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Abstract

Equilibrium algorithms distribute traffic in a network taking into account the congestion it
induces. Typically this leads to two stages in the methods for finding an equilibrium solution.
The first stage handles the route set generation and the second distributes the traffic over
route alternatives. In stochastic equilibrium route choice models the most important problem
is defining a consistent route set.

In current practice, there are two main concepts to handle route sets. Either to maintain a
fixed route set in the distribution phase or to update route set during the distribution phase.
Both approaches have shown their limitations. In case of a fixed route set, there is a chance
that an important route is not considered. This might happen if unforeseen congestion is
present in the network. To solve this problem, the second approach develops methods with a
flexible route set during the equilibrium procedure. However, this may negatively affect the
convergence. In this thesis a method is developed that solves these issues.

It is proposed to implicitly consider all possible routes such that the route set does not require
updating during the distribution phase and no routes are missing from the solution. Recursive
Logit (RL) is an implicit route choice model that considers all routes, hence the route set does
not depend on congestion levels, neither does it change over iterations. RL calculates the
turning percentages from each node to each destination separately. From these percentages,
destination-based flows can easily be calculated (in a static assignment).

This thesis first illustrates how recursive logit converges very stable in a static stochastic user
equilibrium. The main contribution of this thesis is a method to implement a full route choice
with recursive logit in a dynamic assignment. Another contribution is the identification of a
few important parameters that determine the costs for a traveller. Other parameters can easily
be added. Finally, the relation between these parameters and finding a solution is formulated.
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Samenvatting

Een verkeersmodel verdeelt het verkeer over een netwerk. Om te weten welke routes het
verkeer zal nemen richting hun bestemming, is het belangrijk om een goede routeset te
beschouwen in een model. Een routeset is de set van alle routes (tussen alle HB-paren)
die het model beschouwt. Momenteel zijn er twee gebruikelijke methoden om om te gaan
met de routeset in een evenwicht routekeuzemodel. Als eerste kan de routeset vast zijn
gedurende de iteraties voor elke HB paar. Als tweede kan de routeset tijdens het uitvoeren
berekend worden (iedere iteratie of minder frequent, afhankelijk van de huidige congestie in
het netwerk) en dus flexibel zijn. Beide methodes hebben hun problemen. Zo is er bij een
vaste routeset kans dat een relevante route niet in de routeset zit, dit verslechterd uiteraard de
kwaliteit van de toedeling. Terwijl een flexibele routeset de convergentie verslecht door de
toevoeging van extra compliciteit. Deze extra compliciteit komt dat buiten de stroom ook de
routeset moet convergeren. Er is dus nood aan een andere aanpak.

Recursive Logit (RL) kan hier een oplossing voor bieden. RL is namelijk een impliciet
routekeuzemodel dat altijd alle routes in overweging neemt. Deze routeset verandert dus
niet tijdens de iteraties. RL berekent de kansen van iedere afslag voor iedere knooppunt
voor iedere bestemming. De kansen van een afslag zullen afhangen van de reistijd op de
link, als van eigenschappen van de afslag (bv. links afslaan) en van de verwachte utiliteit
(met onder andere de reistijd) tot de bestemming op het einde van de link. RL vertrekt van
de definities gegeven door Dial over utiliteit. Een groot verschil is dat door alle mogelijke
routes mee te nemen, de verwachte utiliteit op het einde van een link tot de bestemming kan
afhangen van zich zelf door de mogelijkheden van lussen. Van de kansen van deze afslagen
kan eenvoudig een bestemming gebaseerde hoeveelheid verkeer berekend worden (in een
statische toedeling). Door het gebruiken van alle routes, komen soms routes naar voor die
minder relevant zijn, bijvoorbeeld routes met een lus of zelfs tien keer dezelfde lus.

Deze thesis zal eerst illustreren hoe stabiel RL convergeert in een statische toedeling. De
grootste bijdrage van deze thesis is het ontwikkelen van een methode dat een volledige route
keuzeset van RL toepast in een dynamische toedeling. Ook hier zal de stabiliteit besproken
worden. Een andere bijdrage is het identificeren van belangrijke eigenschappen van een
afslag dat de utiliteit van een reiziger kan bepalen. Andere eigenschappen kunnen makkelijk
toegevoegd worden. Als laatste is een verband tussen de parameters van deze eigenschappen
en het vinden van een oplossing geformuleerd. De ontwikkelde methode kan ook gebruikt
worden in andere contexten, bijvoorbeeld bij het genereren of beoordelen van routesets.
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Introduction

“Belgium is one of the leaders in traffic jams.”

Every once in a while this quote is printed on every journal. Besides the weather, traffic is for
some people the most favourite topic to complain about. Almost everyone has to deal with
traffic on a daily basis and some therefore claim to have ’the solution’ to ’the traffic problem’.
This ’solution’ is not only heard in bars after some drinks, but appear also in newspapers by
traffic experts, or so they introduce themselves.

The government needs a way to known the impact of these ’solutions’. This is done
by analysing all sorts of data, but unfortunately not all data is known. Luckily for the
government, researchers have developed a way to predict (interpolate or extrapolate) missing
data. Traffic can be modelled by using mathematical formulations. The term traffic model is
very broad. It can go from short term (tactical level) predictions to more long term predictions
(strategic level). Some assume each person to act the same way, while others simulate each
person differently. The model gives some choices to the simulated users. Examples of these
choices are for example what transport mode a user will use, which route he will take to his
destination or even when he will leave his house.

This thesis will focus on defining the possible answers of one of these choices given to
the users, namely to the question which route the users take. Which route a user can take
is limited to the routes a model considers. Most models consider only a subset of all the
possible routes. This seams logical because who would want to take a route that makes a
serious detour. However, with congestion on the network, analysing the travel time of each
route can reveal that a route with a serious detour in free flow conditions (no congestion)
can be the shortest with congestion on the network. This unknown delay (due to congestion)
before the model runs, makes it hard to conclude which route set should be used. When the
route set contains all possible routes, the route a certain traveller prefers is per definition in
the route set. A problem is that really every route is in the route set, also the routes with one
loop or the routes with ten times the same loop. This thesis will show a way of how to cope
with this property.

While answering the question which route the users will take, the method takes into account
that users can have their own often unknown preferences or individual perception of the
network conditions. This means that a stochastic user equilibrium needs to be solved to take
into account the uncertainty of the choice process. In the extreme case that all users have
the same (known) preferences, the method can also solve the deterministic user equilibrium.

1



Introduction

A deterministic user equilibrium is a special case of a stochastic user equilibrium with
a variance of zero, this means that all travellers experience the same benefits/costs. A
stochastic user equilibrium is much more realistic then a deterministic one and will behave
more predictable to a change in the network, it is also perfect observable.

This thesis will use a theoretical described method (based on Recursive Logit) to take a full
route set into account and will be implemented in a static and dynamic assignment. It will
show that working with a fixed (full) route set is much more stable, because the a full route
set reduces the complexity. A less complex problem is very useful, this way the method
can be implemented in any real time system. The method can also be used to help other
algorithms decide which routes should be included in the route set or to evaluate a given
route set.

An implicit full route choice model has been theoretical described for a static assignment,
this thesis will first implement it. The real research will be finding a method that does the
same in a dynamic assignment. This will be done in such way it is described as general as
possible, which means it can be easily adopted and changed if needed.

After recursive logit is introduced (chapter 2), it is implemented in a static assignment
(chapter 3). When implementing it, focus is given to parameters and network characteristics
that determine the utility a traveller experience. This thesis shows how all destinations can
be handled together in a static assignment, rather than one by one. The positive features of
the static assignment gives enough reasons to research if it can also be implemented in a
dynamic assignment. This is done in chapter 4, where a method is developed to show how
recursive logit can be of use in a dynamic assignment. Chapter 5 gives more examples on
how to use the algorithm and in which cases it can help. Chapter 6 then concludes with some
topics for further research.
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Chapter 1

Route sets

In every traffic assignment model, a route set needs to be chosen. A traffic assignment
model distributes traffic over a network taking the effects of congestion on certain roads into
account. A route set is a collection of all plausible routes between an origin-destination (OD)
pair that the algorithm considers. Ideally, the route set should contain every plausible route.
Under a fixed route set, a converged equilibrium is the solution of a convex combination of
route fractions, a problem easily solved by generalized techniques. The problem of finding
a consistent route set is, on the other hand, more difficult and could potentially deteriorate
convergence to an equilibrium solution. Considering all routes in the network for every
iteration towards convergence might solve the latter problem.

There are different classifications of route sets. Two of these classifications are mentioned
below. First, the difference between an explicit and an implicit route set is handled. The
other classification is between fixed and flexible route sets. In the last section of this chapter
is explained what an implicit fixed route set is and why a full fixed implicit route set is used
in this thesis.

1.1 Classification of route sets

Let us consider a stochastic user equilibrium (including the extreme case of approaching
zero variance for a deterministic solution), some algorithms work with an explicit route
set, this means that every route considered is explicitly stated. Enumerating all routes in
a network with loops is impossible, an explicit route set can not contain all routes in any
real network. Some subset of all possible routes should be chosen. Not including a relevant
route in the subset has a negative impact on the quality of the assignment. The opposite
of explicit is implicit, an implicit route set does not enumerate paths but defines the turns
that are plausible. This can be all turns (as will be done in this research) or only a subset of
possible turns (like Dial’s algorithm proposed in Dial and Voorhees (1971)). In this latter
case, the topological order determines which turns are plausible. Only turns that connect a
lower to a higher node in the topological order are considered. The route set is different if
the topological order is changed. The topological order being determined by the distance of
the shortest path between a node and the destination.

3



1. Route sets

Figure 1.1: A simple network. (Black
numbers represent the node numbers,
coloured numbers the link number.)

Figure 1.2: Convergence of the Dial
algorithm, a ’o’ indicates only one route is in
the route set, while a ’.’ indicates both routes
are in the set.

There are two concepts of how to deal with a route set during the iterations of an equilibration
algorithm. First, a fixed route set can be used. A fixed route set is a route set that is determined
at the beginning of the algorithm. Working with a fixed route set gives advantages for
computing time and smoothness of convergence, but increases the chance of missing a
relevant route. Second, the route set can also be flexible. During the execution of the
algorithm, the flexible route set changes, the route set can change every iteration or only
when the algorithm thinks it is necessary, similar to column generation techniques for
combinatorial problems. A fixed size can be used for the route set, for example only 5 paths,
or the size can be variable due to a variety of criteria. An example of such criteria is the
topological order. Frejinger et al. (2009) has an average choice set size of 9.66, which is
constructed by a bias random walk. L Bovy (2009) uses a branch and bound method to
determine the route set.

Let us illustrate by a small example the convergence problems that can arise when a flexible
route set is used. Consider the network in figure 1.1, the only demand is from node 1 to
node 2. There are two possible routes (note that the links are unidirectional), namely directly
from node 1 to node 2 by using link 1 or by using link 2 and 3. By using high demand and
non-constant cost functions on the links, the topological order of the nodes changes while
Dial’s algorithm executes. The resulting poor convergence is plotted in figure 1.2. How the
gap is calculated, will be explained later. Important now is that a gap is a way to quantify the
quality of the solution. The lower the gap, the closer to the equilibrium.

4



1. Route sets

Figure 1.3: A symmetric triangle network

Besides the less smooth convergence of the algorithm, a flexible route set defined by the
topological order misses some relevant routes. The next example shows an extreme case
where two routes, who have the same cost (no congestion on the network), can not be both
in the route set. Figure 1.3 illustrates this network. Both origins (nodes 4 and 5) have two
possible routes to the destination (node 6). While having the same costs, the paths (defined
by the links) 5,7,2,6 and 4,1,3,6 can not be both in the route set that is constructed by a
topological order. The problem here is that or node 2 is higher than node 3 in the topological
order or the other way around. This means that only one of the links 1 or 7 can be an effective
link. Note that in a deterministic user equilibrium this problem does not arise, because only
the shortest paths would be used. With a full route set, all four routes would always be
considered.

1.2 A Full Fixed Implicit route set

A solution to these problems is working with a full route set, which considers all possible
routes in each iteration. Due to the fact that in many networks, an infinite number of routes
exists, the route set will be implicit. This means that not every route in the route set is
explicitly written. Bell (1995) formulated alternatives to Dial’s logit assignment algorithm,
this inspired Fosgerau et al. (2013) to formulate the recursive logit.

The idea of Bell is simple, let W be a matrix of weights constructed as follows:

wn,m = exp(−α ∗ Costn,m) (1.1)

With n and m being links and α the cost parameter.

5



1. Route sets

Then W expresses the weights between each pair of two links directly (with a weight of 0 if
the path doesn’t exist). Bell shows then that W 2 expresses the combined weights of all the
routes between each pair of links consisting of exactly 2 links. The combined weights of all
routes between each pair of links consisting of any number of links is

W +W 2 +W 3 + . . . = (I −W )−1 − I = Y (1.2)

This can only be calculated if (I-W) can be inverted, thus not every network (with its
specific parameters) can have such combined matrix of weights. The probability that a link k
(connecting node r to node s) is used for an OD-pair i to j can be calculated by:

Pijk = yir ∗ exp
(
−α ∗ Ck ∗

ysj
yij

)
(1.3)

With Ck the cost on link k. The path choice is thus reduced to a sequential link choice model.

Fosgerau more explicitly states the conditional probability for a traveller n going to a
destination d will use link k given the traveller is on link a. (For formulas, see later.) This
probability depends on the utility for going from link a to k (this can include a random utility
component εn) and the expected downstream utility. This leads to a system of equations that
under certain conditions can be solved. This recursive logit (RL) will be handled in more
detail in the next chapter.

It is with this full fixed implicit route set, that always considers all alternatives to a route,
that this research hopes to show a way to resolve rerouteing problems. From now on if a
route set is mentioned, a full fixed implicit route set is intended if not specified further.

6



Chapter 2

Recursive Logit

This chapter is strongly based on the work of Fosgerau et al. (2013). Some details are
explained with another view, to better understand the steps the research took afterwards.

For convenience, the same notation is used as in the paper of Fosgerau et al. (2013). See
figure 2.1 for the visualisation of the notation. While a and k are links, d is the destination
link (a connector). Connectors are links without a sink node (destination) or source node
(origin). Connectors are the only place traffic can appear or disappear. A(k) is the set
of outgoing links from the sink node of link k. Another way to look at A(k) is a set of
possible turns one can make at the end of link k. Turns are fully described with the two links
connected by that turn.

The recursive logit states the conditional probability that a certain turn will be taken to a des-
tination, given the traveller is at the end of a link. A matrix P is formed which collects all the
probabilities towards a given destination. This matrix will have dimensions [(l+2c) * (l+2c)],
with l the number of links and c the number of connectors. Pij gives then the probability
of going to link (or connector) j given travellers location on link (or connector) i. Note that
links are defined in only one way, making a two-way road modelled as two separate links.
Given these probabilities, a path probability can be calculated by multiplying every turn
probability along the path. For example the probability that traveller n uses path 1→ 3→ 4
is calculated as: P1,3 ∗ P3,4.

Figure 2.1: Illustration of notation (Fosgerau et al., 2013)

7



2. Recursive Logit

The question now remains on how to calculate such matrix P. If a traveller n, on link k needs
to chose which turn to take to destination d, he compares the (instantaneous) utilities for each
turn with their expected downstream utility (V d

n (a), the last term in equation 2.1). The utility
is the benefit the users experience when travelling the link, with a negative utility being a
cost. The (instantaneous) utility consists of two parts, a part that for every traveller is the
same vn(a|k) and a part that is unknown and different for every traveller µεn(a). The first
part consists of the travel time on link k and possible turn impedances. To use the properties
of logit, the random term εn(a) is assumed independent and identically distributed extreme
value type 1 with a mean of zero. The expected utility from the traveller on link k is the
maximum sum of these utilities, namely:

V d
n (k) = E

[
max
a∈A(k)

(
vn(a|k) + µεn(a) + V d

n (a)
)]

(2.1)

By using a multinomial logit model, the probability that a link will be used for a route to
destination d, given link k, is:

P dn(a|k) =
exp

(
1
µ

(
vn(a|k) + V d

n (a)
))

∑
a′∈A

(
exp

(
1
µ (vn(a′|k) + V d

n (a′))
)) (2.2)

The Expected Maximum Perceived Utility function in a logit model is the logsum over all
possible choices that can be made. The expected downstream utility (V d

n (k)) can then be
written as follows:

V d
n (k) =

µ ln
∑
a∈A

(
δ(a|k) exp

(
1
µ

(
vn(a|k) + V d

n (a)
)))

∀k ∈ A \ d
0 k = d

(2.3)

With δ(a|k) equal to one if a ∈ A(k) and zero otherwise. If link k is the destination, the
utility is zero. This way of writing the utilities is the same as in the paper of Dial and
Voorhees (1971).

There is a huge different between RL and the definition of Dial. Dial and Voorhees (1971) in-
troduced a topological order, in this way V d

n (k) depends on the value of V d
n (a) (as expressed

in equation 2.3) but V d
n (a) does not depend on the value of V d

n (k). When this is the case,
computing the downstream utilities is just using the equations in the right order. When a
topological order is used, the node order is determined by the shortest path and the node the
closest to the destination is calculated first. The other nodes can be calculated by going over
all nodes according to the topological order.

Things change if the network contains a loop, then the value for the utility on a link will
depend on others and its own value. If equation 2.3 is written for every link, then a system of
non-linear equations is obtained. To make a linear system of equations, the variables needs
to be transformed.

8



2. Recursive Logit

If from both sides of the equation the exponential is taken and raised to the power of
1
µ

, then

this is the result:

exp
( 1
µ
V d
n (k)

)
=


∑
a∈A

(
δ(a|k) exp

(
1
µ

(
vn(a|k) + V d

n (a)
)))

∀k ∈ A \ d
1 k = d

(2.4)

To write the system of equations in matrix notation, three matrices are introduced:
b (|A| × 1), z (|A| × 1) and M (|A| × |A|). With b being a vector with bk = 0 for k 6= d
and bd = 1, z a vector that gives the destination dependent transformed utility of the end

node of a link, namely zk = exp
( 1
µ
V d
n (k)

)
. Note that zk is the same for each link sharing

the same end node. M is a matrix of utilities for each turn, this is destination independent.

Mka = δ(a|k) exp
( 1
µ
vn(a|k)

)
(2.5)

The component vn(a|k) consists of turn dependent utilities but also the travel time on link a.
The system of equations can now be formulated as followed:

z = Mz + b⇐⇒ (I−M) z = b (2.6)

Where I is the identity matrix. It is clear that the system only has a solution if I-M is
invertible. This will be handled later. (See section5.1)

Probabilities can now be calculated:

Pk = Mk • zT

Mkz
(2.7)

With • the element by element multiplier. The P matrix is thus calculated row per row, where
a row represents the given state (link). Mk is the corresponding row of matrix M. With these
probabilities, Fosgerau et al. (2013) gives another system of equations to solve the link flows
(towards one destination). (

I − P T
)
F = G (2.8)

With F a vector (|A| × 1) the link flows (towards one destination), G a vector (|A| × 1) with
Gk = demand from link (connector) k to destination d.

There is a matrix P for every destination, as recursive logit is destination based. There are no
differences in probabilities when the traveller had begun his journey from another origin.
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Chapter 3

Full route set in a Static assignment

To fully understand the concept of the Recursive Logit, it was implemented in a static
assignment first. Because the dynamic assignment’s first step will be a static assignment, it
is useful to elaborate this a little.

A static traffic assignment, is an assignment that has no time dimension. Given the demand,
it calculates how many people will use each link.

3.1 The algorithm

The recursive logit part in a static assignment takes place in the inner loop part of the
algorithm. Given the costs of the links (travel times), the inner loop calculates the corre-
sponding flows. Outside of this loop, another loop tries to achieve equilibrium conditions.
The costs that are the input of the inner loop are here updated and smoothed given the flows.
Figure 3.1 gives the steps of the algorithm. The algorithm is implemented in Matlab R2016b.
Section 3.1.3 gives an overview of how the algorithm is coded in Matlab.

3.1.1 Recursive Logit

The inner loop consists of the recursive logit part. As explained above, all calculations are
destination based and for a whole OD-matrix, a loop is introduced. To reduce calculations,
the transformed utilities for each link towards a destination (the Zk elements) are now
calculated in a matrix Z, where Zkd is the transformed downstream utility for link k to
destination d. One column of Z is a previously calculated vector z. Equation 2.6 is then
formulated as:

Z = MZ + B⇐⇒ (I−M) Z = B (3.1)

11



3. Full route set in a Static assignment

Figure 3.1: Overview of the algorithm used in the static assignment

The matrix Z has as dimension (|A| × |D|), where |D| is the total number of destinations.
M and I remain the same. B (|A| × |D|) is the destination matrix, with in every column one
element that equals 1. If all the links are split in: real links, origin connectors and destination
connectors, then B typically has the following layout:

B =


DestinationConnectors

RealLinks 0
OriginConnectors 0
DestinationConnectors I


With these adjustments, all transformed utilities for each link to each destination are calcu-
lated in one system of equations. The probabilities and link flows can only be calculated for
each destination. Link flows are added together to get the total link flows (independent of
the destination), this is the output of the Recursive Logit part.

12



3. Full route set in a Static assignment

3.1.2 Equilibrium

To find the solution of the static assignment, the equilibrium needs to be calculated. To do
this, three functions needs to be further defined. The first functions define what the new
link flows will be, will it be the direct outcome from the recursive logit or will an MSA
step (Robbins and Monro, 1951) or any other smoothing of the step size be introduced. The
second function needs to calculate the new link costs with the new link flows. The last
function needs to calculate a ’gap’ or improvement with the last iteration. This gap will then
be used as a stopping criterion. Besides a gap, a maximum number of iterations can also be
used to be certain the loop will end. These three functions will be handled in the next three
paragraphs.

Once a new iteration is calculated, the overall solution takes a step in the new calculated
direction. How big this step is, depends on the algorithm used. A much-used algorithm to
determine the step size is MSA, where the step size is the inverse of the iteration number.
This means that the influence of the new calculated iteration decreases. In other words, the
amount of traffic that can change routes decreases. The fact that recursive logit works with
an implicit full route set, makes the algorithm more stable. This is logical because the route
set can no longer change over iterations (as is possible in Dial’s algorithm). Instead of an
MSA step, a proportional step size is used. A proportional step size gives a fixed weight to
the newly calculated average between the previous (averaged) and new calculated results.
This way new calculations have a larger impact on the new averaged result. In this research,
a proportional step size of 0.5 is used. This means that the new flows are the average of
the previous flows and newly calculated flows. An example of a smooth convergence of
recursive logit is found in figure 3.2. The value of 0.5 is randomly selected. Section 3.2 goes
into more detail about this and tries to define the impact of different step sizes.

In this static assignment, a simple BPR function is used to determine the costs on each link
given the flows. A BPR function is of the following form:

TTa = TTFFa

(
1 + α

(
va
ca

)β)
(3.2)

With TTa the travel time on link a, TTFFa the free flow travel time on link a, va the volume
on link a and ca the capacity of link a. α and β are function parameters. In this thesis the
values 0.15 for α and 4 for β is used, as suggested by the Bureau of Public Roads (BPR).

For the gap function, the sum of the absolute values of the difference between the old link
flows and the link flows from the recursive logit is taken. ε is set at 10−3 (with a maximum
number of iterations of 2000). This means that when the new outcome of flows only make a
maximum of 10−3 vehicles reroute, the algorithm takes the new link flows as the equilibrium.

3.1.3 Pseudo code

As said before, the algorithm is split into two functions, the equilibrium function and the
recursive logit function (algorithm 3.1). The latter being the blue part of figure 3.1, while the
first being the other parts around the blue part.

13



3. Full route set in a Static assignment

Figure 3.2: Convergence of recursive logit with proportional update

To reduce calculations, the M matrix is divided in different parts.

M =


Links Origins Destinations

Links LL LO LD
Origins OL OO OD
Destinations DL DO DD


Only the parts LL and OL change during the iterations due to the travel time. All other parts
are either zero or one.

Algorithm 3.1 Recursive Logit Equilibrium in Static Assignment

1: function STATIC EQUILIBRIUM(Network,Demand,betas)
2: Calculate all characteristics . Including free flow travel times
3: Calculate M . With free flow travel times
4: Calculate B
5: while it<maxIt and gap<gapTreshold do
6: it← it+ 1
7: newFlows← RecLog(M,Demand, betas, travelT imes)
8: gap←Max(abs(Flows− newFlows)) . Max difference on a link
9: Flows← update(Flows, newF lows) . Depends on step size

10: travelT imes← BPR(Flows)
11: end while
12: end function

14



3. Full route set in a Static assignment

Algorithm 3.2 Recursive Logit

1: function RECLOG(M,Demand,betas,travelTimes)
2: Update M with travelTimes . Only LL and OL
3: Z ← (I −M)\B
4: flows← zero
5: for all destinations do
6: for all links and origins do

7: Pk = Mk • zTd
Mkzd

8: end for
9: F ←

(
I − P T

)
\Demandd

10: flows← flows+ F
11: end for
12: end function
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3. Full route set in a Static assignment

3.2 Influence of the step size

To see the impact of the different step sizes, a static assignment, with everything else in the
network the same, is calculated for different step sizes. The same network as provided in
chapter 1 is used. This network is plotted again in figure 3.3. The demand is 3000 people
from node 1 to node 2. The algorithm continues till the gap is smaller than 10−10, this is
smaller then before to better show the different convergence between the different step sizes.

Figure 3.4 show the four different convergence plots. First, a traditional MSA-step is used.
The convergence criterion is not reached after 2500 iterations. The update is limited to the
step size of one divided by the iteration number, which is very small after a lot of iterations.

Second, different proportional step sizes are tested. The values used are 0.1 and 0.5 and even
a full step size of one. This latter means that the last calculated flows are directly, without any
smoothing, used for the calculation of the costs. The proportional step size of 0.1 needs 240
iterations, while the proportional step size of 0.5 only needed 38 iterations. The full step size
was in this example still stable and needed only 10 iterations. Note that because everything
else is the same in the static assignment, each iteration needs more of less the same amount
of time. This means that the full step size is 24 times faster than the proportional step size of
0.1 if the initialisation time is ignored.

Figure 3.5 gives the different convergence plots in one figure. The proportional update
produces a linear convergence (on a plot with the y-axis logarithm). The different between
each proportional update can easily be seen, how larger the proportional step size, how
steeper the convergence.

The fact that there is only one destination makes finding the equilibrium much easier. The
test network gives a first impression of what the maximum gain in changing the step size can
be.

Figure 3.3: Test network
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3. Full route set in a Static assignment

(a) MSA-step (b) Proportional update of 0.1

(c) Proportional update of 0.5 (d) Proportional update of 1

Figure 3.4: Convergence of different step sizes

Figure 3.5: Network 1 convergences with different step sizes
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3. Full route set in a Static assignment

Figure 3.6: Network of Leuven

To test this further, a network of Leuven is taken (see figure 3.6). This network consists of
1493 nodes and 3203 links, with 210 different destinations from 211 origins.

Figure 3.7 gives the convergence of the different step sizes separately, while figure 3.8 shows
them in one figure. The same conclusions can be made as before. It does not appear that the
algorithm can flip-flop between two states when a full step size is used. An other view on
this is the following: during the calculation of the equilibrium, the input (travel times) and
output (link flows) are never the same as in a previous iteration. The output at iteration k is
different from all (k-1) previous iterations. Further tests are needed to see if this is always
the case.
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3. Full route set in a Static assignment

(a) MSA-step (b) Proportional update of 0.1

(c) Proportional update of 0.5 (d) Proportional update of 1

Figure 3.7: Convergence of different step sizes on the network of Leuven

Figure 3.8: Convergences with different step sizes on the Leuven network
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3. Full route set in a Static assignment

3.3 Turn characteristics

As stated above, the utility to make the turn from link k to link a (vn(a|k)) contains the travel
time on link a and other characteristics of the turn. A few examples will show how these
characteristics influence the results and what these characteristics can be. The utility from a
turn is:

vn(a|k) = βTT ∗ TT + βUTurn ∗ Uturn+ β3 ∗ Characteristic3 + . . . (3.3)

Each characteristic has its own parameter. When calibrating, only the proportion between
different β parameters will have to be calibrated. Which means that βTT can equal one for
simplicity.

3.3.1 U-Turn

An example of a characteristic that can be used is a penalty for a U-turn. In most assignments
’searching traffic’ (traffic that for example is looking for a parking spot), is not considered
hence U-turns are not an expected behaviour. An extra penalty for U-turns in the utility will
then reduce the probability for routes with U-turns (hence also for routes with 2 successive
U-turns which would form unrealistic cycles). To demonstrate this, an assignment has been
done to a small network (figure 3.9). Figures 3.10 shows an assignment without any U-turn
penalties (3.10a) and one with a very high U-turn penalty (3.10b).

Figure 3.9: A simple network. Black numbers represents node numbers, while coloured ones
gives the link number.
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3. Full route set in a Static assignment

(a) Without a penalty for U-turns (b) With a penalty for U-turns

Figure 3.10: Link flows on a simple network with U-Turns, demand is 3000 from bottom
node (1) to top node (2)

The corresponding P-matrices are given in table 3.1. With the U-turn penalty, the probability
has lowered but is still larger than zero. With these matrices, the probability of a path can
be calculated. These matrices show also that every possible path is always considered as a
possibility. In table 3.2 a few of these paths probabilities are calculated. Without any penalty,
the probability of using a path without any U-turn is only 0.207 + 0.10 = 0.307 or 30.7%.
This means that the other traffic uses a path with a U-turn. The probability lowers with every
extra loop the traffic takes.

Because RL works with a multinomial model without correlations between the different
paths, the ratio of the probability of the two routes not effected by the U-turn penalty stays
the same. This is because, in a logit model, only the different in utilities defines this ratio. In
this example, this gives 0.20/0.10 = 0.67/0.33. The ratio of probabilities between the two
paths without U-turns stays the same.
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Table 3.1: P-matrix of the assignment

Without U-turn penalties

P 1 2 3 4 5 6 7 8
1 0,23 0,77
2 1
3 1
4 1
5 1
6 0,23 0,77
7 0,90 0,10
8

With U-turn penalties

P 1 2 3 4 5 6 7 8
1 1 ∼0
2 1
3 1
4 1
5 1
6 1 ∼0
7 0,67 0,33
8

Blank entries represents zero, while ∼0 represents a value close to zero but slightly larger. Link 7 is the
connector to node 1 (origin), while link 8 is the connector to node 2 (destination).

Table 3.2: Probability of paths

Path Probability without penalty Probability with penalty
7→1→4→8 0.90 * 0.23 * 1 = 0.207 0.67 * 1 * 1 = 0.67
7→2→3→8 0.10 * 1 * 1 = 0.10 0.33 * 1 * 1 = 0.33
7→1→5→6→4→8 0.90 * 0.77 * 1 * 0.23 *1 = 0.159 ∼0
7→1→5→6→5→6→4→8 0.90 * 0.77 * 1 * 0.77 * 1 * 0.23 * 1 = 0.123 ∼0
. . . . . . . . .

Link 7 is the connector to node 1 (origin), while link 8 is the connector to node 2 (destination).
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3. Full route set in a Static assignment

Figure 3.11: A network with different hierarchical links

3.3.2 Hierarchy

Most network layouts are made of different hierarchical layers, with the highway being
the highest layer in the hierarchy. Imagine now a highway with an off- and on-ramp (as
illustrated in figure 3.11). Taking the off- and on-ramp instead of just the highway can have
only a little less utility. Therefore, in a stochastic assignment, it will be used by people
in the model. In real, people will only consider this option if they can avoid very severe
congestion as using the off- and on-ramp is not really an alternative. A penalty for lowering
in a hierarchical layer can help this problem. Figure 3.12 shows the link flows before and
after the introduction of a penalty.

The same analysis of the P-matrix like with the U-turn penalty could be made here. The
figures show clearly that with the hierarchical penalty, fewer people use the off- and on-ramp.

(a) Without a penalty for hierarchy (b) With a penalty for hierarchy

Figure 3.12: Link flows on a simple network with hierarchy, demand is 3000 from bottom
node (1) to top node (5)
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3.4 Conclusion

The formulas proposed by Fosgerau et al. (2013) (equations 2.6,2.7 and 2.8) can be easily
implemented for a static assignment. By using a full route set, the algorithm is more stable,
which leads to the use of proportional step sizes (to even a full step size). This then leads to
a much smoother convergence.

Unfortunately, not all characteristics of RL are desirable. Without taking the correlation
between different paths into account, a path with a small (in terms of utility) loop will only
have a little less probability than the route without the loop. By introducing penalties, some
of these unrealistic characteristics can be eliminated, for example, the U-turns.

RL is based on a logit-model, which does not handle correlations in the error terms. This
typically occurs with overlapping routes. This is discussed in more detail in section 6.1.

Nonetheless, the overall conclusion is positive and makes further research to make RL work
in a dynamic traffic assignment desirable.
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Chapter 4

Full route set in Dynamic assignment

A dynamic traffic assignment has a time dimension. Time has to be made a discrete variable.
This is done my introducing time steps. Each time step represents a specific time. Given the
demand of every time step, a dynamic traffic assignment calculates the flows on each link at
each time step. While it seems not complex of adding just a time dimension, the complexity
is much larger in a dynamic than a static traffic assignment.

The algorithm based on Recursive logit made for this research is only a part of a total
dynamic traffic assignment. The dynamic network loading (DNL) of the link transmission
model (LTM)(Himpe et al., 2016) will be used to test and evaluate the developed algorithm.
This software is freely available on the internet1. The algorithm described below can easily
be implemented in other algorithms. We consider no departure time choice, hence demand is
fixed for every time interval.

4.1 The Algorithm

An overview of the algorithm is displayed in figure 4.1. The outer loop consists of iterating
over all destinations. First, the maximum perceived utility per time step is determined (the
yellow block in the figure). After that, the turning fractions are calculated (per node per
time step for each destination). These turning fractions are slightly different defined then the
P matrix in the static assignment. Turning fractions are defined per node instead of one P
matrix for the whole network. This is done because the DNL of LTM works with turning
fractions. The algorithm can easily be adjusted to a 3d P matrix, with the 3rd dimension
being the time. With these turning fractions, DNL will calculate the link flows which leads
to new travel times.

1http://mech.kuleuven.be/en/cib/traffic/downloads
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4. Full route set in Dynamic assignment

Figure 4.1: The algorithm used in the dynamic assignment

4.1.1 Maximum Perceived Utility

To determine the (transformed) maximum perceived utility, a static assignment is used in
the last (totT+1) time step. Next, the other time steps are calculated in an upwind order.
This is done because Z(t) can depend only on time steps t∗ ≥ t. To calculate the other time
steps, the algorithm will interpolate between two (already given) values of Z(t′). This is
true because the utility at a node depends on the expected downstream utilities. These are
linked through the travel time (and other turn characteristics) between two nodes. To make
the algorithm simpler, only time steps that are smaller than the minimum travel time are used.
In this case Z(t) will only depend on time steps t∗ > t. Section 6.2 will go into more detail
about this and also propose a suggestion to make the algorithm handle the extra complexity.
This extra complexity comes from the fact that V d

n (a, t) requires (for example) V d
n (k, t)

which itself can be related to V d
n (a, t), all in the same time step.
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Figure 4.2: A simple network plotted with its time dimension. The time (z-axes) indicates
the time the end of the link will be reached.

To calculated the maximum perceived utilities of the next time step, the logsum is taken.
The logsum is the natural logarithm of the sum of utilities of all possibilities. Here is an
example on how to do this, assume a small part of a network, plotted in figure 4.2. In the
figure, three nodes are plotted on the x-axes. Node 1 is connected to the two other nodes by
links a and b. The y-axes defines the time. t1, t2, t3 and t4 are different time steps used in
the algorithm. The vertical distance of a link represents the travel time of the link at time of
the beginning of the link. The travel time on link a (tta(t1)) is exact a time step, while the
travel time on link b (ttb(t1)) is between one and two time steps at time t1. The problem
now is to calculate the value of V d

n (k, t1). Node 1 has two different outgoing links, a and
b. The end of link a is reached at time t1 + tta(t1) = t2 when leaving link k at time t1(the
same holds for b with time t1 + ttb(t1) = t∗). As stated before, V d

n (k, t1) is calculated as:

V d
n (k, t1) = 1

µ
∗ ln

[(
vdn (k, a, t1) + V d

n (a, t2)
)

+
(
vdn (k, b, t1) + V d

n (b, t∗)
)]

(4.1)

With vdn(k, a, t1) being the utility for going from link k to link a at time t1. Of course not
every time is represented in time steps. For time t∗ that is in between t2 and t3, a linear
interpolation is used. Take for example that t∗ = t2 + 0.4 ∗∆t. This means that V d

n (b, t2)
will be calculated as: 0.6 ∗ V d

n (b, t2) + 0.4 ∗ V d
n (b, t3). To do this, V d

n (b, t2) and V d
n (b, t3)

needs to be known at the time of calculation of time step t1, which is why we proceed
through time from the latest time totT in an upwind order.

27



4. Full route set in Dynamic assignment

4.1.2 Turning Fractions

Once all maximum perceived utilities are calculated, the last thing remaining is to calculate
the turning fractions. To calculate these turning fractions (or probabilities) the utilities for
each possibility is needed. These depend on turning characteristics, the travel times (per time
interval) and maximum perceived utility of the end node. All these ingredients are already
known, this means that every calculation towards probabilities is independent of other results.
The order in which the turning fractions are calculated, is thus unimportant. It can even be
done in parallel. In this algorithm, all nodes are iterated from the start time to the end time.
Returning to the example in figure 4.2, the probability of going to link a (at time t1) is then:

P (k, a, t1) =
exp

[
µ
(
vdn (k, a, t1) + V d

n (a, t2)
)]

exp [µ (vdn (k, a, t1) + V d
n (a, t2))] + exp [µ (vdn (k, b, t1) + V d

n (b, t∗))]
(4.2)

As before, the maximum downstream utility of a node at a time between time intervals
may need to be known. Linear interpolation between the two known time steps is again the
solution to this problem.

Note that because once the maximum downstream utility is known, the calculation of the
turning fraction can be done. There can therefore be more efficient ways to implement this
method. If the turning fraction is calculated as soon as the maximum downstream utility is
known, there would be no need to interpolate twice.

The output of this algorithm are the turning fractions, which are stored in a data structure
of size |N | × |T | × |D|, with |N |, |T |and|D| the total number of nodes, time steps and
destinations respectively. Each TF (n, t, d) is a matrix (|IL| ∗ |OL|), with |IL|&|OL| being
the number of incoming and outgoing links on the node n respectively. TF (n, t, d)a,b is the
percentage of flow going to link b that was on link a towards destination d at node n at time
t. Each row of a TF (n, t, d) matrix is summed to one, because destinations are defined as
links. Over iterations towards convergence, these TF are proportionally averaged.

4.1.3 Equilibrium

In this research, the time steps used in the algorithm determining the turning fractions and
the one used in the DNL are the same. This does not necessary have to be the only option.
When different time steps are used, the question remains on how to interpret these turning
fractions. One possibility is to assume the turning fractions fixed between the time steps of
the algorithm described. Another possibility is to (linearly) interpolate between the turning
fractions. For simplicity of this research, both time steps are taken the same size (which can
be done here without constraint on the DNL because the time step in the iterative version
of LTM does not need to comply with CFL conditions (Himpe et al., 2016)). In the used
DNL, turning fractions are fixed within a time interval and based on the utility and maximum
utility of the last vehicle in that time interval.

The gap is calculated over the link flows as followed: the maximum total change of flows in
a time step. While TF are averaged over the iterations.
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4.1.4 Pseudo code

The algorithm is split into three separate functions, which call each other. The first part
(algorithm 4.1) is the outer loop and tries to reach equilibrium. The second part is the blue
part of figure 4.1, it calculates the turning fractions once the maximum perceived utility is
given (algorithm 4.2). The maximum perceived utility is calculated in the last part (algorithm
4.3) and is the yellow part of the figure.

As said before, in the dynamic case the output of the algorithm are turning fractions (with
[#nodes,#timesteps,#destinations] as the dimension). This is done because DNL of LTM
works with such turning fractions, the algorithm can easily be adapted to output a 3rd
P-matrix with time as it thirds dimension. However this matrix is very sparse and therefore
more efficient data structures are required.

Note that in the algorithms below, θ is used instead of
1
µ

.

Algorithm 4.1 Recursive Logit Equilibrium in Dynamic Assignment

1: function DYNAMIC EQUILIBRIUM(Network,Demand,betas,θ,dt,totT)
2: Calculate all characteristics
3: TT ← cvn2tt(cvnup, cvndown, dt)
4: Flows← cvn2flows(cvnup, dt)
5: TF ← TurningFractions(Network, Characteristics, TT, betas, dt, totT )
6: while it<maxIt and gap<gapTreshold do
7: [cvnup, cvndown]← LTMMC(Network, dt, totT, TF )
8: TT ← cvn2tt(cvnup, cvndown, dt)
9: newFlows← cvn2flows(cvnup, dt)

10: TFnew ←
TurningFractions(Network, Characteristics, TT, betas, dt, totT )

11: TF ← update(TF, TFnew) . Depends on step size
12: gap← max(abs(Flows− newFlows)) . Max sum over all time steps
13: Flows← newFlows
14: it← it+ 1
15: end while
16: end function
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Algorithm 4.2 Turning Fractions

1: function TURNING FRACTIONS(Network,betas,θ,dt,totT)
2: for every destination d do
3: maxUtilities← maxUtility(d)
4: for all nodes n do
5: linksin ← ingoing(n)
6: linksout ← outgoing(n)
7: for all time steps t, from 0 to totT do
8: P ← zeros(linksin, linksout)
9: for all ingoing links lin do

10: for all outgoing links lout do
11: tarrival ← t+ TTlout

12: [t1, t2]← timeToT imeSteps(tarrival)
13: utilitydownStream ←

interpolate [utilmap (lout, t1) , utilmap (lout, t2)]
14: penalty ← penalty(Network, Characteristics, betas)
15: utility ← βTT ∗ TT + penalty + utilitydownStream
16: P (lin, lout)← exp(θ ∗ utility)
17: end for
18: end for
19: TF (n, t, d)← normalize(P )
20: end for
21: end for
22: end for
23: end function
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Algorithm 4.3 Maximum Perceived Utility

1: function MAXUTILITY(Network,betas,θ,dt,totT)
2: Calculate M
3: Calculate b
4: z ← (I −M)\b
5: utilmap(:, totT + 1)← 1

θ
∗ ln(z)

6: for all time steps t, from totT to 0 do
7: for all links lin do
8: linksout ← outgoing(lin)
9: for all outgoing links lout do

10: tarrival ← t+ TTlout

11: [t1, t2]← timeToT imeSteps(tarrival)
12: utilitydownStream ←

interpolate [utilmap (lout, t1) , utilmap (lout, t2)]
13: penalty ← penalty(Network, Characteristics, betas)
14: utility ← βTT ∗ TT + penalty + utilitydownStream
15: utilmap(lin, t)← utilmap(lin, t) + exp(θ ∗ utility)
16: end for
17: utilmap(lin, t)←

1
θ
∗ ln(utilmap(lin, t))

18: end for
19: end for
20: end function
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4.2 Influence of the step size

Like in the static assignment, the step size is important for the convergence in the dynamic
assignment. Can the same conclusions be made about the stability of the algorithm? To test
this, a small network is used, which can be seen in figure 4.3. There are two routes for going
west to east, after one hour, the demand is increased to a value larger than the capacity of a
link (link 5) on the shortest path. This way a congestion is simulated. After some time, the
demand decreases again and the congestion should disappear.

As before, four different step sizes are considered, namely the MSA-step, and three different
proportional step sizes (0.1, 0.5 and 1). The different convergence can be seen in figure 4.4
separately and in figure 4.5 together.

There is a difference with the static assignment, only one of the step sizes reached conver-
gence (gap lower than 10−10) in less than 2500 iterations. How larger the proportional step
size, how steeper the convergence but how larger the minimum gap. Taking a full step does
not go into the direction of convergence. Only the proportion update of 0.1 has reached a gap
lower than 10−10, but it seems just lucky at the end as the convergences went up and down.

If we take a closer look at what happens when using a proportional update of 1, we see that
the algorithm flip-flops constantly between two situations (after 150 iterations). To visualise
this, figure 4.6 shows the two split fractions at node 2 of these two states. The flip-flop only
occurs for certain time steps after the demand decreases again.

Analysing the plots, reveal that there can be a better step size, for example, a dynamic one
that starts big and get lower during the iterations. Something analogue as the MSA-step but
that decreases slower. A simple test shows that improvement can indeed be found. Figure
4.7 shows different step sizes analogue as MSA. Instead of inverting the iteration number
(1/it) as the step size, different roots of the iteration number is taken.

Further research to see what the best step size would be, is needed.

Figure 4.3: Test network of the dynamic assignment
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(a) MSA-step (b) Proportional update of 0.1

(c) Proportional update of 0.5 (d) Proportional update of 1

Figure 4.4: Separate convergence of different step sizes in a dynamic assignment

Figure 4.5: Convergences with different step sizes in a dynamic assignment
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(a) Situation 1 (b) Situation 2

Figure 4.6: Split fractions for proportional step size of 1

Figure 4.7: Convergences with different step sizes in a dynamic assignment
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4.3 Turn characteristics

The same turn characteristics can be implemented in the dynamic assignment. With the
extra time dimension, turn characteristics can also change with time. An example of such
characteristic is, for example, light intersections, it can be that during peak hours the green
time for one turn is higher than in normal hours. While developing the recursive logit in the
dynamic assignment, other turn characteristics have come to the attention. These can also be
implemented in the static case as long as they are not time dependent.

4.3.1 Left and right turns

An extra turn characteristic that has been added for the dynamic assignment, is a penalty for
left and right turns. These penalties can be dependent on physical aspects of the turn like for
example the turning degree or the number of outgoing links.

Besides a flat penalty for turning left or right, turning delays can be implemented. These
delays can depend on the flow of the crossing turn that has higher priority, for example, the
straight turn of the opposite link.

4.3.2 Light intersection

When there is a light at an intersection, people will experience some delay depending on the
green time of the turn and the people going to the intersection. It is possible to take these
delays into account for the route choice model. The subcritical delays are not captured by
LTM. If demand is however above intersection capacity it will be taken into account. People
will here choose taking the delay into account, but will not experience it on the network.
Some other DNL’s with other node models do take this into account, but this requires added
complexity to the DNL.

In the literature, there are many kinds of delay functions, like the formulation of Webster
(1958). This formulation is not very useful in this context as the formulation of Webster only
holds to a saturation degree of one. The saturation degree is the ratio between the flow and
the adjusted capacity. The adjusted capacity is the capacity of the link multiplied by the
percentage of green time (=seconds of green/seconds of a cycle). For this small addition to
the model, a simple linear delay function is used. In further research, other functions can
easily be implemented.

A small example can show how this can work. Consider the network in figure 4.8. There is
only demand from node 1 to node 8. There is a traffic light at the intersection that leads to
the three possible paths (no loops are possible) that are equally long (only different in utility
is the delay on the intersection). The green times for each route is plotted in the figure.

Figure 4.9 shows the split at each time. At time t = 0.5 the demand increases. This increases
the flow on the first link, which results in higher saturation degrees. The route with the
lowest impact (going right) becomes relatively more popular, while the route with the highest
impact (going left) becomes relatively less popular.
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Figure 4.8: Example network with traffic
lights
A total cycle of 120 seconds with 30, 60 and
90 seconds for going left, straight and right
respectively.

Figure 4.9: Split fractions on the network
with traffic lights

4.3.3 Toll

Toll is another import characteristic that is implemented. Toll can be constant over time
and place and traffic intensity but can also be dependent on all three dimensions. If toll
is dependent on the traffic intensity, it adds extra complexity to the problem (like light
intersections).

Adding toll can be helpful to calculate the system optimum, the toll is then equal to the
congestion cost on a link (WARDROP, 1952). But it can also be helpful to evaluate certain
toll policies. Traffic pricing is a hot topic right now and every model should, therefore, be
able to work with it. Traffic pricing finds its origin at the fact that people only take (and
experience) personal utility into account. They do not consider the price for society because
they travel. This cost for society is the fact that because of traveller travelling, other travellers
will experience more delay. There are also environmental costs that travellers do not always
consider. By traffic pricing, this shortage of the market can be solved.

An example of a dynamic toll is shown here. In the network on figure 4.10 there is toll on
link 5 and link 6. The toll on link 6 is constant while the toll on link 5 is raised between
t=0.5 and t=1. The different paths have the same cost (same length and same speed) besides
the toll. Figure 4.11 shows the different split fractions. As expected, the percentages change
when the toll changes.
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Figure 4.10: Example network with
dynamic toll

Figure 4.11: Split fractions on the network
with dynamic toll

4.4 Conclusion

As the model shows, it is possible to use recursive logit in the dynamic assignment to include
a full route set choice model. By implementing the method as described above, some gain of
using recursive logit seems to be lost. A proportional step size of 1 can flip-flop between two
states (in the static assignment no such case have been found). But as showed by a small
example, better dynamic step sizes can still be used to reach convergence relatively fast.

Turn characteristics can also in the dynamic assignment easily be added, but with the extra
time dimension, dynamic penalties can be added. A good example is toll. Good pricing
policies include a time depending toll, it is, therefore, a plus that this model can easily handle
it.

The next chapter goes into more detail on how and when the algorithm can be used.
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Chapter 5

Use of the algorithm

In this chapter, some (alternative) use of the algorithm is given. The algorithm as described
in the previous chapter is used in a larger network. Later another use of the algorithm is
described. But first the answer to the question "Is there always a meaningful solution in the
assignment?" is given.

5.1 Guaranteed solution

There is no guarantee that the recursive logit calculation on a network will have a (feasible,
meaningful) solution. To get a meaningful solution, I-M needs to be invertible. The physics
of the network (which links connect to which links) and also the used turn characteristics
with their beta parameters will determine the characteristics of M. When I-M is almost
singular, z will have values larger than 1. This means that the maximum perceived utilities
will be positive.

Another more intuitive way to look at this is the following: if there are many links with low
costs and the variance of the random utility ε is large, then it is possible that the utility will
be larger than zero. A utility larger than zero is bad because if travellers take this link, they
gain utility. This of course results in the fact that travellers want to use this link, if possible
even multiple times. Imagine that now a small loop consists only of links with a positive
utility, then travellers will never leave the loop because they keep gaining utility. This is
demonstrated in figure 5.1.

If such singularities occur, introducing extra penalties (negative utility) is a way to avoid it.
To check if such singularities can occur on a network, it is sufficient to construct the matrix
M with the highest utility possible. The highest utility possible is reached when the travel
time is the free flow travel time. The travel time can only grow, herewith reducing utility.
The same holds for penalties, M needs to be tested with the lowest possible penalty to the
utility. If with this worst case matrix M no singularities occurs, then neither will they occur
during computations where the utility can only decrease.
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Figure 5.1: Small network with a positive utility loop

5.2 Results of a larger network

To show how the algorithm performers on a more real network, the algorithm is executed on
the network of Rotterdam. This network is a rudimentary representation of the ring road and
main arterial roads in the Rotterdam area. This network consists of 560 links and 331 nodes.
There are in total 44 nodes that serve as origin and 44 different nodes as a destination. The
network is plotted in figure 5.2.

Figure 5.3 shows that the convergence is linear (with the y-axes of the gap in logarithmic
scale), this is because a proportional step size is used. Between the first and second iteration,
a large gap is noticed. This is normal considering that in the first iteration all travel times are
free-flow travel times, so the improvement towards the second iteration with non free-flow
travel times is large.

Figure 5.2: The network of Rotterdam

The Matlab traffic toolbox of LTM makes it easy to animate the flows over the network.
This way results can easily be interpreted. To show what the algorithm can do, the turning
fractions for one link towards one destination are visualised over time in figure 5.4. Two
possibilities remain at zero probability, while the other two are taken both by the traffic. Due
to circumstances, like more demand or more congestion, the ratio of probabilities between
the two changes.
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Figure 5.3: Convergence of the Rotterdam network

Figure 5.4: Turning fractions from one link towards one destination over time

5.3 Warm start

Another use of the algorithm is that it can be part of a warmly started assignment. A warm
start means that results from a previous calculation are used as the initial condition. This
way fewer calculations are needed if only a small part of the network has changed. As this
algorithm takes travel times as input, free flow travel times (in the case of cold start) or travel
times from a previous calculation on the same network (warm start) can both be used.

5.4 Departure time choice model

As said before, the DNL of LTM does not work with a departure time choice model. The
route choice model of the dynamic assignment procedure can easily be combined with a
departure time choice model. The Recursive Logit algorithm is constructed in such way that
only the travel times and network characteristics are needed as input for calculation of the
turning fractions, regardless of the magnitude of the demand or flow on the links.

The fact that people will change their departure time will have an influence on the travel
times, but so does congestion. It is therefore unlikely that it would cause a problem in the
route choice model. Of course, the equilibrium problem is more complex.
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5.5 Route set generator, evaluator

Besides being used directly in a traffic assignment, the route choice model can be changed to
generate a route set. A fixed route set gives more stability to the algorithm, but if the route
set is not full, it is hard to know which routes to include.

Another use of the algorithm can, therefore, be to generate the route set. All routes with a
probability higher than a threshold can then be used as plausible routes. The input of the
algorithm can then be the travel times as measured on the streets or from other data.

Besides generating the route set, it can also be implemented to evaluate a route set or a route
set generator. With a given route set, the algorithm can see if it contains all plausible routes
or if it misses some.

The algorithm can also be used to quickly search for alternative routes, for example, what
route will users take if the highway is blocked completely. By adjusting only one probability,
another algorithm can determine which path has the highest probability.
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Chapter 6

Further Research

The research in this thesis is rather new and ungrounded territory. It is therefore logical that
not everything is researched yet. In this chapter, a few suggestions are proposed, based on
the results of this research.

6.1 Path correlations

It is a well-known deficiency of the logit-model that biases occur in the choice probabilities
if the error terms of the options are correlated. This typically occurs with overlapping routes.
Recursive logit also suffers this deficiency.

This gives the first topic to research further. "In real networks, paths connecting a given
origin destination pair share links. Due to this physical overlap, it is generally thought that
paths share unobserved attributes meaning that the path utilities are correlated. Ignoring
this correlation may result in erroneous path probabilities and substitution patterns." argues
Fosgerau et al. (2013). He gives an example how to handle path size logit (Ben-akiva et al.,
2012) in a full route set model for a static assignment. Further research needs to be done to
see if the same approach can be made in a dynamic assignment.

6.2 Larger time steps

In the dynamic assignment, interpolation needs to be done between two already known
downstream utilities from other time steps.

If we retake the example as given before but with larger time steps, see figure 6.1. Suppose
the shortest travel time steps is smaller then a time step, then V d

n (a, t′) will need to be
interpolated between V d

n (a, t1) and V d
n (a, t2). The problem that now occurs is that V d

n (a, t1)
is not yet (fully) calculated, making the interpolation impossible. A possible solution to this
problem is introducing an extra loop around each time step. At first, the maximum perceived
utility of a node is set equal to the values of the maximum perceived utilities at one time
step later. After all transformed utilities from that time step are calculated, the calculations
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6. Further Research

Figure 6.1: A simple network plotted with its time dimension

(interpolations) are repeated. This will now result in different results, this process is repeated
until a fixed point is reached. Bigger time steps will reduce the general computation cost (for
a given time domain), while introducing new iteration costs. A consideration is needed. But
first, further research is needed to find out if it is possible at all. Note that larger time steps in
the total assignments mean that also the DNL part of the algorithm should be able to handle
these larger time steps. Most DNL algorithms are however constrained in their time step size
due to so-called CFL conditions, with only a few exceptions like I-LTM Himpe et al. (2016).
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Conclusion

Explicit route sets have some downsides, they do not contain every possible route and with a
flexible route set the convergence problem is harder to solve. A fixed route set makes the
algorithm more stable. An implicit full route set guarantees that no possible route is missed
because it considers all possible routes (can be an infinite number) always. In this research
that is done by using recursive logit, which calculates the probability of each turn given the
traveller’s destination. The utility of a turn depends on the turn characteristics. As always,
the travel time is part of the utility. The utility of a turn is constructed in such a way, it is easy
to add new turn characteristics. A characteristic can be a toll or a boolean for left-turns to a
boolean indicating an increase (or decrease) in link hierarchy. The latter could, for instance,
be used to avoid unrealistic routes that leave a higher road category over a very short distance
(e.g. off-on-ramp combinations; or unrealistic rat-running through residential streets).

This makes the researched method promising to replace current algorithms used. Of course,
further research needs to be done. A first issue is that not all networks-parameter sets will
have a solution. Without a dedicated check for singularities, the algorithm would produce
unrealistic flows. However, if the calibrated parameters are in the feasible solution space,
a solution is guaranteed. By using a fixed full route set, the algorithm appears to be more
stable. This results in fewer iterations needed for convergence, as now a fixed proportional
update can be used instead of an update that has a lower impact the more iterations are done,
like an MSA step. Further research towards dynamic step sizes needs to be done because the
proportional update appears to have a lower bound (what can be larger than the convergence
criteria).

This thesis has shown that the static procedure described by (Fosgerau et al., 2013) can be
generalised to a dynamic traffic assignment by interpolating the maximum perceived utilities
in an upwind order. After the maximum perceived utilities are determined, the probabilities
of each turn can be calculated. These are then the input of a DNL.

By implementing penalties, turn characteristics can be implemented in the algorithm. There
is no limit on how many penalties are allowed, neither on what they represent. This makes it
easy to adjust utilities.

With these promising results, further research is needed. One topic can be finding a smarter
way to determine if the network is guaranteed to have a feasible solution or how to change
the network the smartest way possible in order to render a singular network feasible.
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6. Further Research

Faster computation times and smoother convergence are desirable properties of an assignment.
With a warm start, which gives even faster computation times, the algorithm can be used in a
real-time setting. The algorithm can also work on its own to quickly determine the turning
fractions if something small changes (for example an accident on the highway which makes
the capacity drop). In this case, the travel times could be handled as instantaneous.

Besides using the method only in a traffic assignment, it can also help to generate or to
evaluate complete route sets or one alternative route. Another obvious topic for future
research is embedding the stochastic DTA with recursive logit full route set of this thesis in a
framework that considers departure time adjustments as well.

This thesis has shown some good and bad characteristics for using a full route set in a
dynamic assignment. The research done is new and showed some good insight in the
problem. The results show potential and does not close the door for further research.
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