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Summary

Semiconductor ring lasers (SRLs) are lasers with a cavity consisting of a circular wave-
guide. Due to their rotational symmetry, every mode propagating in the cavity has a
counterpart propagating in the opposite direction. Because of nonlinear interaction,
while one directional mode is lasing, the mode in the other direction can be largely sup-
pressed. This regime shows a bistability between the directional modes and is therefore
of great interest due to its potential use in optical information storage. This, combined
with the planar structure of the device, renders SRLs very suitable for implementation
in optical integrated circuits.

Here we pursue an analytical study of SRLs with two longitudinal modes, each con-
sisting of two directional modes. First, we derive a set of rate equations from first
principles, governing the dynamical behaviour. This model yields good results, but is
very involved, making the interpretation not straightforward. We have solved this by
reducing the original set of nine real equations to a new set of five expressions, using
asymptotic methods. This reduction is based on the different time scales present in the
laser system and eliminates the relatively fast relaxation oscillations.
We compare numerical solutions of the reduced model to those of the full model and
in this way we validate the performed transformations and approximations. Subse-
quently, we determine analytically the steady-state solutions of the reduced model.
These solutions describe which of the two longitudinal modes is lasing and whether
these modes lase in one or both directions of propagation.

Since there are many stationary solutions, their stability determines the features of the
output power as a function of the current. By performing a linear stability analysis,
we calculate the bifurcation currents of the steady-state solutions. For simpler steady
states, we are able to perform the stability analysis in an analytical way and we give
the bifurcation currents as a function of the geometrical and dynamical parameters of
the laser. The stability of the general solution is too involved to determine, but can be
found numerically. By applying a parameter sweep we obtain a visual representation.

The approach followed in this master thesis provides a solid tool to explain and predict
the dynamical behaviour of SRLs given their operating conditions.
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Samenvatting

Halfgeleider ringlasers (HRL’s) zijn lasers met een caviteit die bestaat uit een circulaire
golfgeleider. Vanwege hun rotationele symmetrie heeft elke mode die zich voortplant
in de caviteit een tegenhanger die zich voortplant in de tegengestelde richting. Door
niet-lineaire interactie, kan terwijl een directionele mode aan het lasen is, de mode
in de andere richting sterk onderdrukt worden. Dit regime vertoont een bistabiliteit
tussen de directionele modes en is daarom van groot belang gezien het potentieel om
dit te gebruiken voor optische informatie-opslag. Dit, gecombineerd met de planaire
structuur van het toestel, maakt HRL’s zeer geschikt voor implementatie in optische,
geïntegreerde circuits.

Hier zullen we ons toeleggen op een analytische studie van HRL’s met twee longi-
tudinale modes, elk bestaande uit twee directionele modes. Eerst leiden we een stel
vergelijkingen af, vertrekkende van basisprincipes, die het dynamische gedrag bepalen.
Dit model levert goede resultaten, maar is zeer complex, wat de interpretatie niet voor
de hand liggend maakt. We hebben dit verholpen door de originele set van negen reële
vergelijkingen te reduceren tot vijf uitdrukkingen, gebruik makende van asymptotische
methoden. Deze reductie is gebaseerd op de verschillende tijdsschalen die aanwezig
zijn in het lasersysteem en elimineert de relatief snelle relaxatie oscillaties. We vergelij-
ken de numerieke resultaten van het gereduceerde model met die van het volledige
model en op deze manier valideren we de uitgevoerde transformaties en benaderingen.
Vervolgens zullen we analytisch de stationaire oplossingen van het gereduceerde model
bepalen. Deze oplossingen beschrijven welke van de twee longitudinale modes aan het
lasen is en of deze modes lasen in een enkele of in beide voortplantingsrichtingen.

Aangezien er vele oplossingen zijn voor het model is het hun stabiliteit die de eigen-
schappen van het uitgaande vermogen als functie van de stroom bepaalt. Door een
lineaire stabiliteitsanalyse uit te voeren, kunnen we de bifurcatiestromen berekenen van
de gevonden stationaire oplossingen. Voor meer eenvoudige stationaire toestanden zijn
we in staat om de stabiliteitsanalyse op een analytische manier uit te voeren en de bifur-
catiestromen als functie van de geometrische en dynamische parameters te beschrijven.
De stabiliteit van de algemene oplossing is te complex om bepaald te worden, maar kan
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numeriek teruggevonden worden. Door een parametersweep toe te passen, verkrijgen
we een visuele voorstelling.

De aanpak die gevolgd wordt in deze master thesis, levert ons een bruikbare manier
op om het dynamische gedrag van HRL’s te verklaren en te voorspellen indien de
werkingscondities gegeven zijn.
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Résumé

Des lasers annulaires semi-conducteurs (LASs) sont des lasers avec une cavité qui
consiste en un guide d’onde circulaire. A cause de leur symétrie rotationnelle, chaque
mode qui se reproduit dans la cavité a une contrepartie qui se reproduit dans la direction
opposée. En raison de l’ interaction non linéaire, pendant qu’un mode directionnel
lase, le mode qui va dans l’autre direction peut être fortement réprimé. Ce régime
présente une bistabilité entre les modes directionnels et est par conséquent d’une très
grande importance vu la possibilité d’utiliser ce potentiel pour le stockage d’information
optique. Ceci, en combinaison avec la structure planaire de cet appareil, rend les LASs
très appropriés pour l’implémentation dans des circuits optiques intégrés.

Nous nous appliquerons ici à l’étude analytique des LASs avec deux modes longitu-
dinaux, chacun consistant en deux modes directionnels. D’abord nous dérivons un en-
semble d’ équations déterminant le comportement dynamique en partant des principes
de base. Ce modèle produit de bons résultats, mais il est très complexe, ce qui fait que
l’interprétation n’est pas évidente. Nous avons remédié à ce problème en réduisant le set
original de neuf équations réelles à un nouveau set de cinq expressions, en utilisant des
méthodes asymptotiques. Cette réduction est basée sur différentes échelles temporelles
présentes dans le système laser qui élimine les oscillations relaxantes relativement rapi-
des. Nous comparons les résultats numériques du modèle réduit à ceux du modèle
complet et de cette façon nous validons les transformations exécutées et les approxima-
tions. Ensuite nous déterminons d’une façon analytique les solutions stationnaires du
modèle réduit. Ces solutions décrivent quel des deux modes longitudinaux lase et si ce
mode lase dans une seule ou dans les deux directions de propagation.

Etant donné qu’il y a beaucoup de solutions stationnaires, c’est leur stabilité qui déter-
mine les propriétés de la capacité sortante comme fonction du courant. En appliquant
une analyse de stabilité linéaire nous pouvons calculer les courants de bifurcation des
solutions stationnaires trouvées. Pour des ’steady states’ plus simples nous pouvons
exécuter l’analyse de stabilité d’une façon analytique et décrire les courants de bi-
furcation comme fonction des paramètres géométriques et dynamiques du laser. La
stabilité de la solution générale est trop complexe à déterminer, mais peut être rétablie
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numériquement. En utilisant un ’sweep’ paramétrique nous obtenons une représenta-
tion visuelle.

L’approche utilisée dans cette thèse de master nous procure une procédure fiable afin
d’expliquer et de prédire le comportement dynamique des LASs partant des conditions
d’opération connues.
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Chapter 1

Introduction

After a brief introduction on the history and basic principles of lasers, with special
attention given to semiconductor lasers, we focus on those having a ring-shaped optical

cavity. These devices have some interesting properties that render them very suitable as
candidates for use in photonic integrated circuits. This first chapter will concentrate on
the phenomenologic description of the construction and fabrication of semiconductor
ring lasers. Furthermore, the operation of the single mode semiconductor ring laser
will be reviewed.

1.1

Short History and Basic Principles of Lasers

The word "laser" is an acronym for Light Amplification by Stimulated Emission of
Radiation. Typically, the light emitted by a laser is a narrow monochromatic beam
with a well-defined wavelength. The coherence length of the light is significantly
longer than for a conventional light source such as a light bulb. The first to describe
the phenomenon of stimulated emission was Albert Einstein in 1917 [1, 2]. Besides
absorption and spontaneous emission, he has shown that stimulated emission is a
mechanism that takes place when light interacts with matter. Unfortunately, it took
over 30 years for people to realise that this implied that coherent light amplification is
made possible with population inversion. The first laser to work was a pulsing ruby
laser, made by Theodore Maiman at Hughes Research Laboratories in June 1960. Since,
many variations and improvements have been realised. Two essential ingredients have
to be present in order to achieve laser action:

• Optical gain. This can be achieved in what is called an active medium. The gain
medium is a material (gas, liquid, solid or free electrons) that allows for stimulated
emission to occur. Electronic transitions must take place emitting photons with
a specific frequency. Population inversion must be present to make stimulated
emission dominant over absorption, i.e., more carriers have to be present at the

1



1.1. SHORT HISTORY AND BASIC PRINCIPLES OF LASERS 2

higher energy levels than at the lower ones. To achieve this, pumping of the gain
medium is necessary. This can be done by optical injection with another laser or
a flash lamp or by electrical injection.

• The generated light must be partially confined in an optical cavity. In its simplest
form, the cavity consists of two mirrors arranged such that light bounces back and
forth, each time passing again through the gain medium. To couple the light to
the outside world, one of the two mirrors should be partially transparent.

The development of lasers started with the creation of the maser, which is an acronym
for Microwave Amplification by Stimulated Emission of Radiation. Charles H. Townes
was the first one to build such a maser in 1954. One of the biggest problems in this early
design was the fact that continuous output could not be achieved. Indeed, we know
now that a system with more than two energy levels is required in order to maintain
population inversion. Nikolai Basov and Alexander Prokhorov from the USSR [3] first
developed this idea and were rewarded for it with the 1964 Nobel Prize in Physics,
together with Charles H. Townes. It was Townes who, along with Arthur Schawlow, [4]
suggested in December 1958 the first design for an optical maser or, as it was renamed
later, a laser. As mentioned before, Theodore Maiman realised the first real laser in
1960 [5]. Just before the end of 1960, the first gas laser, a He-Ne laser, was made by Ali
Javan, William Bennet, and Donald Herriot.
Although Basov and Javan were the firsts to propose the concept of a semiconductor
laser diode, it was first demonstrated by Robert N. Hall in 1962. Hall’s device was made
of gallium arsenide and emitted at 850 nm in the near-infrared region of the spectrum.
Later, semiconductor lasers emitting in the visible spectrum were demonstrated by Nick
Holonyak, Jr. It took many years, until 1970, when Zhores Alferov in the USSR and Izuo
Hayashi and Morton Panish of Bell Telephone Laboratories in the USA independently
developed laser diodes continuously operating at room temperature, using the hetero-
junction structure. Alferov [6], together with Herbert Kroemer [7], were rewarded the
2000 Nobel Prize in Physics.
Lasers have become a multi-billion dollar industry. They are the vital components in
telecommunications, optical storage devices such as compact disc and DVD players,
but are also present in e.g., bar code readers, laser printers and laser pointers. Besides
their use in industry for cutting steel and other metals and for inscribing patterns, lasers
are also commonly used in various fields in science. Techniques such as spectroscopy
are based on the fact that you have control or at least knowledge about a well-defined
wavelength. Both military and medicine make use of lasers, respectively for target
identification and illumination for weapons delivery and for surgery or cosmetic appli-
cations. Semiconductor lasers represent an important share of this laser industry and
are omnipresent in daily life. They have been and are constructed in all kinds of shapes
and dimensions and will undoubtedly continue to play an important role in further
technological developments.
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1.2

Semiconductor Lasers

1.2.1 Semiconductors as Optical Gain Medium

Generally, lasers are classified according to their active material. Examples are gas
lasers, solid-state lasers, semiconductor lasers, dimer lasers... In semiconductor lasers,
a p-n junction acts as a photon source. This system differs from the pure atomic system
found in gas lasers, since the energy levels are closely spaced in bands, rather than well
defined levels. The shape of the bands is determined by the material and the crystal
lattice structure and can be represented in an E-k diagramma as in Figure 1.1. This graph
gives the energy of the carriers as a function of their crystal wave number. The upper
band represents the conduction band, while the lower one is called the valence band.
These bands indicate the allowed energy states for the carriers. At room temperature,
the lower states of the conduction band are occupied with electrons (denoted by circles
in Figure 1.1) and the higher states of the valence band are occupied by holes (denoted
by discs in Figure 1.1). The energies between the conduction and the valence band are
forbidden and constitute the bandgap, which is defined as the energy difference between
the minimum of the conduction band and the maximum of the valence band. In the
case where minimum and maximum correspond to the same crystal wave number, we
speak of a direct bandgap material, otherwise it is called indirect. Materials such as
silicon are indirect, while gallium arsenide has a direct bandgap.

Figure 1.1: E-k diagramma of a semiconductor with direct bandgap. The upper
band is called the conduction band and the lower one is called the valence band.

Electrons are represented by circles and holes by discs. (Picture from Ref. [8])
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1.2.2 Operation of a Semiconductor Laser

The most important structure in the semiconductor active material is the p-n junction,
depicted in Figure 1.2. The junction consists of two doped semiconductors that are
put next to each other. One of them is doped with impurities that lead to an excess of
electrons and is referred to as the n-doped material. The other one, which is called the
p-doped material, is doped with impurities that give rise to an excess of holes. In the
p-region holes are the majority carriers and in the n-region electrons are the majority
carriers. In the p-region, the Fermi level is at a different level than in the n-region. When
the two differently doped materials are brought in contact with each other, the energy
bands will bend, because, in Figure 1.2(a), the Fermi level must be constant all over
the p-n junction. In Figure 1.2(a), the Fermi level is denoted by EF. On the interface
between both regions there is a neutral zone, which is called the depletion area. Without
a bias voltage, the width of the depletion area is Wd. However, when a forward bias is
applied across the junction, as in Figure 1.2(b), the density of the carriers, both n- and
p-type, will increase around the junction. Holes from the p-doped zone will be injected
into the depletion area and the same happens to the electrons from the n-doped zone.
When an electron and a hole are present in the same region, they will annihilate each
other or recombine. To obey the law of energy conservation, a phonon or photon must
be emitted. Indirect bandgap materials have the property that the minimum of their

Figure 1.2: Schematic representation of a p-n junction, with indication of the
different energy levels. EF represents the Fermi level, EC the conduction band and
EV the valence band. (a) depicts the situation when no bias voltage is applied,

while in (b) a forward voltage is applied (Picture from Ref. [9]).
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conduction band corresponds to another momentum than the maximum of the valence
band. When an electron undergoes a transition from conduction to valence band, the
recombination of electrons and holes leads to a change in momentum. A photon cannot
compensate this large change in momentum, so the energy will be used for the creation
of a phonon, leading to dissipation and heating. On the other hand, when the semicon-
ductor’s bandgap is direct (e.g., III-V materials), there is no change in momentum and
the energy change can lead to the emission of a photon.
An electron at a certain position in the conduction band has a finite lifetime. There
is a certain probability that it decays to the valence band with emission of a photon.
This process is called spontaneous emission. However, this is not sufficient to make the
semiconductor lase. To explain lasing we need to introduce another effect: stimulated
emission. Many electrons find themselves at a certain energy level in the conduction
band. These positions are metastable, the electrons reside there, but even the slightest
perturbation could cause them to decay suddenly. A photon with the right energy,
e.g., created by spontaneous emission, will make the electron oscillate and this can be
enough to leave the metastable state. It can be shown that the newly created photon
has the same frequency as the incident one and the light is therefore monochromatic.
Also, it has the same direction and phase, so it is coherent. This photon can stimulate
in turn other carriers to decay and emit a photon. If the number of carriers is larger in
the conduction band than in the valence band (population inversion), this process will
repeat itself many times and lasing action will occur. To keep the medium in popula-
tion inversion, a pump current is needed. The material will consume current and emit
photons.
The next step to build a useful semiconductor laser is making sure that the generated
light is confined. To guide the light, an optical waveguide is constructed near the p-n
interface. At both ends of the waveguide, one needs to make sure that a significant part
of the light is fed back into the cavity, such that the same photons can cause stimulated
emission several times. Of course, the structures that cause the feedback will still allow
some light to escape from the cavity. If the gain equals the losses (absorption in the
cavity and incomplete reflection at the edges), lasing will occur.
Although the approach described above is correct, in practice there are some techniques
that significantly improve the performance of the semiconductor laser. A first configu-
ration is the double heterostructure. In these devices, a layer of low bandgap material is
sandwiched between two high bandgap layers. In this way, the diffusion current, away
from the active region, is limited. Because of the higher index of refraction of this new
layer, an optical waveguide is created. Now both the electric and optical energy density
have increased, pushing down the threshold current for lasing action. If the middle
layer is made thin enough, it will restrict motion of carriers in the vertical direction and
act as a quantum well. The energy of the carriers becomes quantised and the carriers
are concentrated in discrete energy states that contribute to the laser action.
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1.3

Semiconductor Ring Lasers

(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Semiconductor ring laser are constructed in different shapes and
configurations. (a) Racetrack [10], (b) Square [11], (c) Triangle [12], (d) Coupled

microsquare [13], (e) S-shaped [14], (f) Coupled ring lasers [15]

This thesis work will concentrate on a specific kind of semiconductor lasers, namely
semiconductor ring lasers, as the ones depicted in Figure 1.3. Such devices have first
been demonstrated in 1980 by Andrew Shuh-Huei Liao and Shyh Wang [16]. Since,
they have been in the centre of attention, because of their potential applications in
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photonic integrated circuits. The basic structure of the ring laser includes a circular
resonator and straight output waveguide. As a consequence of this structure there is
no need for feedback reflectors, what makes it attractive for applications in integrated
optics. Different cavity geometries can be used such as circular, race track, square or
triangular, while making use of different waveguides [See Figure 1.3(a)-(f)]. One of
their most important features is their high wavelength stability. In a ring-shaped cavity,
the situation is totally different from the more common setup, the Fabry-Perot cavity.
While in a Fabry-Perot cavity the light bounces back and forth between two mirrors,
the light in a ring laser follows a closed trajectory. A very important consequence of
this construction is the possibility for two counter-propagating modes to be present
simultaneously. If the resonator is build by using only two mirrors, the light also
travels in two directions, but both of them together form one mode. If there is a
perturbation present in the forward traveling light it will move over to the backward
traveling light after reflection. In a perfect ring resonator, there is in principle no direct
coupling between the counter-propagating modes and they can coexist in the cavity.
As we will explain later on in this chapter, there are multiple effects that do cause a
coupling between counter-propagating modes, but still the situation is different from
the Fabry-Perot case.

1.3.1 Geometry and Fabrication of Ring Lasers

The ring can be constructed in many ways. One possible way is by using a set of
mirrors that guides the light around in a closed trajectory. This is true as long as
there is somewhere in the setup an active medium to provide the gain. Another way
is to use total internal reflection (TIR) [17]. Semiconductor ring laser dimensions can
be fabricated at the sub-millimeter level. The ring lasers we are considering here are
quantum well ring lasers. The schematic of the waveguide is given in Figure 1.4.

Figure 1.4: This figure depicts the profile of a heterostructure double quantum well
semiconductor ring laser. The ring shape is etched into the upper two cladding

layers (From Sorel et al. [18]).
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Remember that the basic structure is a substrate with a p-n junction, so a p-cladding
and an n-cladding on top of it. In Figure 1.4, a top cladding is present as well, to protect
the entire structure from scratches, chemical substances, water... Between the p and
n-cladding, one finds an extra waveguide layer, which is slightly differently doped in
order to have another index of refraction. This layer is inserted for better confinement
of the light that is generated at the interface of the p-n junction. A double quantum well
layer is inserted to make sure that the energy states are concentrated around the desired
levels. To define the ring shaped cavity it suffices to etch only into the top p-cladding
layer (shallow etching [19]). This changes the index of refraction in that area sufficiently
to assure guiding of the light. It is not necessary to etch all the way until the waveguide
itself (deep etching [20]). Of course, the etching depth is a highly important factor that
influences the characteristics of the laser. Another aspect is the radius of the ring cavity.
A smaller radius of curvature leads to a smaller ring laser, with the obvious benefits for
monolithic integration, but also requires new waveguide design. As the ring is smaller,
there will be more bending losses.
Finally, we need to describe the output coupler, since some of the light inside the
cavity needs to be coupled out of the cavity for external use. Because in a ring laser
there is the possibility that two counter-propagating modes are present, the output
coupler has two sides. One side will serve as a coupler for the clockwise mode and
the other side will be a coupler to the outside world for the counter-clockwise mode.
The coupler itself is basically a waveguide similar to the circular resonator, which is
located in the near proximity of the resonator. Inside the ring, the waves are guided in
the waveguide because of total internal reflection. This means that evanescent waves
are present outside the circular waveguide. If the output coupler is close enough to the
cavity, it will pick up the evanescent waves and couple light out of the ring laser to the
outside world, e.g., a detector. However, the presence of the output coupler introduces
an effect that influences the dynamics of the ring laser, backscattering. There are three
kinds of backscattering. The first one is referred to as distributed backscattering. All
over the cavity, parts of light are coupled into the counter-propagating mode, due to
the imperfection of the waveguide. Second, a significant amount of light reflects at
the output coupler itself. Finally, some light couples from the cavity into the output
coupler. It propagates through the straight waveguide and reflects at the end facet. If
this reflected light couples back into the cavity, it reinforces the counter-propagating
mode. These effects signify that the output coupler can be a source of linear coupling
between two modes. The best way to avoid this optical feedback through reflection is
by slightly tilting the output coupler facets [18] as demonstrated in Figure 1.5.
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1.3.2 Operation of a Single Mode Ring Laser

Figure 1.5: Representation of a semiconductor ring laser with circular cavity and
straight output coupler. The end facets of the output coupler are tilted 5◦ to avoid

optical feedback.

We now consider the case of a single mode semiconductor ring laser as depicted in
Figure 1.5. When we speak of a single mode ring laser, the mode referred to is a
longitudinal mode. In a single mode ring laser, two counter-propagating modes are
present in the circular cavity, but both of them belong to the same longitudinal mode.
So both modes have exactly the same frequency, but travel in opposite directions.
The frequency of this light is determined by the fact that the phase difference that
corresponds to one round trip in the cavity equals 2π. The modes interact with the
active medium, but also with each other. There are two effects that couple the two modes
with each other that we consider. First, there is the backscattering. As explained in the
previous section, it provides a linear coupling between the two counter-propagating
modes. Especially at low intensities this term will become important. Second, the
process of gain saturation is responsible for nonlinear coupling. In any laser, and
therefore also in a semiconductor ring laser, the carrier density increases with the pump
current up to threshold, this is the point where the gain equals the losses. Once the
threshold is reached and the device starts to lase, the carrier density remains constant.
All extra carriers that are injected will recombine and emit photons. If the current is
further increased, the amount of output power in the form of light will also increase
linearly with the current. However, this relation between output power and pump
current is not entirely correct, because gain saturation occurs. Not all extra carriers
will instantly recombine and the carrier density will increase linearly with the pump
current. The compression of the gain can be caused by spatial or spectral hole burning.
The former is a result of the standing wave nature of the optical modes. Carriers are
depleted faster at the crest of the wave, with a decrease in modal gain as a result. More
important is spectral hole burning. This is due to the the fact that two modes with almost
the same frequency will compete for the same carriers. Although these effects are small,
they cause the slope of the P-I curve to change slightly, the higher the saturation, the
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flatter the curve. At high intensities, saturation plays an important role. In ring lasers,
an optical mode is not only saturated by itself, but also by the other mode, with the
same frequency but a different direction of propagation. So the higher the intensity of
one mode, the more its own gain as well as the gain of the other mode will be saturated.

1.3.3 Operating Regimes

Figure 1.6: Simulated P-I curve of a single mode ring laser. The used model can
be found in Eqs (2.104)-(2.106), with parameters defined in chapter 3: Kd = 0.1631,
Kc = 2.1939, S0 = 2.5, C0 = 5 and α = 3.5. In this plot, three distinct regimes
are observed. The first (Bi), is called the bidirectional regime, next there is the
bidirectional regime with alternate oscillations (Bi-AO) and finally there is the
unidirectional regime (Uni). The maxima and minima of |E1| are denoted by open
blue squares and circles, respectively. For the second mode, the maxima and

minima of |E2| are denoted by red crosses and dots, respectively.

Later on in this work, a detailed study of the different regimes that can occur in a ring
laser, will be presented. However, it is interesting to already mention them and give
some explanations about their origin. We explained that there are two effects we should
keep in mind, the backscattering and the gain saturation. In Figure 1.6, a simulated P-I
curve is depicted, representing the behaviour of the modal intensities as a function of the
pump current. The two counter-propagating modes are represented by two colours. For
each mode both the minimum and the maximum values of the stationary output power



1.3. SEMICONDUCTOR RING LASERS 11

are plotted. One immediately notices the three regimes present in this current range.
When the laser is at threshold (scaled pump current µ equals 1), the gain saturation is of
almost no importance. Both modes begin to lase simultaneously and equal in strength.
This is called the bidirectional regime. This situation seems logical, after all when one of
the modes lases significantly stronger than the other, there will also be a greater amount
of light that is coupled into the other direction, due to backscattering. When the current
is further increased, the power of both modes also increases until a certain point, the
first bifurcation point. A bifurcation occurs when a small, smooth change made to the
parameter values (the bifurcation parameters) of a system, causes a sudden ’qualitative’
or topological change in its dynamical behaviour [21]. When the pump current surpasses
the first bifurcation current, the system is no longer in the bidirectional regime. Both the
intensities will start to oscillate in time. The total output energy remains a constant for
a certain current since both modes oscillate in perfect antiphase. When one mode has
a maximum intensity, the other mode intensity reaches a minimum. If again the pump
current is driven up, the oscillation frequency, which initially had a frequency of about
100MHz, decreases almost linearly [18]. This second regime is also called bidirectional,
but with alternate oscillations. The same story continues until a new bifurcation point
is reached. For currents beyond this second bifurcation point, the laser operates in the
third regime, the unidirectional regime. There are no longer oscillations and one of the
modes is partially or almost completely suppressed by the other. Yet, it is not a priori
defined which of the two modes will be the dominant one and which will be suppressed.
The situation is bistable and in case there is no external injection or asymmetry, noise
will determine which mode dominates. The bistability can be exploited for optical
switching, rendering ring lasers promising candidates for all-optical data processing.
In Figures 1.7 and 1.8, time traces at certain currents in this P-I curve are depicted, one for
the bidirectional regime and one for the bidirectional regime with alternate oscillations.
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Figure 1.7: Timetrace at µ = 1.2 for the intensity, considering the same parameters
as the ones in Figure 1.6. This current is in the range of the bidirectional regime.
The current for t < 0 equals 1.18. At t = 0, a current step is applied and the system

starts to converge to a new steady-state value.

Figure 1.8: Timetrace at µ = 1.4 for the intensity, considering the same parameters
as the ones in Figure 1.6. This current is in the range of the bidirectional regime
with alternate oscillations. The current for t < 0 equals 1.38. At t = 0, a current
step is applied and the system starts to converge to a new steady-state value for

the amplitude of the oscillations.
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1.4

Contents of This Master Thesis

The following chapter will start from known physical laws and relations to deduce a
rate equation model for the multimode operation of a semiconductor ring laser with two
longitudinal modes, using various transformations and approximations. Some effects
will be added phenomenologically, such as the saturation of the gain. Subsequently, this
model will be nondimensionalised. The goal of chapter 3 is then to apply a reduction
method on the obtained model, reducing the model from 9 real equations to 5. The new
expressions will be far more suitable for interpretation and will even provide us some
analytical expressions of the solutions. The most general solution is too complicated to
be found analytically, but can be numerically represented by making use of a parameter
sweep. In this model, fast dynamics will have been eliminated from the equations.
Chapter 4 focuses on the study of the stability of the stationary solutions found in
chapter 3. An in-depth linear stability analysis will supply us with enough information
to be able to predict the appearance of certain areas of the P-I curve, once the parameters
are given. The study of the multimode model and its stability will consist of both
analytical and numerical calculations and the agreement between these two. Finally,
some conclusions are drawn in chapter 5.



Chapter 2

Rate Equations for a Semiconduc-
tor Ring Laser with Two Longitudi-
nal Modes

An exact description of the dynamical behaviour of semiconductor lasers requires a
study of the electromagnetic fields in the laser cavity and of the gain medium using

electromagnetics and quantum mechanics. To reduce the co;plexity of the problem,
we will introduce rate equations, which describe the evolution in time of the optical
field and the carrier density through a set of ordinary differential equations. They have
proven to be successful in describing the steady-state behaviour and the dynamics of
lasers on time scales slower than the cavity round trip time [22–24]. In order to derive the
appropriate rate equations, we choose to apply a semiclassical approach by obtaining
the field dynamics in a classical way and by describing the gain dynamics on a quantum
mechanical level.

2.1

Cavity Configuration

A picture of a semiconductor ring cavity is depicted in Figure 2.1(a). A model of this
cavity is given in Figure 2.1(b). Light waves are guided in a ring-shaped cavity and
confined by total internal reflection. Part of the light is coupled into the output coupler,
a straight waveguide in the near proximity of the ring cavity. At the two ends of this
output coupler, small amounts of the light waves are reflected and coupled back into
the cavity. For a bended waveguide, one should take into account the fact that bending
losses appear in the cavity. The smaller the cavity dimensions, the smaller the radius
of curvature and the higher the losses. However, in this study the bending losses are
ignored since practical devices with extremely low bending losses can be achieved by
well-designed ring shapes [25]. Therefore, we can model the cavity by the simplified

14
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(a) (b) (c)

Figure 2.1: (a) A SEM micrograph of the semiconductor ring laser devices, with
the layout of the ohmic contacts made to the structure. The radius of the ring
cavity is 1 mm. Since the spacing between the ring cavity and the output coupler
is about 1µm, the evanescent coupling is 1% to 5% depending on the etching depth
of the waveguides. The edges of the output waveguide are tilted at 5◦ to reduce
the optical back reflection to 0.5% [18]. (b) Schematic representation of the ring
laser, with two counter-propagating modes in the ring shape cavity. (c) Ring cavity
with four mirrors. One mirror is partially reflective. The two mirrors outside of
the ring allow for the linear coupling from a mode in one direction to a mode in

the opposite direction. The total length of the cavity equals L.

scheme of Figure 2.1(c), which consists of a closed trajectory between four mirrors. The
mirror at the top left corner is only partially reflective, while the other three are assumed
perfect and will have no effect on the field dynamics. Because the top left mirror is only
partially reflective, a part of the resonating light wave is coupled out of the cavity to the
output coupler. The two additional mirrors have the role of the end facets of the coupler
and will reflect a part of the escaped light wave and couple it back into the cavity. If
one follows the path of a light ray that gets coupled out and then back in, it becomes
clear that the light is coupled into the counter-propagating mode.

2.2

Modeling the Electromagnetic Field

2.2.1 The Wave Equation for the Electric Field in the Cavity Waveguide

The dynamical interaction between the electromagnetic field and the material is given
by the Maxwell equations [26]. Let us consider the following formulation of these basic
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laws:

~∇ · ~E =
ρ f ree

ε0
−

1
ε0
~∇ · ~P, (2.1)

~∇ · ~B = 0, (2.2)

~∇ × ~E = −
∂~B
∂t
, (2.3)

c2~∇ × ~B =
1
ε0
~J f ree +

1
ε0

∂~P
∂t
+
∂~E
∂t
, (2.4)

where ~E en ~B are , respectively, the electric field and the magnetic induction field. ~P is
the polarisation field, ε0 is the permittivity of free space. ρ f ree, which denotes the free
charge carriers, is zero, because we assume charge neutrality. Eqs. (2.1)- (2.4) enable
the derivation of the electromagnetic wave equation by applying some mathematical
manipulations. We choose the z coordinate along the path in the cavity and assume the
electric field and the polarisation field to be transversely polarised, in the x-direction,
perpendicular on the direction of propagation, the z-direction. Because the transverse
distribution of the wave is more or less constant due to the fact that the wave is strongly
confined in the waveguide, we will only take the variations in the z-direction into
account. As a consequence of these assumptions, the term ~∇

(
−

1
ε0
~∇ · ~P

)
= 0, because

~P = P~1x and, since we assume only variations in the z-direction, ~∇ = ∂
∂z
~1z. The wave

equation becomes

∂2~E
∂z2 −

1
c2
∂2~E
∂t2 −

1
ε0c2

∂2~P
∂t2 −

1
ε0c2

∂~J f ree

∂t
= 0. (2.5)

Some of these terms can be rewritten in a more suitable form, using basic relations
between physical quantities. The polarisation, ~P, can be formulated as

~P = ε0χb~E + ~Pp, (2.6)

with χb being the background susceptibility and ~Pp being the polarisation originating
from the the active material, which will provide the necessary gain. It is experimentally
found that the current density ~J can be modeled by

~J = ε0σ~E. (2.7)

This will be one of the processes that cause losses in the cavity. Finally, the refractive
index n can be defined as

n =
√

1 + χb. (2.8)

Substituting all this in Eq. (2.5) leads to

∂2~E
∂z2 −

n2

c2
∂2~E
∂t2 − µ0

∂2 ~Pp

∂t2 −
σ

c2
∂~E
∂t
= 0. (2.9)
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2.2.2 The Slowly Varying Envelope Approximation

In the absence of nonlinearities and backscattering, the eigenmodes of the system are
forward and backward traveling waves. For this reason we expand the field as follows

~E
(
~r, t

)
= E (z, t) ~1x, (2.10)

E (z, t) = Acw(z, t) + Accw(z, t) + c.c., (2.11)

with

Acw(z, t) = Ecw(z)ei(k0z−ω0t), (2.12)

Accw(z, t) = Eccw(z)e−i(k0z+ω0t). (2.13)

And for the polarisation ~Pp:

~Pp
(
~r, t

)
= Pp (z, t) ~1x, (2.14)

Pp (z, t) = Bcw(z, t) + Bccw(z, t) + c.c., (2.15)

with

Bcw (z, t) = Pcw(z)ei(k0z−ω0t), (2.16)

Bccw(z, t) = Pccw(z)e−i(k0z+ω0t), (2.17)

with Ecw,Eccw,Pcw and Pccw the complex slowly varying amplitudes. Now, we will
invoke the so-called Slowly Varying Envelope Approximation (SVEA). Immediately,
one can rewrite Eq. (2.9), using the fact that ei(k0z−ω0t) and e−i(k0z+ω0t) are orthogonal
functions:

∂2Acw

∂z2 −
n2

c2
∂2Acw

∂t2 − µ0
∂2Bcw

∂t2 −
σ

c2
∂Acw

∂t
= 0, (2.18)

∂2Accw

∂z2 −
n2

c2
∂2Accw

∂t2 − µ0
∂2Bccw

∂t2 −
σ

c2
∂Accw

∂t
= 0. (2.19)

Similar equations hold for the complex conjugate. The fact that Ecw,Eccw,Pcw and Pccw
are slowly varying functions of space and time can be mathematically expressed as

Ecw(z, t) = Ecw (Z1,Z2, ...,T) , (2.20)
Eccw(z, t) = Eccw (Z1,Z2, ...,T) , (2.21)
Pcw(z, t) = Pcw (Z1,Z2, ...,T) , (2.22)

Pccw(z, t) = Pccw (Z1,Z2, ...,T) , (2.23)

with every Zi representing a longer and longer space scale, i.e., the function is far more
slowly varying in Z2 as it is in Z1, etc. [27]. The fact that every Zi represents a different
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space scale means that the derivatives can be written as

∂Ei

∂z
= δ

∂Ei

∂Z1
+ δ2 ∂Ei

∂Z2
+ ..., (2.24)

∂Ei

∂t
= δ

∂Ei

∂T
. (2.25)

The δ-factor is introduced to indicate the order of a term. Before the terms in the wave
equation can be grouped by order, we have to mention that the σ in Eq. (2.9) is of O (δ),
because the losses are small, just as Pcw and Pccw are of O (δ), because we consider a
quantum well. That is why we will write

σ→ δσ, (2.26)
Pcw → δPcw, (2.27)
Pccw → δPccw. (2.28)

Because the exponentials corresponding to the forward and backward traveling waves
are orthogonal functions, we continue with the equations for the forward propagating
wave. It now becomes possible to expand every term of Eq. (2.18):

∂2Acw

∂z2 =

−k2
0Ecw + 2iδk0

∂Ecw

∂Z1
+ 2iδ2k0

∂Ecw

∂Z2
+ δ2∂

2Ecw

∂Z2
1

+O(δ3)

 ei(k0−ω0t), (2.29)

∂Acw

∂t
=

(
−iω0Ecw + δ

∂Ecw

∂T

)
ei(k0−ω0t), (2.30)

∂2Ecw

∂t2 =

(
−ω2

0Ecw − 2δiω0
∂Ecw

∂T
+ δ2∂

2Ecw

∂T2

)
ei(k0−ω0t), (2.31)

∂2Bcw

∂t2 = δ

(
−ω2

0Pcw − 2δiω0
∂Pcw

∂T
+ δ2∂

2Pcw

∂T2

)
ei(k0−ω0t). (2.32)

Grouping all the terms in the wave equation by order gives:

• For the terms of O(δ0)

k2
0 −

n2

c2 ω
2
0 = 0. (2.33)

What we find is the dispersion relation of the material.

• For the terms of O(δ1)

2ik0
∂Ecw

∂Z1
+ 2i

n2

c2 ω0
∂Ecw

∂T
+ µ0ω

2
0Pcw + i

σ

c2ω0 = 0 (2.34)

⇔
∂Ecw

∂Z1
+

n
c
∂Ecw

∂T
− i
µ0ω0c

2n
Pcw +

σ
2cn

Ecw = 0 (2.35)
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Next, a new variable is introduced. The purpose of this transformation is to define a
coordinate that travels along with the wave. It is obvious that different transforma-
tions are needed for the forward and backward propagating wave. The coordinate
transformations for the forward wave are given by the Leibniz formulas

ξF = Z1, (2.36)

τ = T −
n
c

Z1. (2.37)

Using the chain rule we find:

∂
∂ξcw

=
∂
∂Z1
·
∂Z1

∂ξcw
+
∂
∂T
·
∂T
∂ξcw

, (2.38)

=
∂
∂Z1
+

n
c
∂
∂T
. (2.39)

This means that Eq. (2.35) reduces to

∂Ecw

∂ξcw
= i
µ0ω0c

2n
Pcw −

σ
2cn

Ecw (2.40)

−
σ

2cn represents a loss term, due to absorption in the medium. The gain term is hidden
in Pcw, with the imaginary part leading to the gain term and the real part acting as
propagation term.

2.3

Mean Field Model

To find an expression for Ecw, Eq. (2.40) has to be integrated over the cavity.

Ecw(ξcw = L) = Ecw(ξcw = 0) +
∫ ucw=L

ucw=0

(
i
µ0ω0c

2n
Pcw(ucw) −

σ
2cn

Ecw(ucw)
)

ducw. (2.41)

We assume that Ecw(ucw) and Pcw(ucw) vary only slightly while traveling through the
cavity. Therefore, we can take the integrand constant. Eq. (2.41) becomes

Ecw(L) = Ecw(0) + L
(
i
µ0ω0c

2n
Pcw(0) −

σ
2cn

Ecw(0)
)

(2.42)

Now, we will consider the cavity effect by imposing the boundary conditions. We
express that the amplitude of the electric field after one roundtrip equals the sum of
the reflected part of Ecw and the part coupled in from Eccw through the external mirrors.
Here we return to the coordinate system with z and t:

Ecw(0,
L
vg

) = ρEcw(L, 0) + kEccw(0,
L
vg

), (2.43)



2.3. MEAN FIELD MODEL 20

with ρ the reflectivity of the mirror. Another way to write ρ is:

ρ = 1 − Σ, (2.44)

with Σ the transmittance of the mirror. Substituting Eq. (2.42) in Eq. (2.43) and keeping
in mind that the fields remain nearly constant for one cavity roundtrip gives:

Ecw(0,
L
vg

) = (1 − Σ) Ecw(0, 0) + ρL
(
i
µ0ω0c

2n
Pcw(z, t) −

σ
2cn

Ecw(z, t)
)
+ kEccw(0,

L
vg

). (2.45)

We define the roundtrip time

τR =
L
vg
. (2.46)

Eq. (2.45) becomes

dEcw(t)
dT

= lim
τR→0

Ecw(0, τR) − Ecw(0, 0)
τR

(2.47)

≈
Ecw(0, τR) − Ecw(0, 0)

τR
(2.48)

= −
Σ

τR
Ecw(t) +

ρL
τR

(
i
µ0ω0c

2n
Pcw(t) −

σ
2cn

Ecw(t)
)
+

k
τR

Eccw(t) (2.49)

=

(
−
Σ

τR
−

ρLσ
2cnτR

)
Ecw(t) + i

ρLµ0ω0c
2nτR

Pcw(t) +
k
τR

Eccw(t). (2.50)

Figure 2.2: Close up from top left mirror. To formulate the boundary condition,
one has to include both the clockwise and the counter-clockwise propagating field.
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2.4

Modeling the Gain Medium

After deducing the electric field in a classical way, we will now use a semiclassical
approach to find an expression for the evolution of the polarisation field and the carriers.
This implies starting from the Schrödinger equation. For simplicity, we model the
semiconductor by a Maxwell-Bloch two-level model [28–30]. Applying this approach
means omitting all but two energy levels.

2.4.1 A Two Level Model of the Gain Medium

In a two-level model for a semiconductor, the light-matter interaction happens through
transitions from the conduction to the valence band. Although in reality a whole range
of transitions is possible, in this model only two energy levels are allowed to participate
in the carrier transitions. Since we consider now quantum properties, we have to use the
wavefunction of the electron, ψ(~r, t). Its evolution is given by the Schrödinger equation:

i~
∂
∂t
ψ(~r, t) = Ĥψ(~r, t). (2.51)

In the above equation, Ĥ represents the Hamiltonian of the system and ~ is Dirac’s
constant. The stationary solutions of Eq. (2.51) are given by:

ψn(~r, t) = un(~r)e−i En
~ t, (2.52)

where un(~r) is an eigenfunction of the Hamiltonian and En is the corresponding eigen-
value. The wave function then becomes

ψn(~r, t) = Caua(~r)e−i Ea
~ t + Cbub(~r)e−i

Eb
~ t. (2.53)

The coefficients Ca and Cb can be used to express the probabilities that the systems
resides in the ath or bth energy state. To study the interaction between the system and
an electric field present in the medium, we need to add an interaction energy operator
to the Hamiltonian.

Ĥ = Ĥ0 + Θ̂. (2.54)

In Eq. (2.54), Ĥ0 represents the unperturbed Hamiltonian and Θ̂ serves as perturbation
term. We expand the wavefunction in terms of the eigenstates of the unperturbed
Hamiltonian and regard Ca and Cb to be time-dependent. When the wave function is
substituted in the Schrödinger equation, it is possible to find the derivatives of Ca and
Cb by multiplying with u∗a or u∗b and then integrating over the entire space.

d
dt

Ca = −
i
~
Θ̂aaCa −

i
~
Θ̂abei

Ea−Eb
h tCb, (2.55)

d
dt

Cb = −
i
~
Θ̂bbCb −

i
~
Θ̂bae−i

Ea−Eb
h tCa, (2.56)
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with

Θ̂mn =

∫
u∗m(~r)Θ̂un(~r)d3~r (2.57)

2.4.2 Dipole Approximation

The perturbation energy, Θ̂, is related to the electric dipole operator:

Θ̂ = −e~̂r · ~E(~R, t), (2.58)

with ~R the vector indicating the position of the center of mass of the dipole. It is assumed
that the electric field remains constant over the dimensions of the dipole, what comes
down to having a lower energy when the dipole is aligned along the electric field than
when it is aligned against it. To find the polarisation, one has to multiply the expectation
value of the electric dipole operator with the number of systems per unit volume. It is

also known that
∥∥∥un(~r)

∥∥∥2
is a symmetrical function of ~r and ~r itself is antisymmetrical.

The expectation value becomes〈
e~̂r
〉
= e~̂rbaCa(t)C∗b(t)e−i

Ea−Eb
~ t + c.c., (2.59)

with ~rab the complex electric dipole matrix element

~̂rba =

∫
u∗a(~r)~̂rub(~r)d3~r. (2.60)

Since only Ca(t)C∗b(t) is of importance, because Θ̂aa and Θ̂bb are zero, we write the electric
dipole interaction energy matrix element as:

Θ̂ab = −e~̂rab · ~E(~R, t) = −~̂µ · ~E(~R, t) = Θ̂∗ba (2.61)

From now on, we will ignore the spatial dependence of the electric field and use ~E(t) =
~E0e−iωt. In the case ω = Ea−Eb

~ , the exact resonance, we can substitute Eq. (2.61) in
Eqs. (2.55)- (2.56) and find that

d2

dt2 Cb = −Ω
∗

RCb, (2.62)

with ΩR being the Rabi frequency, given by

ΩR =

∥∥∥∥~µ · ~E0

∥∥∥∥
~

. (2.63)
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Now, suppose that if t = 0, the system is in the lower state. Using the fact that Ca
and Cb can be used to calculate the probabilities by taking ‖ ‖2 we understand that
Cb(0) = 1,Ca(0) = 0. We find that

Cb(t) = cosΩRt. (2.64)

If one now wants to know the probability of the system being in the lower state, it
suffices to calculate

‖Cb(t)‖2 =
(1 + cos 2ΩRt)

2
. (2.65)

The above equation implicates that the wave function oscillates between the lower and
upper states sinusoidally at twice the Rabi frequency, a phenomenon known as Rabi
flopping.

2.4.3 From One Atom to an Ensemble of Atoms: the Density Matrix

Our approach described above is correct in the case where only one dipole is present.
However, in a real system such as the active medium, there are a countless number
of dipoles present. To take this into account

〈
e~r
〉

should be averaged over all dipoles
present. The second averaging will be denoted with an overbar. For convenience, we
define a density matrix with the elements:

ρnm = CnC∗me−i En−Em
~ t. (2.66)

We know that 〈
Θ̂
〉
= Tr

(
ρ̂ · θ̂

)
, (2.67)

with ρ̂ the density matrix and the operator θ̂ taken in its matrix form. The evolution of
the density matrix is given by

d
dt
ρ̂ = −

i
~

[
Ĥ, ρ̂

]
. (2.68)

More specific, for a laser system, it is found that

d
dt
ρab = −γ⊥ρab − i

Ea − Eb

~
ρab −

i
~
~µ · ~Enab, (2.69)

d
dt

nab = Λ −
2i
~

(
~µ∗ · ~E∗ρab − ~µ · ~Eρ∗ab

)
+

dnab

dt

∣∣∣∣∣
decay

, (2.70)

with nab = ρaa − ρbb, representing the microscopic population difference. In Eqs. (2.69)-
(2.70), some terms have been added phenomenologically. Whenever the electric field is
turned off, ρab will relax back to its equilibrium value. Indeed, if we suppose that we
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have a single two level system, with ρab a complex number, then this system has a certain
phase. But, as already mentioned, there are many dipoles, so many systems, each with
their own phase. The phase will vary from system to system, with the average phase
of the ensemble being zero. We call the dephasing rate of the microscopic dipoles, γ⊥.
Because of a similar reasoning, ρaa and ρbb should relax to their initial values, resulting
in nab relaxing to zero. Because the population is also pumped, some atoms will be
taken from the b-state and put into the a-state. Λ is called the pump parameter.

2.4.4 Macroscopic Model

To describe the system on a macroscopic scale, we have to find a relation between the
microscopic expressions for the polarisation and carrier density and the macroscopic
ones. These relations are given by

Pp =
ℵ

V
~µ∗ρab, (2.71)

N =
ℵ

V
nab, (2.72)

withℵ the number of systems in the ensemble and V the volume of the quantum well. In
this quantum well the evolution of the carrier density is determined by four processes:

• The first one is the fact that the active medium is pumped electrically because of
the current injection. This directly results in an increase in the carrier number, N.
The pump rate equals J/el = ℵΛ/V, with J being the injected ring current density,
e the electron charge, l the active layer thickness and.

• A second mechanism is the carriers recombining spontaneously, eliciting in a de-
cay of the number of carriers. The recombination rate, R(N), can be written as the
sum of three terms: a non-radiative term, AN, a spontaneous radiative recombi-
nation term, BN2, and an Auger recombination rate, CN3. We will approximate it
by N/τs with τs the carrier lifetime.

• Diffusion of the carriers in the quantum well with diffusion strength, D. This
diffusion, however, will be neglected.

• The electric field stimulates the carriers to recombine.

Finally, when we make use of the slowly varying approximation around the cavity
resonance, Ω, and we combine Eqs. (2.71)- (2.72) with Eqs. (2.69)- (2.70), we find:

dN
dt
=

J
el
−

N
τs
−

2i
~

[
~P~E∗ − ~P∗~E

]
, (2.73)

d ~Pp

dt
= −(γ⊥ + i(ωt −Ω)) ~Pp −

i
~

∥∥∥µ∥∥∥2
N~E, (2.74)

with ωt the transition frequency.
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2.5

Adiabatic Elimination of the Polarisation Field

Combining the previous sections, we find the following set of rate equations:

dEcw

dT
=

(
−
Σ

τR
−

ρLσ
2cnτR

)
Ecw + i

ρLµ0ω0c
2nτR

Pcw +
k
τR

Eccw, (2.75)

dEccw

dT
=

(
−
Σ

τR
−

ρLσ
2cnτR

)
Eccw + i

ρLµ0ω0c
2nτR

Pccw +
k
τR

Ecw, (2.76)

dN
dt
=

J
el
−

N
τs
−

2i
~

[
~P~E∗ − ~P∗~E

]
, (2.77)

d ~Pp

dt
= −(γ⊥ + i(ωt −Ω)) ~Pp −

i
~

∥∥∥µ∥∥∥2
N~E. (2.78)

In the above equations, every laser variable has its own time scale. For the electric
field the decay rate is given by

(
−
Σ
τR
−

ρLσ
2cnτR

)
, for the carriers it can be found by taking

R(N) and dividing it by N and for the polarisation it is the dephasing rate, γ⊥. Arecchi
et al. [31] have proposed to divide lasers into different classes, based on the relative
magnitude of these damping rates. Here we deal with a class B laser, in which γ⊥,
in the polarisation equation, is orders of magnitude larger than its equivalents in the
other two equations. As a result, Eq. (2.78) can be adiabatically eliminated. This can
be intuitively understood by considering that the electric field and the carriers are
much slower than the polarisation, such that in Eq. (2.78), they can be taken constant.
Whenever a perturbation in the the polarisation is present, from the point of view of E
and N it will disappear immediately. The derivative of P will be so high that P almost
instantly returns to its stationary value and once this stationary value is reached, the

derivative turns to zero. If
∂~Pp

∂t = 0, ~Pp can be eliminated in the other two equations. We
find that

~Pp = −
i
~

∥∥∥µ∥∥∥2 N
γ⊥ + i(ωt −Ω)

~E, (2.79)

so if we split this up again into a clockwise and a counter-clockwise equation:

Pcw = −
i
~

∥∥∥µ∥∥∥2 N
γ⊥ + i(ωt −Ω)

Ecw, (2.80)

Pccw = −
i
~

∥∥∥µ∥∥∥2 N
γ⊥ + i(ωt −Ω)

Eccw. (2.81)

Eq. (2.80) allows to find the susceptibility, χ:

χ = −
i
ε0~

∥∥∥µ∥∥∥2 N
γ⊥ + i(ωt −Ω)

. (2.82)



2.5. ADIABATIC ELIMINATION OF THE POLARISATION FIELD 26

(a) Renormalized gain (b) Refractive index change

Figure 2.3: Spectral characteristics of the renormalized gain and refractive index
change of a two-level system

This equation can be simplified to

χ = −iχ0
N

1 − i∆
, (2.83)

with

χ0 =

∥∥∥µ∥∥∥2

ε0~γ⊥
, (2.84)

∆ =
(Ω − ωt)
γ⊥

. (2.85)

Furthermore, one has to keep in mind that the susceptibility, χ, can be divided into a
real and an imaginary part, χ = χ′ − iχ′′, leading to:

χ′ = χ0N
∆

1 + ∆2 , (2.86)

χ′′ = χ0N
1

1 + ∆2 . (2.87)

It is from this equation that the often used linewidth enhancement factor α can be
found [32]:

α =
∂χ′/∂N
∂χ′′/∂N

= ∆. (2.88)

It is necessary to mention that in reality, due to the large energy spread of the transitions,
the gain spectrum does not look as it does in Figure 2.3. In a more complete model, you
have to sum over all the transitions and the spectrum becomes asymmetric, with the
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α-factor not crossing zero. The rate equations become:

dEcw

dT
=

(
−
Σ

τR
−

ρLσ
2cnτR

)
Ecw +

ρLω0

2cnτR
χ′′(1 + iα)Ecw +

k
τR

Eccw, (2.89)

dEccw

dT
=

(
−
Σ

τR
−

ρLσ
2cnτR

)
Eccw +

ρLω0

2cnτR
χ′′(1 + iα)Eccw +

k
τR

Ecw, (2.90)

dN
dt
=

J
el
−

N
τs
−

4ε0

~
χ′′

(
|Ecw|

2 + |Eccw|
2
)
. (2.91)

If we then define

Gn(N −N0) =
ρLω0

cnτR
χ′′, (2.92)

1
τp
=

2Σ
τR
−
ρLσ
cnτR

, (2.93)

K =
k
τR
, (2.94)

with Gn the semiconductor material gain, N0 the carrier density at transparency and τp
the photon lifetime. We obtain:

dEcw

dT
=

1
2

(1 + iα)GcwEcw −
1

2τp
Ecw −KEccw, (2.95)

dEccw

dT
=

1
2

(1 + iα)GccwEcw −
1

2τp
Eccw −KEcw, (2.96)

dN
dT
=

J
el
−

N
τs
− Gcw |Ecw|

2
− Gccw |Eccw|

2 . (2.97)

with

Gcw = Gn(N −N0)(1 − εs |Ecw|
2
− εc |Eccw|

2), (2.98)

Gccw = Gn(N −N0)(1 − εs |Eccw|
2
− εc) |Ecw|

2). (2.99)

In the above equations, some effects were added phenomenologically. The fields are
coupled to each other through nonlinear saturation effects. This saturation is accounted

for in the terms εs |Ei|
2 and εc

∣∣∣E1,2

∣∣∣2 in which εs and εc are the saturation coefficients.
εs is called the self-saturation coefficient and expresses how much a mode saturates
itself. Furthermore, we know that a mode is also saturated by its counter-propagating
counterpart, hence the cross-saturation coefficient εc is defined. The α-factor will lead
to a frequency shift, which can be cancelled by adding an extra phase term to the electric
field,

Ecw,ccw → Ecw,ccwe
iα

2τp T
. (2.100)
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The equations become

dEcw

dT
e

iα
2τp T
+

iα
2τp

Ecwe
iα

2τp T
=

1
2

(1 + iα)GcwEcwe
iα

2τp T
−

1
2τp

Ecwe
iα

2τp T
−KEccwe

iα
2τp T

, (2.101)

dEccw

dT
e

iα
2τp T
+

iα
2τp

Eccwe
iα

2τp T
=

1
2

(1 + iα)GccwEccwe
iα

2τp T
−

1
2τp

Eccwe
iα

2τp T
−KEcwe

iα
2τp T

, (2.102)

dN
dT
=

J
el
−

N
τs
− Gcw |Ecw|

2
− Gccw |Eccw|

2 . (2.103)

Omitting the phase factors in both the left and right segments, results in

dEcw

dT
=

1
2

(1 + iα)
(
Gcw −

1
τp

)
Ecw −KEccw, (2.104)

dEccw

dT
=

1
2

(1 + iα)
(
Gccw −

1
τp

)
Eccw −KEcw, (2.105)

dN
dT
=

J
el
−

N
τs
− Gcw |Ecw|

2
− Gccw |Eccw|

2 . (2.106)

The term 1
τp

represents the losses in the cavity. The last parameter that needs explaining
isK , the backscattering coefficient. The reflection can introduce a phase shift and hence
it is required to take a complex number for K , which we will note as Kd + iKc. Kd
is called the dissipative coupling and Kc the conservative coupling. If two counter-
propagating waves are present in the cavity, a standing wave pattern will be formed
and this can induce a grating in the carrier density. However, if the spatial period of
the standing wave pattern is comparable to the carrier diffusion length, we note that its
much smaller. In other words, the carrier diffusion will destroy the grating and, as a
result, the carrier density, N, can be assumed uniform over the cavity.

2.6

Multimode Equations

The purpose of this thesis work is to study a system with two longitudinal modes present
in the ring cavity. Eqs. (2.104)- (2.106) can be generalised for multimode semiconductor
ring lasers on condition that the two frequencies are only slightly different. When
the energy difference between the considered optical transitions is negligible, one can
assume that the same carrier reservoir is used for both longitudinal modes. To have
a better understanding of the effects that take place in a multimode ring laser, it is a
good idea to follow a similar approach as explained in the case of a single mode ring
laser. Inside a circular resonator the electric field can be written as the sum of the
two longitudinal modes, each with two counter-propagating modes. The direction of
propagation is again chosen along the z-coordinate and assumed positive in counter-
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clockwise direction,

~E
(
~r, t

)
= E (z, t) ~1x, (2.107)

E (z, t) = E1cw(z)ei(k1z−ω1t) + E1ccw(z)e−i(k1z+ω1t) + c.c.

+ E2cw(z)ei(k2z−ω2t) + E2ccw(z)e−i(k2z+ω2t) + c.c.. (2.108)

Again, the evolution of the electric fields and the carrier density can be described by
differential equations.

dE1cw

dT
=

1
2

(1 + iα)
[
G1cw −

1
τp

]
E1cw −K1E1ccw, (2.109)

dE1ccw

dT
=

1
2

(1 + iα)
[
G1ccw −

1
τp

]
E1ccw −K1E1cw, (2.110)

dE2cw

dT
=

1
2

(1 + iα)
[
G2cw −

1
τp

]
E2cw −K2E2ccw, (2.111)

dE2ccw

dT
=

1
2

(1 + iα)
[
G2ccw −

1
τp

]
E2ccw −K2E2cw, (2.112)

dN
dT
=

J
el
−

N
τs
− G1cw |E1cw|

2
− G1ccw |E1ccw|

2

− G2cw |E2cw|
2
− G2ccw |E2ccw|

2 . (2.113)

with

G1cw = Gn1(N −N0) ·

(1 − εs0 |E1cw|
2
− εc0 |E1ccw|

2
− εs1 |E2cw|

2
− εc1 |E2ccw|

2), (2.114)
G1ccw = Gn1(N −N0) ·

(1 − εs0 |E1ccw|
2
− εc0 |E1cw|

2
− εs1 |E2ccw|

2
− εc1 |E2cw|

2), (2.115)
G2cw = Gn2(N −N0) ·

(1 − εs0 |E2cw|
2
− εc0 |E2ccw|

2
− ε̃s1 |E1cw|

2
− ε̃c1 |E1ccw|

2), (2.116)
G2ccw = Gn2(N −N0) ·

(1 − εs0 |E2ccw|
2
− εc0 |E2cw|

2
− ε̃s1 |E1ccw|

2
− ε̃c1 |E1cw|

2). (2.117)

This multimode rate equations exhibit some essential variations on the single mode
model. From the beginning it becomes clear that just one self-saturation and one cross-
saturation coefficient will not suffice to describe the situation accurately. It is already
discussed that every mode will saturate the other to a certain amount and hence will
provide a nonlinear coupling. This means that every mode is saturated by every other
mode, with a corresponding saturation coefficient. First of all, every mode gets saturated
by itself with a self-saturation coefficient εs0 and by it’s counter-propagating counterpart
of the same longitudinal mode with a cross-saturation coefficient εc0. Somewhat more
complicated is the choice of the saturation coefficients that establish the link between
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the fields of the different longitudinal modes. If takes into account the symmetry in
the cavity, it seems reasonable to assume that two counter-propagating modes of one
longitudinal frequency are equally saturated by the fields with corresponding direction
of propagation of another longitudinal mode. That is why in Eqs. (2.109) and (2.110)
both of the equations contain εs1. With a similar reasoning one sees that also the εc1
factor is the same for both directions. In the second longitudinal mode the situation
is similar, but there the intermodal cross-saturation coefficients are different from the
ones in the first two equations, because of the asymmetry of the gain curve, depicted
in Figure 2.4. The reader should keep in mind that in spite of the notation only εs0 is a
self-saturation coefficient, while all the others, including εs1 en ε̃s1, are cross-saturation
coefficients. Gn1 and Gn2 are the semiconductor gain coefficients at the two considered
frequencies.

Figure 2.4: Gain vs photon energy in InGaAsP bulk material (Picture from Mor-
thier et al. [33]).

2.7

Nondimensionalisation of the Equations

The method applied in this section is based on what was done by Sorel et al. [18]. They
considered a single mode semiconductor ring laser and subsequently nondimension-
alised the rate equation model, while in this case, we implement similar techniques for
the multimode model. By rescaling Eqs. (2.109)- (2.113) it becomes possible to find a
dimensionless set of equations. A new time t is defined,

t =
T

2τp
, (2.118)
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and the electric fields and carrier density are redefined as

E1cw =

√
Gn1 + Gn2

2
τsE1cw E2cw =

√
Gn1 + Gn2

2
τsE2cw, (2.119)

E1ccw =

√
Gn1 + Gn2

2
τsE1ccw E2ccw =

√
Gn1 + Gn2

2
τsE2ccw, (2.120)

n =
Gn1 + Gn2

2
τp(N −N0). (2.121)

The saturation and gain coefficients are reformulated,

s0 =
εs0

Gn1+Gn2
2 τs

c0 =
εc0

Gn1+Gn2
2 τs

, (2.122)

s1 =
εs1

Gn1+Gn2
2 τs

s̃1 =
ε̃s1

Gn1+Gn2
2 τs

, (2.123)

c1 =
εc1

Gn1+Gn2
2 τs

c̃1 =
ε̃c1

Gn1+Gn2
2 τs

, (2.124)

g1 =
2Gn1

Gn1 + Gn2
g2 =

2Gn2

Gn1 + Gn2
. (2.125)

For the backscattering, one can explicitly write the backscattering coefficient as the sum
of a real and an imaginary number:

K1 = Kd1 + iKc1 K2 = Kd2 + iKc2. (2.126)

These coefficients are also rescaled

k̃d1 = 2τpKd1 k̃d2 = 2τpKd2, (2.127)

k̃c1 = 2τpKc1 k̃c2 = 2τpKc2. (2.128)

For comfortableness we define two new variables:

γ

κ
=

2τp

τs
, (2.129)

µ =
(Gn1 + Gn2)τpN0

2

( Jτs

N0el
− 1

)
, (2.130)
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with This normalisation of the variables and parameters transforms Eqs. (2.109)- (2.113)
into a new dimensionless set:

dE1cw

dt
= (1 + iα)

[
g1n

(
1 − s0 |E1cw|

2
− c0 |E1ccw|

2
− s1 |E2cw|

2
− c1 |E2ccw|

2
)
− 1

]
E1cw

−

(
k̃d1 + i k̃c1

)
E1ccw, (2.131)

dE1ccw

dt
= (1 + iα)

[
g1n

(
1 − s0 |E1ccw|

2
− c0 |E1cw|

2
− s1 |E2ccw|

2
− c1 |E2cw|

2
)
− 1

]
E1ccw

−

(
k̃d1 + i k̃c1

)
E1cw, (2.132)

dE2cw

dt
= (1 + iα)

[
g2n

(
1 − s0 |E2cw|

2
− c0 |E2ccw|

2
− s̃1 |E1cw|

2
− c̃1 |E1ccw|

2
)
− 1

]
E2cw

−

(
k̃d2 + i k̃c2

)
E2ccw, (2.133)

dE2ccw

dt
= (1 + iα)

[
g2n

(
1 − s0 |E2ccw|

2
− c0 |E2cw|

2
− s̃1 |E1ccw|

2
− c̃1 |E1cw|

2
)
− 1

]
E2ccw

−

(
k̃d2 + i k̃c2

)
E2cw, (2.134)

dn
dt
=
γ

κ

[
µ − n − g1n

(
1 − s0 |E1cw|

2
− c0 |E1ccw|

2
− s1 |E2cw|

2
− c1 |E2ccw|

2
)

− g1n
(
1 − s0 |E1ccw|

2
− c0 |E1cw|

2
− s1 |E2ccw|

2
− c1 |E2cw|

2
)

− g2n
(
1 − s0 |E2cw|

2
− c0 |E2ccw|

2
− s̃1 |E1cw|

2
− c̃1 |E1ccw|

2
)

−g2n
(
1 − s0 |E2ccw|

2
− c0 |E2cw|

2
− s̃1 |E1ccw|

2
− c̃1 |E1cw|

2
)]
. (2.135)

µ = 1 corresponds to the threshold condition of the laser. Later we will use a different
time scaling, hence it is more appropriate to restore the dimension of the time t. That is
why we will use the following set of equations as a starting point in chapter 3:

dE1cw

dt
= κ(1 + iα)

[
Ng1

(
1 − s0 |E1cw|

2
− c0 |E1ccw|

2
− s1 |E2cw|

2
− c1 |E2ccw|

2
)
− 1

]
E1cw

− (kd1 + i kc1)E1ccw, (2.136)
dE1ccw

dt
= κ(1 + iα)

[
Ng1

(
1 − s0 |E1ccw|

2
− c0 |E1cw|

2
− s1 |E2ccw|

2
− c1 |E2cw|

2
)
− 1

]
E1ccw

− (kd1 + i kc1)E1cw, (2.137)
dE2cw

dt
= κ(1 + iα)

[
Ng2

(
1 − s0 |E2cw|

2
− c0 |E2ccw|

2
− s̃1 |E1cw|

2
− c̃1 |E1ccw|

2
)
− 1

]
E2cw

− (kd2 + i kc2)E2ccw, (2.138)
dE2ccw

dt
= κ(1 + iα)

[
Ng2

(
1 − s0 |E2ccw|

2
− c0 |E2cw|

2
− s̃1 |E1ccw|

2
− c̃1 |E1cw|

2
)
− 1

]
E2ccw

− (kd2 + i kc2)E2cw, (2.139)
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dN
dt
= γ

[
µ −N −Ng1

(
1 − s0 |E1cw|

2
− c0 |E1ccw|

2
− s1 |E2cw|

2
− c1 |E2ccw|

2
)
|E1cw|

2

−Ng1

(
1 − s0 |E1ccw|

2
− c0 |E1cw|

2
− s1 |E2ccw|

2
− c1 |E2cw|

2
)
|E1ccw|

2

−Ng2

(
1 − s0 |E2cw|

2
− c0 |E2ccw|

2
− s̃1 |E1cw|

2
− c̃1 |E1ccw|

2
)
|E2cw|

2

−Ng2

(
1 − s0 |E2ccw|

2
− c0 |E2cw|

2
− s̃1 |E1ccw|

2
− c̃1 |E1cw|

2
)
|E2ccw|

2
]
, (2.140)

with κ = 1
τp

and N representing the carrier number.



Chapter 3

The Reduced Model for a Semicon-
ductor Ring Laser with Two Longi-
tudinal Modes

In this chapter, we go more into depth about the operation of a multimode system.
Using some asymptotic methods similar to the ones used by Van der Sande et al. [34],

we reduce the set of rate equations that we obtained in the previous chapter from 9 to 5
real equations. A multiple time scale analysis allows us to eliminate all but the slowest
time scales. We determine the steady-state solutions and present some simulation
results.

3.1

Operation of a Multimode Semiconductor Ring Laser

In a circular resonator, it is very likely that multiple wavelengths are stable. Similar to
a Fabry-Pérot laser cavity, a whole series of wavelengths satisfies the phase condition
that a roundtrip equals a phase shift of 2π. Normally, the factor that selects one of
these wavelengths is the gain spectrum. One of the longitudinal modes will experience
the largest gain and suppress the others. However, it is possible that the peak of the
gain spectrum is very wide and that several wavelengths ’see’ more or less the same
gain. As a consequence a set of modes will lase, each with a slightly different threshold
value, because of very small gain differences. The fact that more than one longitudinal
mode is present has some serious implications on the operation of the ring laser. Not
only interaction between two counter-propagating modes of the same frequency has
to be taken into account, but also inter-frequency interactions. Every mode will get
saturated by itself, by its counter-propagating equivalent and also by the two counter-
propagating modes of the other frequencies. It gets even more complicated if one takes
a look at the saturation coefficients, because it is perfectly possible that one frequency is

34
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less saturated by the others than vice versa. In the following study of the problem, we
assume that the backscattering process will not couple energy from one longitudinal
mode into another. This can be excepted as a reasonable assumption, keeping in mind
that it is a linear coupling between two modes. It is just a reflection that sends a wave
in the opposite direction, so no frequency changes can take place there.
As mentioned before, the gain curve is not a perfectly flat curve. Although some wave-
lengths experience enough gain to make lasing possible, there will be small differences.
These differences in gain will have their part in shaping the P-I curve, e.g. different
longitudinal modes will have different thresholds. Also, the gain can vary with the
pump current. As the current increases, the gain spectrum will shift slightly, but that
shift can be sufficient to introduce another longitudinal mode or change the mode with
the highest gain. Another problem when changing the pump current is that it cannot be
avoided that the device’s temperature will rise with increasing current. The ring laser
is mounted on a heatsink, but this will not prevent the device from getting warmer. An
increase in temperature results in an expansion of the device and therefore, the cavity.
It is clear that this is an important problem, since other wavelengths will now fulfill the
2π condition. In chapter 2, we have found that the model in case of two longitudinal
modes can be described by the following set of rate equations:

Ė1cw = κ(1 + iα)
[
Ng1

(
1 − s0 |E1cw|

2
− c0 |E1ccw|

2
− s1 |E2cw|

2
− c1 |E2ccw|

2
)
− 1

]
E1cw

− (kd1 + i kc1)E1ccw (3.1)

Ė1ccw = κ(1 + iα)
[
Ng1

(
1 − s0 |E1ccw|

2
− c0 |E1cw|

2
− s1 |E2ccw|

2
− c1 |E2cw|

2
)
− 1

]
E1ccw

− (kd1 + i kc1)E1cw (3.2)

Ė2cw = κ(1 + iα)
[
Ng2

(
1 − s0 |E2cw|

2
− c0 |E2ccw|

2
− s̃1 |E1cw|

2
− c̃1 |E1ccw|

2
)
− 1

]
E2cw

− (kd2 + i kc2)E2ccw (3.3)

Ė2ccw = κ(1 + iα)
[
Ng2

(
1 − s0 |E2ccw|

2
− c0 |E2cw|

2
− s̃1 |E1ccw|

2
− c̃1 |E1cw|

2
)
− 1

]
E2ccw

− (kd2 + i kc2)E2cw (3.4)

Ṅ = γ
[
µ −N −Ng1

(
1 − s0 |E1cw|

2
− c0 |E1ccw|

2
− s1 |E2cw|

2
− c1 |E2ccw|

2
)
|E1cw|

2

−Ng1

(
1 − s0 |E1ccw|

2
− c0 |E1cw|

2
− s1 |E2ccw|

2
− c1 |E2cw|

2
)
|E1ccw|

2

−Ng2

(
1 − s0 |E2cw|

2
− c0 |E2ccw|

2
− s̃1 |E1cw|

2
− c̃1 |E1ccw|

2
)
|E2cw|

2

−Ng2

(
1 − s0 |E2ccw|

2
− c0 |E2cw|

2
− s̃1 |E1ccw|

2
− c̃1 |E1cw|

2
)
|E2ccw|

2 (3.5)

The dots here represent the derivative with respect to T. κ is the field decay rate, while
γ denotes the decay rate of the carrier population. α is the linewidth enhancement
factor and µ is the renormalised injection current, which is defined such that µ = 1 at
lasing threshold. N is the current density, rescaled, such that is 0 at transparency. The
linear coupling between two counter-propagating modes with the same frequency is
provided by the backscattering coefficients kd1, kc1, kd2 en kc2 and the nonlinear coupling
is present in the form of saturation coefficients. Remark that there is no backscattering
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from one frequency to another. Also the possibility for the different longitudinal modes
to ’feel’ another differential gain is foreseen by using g1 and g2. These factors can be
current dependent and are vital for this model, even a difference of a few promille may
cause one mode to be completely suppressed by the other.

3.2

Amplitude-Phase Decomposition

Since the electrical field is a complex variable, Eqs. (3.1)-(3.4) can all four of them be split
up in real and imaginary parts. In principle there are eight real field equations plus a real
carrier equation. A possible way to separate the real and imaginary parts is to apply
what is called an amplitude-phase decomposition. This means that the electric field
variable E must explicitly be written as the product of a real amplitude and a complex
exponent representing the phase. This should be done for all four electric fields present
in the cavity.

E1cw = Q1cweiφ1cw , (3.6)

E1ccw = Q1ccweiφ1ccw , (3.7)

E2cw = Q2cweiφ2cw , (3.8)

E2ccw = Q2ccweiφ2ccw . (3.9)

In the left segment of each equation a derivative with respect to time is found. If we
take the derivatives of Eqs. (3.6)- (3.9), we get

Ė1cw = Q̇1cweiφ1cw +Q1cweiφ1cwφ̇1cw, (3.10)

Ė1ccw = Q̇1ccweiφ1ccw +Q1ccweiφ1ccwφ̇1ccw, (3.11)

Ė2cw = Q̇2cweiφ2cw +Q2cweiφ2cwφ̇2cw, (3.12)

Ė2ccw = Q̇2ccweiφ2ccw +Q2ccweiφ2ccwφ̇2ccw. (3.13)

One notices instantly that in each of the Eqs. (3.10)-(3.13) the original phase terms are
still present in every term. If we substitute Eqs. (3.10)-(3.13) in Eqs. (3.1)-(3.4) and then
divide both segments of the equation by this phase term, only the phase difference
between two phases of the same longitudinal mode will remain. If we introduce a new
substitution

ψ1 = φ1ccw − φ1cw, (3.14)
ψ2 = φ2ccw − φ2cw, (3.15)

with ψi ∈ [0, 2π[, all single phase terms can be eliminated. Because only the difference
appears in the other equations, the phase equations we found from the imaginary
part can be subtracted to form a phase difference. This means we already have two
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equations less. Another substitution we will carry through involves the backscattering
coefficients. The sum kd1,2+ i kc1,2 can be rewritten as k1,2 eiφk1,2 . Later it will become clear
why this is a more elegant way of writing down the backscattering. Eqs. (3.10)- (3.15)
can now be formulated as:

Q̇1cw = κ(1 + iα)
[
Ng1

(
1 − s0Q2

1cw − c0Q2
1ccw − s1Q2

2cw − c1Q2
2ccw

)
− 1

]
Q1cw

− k1

(
cos(φk1 + ψ1)

)
Q1ccw, (3.16)

Q̇1ccw = κ(1 + iα)
[
Ng1

(
1 − s0Q2

1ccw − c0Q2
1cw − s1Q2

2ccw − c1Q2
2cw

)
− 1

]
Q1ccw

− k1

(
cos(φk1 − ψ1)

)
Q1cw, (3.17)

Q̇2cw = κ(1 + iα)
[
Ng2

(
1 − s0Q2

2cw − c0Q2
2ccw − s̃1Q2

1cw − c̃1Q2
1ccw

)
− 1

]
Q2cw

− k2

(
cos(φk2 + ψ2)

)
Q2ccw, (3.18)

Q̇2ccw = κ(1 + iα)
[
Ng2

(
1 − s0Q2

2ccw − c0Q2
2cw − s̃1Q2

1ccw − c̃1Q2
1cw

)
− 1

]
Q2ccw

− k2

(
cos(φk2 − ψ2)

)
Q2cw, (3.19)

ψ̇1 = καNg1

[
(s0 − c0)(Q2

1cw −Q2
1ccw) + (s1 − c1)(Q2

2cw −Q2
2ccw)

]
− k1

[
sin (φk1 − ψ1)

Q1cw

Q1ccw
− sin (φk1 + ψ1)

Q1ccw

Q1cw

]
, (3.20)

ψ̇2 = καNg2

[
(s0 − c0)(Q2

2cw −Q2
2ccw) + (s2 − c2)(Q2

1cw −Q2
1ccw)

]
− k2

[
sin (φk2 − ψ2)

Q2cw

Q2ccw
− sin (φk2 + ψ2)

Q2ccw

Q2cw

]
, (3.21)

Ṅ = γ
[
µ −N −Ng1

(
1 − s0Q2

1cw − c0Q2
1ccw − s1Q2

2cw − c1Q2
2ccw

)
Q2

1cw

−Ng1

(
1 − s0Q2

1ccw − c0Q2
1cw − s1Q2

2ccw − c1Q2
2cw

)
Q2

1ccw

−Ng2

(
1 − s0Q2

2cw − c0Q2
2ccw − s̃1Q2

1cw − c̃1Q2
1ccw

)
Q2

2cw

−Ng2

(
1 − s0Q2

2ccw − c0Q2
2cw − s̃1Q2

1ccw − c̃1Q2
1cw

)
Q2

2ccw]. (3.22)

3.3

Multiple Scales Analysis

It can be remarked that in the model used to describe the multimode situation, the
values of the parameters span a range of several orders of magnitude. This provides
the opportunity for a first reduction step. From numerical simulations done by Van
der Sande et al. [34] we know that the backscattering coefficients kd1,2 and kc1,2 are
an order of magnitude smaller than the parameter κ. They have also found that N,
which is a dynamical variable, has a value near to 1. The saturation coefficients have
small values compared 1. What is more, g1 and g2 have values very close to 1, due
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to the nondimensionalisation of the original model. Two new parameters need to be
constructed. First, we introduce a dimensionless time τ,

τ = γT, (3.23)

thus the original time is scaled with the carrier life time. Next, the smallness parameter
ρ will allow us to describe mathematically what are small parameter values,

ρ =
γ

κ
. (3.24)

Furthermore, we express that the carrier density will be approximately 1:

N = 1 + ρn, (3.25)

with n of O(1). We know that the saturation and backscattering coefficients are very
small, of O(ρ). To express this we put

s0 = ρS0 c0 = ρC0, (3.26)
s1 = ρS1 c1 = ρC1, (3.27)

s̃1 = ρS̃1 c̃1 = ρC̃1, (3.28)
kd1 = κρKd1 kc1 = κρKc1, (3.29)
kd2 = κρKd2 kc2 = κρKc2. (3.30)

Also the differential gain factors can be written in a more useful way for further reduction
of the model. The two gain factors are almost 1. For use at a later stage of the reduction,
we define the gain factors in a symmetric way:

g1 = 1 −
ρG
2
, (3.31)

g2 = 1 +
ρG
2
. (3.32)

A new symbol appears, G, or the difference in differential gain between the two longi-
tudinal modes. G is again of O(1) and expresses which of the two modes experiences
the largest differential gain. If one wishes to favour the other mode, the sign of the
gain simply has to be reversed. The next step is to substitute the new parameters in the
rate equations. From the numerical simulations we know that ρ is of the order of 10−3.
Hence, it becomes acceptable to neglect all the terms of O(ρ2). Finally, a reduced model
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can be proposed:

Q
′

1cw =
[
n −

G
2
− S0Q2

1cw − C0Q2
1ccw − S1Q2

2cw − C1Q2
2ccw

]
Q1cw

− K1 cos (ψ1 + φk1)Q1ccw, (3.33)

Q
′

1ccw =
[
n −

G
2
− S0Q2

1ccw − C0Q2
1cw − S1Q2

2ccw − C1Q2
2cw

]
Q1ccw

− K1 cos (−ψ1 + φk1)Q1cw, (3.34)

Q
′

2cw =
[
n +

G
2
− S0Q2

2cw − C0Q2
2ccw − S̃1Q2

1cw − C̃1Q2
1ccw

]
Q2cw

− K2 cos (ψ2 + φk2)Q2ccw, (3.35)

Q
′

2ccw =
[
n +

G
2
− S0Q2

2ccw − C0Q2
2cw − S̃1Q2

1ccw − c̃1Q2
1cw

]
Q2ccw

− K2 cos (−ψ2 + φk2)Q2cw, (3.36)

ψ
′

1 = α
[
(S0 − C0)

(
Q2

1cw −Q2
1ccw

)
+ (S1 − C1)

(
Q2

2cw −Q2
2ccw

)]
− K1

[
sin (−ψ1 + φk1)

Q1cw

Q1ccw
− sin (ψ1 + φk1)

Q1ccw

Q1cw

]
, (3.37)

ψ
′

2 = α
[
(S0 − C0)

(
Q2

2cw −Q2
2ccw

)
+

(
S̃1 − C̃1

) (
Q2

1cw −Q2
1ccw

)]
− K2

[
sin (−ψ2 + φk2)

Q2cw

Q2ccw
− sin (ψ2 + φk2)

Q2ccw

Q2cw

]
, (3.38)

n =
1

µ − 1

[
S0

(
Q4

1cw +Q4
1ccw +Q4

2cw +Q4
2ccw

)
+ 2C0

(
Q2

1cwQ2
1ccw +Q2

2cwQ2
2ccw

)
+

(
S1 + S̃1

) (
Q2

1cwQ2
2cw +Q2

1ccwQ2
2ccw

)
+

(
C1 + C̃1

) (
Q2

1cwQ2
2ccw +Q2

2cwQ2
1ccw

)
+

G
2

(
Q2

1cw +Q2
1ccw −Q2

2cw −Q2
2ccw

)
+ 2K1 cosψ1 cosφk1Q1cwQ1ccw + 2K2 cosψ2 cosφk2Q2cwQ2ccw], (3.39)

µ − 1 = Q2
1cw +Q2

1ccw +Q2
2cw +Q2

2ccw. (3.40)

In the above set of equations, Eq. (3.39) is no longer a real rate equation. It is just an
equation that gives the value of n to be substituted in Eqs. (3.33)- (3.36). The multiple
scales analysis and the subsequent neglecting of terms of O(ρ2) has transformed the
equation for Ṅ into Eq. (3.40). Basically, this is a conservation law, pointing out that the
sum of the intensities should always equal µ − 1.
The system is fully determined. It consists of six independent equations and six variables
(Q1cw,Q1ccw,Q2cw,Q2ccw, ψ1, ψ2). Although the model is correct for time scales slower
than the damping rate of the relaxation oscillations, in the order of GHz, it is not
completely satisfying. The equations cannot be easily interpreted. Even more, in the
numerical simulations of Eqs. (3.33)- (3.40), we could not find a stable algorithm to
solve these equations. After analysis of the diverging time series, we found that for
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each current, all the intensities tend to go to infinity. In other words, the conservation law
is violated. This numerical instability is probably due to the fact that our integration
algorithm is not suitable for differential-algebraic equations. We have tried different
numerical algorithms developed especially for this situation, such as those included
in the mathematical packages Matlab and Mathematica, but without satisfying results.
Since we attribute the numerical instability to the presence of the algebraic conservation
law, we can try to have the equations satisfy the law automatically. A possible way
to achieve this is by using a similar approach as in [34]. If a transformation, which
represents the intensities as the product of sines and cosines, is applied, the problem
mentioned above will disappear. Indeed, it is possible to define the intensities, such
that the conservation law will be expressed by the sum of a square sine and a square
cosine. We will clarify this approach in the following section.

3.4

Angular Representation of Intensities

Three angles are used for a complete representation of the energy distribution. θ1
indicates the distribution of energy between the two counter-propagating modes of the
first longitudinal mode, while θ2 has the same function but for the second longitudinal
mode. θ3 indicates the distribution of energy between the two different frequencies.
The coordinate transformation looks as follows

Q2
1cw = (µ − 1) cos2

(
θ3 + π/2

2

)
cos2

(
θ1 + π/2

2

)
, (3.41)

Q2
1ccw = (µ − 1) cos2

(
θ3 + π/2

2

)
sin2

(
θ1 + π/2

2

)
, (3.42)

Q2
2cw = (µ − 1) sin2

(
θ3 + π/2

2

)
cos2

(
θ2 + π/2

2

)
, (3.43)

Q2
2ccw = (µ − 1) sin2

(
θ3 + π/2

2

)
sin2

(
θ2 + π/2

2

)
, (3.44)

with θi ∈ [−π2 ,
π
2 ]. Applying some simple trigonometric rules allows us to write

Q2
1cw =

µ − 1
4

(1 − sinθ3) (1 − sinθ1) , (3.45)

Q2
1ccw =

µ − 1
4

(1 − sinθ3) (1 + sinθ1) , (3.46)

Q2
2cw =

µ − 1
4

(1 + sinθ3) (1 − sinθ2) , (3.47)

Q2
2ccw =

µ − 1
4

(1 + sinθ3) (1 + sinθ2) . (3.48)

The angle variables can be interpreted as follows. If θ1 = 0, the energy is equally
distributed over the two counter-propagating modes of longitudinal mode 1. A value
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of π/2 or −π/2 denotes concentrating all the energy in only one of the two counter-
propagating modes. θ2 has a similar interpretation, but for the second longitudinal
mode. When θ2 = 0, all energy is equally distributed over the two counter-propagating
modes of longitudinal mode 2. For θ3 a similar reasoning can be applied, only it does
not consider the counter-propagating modes but the longitudinal modes. The use of
angles makes it possible to represent the solutions of one longitudinal mode of the
system on a sphere, as depicted in Figure 3.1.

Figure 3.1: Phase-space portraits in the spherical phase space of one longitudinal
mode. (a) Definition of the angles. (b) Time evolution from an unstable In-Phase
Symmetric Solution to a stable Out-of-Phase Symmetric Solution. (c) Time evolu-
tion from an unstable In-Phase Symmetric Solution to stable oscillations. (d) Time
evolution from an unstable In-Phase Symmetric Solution to a stable Out-of-Phase

Antisymmetric Solution. Picture from Van der Sande et al. [34].

Keeping in mind that cos2(α) + sin2(α) = 1 for every α, one understands immediately
that the sum of the four intensities equals µ − 1,

Q2
1cw +Q2

1ccw +Q2
2cw +Q2

2ccw

= (µ − 1)
[
cos2

(
θ3 + π/2

2

) (
cos2

(
θ1 + π/2

2

)
+ sin2

(
θ1 + π/2

2

))
+ sin2

(
θ3 + π/2

2

) (
cos2

(
θ2 + π/2

2

)
+ sin2

(
θ2 + π/2

2

))]
= (µ − 1)

[
cos2

(
θ3 + π/2

2

)
+ sin2

(
θ3 + π/2

2

)]
= µ − 1, (3.49)

no matter what the angles might be. In other words, the conservation law is respected
in any case, resulting in a model that can be numerically simulated without problems.
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When substituted in the reduced model, one finds

θ
′

1 =

(
µ − 1

2

)
cosθ1 [(C0 − S0) sinθ1(1 − sinθ3) + (C1 − S1) sinθ2(1 + sinθ3)]

+ 2K1

[
sinθ1 cosψ1 cosφk1 − sinφk1 sinψ1

]
, (3.50)

θ
′

2 =

(
µ − 1

2

)
cosθ2

[
(C0 − S0) sinθ2(1 + sinθ3) + (C̃1 − S̃1) sinθ1(1 − sinθ3)

]
+ 2K2

[
sinθ2 cosψ2 cosφk2 − sinφk2 sinψ2

]
, (3.51)

θ
′

3 =
1 − sinθ3

cosθ3

[1 − sinθ1

cosθ1

[
θ
′

1 + 2K1 cos (−ψ1 + φk1)
]

− 2
[
−

G
2
+ n − S0

µ − 1
4

(1 − sinθ3)(1 + sinθ1) − C0
µ − 1

4
(1 − sinθ3)(1 − sinθ1)

−S1
µ − 1

4
(1 + sinθ3)(1 + sinθ2) − C1

µ − 1
4

(1 + sinθ3)(1 − sinθ2)
]]
, (3.52)

ψ
′

1 = α

(
µ − 1

2

)
[(C0 − S0) (1 − sinθ3) sinθ1 + (C1 − S1) (1 + sinθ3) sinθ2]

+
2K1

cosθ1

[
cosφk1 sin (−ψ1) + sinθ1 sinφk1 cosψ1

]
, (3.53)

ψ
′

2 = α

(
µ − 1

2

) [
(C0 − S0) (1 + sinθ3) sinθ2 +

(
C̃1 − S̃1

)
(1 − sinθ3) sinθ1

]
+

2K2

cosθ2

[
cosφk2 sin (−ψ2) + sinθ2 sinφk2 cosψ2

]
. (3.54)

with

n =
S0

8
(µ − 1)

(
(1 − sinθ3)2(1 + sin2 θ1) + (1 + sinθ3)2(1 + sin2 θ2)

)
+

C0

8
(µ − 1)

(
(1 − sinθ3)2 cos2 θ1 + (1 + sinθ3)2 cos2 θ2

)
+

S1 + S̃1

8
(µ − 1) cos2 θ3(1 + sinθ1 sinθ2)

+
C1 + C̃1

8
(µ − 1) cos2 θ3(1 − sinθ1 sinθ2)

−
G
2

sinθ3

+
K1

2
cosψ1 cosφk1(1 − sinθ3) cosθ1 +

K2

2
cosψ2 cosφk2(1 + sinθ3) cosθ2. (3.55)

When we now solve the equations numerically, the violation of the conservation law
has disappeared. Although the reduction has some significant benefits concerning the
numerical simulation, the primary goal, namely having equations that can easily be
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interpreted, has not been achieved yet. At first glance the equations seem enormous,
but with only a few assumptions they simplify considerably. We first consider

K1 = K2 ≡ K, (3.56)

then, all the equations are divided by a common factor K, the backscattering magnitude.
A new time is defined

τnew = Kτold, (3.57)

along with some new variables.

J =
(C0 − S0)(µ − 1)

2K
, (3.58)

Γ =
G
K
. (3.59)

These last two definitions make the equations more readable and change nothing to the
actual model. Furthermore, some of the different saturation coefficients can be taken
equal. A possible combination is S1 = C1 = S̃1 = C̃1 ≡ S. In other words, the inter-
frequency saturation coefficients are equal. Every mode is in the same way saturated by
the modes of another frequency. This assumption leads to a synoptic set of equations:

θ
′

1 = J cosθ1 sinθ1(1 − sinθ3) + 2
(
sinθ1 cosψ1 cosφk1 − sinφk1 sinψ1

)
, (3.60)

θ
′

2 = J cosθ2 sinθ2(1 + sinθ3) + 2
(
sinθ2 cosψ2 cosφk2 − sinφk2 sinψ2

)
, (3.61)

θ
′

3 =
J cosθ3

2

[
(sinθ3 − 1) sin2 θ1 + (sinθ3 + 1) sin2 θ2 + sinθ3σ

]
+ Γ cosθ3 + cosθ3

[
cosθ1 cosψ1 cosφk1 − cosθ2 cosψ2 cosφk2

]
, (3.62)

ψ
′

1 = Jα(1 − sinθ3) sinθ1 +
2

cosθ1

[
cosφk1 sinψ1 + sinθ1 sinφk1 cosψ1

]
, (3.63)

ψ
′

2 = Jα(1 + sinθ3) sinθ2 +
2

cosθ2

[
cosφk2 sinψ2 + sinθ2 sinφk2 cosψ2

]
. (3.64)

In the above equations, the effect of saturation can be described by a single variable:

σ =
4S − 2(S0 + C0)

C0 − S0
, (3.65)

Although the differences between these coefficients will be extremely small, we will
continue the study of this model assuming that S1 = C1 and S̃1 = C̃1, but not S1 = S̃1.
This means that within one longitudinal mode, a mode gets equally saturated by both
modes with another frequency. However, there still is a difference in saturation strength
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between the two longitudinal modes. If we do this, we get

θ
′

1 = J cosθ1 sinθ1(1 − sinθ3) + 2
(
sinθ1 cosψ1 cosφk1 − sinφk1 sinψ1

)
, (3.66)

θ
′

2 = J cosθ2 sinθ2(1 + sinθ3) + 2
(
sinθ2 cosψ2 cosφk2 − sinφk2 sinψ2

)
, (3.67)

θ
′

3 =
J cosθ3

2

[
(sinθ3 − 1) sin2 θ1 + (sinθ3 + 1) sin2 θ2 + σ1 + sinθ3σ2

]
+ Γ cosθ3 + cosθ3

[
cosθ1 cosψ1 cosφk1 − cosθ2 cosψ2 cosφk2

]
, (3.68)

ψ
′

1 = Jα(1 − sinθ3) sinθ1 +
2

cosθ1

[
cosφk1 sinψ1 + sinθ1 sinφk1 cosψ1

]
, (3.69)

ψ
′

2 = Jα(1 + sinθ3) sinθ2 +
2

cosθ2

[
cosφk2 sinψ2 + sinθ2 sinφk2 cosψ2

]
. (3.70)

Now, the saturation is described by two independent variables, σ1 and σ2.

σ1 = 2
(

S1 − S̃1

C0 − S0

)
, (3.71)

σ2 = 2
(

(S1 + S̃1) − (S0 + C0)
C0 − S0

)
. (3.72)

It is obvious that if one sets S1 = S̃1 the Eqs. (3.66)- (3.70) reduce to Eqs. (3.60)- (3.64)
with σ1 = 0 and σ2 = σ.
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3.5

Validation of the Model

Figure 3.2: Numerically calculated P-I curve, using the full model, Eqs. (3.1)- (3.5).
The parameters are: γ = 0.002s0 = 0.01, c0 = 0.02, s1 = 0, c1 = 0, s̃1 = 0.01, c̃1 = 0.01,
kd1 = kd2 = 3.2616 × 10−4, kc1 = kc2 = 0.0044, α = 3.5, φk1 = φk2 = 1.4966, g1 = 0.9996
and g2 = 1.0004. The maxima and minima of |E1cw|

2 (|E1ccw|
2) are denoted by

open blue squares and circles (red crosses and dots), respectively. For the second
longitudinal mode, the maxima and minima of |E2cw|

2 (|E2ccw|
2) are denoted by open

black squares and circles (green crosses and dots), respectively.
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Figure 3.3: The intensities of the numerically calculated P-I curve, defined the
same way as in Figure 3.2, using the reduced model, Eqs. (3.66)- (3.70). σ1 = −2,

σ2 = −4, α = 3.5, φk1 = φk2 = 1.4966 and Γ = 0.0909.

In Figure 3.2, the P-I curve using the equations of the full model is depicted, for intel-
ligibility vs. the scaled current of the reduced model. When we compare this with the
result we obtain from reduced model, Figure 3.3, we find that the curves are similar.
One notices that in the proximity of the first bifurcation point, there is a slight difference.
In the full model, the bifurcation starts somewhat later, but is more abrupt. Hence, the
intensities in the two models converge to the same value if we go to currents, a bit higher
than the bifurcation current. In Figure 3.4 the angles corresponding to the situation in
Figure 3.3 are depicted as a function of the pump current.
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Figure 3.4: The values of the angles used to indicate the energy distribution
between the modes. θ1 (blue), θ2 (red) and θ3 (black).

When we compare the time traces at corresponding currents, we find Figure 3.5(a) for
the full model and Figure 3.5(b) for the reduced model. In this comparison it becomes
clear that in the reduced model the fast dynamics have been eliminated. The figure
depicts a current step from 1.1 to 1.2 at time t = 0. In the full model, fast dynamics
make sure that the steady-state values are almost immediately reached. In the reduced
model, only slow dynamics are present, resulting in a significantly longer time to reach
the steady-state value. However, the steady-state value itself is equal in both models.
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(a)

(b)

Figure 3.5: (a) Timetrace of the intensity for the full model, with identical param-
eters as in Figure 3.2. (b) Timetrace of the intensity for the reduced model, with
identical parameters as in Figure 3.3. It becomes clear that in the full model, fast
dynamical processes are not yet eliminated, resulting in fast convergence to the
steady state. In the reduced model, it takes longer to reach the steady state, since

only slow dynamics are accounted for.
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3.6

Steady-State Solutions of the Reduced Model

• A first case we will consider is the case in which θ1 = θ2 = 0 and θ3 =
π
2 .

In other words, the system behaves as if single mode and bidirectional. From
Eqs. (3.45)- (3.48) it is clear that for θ3 =

π
2 all the energy is concentrated in the

second longitudinal mode. The fact θ1 = θ2 = 0 means that each mode, if present,
will be in its bidirectional regime with the amount of energy in the clockwise mode
equal to the amount of energy in the counter-clockwise mode. The steady-state
solutions for this case are

θ1 = 0, ψ1 = kπ, (3.73)
θ2 = 0, ψ2 = lπ, (3.74)

θ3 =
π
2
. (3.75)

• Another situation that is worth investigating is the one in which two different
longitudinal modes are lasing, both of them bidirectional. This is the case when
θ1 = θ2 = 0, but θ3 is left free. By substituting the values of θ1 and θ2 into
Eqs. (3.66)- (3.70), the steady-state solutions can be found:

θ1 = 0, ψ1 = kπ, (3.76)
θ2 = 0, ψ2 = lπ, (3.77)

θ3 = arcsin
(
−2Γ − Jσ1 − 2 cosφk1 cosψ1 + 2 cosφk2 cosψ2

Jσ2

)
. (3.78)

Remark that if the argument of the arcsine equals 1, Eqs. (3.76)- (3.78) become the
same as Eqs. (3.73)- (3.75).

• We propose a third steady-state solution, namely the one with two longitudinal
modes lasing, one in its bidirectional regime and one in its unidirectional regime.
Translating this into angles is a fairly complicated job. We assume that, for exam-
ple, mode one is the longitudinal mode residing in the bidirectional regime. This
gives the first expressions:

θ1 = 0, (3.79)
ψ1 = kπ. (3.80)

To calculate the steady-state solution for θ2, ψ2 and θ3, we found our inspiration
in [34]. From there we know that in the unidirectional case it possible to find a
solution for θ2 and J, using ψ2 as a parameter. If we define a new parameter:

Ξ = J(1 + sinθ3), (3.81)
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we can use their solution:

θ2(ψ2) = arcsin
(
α sinφk2 + cosφk2

α cosφk2 − sinφk2
tanψ2

)
, (3.82)

Ξ(θ3, ψ2) = 2 cscθ2(ψ2) secθ2(ψ2)
[
sinφk2 sinψ2 − cosφk2 cosψ2 sinθ2(ψ2)

]
.

(3.83)

As a result, θ3 , which is a function of the other variables, that are all parametrised
in ψ2, can also be parametrised. Solving Eq. (3.68) to θ3 results in

θ3 = − arcsin

 Ξ2 (σ1 + sin2 θ2) + Γ + cosθ1 cosψ1 cosφk1 − cosθ2 cosψ2 cosφk2

σ2 +
Ξ
2 sin2 θ2 + Γ + cosθ1 cosψ1 cosφk1 − cosθ2 cosψ2 cosφk2

.
(3.84)

• Finally, we can use a similar approach to derive the solution of the most general
situation. Once more, we use the parametrisation, now for both θ1 and θ2 with
parameters ψ1 and ψ2. For the first longitudinal mode we get:

θ1(ψ1) = arcsin
(
α sinφk1 + cosφk1

α cosφk1 − sinφk1
tanψ1

)
, (3.85)

J(1 − sinθ3) = 2 cscθ1(ψ1) secθ1(ψ1)
[
sinφk1 sinψ1 − cosφk1 cosψ1 sinθ1(ψ1)

]
.

(3.86)

For the second one we find:

θ2(ψ2) = arcsin
(
α sinφk2 + cosφk2

α cosφk2 − sinφk2
tanψ2

)
, (3.87)

J(1 + sinθ3) = 2 cscθ2(ψ2) secθ2(ψ2)
[
sinφk2 sinψ2 − cosφk2 cosψ2 sinθ2(ψ2)

]
.

(3.88)

In short notation, this looks like

θ1 = θ1(ψ1), (3.89)

J =
1

1 − sinθ3
f (ψ1), (3.90)

θ2 = θ2(ψ2), (3.91)

J =
1

1 + sinθ3
f (ψ2), (3.92)

sinθ3 = g(θ1, θ2, ψ1, ψ2). (3.93)

We have found an analytical expression of all the angles θ as a function of the
parameters ψ1 and ψ2. To find a relation between ψ1 and ψ2, we express that
Eqs. (3.90) and (3.92) are equal, what leads to

(1 − sinθ3) f (ψ2) = (1 + sinθ3) f (ψ1)
⇔ sinθ3

[
f (ψ2) + f (ψ1)

]
− f (ψ2) + f (ψ1) = 0. (3.94)
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Since it is considered too hard to find an analytical solution for Eq. (3.94), a
numerical solution is presented in Figure 3.6.

Figure 3.6: Numerically calculated solution of Eqs. (3.66) (3.70) as a function
of parameters ψ1 and ψ2 and the current J. The current is depicted by using
the colour code on the right hand side of the figure. The parameters are:

α = 3.5, φk1 = φk2 = 0.8, Γ = 0.0455, σ1 = 0 and σ2 = −4.

In this figure, three different cases are depicted. The horizontal and vertical lines
through the centre represent the case in which one of the ψ-parameters equals π, the
third steady-state solution. The curved lines depict the solution from Eq. (3.94). The
minimum and maximum values for ψ1 and ψ2 are determined by Eqs. (3.85) and (3.87).



Chapter 4

Stability Analysis

A lot of information on dynamical systems can be obtained from the stability of its
stationary solutions. In this chapter, we start with a discussion of the method of

linear stability analysis, which is subsequently applied to the stationary solutions that
were derived in chapter 3. In this way, we can determine for arbitrary parameter
values if one or both longitudinal modes will be lasing, and what will be their mode of
operation: bidirectional, unidirectional or oscillating.

4.1

Linear Stability Analysis

We start from the stationary solution derived in chapter 3. These solutions are repre-
sented by fixed points in the phase space spanned by the variables θ1, θ2, θ3, ψ1 and ψ2.
To study stability properties. We consider just small perturbations that can be generated
either internally, e.g., spontaneous emission, or externally. If we assume x∗ to be a fixed
point and η(t) = x(t)−x∗ to be a small perturbation away from it, we derive an expression
for the perturbation η by a linearisation around the fixed point. If we differentiate η(t)
and keep in mind that x∗ is a constant, we find that

η̇ =
d
dt

(x − x∗) = ẋ, (4.1)

or

η̇ = ẋ = f (x) = f (x∗ + η). (4.2)

By using a Taylor expansion we obtain

f (x∗ + η) = f (x∗) + η f ′(x∗) +O(η2), (4.3)

where O(η2) is a quadratically small term in η. However, for a fixed point, f (x∗ = ẋ∗ = 0).
This means that Eq. (4.1) reduces to

η̇ = η f ′(x∗) +O(η2). (4.4)

52
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If f ′(x∗) , 0, we can safely neglect the O(η2) terms and the expression becomes

η̇ = η f ′(x∗). (4.5)

Eq. (4.5) shows that the perturbation η(t) grows exponentially if f ′(x∗) > 0 and is damped
if f ′(x∗) < 0. In other words, it is the slope of the function f at the fixed point that de-
termines its stability. Negative slopes correspond to stable fixed points, while positive
slopes correspond to unstable fixed points. In case the derivative equals zero, the O(η2)
terms are no longer negligible one must perform a nonlinear stability analysis.
In our case, we will have to deal with more than one equation, we have a five-
dimensional linear system:

θ′1 = f1(θ1, ψ1, θ3) θ′2 = f3(θ2, ψ2, θ3), (4.6)
ψ′1 = f2(θ1, ψ1, θ3) ψ′2 = f4(θ2, ψ2, θ3), (4.7)

(4.8)
θ′3 = f5(θ1, ψ1, θ2, ψ2, θ3). (4.9)

This system can be reformulated as

x′ = Ax, (4.10)

with

x′ =


θ′1
ψ′1
θ′2
ψ′2
θ′3

 , x =


θ1
ψ1
θ2
ψ2
θ3

 . (4.11)

For each parameter θi orψi, small deviations from the steady state value are introduced.
The notation is as follows

θ1 → θ1 + u1, θ2 → θ2 + u3, (4.12)

ψ1 → ψ1 + u2, ψ2 → ψ2 + u4, (4.13)
(4.14)

θ3 → θ3 + u5. (4.15)

The overbar denotes steady-state values. The new formulations for the θ′s and the ψ′s
are then substituted into the rate equations. All that is left are terms originating from the
introduced perturbations. The new set of equations can, in first order, be formulated as a
Jacobian matrix evaluated at the equilibrium point. First order indicates approximations
such as:

sin ui ≈ ui, (4.16)
cos ui ≈ 1. (4.17)
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The expression becomes 
u′1
u′2
u′3
u′4
u′5

 =

J11 J12 J13 J14 J15
J21 J22 J23 J24 J25
J31 J32 J33 J34 J35
J41 J42 J43 J44 J45
J51 J52 J53 J54 J55




u1
u2
u3
u4
u5

 , (4.18)

with

Jkl =
∂ fk
∂xl

∣∣∣∣∣
θ1=θ1,θ2=θ2,θ3=θ3,ψ1=ψ1,ψ2=ψ2

. (4.19)

This Jacobian contains expressions that depend on constant parameters and steady-
state values and not on the dynamic variables. Eq. (4.18) thus becomes a set of linear
differential equations. The solutions of such linear differential equations are given by
a superposition of terms of the form eλ jt with {λ j} a set of eigenvalues of the Jacobian.
Since every eigenvalue is in general a complex number, every λ j can be split up in real
and imaginary parts:

λ j = λ jRe + iλ jIm . (4.20)

This allows to rewrite the exponential terms in the solution as:

eλ jRe teiλ jIm t. (4.21)

The last of the two exponents can in turn be written as

eiλ jIm t = cosλ jImt + i sinλ jImt, (4.22)

so it becomes obvious that this is no more than an oscillatory term. This term will not
make the system diverge, however, the real part can. Indeed, if λ jRe > 0, this factor will
grow exponentially in time, indicating an unstable fixed point. We now calculate the
full Jacobian for the ODE system given by Eqs. (3.66) (3.70). The full expression of the
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linear system looks as follows:

u
′

1 =
[
J(1 − sinθ3)(cos2 θ1 − sin2 θ1) + 2 cosθ1 cosψ1 cosφk1

]
u1

+
[
−2 sinθ1 sinψ1 cosφk1 − 2 cosψ1 sinφk1

]
u2

+
[
−J cosθ1 sinθ1 cosθ3

]
u5,

u
′

2 =
[
Jα(1 − sinθ3) cosθ1 + 2 tanθ1 secθ1 sinψ1 cosφk1 + 2 sec2 θ1 cosψ1 sinφk1

]
u1

+
[
2 secθ1 cosψ1 cosφk1 − 2 tanθ1 sinψ1 sinφk1

]
u2

+
[
−Jα sinθ1 cosθ3

]
u5,

u
′

3 =
[
J(1 + sinθ3)(cos2 θ2 − sin2 θ2) + 2 cosθ2 cosψ2 cosφk2

]
u3

+
[
−2 sinθ2 sinψ2 cosφk2 − 2 cosψ2 sinφk2

]
u4

+
[
J cosθ2 sinθ2 cosθ3

]
u5, (4.23)

u
′

4 =
[
Jα(1 + sinθ3) cosθ2 + 2 tanθ2 secθ2 sinψ2 cosφk2 + 2 sec2 θ2 cosψ2 sinφk2

]
u3

+
[
2 secθ2 cosψ2 cosφk2 − 2 tanθ2 sinψ2 sinφk2

]
u4

+
[
Jα sinθ2 cosθ3

]
u5,

u
′

5 =
[
J sinθ1 cosθ1 cosθ3(sinθ3 − 1) − sinθ1 cosθ3 cosψ1 cosφk1

]
u1

+
[
−cosθ1cosθ3 sinψ1 cosφk1

]
u2

+
[
J sinθ2 cosθ2 cosθ3(sinθ3 + 1) + sinθ2 cosθ3 cosψ2 cosφk2

]
u3

+
[
cosθ2cosθ3 sinψ2 cosφk2

]
u4

+ [
J
2

(sin2 θ1

(
cos2 θ3 − sinθ3

(
sinθ3 − 1

))
+ sin2 θ2

(
cos2 θ3 − sinθ3

(
sinθ3 + 1

))
− sinθ3σ1 + cos 2θ3σ2) − Γ sinθ3 − sinθ3

(
cosθ1 cosψ1 cosφk1 − cosθ2 cosψ2 cosφk2

)
] u5.

(4.24)

In general, there is no simple interpretation of the eigenvalues of this system. In the
previous chapter, different types of steady-state solutions have been discussed. First, we
have found a solution, describing the case where only one longitudinal mode is lasing
and it is lasing bidirectionally. A second solution is the one where two longitudinal
modes are lasing, both of them bidirectionally. The third steady-state situation is the
one in which two longitudinal modes are lasing, but only one of the bidirectionally.
Here, we have found expressions parameterised in ψ1 or ψ2. Finally, again by using a
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parameterisation, the most general case has been solved, the one in which all variables
left free. If these solutions are implemented in the Jacobian, we find that in some cases
the characteristic polynomial is suitable for analytical interpretation.

4.2

Stability of Steady-State Solution 1: θ1 = θ2 = 0, θ3 =
π
2

4.2.1 Analytical Expressions

From our simulations, we have seen that the device is always lasing in a single mode
that is bidirectional for sufficiently low pump current. To express that we are in the
bidirectional regime, we take θ1 = θ2 = 0. Besides, we assume that only the second
longitudinal mode has reached its threshold and is lasing, which implies that θ3 =

π
2 .

In this case, the Jacobian simplifies significantly:
J11 J12 0 0 0
J21 J22 0 0 0
0 0 J33 J34 0
0 0 J43 J44 0
0 0 0 0 J55

 , (4.25)

with

J11 = 2 cosφk1 cosψ1, (4.26)

J12 = −2 sinφk1 cosψ1, (4.27)

J21 = 2 sinφk1 cosψ1, (4.28)

J22 = 2 cosφk1 cosψ1, (4.29)

J33 = 2J + 2 cosφk2 cosψ2, (4.30)

J34 = −2 cosψ2 sinφk2, (4.31)

J43 = 2αJ + 2 cosψ2 sinφk2, (4.32)

J44 = 2 cosφk2 cosψ2, (4.33)

J55 = −Γ −
J(σ1 + σ2)

2
− cosφk1 cosψ1 + cosφk2 cosψ2. (4.34)

Note that the Jacobian splits up into several independent blocks. This means that, in the
neighbourhood of the fixed point in phase space, the evolution of (θ1, ψ1), (θ2, ψ2) and
θ3 is decoupled, what greatly signifies the stability analysis. In fact, the eigenvalues
deducted from the first two blocks indicate when θ1 or θ2 will bifurcate. J55, on the
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other hand, informs us when θ3 =
π
2 is no longer stable, hence when the laser will no

longer operate in its single mode regime. To calculate the exact stability criteria of this
solution, the eigenvalues are needed. The eigenvalues from the first block are:

λ1,2 = 2 cosψ1

(
cosφk ± i sinφk1

)
. (4.35)

To extract the stability information, we need to express that the real part of λ1,2 is smaller
than zero. Since the current J is not present in the expression of the eigenvalues, the
stability information we find here does not depend on the current. Indeed, the real part
of expression (4.35) is smaller than zero when:

2 cosψ1 cosφk1 < 0, (4.36)

We know that for small current values, the device will always operate bidirectional, so
the solution that we are discussing should be stable. Remember that the bidirectional
operation, implies that ψ1 = kπ, with k = 0 or k = 1. From Eq. (4.36), we find that φk1

determines which of the two solutions of ψ1 is stable. When φk1 is located in the first
quadrant, we find:

cosφk1 > 0,

⇒ cosψ1 < 0,

⇒ ψ1 = π. (4.37)

If we had chosen φk1 to be in the second quadrant, we would have found, ψ1 = 0. For
more information about the stability of steady-state solution 1, the eigenvalues λ3,4 need
to be investigated as well:

λ3,4 = J + 2 cosφk2 cosψ2 ±

√
J2 − 4αJ cosψ2 sinφk2 − 4 cos2 ψ2 sin2 φk2. (4.38)

This eigenvalue allows to determine which solution for ψ2 is stable. We know that for
small pump currents, λ3,4 should have negative real parts, such that the regime with
only one longitudinal mode in its bidirectional regime is stable. If we equate J to 0, we
find

λ3,4 = 2 cosφk2 cosψ2 ±

√
−4 cos2 ψ2 sin2 φk2. (4.39)

The argument of the square root is negative or zero, hence the root will not contribute
to the real part of the eigenvalue. With a deduction analogous to the one for ψ1, we find
that if φk2 is situated in the first quadrant, cosφk2 > 0 and we can conclude that ψ2 = π.
When φk2 is situated in the second quadrant, ψ2 = 0. From now on, we will always
consider φk1 and φk2 to be in the first quadrant. The expression for λ3,4 becomes:

λ3,4 = J − 2 cosφk2 ±

√
J2 + 4αJ sinφk2 − 4 sin2 φk2. (4.40)
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In this eigenvalue, the current J appears and there is no explicit imaginary part. How-
ever, for certain current values, it is possible that the square root is a purely imaginary
value. As long as the current, J, is smaller than

JIm = 2 sinφk2

(
−α +

√

1 + α2
)
, (4.41)

the argument of the square root is negative, hence the eigenvalues are complex conju-
gates with a non-zero imaginary part. The study of the eigenvalues can be split up into
two parts. The eigenvalues are of the following form:

λ3,4 = a ±
√

b. (4.42)

First, we assume J > JIm or b > 0. In this case, the square root of b is real-valued and, as
a consequence, the eigenvalues have no imaginary part. Expressing that<

(
λ3,4

)
< 0 is

exactly the same as expressing that λ3,4 < 0. The bifurcation current we find is

JPF =
1

cosφk2 + α sinφk2
. (4.43)

At this pump current, both the real and imaginary parts of the eigenvalue are zero
and the eigenvalues cross the real axis, toward the right half plane when the current
increases. This is called a pitchfork bifurcation [21].
Second, we consider the case in which J < JIm or b < 0. If so, the square root of b equals
a purely imaginary number after substitution of the parameter values. This means that
for finding the bifurcation current, we can ignore the square root. Equating the real part
to zero gives the current,

JH = 2 cosφk2. (4.44)

The bifurcation we encounter here is a Hopf bifurcation [21]. A Hopf bifurcation
is a bifurcation in which a fixed point loses stability as a pair of complex conjugate
eigenvalues crosses the imaginary axis in the complex plane. This results in a limit cycle
branching from the fixed point. In other words, harmonic amplitude oscillations will
occur, with frequency

ΩH =

∥∥∥∥∥√
J2
H + 4αJH sinφk2 − 4 sin2 φk2

∥∥∥∥∥ (4.45)

=

∥∥∥∥∥√
4 cos2 φk2 + 8α cosφk2 sinφk2 − 4 sin2 φk2

∥∥∥∥∥ (4.46)

= 2
∥∥∥√

cos 2φk2 + α sin 2φk2

∥∥∥ . (4.47)

The last eigenvalue is more straightforward. It contains the current and has no square
root or imaginary parts in it. The eigenvalue λ5 equals the Jacobian element J55,

λ5 = −Γ −
J(σ1 + σ2)

2
− cosφk1 cosψ1 + cosφk2 cosψ2. (4.48)
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Because of the assumption that φk1 and φk2 are in the first quadrant, we know that
ψ1 = ψ2 = π, resulting in

λ5 = −Γ −
J(σ1 + σ2)

2
+ cosφk1 − cosφk2. (4.49)

The bifurcation current we find is

J2mode =
2
(
Γ − cosφk1 + cosφk2

)
−σ1 − σ2

. (4.50)

This last bifurcation is called a supercritcal pitchfork bifurcation. This can be seen
when we write down the Jacobian up to the third order. We then obtain a normal
form that allows us to classify the problem. A supercritical pitchfork implicates that,
at the bifurcation point, one fixed point solution loses stability, while two new, stable
solutions arise. We will confirm this later in this chapter. Three bifurcation currents
have been found for this first steady state solution: J2mode, JH and JPF. All three of them
indicate a pump current for which one or more eigenvalues cross the imaginary axis
in the complex plane. In the phase space, constructed by θ1, θ2, θ3, ψ1 and ψ2, they
indicate bifurcations originating from the steady-state solution with one longitudinal
mode lasing and with its energy equally distributed over the two counter-propagating
modes. However, we note that not all currents will indicate a special point in this curve,
since on a P-I curve only the stable solutions are depicted. The smallest bifurcation
current indicates the point where the studied solution is no longer stable. Bifurcation
currents larger than this first current are no longer situated in a region where their
solution is stable and do not correspond to visual bifurcations.

4.2.2 Numerical Validation

These results can be numerically validated. Depending on the values of the parameters,
different eigenvalues will be the first ones to cross the imaginary axis and move on to
the right half plane. Once the real part of one of the eigenvalues becomes positive,
the solution with one longitudinal mode in its bidirectional regime becomes unstable
and is no longer visible on a P-I curve. However, the solution still exists in phase
space. The other eigenvalues are still negative and the current values where they reach
the imaginary axis, will no longer correspond to a visual bifurcation point in the P-I
curve. In Figure 4.1, we find a first scenario. The parameters are chosen as σ1 = 0,
σ2 = −4, α = 3.5, φk1 = φk2 = 1.4966 and Γ = 0.0909. We see that one mode starts lasing
bidirectionally, i.e., the behaviour we have just studied, until the second longitudinal
mode reaches threshold. If we calculate the bifurcation currents from Eqs. (4.43), (4.44)
and (4.50), we find that the one in Eq. (4.50), J2mode, is the smallest one. In other
words, once this current is reached (black vertical line), the bifurcation occurs and the
considered regime loses stability. While this current indicates the point at which the
second mode reaches its threshold and starts lasing, the other currents indicate other
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kinds of bifurcations. In Figure 4.2, we have changed the parameters to σ1 = −2, σ2 = 4,
α = 3.5, φk1 = φk2 = 1.4966 and Γ = 0.0909. Now, the first bifurcation that occurs is the
one in which the dominant mode reaches the oscillatory-regime. Note that this time,
the current JH (red vertical line),found in Eq. (4.44), is the smallest positive one. The
current from Eq. (4.50) has now become negative, with all positive values situated in
the stable area. Earlier we have derived that the current from Eq. (4.44) corresponds to a
Hopf bifurcation, hence a transition from a stable fixed point to a stable limit cycle. The
P-I curve confirms this, since mode two starts to oscillate, once the bifurcation current is
surpassed. This a visualisation of the limit cycle, the stable solution is closed trajectory
around an unstable fixed point.
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(a)

(b)

Figure 4.1: (a) Simulated P-I curve of a multi mode SRL with two longitudinal
modes, σ1 = 0, σ2 = −4, α = 3.5, φk1 = φk2 = 1.4966 and Γ = 0.0909. The black
vertical line corresponds to the current from Eq. 4.50 and indicates point where the
solution with only one longitudinal mode, lasing bidirectionally, becomes unstable.
The maxima and minima of |E1cw| (|E1ccw|) are denoted by open blue squares and
circles (red crosses and dots), respectively. For the second longitudinal mode, the
maxima and minima of |E2cw| (|E2ccw|) are denoted by open black squares and circles
(green crosses and dots), respectively. (b) Angles as a function of the scaled pump

current, θ1 (blue), θ2 (red) and θ3 (black).
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(a)

(b)

Figure 4.2: (a) Simulated P-I curve of a multi mode SRL with two longitudinal
modes, σ1 = −2, σ2 = 4, α = 3.5, φk1 = φk2 = 1.4966 and Γ = 0.0909. The red vertical
line corresponds to the current JH from Eq. 4.44 and indicates point where the
solution with only one longitudinal mode, lasing bidirectionally, becomes unstable
in favour of a solution with oscillations. The intensities are depicted with the same
legend as in Figure 4.1. (b) Angles as a function of the scaled pump current, θ1

(blue), θ2 (red) and θ3 (black).
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4.3

Stability of Steady-State Solution 2: θ1 = θ2 = 0, θ3 = f ree

4.3.1 Analytical expressions

As shown in chapter 3, there exists a solution with θ1 = θ2 = 0, but with θ3 left free.
Physically, this means that both longitudinal modes reside in the bidirectional regime,
but that the energy is no longer equally distributed over the two longitudinal modes.
This leads to the following steady-state expressions:

θ1 = 0, ψ1 = kπ, (4.51)

θ2 = 0, ψ2 = lπ, (4.52)

θ3 = arcsin

−2Γ − Jσ1 − 2 cosφk1 cosψ1 + 2 cosφk2 cosψ2

Jσ2

. (4.53)

Once again, the Jacobian has the same form as in Eq. (4.25), because sin kπ = sin lπ = 0,
even if we do not know whether k and l are even or odd. This time the elements of the
matrix look like

J11 =
2Γ + J (σ1 + σ2) + 2 (1 + σ2) cosφk1 cosψ1 − 2 cosφk2 cosψ2

σ2
(4.54)

J12 = −2 sinφk1 cosψ1 (4.55)

J21 =
2αΓ + αJ (σ1 + σ2) + 2α cosφk1 cosψ1 − 2α cosφk2 cosψ2

σ2

+ 2 sinφk1 cosψ1 (4.56)

J22 = 2 cosφk1 cosψ1 (4.57)

J33 =
−2Γ − J (σ1 − σ2) − 2 cosφk1 cosψ1 + 2 (1 + σ2) cosφk2 cosψ2

σ2
(4.58)

J34 = −2 sinφk2 cosψ2 (4.59)

J43 =
α
(
−2Γ − J (σ1 − σ2) − 2 cosφk1 cosψ1 + 2 cosφk2 cosψ2

)
σ2

+ 2 sinφk2 cosψ2 (4.60)

J44 = 2 cosφk2 cosψ2 (4.61)
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J55 =
1

2Jσ2

[
− cosφk1

(
cosφk1 + 8Γ cosψ1 + 4Jσ1 cosψ1 + 2 cosφk1 cos 2ψ1

)
− 2 − (2Γ + Jσ1)2 + J2σ2

2 + 4 cosφk2

(
2Γ + Jσ1 + 2 cosφk1 cosψ1

)
cosψ2

− cos2 φk2

(
1 + 2 cos 2ψ2

)
+ sin2 φk1 + sin2 φk2

]
(4.62)

The eigenvalues can again be calculated, although, the expressions become somewhat
more complicated. For the the first eigenvalues, we find again something of the form

λ1,2 = a ±
√

b, (4.63)

with

a =
1

2σ2

[
2Γ + J (σ1 + σ2) + 2 (1 + 2σ2) cosφk1 cosψ1 − 2 cosφk2 cosψ2

]
(4.64)

b =
1

4σ2
2

[
3/2 + 4Γ2

− 6σ2
2 + 4ΓJ(σ1 + σ2) + J2(σ1 + σ2)2 + cos 2φk2

+ 2(1 + 4σ2
2) cosφk1

2 cosψ1
2
+ (1 + 4σ2

2) cos 2φk1 cosψ1
2

+ 1/2 cos 2ψ1 − 6σ2
2 cos 2ψ1 − 4(2Γ + J(σ1 + σ2)) cosφk2 cosψ2

+ 4 cosφk1 cosψ1(2Γ + J(σ1 + σ2) − 2 cosφk2 cosψ2) + 2 cosφk2
2 cos 2ψ2

−8ασ2 cosψ1(2Γ + J(σ1 + σ2) + 2 cosφk1 cosψ1 − 2 cosφk2 cosψ2) sinφk1

]
. (4.65)

For reasons similar those in section 4.2, two different analyses must be made, depending
on the sign of b. If the pump current is chosen such that b > 0, the square root equals a
real number and the bifurcation current is found by equating the entire eigenvalue λ1,2
to zero:

JPF1 =
−1

(σ1 + σ2)
(
cosφk1 + α sinφk1

) [
cos2 φk1 cosψ1

+2
(
cosφk1 + α sinφk1

) (
Γ − cosφk2 cosψ2

)
+ cosψ1

(
1 + 2σ2 − sin2 φk2 + α sin 2φk1

)]
.

(4.66)

Since at this current, two real eigenvalues cross the imaginary axis toward the right
half plane, this is a pitchfork bifurcation, indicating that one of the modes becomes
unidirectional.
If the pump current has a value leading to b < 0, the square root equals an imaginary
number and the bifurcation point is found by equating only the real part, a, to zero:

JH1 =
−2Γ − 2 (1 + 2σ2) cosφk1 cosψ1 + 2 cosφk2 cosψ2

σ1 + σ2
(4.67)
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This is a Hopf bifurcation in the first longitudinal mode, with Hopf frequency

ΩH1 =
∥∥∥∥√

b(JH1)
∥∥∥∥

=

∥∥∥∥∥√
16σ2

2 cos2 ψ1(cos 2φk1 + α sin 2φk1)
∥∥∥∥∥

= 4
∥∥∥σ2 cosψ1

√
cos 2φk1 + α sin 2φk1

∥∥∥ . (4.68)

The next two eigenvalues, which have the form

λ1,2 = c ±
√

d, (4.69)

with

c =
1

2σ2

[
−2Γ − Jσ1 + Jσ2 − 2 cosφk1 cosψ1 + 2(1 + 2σ2) cosφk2 cosψ2

]
(4.70)

d =
1

4σ2
2

[
2 + (2Γ + Jσ1 + 2σ2 − Jσ2)(2Γ + Jσ1 − (2 + J)σ2) + cos 2φk1

+ (1 + 4σ2
2) cos 2φk2 + 2 cosφk1(2(2Γ + Jσ1 − Jσ2) cosψ1 + cosφk1 cos 2ψ1)

+ 4(2Γ + Jσ1 − Jσ2 + 2 cosφk1 cosψ1) cosψ2(− cosφk2 + 2ασ2 sinφk2)

−4ασ2 sin 2φk2 + cos 2ψ2(1 − 4σ2
2 + (1 + 4σ2

2) cos 2φk2 − 4ασ2 sin 2φk2)
]

(4.71)

can be treated similarly. Once more, two different cases must be considered, depending
on the value of the pump current. If d > 0, the square root equals a real number and the
bifurcation current is found by equating the entire eigenvalue λ3,4 to zero. We find the
pitchfork bifurcation current to be

JPF2 =
−2(Γ + cosφk1 cosψ1)(cosφk2 + α sinφk2) + cosψ2(1 + 2σ2 + cos 2φk2 + α sin 2φk2)

(σ1 − σ2)(cosφk2 + α sinφk2)
(4.72)

When d < 0, the square root equals an imaginary number and a Hopf bifurcation is
found by equating only the real part, c, to zero:

JH2 =
2Γ + 2 cosφk1 cosψ1 − 2(1 + 2σ2) cosφk2 cosψ2

−σ1 + σ2
. (4.73)

The Hopf frequency is

ΩH2 =
∥∥∥∥√

d(JH2)
∥∥∥∥ , (4.74)

being an elaborate expression.
Eventually, the last eigenvalue is the easiest to calculate, since it is just element J55 in
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the Jacobian :

λ5 =
1

2Jσ2

[
− cosφk1

(
cosφk1 + 8Γ cosψ1 + 4Jσ1 cosψ1 + 2 cosφk1 cos 2ψ1

)
− 2 − (2Γ + Jσ1)2 + J2σ2

2 + 4 cosφk2

(
2Γ + Jσ1 + 2 cosφk1 cosψ1

)
cosψ2

− cos2 φk2

(
1 + 2 cos 2ψ2

)
+ sin2 φk1 + sin2 φk2, (4.75)

leading to the currents,

J2mode =
2

σ2
1 − σ

2
2

[
(−σ1 ± σ2)

(
Γ + cosφk1 cosψ1 − cosφk2 cosψ2

)]
(4.76)

Because of reasons similar to case 1, this denotes a supercritical bifurcation.

4.3.2 Numerical Validation

In Figure 4.3, three of the five found bifurcation currents are depicted. The first one
we find is represented by the vertical black line. This corresponds to the current J2mode
from Eq. (4.76) and is equal to the one from the first case in Eq. (4.50). Hence, we find
that the solution with only one longitudinal mode loses stability and that the two-mode
solution becomes stable at the same point. In fact, this is what we predicted in the
previous section. For currents lower than J2mode, there exists only one fixed point. At the
supercritical pitchfork it loses stability, in favour of two new, stable solutions. Figure 4.3
depicts only one of these solutions, namely the one where θ3 decays to zero. The second
one was intentionally left out, because of the definition of the variables of the model,
but it does exist. The second solution is the one where θ3 grows to values larger than
π
2 . When the current is further increased, we encounter the first Hopf bifurcation, the
green line at JH2, given by Eq. (4.73). Here mode 2 is no longer purely bidirectional,
the oscillations appear. In fact, this is where the studied situation is no longer stable,
so we cannot expect the other bifurcation currents to represent bifurcations, visible on
the P-I graph. However, as we already noticed before, the Jacobian split up into two
independent blocks. θ2 is no longer zero, but this has no effect on the solution and
stability of θ1. That is why the red line in Figure. 4.3, at JH1, denotes the correct value
for the start of the oscillatory regime of mode 1. The two currents that do not appear
on the P-I curve are the ones from Eqs. (4.66), JPF1, and (4.72), JPF2. They correspond to
pitchfork bifurcations, denoting the change from the bidirectional to the unidirectional
regime, respectively for mode 1 and mode 2. In Figure 4.4 such a situation is depicted.

4.3.3 Remark

A feature that immediately catches the eye in Figure 4.3(a) is that both the Hopf bifurca-
tions seem to occur at the same intensity. Both longitudinal modes enter the oscillatory
regime around intensity levels of about 0.13. Using the results found in the stability
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analysis, it is possible to analytically check whether this is indeed the same intensity
value for both longitudinal modes. Remember that the solution of the situation with
two longitudinal modes, each of them lasing bidirectionally is given by

θ1 = 0 ψ1 = kπ, (4.77)

θ2 = 0 ψ2 = lπ, (4.78)

θ3 = arcsin

−2Γ − Jσ1 − 2 cosφk1 cosψ1 + 2 cosφk2 cosψ2

Jσ2

. (4.79)

The current of the first Hopf bifurcation, the one in mode 1, is given by

JH1 =
−2Γ − 2 (1 + 2σ2) cosφk1 cosψ1 + 2 cosφk2 cosψ2

σ1 + σ2
. (4.80)

The second Hopf bifurcation current is given by

JH2 =
2Γ + 2 cosφk1 cosψ1 − 2(1 + 2σ2) cosφk2 cosψ2

−σ1 + σ2
. (4.81)

Since we have the solutions for every angle θ and we have the currents at which
the bifurcations occur, we are capable of analytically calculating the intensity at the
bifurcation point. The intensities of the two longitudinal modes are given by

Q2
1cw = Q2

1ccw =
µ1 − 1

4

(
1 − sinθ3(J1)

)
, (4.82)

Q2
2cw = Q2

2ccw =
µ2 − 1

4

(
1 + sinθ3(J2)

)
, (4.83)

where we already took into account that θ1 = θ2 = 0. In both expressions, θ3 should be
evaluated at the correct current, Ji. Also µi depends on Ji, since

µi =
2KJi

C0 − S0
+ 1. (4.84)

If we substitute Eqs. (4.84), (4.80) and (4.81) in Eqs. (4.82)- (4.83), we find that both
intensities are indeed the same and equal to 2K cosφk

C0−S0
= 0.130466, on the condition that

φk1 = φk2 = φk. This last condition has indeed been used in the case of Figure 4.3(a).
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(a)

(b)

Figure 4.3: (a) P-I curve of a multi mode SRL with two longitudinal modes, σ1 = 0,
σ2 = −4, α = 3.5, φk1 = φk2 = 1.4966 and Γ = 0.0909. The black vertical line
corresponds to the current from Eq. 4.76 and indicates point where the solution
with two longitudinal modes, each lasing bidirectionally, becomes stable. The
red and green vertical lines correspond to the bifurcation points where a Hopf
bifurcation takes place, the currents JH1 and JH2 found in, respectively, Eq. 4.67 and
Eq. 4.73. The intensities are depicted with the same legend as in Figure 4.1. (b)
Angles as a function of the scaled pump current, θ1 (blue), θ2 (red) and θ3 (black).
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(a)

(b)

Figure 4.4: (a) P-I curve of a multi mode SRL with two longitudinal modes,
σ1 = −2, σ2 = −4, α = 3.5, φk1 = φk2 = 0.8 and Γ = 0.0455. The vertical black
line indicates where the solution with two longitudinally modes, each lasing bidi-
rectionally, becomes stable, while the vertical blue line indicates the analytically
predicted current for the pitchfork bifurcation from Eq. (4.66). This is the point
where the solution with two longitudinal modes, each lasing bidirectionally, be-
comes unstable in favour of the situation with one bidirectional longitudinal mode
and one unidirectional longitudinal mode. The intensities are depicted with the
same legend as in Figure 4.1. (b) Angles as a function of the scaled pump current,

θ1 (blue), θ2 (red) and θ3 (black).
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4.4

Stability of Steady-State Solution 3: θ1 = 0, θ2 = f ree, θ3 = f ree

In this section we will study the stability of the third steady-state solution, the one in
which one longitudinal mode lases bidirectionally, while the other lases unidirectionally.
In the previous chapter we have deduced a parametrised form of this solution, using
ψ2 as a parameter.

θ1 = 0, (4.85)

ψ1 = kπ, (4.86)

θ2(ψ2) = arcsin
(
α sinφk2 + cosφk2

α cosφk2 − sinφk2
tanψ2

)
, (4.87)

θ3 = − arcsin

 Ξ2 (σ1 + sin2 θ2) + Γ + cosθ1 cosψ1 cosφk1 − cosθ2 cosψ2 cosφk2

σ2 +
Ξ
2 sin2 θ2 + Γ + cosθ1 cosψ1 cosφk1 − cosθ2 cosψ2 cosφk2

. (4.88)

with

Ξ(θ3, ψ2) = 2 cscθ2(ψ2) secθ2(ψ2)
[
sinφk2 sinψ2 − cosφk2 cosψ2 sinθ2(ψ2)

]
. (4.89)

When we fill in these values in the Jacobian, it splits up in a 2×2-matrix and a 3×3-matrix:
J11 J12 0 0 0
J21 J22 0 0 0
0 0 J33 J34 J35
0 0 J43 J44 J45
0 0 J53 J54 J55.

 , (4.90)

with the expressions for Jkl being very elaborate. The first two eigenvalues can easily
be found by calculating the 2 × 2-determinant corresponding to the first longitudinal
mode. Their expressions are given by

λ1,2 =
1
2

(
J11 + J22 ±

√
J2
11 + 4J12J22 + J2

22

)
(4.91)

The eigenvalues of the 3 × 3-matrix are more difficult to find and therefore we will
invoke the Routh-Hurwitz method [35–37]. This method allows, given the characteristic
polynomial, to calculate the parameters for which the system becomes unstable. If the
characteristic equation is given by

λn + b1λ
n−1 + ... + bn−1λ + bn = 0, (4.92)

withλ the eigenvalues of an n×n-matrix A, in our case the Jacobian, then the eigenvalues
λ all have negative real parts if

∆1 > 0, ∆2 > 0, ...,∆n > 0, (4.93)
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where

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 1 0 0 0 0 . . . 0
b3 b2 b1 1 0 0 . . . 0
b5 b4 b3 b2 b1 1 . . . 0
...

...
...

...
...

...
. . .

...
b2k−1 b2k−2 b2k−3 b2k−4 b2k−5 b2k−6 . . . bk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.94)

In our case the characteristic polynomial, P, is given by

P = −J35J44J53 + J34J45J53 + J35J43J54 − J33J45J54 − J34J43J55 + J33J44J55

+ (J34J43 − J33J44 + J35J53 + J45J54 − J33J55 − J44J55)λ + (J33 + J44 + J55)λ2
− λ3. (4.95)

Since this is a third order polynomial, we have to construct three determinants. The
determinants are given by

∆1 = b1

= −J33 − J44 − J55, (4.96)

∆2 =

∣∣∣∣∣ b1 1
b3 b2

∣∣∣∣∣
= J33J34J43 − J2

33J44 + J34J43J44 − J33J2
44 + J33J35J53 + J34J45J53 + J35J43J54 + J44J45J54

− J2
33J55 − 2J33J44J55 − J2

44J55 + J35J53J55 + J45J54J55 − J33J2
55 − J44J2

55, (4.97)

∆3 =

∣∣∣∣∣∣∣∣
b1 1 0
b3 b2 b1
b5 b4 b3

∣∣∣∣∣∣∣∣
= (J35J44J53 − J34J45J53 − J35J43J54 + J33J45J54 + J34J43J55 − J33J44J55)

(
J33J34J43 − J2

33J44

+ J34J43J44 − J33J2
44 + J33J35J53 + J34J45J53 + J35J43J54 + J44J45J54 − J2

33J55 − 2J33J44J55

−J2
44J55 + J35J53J55 + J45J54J55 − J33J2

55 − J44J2
55

)
. (4.98)

In principle, it would be enough to solve∆k = 0 for k = {1, 2, 3} toψ2. With the knowledge
of ψ2 we are able to calculate the currents for which the solution becomes unstable.
However, these expression are far to tedious to write down here. The analytical form
of the solutions is so complex that there is no easy interpretation possible. As an
alternative, the stability will be checked numerically. Results are given in the next
section, combined with a study of the most general case.

4.5

Stability of Steady-State Solution 4: θ1 = f ree, θ2 = f ree, θ3 =
f ree

In the previous chapter we have succeeded in writing down a general solution of the
reduced multi mode model, using ψ1 and ψ2 as parameters. The expressions we found
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were:

θ1(ψ1) = arcsin
(
α sinφk1 + cosφk1

α cosφk1 − sinφk1
tanψ1

)
, (4.99)

θ2(ψ2) = arcsin
(
α sinφk2 + cosφk2

α cosφk2 − sinφk2
tanψ2

)
, (4.100)

sinθ3 = g(θ1, θ2, ψ1, ψ2), (4.101)

and

sinθ3
[

f (ψ2) + f (ψ1)
]
− f (ψ2) + f (ψ1) = 0. (4.102)

Since we have found an analytical expression for the Jacobian, Eq. (4.23), we can find
numerically the values of ψ1 and ψ2 that fulfill Eq. (4.102). Once the ψ’s are known,
the numerical values of the θ’s are also known and the Jacobian and its eigenvalues
can be calculated. If for every ψ1-ψ2 combination, every eigenvalue is checked, we can
determine whether the solution is stable or unstable. The result is depicted in Figure 4.5.

Figure 4.5: Numerically calculated solution of Eqs. (3.66) (3.70) as a function of
parameters ψ1 and ψ2 and the current J. The current is depicted by using the
colour code on the right hand side of the figure. The parameters are: α = 3.5,
φk1 = φk2 = 0.8, Γ = 0.0455, σ1 = 0 and σ2 = −4. Stable areas are denoted by a full

line, while unstable areas are denotes by crosses.
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In Figure 4.5, it is possible to predict the appearance of the P-I curve with corresponding
parameters. At low currents, the bidirectional solutions are stable, with both psi1 and
ψ2 equal to π. This solution is located in the origin of the ψ1-ψ2 plane. When we
increase the current, we reach the oscillatory regime, which is not presented in this
figure. At a certain point, mode 1 will return to the bidirectional solution, while mode 2
becomes unidirectional. This behaviour corresponds to the part of the vertical line that
is full, hence stable. If the current is then even further increased, both modes become
unidirectional, depicted in the form of the two branches.



Chapter 5

Conclusion and Outlook

In this work, we have studied semiconductor ring lasers. These devices consist of a
circular cavity and a straight output coupler, implying that two counter-propagating

modes can be present in the resonator simultaneously. These modes are linearly coupled
due to backscattering and nonlinearly due to saturation effects. Moreover, there can
be different longitudinal modes, which saturate each other’s gain. Semiconductor ring
lasers are suitable candidates for monolithic integration of photonic devices and they
are particularly usable for optic switching.
We have described the construction and physical operation of the ring resonators and
their output couplers. Rate equations have been deduced for the single mode case,
using a combination of a classical and a quantum mechanical approach. Furthermore,
we have applied the mean-field approximation, assuming that one roundtrip in the
cavity hardly changes the electromagnetic fields. Because a semiconductor ring laser
allows for more than one longitudinal mode in the cavity, a multimode representation is
desired. Therefore, the equations have been extended to the multimode case, assuming
that the longitudinal modes have frequencies close to one another. Subsequently, several
processes have been added phenomenologically, such as the saturation of a mode by
influence of its counter-propagating counterpart and by other longitudinal modes. Next,
the equations have been nondimensionalised using an approach similar to the one used
in Ref. [18]. This result contains the expressions that form the base of our study of
the multimode model. Starting from nine real equations describing the model, we
have succeeded in reducing this to only five. The obtained model no longer includes
fast dynamics such as relaxation oscillations. A new representation has been invoked,
making use of angles to describe the relative distribution of the power over the several
modes. This new way of representing the intensities is not just for aesthetic reasons, but
enables us to use a numerically stable integration procedure. Since the full description
of this reduced model is somewhat complicated, we have continued the work with a
simplified model, that describes all saturation effects with two coefficients.
Finally, a stability analysis has been performed, enabling us to describe analytically the
majority of the bifurcation points found in the P-I curve of the multimode ring laser.
The established analytical description can be used to describe switches between two

74
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longitudinal modes and can thus be an important tool to study the control mechanisms
of this behaviour.

A first important future perspective is establishing a link between the derived model and
experimental results. Some results have been obtained in the meanwhile by Verschaffelt
et al. [38] at the TONA department. In their experimental set-ups, it has been observed
that when the laser switches from one longitudinal mode to another, sometimes not only
the frequency of the dominant mode changes, but also the direction of propagation.
Since the model is able to indicate which steady-state solution is stable at a given
current range, it would in principle be possible to explain the observed phenomena.
By performing a fit between experimental data and the model, certain parameters can
be estimated and subsequently be used to predict the dynamical behaviour of the
semiconductor ring laser.

There are several interesting properties and effects that still have to be investigated in
the domain of ring lasers and especially in the multimode case. A first improvement
of the model is to add more longitudinal modes to the cavity. It is known that the
gain spectrum is asymmetric, i.e., when we have a central mode, one of its side modes
will experience a higher gain than its equivalent mirrored around the centre frequency.
When, due to a current change, the gain spectrum shifts for a small amount, other
modes may become the dominant ones. The asymmetry of the gain spectrum makes
predicting which mode would be the dominant one somewhat more complicated. To
describe this effect accurately, four longitudinal modes should be taken into account,
because whenever three different wavelengths interact, photons of a fourth wavelength
are created due to scattering of the incident photons, because of four-wave mixing.
So far we have not included a carrier grating. When two counter-propagating modes
are present in a cavity, a standing wave pattern is formed, such that in some places there
is more recombination than in others. Since the carriers are used more intensively in
some places, a carrier grating can be formed. In the single mode case, the two counter-
propagating modes have the same frequency and the carrier grating is very fast in
spatial terms. Because of diffusion, the carriers will immediately fill up the area where
there is a shortage and the grating disappears. However, in the multimode situation,
the counter-propagating modes do not have the same frequency and a slight frequency
splitting exists. The spatial frequency of standing wave pattern will be of the order
of the beat length, hence much smaller. This time the grating cannot be destroyed by
diffusion and could have a significant effect on the ring laser dynamics.
Another effect is that in semiconductor ring lasers, the carriers tend to gather at the outer
rim of the cavity. A possible way to force them to stay where they are, is by integrating
quantum dots (QDs) into the structure. QDs are semiconductor nanostructures that
confine the movement of the carriers in all three dimensions [39]. They are implanted
into the quantum well of the semiconductor ring laser in one or multiple layers. The
presence of the QDs can have a significant effect on the dynamics of the system [40–45].
Not only the dynamics described in this thesis work play a role in the system, but some
extra processes then have to be taken into account. There will be a carrier exchange
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between the wetting layer, a layer formed on top of the quantum well layer, and the
dots. In the dots themselves, there are ground states and excited states, with extra
dynamics as a consequence. In theory, all dots can be equal in size, but in reality, there
will be groups or families with more or less the same shape and size. Because of the
fact that in one laser there will be different families of dots, the laser will operate in
multimode. Indeed, a certain dot geometry will provide certain energy states available
for optical transitions. If we wish to implement QDs in the present multimode model,
one equation will no longer be enough to describe the carrier density. Different families
of dots means different carrier reservoirs, hence we need to describe the carrier evolution
in each reservoir. It was already mentioned in chapter 3 that the differential gain factor
in the rate equations can vary with the pump current. Hence, this is something that still
has to be included in the model.
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