopted as it resulted
in an overcorrection. Its value was therefore determined for each Solartron in the test set up
by minimising the SSE (sum of squared errors of prediction). This resulted in a value of 2.57
× 10−4 mm ◦C−1 for the Solartron on the stem of the control plant and 2.90 × 10−4 mm ◦C−1

for the Solartron on the stem of the drought treated plant.
Because the Solartrons on the peduncles of both plants were heavily influenced by the temper-
ature in the greenhouse, two additional leaf clips were mounted on these peduncles. Their
temperature dependence was established in another side experiment, where the leaf clips were
attached to an aluminium plate. In a similar manner, the thermal sensor coefficients, σLC , of
the leaf clips were determined at 2.23 × 10−4 mm ◦C−1 for the leaf clip on the control plant
and -2.43 × 10−4 mm ◦C−1 for the leaf clip on the drought treated plant.
The temperature calibration results in the following correction:

dreal = dmeas + σ(Tair − Tref ) (4.3)

where dreal is the true diameter (mm), dmeas is the output of the leaf clip (mm) or in case of
the Solartron the output after the first temperature correction by von der Crone et al.(non
published), Tair is a moving window average of the ambient temperature with a window of
20min, as specified by von der Crone et al. (non published). Tref is the reference temperature,
taken at 21 ◦C.
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(a) (b)

Figure 4.1: Layout of the different sensors for the in situ plant measurements. (a) Schematic
representation. The light grey cylinders represent the sap flow sensors, blue arrows
represent dendrometers, the dark grey shape the leaf clip and the black shapes the soil
moisture sensors. (b) Practical installation of the different sensors.

4.3.2 Point measurements

To be able to estimate more parameters in the model, a few variables simulated by the model
were also measured at different time points.
Leaf water potential, ψxleaf , was measured destructively with a thermocouple psychrometer
(HR 33T, Wescor, Logan, UT-US). Four to five replicate samples were taken from the flag leaf
of each plant. Time points at which leaf samples were taken depended on the time points for
protein sampling, since taking leaf samples would injure the plant, invoke a defence response
and therefore contaminate any protein sample taken subsequently. As there were not many
plants available, we were forced to use the same plants for first determining the leaf water
potential and then taking protein samples. So both time points had to coincide theoretically.
In practice, we left less than half an hour between sampling. The leaf samples were then
enclosed in the chambers of the WESCOR and left for stabilization. Previous experiments
showed that waiting 75minutes was enough to stabilize the measurements (data not shown).
Measurements were recorded with LoggerLite 1.9.1 (Vernier Software and Technology, Beaver-
ton, OR-US). The water potential was calculated based on the volt signal 19 to 21 sec after
the cooling circuit started (according to calibration data available).

Actual transpiration by the leaves (Tract) was measured with the LI-6400XT Portable Pho-
tosynthesis System (LI-COR, Lincoln, NE-US). Since this device measures parameters non-
destructively, its measuring time points were not influenced by other factors. Transpiration
was measured on the flag leaf for a few hours each day with 5minutes intervals. Measured
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values were 15 sec averages. Measurements for the control and the drought treatment were
alternated each day.
To mimic the atmosphere as accurately as possible, the air transported to the chamber was not
filtered of CO2 or H2O. The CO2 levels and humidity were therefore equal to the atmosphere.
Incoming radiation was measured with a quantum sensor on the sensor head and was used
as input for the LEDs, but even so the set PAR in the chamber was about 20µmolm−2 s−1

higher than what was measured by the quantum sensor in the glasshouse.
The temperature settings could not be linked to the ambient temperature, so to keep the
influence of the temperature fluctuation during the day, the air in the chamber was not cooled.
This gave the same temperature profile, but 3 ◦C higher than the true air temperature.
The measured transpiration values (in µmol s−1 cm−2) were upscaled to the whole plant and
converted to g h−1 by multiplying it with the leaf surface, measured in a previous experiment.
But even after this transformation, the values were considerably lower than the measured sap
flows. If one considers that 97% of the water taken up by the plant is transpired again, then
these values should be the same on a daily basis. Moreover, the transpiration measurements
were an underestimation of the true transpiration, since the PAR and the temperature in
the chamber were too high. This caused the stomatal resistance to be higher than normal.
For this reason and because the magnitude of the sap flow matched with reported literature
(Langensiepen et al., 2014), a scaling factor was used to bring the transpiration values to the
same level as the sap flow measurements. Daily sums were taken since sap flow lags behind
transpiration and an instant ratio would be deceptive. Averaging the ratio of these sums
over the five days where transpiration measurements were available, led to a scaling factor of
16.9(±2.6).

4.4 Model settings

4.4.1 Parameter and initial values

The model described in Chapter 3 contains 29 parameters (listed in Table 4.2), of which only
some can be calibrated. For a few of these, parameter values are available in literature and
when measurements were possible, parameters were determined that way.
The parameters Γ and φ were not included for calibration, since wheat plants in the grain
filling stage do not grow any more and the value of these parameters have no influence on
the final output of the model. So these parameters were set at values found in Génard et al.
(2001) and Steppe et al. (2008).
The minimum water potential in the storage compartments, ψsmin,organ, necessary in the
HydGro submodel (Section 3.3), was set at -4MPa for the leaf and -3.5MPa for the head
(Dougherty, 1974). Even though no information was available for the stem, its value was
equalised to that of the head. These values found in literature were not specific for storage
compartments, but were adopted due to the lack of more appropriate values. The value for the
water potential in the leaf at the permanent wilting point, ψLpwp, necessary in the Cropsyst
submodel (Section 3.2) was also set at -4MPa (Dougherty, 1974).

For the derived variables in the model, initial values are necessary. The initial stem diameters
were set at the first values of the input files used in the model. Initial values for Worgan were
set at their simulated values 24 h later in the simulation. Initial values for the second part
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of the HydGro model were calculated according to Steppe et al. (2006). Since there was no
way of determining the initial values of the pressure potential in the storage compartments,
ψsp,stem and ψsp,head, these values were included in the sensitivity analysis and calibration.

4.4.2 Sensitivity analysis

Because the final data of the Solartrons (Dstem) did not show the expected pattern in diameter
variation (see Figure 5.2b), we decided to perform the sensitivity analysis and calibration
solely based on the measurements of Tract, ψxleaf and Dhead.
The sensitivity analysis (SA) was performed with PhytoSim. The SA module uses the
parameters at their given values and a 1% deviation from this value. It then uses the deviation
on the simulated output variables to calculate a sensitivity index and the identifiability of the
parameters (De Pauw et al., 2008).

A first quick local sensitivity with identifiability analysis was performed with the 16 parameters
that were hard to measure or to find in literature. This way, all identifiable parameters for which
calibration was possible could be selected. In this first analysis the parameters Fractcover,green,
ε0,stem, k1,head and ψsp,stem were included with the 12 other parameters that were eventually
calibrated. This analysis easily showed that only 12 of the 16 parameters included could be
identified. Kcrop and Fractcover,green were highly correlated. Looking at the model, this seems
logic as they both simply multiply subsequent variables. Since it was easier to choose the
parameter Fractcover,green, its value was set at 0.90. This means that 90% of the incident
radiation was captured by the leaves. This is just an estimate, as almost no leaves were
shadowed by other leaves. Thus the parameter Kcrop was left for calibration.
Also the parameters ε0,stem and ψsp,stem appeared to be non-identifiable. This also seemed logic
as these parameters are used to calculate Dstem and no calibration data was used anymore for
this variable. The value of ψsp,stem was therefore set equal to the calibrated value of ψsp,head in
the model, while ε0,stem was set to 800m−1, a value that led to good simulations.
Even though calibration data for the head compartment was available, k1,head could not be
calibrated either. Its value was also chosen at a value of 1.2 to give good simulations, since
this led to better simulation outputs than simply taking the calibrated value of k1,stem.

4.4.3 Calibration and simulation

For calibration, the Simplex method (local search) was used with an accuracy of 0.001 and a
maximum evaluations of 1000. Calibration was first performed with the calibration data of
the drought-stressed plant. The parameters ψLsc, ksoil, Rs, r1 and r2 could be determined
better with this dataset, since the measurements of Tract, ψsoil and Dhead showed a larger
variability in this dataset than in the control dataset. These parameter values were then fixed
during calibration of the control dataset. After 514 evaluations for the drought data and 358
evaluations for the control data, the requested accuracy was obtained.
After calibration, simulations were performed with the parameter values listed in Table 4.2.
Simulations were performed with a fourth order variable step size (Runge-Kutta method), an
accuracy of 10−6 and a maximum step size of 0.01 h.



4.4. MODEL SETTINGS 35

T
ab

le
4.

2:
Sy

m
bo

l,
un

it
an

d
de
sc
rip

tio
n
of

th
e
m
od

el
pa

ra
m
et
er
s

Sy
m

bo
l

D
es

cr
ip

ti
on

V
al

ue
U

ni
t

R
ef

er
en

ce

Pe
nm

an
-M

on
te
ith

d
cr
o
p

Pl
an

tin
g
de
ns
ity

of
th
e
cr
op

28
0

m
−

2
m
ea
su
re
d

K
cr
o
p

G
en
ot
yp

e
sp
ec
ifi
c
ev
ap

ot
ra
ns
pi
ra
tio

n
co
effi

ci
en
t
(c
on

tr
ol
/d

ro
ug

ht
)

2.
68
/2
.5
8

un
itl
es
s

ca
lib

ra
te
d

L
A
I

Le
af

ar
ea

in
de
x

49
m

2
m

−
2

m
ea
su
re
d

P
A
ir

pr
es
su
re

90
kP

a
Zw

ei
fe
le

t
al
.(

20
02
)

r l
St
om

at
al

re
sis

ta
nc
e
of

a
sin

gl
e
le
af

(in
w
el
lw

at
er
ed

co
nd

iti
on

s)
20
0

sm
−

1
m
ea
su
re
d

u
w
in
d

W
in
ds
pe

ed
in

th
e
gr
ee
nh

ou
se

0.
00
5

m
s−

1
m
ea
su
re
d

C
ro
ps
ys
t

F
ra
ct
co
v
er
,g
r
ee
n

Fr
ac
tio

n
of

th
e
in
ci
de
nt

ra
di
at
io
n
by

th
e
cr
op

gr
ee
n
le
af

ar
ea

0.
90

un
itl
es
s

es
tim

at
ed

ψ
L
p
w
p

Le
af

w
at
er

po
te
nt
ia
la

t
th
e
pe

rm
an

en
t
w
ilt
in
g
po

in
t

-4
M
Pa

D
ou

gh
er
ty

(1
97
4)

ψ
L
sc

Le
af

w
at
er

po
te
nt
ia
la

t
th
e
on

se
t
of

st
om

at
al

cl
os
ur
e

-1
.0
1

M
Pa

ca
lib

ra
te
d

H
yd

G
ro

a
A
llo

m
et
ric

pa
ra
m
et
er

0.
00
29
68

m
G
én
ar
d
et

al
.(

20
01
)

b
A
llo

m
et
ric

pa
ra
m
et
er

32
m

−
1

G
én
ar
d
et

al
.(

20
01
)

f d
ia
m
et
er

C
on

ve
rs
io
n
pa

ra
m
et
er

(c
on

tr
ol
/d

ro
ug

ht
)

0.
01
15
/0
.0
14
2

un
itl
es
s

ca
lib

ra
te
d

k
so
il

C
on

ve
rs
io
n
pa

ra
m
et
er

4.
00

un
itl
es
s

ca
lib

ra
te
d

k
1,
st
em

A
m
ou

nt
of

st
or
ed

w
at
er

at
th
e
in
fle
ct
io
n
po

in
t
of

th
e
de
so
rp
tio

n
cu
rv
e
(c
on

tr
ol
/d

ro
ug

ht
)

1.
50
/1
.4
9

g
ca
lib

ra
te
d

k
1,
h
ea
d

A
m
ou

nt
of

st
or
ed

w
at
er

at
th
e
in
fle
ct
io
n
po

in
t
of

th
e
de
so
rp
tio

n
cu
rv
e

1.
2

g
ch
os
en

k
2,
st
em

In
de
x
fo
r
th
e
ra
te

of
ch
an

ge
of
ψ
s st
em

at
th
e
in
fle
ct
io
n
po

in
t
(c
on

tr
ol
/d

ro
ug

ht
)

0.
73
/.
62

un
itl
es
s

ca
lib

ra
te
d

k
2,
h
ea
d

In
de
x
fo
r
th
e
ra
te

of
ch
an

ge
of
ψ
s h
ea
d
at

th
e
in
fle
ct
io
n
po

in
t
(c
on

tr
ol
/d

ro
ug

ht
)

0.
10
/0
.1
6

un
itl
es
s

ca
lib

ra
te
d

l h
ea
d

Le
ng

th
of

th
e
pe

du
nc
le

(c
on

tr
ol
/d

ro
ug

ht
)

0.
11
0/
0.
08
8

m
m
ea
su
re
d

l s
te
m

Le
ng

ht
of

th
e
st
em

se
gm

en
t
up

to
th
e
pe

du
nc
le

(c
on

tr
ol
/d

ro
ug

ht
)

0.
64
1/
0.
60
2

m
m
ea
su
re
d

R
s

Ex
ch
an

ge
re
sis

ta
nc
e
be

tw
ee
n
a
xy

le
m

an
d
st
or
ag
e
co
m
pa

rt
m
en
t

1.
81

M
Pa

h
g−

1
ca
lib

ra
te
d

r 1
Pr

op
or
tio

na
lit
y
pa

ra
m
et
er

0.
60
0

M
Pa

h
g−

1
ca
lib

ra
te
d

r 2
Pr

op
or
tio

na
lit
y
pa

ra
m
et
er

0.
28
8

M
pa

−
2

ca
lib

ra
te
d

ε 0
,h
ea
d

Pr
op

or
tio

na
lit
y
co
ns
ta
nt

80
0

m
−

1
ch
os
en

ε 0
,s
te
m

Pr
op

or
tio

na
lit
y
co
ns
ta
nt

(c
on

tr
ol
/d

ro
ug

ht
)

17
0/
11
4

m
−

1
ca
lib

ra
te
d

Γ
C
rit

ic
al

va
lu
e
fo
r
th
e
pr
es
su
re

co
m
po

ne
nt

w
hi
ch

m
us
t
be

ex
ce
ed
ed

to
0.
9

M
Pa

G
én
ar
d
et

al
.(

20
01
)

pr
od

uc
e
(p
os
iti
ve
)
gr
ow

th
in

th
e
st
or
ag
e
co
m
pa

rt
m
en
t

φ
Ex

te
ns
ib
ili
ty

of
ce
ll
w
al
ls

in
re
la
tio

n
to

no
n-
re
ve
rs
ib
le

di
m
en
sio

na
l

0.
00
04
48

M
Pa

−
1
h−

1
St
ep
pe

et
al
.(

20
08
)

ch
an

ge
s
(w

at
er

st
or
ag
e)

ψ
s m
in
,s
te
m

M
in
im

al
w
at
er

po
te
nt
ia
lo

ft
he

st
em

st
or
ag
e
co
m
pa

rt
m
en
t

-3
.5

M
Pa

(D
ou

gh
er
ty
,1

97
4)

ψ
s m
in
,h
ea
d

M
in
im

al
w
at
er

po
te
nt
ia
lo

ft
he

he
ad

st
or
ag
e
co
m
pa

rt
m
en
t

-3
.5

M
Pa

(D
ou

gh
er
ty
,1

97
4)

ψ
s m
in
,l
ea
f

M
in
im

al
w
at
er

po
te
nt
ia
lo

ft
he

le
af

st
or
ag
e
co
m
pa

rt
m
en
t

-4
M
Pa

(D
ou

gh
er
ty
,1

97
4)



36 CHAPTER 4. MATERIALS AND METHODS

4.5 Construction of a drought index

Drought stress can have two origins: drought because of a high atmospheric demand, or
drought because of soil water deficit. Most of the time, these drought origins have to coincide
to really affect the plant, but they can also occur independently. The information captured
in the PM and Cropsyst submodel, together with the measured sap flow data, is enough to
distinguish both origins.

The simulation output of the PM submodel shows how much water the wheat plant should lose
through transpiration under the current circumstances in the glasshouse when the stomata
are completely open and stomatal resistance is close to zero (Trpot, see Section 3.1). The
simulation output of the Cropsyst submodel then calculates how much water is actually lost
when the virtual plant is allowed to close its stomata (Tract, see Section 3.2). Since the control
plant experiences no soil water deficit, its stem sap flow also represents this loss through
transpiration. After all, what comes in (Fstem) must come out (Tract). This is especially true
for cereals in their grain filling stage, as the plant does not grow any more and no water is
used to increase the turgor pressure for growth. Thus the control plant experiences drought
stress caused by a high atmospheric demand.
Since the drought-stressed plant is located in the same environment as the control plant, it
experiences the same ‘atmospheric drought stress’. However, the drought-stressed plant also
suffers from soil water deficit. So the difference between the sap flows of the control and the
drought-stressed plant represents this ‘soil water deficit stress’.

The drought index that is constructed calculates differences between daily sums of the
mentioned variables. A smaller time frame for the drought index was not possible because of
the hysteresis between transpiration and sap flow. The index is normalised by dividing the
differences by the maximum water loss, that is Trpot. This results in the following equations:

Atmospheric drought =
∑
Trpot −

∑
Fstem,control∑

Trpot
(4.4)

Soil Water deficit =
∑
Fstem,control −

∑
Fstem,drought∑

Trpot
(4.5)

An alternative calculation of this drought index is possible with the simulations of the Cropsyst
submodel:

Atmospheric drought =
∑
Trpot −

∑
Tract∑

Trpot
(4.6)

Soil Water deficit =
∑
Tract −

∑
Fstem,drought∑

Trpot
(4.7)

To avoid numerical problems, all summations that resulted in negative values were adjusted
to zero.
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4.6 Proteomic analysis

4.6.1 Protein sampling and extraction

Samples for protein extraction were taken no more than half an hour after damaging the
plant for the leaf water potential sampling. The ear, leaves and stem were flash-frozen in
liquid nitrogen to stop all biochemical processes. They were manually ground with a pestle
and mortar to a fine powder and stored separately at -80 ◦C until further use. Only the stem
samples taken at around 3 p.m. on five different days were used for further analysis.
About 0.5 g of powder was used for protein extraction. Protein extraction, tryptic digestion and
phosphopeptide enrichment were all done according to Vu et al. (2016). Since the wheat plants
were at the end of their life cycle, the plant tissues were more fibrous than the seedling samples
used in Vu et al. (2016). The samples were therefore sonicated for 30 sec and centrifuged at
4000×g instead of 2500×g. Instead of resuspending the proteins in guanidinium hydrochloride,
we used 8M ureum solubilised in 50mM triethylammonium bicarbonate (TEAB) buffer.
After extraction, the protein concentration was measured with Nanodrop (Thermo Fisher
Scientific). The proteins were not pre-digested with EndoLysC (Wako Chemicals). Since there
were no replicate samples in our experimental design, this step was not necessary.
After the tryptic digestion, the samples were split in two for both a proteomic analysis and
a phospoproteomic analysis. For the elution of the phosphopeptides after enrichment, a 5%
instead of a 1% NH4OH solution was used.

4.6.2 Mass spectrometry and data processing

The samples were analysed via LC-MS/MS (liquid chromatography, mass spectrometry) on
an Ultimate 3000 RSLC nano LC (Dionex, Thermo Fisher Scientific) in-line connected to a
Q-Exactive mass spectrometer (Thermo Fisher Scientific). Samples were processed according
to Vu et al. (2016), with a few alterations. To minimize processing time, the samples were
separated with a 30min gradient instead of 170min. Dynamic exclusion time was 50 s instead
of 20.

Also the processing of the data was done according to Vu et al. (2016). The MS/MS spectra
were searched against a wheat proteomic data base (Duncan et al., 2017).

4.7 Heat map
To compare the proteomic data to the physiological variables of the plant, heat maps were
created with 22 variables in the model and all proteins found in the samples. The heat map
with the model variables quickly shows the difference between the control plant and the
water-stressed plant and their dynamics. It gives a virtual profile fingerprint (Génard et al.,
2016).

The physiological variables were extracted from the model on the exact same time points as
the samples were taken for protein analysis. This was around 3 p.m. on DOY 111, 114, 115,
116 and 117. One hour averages were taken to avoid outliers, since the sap flow data did show
rather large instant variation. The simulated sap flows to the storage compartments, forgan,
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were not included in the heat map, since on some time points their values were negative, while
on others positive. This made the calculations, mentioned below, impossible.
For normalisation, all values were compared to the first time point in the control plant (DOY
111) and these resulting ratios were log-2 transformed. Unfortunately, no other pre-processing
of the data like a Z-score as in Vu et al. (2016) or a background correction were possible due
to the lack of replicates.

The proteins and their phosphosite intensities were processed the same way as the physiological
variables (log-2 transformation of the ratio to the first time point in the control plant). When
biological replicates are available, one would normalise the phosphosite intensities to their
respective protein intensity. However, since this was not the case in this research, this might
result in errors, e.g. the protein intensity being lower than a phosphosite intensity.

All transformed values were processed in a heat map with R, whereby the plant variables,
proteins or phosphosites were clustered.



Chapter 5

Results

5.1 Observed measurements

5.1.1 Atmospheric measurements

Figure 5.1 shows the daily variation in atmospheric data variables that were used as an input
for the PM submodel. At night, the temperature (Tair) fluctuated around 21 ◦C but during
warm days ambient temperature could rise up to 33 ◦C in the glasshouse (Figure 5.1a). High
temperatures corresponded with a strong decrease in relative humidity (RH). On colder
days, relative humidity remained unchanged as in DOY 111 (Figure 5.1b). Net radiation, Rn,
showed less variation between days (Figure 5.1c).

5.1.2 Plant measurements

Soil VWC and water potential, ψsoil, are shown in Figure 5.2a, while sap flow of the stem and
the head compartments, Fstem and Fhead, are depicted in Figure 5.2b. These are the input
variables for the HydGro submodel.
For the control, the soil moisture stayed constant at 64.2%. This corresponds to a water
potential of -0.008MPa. For the stressed plant, water levels decreased to 23.2% or -0.45MPa
at the end of the experiment. Even though at DOY 108, the drought-stressed plants already
looked paler than the control plants, this was not yet visible in the measured physiology of
the plant at that time.
Sap flow measurements ranged between 0 and 1.8 g h−1, which is similar to the reported values
of Langensiepen et al. (2014). Sap flow intensities in the control and drought-stressed plant
are similar in the beginning of the experiment. Only at DOY 112, sap flow reduced in the
stem of the drought-stressed plant compared to the control plant and was severely hindered at
the end of the experiment (DOY 117). The sap flow through the peduncle (Fhead) is about a
tenth of that through the main stem (Fstem). What is remarkable is that the peduncle sap
flow did not show a decreasing trend in the drought-stressed plant.

The measured wheat stem diameters, Dstem and Dhead, used for calibrating the HydGro
submodel are depicted in Figure 5.3. An immediate observation of these diameters is their
declining trend. The overall shrinkage of the stem is 1.21% for the control plant and 2.04%
for the drought-stressed plant. For the peduncle (part of the head), this is 1.82% and 3.22%

39
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respectively.
This matches the grain filling stage, as the plant does not grow any more but invests all
its energy and nutrients in the developing kernels. WSC (water-soluble carbohydrates) are
retranslocated from the leaves and stem to the ear (Blum, 1998; Rebetzke et al., 2008). As
the drought becomes severe from DOY 114 onwards, the diameters shrink even more (Figure
5.3b).
The daily variations in stem diameter are only clearly visible in the data of the leaf clips
(peduncle diameters; Dhead). This is why calibration was performed only with this data.
During the day, stem diameters reduce to increase again at the end of the day. During the
night, they stay constant.

Figure 5.1: The varying atmosphere in the glasshouse used as input for the Penman-Monteith
submodel. (a) air temperature (Tair), (b) relative humidity (RH) and (c) net radiation
(Rn). Vertical dotted lines represent the beginning and end of the daytime (a combination
of artificial light and solar radiation).
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Figure 5.2: Input data for the HydGro submodel for both the control plant and the drought-stressed
plant. (a) volumetric soil moisture content (VWC) and (b) sap flow (Fstem or Fhead).
Measurements of the control plant are always depicted in black and grey, while those of
the drought-stressed plant in red and orange. Vertical dotted lines represent the beginning
and end of the daytime.

Figure 5.3: Calibration data for the HydGro submodel. (a) control plant and (b) drought-stressed
plant. The stem diameter, measured with the Solartrons, is depicted in a darker colour.
The peduncle diameter, measured with the leaf clips, is depicted in a lighter colour. Both
diameters are represented on different axes. Vertical dotted lines represent the beginning
and end of the daytime.
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5.1.3 Transpiration

When comparing actual transpiration with stem sap flow (Figure 5.4), one can see that the
daily pattern is captured by both independent measuring techniques. From morning until
noon, transpiration is higher than sap flow. Around midday, sap flow has caught up and
remains equal to, or even a little higher than transpiration.
Transpiration and sap flow in the control plant increase slightly when net radiation is maximal
(Figure 5.4a,b between 2 p.m. and 5 p.m.) and the magnitude hereof remains the same between
days. Sap flow in the control plant even reaches values of 1 g h−1 on top moments.
The first day of transpiration measurements in the drought-stressed plant (Figure 5.4c) is not
a good one to compare to the other days, as net radiation and temperature were low that day,
and sap flow in the control plant was also lower than average (see Figure 5.2b at DOY 111).
During DOY 114 and 116 (Figures 5.4d and e, respectively), sap flow in the control plant
was comparable to the other days, but strongly reduced in the drought-stressed plant, only
reaching values of 0.1-0.4 g h−1. An increased transpiration or sap flow is also absent when
radiation increases during the day. This indicates stomatal closure.

Figure 5.4: Comparison of measured transpiration (Tract, dotted line and empty circles) and measured
stem sap flow (Fstem, continuous line and filled circles). (a,b) control plant on DOY 114
and 116 respectively and (c,d,e) the drought-stressed plant on DOY 111, 115 and 117
respectively. For the convenience of comparing, all axes were set to the same range.

5.2 Calibration

An overview of the values of the calibrated parameters for the control and drought data set is
given in Table 5.1. The results of the different simulations are shown and described in Section
5.4.
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Table 5.1: Values of the calibrated parameters for the control and drought dataset

Parameter Control Drought Unit
fdiameter 0.0115 0.0142
Kcrop 2.68 2.58
ksoil 4.00* 4.00
k1,stem 1.50 1.49 g
k2,stem 0.73 0.62
k2,head 0.10 0.16
Rs 1.81* 1.81 MPah g−1

r1 0.60* 0.60 MPah g−1

r2 0.29* 0.29 Mpa−2

ε0,stem 170 114 m−1

ψLsc -1.01* -1.01 MPa
ψsp,head 0.019 0.120 MPa
* Value not calibrated, but taken from the calibration of

the drought dataset.

5.3 Sensitivity analysis
A sensitivity analysis identifies the important parameters in prediction imprecision of the
outcome variables (Blower & Dowlatabadi, 1994). This gives the opportunity to prioritize
parameters before their estimation. Parameters having no (or only a small) effect on the
model outputs can be set to fixed values, resulting in model simplification: less parameters
have to be estimated (Génard et al., 2016).
The identifiability analysis described in De Pauw et al. (2008) not only checks whether a
parameter has sufficient influence on the model output but also if it is not correlated with
other model parameters.

Since the sensitivity index is dependent on the given parameter values and different parameter
values are used for the control and the drought data set, these calculated indices will be
different for the control and the drought data. An overview of the ranked parameters is given
in Figure 5.5.
This figure explains why ε0,stem and the initial value of ψsp,stem are non-identifiable (see
also Section 4.4.2). The parameters simply do not influence the simulated output variables.
Consequently, their values do not matter. It can also be noted that Kcrop and Fractcover,green
have the exact same sensitivity for reasons already explained in Section 4.4.2. The value of
k1,head does however influence the simulation output, so it is unfortunate that its value could
not be calibrated. The chosen value will therefore have a large impact on the results of the
simulations.
What is also remarkable is that the parameters did not appear to have much influence on the
simulations of Dhead compared to ψxleaf and Tract. It is not that their sensitivity indices are
zero, they are just small compared to the other values. This means that Dhead is simulated
quite accurately, while there is a lot of variation in the simulations of ψxleaf and Tract.
The differences between Figure 5.5a and b indicate that when drought is simulated, the
parameter values of r1, Rs and k2,head are much more sensitive. This means that these values
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can be calibrated more precisely with the drought data set. The values of r1 and Rs were
indeed used for simulations with the control data set.

Figure 5.5: Sensitivity indices of the different parameters for the different target components (output
variables used for calibration). (a) sensitivity indices when parameters are set at the
calibrated values for the control data set. (b) same as (a) but for the drought data set.

5.4 Final simulation

Figure 5.6 depicts the environmental factors that can cause drought in a plant. A high
atmospheric demand, represented by a high VPD, causes the plant to lose a lot of water
through transpiration. To counteract this, a plant will close its stomata. This is a first
indication of drought stress.
When less water is available in the soil, the water potential will decrease (Figure 5.6b). At the
end of the experiment, the plant roots experienced water potentials as low as -1.8MPa. This
means that the water potential within the root xylem has to be even lower to allow water
transport inside the plant. The plant leaves have to dry out almost completely to produce
water potential values that low.

The measured and simulated sap flows are depicted in Figure 5.7. On the left are the sap flows
in the control plant (Figure 5.7a,b,c), on the right the sap flows in the drought-stressed plant
(Figure 5.7d,e,f). Almost all water imported by the stem (Fstem, Figure 5.7a,d) is transported
to the leaves (Fleaf , Figure 5.7c,f) where it is transpired. Xylem sap flow in the stem and the
leaves decreases significantly as drought becomes more severe, but the sap flow pattern to the
ear stays remarkably constant (compare Fhead in Figure 5.7b and e).
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Figure 5.6: Factors influencing drought, simulated as explained in Chapter 3. (a) V PD, calculated
according to Jones (1992). (b) ψroot, water potential as experienced by the roots. Vertical
dotted lines represent the beginning and end of the daytime.

Figure 5.7: Sap flow within the different organs of the wheat plant. (a,b,c) control plant (d,e,f) drought-
stressed plant. Dark blue lines represent sap flows between the xylem compartments
of different organs (Forgan), while light blue lines represent sap flows from the xylem
to the storage tissue within an organ (forgan). See also Figure 3.1 for a schematic
representation. Only Fstem and Fhead are measured variables, the other variables are
simulated as explained in Section 3.3. Vertical dotted lines represent the beginning and
end of the daytime.

When looking at the sap flows from and to the storage tissues (light blue lines, Figure 5.7), one
can see that in the morning, there is sap flowing from the storage to the xylem as transpiration
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starts before water is taken up by the roots. The water that is transpired in the morning
is thus coming from the storage tissues. During midday, when VPD is highest, the storage
tissues are being depleted. Their water content decreases consequently throughout the day
(Figure 5.8a). When the evening falls and transpiration ceases, the storage tissues are filled
again (a positive forgan in Figure 5.7 and an increasing water content in Figure 5.8).

What Figures 5.7 and 5.8 also show, is that the storage tissues of the stem are not utilized as
much as those from the head and the leaves. This can be seen as the reduced diel variation in
Wstem compared to Wleaf in Figure 5.8 and as the relatively smaller fstem compared to fleaf
in Figure 5.7.
The amount of stored water in the stem and the leaves is very similar, but both are much
larger than the amount in the head compartment.
During drought, the stored water continues to decline in the stem and the leaves, but stays
rather constant in the head (Figure 5.8b).

Figure 5.8: Water content within the different organs of the wheat plant. (a) control plant (b)
drought-stressed plant. Vertical dotted lines represent the beginning and end of the
daytime.

To allow flow from one compartment to another, differences in water potential values are
required. These are depicted in Figure 5.9a,b,c for the control plant and Figure 5.9d,e,f for
the drought-stressed plant. Measured leaf water potential values are also plotted with their
respective standard deviation.
When VPD is highest and transpiration at its maximum, the leaf tissues reach a simulated
water potential of -2MPa (Figure 5.9c). This exerts a suction power on the water column in
the xylem vessels through which water is pulled up. Transpiration also occurs in the head,
although to a lesser extent. Simulated water potential there reaches values of only -1MPa
(Figure 5.9b). The model assumes no transpiration losses by the stem, so the loss in suction
power, represented by a higher water potential (read less negative), can only be ascribed to
friction losses in the xylem vessels.

In the mornings, water potential values are always lower in the xylem compartments (ψxorgan)
than in the storage tissue compartments (ψsorgan), since transpiration removes water from the
xylem. This is the driving force for the water flow out of the storage tissues. During the
night, it is the other way around and the storage tissues can be refilled. At 5 a.m. (alternating
dotted lines, Figure 5.9), the water potential values of the xylem and storage tissue are equal,
meaning that no sap flow is possible and the plant is in an equilibrium state.
When high VPDs require a sap flow that cannot be met due to a soil water deficit, the tissues
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cannot be refilled adequately and water potential keeps decreasing (Figure 5.9d,e,f). Figures
5.4d and e show that the stomata do not close completely and a minimal transpiration is still
allowed. This lowers the leaf water potential to -2.5MPa and the head and stem water potential
to -2.2MPa. The diurnal differences between xylem and storage tissue water potential also
disappear as the storages tissues are emptied and no sap flow is possible.

Figure 5.9: Water potential values within the different organs of the wheat plant. (a,b,c) control
plant (d,e,f) drought-stressed plant. Dark blue lines represent xylem water potential
values (ψx

organ), while light blue lines represent storage water potential values (ψs
organ).

Measured leaf water potential values are plotted as red dots with their respective standard
deviation. Vertical dotted lines represent the beginning and end of the daytime.

The variable capacitance is depicted in Figure 5.10. At night, the capacitance increases
and reaches a maximum. On those moments, more water can be stored per unit pressure
drop in the storage pools (Steppe et al., 2006). Physiologically it means that at low water
potential (read less negative), the available water in the plant is stored as capillary water in
the intercellular spaces and easily reachable. During the day, the capacitance decreases as
water is only stored within the cells of the storage tissues. When the plant dries out (Figure
5.10b), the capacitance stays small as the intercellular spaces are never used for the storage of
water. At the end of the experiment, the capacitance is extremely low which means that a
high potential difference is necessary to reach the stored water.
The differences between the different organs should be interpreted with care, as the calibrated
parameters are not yet optimal (see discussion in Section 6.1).
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Figure 5.10: Variable capacitance of the different organs in the wheat plants. (a) control plant (b)
drought-stressed plant. Vertical dotted lines represent the beginning and end of the
daytime.

Figure 5.11 shows the simulated peduncle diameter compared to the measured diameter of
the control and drought-stressed plant. As can be seen, the diel variation is captured by the
model. When the storage tissues are depleted of their water content during the day to enter
the transpiration stream, the diameters shrink. At night the storage tissues are refilled again
and the diameter expands. The measured data show a fluctuating diameter during the night,
but this is due to the temperature fluctuation in the glasshouse and its influence on the leaf
clips.
Since in the grain filling stage, the plant does not invests energy in growth, the pressure
potential of the storage tissues, ψsp,organ, never exceeds the threshold value Γ (data not shown)
and the simulated diameter is not able to increase gradually. The overall declining trend of the
diameters indicating grain filling could not be simulated by the model. Instead, the simulated
diameter of the control plant remains constant, apart from the diel variation. However, a
decreasing diameter due to drought stress could be simulated accurately (Figure 5.11b). Still,
the diel variation during drought is larger than simulated by the model. This indicates that
the storage tissues are more utilized under drought stress than is simulated by the model.

5.5 Drought index

Figure 5.12 compares the data variables that are used for the construction of the drought
index. The potential transpiration, Trpot, simulated by the PM submodel (Section 3.1) and
the actual transpiration of the drought-stressed plant, Tract,drought, simulated by the Cropsyst
submodel (Section 3.2), are almost similar to the sap flow in the control plant. Tract,drought is
generally equal to the potential transpiration. Only the last few days of the experiment, the
simulated transpiration declined, but not to the level of the sap flow in the drought-stressed
plant.
One can see that in the morning, transpiration starts before sap flow but also reduces earlier
(Figure 5.12b, DOY 113 and 115). This shows the need for a daily integration of the variables
in the construction of the drought index.
In the same figure, the effect of drought on sap flow is also visible. Especially when VPD
is high, the difference between Fstem,control (black lines) and Fstem,drought (orange lines) be-
comes more pronounced. This translates to a positive ‘soil water deficit’ component of the
drought index (Figure 5.13a). When the daily sap flow in the control plant falls under
the daily potential transpiration (Trpot, dark blue lines in Figure 5.12), the ‘atmospheric
drought’ component becomes positive (Figure 5.13a). This indicates the closure of the stomata.
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Figure 5.11: Measured and simulated diameters of the wheat peduncle, which is part of the head. (a)
control plant (b) drought-stressed plant. Vertical dotted lines represent the beginning
and end of the daytime.

Figure 5.12: Data used for the construction of the drought index. Trpot is simulated by the PM
submodel (Section 3.1) and Tract,drought by the Cropsyst submodel using the drought
dataset (Section 3.2). The dark blue lines of Trpot are often not visible when it coincides
with Tract, in light blue. This means that Cropsyst simulates no stomatal closure. (a)
full data set. (b) selection of (a) for clarification. Vertical dotted lines represent the
beginning and end of the daytime.
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An alternative of using sap flow measurements in a control plant is the use of the Cropsyst
simulation output, Tract,drought (Figure 5.12, light blue lines). This variable simulates the
closure of the stomata and thus the ‘atmospheric drought’ (Figure 5.13b). Because the sap
flow of the drought-stressed plant is now compared to the simulated actual transpiration, the
‘soil water deficit’ component of the drought index is also influenced.

Figure 5.13: Drought index calculated for the stressed plant on a daily basis with the data from
Figure 5.12. The index differentiates between atmospheric drought stress (red) and soil
water deficit stress (blue). (a) drought index calculated according to equations 4.4 and
4.5. (b) drought index calculated according to equations 4.6 and 4.7.

It should be mentioned here that DOY 117 is not a complete day. Measurements and
simulations were available until 4 p.m., so it is likely that the drought index deviates from
what is depicted in Figure 5.13. Since potential and actual transpiration starts and stops
before sap flow, these former variables will be too large in relation to the latter variables.
Thus the ‘soil water deficit’ component on DOY 117 in Figure 5.13 is an underestimation.

5.6 Proteomic analysis

Since there are no replicates of the protein samples available, no statistic analyses could be
performed. Instead, the results of the proteomic analysis are merely indicative. The heat map
of the simulated and measured plant physiological variables is shown in Figure 5.14, while
Figure 5.16 shows the heat map of the proteins and their phosphosites.

The largest observed change in physiological variables due to drought is in water potential of
all compartments. They all increase in magnitude and are therefore clustered together. All
other variables decrease in magnitude in the drought-stressed plant. The decrease in pressure
potential (ψsp,organ) and capacitance (Corgan) are most pronounced.

Figure 5.15 shows a heat map of the protein intensities found in the stem samples of the
control and drought-stressed plant. As can be seen on DOY 117, six days after the sap flow
slowed down, a remarkable change in protein content is visible. The proteins denoted with
∗ are clearly more upregulated on DOY 117 in the drought-stressed plant compared to the
control plant.
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Figure 5.14: Heat map of the measured and simulated plant physiological variables.

A downregulation compared to the control plant is visible in the proteins on DOY 116 and
117 (marked with ∗∗) but it is hard to say whether this is significant or not since it does not
apply for that many proteins and the intensities should be interpreted with care.

The phosphorylated sites of the proteins showed no significant changes between the control
and drought-stressed plant (Figure 5.16). DOY 111 of the drought-stressed plant resembles
thad of the control plant the most.
The upper part of the heat map shows phosphorylation sites that are more (all green) or
less (all red) phosphorylated in both the control and the drought-stressed plant compared to
DOY 111 in the control plant. The lower half of the figure shows less significant changes in
phosphorylation.
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Figure 5.15: Heat map of the proteins in the stem.
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Figure 5.16: Heat map of the phosphorylation of proteins.





Chapter 6

Discussion

6.1 The wheat model

The calibrated wheat model that was developed in Chapter 3 shows promising results for
future use in research on drought in wheat. The model makes it possible to determine variables
that are cumbersome or even impossible to measure. With only a few sensors and limited
effort, a vast amount of data can be gathered. The simulated variables enable us to understand
how a plant responds to drought. With only measured data, some patterns would be harder
to explain.
The model and its simulated variables can be used in many research topics to support other
phenotyping data or to link to genomic data, like in this report.
Because the model is based on processes and principles that are universal, only a few adaptations
of the HydGro model were necessary before applying the model to wheat. The switch from
trees to wheat is rather drastic, but this means that adaptation of the model to other crops
will be even less significant. So with few alterations, the model could be applicable to a whole
range of plants.
Not only in research, but also in agriculture and horticulture, this model can be used (see also
Section 6.2).

The wheat model paves the way for research on drought in wheat, but is certainly not optimal
yet. A moving window calibration is normally necessary to estimate the changing values of
Kcrop, since the simulated variable Trpot is based on fixed values of the stomatal resistance, rl,
and LAI. During drought, these parameters are expected to change but only one measurement
was available. A changing value of Kcrop could adjust for these errors.
However, no moving window calibration was eventually performed for Kcrop as there simply
was not enough transpiration data. A complete data set from DOY 105 to 117 for both the
control and the drought-stressed plant would have been required, while this was only available
for five days in total.

In Chapter 5, it becomes clear that a key process is missing to properly simulate the decreasing
diameters. In Figure 5.11a, calibration starts adequately, but deviation with the measured
diameter becomes so large after DOY 107, that the simulated values do not even come within
the range of the diel variation. For the drought data set (Figure 5.11b), this deviation is less
pronounced because a declining diameter can be simulated under drought. But nevertheless,
between DOY 105 and 112, the simulations start under and end above the actual diameter.

55
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Moreover, a moving window calibration was performed with the parameters Rs, r1, r2 and
fdiameter (data not shown), but even then, the model could not simulate a declining trend in
the diameter. This proves that the model does not contain any process that can simulate
a declining diameter under well-watered conditions. This is thus a process that should be
included in the future.
The diameter deviation has its consequences further downstream. Because slight alterations
in the parameter values during calibration do not result in better simulations, the results of
the calibration should not be interpreted too strictly. Moreover, confidence information could
not be calculated because of this.
Nevertheless, some conclusions can be made on the different values and simulations of the
model.

As mentioned in Section 3.3, it became clear during test simulations that the values of ε0,head
and ε0,stem had to be different to result in acceptable simulations of the diameter. ε0,head
turned out to be 5 to 7 times larger than ε0,stem (Table 4.2). The part of the HydGro model
where this parameter belongs to, was not explained in Chapter 4, but the parameter should be
interpreted as follows: ε0,organ determines how strongly the pressure potential in the storage
tissues (ψsp,organ) respond to a changing water content. A high value means that a slight
alteration in water content results in a relatively large change in pressure potential.
Applied to the wheat plant, this can be interpreted as the peduncle storage tissue cells being
more rigid and/or smaller than those of the stem. After all, when the cells are smaller or more
rigid, the same amount of water imported brings about a larger increase in pressure potential.
Nevertheless, the pressure potentials in the head and the stem storage tissues are the same
(simulation data not shown), because the amount of water stored in the stem is two to three
times larger than in the head (Figure 5.8).
Even though the stem contains the same amount of water than the leaves, it is the water
stored in the leaves that is first utilized. This is why fleaf in Figure 5.7 is large (-0.5 g h−1

when VPD is high) and why the leaf water content displays such large diel variation (Wleaf in
Figure 5.8).

When a wheat plant is exposed to a drying environment, the plant will maintain functionality
as long as possible. Only when water potential in the soil surrounding the roots reached
a value of -0.3MPa, sap flow slowed down. At values of -1MPa, sap flow was significantly
hindered. This reduction in water transport happens quite quickly. Within two or three days,
it is about 60% of what it should be without water deficit in the soil (Figure 5.13).
To maintain a normal grain filling as long as possible, the sap flow to the ear was not influenced
within the time frame of the experiment. Figure 5.7 shows that the sap flow through the
peduncle (Fhead) remains constant while its stem and leaf flow (Fstem respectively Fleaf ) clearly
decrease.

During drought, the stomata do not close completely and transpiration continues, although
to a lesser extent (Figure 5.4). Transpiration causes the leaf water potential to drop to a
value of -2.5MPa (Figure 5.9f). The transpired water comes from the stem and leaf storage
tissues, as their water content continually decreases (Figure 5.8b). The water content in the
soil is insufficient to refill these storage tissues leading to only small negative values of forgan
(Figure 5.7d and f, light blue lines). This explains why the water potential in the storage
tissues and their respective xylem vessels is equal (Figure 5.9d,f). Capacitance continues to
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decrease during drought which means that larger potential differences are needed to refill the
storage tissues.
Remarkably, the water content in the ear decreases only slightly (Figure 5.8b), indicating
again that the grain filling process is preserved even when the plants reserves get depleted.

Even though the water content in the head storage tissues only decrease slightly, this reduction
must mainly abide in the peduncle, since its diameter does shrink visibly during drought
(Figure 5.11b). This is confirmed by the relatively higher overall diameter shrinkage of the
head compartment compared to the stem.
The diel changes in the peduncle diameter are larger during drought than what is expected by
the model simulations, which means that water ís transported in and out the storage tissues
of the head and to a larger extent than is simulated in Figure 5.7e.
This coincides with the unaffected water supply during drought stress into the head (see the
constant Fhead,drought in Figures 5.2b and 5.7e). This is again proof that the wheat plant will
maintain a normal grain filling as long as possible and that it is a process that the model
cannot simulate. This is logic, since the model was developed for trees and they do not know
a grain filling stage.
What will be interesting to see, is whether the diel diameter variation of the base of the stem
will also be smaller than expected, since the sap flow through the stem base does decrease
under drought stress. Unfortunately, the Solartron measurements were inadequate to test this
(Figure 5.3).

As mentioned in Section 3.3, the measured diameter variation was much smaller than what
was simulated by the original model. A scaling parameter, fdiameter had to be implemented
to reduce the simulated diameter variation. Calibration showed that its value is roughly
1% (Table 5.1). The true value of this parameter is hard to determine because of reasons
mentioned before, but nevertheless it can be concluded that the actual diameter variation in
wheat is merely a fraction of what was originally simulated.
This can be linked to the fact that the HydGro model was originally built for trees and
not for annual plants. The wheat stem contains a hollow core (Hamman et al., 2005), so
it is hypothesized that the majority of the stem expansion occurs to the inside of the stem.
That way, a more rigid outer epidermis can be produced by the plant to optimize pathogen
protection and lodging resistance.

While in trees, one would expect a continuous growth in stem diameter, in annual plants,
this does not have to be the case. Especially during the grain filling stage, which is the last
phenological stage, the plant will not invest energy in growth. Instead, even carbohydrates
(WSC) stored in the stem are retranslocated (remobilized) to the ear (Blum, 1998; Rebetzke
et al., 2008). This can be seen as the declining diameter that cannot be explained by the
model (Figure 5.11). This occurs under non-stress conditions, but literature suggests that
during drought in the grain filling stage, this process is even more noticeable (Blum et al.,
1994; Palta et al., 1994; Yang et al., 2001; Plaut et al., 2004).
Since the HydGro submodel can only simulate a diameter reduction due to drought stress, this
would mean that the measured diameter shrinks even faster than the model would simulate
during drought. After all, a sugar transport process is not included in the model.
In Figure 5.11b one can see that the declining trend of both the simulated and the measured
diameter from DOY 113 onwards is the same. This means the measurements imply that the
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retranslocation only continues as long as drought is not too severe and that remobilization
stops when drought becomes so intense that sap flow is hindered. The shrinkage of the
diameter can then only be ascribed to the depletion of water from the storage tissues.

6.2 Drought index

The drought index is only as accurate as the model simulations. A steep drop in the plants
diameter indicates that the storage tissues are needed excessively to meet the transpiration
demand. A high transpiration is caused by a high atmospheric demand, meaning a high VPD.
A high transpiration happens at DOY 110 and 113 (Figure 5.11). On these days, VPD is indeed
higher compared to other days (Figure 5.6). Also sap flow reaches maximum values (Figure
5.7a). However, on these days the flaws in the PM model become visible. The simulations
of Trpot are quite close to the measured sap flow in the control plant on DOY 110 and 113
(Figure 5.12). This means that, according to the PM model, the stomatal resistance increases
only slightly and the plant does not experience ‘atmospheric drought stress’. But this stress is
recorded in the declining diameter and the increased sap flow. The result is that the drought
index does not indicate the atmospheric drought as intensely as should be (Figure 5.13a).
Vice versa, on DOY 111 the differences between the sap flows in the control and drought-
stressed plant are negligible (Figure 5.12a). This means that soil water deficit is not influencing
the drought-stressed plant yet, which is correctly indicated by the index in Figure 5.13a. When
using the alternative drought index, no atmospheric drought is predicted (Figure 5.13b). This
is logic, because the net radiation was low that day (Figure 5.2) and the VPD was minimal
(Figure 5.6). So there is indeed a lot of probability that the stomata did not close. But then the
potential transpiration is estimated too high and the reduced sap flow of the drought-stressed
plant is thus falsely ascribed to a soil water deficit. So on warm days with a high VPD, PM
underestimates the potential transpiration, while on colder days it overestimates the potential
transpiration.

The differences between Figure 5.13a and b show that the Cropsyst simulation of stomatal
closure is also not yet optimal, even with the incorporation of the leaf water potential from
HydGro (ψxleaf ). Figure 5.4 shows that measured transpiration and stem sap flow are very
similar, yet the simulated values of Tract are almost always an overestimate of the real
transpiration (Figure 5.12b). Increasing the water potential at which the stomata close (ψLsc)
was not an option, since this resulted in simulations at which transpiration stops completely
almost every afternoon (data not shown). This indicates that the Cropsyst model lacks some
key processes to simulate stomatal closure accurately.

Furthermore, the interaction of the atmospheric drought and drought by soil water deficit is
not included in the drought index that is based on two sap flow measurements (Figure 5.13a).
That is to say, when a plant experiences soil water deficit stress, the leaf water potential values
are lower than normal, and the stomata will close at lower VPDs than usual. This can be
interpreted as follows: a plant that suffers from soil water deficit will experience atmospheric
drought stress much more quickly. This quicker response is not included in the data from the
control plant.
When using the simulations of Tract,drought, this problem is nullified, since the leaf water
potential is calculated based on the sap flow of the drought-stressed plant. Thus, with an
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optimisation of both the PM and the Cropsyst submodel, the drought index solely based on
one sap flow sensor has the potential to be more accurate than the drought index based on
two sap flow sensors.
To be accurate in the simulations of the stomatal regulation, an accurate determination of the
leaf water potential is necessary. This makes the use of the HydGro model indispensable, but
it means that a calibration is required before any practical usage of the drought index.

The application of such an index in agriculture or horticulture could be beneficial and even
cost-effective. Of course, the model should then be adapted to the plant species of interest.
But with only a soil moisture and a sap flow sensor on the main stem of one plant, the farmer
will be able to distinguish the main origin of drought stress when his plants show symptoms,
given that data of the microclimate in the greenhouse or on the field is available. When the
farmer’s plants show drought symptoms, he can then make the appropriate decision based on
the index. If the ’soil water deficit’ component is dominant, a higher irrigation is in place.
However, when atmospheric drought dominates, it is more appropriate to open a few windows
in the greenhouse to drop the temperature and increase the wind speed or to sprinkle water in
the air to increase relative humidity.
For a prior calibration, only measurements with a dendrometer are necessary. Values for ψLsc
are available in literature, but are preferably also calibrated with measurements of the actual
transpiration.

6.3 Proteomics

Since not enough plants were available to analyse duplicate samples, several remarks have to
be made concerning the proteomic analysis.
First of all, no statistic analyses of the MS/MS data was possible due to the lack of both
biological and technical replicates. This means that no conclusions can be made on the
intensity data of the different proteins. At most, an increasing or decreasing trend in intensity
can be used.
Second, because of the absence of biological replicates, there is no way to normalise for
micro-climatic fluctuations. Yin et al. (2016) already cautioned that these fluctuations can
obscure genetic effects.
In other drought experiments, like the one of Liu et al. (2017), at least three replicates were
analysed. Moreover, the research by Ford et al. (2011) shows that the protein response to
drought even differs between two tolerant varieties due to their difference in physiological
response. So even with replicates, any conclusion on particular proteins cannot necessarily be
extrapolated to other varieties.

Six days after sap flow slows down in the drought-stressed plant, a significant upregulation in
protein content was seen (Figure 5.15). Because this concerns so many proteins, it is safe to
say that this effect is significant. A substantial downregulation was harder to identify, but is
likely to be also present, and already five days after sap flow decreased.
Some similarities can be found between Figure 5.14 and Figure 5.15. For instance, the
capacitance in the head (Chead) shows a downregulation in the drought plant on DOY 116,
but not on DOY 117. There are several proteins that show a similar trend. Whether this is
causal or coincidence, further research should point out.
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The phosphorylation state of a protein tells us something about its activity and conformation.
A change in phosphorylation indicates a change in protein activity or cellular location and
thus a change in the phenotype of a plant. The results of the phoshoproteomic analysis were,
however, disappointing. No immediate trends in phosphorylation were visible (Figure 5.16) or
showed a similar trend as the model variables in Figure 5.14.
When the model variables were included together with the phosposites in a heat map, they
clustered between the phosphorylated proteins (see Figure B.1), indicating that there are
phosphorylations showing the same trend as the model variables. These are however not
numerous and are more likely to be ascribed to coincidence than true phenotypic change.
Moreover, since there were no replicates, all intensity values should be interpreted with caution,
so any trend that is present in Figure 5.16 might be erroneous.
As a consequence, there is no point in identifying the proteins that showed a similar trend as
the model variables, since there is no statistical evidence that these protein changes are truly
drought-induced.

Ford et al. (2011) performed a very similar proteomics analysis. They found that proteins
involved in ROS scavenging increased and proteins involved in photosynthesis and the Calvin
cycle decreased as the wheat plant experienced more drought stress. So the photosynthetic
apparatus is broken down to avoid oxidative stress and ROS species. An increase in protein
folding proteins was also found.



Chapter 7

Future prospects

In the previous chapters, it became clear that the model and the associated experiment can
still be improved.
First of all, additional experiments are necessary to see what the real magnitude of the
transpiration or sap flow is. In this report transpiration was upscaled to the magnitude of the
sap flow based on a few observations, but there was no actual proof that this was correct.
Second, an independent technique is required to prove the hypothesis that the stem does
indeed expands towards the hollow core and to determine the true magnitude of this inwards
expansion compared to the outwards expansion. The results of this experiment suggest that
this ratio is 99 to 1, but other influencing factor might contribute to the value of fdiameter
that were not mentioned in this report.
To be able to perform a moving window calibration, continuous measurements of the true
transpiration are also necessary. This might already lead to a first improvement of the PM
submodel.
Furthermore, biological replicates of the proteins samples will contain much more information
and allow statistical analysis. Of course, this means that a lot more plants will have to be
sown and grown, making these experiments a lot less practical, especially if many cultivars
are studied simultaneously (see further).

The model itself can be vastly improved by incorporating other mechanisms.
First and foremost, a process should be included for the retranslocation of WSCs during grain
filling, since inclusion of this process will lead to the observed continuous shrinking of the
stem. The storage tissue volume should hereby reduce even under well-watered conditions.
As discussed in Chapter 6, the diameter measurements combined with the model simulations
imply that when sap flow declines, the retranslocation of WSC is arrested an not increased
as literature proposes. Inclusion of a sugar transport model should provide insight into this
matter and determine if this retranslocation really ceases, or if it is merely small compared to
the water depletion of the storage tissues.

Of course, other processes that are important during drought could also improve model
simulations significantly.
Cavitation, the replacement of water by water vapour in the xylem, is an important source
of increased hydraulic resistance values (Tyree & Sperry, 1988) and plays a major role in
the drought response of the plant. Inclusion of cavitation in the future might lead to better
estimates of the hydraulic resistance in drought conditions.
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Also photosynthesis and stomatal regulation are two important processes in the plant that will
influence its water balance, but are not yet considered in this research. These processes should
improve not only the HydGro simulation of the water potential values in the leaves, but also
the simulations of Tract in the Cropsyst submodel and thus the drought index presented in
this report.
So far, the roots are not included in any of the submodels, as is often done in literature.
However, Tuzet et al. (2003) proved that the roots have a major impact on how water deficit
in the soil is experienced by the plant.
Of course, not all processes mentioned here can be combined into one single model. Enough
processes should be modelled so that enough variability of the phenotypic traits of interest
are explained. One should balance the risk of over-parametrization with the risk of over-
simplification. Processes should be added until model calibration becomes cumbersome or is
no longer possible (Xu & Buck-Sorlin, 2016).

When the model is able to properly simulate the desired variables, it can be used for experi-
mental design. This means that the time points at which certain measurements or samples
have to be taken, can be determined beforehand so as to contain as much information as
possible.
Because we were restricted by the number of plants and the fact that each plant had to provide
two different measurements, this was not performed in our experiment.

No validation was performed in this report, but this is absolutely necessary to confirm and
further correct the model. However, this is best done after the declining diameter can be
simulated properly. First of all, a validation on the same cultivar is needed to detect aberrations
in the model. Then both calibration and validation data of other cultivars is necessary to
check whether the model is applicable to wheat in general.

Because of time limitations and the novelty of this research, we could only focus on one
genotype. We were therefore forced to take protein samples at different time points. An
experimental design like this only enables the identification of important proteins during water
deficit. These proteins are, however, very likely to be general proteins and thus ubiquitous in
all wheat species. They will probably be only important to physiologists and modellers, and
not for geneticist since they have probably been selected already by breeders in their breeding
programs. The genetic variability concerning those genes will thus have been strongly reduced
(Prioul et al., 1997).

In the future, it might be more advantageous to monitor different wheat cultivars and take
only one, or a few, protein samples at key points in the drought response. This way, the
differences between cultivars can be denoted. This knowledge could then be useful in breeding
programs.

If one would switch from analysing proteins to analysing the genes themselves, the amount
samples would reduce to only one per cultivar since the genetic background remains identical,
regardless of the conditions. Of course, this would require knowledge on the genes already
present in the cultivars, for designing primers, unless a DNA fingerprinting technique is used.
Another possibility is the rather new technique of RNAseq. This high-throughput technique
allows the sequencing of the entire transcriptome, eliminating the need to design primers.
The benefit of analysing RNA is that it includes information on the activation of genes and
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provides concentration differences. Of course, this means that the time point at which the
sample(s) is (are) taken becomes important again. The major drawback of this technique is of
course its high cost. Again, a cheaper RNA fingerprinting technique is also possible and can
be used as a cheap screening method.

As mentioned in the preface, the goal of this master thesis was unfortunately not accomplished,
but is still possible in the future: using genetic (or proteomic) information to better estimate
genotype-specific parameters (GSP).
To this end, it is necessary to study many different cultivars. Using their genetic fingerprints,
the most sensitive parameters of the model (r1, Kcrop, Rs and k2,head) could be estimated
solely based on this genetic data.
At the same time, identification of the key regulating genes or proteins that differentiate a
resistant cultivar from a non-resistant one is possible. Having one genetic sample per cultivar,
one could adopt the method of Reymond et al. (2003) to implement its information into the
ecophysiological model. For each cultivar, a reaction norm (which is the phenotypic response
curve of a genotype to different environments) can be established. The slopes of these curves
should be parameters in the model. The parameters can then be estimated in two ways: by
individual calibration of the model to the response curve of each genotype and by using the
genetic data. Combining the two methods for all cultivars should be able to point out the key
regulating genes. A regression model can then be constructed with these genes to predict the
parameter value.

The genetic data, whether obtained by analysing proteins, RNA or DNA, do not restrict
themselves to one parameter. The same raw data can be used in exactly the same way for
multiple parameters. In this research, we could for example determine the hydraulic resistance
in the storage compartments,Rs, based on the presence of certain genes, but also all other
genotype-specific parameters in the model like Kcrop, r1, r2, k1 and k2.
If a regression model can be constructed for all parameters, model calibration could become
redundant as in the research of Hoogenboom et al. (2004).





Chapter 8

Conclusion

In this research, a wheat model was built based on a combination of Penman-Monteith,
Cropsyst and HydGro that can simulate transpiration and water flow and storage within a
wheat plant. Even though improvements of the model are necessary in the future, a few strong
conclusions could already be made from the data and simulations acquired in this research.

When a wheat plant (Triticum aestivum L.) experiences drought, transpiration and thus
photosynthesis, are being reduced. However, these processes are not arrested immediately,
leading to significant water losses in the plant that cannot be replenished as long as drought
perseveres. Sap flow through the stem decreases as water in the soil becomes harder to reach.
More and more water is coming from the plants reserves. However, only the water reserves
from the stem and the leaves are used to maintain grain filling functionality as long as possible.
The reserves in the head section, being the peduncle with the ear, remain untouched as long
as possible. Also sap flow to the ear remains consistent.

During the grain filling stage, carbohydrates are remobilized to the ear. This was noticeable as
a declining diameter that could not be explained by the model. Several sources mention that
this retranslocation of carbohydrates increases during drought to accelerate the grain filling
stage. However, during severe drought the rate of decline wás predicted accurately by the
model. This suggests that the reduction in diameter at that moment could only be ascribed
to the loss of water in the storage tissues and that retranslocation stops.
Further research is necessary to see whether the increased retranslocation is indeed only
occurring when drought is not severe and arrests when sap flow becomes limiting. Comparison
of diameter measurements and model simulations in both mild and severe drought conditions
might already give an answer to this question. Inclusion of a sugar transport model could
show us what really happens in the ear during drought.

To accurately simulate the diameter variation of the wheat peduncle, a scaling factor had to
be used that was not present in the original model. Since the HydGro model was originally
developed for trees, it was not surprising that the diameter simulations did not match our
measured data at first. The diel variation in the simulations was far too large for the wheat
plant. Since wheat stems contain a hollow core, it was hypothesized that the majority of the
expansion occurs to the inside of the stem. This enables the plant to construct a more rigid
epidermis for protection.
Further research with independent techniques is necessary to confirm this hypothesis.
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In a second part of this report, a first draft was made for a drought index that can differentiate
between drought caused by a high atmospheric demand and drought caused by a soil water
deficit. Inclusion of an improved stomatal regulation model within the Penman-Monteith and
Cropsyst model will be crucial for an adequate performance of the index. But this report
already shows promising results for its application in greenhouse horticulture.
With measurements of the atmosphere in the greenhouse along with soil moisture levels and a
single sap flow sensor on the base of the stem, the index can already be calculated. A prior
calibration of the model is however necessary. To this end, stem diameter variation data,
and preferably also photosynthesis data, is required for a plant of the same cultivar that
experienced drought.

Even though no conclusions could be made on particular proteins, or their concentration due
to the lack of replicates, this master thesis sets the base for a larger experiment in which more
genotypes and more plants per genotype should be analysed and sampled.
With a few alteration in the methodology, the genotype-specific parameters of the model could
be estimated based on proteomic data, possibly eliminating the need for calibration.
At the same time, the model allows to detect genotype by environment interaction, making it
possible to identify key regulating proteins.
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B Extra figures

Figure B.1: Heat map of the model variables together with the phosphorylation of proteins. To
visualise the model variables, their values were duplicated 20 times. The variables are
also emphasized with black arrows
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