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I. INTRODUCTION 
Concrete is an aging linear viscoelastic material; under 

sustained loading it will have a time-dependent 
deformation caused by creep and shrinkage. Different 
material models have been proposed in literature to 
predict these. One of the main issues of these material 
models is that they have been calibrated on compression 
tests performed on small specimens without 
reinforcement. A large-scale analysis of the validity of 
these models for beams with practical dimensions is 
missing in literature. Another issue is that the material 
models are calibrated on data in the service stress range 
and thus do not take nonlinear creep into account. 

Measurements which were available at the Magnel 
Laboratory for Concrete Research were used to analyse 
and compare the predictions according to different 
material models: MC90-99 [1], MC2010 [2], EC2 [3], B3 
[4], GL 2000 [5], and ACI [6].  

II. MATERIALS 
The universities of Ghent, Brussels, Leuven, and Liège 

collaborated in a large scale research programme. The 
goal of this experimental investigation was to study the 
time-dependent behaviour of i.a. reinforced and 
prestressed beams under different levels of loading. 
Every university focused on beams with a specific 
cross-section and/or specific reinforcement ratio and/or 
specific degree of prestressing. 

Each of the universities tested 12 reinforced beams: 
two beams in a static test at 28 days and ten beams in a 
long-term test between two and four years. Additionally, 
also eight prestressed beams were tested: two beams in a 
static test at 28 days and six beams in a long-term test 
between two and four years. 

All the coarse aggregates, the sand, the cement, the 
reinforcement, and the prestressing steel were ordered at 
the same time and were then distributed over the four 
laboratories. The same concrete mixture was used for all 
reinforced beams. A different mixture was used for all 
the prestressed beams. 

Figure 1 shows the cross-section of the reinforced 
beams which were tested at Ghent University. The 
reinforced beams all had a height of 280 mm and a width 
of 150 mm. 

 
Figure 1. Cross-section of reinforced beams  

 tested at Ghent University. 

Figure 2 shows the cross-section of the I-shaped beams 
from Ghent University. These were prestressed at 7 or 14 
days using six strands. 

 
Figure 2. Cross-section of a pre-tensioned I-shaped beams. 

The span of the reinforced beams was equal to 2.8 m. 
The span of the prestressed beams was 8.0 m. Both the 
reinforced beams and the prestressed beams were 
subjected to a long-term four point bending test. For the 
reinforced beams the point loads were placed at 
respectively one third and two thirds of the span. For the 
prestressed beams the point loads were placed one fourth 
of the span from the left and right support. 

III. METHODS 
The predictions of the time-dependent deformations 

were calculated using a cross-sectional method.  
The instantaneous strain ε୓ and curvature ψ at a 

reference fibre O can be calculated by [7]:  
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with E୰ୣ୤ a reference modulus of elasticity which is 
taken equal to the modulus of elasticity of concrete 
measured at 28 days, Nୣ୯. and Mୣ୯. the equivalent normal 
force and moment on the cross-section taking into 
account the prestressing force, and with  A, S, and I 
respectively: the transformed area of the cross-section, 
the transformed static moment about an axis through O, 
and the transformed moment of inertia about an axis 
through O. 

Due to creep and shrinkage the strain and curvature 
will change over time. Assume that these deformations 
are restrained by an artificial axial force ∆N and an 
artificial moment ∆M applied in the reference point O. 
The changes of the strain and curvature can then be 
calculated using formula (1), by replacing Nୣ୯. and Mୣ୯. 
by ∆N and ∆M. Because the restraining forces are not 
applied immediately at full strength, E୰ୣ୤ needs to be 
replaced by the age-adjusted effective modulus Eୡതതത(t, t଴), 
and similarly A, S, and I need to be replaced by their 
age-adjusted counterpart. Eୡതതത(t, t଴) can be calculated 
according to [8]: 

Eୡതതത(t, t଴) =  
Eୡ(t଴)

1 + χ(t, t଴) ∙ φ(t, t଴) (2) 

where Eୡ(t଴) is the instantaneous modulus of elasticity 
at time of loading t଴, φ(t, t଴) is the creep coefficient 
according to one of the material models and χ(t, t଴) is an 
aging coefficient. 

The calculation of the aging coefficient is computa-
tionally intensive. Therefore, the aging coefficient was in 
a first instance assumed to be constant and equal to 0.8. 
The deflections were also computed using a calculated 
aging coefficient and it was observed that this had an 
almost unnoticeable influence on the results. 

The prestressed beams remained uncracked, but all 
reinforced beams cracked under loading. From the 
moment the beams were cracked the strain and curvature 
were calculated using the principle of tension stiffening. 

Once the strain and curvature in the reference fibre 
were known, the strain in any fibre of the cross-section 
could be calculated. The deflection of the beams was 
derived from the curvature over the length of the beam 
using the principle of elastic weights. 

When the stresses become too high the creep becomes 
nonlinear. In order to take the nonlinearity into account, 
an equation based on EN 1992-1-1 [3] was used The 
linear creep coefficient φ(∞, t଴) is replaced by a 
nonlinear creep coefficient φ୩(∞, t଴): 

φ୩(∞, t଴) =  φ(∞, t଴) ∙ exp (1.5 ∙ (k஢ − 0.45)) (3) 

in which k஢ is the stress-strength ratio σୡ fୡ୩(t଴)⁄ , 
where σୡ is the compressive stress. This correction was 
only applied for the part of the cross-section which 
surpassed the limit value of 0.45fୡ୩(t଴), with fୡ୩(t଴) the 
characteristic concrete compressive stress at the moment 
of loading. EN 1992-1-1 considers this value to be the 
boundary of linear creep. 

In the calculations compression was assumed to be 
negative and tension was assumed to be positive. A 
downward deflection was chosen positive, and similarly 

a moment (and the corresponding curvature) that induces 
tension at the bottom and compression at the top was 
considered to be positive. 

IV.  RESULTS 
A. Reinforced beams 

Figure 3 shows both the deflection measurements and 
some of the predictions for three of the reinforced beams 
tested at Ghent University. The predictions have been 
calculated using a normal linear creep coefficient. Prior 
to the application of the load (28 days), the beams 
underwent a small deflection as a result of the restrained 
shrinkage. At the moment of load application the 
predicted instantaneous deformation agrees well with the 
measurements, although it is slightly underestimated for 
the beam loaded at 90% of the failure load. All the 
models underestimate the time-dependent deformation; 
furthermore, the underestimation increases in function of 
the applied load.  

 
Figure 3. Comparison of measured and predicted deflections of 

three of the reinforced beams tested at Ghent 
University. 

The predictions of the stresses at the top fibre for the 
three beams tested at Ghent University are represented in 
Figure 4. There is also a horizontal line indicating the 
value of 0.45fୡ୩(t଴), All three beams are above this value 
by approximately 5, 10, and 15 MPa respectively. Note 
that the concrete stresses decrease over time due to the 
relaxation of the concrete stress caused by creep and due 
to some stress redistribution to the reinforcement cage. 

 
Figure 4. Predictions of the stress near the top fibre of three of 

the reinforced beams tested at Ghent University. 
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Figure 5 shows the predicted values using both a linear 
and a nonlinear creep coefficient. It can be seen that 
significantly better results are obtained when a nonlinear 
creep coefficient is used. The deflection predictions of 
the beam subjected to the highest load also agree better 
with the measurements, although the deflection is still 
underestimated. 

 
Figure 5.  Comparison of predicted values with and without a 

correction for nonlinear creep for three of the 
reinforced beams tested at Ghent University. 

B. Prestressed beams 
In a first analysis the prestressed beams were assumed 

uncracked and the nonlinearity of creep and the 
relaxation of prestress were neglected. 

Figure 6 shows both the predictions and the 
measurements of the I-shaped beams pre-tensioned at 14 
days. The predictions of the beam which is only 
prestressed are somewhat divergent. It is also observed 
that the instantaneous deflection predicted by the B3 
model and the GL 2000 model do not agree well with the 
measurements. These models also overestimate the 
instantaneous deflection due to loading at 28 days. This 
partially explains why the time-dependent deflection of 
the two loaded beams (resp. 100% and 50% of the 
calculated service moment) is predicted almost perfectly. 

 
Figure 6. Comparison of deflection predictions and meas-

urements for the I-shaped beams pre-tensioned at 
14 days. 

A prediction of the stresses at the bottom- and the top 
fibre of the three beams is given in Figure 7. The stresses 
at the top fibre are marked by an ‘x’. The stresses exceed 
the value of 0.45fୡ୩(t଴) but in a much lesser degree than 

the reinforced beams. Looking at the lower loaded 
reinforced beam, it can be concluded that a nonlinear 
creep calculation for the prestressed beams would hardly 
result in any accuracy gain of the predictions.  

The values of the stress stay above the mean concrete 
compressive stress ௖݂௧௠. Hence, the beams are indeed 
uncracked, as was initially assumed. 

From the graph it can also be noted that the 
compressive stress in the bottom fibre decreases 
significantly over time, while the stress in the top fibre 
stays approximately constant. 

 
Figure 7.  Stress predictions of the I-shaped beams 

pre-tensioned at 14 days. 

In the experimental programme relaxation tests were 
carried out on the prestressing steel. From these tests it is 
known that the theoretical relaxation of the prestress 
stayed below 2% throughout the entire testing period. 

The influence of relaxation on the predictions was, in a 
simplified way, studied by reducing the initial prestress 
by 2%. The result of these calculations for the I-shaped 
beams pre-tensioned at 7 days can be seen in Figure 8. 
From this figure it can be deduced that the relaxation has 
only a limited influence on the deflections. 

 
Figure 8.  Deflection predictions with and without relaxation 

for the I-shaped beams pre-tensioned at 7 days. 

V. DISCUSSION 
A. Reinforced beams 

When the nonlinearity of the creep is not corrected, the 
models predict the time-dependent behaviour of the 
lower loaded beams reasonably well. For the higher 
loaded beams, the predictions underestimate the 
time-dependent behaviour, resulting in an increased 
difference of the predicted values and the measured 
values over time. 
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The underestimations of the deflections are possibly 
explained by the fact that the linear relationship which 
was assumed between the stress and the strain is no 
longer valid at higher load levels. The material models 
are also calibrated on data in the service stress range. It 
has been shown that many of the beams in this dataset 
are outside of this service stress range. Therefore, the 
material models may no longer be valid and thus 
introduce inaccuracies. 

From all the studied models, the ACI model gives the 
best predictions at early and medium age. At a later age 
the predicted values according to the GL 2000 model lie 
the closest to the measured values. The rate of creep at 
this later age is best described by the B3 model, followed 
by the GL 2000 model. 

The accuracy of the predicted deflections were 
substantially increased by the use of a nonlinear creep 
correction. Using a nonlinear creep correction caused the 
deflections and their rates to be overestimated on 
average. MC2010 predicts the absolute values of the 
deflection the best, except for the deflections near the 
end of loading which are best predicted by GL 2000. The 
rate of the time-dependent behaviour is the best predicted 
by the GL 2000 model. At a later age, the B3 model 
gives the second best predictions of the rate of creep. 
These results are comparable to what can be found in 
literature [5, 9, 10, 11]. 

B. Prestressed beams 
The predictions of the deflection for the beams which 

remain unloaded are divergent. However, the difference 
is smaller for the loaded beams. 

The divergence between the predictions is mainly 
caused by the diverse predictions of the instantaneous 
deflection at prestressing. These different instantaneous 
deflections can be explained by the large variation of the 
moduli of elasticity and creep coefficients of the different 
models at early ages. The B3 model has for example a 
relatively low modulus of elasticity at 7 days and a high 
creep coefficient at 7 or 14 days for the studied beams. 

The predictions are more similar for the loaded beams. 
This can be justified by the fact that two time-dependent 
deformations are superimposed on each other: the 
upward deflection due to prestressing and the downward 
deflection due to loading. 

Despite their initial overestimation the GL 2000 model 
and the B3 model, together with MC2010, most 
accurately predict the time-dependent behaviour of the 
studied beams. In general MC90-99, EC2, and ACI 
underestimate the deflections slightly. 

The stress in the bottom fibre decreases significantly 
over time. This can mainly be attributed to the 
time-dependent prestress loss due to creep and shrinkage 
deformations. The influence of the prestress on the stress 
in the top fibre is much more limited. This explains why 
the stress remains almost constant. 

For the beams loaded at 50% of the calculated service 
moment the stress is approximately constant over the 
entire cross-section, explaining why the time-dependent 
deformations are so limited. 

By a simplified calculation, it was shown in Figure 8 
that the influence of the relaxation of prestress on the 
deflections will be small. Note that in reality the 

influence will be even smaller than what was shown in 
Figure 8 because the relaxation will be induced over time 
and will be smaller than the theoretical value due to the 
effects of creep and shrinkage. 

VI. CONCLUSIONS 
A. Reinforced beams 
 The difference between a calculated aging coefficient 

and a constant aging coefficient equal to 0.8 is 
negligible for the studied beams. 

 Without the use of a nonlinear creep correction, the 
highest loaded beams cannot be accurately predicted. 

 The use of the nonlinear creep correction method, 
which was used here, significantly increases the 
accuracy of the predictions. 

 Correcting the creep, the absolute values at a young 
and medium age are best predicted by MC2010. The 
rates throughout the entire testing period are best 
predicted by the GL 2000 model. At later ages the B3 
model gives the second best predictions of the rate. 

B. Prestressed beams 
 There is some divergence between the predictions of 

the deflections of the unloaded beams. This is caused 
by the large difference in the moduli of elasticity and 
the creep coefficients of  the different models. 

 The predictions are more similar for the loaded beams 
due to the superposition of two different 
deformations. 

 MC2010, the GL 2000 model and the B3 model most 
accurately predict the time-dependent deflections. 

 A simplified analysis has indicated that the influence 
of the relaxation of prestress on the deflections of the 
studied beams is negligible. 
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List of abbreviations 

Latin symbols 

ܽ  aggregate content in the concrete 

ܽ଴  instantaneous deflection in the midspan 
ܽ௧  deflection in the midspan at time ݐ 
ܿ  cement content in the concrete 

 ߬ ௖(߬)   increment of stress at timeߪ݀

௖,௘௙௙ܧ   effective modulus  

 ௖௠ଶ଼  mean modulus of elasticity at 28 daysܧ

,ݐ)௖തതതܧ  ଴) age-adjusted effective modulus of elasticityݐ

 instantaneous modulus of elasticity at time of loading t0  (0ݐ)ܿܧ

 ߬ ௖(߬)   modulus of elasticity at timeܧ

 ݅ ௜  modulus of elasticity of sectionܧ

 ௡௦  modulus of elasticity of reinforcement steelܧ

௥௘௙ܧ   reference modulus of elasticity 

௖݂ ௖௨௕ ଶ଴଴ compressive strength of a cube (200x200x200 mm) 

௖݂ ௖௜௟  compressive strength on a standard cylinder (diameter 150 mm, height 300 mm) 

௖݂௠  mean compressive strength of concrete at an age of 28 days, tested on a standard 
cylinder 

௖݂௧௠ mean tensile strength of concrete 

௣݂௧௞ characteristic tensile strength of the steel 

௫݂  compressive strength of the desired specimen 

ℎ଴ notional size of the member, equal to two times the cross-section divided by the 
perimeter of the concrete member 

௜ܫ  moment of inertia of section ݅ 

,ݐ)ܬ  ଴)  creep function or compliance functionݐ

݇ఙ   the stress-strength ratio ߪ௖ ௖݂௞(ݐ଴)⁄  

 constant moment applied throughout the testing period ܯ

 ௨,଴ failure moment determined by a static test at 28 daysܯ

 ݐ ௨,௧ failure moment determined by a static test at timeܯ

݊  number of prestressing wires 

ܰ normal force 

ܱ reference point 

 ௗ disjoining pressure݌

௜ܲ prestressing force 

ܲ௠,଴(ݔ) mean initial prestress force at a location x from the active anchorage 
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௠ܲ௔௫  the maximum prestress force during prestressing 

ܲ௠,௧(ݔ)  mean value of the prestressing force at a certain time t at a location x from the  
active anchorage 

(1 ⁄ݎ )଴  the instantaneous curvature 
(1 ⁄ݎ )௧  the curvature at time ݐ 

ܳ load 

ܳ௜ load at a node ݅ 

ܳ௦௘௥ calculated service load 

 relative humidity  ܪܴ

ܵ  microprestress 

௜ܵ   static moment of section ݅ 

s1  bottom reinforcement 

s2  top reinforcement 

 moment of interest  ݐ

௖ݐ   end of moist curing or the beginning of drying 

  ଴  time of loadingݐ

w  water content in the concrete 

 ௘  height of the compression zone (relative to top fibre)ݔ

Greek symbols 

∆ relative difference between deflection predictions and measurements, calculated by 
equation (7.2) 

∆݁  loss of eccentricity due to the non-centric placement of the prestressing wires 

 total stress increase at moment t, relative to t0  (ݐ)௖ߪ∆

 ௣௥ஶ  intrinsic prestressing loss at infinityߪ∆

௣௥ߪ∆   prestressing loss in an ideal case 

ത௣௥ߪ∆   prestressing loss in a concrete member 

 ௣௦  stress loss in the prestressed steelߪ∆

  total restraining moment  ܯ∆

∆ܰ  total restraining normal force 

∆ ௖ܲା௦ା௥(ݔ) sum of all the time-dependent prestress losses at a location x from the active 
anchorage 

∆ ௘ܲ௟  prestress loss due to elastic shortening of the concrete at the moment when the 
prestress is transferred 

∆ ௜ܲ(ݔ)  immediate prestress losses at a location x from the active anchorage 
∆ ௜ܲ௡௧.(ݔ) prestress loss due to interaction between creep, shrinkage, and relaxation mutually, 

but also with the present passive reinforcement 
∆ ௥ܲ prestress loss due to short-term relaxation of the prestressing steel at the moment 

between tensioning of the steel and force transfer 
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∆ ௖ܲ(ݔ)  prestress loss at location x from the active anchorage due to creep deformation 
∆ ோܲ(ݔ) prestress loss at location x from the active anchorage due to relaxation of the 

prestressing steel 
∆ ௦ܲ(ݔ)  prestress loss at location x from the active anchorage due to shrinkage deformation 
∆ ௦ܲ௟   prestress loss due to slip at the anchorages 
∆ ఓܲ(ݔ) prestress loss due to friction of the prestressing steel in the cable duct and due to 

friction at the deflection points 
 strain  ߝ
 instantaneous concrete strain at moment of load application t0  (଴ݐ)௖ߝ

 concrete strain at random moment t  (ݐ)௖ߝ

,ݐ)ݏܿߝ  ݐ ଴ andݐ free shrinkage between (0ݐ

 ௖଴  instantaneous strain of the outermost compression fibreߝ

 ௖௧  strain of the outermost compression fibre at time tߝ

 ௖,௧௢௣  strain at the top fibreߝ

 ை  strain at the reference pointߝ

 instantaneous strain at the reference point  (଴ݐ)ைߝ

௦௠ߝ   mean strain in the tensile reinforcement 

 coefficient dependent on the quality of the steel  ߟ

 relative creep rate of predicted values against measurements, calculated according ߦ
to equation (7.3) 

  ଵ  tension reinforcement ratioߩ
 ଶ  compression reinforcement ratioߩ
 ௖  concrete compressive stressߪ

 instantaneous concrete compressive stress at moment of load application t0  (0ݐ)ܿߪ

 total stress  (଴ݐ)௖௧ߪ

 ௣଴  initial tension stress in the steelߪ

 ௣௦,   ௜௡௜௧. initial prestress in steel before force transferߪ

߬  intermediate time between the moment of loading ݐ଴ and the moment of interest ݐ 

,ݐ)߮  ଴ݐ after loading at time ݐ ଴) creep coefficient at time of interestݐ

,ݐ)߮ ߬)  creep coefficient at time of interest ݐ with loading at time ߬ 

߮௞(∞,  ଴) nonlinear, fictive creep coefficientݐ

߶௜   internal cable duct diameter 

߶௡௢௠,௪௜௥௘  nominal diameter of a prestressing wire 

,ݐ)߯  ଴)  dimensionless aging coefficientݐ
߰  curvature of the cross-section 
߰ଵ  curvature out of the cross-sectional parameters of an uncracked section (state 1) 
߰ଶ  curvature out of the cross-sectional parameters of a cracked section (state 2) 
߰௠   mean curvature 
 instantaneous curvature  (଴ݐ)߰
߱  percentage of the concrete in compression which undergoes linear creep 
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1. Introduction 

Concrete is an aging linear viscoelastic material. Under loading in the service range, the concrete 
will have an elastic deformation. If the loading is maintained the concrete will also undergo a 
time-dependent deformation. This time-dependent deformation is mainly the result of creep and 
shrinkage of the concrete. For loaded concrete members the creep phenomenon is dominant at 
later ages. This phenomenon has been studied for decennia. Yet, up until now still no universally 
accepted creep theory has been formulated. That an accurate prediction of the time-dependent 
behaviour is required is illustrated by the failure of the Koror-Babeldaob bridge on Palau. This 
bridge failed due to the underestimation of the long-term deflection, as a result of an inaccurate 
creep design (Bažant et al., 2011). 

Due to the lack of insight in the time-dependent phenomena, different material models have been 
developed in order to predict the creep and shrinkage behaviour. A problem connected to the use 
of the different material models is their empirical component. Whether the models are completely 
empirical or they have a theoretical basis, all of them are calibrated against large datasets. The 
problem is that these datasets are assembled on compression tests on small specimens without 
reinforcement. However, the material models are used to assess the behaviour of elements which 
are an order bigger than the specimens used for calibration. The question thus rises if these 
material models can indeed be used to accurately predict the behaviour of reinforced concrete 
elements which have a practical size of several meters. 

Tests on beams with a practical size are scarcely found in literature. If such tests are reported, the 
time of loading is usually too small to make a credible time-dependent analysis. The Magnel 
Laboratory for Concrete Research participated in a large-scale experimental programme. The goal 
of this programme was to study the time-dependent behaviour of reinforced, prestressed, and 
partially prestressed beams under different levels of loading. The experimental programme studied 
beams with different cross-sections and/or specific reinforcement ratios and/or specific degrees of 
prestressing. In this dissertation the results of the tests on reinforced and prestressed beams were 
analysed. 

The analysis of the reinforced and the prestressed beams was performed using a cross-sectional 
calculation method which employs the age-adjusted effective modulus. In an initial stage the 
calculation method was used in a slightly simplified form. In a later stage different optimisation 
methods were proposed and tested on their effectiveness in improving the accuracy of the 
deflection predictions. The creep coefficients, shrinkage strains and moduli of elasticity according to 
six different material models (CEB-FIP Model Code 1990-1999, FIP Model Code 2010, Eurocode 2, 
Bažant’s and Baweja’s model B3, Gardner Lockmann 2000, and ACI 209) were used to calculate: the 
deflection, the strain, the stress, the axial shortening, and the deformation. The results of these 
calculations were compared against the available measurements of the experimental programme. 
This allowed to come to a general conclusion with regard to the accuracy of the models for beams 
with practical dimensions. The tool which was developed during the study and the analysis allows to  
perform a complete time-dependent analysis in a limited calculation time. 
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2. General overview: time-dependent phenomena 

Generally, the time-dependent behaviour of concrete is attributed to three different phenomena: 
creep of concrete, shrinkage of concrete and relaxation of prestressing steel (Ghali et al., 2002). 
Although the focus of this dissertation is on the creep of concrete, a thorough understanding of the 
shrinkage and relaxation is also essential. These phenomena are strongly interlinked and influence 
each other. It is thus required to take them all into account even if one is only interested in one of 
the phenomena.  

A short overview of the structure of concrete at the microscopic level is provided hereunder. This to 
have a firm base of understanding for the phenomena which will then be discussed. 

2.1. Microstructure of concrete 
Know that it is known that concrete is a composite material containing coarse aggregates (gravel) in 
a matrix of mortar. This mortar consist out of smaller aggregates (sand) and a cement paste, which 
has an important role in the creep process. At the microscopic level, the cement paste is a mixture 
of unhydrated cement and capillary pores in a cement gel of hydrated cement particles. At the 
submicroscopic level, this cement gel is mainly comprised out of calciumhydroxide and hydrated 
calcium silicates (CSH), also called tobermorite. Two or three monomolecular layers of tobermorite 
form a tobermorite sheet. 

Figure 2.1 illustrates the arrangement of tobermorite sheets proposed by Feldman and Sereda 
(1968). The water which was added during the mixing of the concrete is found at different locations. 
The centre of Figure 2.1 depicts a capillary pore. Capillary pores can contain free, unbounded water, 
depending on the relative humidity of the environment. Adsorbed water is held at the surface of 
the gel particles by van der Waals forces. Between the tobermorite layers and sheets interlayer or 
zeolitic water is found. The adsorbed water and the zeolitic water combined are called gel water. 
Additionally, there is also chemically bounded water. This water has reacted with the cement 
particles to form the hydration products.  

In general, most of the chemically bounded water and a little part of the water that is not 
chemically bounded is considered as non-evaporable. The free water, the adsorbed water and the 
interlayer water can be removed when the concrete is subjected to high temperatures. Hence, this 
water is called evaporable water(Neville et al., 1983). 

Many of the theories, which have been developed over time, trying to explain the creep and 
shrinkage behaviour, use one or more of these types of water in their formulation. The theories 
regarding the shrinkage can be found in section 2.2. A selection of the most accepted theories 
regarding creep can be found in section 2.3.1. 
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Figure 2.1. Proposed structure of concrete at the submicroscopic  

        level according to Feldman and Sereda (1968). 

2.2. Shrinkage of concrete 
Concrete suffers from a volume reduction in function of time without being subjected to any loads, 
this phenomenon is referred to as shrinkage. This shrinkage of the concrete is attributed to four 
physical processes: autogenous shrinkage, drying shrinkage, carbonation shrinkage, and thermal 
shrinkage. The first three are related to a loss of water. 

 As long as the shrinkage can happen freely, no global stresses will be induced in the concrete. 
However, when the concrete is restrained and deformations cannot happen freely, macroscopic 
stresses will be induced. The concrete can be externally restrained: fixed supports in the case of 
beams, the ground in the case of floor slabs, etc. It is also possible that the concrete is internally 
restrained by reinforcement, which is much stiffer than concrete. Different parts of the concrete 
member can also restrain one another. This is explained in section 2.2.2. 

2.2.1. Autogenous shrinkage 

The mixing of cement and water will start a hydration process. The volume of the formed hydration 
products is smaller than the volume of the original cement and water. In other words, there is a 
volume reduction, called chemical shrinkage (Tazawa, 1999). This chemical shrinkage creates 
internal pores but is not macroscopically visible. If no external water is provided the water which is 
present in the pores of the concrete will be used for the continuation of the hydration process. 
Note that even when external water is provided, it will take time for the water to migrate inside the 
concrete elements. The larger the elements are, the longer it will take for the water to migrate to 
the inside of the concrete element. This self-desiccation causes a capillary tension. These stresses 
are local and cause macroscopic deformations at an early age of the concrete when the modulus of 
elasticity has not yet completely developed (Koenders, 1997).These macroscopic deformations are 
called autogenous shrinkage. Note that the autogenous shrinkage is caused by the chemical 
shrinkage and happens almost at the same time as the chemical shrinkage. Although the chemical 
shrinkage is larger than the autogenous shrinkage, the difference is not macroscopically visible due 
to the creation of the internally capillary pores (Tazawa, 1999).  
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De Schutter (2012) mentions that the water-cement ratio is the most important factor contributing 
to the autogenous shrinkage. The lower the water-cement ratio of the concrete, the less water is 
available and thus the higher the capillary tension will be. Therefore, autogenous shrinkage is more 
a problem for high-strength concretes. Another influencing factor is the type of cement and the 
used admixtures since they influence the hydration reaction. Also the paste volume plays a role 
because shrinkage is limited to the cement paste. The autogenous shrinkage is however 
independent of the member size and the relative humidity.  

2.2.2. Drying shrinkage 

Drying shrinkage takes a longer time to develop than autogenous shrinkage and, unlike autogenous 
shrinkage, it requires a moisture exchange with the environment. The vapour pressure difference 
between the environment and the concrete causes the capillary water of the concrete to be 
expelled. This results in a small volume decrease. When the vapour pressure difference remains, 
the gel water will also be evacuated out of the concrete. This causes a larger volume decrease (De 
Schutter, 2012). The removal of the interlayer water brings the tobermorite layers closer to each 
other. This proximity results in the formation of extra bonds, which explain the irreversible part of 
shrinkage (Taerwe & De Schutter, 2006). Drying shrinkage requires more time than autogenous 
shrinkage since the water has to migrate out of the concrete. 

Due to the different migration lengths of surface water and core water, the drying shrinkage will 
have a non-uniform character. The surface loses its water quickly and wants to shrink, but it is 
restrained by the core, which still has most of its water. Therefore tension originates at the surface 
and compression at the core. As a result of this tension, cracks could occur at the surface. The 
cracking causes deformations in the opposite direction of the shrinkage. P. Rossi and Acker (1988) 
reported that because of this, the measured shrinkage is less than the expected shrinkage without 
cracking. 

As opposed to autogenous shrinkage, a lower water-cement ratio has a beneficial influence on the 
drying shrinkage (De Schutter, 2012). A higher water-cement ratio results in a more extended pore 
network filled with water after hydration. Thus, more water can be expelled. Comparable to 
autogenous shrinkage an increase in the cement paste will result in a higher shrinkage. Since the 
difference in vapour pressure is the driving force, the humidity of the environment will have a large 
influence. Likewise, the geometry is an important factor; long, thin concrete specimens will shrink 
faster than compact specimens. The core water of compact specimens requires after all a longer 
time to migrate to the surface compared to the core water of thin specimens. Also the curing 
method and curing time play a role: drying at an earlier age will cause a higher amount of shrinkage 
because more water is available.  

2.2.3. Carbonation shrinkage 

When concrete is exposed to the air, the carbon dioxide in the air will react with the calcium 
hydroxide and hydrated calcium silicates in the concrete. This carbonation reaction creates calcium 
carbonate and water. When this water leaks out of the concrete, the concrete will shrink. (Pham & 
Prince, 2014) Since carbonation shrinkage only effects the most outer layers, its contribution to the 
overall shrinkage can usually be neglected (Taerwe & De Schutter, 2006). 
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2.2.4. Thermal shrinkage 

The hydration reaction of cement and water is an exothermal process. This means the concrete will 
expand and then contract again at an early age. This can be the cause for early-age thermal cracking 
due to internal or external restraint (De Schutter, 2012). Commonly this causes problems for 
massive concrete structures and concrete walls which are casted on non-deformable floors etc. For 
beams which can deform freely at an early age this generally causes no problems. Thermal 
shrinkage is neglected in the rest of this work. 

2.3. Creep of concrete 
Creep is the phenomena which causes an increase in strain in a concrete member under a constant 
stress (Taerwe & De Schutter, 2006). This results in increased deflections but can also cause a 
redistribution of stress. 

As it is mentioned above, creep and shrinkage influence each other. On the other hand, to study 
creep it is desirable to assume creep and shrinkage as two disconnected phenomena which are 
additive, since this simplifies the analysis greatly. Therefore, creep is defined as the time-dependent 
deformation which cannot be attributed to shrinkage. Shrinkage is measured on unloaded 
specimens. Creep then needs to be split up in two different phenomena: basic creep and drying 
creep. Basic creep is the creep which will happen even if there is no exchange of moisture, like 
creep on concrete which is stored under water. Drying creep is the creep which can be attributed to 
moisture exchange (Neville et al., 1983). The dying creep is sometimes also called the Pickett effect. 

During concrete calculations in service conditions, the stress and the strain are assumed to be 
proportional to one another (Ghali et al., 2002). The instantaneous strain ߝ௖(ݐ଴) can then be 
expressed as: 

(଴ݐ)௖ߝ  =  
(଴ݐ)௖ߪ
(଴ݐ)௖ܧ

 (2.1) 

in which: (0ݐ)ܿߪ is the instantaneous stress, (0ݐ)ܿܧ is the instantaneous modulus of elasticity and 0ݐ 
is the moment of application of the instantaneous stresses. Normally the modulus of elasticity 
increases as the age of the concrete increases, but it is usually assumed to be constant. 

When taking into account the time-dependent behaviour due to creep, the equation for the strain 
needs an extra term compared to equation (2.1). The strain at a random time ݐ  can be calculated 
as: 

(ݐ)௖ߝ  =  
(଴ݐ)௖ߪ
(଴ݐ)௖ܧ

∙ [1 + ,ݐ)߮  ଴)] (2.2)ݐ

The creep coefficient ߮(ݐ,  ଴) is a dimensionless factor which expresses, relatively to the initialݐ
strain, the increase of strain due to creep. This factor depends on the time of loading 0ݐ and the 
time of interest ݐ. Note that shrinkage has been neglected here. In design codes and literature many 
different formula for ߮(ݐ,  ଴) have been proposed. Figure 2.2 gives a representation of equationݐ
(2.2). At time ݐ଴ there is an instantaneous increase of the strain. This strain then increases due to 
creep, so that at the time of interest ݐ the total strain is equal to the sum of the instantaneous 
strain ߝ௖(ݐ଴) and the strain due to creep ߮(ݐ, (଴ݐ ∙  Bažant (1988) determined that the creep .(଴ݐ)௖ߝ
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is linear as long as the prevailing stresses stay below 0.4 times the strength of the concrete. This 
value is discussed in literature. EN 1992-1-1 (2004) reports a value of 0.45 times the characteristic 
concrete strength, but ACI Committee 209 (2008) and CEB-FIP (2013) endorse the value of 0.4 times 
the mean concrete strength. More recently it has also been reported that creep can be nonlinear 
below 0.4 times the strength for certain variable stress histories (CEB-FIP, 2013). 

 
Figure 2.2. Influence of creep on the development of strain over time (Ghali et al., 2002).  

Equation (2.2) can be written in a more convenient form by the use of the creep function or 
compliance function ݐ)ܬ,  :଴) (Bažant, 1982, 1988)ݐ

(ݐ)௖ߝ  = (଴ݐ)௖ߪ  ∙ ,ݐ)ܬ  ଴) (2.3)ݐ

 
,ݐ)ܬ (଴ݐ =

1 + ,ݐ)߮ (଴ݐ
(଴ݐ)௖ܧ

 (2.4) 

The creep function gives the amount of strain at time ݐ for a unit stress applied at ݐ଴ . 

Note that in this section it was assumed that the stresses are constant. In practice situations this 
will often not be the case due to changing loads. The reasons why the loads can be changing are 
multiple: the load is mobile, a construction is not erected at once but has different construction 
stages, changes in the magnitude of the load,… The theory discussed here then needs to be adapted 
for changing stresses. This is discussed in section 3.1. 

For more general cases Figure 2.2 gets an extra addition, like in Figure 2.3. At the moment of the 
application of the load there is an instantaneous deformation. Usually this deformation is elastic, 
but it can also contain a non-elastic part. Then, there is a primary creep. During the primary creep 
the rate of creep decreases remarkably. When there is a minimum creep rate, the primary creep is 
followed by a secondary creep. Normally the primary creep is not so large, and the secondary creep 
is dominant. In this case the secondary creep can be modelled approximately as a straight line. It is 
this secondary creep which represent the steady state creep. If the stresses are high enough, more 
than 40% of the failure strength, microcracking can cause a tertiary creep. Under normal conditions, 
the stresses will be low enough so that there is no tertiary creep, and so that the difference 
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between primary and secondary creep becomes undistinguishable. Figure 2.3 then becomes like 
Figure 2.2. (Neville et al., 1983) 

 
Figure 2.3. Creep phenomenon at higher load levels: primary - ,  

 secondary - and tertiary creep (Neville et al., 1983). 

The effects of creep are not only limited to strain changes. When a strain is imposed on the 
concrete element, the induced concrete stress can be calculated using equation (2.1). If the strain is 
maintained constant, the stress of the element will decrease as a function of time because of creep. 
The stress can be calculated by: 

(ݐ)௖ߪ  = ,ݐ)ݎ (଴ݐ ∙ ௖ߝ  (2.5) 

where ݐ)ݎ,  .଴) is a relaxation function. This principle is illustrated in Figure 2.4ݐ

 
Figure 2.4. Relaxation of concrete stress due to creep under  

  a constant maintained strain (Ghali et al., 2002). 
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2.3.1. Mechanisms of creep 

Creep of concrete is a complex phenomenon. Consensus on the mechanics behind this 
phenomenon is not yet reached. Moreover, since it is believed to be related to changes on the 
microscopic level, these mechanics are difficult to study. Neville et al. (1983) cite different 
mechanisms of creep: mechanical deformation theory, viscous flow, plastic flow, seepage of gel 
water, delayed elasticity, and microcracking. None of these theories is able to describe the 
complete creep phenomenon and some of these have been rejected completely, like e.g. the 
mechanical deformation theory. Others do describe parts of the phenomenon rather well, and 
therefore combined mechanism theories have been proposed. These combined theories are out of 
the scope of this thesis. However, hereunder a short description is given of the seepage theory and 
the viscous flow theory, which Taerwe and De Schutter (2006) report to be the most important 
mechanisms for the basic creep. They attribute microcracking as the most important factor for 
drying creep. Be that as it may, research by Pierre Rossi et al. (2012) and Pierre Rossi et al. (2013) 
gives possible evidence that microcracking is also the main cause for basic creep. Bažant and 
Prasannan (1989a) proposed the solidification theory which was later incorporated in the 
microprestress-solidification theory (Bažant, Hauggaard, & Baweja, 1997; Bažant, Hauggaard, 
Baweja, et al., 1997). Up until now, the microprestress-solidification theory gives the most complete 
explanation for creep of concrete. 

2.3.1.1. Viscous flow theory 

The viscous flow mechanism treats concrete as a very viscous material. Hydration products will flow 
over one another aided by the zeolitic water, which acts as a sort of lubricant (Taerwe & De 
Schutter, 2006). The creep is thus located in the cement paste. Thomas (as cited by Neville et al., 
1983) explains that as the concrete creeps, the stress is transferred from the cement paste to the 
aggregates, which do not show creep behaviour. As more and more of the stress is transferred to 
the aggregates, the driving force decreases, which explains the lower creep rates at later times. 

Neville et al. (1983) report two main problems related to this theory. The first one being that the 
material could not undergo volume changes, which is for instance not the case in axial creep. 
Second, that it is necessary for the creep strain to be proportionally related to the stress. This being 
only valid for lower stress levels, as already discussed above. 

2.3.1.2. Seepage theory 

The seepage theory treats the cement paste as a rigid gel. Under load, there is an expulsion (or 
seepage) of the gel water. This causes a stress redistribution from the water to the skeleton. This 
mechanism is very similar to drying shrinkage. Although, the driving force here is the applied 
pressure, not the vapour pressure difference between the environment and the concrete. As more 
water is squeezed out, the stress on the solid increases. The water takes less stress, and hence the 
driving force decreases. It is emphasised, that it is the gel water, and not the capillary water, which 
causes creep. After all, the removal of capillary water causes no deformation. 

As the water seeps out the cement paste, particles come closer together and new bonds are 
formed. This explains the irrecoverable part of creep. However, this theory does not explain why 



10 
 

concrete specimens dried in air and subsequently loaded in water creep double as much as 
specimens which were both stored and loaded under water (Neville et al., 1983). 

2.3.1.3. Microcracking 

By the use of acoustic emissions, Pierre Rossi et al. (2012) have proposed that it is microcracking 
which is the main cause of autogenous creep. These microcracks are created at the moment the 
static load is applied. These microcracks are vacuums at the moment of their creation, causing both 
a gradient of pressure and a gradient of concentration of water molecules. These gradients cause a 
movement of liquid water due to Darcy’s law and a movement of water vapour due to Fick’s law. 
This causes a self-drying process in the concrete which results in extra shrinkage. This shrinkage 
causes a pressure field in the cement paste. The granulates induce stress due to the restraining of 
the cement paste, which can cause the formation of new microcracks. The initial microcracks can 
also propagate due to the water reducing their stabilising cohesion force. The propagation of the 
initial microcracks or the creation of new microcracks increase the self-drying shrinkage even more. 

2.3.1.4. Solidification theory and microprestress-solidification theory 

Bažant and Prasannan (1989a) developed the solidification theory. This theory does not infringe on 
the laws of thermodynamics, unlike many other theories. Their creep theory is based on the aging 
of concrete, since it has been noticed that creep is intensely related to the aging, see also section 
2.3.2.3. However, they do not treat the solidified matter (cement gel) as an aging substance 
because this would result in unmanageable thermodynamic formulations. Instead, they assume the 
solidified matter to be non-aging. The aging is considered as a growth in solidified matter. During a 
certain time interval, an amount of reaction products precipitate due to the hydration of the 
cement. These products adhere to the previously solidified matter and thus form a new layer on top 
of it. As more and more layers are deposited on the already solidified matter, the concrete becomes 
macroscopic stiffer and more viscous. This explains the decrease in the rate of creep over time. One 
of the key hypotheses of this theory is that from the moment the solution of cement in water 
solidifies, it is subjected to the same strain as the previously solidified matter. It is important to note 
that the newly solidified layer is in the beginning free of stress: a liquid cannot solidify in a stressed 
state. 

Bazant and Prasannan translated their theory in a model. This model considered the creep strain as 
a sum of aging and nonaging viscoelastic strain and aging viscous strain. The creep predictions of 
this model were compared against experimental results (Bažant & Prasannan, 1989b). It gave good 
predicitions over a broad range of conditions. 

Despite the good results, Bažant, Hauggaard, and Baweja (1997) reported two physical 
shortcomings of the solidification theory. The first one being the inability of the theory to describe 
the drying creep. The second one being the inability to describe the long-term creep. The age at the 
moment of loading has an influence on the creep, even after many years. While the formation of 
hydration products is already strongly reduced after a month and stops after about a year. 

In order to theoretically explain the long-term creep, Bažant, Hauggaard, and Baweja (1997) 
developed the concept of microprestress. In order to explain this concept it is necessary to go back 
to the structure of concrete. Concrete is a highly hydrophilic porous material: the internal surface of 
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the pores can easily amount up to 500 m² for 1 cm³. As a result, the capillary forces and the 
adsorption forces can be very high, much higher than a stress which has been induced by a load. As 
discussed in section 2.1, concrete consists out of a cement gel and capillary pores. These capillary 
pores are larger than 1 μm. There are also subcapillary pores, which are smaller than 1 μm, inside of 
the cement gel. The adsorption forces result in water layers being adsorbed to the pore walls. 
However, many of the subcapillary pores are not big enough to allow the full thickness of the 
adsorbed water layers to develop. These pores are given the name micropores. The hindered 
adsorbed water layers cause a transverse compressive stress on the micropore walls. This stress is 
called the disjoining pressure ݌ௗ, see also Figure 2.5. The crystal growth pressure, which is induced 
by the growth of crystalline products precipitated out of the hydration reaction, works in the same 
way as the disjoining pressure. As mentioned in section 2.1, there is also interlayer water. Hindered 
adsorbed water layers will also cause a disjoining pressure at the location of the interlayer water. 
The disjoining pressure and the crystal growth pressure need to be compensated by tensile forces. 
Partially, these tensile forces are carried by the structure of the cement gel. Partially, they are 
transferred by bonds between the micropore walls, see Figure 2.5. The tensile forces in the 
transverse bonds cause the cement gel to be prestressed, causing a (tensile) microprestress in the 
concrete. This is an explanation for the weak tensile force of concrete. The tensile forces in the 
bonds are not only caused by the disjoining and the crystal growth pressure, also high local volume 
changes due to drying or hydration induce tensile forces.  

It is important to note that the microprestress is not dependent on the macroscopic stress (Bažant, 
Hauggaard, Baweja, et al., 1997). The microprestress is determined by the disjoining pressure. Due 
to the short diffusion length between the micropore and the capillary pore, the disjoining pressure 
changes almost instantaneously when there are changes in the relative humidity of the 
neighbouring capillary pore. Thus, the microprestress is linearly dependent on the rate of change of 
the relative humidity in the capillary pore. This is related to the drying creep because during drying 
there is a diffusion of the internal humidity to the environment (Bažant, Hauggaard, & Baweja, 
1997). 

 
Figure 2.5.  Micropore in the cement gel, ࢊ࢖ being the disjoining pressure, ࡿ being the microprestress.  

In reality the walls are more rough (Bažant, Hauggaard, Baweja, et al., 1997). 

Bažant, Hauggaard, Baweja, et al. (1997) propose that the hindered adsorbed water layers are slip 
planes. At these locations shear slips are possible under influence of shear stress and normal stress. 
In order for the shear slips to be possible the transverse bonds need to break. A lot of these bond 
breakings cause the concrete to creep on a macroscopic level (or at least causes the long-term flow 
part of creep). The frequency in which the bonds break, is dependent on the kinetic energy of the 
thermal vibrations of atoms and on the magnitude of the activation energy barrier. A higher tensile 
force in the bonds reduces the energy barrier and this results in a faster bond breaking. After the 
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bond is broken, a new bond will be formed with a neighbouring atom. The breaking and the 
following bond restoration causes the driving shear stress to be redistributed. This may cause 
another location to be overstressed, resulting in a new bond breaking. The relaxation of the shear 
stress and the exhaustion of the overstressed locations causes the creep rate to decline. Another 
way of phrasing it is saying that as the concrete creeps the microprestress relaxes. This causes the 
rate of slips to decrease and also causes more and more of the locations where bond breaking 
happens to become inactive. This inactivity then causes a reduction of the creep rate and is 
manifested as aging. 

It is of course also possible that the bonds are not restored when the stresses are outside the 
service range. In this case cracks will be formed which reduce the stiffness of the concrete. This 
causes a nonlinear creep. 

As mentioned above the drying creep can be partially explained by the relative humidity. The other 
part is reasoned to come from cracking (Bažant, Hauggaard, & Baweja, 1997). In case of small 
elements smeared cracking can be assumed. For more massive elements and for larger structural 
members localization of the cracking into continuous cracks can happen. In this case the 
assumption of smeared cracking is invalid and one is required to use fracture mechanics. 

Bažant, Hauggaard, and Baweja (1997) formulated the microprestress-solidification theory by 
combining the solidification theory, the microprestress concept and the cracking. The 
microprestress concept explains the long-term creep, as well as part of the drying creep. The 
solidification theory is dominant at early age when there is volume growth of the hydration 
products. The cracking explains the other part of the drying shrinkage. 

The microprestress-solidification theory was tested against an experimental database and was 
observed to give good results. Figure 2.6 shows the contributions of the different phenomena, 
which are included in the microprestress-solidification theory, to the creep compliance. 

 
Figure 2.6.  Contributions of the different phenomena included in the microprestress-solidification  

theory to the compliance (Bažant, Hauggaard, & Baweja, 1997). 

Jirásek and Havlásek (2014) gave a good rheological representation of the 
microprestress-solidification model of Bažant, Hauggaard, Baweja, et al. (1997) (Figure 2.7). They 
studied axially compressed prisms under non-isothermal conditions. In such a loading case the 
prisms are not expected to crack and they therefore neglected the cracking term. They did however 



13 
 

take into account a temperature term in order to correctly asses the effects of the non-thermal 
conditions. ߝఈ is the instantaneous elastic deformation modelled by a non-aging elastic spring. This 
is unlike the classical static elastic modulus, which is indeed age-dependent. It should be seen as an 
asymptotic modulus and follows from the extrapolation of experimental data to very short times, 
which are even shorter than the ones which are used for the determination of the dynamic 
modulus. The ߝ௩  term is the solidification part of the concrete creep or in other words the sort-term 
creep. It is represented by a solidifying Kelvin chain where ܧ represents the modulus of elasticity 
and ߟ represents the viscosity. The reason why a Kelvin chain is used is to be able to write the 
compliance function as Dirichlet series, which simplifies the mathematical modelling. The third part 
௙ߝ  is an aging dashpot with viscosity dependent on the microprestress ܵ. This represents the long-
term creep explained by the microprestress theory. As mentioned above, this originates from shear 
slips which are influenced by both the shear stress and the normal stress. ߝ௦௛  represents the free 
shrinkage. The last term ்ߝ represents the thermal expansion, which can be neglected for 
isothermal tests. 

 
Figure 2.7.   Rheological representation of the microprestress-solidification theory with  

the exclusion of the strain due to cracking (Jirásek & Havlásek, 2014). 

Jirásek and Havlásek (2014) rewrote the equation of the microprestress-solidification theory in 
function of the viscosity. This approach keeps the constitutive law equivalent to the original 
approach. The microprestress is however eliminated from the equation, which is beneficial since 
the microprestress cannot be measured directly. This approach leads also to a reduced number of 
modal parameters which results in a more simplified structure. This new form of the 
microprestress-solidification theory was compared with non-isothermal creep tests, as already 
mentioned above. Jirásek and Havlásek discovered that the microprestress-solidification theory 
severely overestimates the strain in case of loading under cyclic temperature. In the initial stage of 
concrete higher temperatures result in an increased speed of the hydration process. In other words, 
the concrete will develop its maturity faster and the creep deformation will be lower. If concrete is 
however subjected to higher temperatures for longer periods of time the creep rate will increase. 
The bond breakings will indeed happen easier due to higher microprestress. Be that as it may, the 
temperature cannot generate additional microprestress to an infinite amount. Therefore, Jirásek 
and Havlásek adapted the microprestress-solidification equation by taking into account a factor 
which corrects for temperature cycles: if the concrete experiences a temperature state it has 
experienced before the microprestress is limited. This adaption of the microprestress-solidification 
equation was tested against experimental data, and a significant improvement in relation to the 
original equation was observed. 

In the future it is expected that the microprestress-solidification theory will be updated further. 
After all, it is possible to do a similar reasoning for cyclic changing relative humidities. 
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2.3.2. Factors influencing creep of concrete 

Neville et al. (1983) gives an extensive overview of research on the influencing factors of creep 
executed in the past few decades. There are many factors which influence creep: cement, 
admixtures, aggregates, strength, stress, water-cement ratio, age, size, humidity, temperature, 
curing, duration of loading,… Not all of these factors are as important. Generally the focus lies on: 
the strength in relation to the applied stress, the water-cement ratio, the age at loading, the 
duration of the load and the relative humidity. 

2.3.2.1. Stress-strength ratio 

It is important to realise that the stress applied on a member or the strength of that member 
individually do not matter, it is their ratio that decides the creep behaviour. Generally, creep occurs 
from the moment that there is stress in the concrete specimen; there is no lower limit to creep. As 
mentioned above, the relationship between the stress in a concrete member and the resulting 
creep is linear as long as the stress remains below a certain level. This boundary of the linear 
relation is not precisely determined but Neville et al. (1983) reported that this boundary lies 
between 0.30 and 0.75 of the stress-strength ratio based on experimental results obtained from 
literature. Starting from this boundary microcracks start to deform which influence the creep 
behaviour.  

In stress-strength region between 0.7 and 0.9 tertiary creep will be induced and specimens can fail 
due to an excessive strain. Although it should be noted that the strain in case of a long-term test 
can be higher than for a short term test as was observed by Gvozdev (as cited in Neville et al., 
1983). 

2.3.2.2. Water-cement ratio 

Two interpretations can be adopted with regard to the influence of the water-cement ratio on the 
creep behaviour, both leading to the same result. The first interpretation is related to the cement 
paste. As mentioned above it is this cement paste that undergoes the creep deformation, while the 
aggregates, which are stiff, try to withstand the deformation. Increasing the water-cement ratio, 
while keeping the cement content constant, will increase the cement paste and thus creep will 
increase if the other factors stay the same. On the other hand increasing the water-cement ratio 
decreases the strength. Thus, if the stress stays the same the creep deformation will be larger 
(Neville et al., 1983). 

2.3.2.3. Age of the concrete at loading 

The older the concrete is when loaded, the lower the creep deformation will be. This is because the 
strength of the concrete develops over time as a result of the hydration process of cement and 
water. This strength gain is commonly referred to as the ageing effect. In general it is assumed that 
concrete has reached its maximum potential strength at 28 days. Then it does not matter when the 
concrete is loaded as long as it is loaded after 28 days. However, the analysis of multiple studies by 
different researchers done by L'Hermite (1959), as cited in Neville et al. (1983), shows that waiting 
longer than 28 days before loading has a positive effect on the creep deformation, see Figure 2.8. 
Although it should be noted that the difference is usually not so big, or even negligible, for loading 
after 28 days. Davis et al. and Glanville (as reported in Neville et al. (1983)) both noticed that the 
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rate of creep is significantly larger in the first few weeks for early loaded concrete compared to 
older concretes.  

 
Figure 2.8. Age at the application of the load versus the relative creep, determined using the  

creep at 7 days. The acting stress is the same for all points (L'Hermite, 1959). 

Actually it is the level of hydration which is more important than the age of the concrete. Both are 
of course related, yet the level of hydration contains more information as it is directly related to the 
microstructure. De Schutter and Taerwe (2000) for example stated that basic creep is related to the 
degree of hydration, and that time is not an explicit parameter. 

2.3.2.4. Relative humidity of the environment 

The relative humidity of the environment influences the relative humidity inside the concrete. 
When there is an equilibrium between these two, which is called hygral equilibrium, there will be 
no drying creep. The only form of creep is then basic creep. Concrete that is not in hygral 
equilibrium will have a higher rate of creep, as well as a higher ultimate creep deformation. 

The time it takes to reach hygral equilibrium is dependent on the difference between the relative 
humidities. Below a certain evaporable water content, increasing the difference in humidities does 
not cause a proportional increase in water loss. This is because the evaporable water in the 
concrete is becoming scarce, resulting in an increase of the forces attracting them to the concrete. 
The size and shape of the specimen also determine the time at which equilibrium is reached. 
Smaller specimens will reach equilibrium sooner but will have a large rate of drying creep before 
equilibrium is reached. Larger specimens, on the other hand, have a lower rate of drying creep but 
this creep continues longer since it takes longer for the water to migrate out of the concrete. 
(Neville et al., 1983) 

Also the humidity of the concrete itself, regardless of the humidity of the environment, plays a role 
in creep. Different researchers (e.g. Glucklich and Ishai (1962)) monitored a reduced creep 
deformation when the relative humidity in sealed specimens decreased. Brown and Hope (1976) 
even observed that cement paste specimens, out of which all the evaporable water has been 
removed, do not undergo creep deformation. 
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2.3.3. Creep recovery 

When the applied load (or part of it) is removed, an inverse creep process occurs: creep recovery. 
At the moment of unloading, there will first be an instantaneous recovery, see Figure 2.9. The 
magnitude of this instantaneous recovery is smaller than the instantaneous strain on application 
because the modulus of elasticity has increased over time. Bažant (1982) also stated that the 
instantaneous strain has an irreversible component which is not related to the increase in the 
modulus of elasticity for high stresses (higher than about half of the strength). After this 
instantaneous recovery there will be a time-dependent elastic creep recovery: recoverable creep. 
During the creep process stress is transferred from the creeping cement paste to the granulates, 
which restrain the creep. This causes a delayed elastic deformation of the granulates. Upon 
unloading these granulates gradually deform back, thereby attributing to the recoverable creep 
(Taerwe & De Schutter, 2006). Part of the creep will be unrecoverable. The reason for this is the 
extra bonds which are formed during the creep deformation and the microcracks which occur. 

 
Figure 2.9. Strain curve for unloading (Neville et al., 1983). 

2.4. Prestress 
Taerwe (2015) defines an element in prestressed concrete as: “A concrete element in which, in a 
judicious way, initial stresses are created through a system of forces which are in equilibrium and 
which are permanent in nature.” The term prestressed comes from the fact that high quality steel 
(prestressing steel), which has been tensioned, induces stresses in the concrete prior to and 
independent of the applied loads, such as the self-weight and the service loads. The “judicious way” 
is related to the goal of prestressing. Concrete has a low to negligible tensile strength. During 
bending, part of the concrete will be in tension and it will crack. The contribution of this concrete to 
the strength is therefore limited, but the cracked concrete still contributes to the self-weight. The 
cracks in the concrete can also severely reduce the durability of the concrete element. The goal of 
prestressing is to avoid these cracks, so that the durability is ensured, and the entire cross-section 
contributes to the strength of the member. This is done by inducing enough compressive stress in 
the concrete, in order that the entire cross-section is still in compression even after the introduction 
of the bending tensile stresses. It is important to underline, that the forces which are exerted on the 
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concrete element by the prestressing steel are a system of forces in equilibrium. In the case of a 
statically indeterminate system, secondary forces are induced by the prestressing at the location of 
external connections. Nonetheless, also these secondary forces are in equilibrium. 

From this definition (Taerwe, 2015), it is clear that prestressing in itself is not a time-dependent 
phenomenon. However, the relaxation of the prestress is a time-dependent phenomenon. 
Furthermore, the total loss of prestress and the relaxation of prestress have a strong interaction 
with the time-dependent phenomena.  

2.4.1. Prestressing techniques 

There are two different kinds of techniques to apply prestress to a concrete element: 
post-tensioning and pre-tensioning (Taerwe, 2015). Both of these techniques are briefly explained 
here. 

2.4.1.1. Post-tensioning 

After the passive reinforcement is placed in the formwork, a duct is attached to the reinforcement 
cage in the longitudinal direction. This is done prior to casting. When the concrete has been casted 
the duct forms a cavity in the cross-section. A prestressing cable is then placed in the duct. After the 
concrete has been hardened sufficiently and has gained enough strength, the prestressing cable is 
anchored at one side (passive anchorage) and tensioned at the other side using a hydraulic jack. 
Next the prestressing cable is anchored at the side of the hydraulic jack (active anchorage). It are 
the anchorages which induce the prestress in the concrete element. Finally, the duct is filled with a 
grout. The benefit of using a grout is twofold: the grout protects the prestressing steel against 
corrosion and it creates a bond between the prestressing steel and the element. This last function is 
important to ensure compatible strains in prestressing steel fibres and adjacent concrete fibres. 

2.4.1.2. Pre-tensioning 

Wires or strands are kept in tension between two fixed points at the required prestress eccentricity. 
The concrete is then casted in its required shape around the wires or strands. In other words there 
is direct contact between the prestressing steel and the concrete. After the concrete has been 
hardened sufficiently and has gained enough strength, the wires or strands are released from the 
fixed points and the prestress in the steel is transferred to the concrete by friction and bond 
stresses. 

2.4.2. Relaxation of prestressing steel 

A steel tendon which undergoes a fixed deformation, like in the case of prestressing, will have a 
certain stress. If the strain remains constant over time, the steel stress in the tendon will decrease 
over time, see also Figure 2.10. This phenomenon is called relaxation of steel. It is attributed to the 
movement of dislocations or lattice defects in the crystal lattice (Taerwe, 2015). 
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Figure 2.10.  Principle of relaxation (Neville et al., 1983). Steel undergoes a constant strain ࢿ૙ (a)  

  and as a result the stress in the steel declines (b). 

The relaxation is mainly depended upon the initial steel stress, the quality of the steel, and the 
ambient temperature. In order to explain the phenomenon the formula below is given (Ghali et al., 
2002): 

௣௥ஶߪ∆ 

௣଴ߪ
= ߣ)ߟ−  − 0.4)ଶ (2.6) 

where ߪ௣଴ is the initial tension stress in the steel, ߟ is a coefficient dependent of the quality of the 
steel, ∆ߪ௣௥ஶ is the intrinsic prestressing loss at infinity, and ߣ is given by: 

ߣ  =  
௣଴ߪ

௣݂௧௞
 (2.7) 

with ௣݂௧௞ the characteristic tensile strength of the steel. The value of ߟ can be determined out of a 
long-term test out of which the intrinsic relaxation has been determined. Formula (2.6) is valid for 
values of ߣ which are larger than 0.4. For values lower than 0.4 relaxation will not be observed. The 
formula will result in a value smaller than zero since relaxation is a loss of stress. Standards such as 
Model Code 90 and Eurocode 2 give values for the relaxation if insufficient data is available. 

2.4.3. Interaction of time-dependent deformations 

As mentioned above, there is an interaction between the time-dependent phenomena. Figure 2.11 
gives a representation of the interaction between relaxation and creep in a stress-strain diagram. 
Curve one represents a short-term tensile test and curve two represents an infinitely slow tensile 
test. The infinitely slow test has the purpose of giving the dislocations enough time to move in the 
crystal lattice. Relaxation causes the stress to decrease under a constant strain. It is represented in 
the stress-strain diagram by a vertical translation, so point A moves to A1. Creep is a deformation 
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under a constant stress. Hence, it is represented by a horizontal translation. Due to creep point A 
will move to A2. In a prestressing element, creep will occur under a declining stress, due to 
relaxation, and relaxation will occur under a declining length, due to creep (and shrinkage). Point A 
will thus move to point A3 between point A1 and point A2. 

 
Figure 2.11.   Stress-strain diagram representing the interaction between creep  

and relaxation in a prestressed concrete (Taerwe, 2015). 

Instead of looking at just the interaction of creep and relaxation, a more global model for the 
interaction of time-dependent phenomena is presented in .Figure 2.12. At the moment the 
prestress is applied to the concrete element, the concrete will elastically shorten. This causes a loss 
of prestress. The concrete will also shorten over time due to creep and shrinkage. This also causes a 
loss of prestress, and it makes that the relaxation of the prestress happens under a decreasing 
length. This is represented in Figure 2.12 by branch r. The decrease of the prestress causes the 
creep to take place under a decreasing compressive stress. This is shown by branch k. If passive 
reinforcement is present at the bottom or the top, the creep and shrinkage cannot happen freely 
but will be restrained. This is represented by branch s1 and s2, respectively for bottom 
reinforcement and top reinforcement. 

 
Figure 2.12. Flow chart of the interaction between the time-dependent phenomena (Taerwe, 2015). 
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Out of this elaboration it is clear that the interaction of the time-dependent phenomena 
complicates the calculation process significantly. It is required to split up the time domain in 
intervals and update the stresses and the strains in each time interval for all the phenomena. As an 
example the updating of the relaxation is given hereunder. 

The loss of prestress, as a result of the shortening of the prestressed member due to creep and 
shrinkage, can be seen as a lower initial tension in the tendon. Hence, the relaxation in a concrete 
member will be smaller than in a pure theoretical case. The relaxation in a concrete member can 
thus be calculated as (Ghali et al., 2002): 

ത௣௥ߪ∆  =  ߯௥ ∙  ௣௥ (2.8)ߪ∆

where ∆ߪത௣௥  is the prestressing loss in a concrete member, ߯௥ is a dimensionless factor which is 
smaller than one, and ∆ߪ௣௥  is the prestressing loss in an ideal case. ߯௥ is dependent of ߣ and can be 
calculated out of tables or graphs. 

2.4.4. Prestress losses 

As elaborated in the previous section, the interaction of the time-dependent phenomena causes a 
loss of prestress. There are also other origins of prestress loss. Generally, the prestress losses are 
split up in two groups: immediate prestress losses and time-dependent prestress losses. 

The immediate prestress losses take place at the moment the prestress is transferred from the steel 
to the concrete. The immediate prestress loss can be split up in four categories (Taerwe, 2015). The 
first one is the loss due to the elastic shortening of the concrete at the moment when the prestress 
is transferred (∆ ௘ܲ௟). This loss is only present when pre-tensioned steel is used. During tensioning of 
post-tensioned steel there is also elastic shortening of the concrete, but this does not cause a loss 
of prestress. The second loss occurs due to friction of the prestressing steel in the cable duct (only 
for post-tensioned steel) and due to friction at the deflection points (∆ ఓܲ(ݔ)). The third is the loss 
due to slip of the prestressing steel at the anchorages and the deformation of the anchorages at the 
moment of force transfer (∆ ௦ܲ௟). The last loss takes place only in the case of pre-tensioning. It is the 
loss due to the short-term relaxation of the prestressing steel at the moment between tensioning of 
the steel and force transfer (∆ ௥ܲ). 

The mean initial prestress force at a location x from the active anchorage ܲ௠,଴(ݔ) can be found by 
subtracting the immediate prestress losses from the maximum prestress force during prestressing 

௠ܲ௔௫: 

 ܲ௠,଴(ݔ) =  ௠ܲ௔௫ −  ∆ ௜ܲ(ݔ) (2.9) 

with ∆ ௜ܲ(ݔ) the immediate prestress losses at a location x from the active anchorage: 

 ∆ ௜ܲ(ݔ) =  ∆ ௘ܲ௟ + ∆ ఓܲ + ∆ ௦ܲ௟ +  ∆ ௥ܲ (2.10) 

Taerwe (2015) attributes the time-dependent prestress losses to: shortening of the concrete due to 
shrinkage ∆ ௦ܲ(ݔ), shortening of the concrete due to creep ∆ ௖ܲ(ݔ), relaxation of the prestressing 
steel ∆ ோܲ(ݔ) and interaction of the three previous causes mutually and with the passive 
reinforcement ∆ ௜ܲ௡௧.(ݔ). 
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The mean value of the prestressing force at a certain time ݐ at a location ݔ from the active 
anchorage ܲ௠,௧(ݔ) can be calculated from: 

 ܲ௠,௧(ݔ) =  ܲ௠,଴(ݔ) −  ∆ ௖ܲା௦ା௥(ݔ) (2.11) 

with ∆ ௖ܲା௦ା௥(ݔ) the sum of all the time-dependent prestress losses at a location x from the active 
anchorage: 

 ∆ ௖ܲା௦ା௥(ݔ) =  ∆ ௦ܲ(ݔ) +  ∆ ௖ܲ(ݔ) + ∆ ோܲ(ݔ) + ∆ ௜ܲ௡௧.(ݔ) (2.12) 

This value is often 15% to 20% of ܲ௠,଴(ݔ) respectively for outdoor and indoor environmental 
conditions. Equation (2.9) and (2.11) can be combined to form: 

 ܲ௠,௧(ݔ) =  ௠ܲ௔௫ − ∆ ௜ܲ(ݔ) − ∆ ௖ܲା௦ା௥(ݔ) (2.13) 

Figure 2.13 and Figure 2.14 show the evolution of the prestress in function of time for respectively 
post-tensioned and pre-tensioned steel. ௠ܲ,ஶ(ݔ) is the prestressing force at a time infinitely 
removed from now at a location x from the active anchorage. From the figures it is clear that the 
rate decreases as the time increases. The difference between post-tensioned and pre-tensioned 
steel can also be clearly seen. Before force transfer, the pre-tensioned steel already starts 
relaxation. During this time the concrete can also undergo some (autogenous) shrinkage. 

 

 

 
Figure 2.13. Evolution of prestressing force in post-tensioned steel at a certain location x  

    from the active anchorage in function of the time (Taerwe, 2015). 



22 
 

 
Figure 2.14. Evolution of prestressing force in post-tensioned steel at a certain location x  

    from the active anchorage in function of the time (Taerwe, 2015). 
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3. Calculation methods to account for time-dependent 
effects in structural analysis 

In this section different forms of the creep law will be discussed using the superposition principle. 
Another widely used method is the step-by-step method. This method is computationally much 
more intensive than the superposition principle and therefore was not used. 

3.1. Superposition of creep 
Concrete behaviour is complex but mostly it is assumed that concrete has an aging linear 
viscoelastic behaviour. Under this assumption the principle of superposition is valid if four 
conditions are fulfilled (Bažant, 1982; CEB, 1999): 
1) The magnitude of the stresses is in the service range (below about 40% of the strength); 
2) The strains do not decrease in magnitude (, although it should be noted that the stresses can); 
3) There is no significant drying of the specimen during creep; 
4) There is no large increase of the stress a long time after initial loading. 

The need for the superposition principle comes from the fact that a concrete element will be 
subjected to higher loads than just the ones at the first time of loading. For example a concrete slab 
will first undergo a loading due to its self-weight. Later it will also undergo loading due to service 
loads etc. To deal with these additional loadings equation (2.2), which gives the strain at a random 
time ݐ after loading, needs to be extended with an extra term (Ghali et al., 2002): 

 
(ݐ)௖ߝ = (଴ݐ)௖ߪ  ∙

1 + ,ݐ)߮ (଴ݐ
(଴ݐ)௖ܧ + න

1 + ,ݐ)߮ ߬)
(߬)௖ܧ

∆ఙ೎(௧)

଴

+ (߬)௖ߪ݀ ,ݐ)௖௦ߝ   ଴) (3.1)ݐ

where: 
 is the total concrete strain (ݐ)௖ߝ 

 ߬ is an intermediate time between the moment of loading ݐ଴ and the moment of interest ݐ 

 ଴ݐ relative to ,ݐ is the total stress increase at moment (ݐ)௖ߪ∆ 

,ݐ)߮  ߬) is the creep coefficient at time of interest ݐ with loading at time ߬ 

 ߬ ௖(߬) is the modulus of elasticity at timeܧ 

 ߬ ௖(߬) is the increment of stress at timeߪ݀ 

,ݐ)ݏܿߝ    ݐ ଴ andݐ is the free shrinkage between (0ݐ

A physical representation of this equation is shown in Figure 3.1. The first term on the right side of 
equation (3.1) is the strain at a random time ݐ due to loading at time ݐ଴. This term is equal to 
equation (2.2). The last term takes into account the free shrinkage of the specimen. The additional 
loading after the first time of loading ݐ଴ is taken into account by the integral. 

The formulation of superposition assumes that different units of stress increment, imposed on a 
specimen at the same time and for the same duration, result in a same value of creep. In other 
words, a linear relationship is assumed. This is valid for stress ranges in the service condition, see 
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section 2.3. Since part of the creep is irrecoverable, this equation is only valid for stress increments 
and not for stress decrements. 

 
Figure 3.1. Stress versus time, respectively strain versus time of concrete element subjected  

to stress increase after initial time of loading.(Ghali et al., 2002) 

3.2. Aging coefficient 
The integral in equation (3.1) makes the practical use of the equation difficult since a continuous set 
of measurements is required. One can simplify this expression by assuming the incremental stress is 
fully applied at time ݐ଴ and sustained thereafter. This is of course an overestimation compared to 
the original case where the incremental stress is applied over time. To take this overestimation into 
account the dimensionless aging coefficient ߯(ݐ,  .଴) is usedݐ

(ݐ)௖ߝ  = (଴ݐ)௖ߪ  ∙
1 + ,ݐ)߮ (଴ݐ

(଴ݐ)௖ܧ (଴ݐ)௖ߪ∆ + ∙
1 + ,ݐ)߯ (଴ݐ ∙ ,ݐ)߮ (଴ݐ

(଴ݐ)௖ܧ  + ,ݐ)௖௦ߝ   ଴) (3.2)ݐ

The aging coefficient generally has a value between 0.6 and 0.9. (Ghali et al., 2002). It can be 
determined by tables or it can be calculated out of a formula. One of the possible formulas is 
(Taerwe, 2015): 

 
,ݐ)߯ (଴ݐ  =  

∫ ,ݐ)߮ ௖(߬)௧ߪ݀ (߬
௧బ

(଴ݐ)௖ߪ∆ ∙ ,ݐ)߮  ଴) (3.3)ݐ



25 
 

3.3. Age-adjusted effective modulus method 
The concept of an age-adjusted modulus of elasticity was first described by Bažant (1972). Under 
the assumptions of stresses in the normal working range and no unloading, the linear principle of 
superposition, as described in section 3.1, describes the creep phenomenon. The stress-strain 
relation is defined if the compliance function and the free shrinkage, or the creep coefficient, the 
modulus of elasticity and the free shrinkage are known. The age-adjusted effective modulus of 
elasticity can be defined as:  

 
,ݐ)௖തതതܧ (଴ݐ =  

(଴ݐ)௖ܧ
1 + ,ݐ)߯ (଴ݐ ∙ ,ݐ)߮  ଴) (3.4)ݐ

Putting equation (3.4) into equation (3.2) results in (Ghali et al., 2002): 

 
(ݐ)௖ߝ = (଴ݐ)௖ߪ  ∙

1 + ,ݐ)߮ (଴ݐ
(଴ݐ)௖ܧ +  

(଴ݐ)௖ߪ∆
,ݐ)௖തതതܧ (଴ݐ ,ݐ)௖௦ߝ +   ଴) (3.5)ݐ

3.4. Effective modulus method 
A more simple approach compared to the age-adjusted effective modulus method is the effective 
modulus method. The total stress variation is assumed to act at time ݐ଴. The error of this method is 
large compared to a theoretical solution in case aging concrete is studied (Bažant, 1972). The 
concrete properties, and thus also the modulus of elasticity, are then still changing. This leads to a 
significant overestimation, as was already mentioned in section 3.2. Applying the assumptions on 
equation (3.2) results in: 

(ݐ)௖ߝ  = (଴ݐ)௖௧ߪ  ∙
1 + ,ݐ)߮ (଴ݐ

(଴ݐ)௖ܧ + ,ݐ)௖௦ߝ   ଴) (3.6)ݐ

where ߪ௖௧(ݐ଴) is the total stress or: ߪ௖௧(ݐ଴) = (଴ݐ)௖ߪ   Equation (3.6) can also be derived .(଴ݐ)௖ߪ∆ +
from equation (3.2) by taking 1 as value for ߯(ݐ,  :଴). The effective modulus can be defined asݐ

௖,௘௙௙ܧ  =  
(଴ݐ)௖ܧ

1 + ,ݐ)߮  ଴) (3.7)ݐ

Note that this is the inverse of the compliance function, see equation (2.4). By the use of the 
effective modules and the assumption that all the stress is induced at ݐ଴, equation (3.2) becomes: 

(଴ݐ)௖ߝ  =  
(଴ݐ)௖௧ߪ
௖,௘௙௙ܧ

,ݐ)௖௦ߝ +  ଴) (3.8)ݐ
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4. Material models for creep and shrinkage 

There are a lot of material models which are currently used today. The models used in this thesis 
are: CEB-FIP Model Code 1990-1999 (MC90-99) (CEB, 1999), fib Model Code 2010 (MC2010) (CEB-
FIP, 2013), Eurocode 2 (EC2) (NBN EN 1992-1-1, 2005), Bazant’s and Baweja’s B3 model (Bažant & 
Baweja, 2000), Gardner’s and Lockman’s GL 2000 model (Gardner, 2004), and ACI 209.2R-08 
(ACI)(ACI Committee 209, 2008). Some are entirely empirical based, such as the GL 2000 model, and 
others are based on theoretical principles, like the B3 model. There is also a difference in the 
required input data, the validity range, the accuracy and the calculation method. It is not the goal of 
this work to give a complete overview of each model. However, since it is the goal of this work to 
compare the different models against a test base and look at the diverging results, a brief 
comparison of the models will be provided.  

4.1. CEB-FIP Model Code 1990-1999 
MC90-99 is an update of the shrinkage and creep model of the Model Code 1990 (MC90) (CEB-FIP, 
1993). MC90 was based on research by Müller and Hilsdorf (1990). MC90-99 (CEB, 1999) makes a 
distinction between autogenous shrinkage and drying shrinkage but it does not differentiate 
between basic creep and drying creep. Both the model for creep as well as the model for shrinkage 
are valid for normal-weight plain structural concrete (15 ≤ fcm ≤ 120 MPa), which has been moist 
cured for a maximum of 14 days. The environment has a mean ambient relative humidity (RH) 
between 40 and 100 percent, and a temperature between 10°C and 30°C. The model has a 
correction for the time of loading if the temperature differs from 20°C. Doing the calculations of the 
creep model of MC90-99 results in a value for the creep coefficient. The code then proposes a 
formula to calculate the creep function. Note that this formula is slightly different defined then the 
previously stated formula (2.4) for the calculation of the creep function. The reason for this is that 
MC90-99 defines the creep coefficient as the ratio of the creep strain over the elastic strain at 28 
days. The formula proposed by MC90-99 is equal to: 

 
,ݐ)ܬ (଴ݐ =

1
(଴ݐ)௖ܧ

+
,ݐ)߮ (଴ݐ
௖௠ଶ଼ܧ

 (4.1) 

This formula now not only includes ܧ௖(ݐ଴) the modulus of elasticity at loading, but also ܧ௖௠ଶ଼ the 
modulus of elasticity of the concrete at 28 days. 

4.2. FIP Model Code 2010 
Unlike MC90-99, MC2010 (CEB-FIP, 2013) differentiates between autogenous shrinkage and drying 
shrinkage, as well as basic creep and drying creep. The formulas are applicable for normal structural 
concrete (20 ≤ fcm ≤ 130 MPa) between a relative humidity of 40% and 100%. The concrete may not 
be moist cured for longer than 14 days at a normal temperature. The temperature should be 
between 5°C and 30°C, though the model has formulas to deal with temperature effects in the 
range between 0°C and 80°C. Different cement types result in a different degree of hydration at a 
certain time. The model takes this into account for creep by adjusting the time of loading. Normally 
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stresses should not exceed 0.4 times the mean concrete strength at loading in order to remain in 
the linear creep region. The model can however be extended to take nonlinear creep into account 
up to 0.6 times the mean concrete strength. It should be noted that this extension neglects the fact 
that the nonlinearity decreases as the load duration increases. The compliance function can be 
obtained from the calculated creep coefficient according to formula (4.1). 

4.3. Eurocode 2 
The models which are used in EC 2 (NBN EN 1992-1-1, 2005) are a combination of MC90-99 and 
MC2010. The creep model is completely similar to MC90-99. It however has the same extension as 
MC2010 with regard to nonlinear creep. The only difference is that EC2 considers that nonlinear 
creep happens at stresses over 0.45 times the characteristic concrete stress at time of loading. This 
difference results in a small deviation of a constant in the nonlinear creep formula. The shrinkage 
model is also based on MC90-99, although some formulas are different. The compliance function 
can be calculated using formula (4.1). 

4.4. B3 Model 
The model with the strongest theoretical background is the model B3 from Bažant and Baweja. The 
model was first approved as the international RILEM recommendation in (1995) and was later 
updated (Bažant & Baweja, 2000). The B3 model is theoretically developed and calibrated with the 
help of a large computerized database. Unlike the other models, the B3 model gives formulas to 
calculate the creep function instead of the creep coefficient. If wanted, the creep coefficient can be 
calculated from equation (2.4). The largest sources resulting in errors are the effect of the concrete 
composition and the concrete strength on the model parameters. Bažant and Bajewa, however, 
propose a method to update two model parameters based on the results of short-time creep tests 
to reduce these errors. The model is valid for Portland cement which has been cured for at least a 
day with the following characteristics: 

0.35 ≤
ݓ
ܿ

 ≤ 0.85 

2.5 ≤  
ܽ
ܿ

 ≤ 13.5 

17 ≤  ௖݂௠  ≤  (ܽܲܯ ݊݅ ݈݈ܽ)  70

160 ≤  ܿ ≤ 720  (݈݈ܽ ݅݊ ݇݃ ݉ଷ⁄ ) 

In which ௪
௖

 is the water-cement ratio by weight, ௔
௖
 is the aggregate cement ratio by weight, ௖݂௠  is the 

mean compressive strength of a concrete cylinder at the age of 28 days and c is the cement 
content. The use of the model is restricted to stress values smaller than 0.45 ௖݂௠ . The model takes 
the drying creep and the basic creep separately into account. With regards to the shrinkage, the 
formulas have been developed for drying shrinkage only. Autogenous shrinkage is nonetheless 
indirectly taken into account because the database for calibration contained the total shrinkage.  



29 
 

4.5. Gardner Lockman 2000 model 
Gardner and Lockman (2001) proposed the GL 2000 model. This model was later updated by 
Gardner (2004). An update of certain constants was later published by Goel et al. (2007). The 
GL 2000 model is completely empirical. The number of required parameters is minimal. Despite 
this, the model obtains good results (Goel et al., 2007, see also below). No distinction is made 
between autogenous shrinkage and drying shrinkage. Instead, a total shrinkage is calculated. The 
creep component has 3 major terms, from which two are related to the basic creep and the other 
one is related to the basic creep. The model is valid for normal strength concretes with mean 
compressive strengths lower than 82 MPa which are not subjected to self-desiccation (ACI 
Committee 209, 2008). The method can be used irrespective of chemical admixtures or mineral 
by-products, casting temperature, or type of curing (Gardner & Lockman, 2001). The compliance 
function can be calculated similar to the MC90-99 model. 

4.6. ACI 209.2R-08 
The ACI 209R-92 model, with relation to shrinkage and creep, is an empirical model, and was first 
developed by Branson and Christiason (1971). Later it was updated by ACI Committee 209 (1992) 
and the model was reapproved by the ACI in 2008 (ACI Committee 209, 2008). No differentiation is 
made between the different forms of shrinkage and the model also cannot model swelling. 
Likewise, creep is modelled as a whole and is not split up in basic creep and drying creep. The 
models for shrinkage and creep consist out of two parts: a time-development factor and an ultimate 
value. This ultimate value has been developed for a specific, standardised case. Several factors are 
then utilised to correct for situations deviating from the standardised case. This makes it, by far, the 
easiest model. In the end, the compliance function can be calculated from equation (2.4). The 
model is valid for a cement content between 279 and 446 kg/m³ and a relative humidity between 
40% and 100%. If the concrete is moist cured, it should be cured for at least a day. If the concrete 
on the other hand is steam cured, it should be cured between 1 and 3 days. The load should not be 
applied sooner than 7 days and furthermore, the model is only valid for R and RS concrete. (ACI 
Committee 209, 2008)  

4.7. Comparison of the different models 

4.7.1. Parameters 

From the previous sections, it is clear that each model has a different validity range, although there 
is a wide area where they overlap. For MC90-99, MC2010 and EC2 the validity range is almost 
identical. This is logical since MC2010 and EC2 are based on MC90-99. This can also be seen from 
the input these three models require: the required parameters are identical. Table 4.1 and Table 4.2 
show the required input parameters for shrinkage, respectively creep. For both it has been assumed 
that all parameters are known. For example, if the modulus of elasticity at 28 days is unknown, 
most models provide a formula to calculate it from the concrete strength but this approach was not 
considered. Table 4.2 gives the required parameters to come to the compliance function, since it 
would otherwise not be possible to compare the different models: the B3 model is a compliance 
function, while the others are creep coefficient functions. 
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The GL 2000 model requires the least amount of parameters and does not even require the 
concrete compressive strength to calculate the creep coefficient. The ACI model does not require 
the concrete strength at all, neither for the calculation of the shrinkage strain nor the calculation of 
the creep coefficient. A possible reason for this is that the ACI model provides an ultimate value for 
the creep and shrinkage, which is then updated depending on the ruling conditions. The other 
models don’t provide an ultimate value for the creep nor for the shrinkage. Instead they provide 
formula to calculate these values. The ACI model has also a few unique input parameters compared 
to the other models, namely: the slump of fresh concrete, the fine aggregate content, the cement 
content and the air content. The B3 model requires the most parameters. It is the only model which 
takes into account: the shape of the cross-section, the water content, the water-cement ratio, the 
cement content, and the aggregate to cement ratio. It is also the only model which requires the 
modulus of elasticity for the calculation of the shrinkage. 

Table 4.1. Input variables for the different shrinkage models. 

 B3 MC90-99 MC2010 EC2 GL 2000 ACI 
Relative humidity Yes Yes Yes Yes Yes Yes 
End of curing Yes Yes Yes Yes Yes Yes 
Volume to surface ratio Yes Yes Yes Yes Yes Yes 
Concrete strength Yes Yes Yes Yes Yes No 
Cement type Yes Yes Yes Yes Yes No 
Type of curing Yes No No No No Yes 
Shape of cross-section Yes No No No No No 
Modulus of elasticity Yes No No No No No 
Water content Yes No No No No No 
Slump of fresh concrete No No No No No Yes 
Fine aggregate content No No No No No Yes 
Cement content No No No No No Yes 
Air content No No No No No Yes 

Table 4.2. Input for the different creep models resulting in the compliance function. 

 B3 MC90-99 MC2010 EC2 GL 2000 ACI 
Relative humidity Yes Yes Yes Yes Yes Yes 
Age at loading Yes Yes Yes Yes Yes Yes 
Volume to surface ratio Yes Yes Yes Yes Yes Yes 
Modulus of elasticity Yes Yes Yes Yes Yes Yes 
Concrete strength Yes Yes Yes Yes No No 
Cement type Yes Yes Yes Yes No No 
End of curing Yes No No No Yes No 
Type of curing Yes No No No No Yes 
Cement content Yes No No No No No 
Water-cement ratio Yes No No No No No 
Aggregate-cement ratio Yes No No No No No 
Water content Yes No No No No No 
Shape of cross-section Yes No No No No No 
Slump of fresh concrete No No No No No Yes 
Fine aggregate content No No No No No Yes 
Air content No No No No No Yes 
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4.7.2. Accuracy 

In his paper where he gives an update of the GL 2000 model, Gardner (2004) also compared: 
MC90-99 (CEB, 1999), the original B3 model (Bažant & Baweja, 1995), the ACI 209-82 model (ACI 
Committee 209, 1982), and the GL 2000 model (Gardner, 2004). The ACI 209-82 model is an update 
of the original model by Branson and Christiason (1971) and is the version before the ACI 209 R-92 
model. Gardner did two accuracy comparisons using the same RILEM database: one where he 
assumed that all data was available (mix proportions, concrete strength development with age and 
modulus of elasticity) and another one where he assumed that only the mean concrete strength 
was known. For the “all data” comparison he also took into account the stiffness of the aggregates. 
This by back-calculating the concrete strength out of the measured modulus of elasticity using the 
appropriate method valid for the model, and subsequently taking the average of this calculated 
strength and the reported mean concrete strength. He discerned that using all the data, the 
GL 2000 model and the B3 model were the best models to predict shrinkage. For the prediction of 
compliance, the GL 2000 model was the best. If only the mean concrete strength was used, he 
concluded that the GL 2000 model was most accurate in predicting shrinkage. For compliance, the 
B3 model and the GL 2000 model had about the same accuracy. Furthermore, the ACI 209-82 model 
for shrinkage had a lot of scatter as well as an illogical trend: it overestimated at early age and 
underestimated at older ages. He attributed this to a lack of a size term in the time component of 
the shrinkage formula. The ACI 209-82 model was also divergent in the fact that including extra 
information lowered the accuracy of the shrinkage prediction and did not change the prediction of 
the compliance. 

Fanourakis (2011) compared the accuracy of six different models with regards to total creep values, 
including EC2 (EN 1992-1-1, 2004) and both the original GL 2000 model (Gardner & Lockman, 2001) 
as well as the adaption of the model by Gardner (2004). This was done using the calculated values 
for the modulus of elasticity of each of the models. The tested concrete types were typical South 
African concretes. A database containing six different concrete mixes was used for the comparison. 
The measurements were done over a measuring period of 168 days. In order to take the aggregate 
stiffness into account tests were done on samples taken from representative boulders. For the 
prediction of the modulus of elasticity, Fanourakis determined that EC2 was the least accurate of 
the models considered, although the difference with the GL 2000 model was rather small. In 
general it was concluded that the differences between the calculated and measured moduli of 
elasticity were not significant. The GL 2000 model (Gardner & Lockman, 2001) gave the most 
accurate result with regards to creep predictions, followed by EC2 and the adapted GL 2000 model 
(Gardner, 2004). 

The predictions for shrinkage and creep of the original B3 model (Bažant & Baweja, 1995), the 
ACI 209-82 model (ACI Committee 209, 1982), the original GL 2000 model (Gardner & Lockman, 
2001), the MC90 (CEB-FIP, 1993) and the MC90-99 (CEB, 1999) were compared by Goel et al. 
(2007). These creep and shrinkage predictions were compared against the experimental results of 
Russel and Larson (1989). Goel et al. looked only at the results between 365 days and 5000 days, 
since they reasoned that shrinkage and creep are long-term effects. For shrinkage it was concluded 
that the B3 model, the MC90, and the ACI 209-82 model consistently underestimate the 
experimental values. The best results were obtained by the GL 2000 model, followed by both the B3 
model and the MC90-99. The MC90 and the ACI 209-82 model gave the least accurate shrinkage 
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predictions. With regards to the creep, they observed that the B3 model mostly overestimated the 
experimental results. While the MC90, the MC90-99, and the ACI 209-82 model in most cases 
underestimated the creep. Goel et al. (2007) concluded that none of the models is capable to 
predict creep accurately for all grades of concrete and all durations. However, the GL 2000 model 
gave usually the best result. Goel et al. (2007) don’t mention it explicitly, but from their results it 
can be concluded that in the majority of the cases MC90 gives a more accurate prediction than 
MC90-99. 

Bažant and Li (2008b) criticised the way in which models were compared: a model that was 
considered as the most optimal according to one statistical indicator was considered as not optimal 
according to another. They reasoned that the only correct statistical approach to compare creep 
and shrinkage models is to use the method of least squares, which is consistent with the central 
limit theorem. For their comparison they used the NU-ITI Database (Bažant & Li, 2008a), which is an 
extension of the RILEM database. They however did not use the data out of this database as is; they 
described a method of weighing. This was required to compensate for the non-uniform character of 
the data (e.g. there are more short-term tests than long-term tests, there are more tests on 
specimen with a relative low volume over surface ratio than on specimens with a practical volume 
over surface ratio,…). The method they described consists of creating four-dimensional boxes and 
using weight factors for each of the boxes. These boxes are created by splitting up the data in 
intervals of equal statistical weight by: duration of loading (or duration of drying, dependent on 
whether you consider creep or shrinkage), start of loading (or start of drying, dependent on 
whether you consider creep or shrinkage), effective thickness, and relative humidity. This resulted 
unfortunately in boxes that are nearly or completely empty. This then required a deletion of these 
boxes which resulted in an inequality of the relative weights of the boxes and of the data set. This 
problem was still present for three-dimensional boxes. Bažant and Li therefore proposed the use of 
two-dimensional boxes or even one-dimensional boxes. Furthermore, they proposed three possible 
transformations of random variables. The first being a scaling to correct for the strength: the data 
on long-term tests is dominated by older concrete which has a higher water-cement ratio and a 
different admixture use, compared to the currently used concretes. The second follows from the 
observation that relative deformation is less dependent on changes in the concrete composition 
than the total deformation. And the last transformation is motivated by the fact that plots of the 
creep or shrinkage data against the load duration, respectively drying duration, show a 
heteroscedastic character. This requires scaling because the statistical analysis works best when the 
data are homoscedastic. Bažant and Li came to an adapted database by transforming the original 
database by one of the three aforementioned transformations and by converting this transformed 
database to one- or two-dimensional boxes. This adapted database was then used to compare five 
models, including: the B3 model (Bažant & Baweja, 2000), the ACI 209R-92 model (ACI Committee 
209, 1992), the MC90-99 (CEB, 1999), and the original GL 2000 model (Gardner & Lockman, 2001). 
They did comparisons of the models by looking at the coefficients of variation of errors or the 
correlation coefficients (both defined according to standard regression statistics). These 
comparisons were done on different combinations of boxes (one-dimensional or two-dimensional) 
and with or without one of the three possible transformations. In all except one comparison, the B3 
model came out as the best creep and shrinkage model. The original GL 2000 model came out as 
the second best model, followed by the MC90-99 on the third place. The ACI 209R-92 model was 
the worst model according to the comparison. 
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As is clear from the above, many researchers devoted their time to the comparison of the different 
shrinkage- and creep models. It is however also clear that there is not a single comparison using all 
the latest versions of the models e.g.: Goel et al. (2007) used an outdated version of both the model 
B3, as well as the GL 2000 model; Bažant and Li (2008b), while using the updated B3 model, used 
the outdated version of the GL 2000 model; etc. Another problem is that the databases, against 
which the models were compared, contain a lot of short-term creep test, as well as creep tests 
performed primarily on small elements. The comparison which is done in this work is therefore 
quite unique. It is done with the latest versions of the models. But, far more important, the 
comparison is done using long-term data of beams with dimensions which are used in practice. 

 





35 
 

5. Available experimental data 

5.1. Introduction 
The available experimental data is part of the general research programme titled: “The influence of 
the duration of permanent loading on the behaviour of concrete elements, reinforced concrete 
elements and prestressed concrete elements”. The original Dutch title is: “Invloed van de 
werkingsduur van permanente lasten op het gedrag van elementen in beton, in gewapend beton en 
in spanbeton”. The research programme was executed under supervision of: professor Dehousse, 
professor Moenaert, professor Reyntjens, and professor Riessauw. The last one also being the 
spokesman of the research. The programme was funded by “het Fonds voor Collectief 
Fundamenteel Onderzoek” and took place in the laboratories of the universities of: Brussels, Ghent, 
Leuven, and Liège. It is possible to identify the programme by its research number: FKFO no. 547. 

In a first phase, from 1967 until 1972, the tests on reinforced beams have been performed. In a 
second phase, from 1975 until 1980, the tests on prestressed beams were executed. In 1980 extra 
funding was granted in order to extend the programme to also include partially prestressed beams. 

In the first part of this chapter the experimental programme for the reinforced beams is described. 
In the second part the experimental programme for the prestressed beams is described. The idea 
behind both phases was similar; researching the time-dependent phenomena in concrete. The first 
phase (with reinforced beams) focused on the influence of the reinforcement density, while the 
second phase (with the prestressed beams) focused on the influence of the shape of the 
cross-section and the difference between pre-tensioning and post-tensioning. 

This research programme is quite unique; the main focus was on the testing of beams with practical 
dimensions, whereas most of literature focusses on tests performed on small specimens. 
Furthermore, the long-term testing was done up to four and a half years, which is longer than the 
majority of tests reported in literature. As also mentioned above, four laboratories participated in 
the programme, which endorses the extent and the profoundness of the research programme. The 
combination of these three factors makes that this experimental data is invaluable. 

All the experimental data is accessible at the archive of the laboratory Magnel at Ghent university. A 
preliminary analysis of the results of the first phase of this programme has already been done by 
Reybrouck et al. (2015). In this thesis this analysis will be expanded and also extended towards the 
second phase. 

5.2. Reinforced concrete beams 
The tests on reinforced beams were in the first place executed to study the influence of the amount 
of reinforcement and the magnitude of permanent loads on the time-dependent behaviour of 
concrete. More specifically, the tests measured: the evolution of the deflection, the evolution of the 
concrete strain, and the evolution of the crack widths. For this dissertation the measurements of 
the crack widths were omitted. 
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5.2.1. Material properties 

All the reinforced beams were made out of the same concrete composition. All the coarse 
aggregates (gravel), the sand, the cement and the main reinforcement were ordered at the same 
time and were then distributed over the four laboratories. The steel quality of the longitudinal 
reinforcement was equal to BE400a. The stirrups were made out of steel with quality BE220. The 
design mean compressive strength at 28 days on cubes with a side of 200 mm was 35 MPa. This 
resulted in the following concrete composition: 

Gravel 4/16:  1260 kg 
Sand 0/5:  630 kg 
Cement P40:  300 kg 
Water:   150 l 

The cement P40 is an old Belgian cement. In the current European name system it corresponds to 
CEM I 52.5 N (Holcim, 2010; Keulen, 2011). 

5.2.2. Cross-section and reinforcement 

All the reinforced beams had a cross-section of 150 mm by 280 mm. The total length of the beams 
was 3400 mm, and the span was 2800 mm. Each of the four laboratories tested a different section 
type; the only difference between the types was the reinforcement ratio. Table 5.1 gives an 
overview of the structural reinforcement of each type. The reinforcement ratios were determined 
so that failure of the beam would happen due to yielding of the reinforcement (beam types I, II, and 
IV), or due to simultaneous crushing of the concrete and yielding of the reinforcement (beam type 
III). Figure 5.1 shows the detailed reinforcement scheme of beam type IV. Figure 5.2 shows a 
schematic representation of all four beam types. The detailed reinforcement schemes of beam 
types I, II, and III are given in Appendix A. Note that for the detailed analysis, of which the results 
are presented in chapter 7, all the longitudinal reinforcement is taken into account. For example, 
for beam type IV this means that also the four bars of diameter 10 mm in the middle of the beam 
are taken into account (Figure 5.1), in addition to the structural reinforcement which is presented in 
Table 5.1 or Figure 5.2. 

 

Table 5.1. Overview of the structural reinforcement of the four types of reinforced concrete beams. 

 Tensile reinforcement Compression reinforcement 

Type I 
Type II 
Type III 
Type IV 

2 Ø 14 mm 
5 Ø 14 mm 
8 Ø 14 mm 
5 Ø 14 mm 

/ 
/ 
/ 

3 Ø 14 mm 
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Figure 5.1. Detailed reinforcement scheme of beam type IV. The drawing in the top shows a side view of the 
beam. The bottom drawing shows the cross-section of the beam. For your information: “beugels” is the 
Dutch word for stirrups (FKFO no. 547). 

 

  

a) Beam type I b) Beam type II 

  

c) Beam type III d) Beam type IV 

Figure 5.2. Schematic representation of the four different beam types.  
All the beams have a width of 150 mm and a height of 280 mm. 
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5.2.3. Test setup and experimental programme 

5.2.3.1. Static tests 

From each beam type two beams were subjected to a static test in order to determine the failure 
moment. The beams were placed on two supports: on the one side a roller support and on the 
other side a pinned support. The distance between the two supports was 2.800 m. At an age of 28 
days, the beams were subjected to a four point bending test. The two point loads were applied at a 
distance of one third of the left, respectively right support. Figure 5.3 illustrates the four point 
bending test and the resulting moment line, if the moments imposed by the self-weight of the 
beams are neglected. The beams were loaded until their service moment in four steps. These 
service moments were calculated according to the recommendations by CEB (1964). Next, the 
beams were unloaded completely. Similar as before, the beams were again loaded until their 
service moment. The load was then increased in steps of about 5% of the theoretical failure load 
until failure occurred.  

 

Figure 5.3. Test setup of static tests (adaption of figure from FKFO no. 547). 

5.2.3.2. Long-term tests 

The long-term tests were executed in an acclimatised room with a temperature of 20°C ± 1°C and a 
relative humidity of 60% ± 5%. The day after the concrete was casted, the formwork was removed. 
The tests started at an age of 28 days. The beams were kept under permanent loading between 800 
and 1638 days. The test setup can be seen in Figure 5.4, where ܲ represents the force applied by 
the hydraulic jacks. Two identical beams were tested in the same test setup. The beams were kept 
in place 300 mm from their end while two hydraulic jacks pushed the beams away from one 
another. This caused a moment line in both beams similar to the four point bending test described 
in 5.2.3.1. The span was again 2.800 m, and the loads were again applied at one third of the span. It 
is important to note that in the top beam the tensile reinforcement was located in the top of the 
beam, while in the bottom beam the tensile reinforcement was located in the bottom of the beam. 
This means that in the top beam the gravitational forces acted in a different way than in the bottom 
beam. The resulting moment in both beams was thus not identical. That is why, the magnitude of 
the forces applied by the hydraulic jacks was determined, so that the mean moment in the midspan 
of the two beams was equal to the required moment for the test. This method resulted in a 
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deviation smaller than 1% between the actual moment in the beams and the mean moment. Figure 
5.5 is a picture of the test setup of different beams at the Ghent university. 

 
Figure 5.4. Test setup of the long-term tests (FKFO no. 547). 

 
Figure 5.5. Picture of the test setup of the long-term tests at the university of Ghent (FKFO no. 547). 

The beams were first loaded until the calculated service moment, as previously described in part 
5.2.3.1. Next, the beams were unloaded completely. For the second phase, the beams were loaded 
immediately until the calculated service moment. The load was then increased in steps of 
approximately 5% of the theoretical failure load until the desired test moment was obtained. There 
were four different test moments for each beam type: 0.4 −  ,௨,଴ܯ ௨,଴, ± 0.8ܯ ௨,଴, ± 0.7ܯ 0.6
 ௨,଴ is the experimentally determined failure moment by a static test at 28 daysܯ ௨,଴, whereܯ 0.9 ±
(section 5.2.3.1). In total 32 beams were tested under long-term loading, since the beams were 
tested in pairs, there were 16 different test setups. 

In order to keep the loading constant throughout the entire testing period, while the beams were 
subjected to shrinkage- and creep deformations, the hydraulic jacks were connected to high 
pressure accumulators. These accumulators were partially filled with Nitrogen. Deformations in the 
beams caused volume changes of the Nitrogen. This resulted in small pressure variations. The oil 
pressure in the hydraulic jacks was checked regularly and, if required, could be adjusted. 

During the different loading steps and at regular moments throughout the testing period, the 
following measurements were done: 
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 The vertical displacement in five points of the beams (above the supports, under the point 
loads, and in the middle of the span) was measured using dial gauges with a graduation of 
0.01 mm which allowed to determine the absolute displacement of the beams; 

 The strains were measured on the side of the beams at the middle of the span and at 
different locations in the proximity of the upper- and bottom fibre, using a deformeter with 
a measuring base of 200 mm (Ghent and Leuven) or 300 mm (Brussels and Liège); 

 The width of five cracks was measured on each side of the beams, using a measuring 
microscope with graduation of 0.02 mm. 

The location of the measuring points for the four beam types is given in Appendix B. 

5.2.3.3. Static test after long-term test 

In order to determine the failure moment after the long-term tests the beams were first unloaded. 
They remained unloaded for 14 days and were then loaded until failure. The loading was done in 
the following steps: 0.1 ∙ ;௦௘௥,௖௔௟ܯ   0.5 ∙ ;௦௘௥,௖௔௟ܯ  1.0 ∙ ;௦௘௥,௖௔௟ܯ  0.6 ∙ ;௨,଴ܯ  0.7 ∙ ;௨,଴ܯ  0.8 ∙
;௨,଴ܯ  0.9 ∙ ;௨,଴ܯ  1.0 ∙ ௦௘௥,௖௔௟ܯ .௨,଴ܯ  is the service moment calculated according to CEB (1964). ܯ௨,଴ 
is the experimentally determined failure moment by a static test at 28 days (section 5.2.3.1). 

5.2.3.4. Additional tests 

Besides the tests which have been described above, additional tests were performed: 

 Tensile strength tests on reinforcement bars (Ø 14 mm BE400a); 
 Gradation tests for both the sand and the gravel; 
 Tests on the cement (i.a. compression- and flexural strength tests); 
 Tests on fresh concrete; 
 Creep and shrinkage tests on unreinforced prisms (150x150x600 mm); 
 Shrinkage tests on unloaded beams with a span of 1.760 m and a total length of 3.400 m; 
 Compression tests at the age of 28 days and approximately 4 years on cubes 

(200x200x200 mm) and prisms (200x200x500 mm). 

Mainly the data from the compression tests were crucial for the calculation of the time-dependent 
deformations. 

All material models require the compressive strength at 28 days on standard cylinders (diameter of 
150 mm, height of 300 mm). Unfortunately, such tests have not been performed. Using the formula 
by NBN B15-220 (1970) it is possible to determine a conversion factor to transform the compressive 
strength of cubes to an equivalent compressive strength on cylinders: 

 ௫݂

௖݂ ௖௨௕ ଶ଴଴
 = 0.65 + 

0.7

ቆ1 + ܣ√
200ቇ ∙ ൬ ℎ

ܣ√
൰

ଵ .଴ହ 
(5.1) 

in which ௫݂  is the compressive strength of the desired specimen, ௖݂ ௖௨௕ ଶ଴଴ is the compressive 
strength of a cube (200x200x200 mm), ܣ is the cross-section of the specimen in mm, and ℎ is the 
height of the specimen in mm. For a standard cylinder with a diameter of 150 mm and a height of 
300 mm ( ௖݂ ௖௜௟ ), this formula gives: 
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 ௖݂ ௖௜௟ 

௖݂ ௖௨௕ ଶ଴଴
 = 0.65 +  

0.7

ቆ1 + √75ଶ ∙ ߨ
200 ቇ ∙ ൬ 300

√75ଶ ∙ ߨ
൰

ଵ .଴ହ = 0.83 
(5.2) 

Multiplying the compressive strength of cubes by the factor 0.83 thus gives an equivalent 
compressive strength for a standard cylinder. Using this factor, the design compressive stress (see 
section 5.2.1) on a standard cylinder becomes: ௖݂ ௖௜௟,ௗ௘௦௜௚௡ 0.83 ∙ 35 =  .ܽܲܯ 29.75

For each beam type also 2 beams, with a length of 3.400 m, were placed on supports, which were 
spaced 1.760 m apart. These beams remained unloaded throughout the testing period. They were 
used to measure the effects of shrinkage. This pure shrinkage date has not been taken into account 
in this thesis. However, the effects of shrinkage are present in the results of the displacements and 
the strains. 

5.2.4. Results and discussion 

The essence of the compression test results is given in     Table 5.2. The same concrete was tested in 
the four different laboratories. The compressive strength has been measured on cubes with 
dimension of 200x200x200 mm at 28 days and at approximately 4 years. The table also gives the 
ratio between the compressive strength at 4 years and 28 days. The secant modulus of elasticity has 
been measured on prisms with dimensions of 200x200x500 mm at 28 days and approximately 4 
years. Similar as for the compressive strength, the table also gives the ratio of the modulus at 4 
years and 28 days. The compressive strength increases between 10 and 30% over a time period of 4 
years. This is due to extra hydration of the cement after 28 days. Normally, the modulus of elasticity 
should also increase over time (NBN EN 1992-1-1, 2005). This cannot be deduced from the results. 
The values of type I deviate from the expected trend. 

    Table 5.2. Mean compressive strength of cubes (200x200x200 mm) and secant modulus of elasticity 
determined on prisms (200x200x500 mm) for the concrete used for casting the reinforced beams. 

 
Compressive strength [N/mm²] Secant modulus of elasticity [kN/mm³] 

28 days ± 4 years 4 y / 28 d 28 days ± 4 years 4 y / 28 d 

Type I 

Type II 

Type III 

Type IV 

39.4 

35.0 

40.3 

37.7 

51.1 

44.8 

44.6 

41.3 

1.30 

1.28 

1.11 

1.10 

35.5 

31.0 

27.8 

29.2 

29.9 

/ 

35.2 

29.8 

0.84 

/ 

1.27 

1.02 

Mean 38.1 45.5 1.20 31.1 31.6 1.04 

 

Table 5.3 gives an overview of the most important data of the long term-tests. ܯ is the constant 
moment applied throughout the test period, ܯ௨,଴ is the failure moment determined by a static test 
at 28 days, ܯ௨,௧ is the failure moment determined by a static test at time ݐ, ܽ଴ is the instantaneous 
deflection in the midspan, ܽ௧ is the deflection in the midspan at time ߝ ,ݐ௖଴ is the instantaneous 
strain of the outermost compression fibre, and ߝ௖௧ is the strain of the outermost compression fibre 
at time ݐ. For beam type III there is one set of data missing, namely the data for the beams loaded 
at the highest load. Most likely these beams failed before the end of the testing period was 
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reached. Also all the accompanying unreinforced prisms in the creep test failed after only a few 
hours after 90% of the failure load was applied. 

Table 5.3. Summary of the most important data for the long-term tests on reinforced beams. 

ࡹ  ⁄૙,࢛ࡹ  

[%] 

 ࢚,࢛ࡹ

[kNm] 

 ૙ࢇ
[mm] 

 ࢚ࢇ
[mm] 

࢚ࢇ ⁄૙ࢇ  
[ - ] 

࢚ࢉࢿ ⁄૙ࢉࢿ  
[ - ] 

 ࢚
[days] 

 

Type I 

 
૙,࢛ࡹ = ૛ૢ.  ࢓ࡺ࢑ ૢ

58 32.12 - - - - 1450 

72 35.78 6.02 10.29 1.71 2.62 1638 

81 34.86 7.39 11.98 1.62 2.62 1372 

91 33.95 8.94 15.02 1.68 2.66 1342 

 

Type II 

 

૙,࢛ࡹ = ૟૞. ૚ ࢓ࡺ࢑ 

52 70.88 7.27 13.49 1.86 2.79 1426 

59 71.45 7.69 14.10 1.83 2.96 1569 

70 71.11 9.36 17.56 1.88 2.77 1499 

80 68.80 10.72 20.24 1.89 2.74 1513 

90 72.44 13.10 24.23 1.85 2.85 1519 

Type III 

 

૙,࢛ࡹ = ૢૠ. ૡ ࢓ࡺ࢑ 

43 100.76 7.08 14.51 2.06 2.88 1600 

67 101.68 10.58 23.88 2.26 2.72 1600 

77 100.08 13.84 28.74 2.08 2.87 1600 

 

Type IV 

 

૙,࢛ࡹ = ૠ૛. ૡ ࢓ࡺ࢑ 

52 76.05 5.98 10.52 1.76 2.09 800 

70 79.03 8.80 13.90 1.58 2.42 800 

80 77.42 11.16 16.96 1.52 - 1000 

90 79.71 12.85 19.28 1.50 - 1000 

 
From Table 5.3 it is clear that the loading level has no negative influence on the failure moment. 
The failure moment after permanent loading is higher than the failure moment determined at an 
age of 28 days. The main reason for this is probably the previously discussed increase in 
compressive strength. This increase in compressive strength needs to be larger than any possible 
permanent damage caused by the shrinkage- and creep phenomena. Hellesland et al. (1972) 
reported that sustained load levels could: accelerate the hydration process, improve the healing 
conditions of cracks in a direction perpendicular to loading, and increase the Van der Waals forces 
in the concrete due to a closer proximity of the gel particles. All of which lead to an increased 
strength. Coutinho (1977) also reported an increased strength under sustained loading but 
attributed this to a change in the solubility of unhydrated cement. Due to the stress, the solubility 
of the unhydrated cement increases, causing an increased hydration. It can be concluded that the 
exact phenomenon causing an increased failure moment after sustained loading is unclear, but the 
hydration of cement plays an important role. 

The deflection ratios and the strain ratios are independent of the loading level, as can be seen from 
Table 5.3. Table 5.4 contains the mean values of the strain ratios and deflection ratios given in Table 
௦,ଵܣ) ଵ is the tension reinforcement ratioߩ .5.3 ܾ݀⁄ , with ݀ the effective depth), ߩଶ is the 
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compression reinforcement ratio (ܣ௦,ଶ ܾ݀⁄ , with ݀ the effective depth), (1 ⁄ݎ )଴ is the instantaneous 
curvature, and (1 ⁄ݎ )௧  is the curvature at time ݐ. Comparing the results for beam types I, II, and III, 
an increase in the tension reinforcement ratio results in: increased strain-, curvature-, and 
deflection ratios. This is related to the higher absolute levels of loading for the beams with a higher 
tension reinforcement ratio. Comparing beam types II and IV, an increase of the compression 
reinforcement ratio causes a decrease in: strain-, curvature-, and deflection ratios. This is despite 
the fact that the beams with compression reinforcement are loaded a bit higher. The compression 
reinforcement takes part of the compression stresses; therefore, the concrete stresses are lower, 
which results in lower creep levels. 

Table 5.4. Reinforcement ratios, strain ratios, curvature ratios, and  
deflection ratios for the four different beam types. 

 
 ૚࣋
 
[%] 

 ૛࣋
 
[%] 

࢚ࢉࢿ ⁄૙ࢉࢿ  
 

[-] 

(૚ ⁄࢘ ࢚(
(૚ ⁄࢘ )૙

 

[-] 

࢚ࢇ ⁄૙ࢇ  
 

[-] 

 ࢚
 

[days] 

Type I 

Type II 

Type III 

Type IV 

0.83 

2.17 

3.52 

2.17 

0 

0 

0 

1.24 

2.63 

2.82 

2.82 

2.26 

1.75 

1.89 

1.95 

1.75 

1.67 

1.86 

2.05 

1.67 

1450 

1500 

1600 

800 
 

From Table 5.4 it is also clear that, looking per beam type, the curvature ratios and the deflection 
ratios are almost identical. They are both significantly smaller than the strain ratios. This is because 
the strains are measured at the top compression fibre. The deformation is there much larger than 
at the reinforcement zone. This results in a proportionally smaller increase of the curvature 
compared to the strains. The reason why the deflection ratios and the curvature ratios are almost 
identical is because they are related; it is possible to calculate the deflection out of the curvature 
(see section 6.4). This can for example be done using the integrals of Mohr: 

 ܽ௧ =  න ൬
ܯ
ܫܧ

൰
௧

∙ ഥܯ ∙ ݔ݀ = න ൬
1
ݎ

൰
௧

∙ ഥܯ ∙  (5.3)  ݔ݀

where ܯഥ is the moment due to a point load at the location of interest, see Figure 5.6. Between the 
two point loads of a four point bending test the curvature is constant, and thus also the curvature 
ratio is constant. Since ܯഥ is the most important at the middle of the span, which is the location of 
interest, the deflection ratio will be approximately equal to the curvature ratio. 

 
Figure 5.6. Illustration of integrals of Mohr (FKFO no. 547). 
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5.3. Prestressed concrete beams 
The time-dependent behaviour of prestressed beams under permanent loading was also tested. 
Here the focus lied on the influence of: the shape of the cross-section, the type of prestressing 
(post-tensioning or pre-tensioning) , the age at prestressing , the age at loading, and the load level. 
During the testing period the deflections and the deformations were measured. 

5.3.1. Material properties 

Similar as for the reinforced beams the coarse aggregates (gravel), the sand, the cement, the 
prestressing steel, and the passive reinforcement were ordered at the same time and were then 
distributed over the four laboratories. The steel quality of the passive reinforcement was BE400a , 
which is the same as for the reinforced beams. The concrete composition was chosen in order to 
have a design mean compressive strength of 50 MPa, measured on cubes with side of 200 mm at 28 
days. This resulted in the following concrete composition: 

Gravel 4/16:   1250 kg 
Sand 0/5:   570 kg 
Cement P40 (CEM I 52.5 N): 375 kg 
Water:    180 l 

5.3.2. Cross-section, reinforcement, and prestressing 

Each of the prestressed beams that was tested had a total length of 8.40 m and a span of 8.00 m. In 
total three different cross-sections were tested: rectangular, T-shaped, and I-shaped cross-sections. 
All three cross-sections were post-tensioned using a B.B.R.V. cable. Such a cable consisted out of 
several 7 mm diameter wires, with at their end a cold-formed button head (BBR VT International 
Ltd, 2016). These wires were fixed in an anchorage head, which was inside a metal duct before the 
prestressing. As the cable got tensioned by a jack, the anchorage head came out of the duct. When 
the required prestress was obtained, an anchorage nut was screwed on the anchorage head to 
block it (Ritzen, 2006). This anchorage system’s screwing technique prevented the loss of prestress 
due to slip (Taerwe, 1999). Figure 5.7 shows an anchored B.B.R.V. cable.  

 
Figure 5.7.  Anchored B.B.R.V. cable with 1) the anchorage head, 2) grout injection canal, 3) anchorage plate 

with small air vent to evacuate air during grouting, and 4) anchorage nut (Ritzen, 2006). 

The I-shaped cross-section was also pre-tensioned using six prestressing strands of half an inch 
(type 12.7 S T.B.R.). The height for all the cross-sections was equal to 400 mm, resulting in a span to 
height ratio of 20. The prestressing force for each cross-section was determined such that the stress 
level for the different cross-sections was comparable. Table 5.5 gives an overview of the different 
types of prestressed beams that were tested as well as the total initial prestressing force. Note that 
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a beam type is uniquely characterised by its shape and its type of prestressing. Figure 5.8 shows the 
detailed reinforcement scheme of the four types of beams that were tested during the prestressing 
programme. In the analysis of these beams (see chapter 8) all the longitudinal reinforcement was 
taken into account. The I-shaped beams with pre-tensioning had a constant eccentricity of the 
prestressing force over the length of the beam. This was not the case for the post-tensioned beams. 
These had a trapezoidal variation of the location of the cable duct and thus, of the location of the 
prestressing force. The varying eccentricities of the prestressing beams are illustrated in Figure 5.9 
for the four types of beams. 

Table 5.5. Overview of the different combinations of shapes and types of tensioning that were tested. 

Shape Type of tensioning Practical tensioning Total initial  
prestressing force [kN] 

Rectangular (R) post-tensioning B.B.R.V. cable with  
24 Ø 7 mm wires 

1120 

T-shaped (T) post-tensioning B.B.R.V. cable with  
14 Ø 7 mm wires 

684 

I-shaped (I) post-tensioning B.B.R.V. cable with  
16 Ø 7 mm wires 

750 

I-shaped (I) pre-tensioning 6 strands of 1/2 inch 757 

 

  
a) Rectangular beam type with post-tensioning b) T-shaped beam type with post-tensioning 

  
c) I-shaped beam type with post-tensioning d) I-shaped beam type with pre-tensioning 

Figure 5.8. Detailed reinforcement sketch of the four types of prestressed beams.  
        Measurements are in mm. All beams have a height of 400 mm. 
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Figure 5.9. Variation of the prestressing eccentricity over the length of the beams (FKFO no. 547). 

For the post-tensioned beams the prestress was applied from one side in four steps. At the moment 
that the required prestress was obtained, a verification of possible prestress losses was done at the 
other side. If necessary, the cable was tensioned extra at this side. 

The strands which were used for pre-stressing were tensioned between two fixed abutments, a day 
before the casting of the beams, until their required prestressing force. Right before the casting of 
the concrete the strands were tensioned again until their required initial prestressing force. This 
re-tensioning step counterbalanced the loss of prestress due to relaxation of the steel and the 
possible slip between the strands and the anchorages. After the beams were casted and the 
concrete had obtained sufficient strength, the prestress was transferred to the beams. In order to 
have a gradual prestressing, hydraulic jacks were used to gradually loosen the anchorages at the 
abutments. 

The magnitude of the prestressing force was not only decided by the intention to have comparable 
stress levels in the different beam types. During the long-term tests the beams were loaded at: the 
calculated service load, half of the calculated service load, and no load. Under these three loading 
levels it was desired to have the stress distributions which are given in Figure 5.10.  

   
a) No load b) Half of the service load c) Complete service load 

Figure 5.10. Desired stress distributions under different levels of loading (FKFO no. 547). 
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5.3.3. Test setup and experimental programme 

5.3.3.1. Static tests 

From each beam type two beams were subjected to a static test. For the post-tensioned beams the 
prestress on all the beams was applied at 14 days. One beam of each beam type was loaded until 
failure at 28 days and the other beam was loaded at 56 days. Two pre-tensioned beams were both 
loaded until failure at 28 days. One of the two pre-tensioned beams was prestressed at 7 days and 
the other was prestressed at 14 days. 

Immediately after prestressing the beams were placed on two supports: one pinned support and 
one roller support. At the prescribed loading date, the beams were subjected to a four point 
bending test. The two loads were applied 4.00 m away from one another and 2.00 m away from the 
supports, see Figure 5.11. To apply the loads hydraulic jacks were used. A picture of the test setup 
at the university of Ghent can be seen in Figure 5.12.  

The beams were loaded in five steps until the calculated service moments (0.10 ∙ ܳ௦௘௥;  
0.25 ∙ ܳ௦௘௥;  0.50 ∙ ܳ௦௘௥;  0.75 ∙ ܳ௦௘௥;   1.00 ∙ ܳ௦௘௥). Then the beams were unloaded until 0.10 ∙ ܳ௦௘௥. 
Next the beams were loaded in steps of 2.5 kN and 5.0 kN until the load ܳ௪ at which the largest 
crack width was between 0.10 mm and 0.15 mm. Afterwards, ten loading- and unloading cycles 
between 0.10 ∙ ܳ௦௘௥  and ܳ௪ were performed. Finally, the beam is loaded until failure in steps of 
10 kN per hydraulic jack. 

 
Figure 5.11. Test setup for the prestressed beams (FKFO no. 547). 

 
Figure 5.12. Picture of the test setup for prestressed beams at the university of Ghent (FKFO no.547). 
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During each step of the static test the following measurements were done: 

 The vertical displacement in nine points of the beams (above the supports and in seven 
sections with a distance of 1.00 m from one another) was measured using dial gauges with 
a graduation of 0.01 mm which allowed to determine the absolute displacement of the 
beams; 

 The strains were measured on the side of the beams at the middle of the span, at the 
location of the point loads and at different locations in the proximity of the upper- and 
bottom fibre. This was done using a mechanical extensometer with a measuring base of 8 
inches and graduation of 10∙10-6 (Ghent, Liège and Leuven) or 12 inches and graduation of 
6.6∙10-6 (Brussels); 

 After the cracking load was applied, the total number of cracks and their crack widths in the 
zone between the two point loads was measured. This was done using a measuring 
microscope with graduation of 0.02 mm or using a mechanical deformometer with a 
measuring base of 2 inches. 

The location of the measuring points of the deformations and the strains is given in Appendix C. 

5.3.3.2. Long-term tests 

Similar as for the static tests the beams were directly placed on a roller and a pinned support 
immediately after prestressing. The test setup is identical to the test setup of the static tests (see 
Figure 5.11). Throughout the entire testing period the beams were kept in an acclimatised room 
with a temperature of 20°C ± 0.5°C and a relative humidity of 60% ± 3%. After (approximately) 28 
days or 56 days the long-term loading was applied by two hydraulic jacks at the same location as for 
the static tests. The prestressed beams were loaded up to 4.5 years under: the calculated service 
load ܳ௦௘௥, half of the calculated service load 0.5 ∙ ܳ௦௘௥, or no load. Table 5.6 gives an overview of 
the testing programme of the prestressed beams. Note that this is a theoretical overview; a 
deviation of a few days is possible. 

Table 5.6. Overview of the testing programme of the prestressed beams. 

 Rectangular T-shaped I-shaped  
(post-tens.) 

I-shaped  
(pre-tens.) 

Age at 
prestressing [days] 14 56 14 56 14 56 7 14 

Age at loading 
[days] - 28 56 - - 28 56 - - 28 56 - - 28 - 28 

ܳ =  ܳ௦௘௥ - 1 1 - - 1 1 - - 1 1 - - 1 - 1 

ܳ =  ܳ௦௘௥ 2⁄  - 1 1 - - 1 1 - - 1 1 - - 1 - 1 

ܳ = 0 1 - - 1 1 - - 1 1 - - 1 1 - 1 - 

 

In order to keep the loading constant despite the creep and shrinkage deformations the same 
technique as for the reinforced beams was used, see section 5.2.3.2. Note that for the testing of the 
prestressed beams, unlike for the testing of the reinforced beams, the testing did not happen with 
two beams in one test setup. 
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The measurements of the concrete deformations and the vertical displacements was done similar 
as for the static tests at 28 days, see section 5.3.3.1. Also the locations of the measuring points was 
identical to the locations used in the static test. 

After the long-term loading the beams remained unloaded for 6 months. After which they were 
subjected to a static test until failure, similar to the static test at 28 days. 

5.3.3.3. Additional tests 

Besides the tests which have been described above additional tests were performed: 

 Gradation tests for both the sand and the gravel; 
 Tests on the cement (i.a. compression- and flexural strength tests); 
 Tests on fresh concrete; 
 Shrinkage tests on beams with the same length, cross-section and passive reinforcement as 

the beams which were tested under loading in a long-term test, but without the prestress 
and supported at four points instead of two; 

 Shrinkage tests on unreinforced beam sections of two meters; 
 Compression tests at the age of 28 days and approximately 5 years on prisms  

(200x200x500 mm) and cylinders (Ø 150 x 300 mm); 
 Tensile strength tests on 7 mm wires and 1/2 inch strands; 
 Relaxation tests on 7 mm wires and 1/2 inch strands in an acclimatised room (temperature 

of 20°C ± 0.5°C and a relative humidity of 60% ± 3%). 

Mainly the data from the compression tests were crucial for the calculation of the time-dependent 
deformations. 

5.3.4. Results and discussion 

The mean compressive strength measured on cylinders (Ø 150 x 300 mm) and the mean secant 
modulus of elasticity measured on prisms (200x200x500 mm) are given in     Table 5.7 for each 
beam type. The tests were executed at 28 days and at approximately 5 years after casting. The table 
also shows the ratio of the value obtained at 5 years over the value obtained at 28 days. Note that 
the mean ratio was not determined by dividing the mean at 5 years by the mean at 28 days. The 
concrete of the T-shaped type had better properties but was not tested at 5 years. This gives 
distorted results; the mean at 28 days is high compared to the mean at 5 years. Therefore, the 
mean ratio is calculated as the mean of the ratios, producing a result which is independent of the 
concrete of the T-shaped type. 

From     Table 5.7 it is clear that there is an increase in the compressive strength over time, though 
this increase is clearly smaller than for the concrete used in the reinforced beams. With regard to 
the modulus of elasticity there appears to be no evolution in time. Looking at the formulas of the 
time-dependent modulus of elasticity of the different material models, this is against what is 
expected. 
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    Table 5.7. Mean compressive strength of cylinders (Ø 150 x 300 mm) and secant modulus of elasticity 
determined on prisms (200x200x500 mm) for the concrete used for casting the prestressed beams. 

 Compressive strength [N/mm²] Secant modulus of elasticity [kN/mm2] 

28 days ± 5 years 5 y / 28 d 28 days ± 5 years 5 y / 28 d 
Rectangular 38.7 39.0 1.01 31.1 31.0 1.00 

T-shaped 47.1 / / 36.2 / / 

I-shaped 
(post-tens.) 33.1 38.7 1.17 29.2 31.3 1.07 

I-shaped  
(pre-tens.) 34.9 40.6 1.16 34.5 33.4 0.97 

Mean 38.5 39.4 1.11 32.8 31.9 1.01 

 
The results of the static tests after long-term loading for each of the T-shaped beams is given in 
Table 5.8. The results of the other types of beams are given in Appendix D. The first column of the 
tables denotes the name of the beam. For example: T-LD-C-P14-Q31-100%. For the name of the 
beams the following legend is used in the indicated order: 

R, T, and I:   Shape of the cross-section: rectangular, T-shaped, I-shaped; 
LD:   Dutch abbreviation for long-term; 
Pݔ:   Prestressing happens at the time ݔ; 
C, BS:   Type of prestressing system: C stands for the post-tensioned beams and BS 

stands for the pre-tensioned beams; 
Qݔ:   Four point bending loading happens at time ݔ, when absent the beam is not 

loaded; 
0%, 50%, 100%   percentage of the calculated service load at which the beam is loaded. 

Table 5.8. . Results of the static tests after long-term loading of the beams with a T-shaped cross-section. 

 
 .࢒ࢇࢉ,.࢘ࢋ࢙ࡹ

[kNm] 
 ࢘ࡹ

[kNm] 
 ࢚,࢛ࡹ

[kNm] 
࢚,࢛ࡹ ⁄.࢒ࢇࢉ,.࢘ࢋ࢙ࡹ   

[-] 
࢚,࢛ࡹ ⁄࢓,࢕,࢛ࡹ   

[-] 

T-LD-C-P14-Q31-100% 102.0 93 308 3.02 0.99 

T-LD-C-P14-Q28- 50% 102.0 77 319 3.13 1.03 

T-LD-C-P14- 0% 102.0 75 308 3.02 0.99 

T-LD-C-P15-Q56-100% 102.0 77 309 3.03 0.99 

T-LD-C-P14-Q56- 50% 102.0 77 289 2.83 0.93 

T-LD-C-P56- 0% 102.0 80 310 3.04 1.00 

Mean 102.0 80 307 3.01 0.99 
 
The table gives the values of: the calculated service moment ܯ௦௘௥.,௖௔௟., the cracking moment ܯ௥ , the 
failure moment determined in the static test after the long-term loading ܯ௨,௧ , and the failure 
moment determined in a static test at 28 days ܯ௨,௢,௠. What is striking about the table is that the 
cracking moment is below the service moment. This means that the beams which were loaded at 
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100% of the service load in the long-term test were cracked. This table further shows that the 
failure moment does not increase under long-term loading, as was found for the reinforced beams. 

The results of the static tests after long-term loading for the other beams can be found in Appendix 
D. 
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6. Implementation of a cross-sectional calculation 
method to determine the time-dependent effects on 
reinforced and prestressed concrete members 

This chapter gives an overview of the method which was used to calculate: the deflection, the 
strain, the curvature, the stress, and the axial shortening of the beams, which were discussed in 
chapter 5. First, a cross-sectional method will be explained which allows the calculation of the strain 
and the curvature for a beam subjected to a moment and a normal force. Second, this method will 
be expanded, in order to take into account the effects of creep and shrinkage. Next, the influence of 
prestress (and prestress relaxation) will be taken into consideration. Then, the theory of the elastic 
weights will be discussed which allows the calculation of the deflection out of the curvatures. 
Finally, the influence of cracking on the total method will be discussed. The complete method 
discussed here can also be found in the work of Ghali et al. (2002). 

6.1. Cross-sectional method for calculation of strain and 
curvature 

In the sign convention which is adopted here, an axial force ܰ which causes tension is positive. A 
moment ܯ (and the corresponding curvature ߰) that induces tension at the bottom and 
compression at the top is positive. Similar to the axial force, tensile stress ߪ and tensile strain ߝ are 
positive. 

Consider the cross-section with one axis of symmetry given in Figure 6.1. It has different sections. 
Every section ݅ is substituted by its transformed section; the original area of the section ܣ௜   is 
replaced by (ܧ௜ (௥௘௙ܧ ∙ ⁄௜ܣ , in which ܧ௜ is the modulus of elasticity of section ݅ and ܧ௥௘௙  is a 
reference modulus of elasticity. A new cross-section is obtained with modulus of elasticity ܧ௥௘௙  and 
an area equal to the sum of the transformed sections. In the analysis of concrete elements ܧ௥௘௙  can 
be taken equal to modulus of elasticity of one of the concrete sections ܧ௖. Assume that the 
cross-section is subjected to a normal force ܰ anywhere on the axis of symmetry. This normal force 
can be replaced by a statically equivalent normal force ܰ and bending moment ܯ acting at a 
reference point ܱ. The choice of the location of this reference point is free, as long as it is on the 
axis of symmetry. 

 
Figure 6.1. a) Composite cross-section with indication of positive N, M, and y;  

 b) corresponding strain distribution (Ghali et al., 2002). 
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If the strain distribution is assumed linear, and a plane cross-section will thus remain plane, the 
strain at any fibre can be expressed as: 

ߝ  = ைߝ  +  ߰ ∙  (6.1) ݕ

in which ߝை is the strain at the reference point, ߰ is the curvature of the cross-section, and ݕ is the 
vertical distance from the fibre to the reference point. This distance is positive if the considered 
fibre is located below the reference point. When the fibre is located in the ݅th section, the 
corresponding stress at the fibre is: 

ߪ  = ௜ܧ   ∙ ைߝ)  +  ߰ ∙  (6.2) (ݕ

By integration of the stress (and the distance ݕ) the normal force (and the bending moment) on the 
cross-section can be calculated: 

ܰ = න ܣ݀ ߪ = ைߝ ∙ ෍ ൤ܧ௜ න  ൨ܣ݀
௜

+  ߰ ∙  ෍ ൤ܧ௜ න  ൨ܣ݀ ݕ
௜

= ைߝ ∙ ෍[ܧ௜ ∙  [௜ܣ
௜

+ ߰ ∙ ෍[ܧ௜ ∙ ௜ܵ] 
௜

 
(6.3) 

ܯ = න ߪ ∙ ܣ݀ ݕ = ைߝ ∙ ෍ ൤ܧ௜ න  ൨ܣ݀ ݕ
௜

+  ߰ ∙  ෍ ൤ܧ௜ න  ൨ܣ݀ ଶݕ
௜

= ைߝ ∙ ෍[ܧ௜ ∙ ௜ܵ] 
௜

+ ߰ ∙ ෍[ܧ௜ ∙  [௜ܫ
௜

 
(6.4) 

with ௜ܵ  the static moment of section ݅ about an axis through ܱ and ܫ௜  the moment of inertia of 
section ݅ about an axis through ܱ. The summations in equations (6.3) and (6.4) need to be done 
over all the sections of the cross-section. The equations can be rewritten: 

 ܰ = ௥௘௙ܧ  ∙ ܣ) ∙ ைߝ + ܵ ∙ ߰) (6.5) 

ܯ  = ௥௘௙ܧ  ∙ (ܵ ∙ ைߝ + ܫ ∙ ߰) (6.6) 

with ܣ, ܵ, and ܫ respectively: the transformed area of the cross-section, the transformed static 
moment about an axis through ܱ, and the transformed moment of inertia about an axis through ܱ. 
These are calculated using the ratio ܧ௜ ⁄௥௘௙ܧ . Equations (6.5) and (6.6) can be combined in a matrix 
formulation: 

 ቂܰ
ቃܯ = ௥௘௙ܧ  ∙ ቂܣ ܵ

ܵ ቃܫ ∙ ቂ
ைߝ
߰ ቃ (6.7) 

Mostly, ܰ and ܯ are known and it is required to find ߝ଴ and ߰. Equation (6.7) can be rearranged: 

 ቂ
௢ߝ
߰ ቃ =  

1
௥௘௙ܧ

∙ ቂܣ ܵ
ܵ ቃܫ

ିଵ
∙ ቂܰ

ቃܯ =  
1

௥௘௙ܧ ∙ ܣ) ∙ ܫ − ܵଶ) ∙ ቂ ܫ −ܵ
−ܵ ܣ ቃ ∙ ቂܰ

 ቃ (6.8)ܯ

In the case that there is no normal force ܰ, e.g. a simply supported reinforced beam subjected to 
simple bending, ߝை and ߰ can be calculated as follows: 
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ைߝ  =  
−ܵ ∙ ܯ

௥௘௙ܧ ∙ ܣ) ∙ ܫ − ܵଶ) (6.9) 

 ߰ =  
ܣ ∙ ܯ

௥௘௙ܧ ∙ ܣ) ∙ ܫ − ܵଶ) (6.10) 

When the strain in the reference point ߝை and the curvature ߰ of the cross-section have been 
calculated, the strain at any fibre (e.g. the centroid) can be calculated using formula (6.1). The 
concrete stress, respectively the stress in the reinforcement steel, at any fibre can be calculated by: 

௖ߪ  = ௖ܧ   ∙ ைߝ)  +  ߰ ∙  (6.11) (ݕ

௡௦ߪ  = ௡௦ܧ   ∙ ைߝ)  +  ߰ ∙  (6.12) (ݕ

with ܧ௡௦ the modulus of elasticity of the reinforcement steel or in other words the non-prestressed 
steel. 

6.2. Effects of creep and shrinkage on a reinforced section 
without prestress 

The instantaneous strain ߝை(ݐ଴) and the instantaneous curvature ߰(ݐ଴) at the time of load 
application ݐ଴ can be calculated as described by the method in section 6.1. The strain and curvature 
at a random time ݐ after ݐ଴ requires further attention. Due to creep and shrinkage there will be a 
stress redistribution in the reinforced concrete element. The strain and curvature between time ݐ଴ 
and ݐ will change. This is denoted by: ∆ߝ଴ and ∆߰. In order to determine these variations, assume 
that they are restrained by an artificial axial force ∆ܰ and an artificial moment ∆ܯ applied in the 
reference point ܱ. This restraining force and this restraining moment is then removed by applying 
the same force and moment but with an opposite sign: 

 ൤∆ߝை
∆߰ ൨ =   

1
,ݐ)௖തതതܧ (଴ݐ ∙ ܣ̅) ∙ ܫ ̅ −  ܵ̅ଶ) ∙ ൤ ܫ ̅ −ܵ̅

−ܵ̅ ܣ̅
൨ ∙ ቂ−∆ܰ

 ቃ (6.13)ܯ∆−

in which ܧ௖തതത(ݐ,  ଴) is the age-adjusted effective modulus of one of the concrete sections (see sectionݐ
3.3) and ̅ܣ, ܵ̅, and ܫ  ̅ are respectively: the age-adjusted transformed area of the cross-section, the 
age-adjusted transformed static moment about an axis through ܱ, and the age-adjusted 
transformed moment of inertia about an axis through ܱ. These last are calculated using the ratio 
௜ܧ ⁄௥௘௙ܧ  with ܧ௥௘௙  taken equal to ܧ௖തതത(ݐ,  ଴). The reason why the age-adjusted effective modulus isݐ
used instead of the normal modulus of elasticity is because the restraining forces are not applied 
immediately at full strength. Instead, they develop over time. The total restraining force ∆ܰ and the 
total restraining moment ∆ܯ can be calculated by summing up the force and moment required to 
restrain both creep and shrinkage: 

 ቂ∆ܰ
ቃܯ∆ =  ቂ∆ܰ

ቃܯ∆
௖௥௘௘௣

+  ቂ∆ܰ
ቃܯ∆

௦௛௥௜௡௞௔௚௘
 (6.14) 
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If the creep deformation can happen freely, the strain and curvature at the reference fibre between 
,ݐ)߮ would change with respectively ݐ ଴ andݐ (଴ݐ ∙ ,ݐ)߮ and (଴ݐ)ைߝ (଴ݐ ∙  The force and .(଴ݐ)߰
moment required to restrain the creep deformation is equal to: 

 ቂ∆ܰ
ቃܯ∆

௖௥௘௘௣
=  − ෍ ,ݐ)௖పതതതതܧ (଴ݐ

௜

∙ ߮௜(ݐ, (଴ݐ ∙ ൤ܣ௖௜ ܵ௖௜
ܵ௖௜ ௖௜ܫ

൨ ∙ ൤
(଴ݐ)ை,௜ߝ
߰௜(ݐ଴) ൨ (6.15) 

with ܧ௖పതതതത(ݐ, ,ݐ)݅߮ ;݅ ଴) the age-adjusted modulus of elasticity of concrete sectionݐ  the creep (0ݐ
coefficient of concrete section ݅; and ܣ௖௜ , ܵ௖௜  and ܫ௖௜  respectively the area of concrete section ݅ and 
the static and inertia moment through the reference point ܱ of section ݅. The summation is done 
over all the concrete sections. 

Since free shrinkage does not change the curvature, the formula to calculate the restraining force 
and moment is simpler: 

 ቂ∆ܰ
ቃܯ∆

௦௛௥௜௡௞௔௚௘
=  − ෍ ,ݐ)௖పതതതതܧ (଴ݐ

௜

∙ ௖௦ߝ ∙ ൤ܣ௖௜
ܵ௖௜

൨ (6.16) 

with ߝ௖௦ the free shrinkage between time ݐ଴ and ݐ. The summation is again performed over all the 
concrete sections. 

The concrete stress which is required to prevent the creep and shrinkage deformations is equal to: 

௥௘௦௧௥௔௜௡௘ௗߪ  = ,ݐ)௖పതതതതതܧ −  (଴ݐ ∙ ,ݐ)߮) (଴ݐ ∙ (଴ݐ)௖ߝ +  ௖௦) (6.17)ߝ 

where ߝ௖(ݐ଴) is the instantaneous concrete strain which can be calculated using equation (6.1). 
Formula (6.17) can be applied for any fibre.  

Using equations (6.15) and (6.16) to find the total restraining force and moment with equation 
(6.14), allows to calculate the changes in strain ∆ߝை and curvature ∆߰ during the time period ݐ  ଴ݐ −
with equation (6.13). With ∆ߝை, ∆߰ and ߪ௥௘௦௧௥௔௜௡௘ௗ  determined the stress increments due to creep 
and shrinkage can be computed. The stress change for concrete, respectively reinforcement steel, 
at any fibre in any section, is equal to: 

௖ߪ∆  = ௥௘௦௧௥௔௜௡௘ௗߪ  ,ݐ)௖పതതതതതܧ  + (଴ݐ ∙ ைߝ∆) + ݕ ∙ ∆߰) (6.18) 

௡௦ߪ∆  = ௡௦ܧ  ∙ ைߝ∆) + ௡௦ݕ ∙ ∆߰) (6.19) 

For the derivation in this section, it has been assumed that the external forces are all applied at 
time ݐ଴. If this is not the case, the vector ߮௜(ݐ, (଴ݐ ∙ (଴ݐ)ைߝ]  in formula (6.15) needs to be [(଴ݐ)߰
changed by a summation of the instantaneous stresses and strains multiplied with their 
corresponding creep coefficients. A similar adaption, but then only for the strain, needs to be done 
for the term ߮(ݐ, (଴ݐ ∙  .in formula (6.17) (଴ݐ)௖ߝ

6.3. Prestress and prestress loss due to relaxation 
Section 6.1, which allows to calculate the instantaneous deformation, and section 6.2, which allows 
to calculate the time-dependent deformations due to shrinkage and creep, can be easily adapted to 
take into account a prestressing force. First, the influence on the instantaneous deformations will 
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be reviewed, and then second the influence on the deformations due to the time-dependent effect 
of relaxation of the prestressing steel will be discussed. 

6.3.1. Influence on the calculation of the instantaneous deformation 

The prestressing force can be induced into the concrete by one or more layers of prestressed steel. 
Every layer is characterised by its prestressing force ௜ܲ and distance to the reference point ݕ௣௦,௜  
(remember that the ݕ-axis is positive downwards). Assume that the prestress of all the layers is 
induced in the concrete at the same time, the time ݐ଴ at which the external loads are applied. In 
order to apply the method of section 6.1, the prestressing force needs to be converted to an 
equivalent force and moment at the reference point ܱ: 

 

൤ ௘ܰ௤.
.௘௤ܯ

൨  =  

⎣
⎢
⎢
⎢
⎡ ܰ −  ෍ ௜ܲ

௜

 

ܯ −  ෍ ௜ܲ
௜

∙ ௣௦,௜ݕ 
⎦
⎥
⎥
⎥
⎤
 (6.20) 

with ܰ and ܯ defined according to section 6.1 as the equivalent axial force and moment (at the 
reference point) of an external load. The summation needs to be executed over all prestressing 
layers. This calculated vector [ ௘ܰ௤. ܰ] ௘௤.] replaces the original vectorܯ  in equations (6.7) [ܯ
and (6.8): 

 ൤ ௘ܰ௤.
.௘௤ܯ

൨  = ௥௘௙ܧ  ∙ ቂܣ ܵ
ܵ ቃܫ ∙ ቂ

ைߝ
߰ ቃ (6.21) 

 ቂ
ைߝ
߰ ቃ  =  

1
௥௘௙ܧ ∙ ܣ) ∙ ܫ − ܵଶ) ∙ ቂ ܫ −ܵ

−ܵ ܣ ቃ ∙ ൤ ௘ܰ௤.
.௘௤ܯ

൨ (6.22) 

When post-tensioning is used, the area of the metal duct and the prestressing steel should not be 
taken into account for the calculation of ܣ, ܵ, and ܫ. At the moment the prestress is transferred, the 
duct is usually not yet grouted. Therefore, there is no compatibility of strains and the prestressing 
steel can move independent of the concrete.  

Additional changes to the method described in section 6.1 are not required. The equations to 
calculate the instantaneous strain and curvature of the concrete stay the same, as do the equations 
to calculate the stress in the concrete and in the non-prestressed steel. The stress in the 
prestressing steel, immediately after prestress transfer to the concrete, can be calculated as 
follows: 

(଴ݐ)௣௦ߪ  = .௣௦,   ௜௡௜௧ߪ  + ௣௦ܧ ∙ (଴ݐ)ைߝ) + (଴ݐ)߰  ∙  ଴) (6.23)ݐ

where ߪ௣௦,   ௜௡௜௧. Is the initial prestress in the steel before force transfer, ܧ௣௦ is the modulus of 
elasticity of the prestressing steel and ߝை(ݐ଴) and ߰(ݐ଴) are calculated according to formula (6.22). 
The second part of equation (6.23) represents the change in stress due to the elastic shortening of 
the concrete when the prestress is transferred. This instantaneous loss is not present when 
post-tensioning is applied due to the incompatibility of strains. 
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6.3.2. Effect of relaxation of steel on the time-dependent deformation 

Remember the assumption of section 6.3.1 that the prestress is applied at the same time as the 
external loads are applied, namely the time ݐ଴. The method which was described in section 6.2 still 
holds for a prestressed section. The formula to calculate the restraining forces just needs to be 
expanded to take into account the relaxation of the prestressing steel: 

 ቂ∆ܰ
ቃܯ∆ =  ቂ∆ܰ

ቃܯ∆
௖௥௘௘௣

+ ቂ∆ܰ
ቃܯ∆

௦௛௥௜௡௞௔௚௘
+  ቂ∆ܰ

ቃܯ∆
௥௘௟௔௫௔௧௜௢௡

 (6.24) 

The contribution of the relaxation of the prestressing steel to the restraining forces can be 
calculated by: 

 ቂ∆ܰ
ቃܯ∆

௥௘௟௔௫௔௧௜௢௡
=  ෍ ൤

௣௦,௜ܣ ∙ ௣௥,పതതതതതതߪ∆
௣௦,௜ܣ ∙ ௣௥,పതതതതതതߪ∆ ∙ ௣௦,௜ݕ

൨
௜

 (6.25) 

with ܣ௣௦,௜ the cross-section of the ݅th prestressing layer, ݕ௣௦,௜  the vertical distance between the ݅th 
layer and the reference point ܱ (positive if the layer is below ܱ), and ∆ߪ௣௥,పതതതതതത the reduced relaxation 
of the prestressing steel in the ݅th layer during the time period ݐ −  :଴ݐ 

ത௣௥ߪ∆  =  ߯௥ ∙  ௣௥ (2.8)ߪ∆

where ߯௥ is a dimensionless factor which is smaller than one, and ∆ߪ௣௥  is the prestressing loss in an 
ideal case.  

The rest of the calculation method described in section 6.2 is similar. One should only remember to 
correct ̅ܣ, ܵ̅, and ܫ  ̅ for the metal duct in case of post-tensioning. From the moment the duct is 
grouted the prestressing steel can be taken into account for the calculation of ̅ܣ, ܵ̅, and ܫ.̅ The grout 
should not be taken into account; it is not prestressed and will crack when tension is induced in it 
(Taerwe, 2015). 

The stress loss in the prestressed steel during the time period ݐ −  :଴ can be calculated as followsݐ 

௣௦ߪ∆  = ത௣௥ߪ∆   + ௣௦ܧ  ∙ ൫∆ߝை + ௣௦ݕ ∙ ∆߰൯ (6.26) 

with ∆ߝை and ∆߰ calculated according to equation (6.13) and (6.24). Due to the presence of non-
prestressed reinforcement this loss is smaller than in a theoretical member with only prestressed 
steel. The non-prestressed steel takes part of the compressive force which is induced in the 
concrete by the prestressing steel. As the compressive stress in the concrete reduces over time due 
to relaxation, this compressive stress is redistributed to the non-prestressed steel, where the 
compressive stress increases. Therefore, the compressive stress in a member with non-prestressed 
steel is smaller than in the case no non-prestressed steel would be present. The presence of non-
prestressed steel also influences the strain and curvature. Since, the steel does not want to deform 
the strain and curvature will be smaller. 
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6.4. Calculation of deflection: method of elastic weights 
Once the curvature over the length of the beam is known, it is possible to calculate the deflection of 
the beam using the method of elastic weights. The beam is replaced by a conjugate beam. The 
beams which are studied in this dissertation are isostatic beams. In the case of an isostatic beam, 
the conjugate beam is identical to the original beam, but the load on the beam is replaced by a 
transversal distributed load equal to the curvature, see Figure 6.2. If the curvature is positive 
(elongation at the bottom and compression at the top) the applied load needs to act vertically 
downwards. The shear force ܸ and the moment ܯ at a certain point in the conjugated beam are 
equal to respectively the rotation ߠ and the deflection ܦ at the corresponding point in the original 
beam. 

 
Figure 6.2. a) Isostatic beam with indication of deflection and rotation;  

 b) conjugate beam with distributed load ࣒ (Ghali et al., 2002). 

In the case this method is applied in numerical calculations, the continuous loading needs to be 
discretised. This can be done by uniformly dividing a number of nodes over the length of the beam. 
In the nodes an equivalent concentrated load ܳ is applied. The load at a node ݅ (ܳ௜) is opposite in 
sign, but with the same magnitude, as the sum of the reactions on node ݅ from two simply 
supported beams, from ݅ − 1 to ݅ and from ݅ to ݅ + 1, carrying the same load as the conjugate 
beam, see Figure 6.3. In case of a distributed load which has a parabolic variation,  Figure 6.4 gives 
the equivalent concentrated loads. 

 
Figure 6.3. Transition from (a) a distributed loading  to  

 (b) an equivalent concentrated loading (Ghali et al., 2002). 
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 Figure 6.4. Equivalent concentrated loads in case the  
distributed load varies parabolically (Ghali et al., 2002). 

By the use of the principle of concentrated loads, it is possible to derive a set of simplified equations 
which allows to determine the elongation (ܦଵ), the end rotations (ܦଶ & ܦଷ), and the deflection at 
the middle (ܦସ) of a beam or a section of a beam, see Figure 6.5 (a). The input for these equations 
are the strain at the centroid of the cross-section ߝ௖௘௡௧௥. and the curvature ߰. These need to be 
known at three points, see Figure 6.5 (b). 

 
Figure 6.5. a) Simply supported beam with span ࢒ and b) its two section equivalent (Ghali et al., 2002). 

If ߝ௖௘௡௧௥. and ߰ vary linearly between consecutive sections, which is the case in a four point bending 
test, the elongation, the end rotations and the deflection at the middle can be calculated according: 

ଵܦ  =  
݈
4

 ∙ [1 2 1] ∙  (6.27) {.௖௘௡௧௥ߝ}

ଶܦ  =  
݈

24
 ∙ [1 6 5] ∙ {߰} (6.28) 

ଷܦ  =  
݈

24
 ∙ [5 6 1] ∙ {߰} (6.29) 

 
ସܦ =  

݈ଶ

48
 ∙ [1 4 1] ∙ {߰} (6.30) 

 
with {ߝ௖௘௡௧௥.} =  ൥

௖௘௡௧௥.,ଵߝ
௖௘௡௧௥.,ଶߝ
௖௘௡௧௥.,ଷߝ

൩ and {߰} =  ൥
߰ଵ
߰ଶ
߰ଷ

൩ (6.31) 
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6.5. Curvature due to bending for cracked sections 
The tensile strength of concrete is low compared to its compressive strength. Therefore, most non-
prestressed concrete beams crack at the moment loading is applied. Cracked concrete is no longer 
able to transfer tensile forces. The forces which are applied at a cross-section, thus need to be 
resisted by the concrete in compression and the reinforcement. The cracks will be distributed over 
the length of the concrete. Cracked cross-sections are alternated by uncracked sections. In the 
uncracked sections the tensile stress is lower than the tensile strength of the concrete. In these 
sections, the concrete that is in tension also contributes to the resistance against the forces, and 
thus it contributes to the stiffness. 

For the analysis of cracked members two ideal states are considered. State 1 is the uncracked state 
in which the entire concrete cross-section is considered for the calculation of the stiffness. In this 
state there is compatibility between the strains of the concrete and the reinforcement steel. This is 
the state which has been studied up until now. State 2 is the fully cracked state. All the concrete in 
tension is ignored; only the concrete in compression and the reinforcement are taken into account 
for the calculation of the stiffness. The actual state will be somewhere in between these two states 
and thus interpolation will be required. 

First, state 2 will be considered and the neutral axis, at which the strain is zero, will be determined. 
This will allow to calculate the required parameters (e.g. the stiffness) of state 2. Second, the 
interpolation principle will be explained in order to calculate the curvature and the deflection. 

The derivation for a prestressed concrete section will not be performed. Prestressed elements are 
generally designed in such a manner that the stress in the concrete never reaches the tensile 
strength of the concrete. This will be checked in chapter 8 for the studied prestressed beams and it 
will be concluded that this is indeed the case for the studied beams. 

6.5.1. Determination of the neutral axis 

Figure 6.6 (a) shows a concrete cross-section with a random shape and several reinforcement 
layers. At an arbitrary reference point ܱ an axial force ܰ and a moment ܯ are applied so that the 
top of the cross-section is in compression and the bottom is in tension. 

 
Figure 6.6. a) Concrete section with random shape and indication of the neutral axis; b) corresponding  

        strain of the section; c) corresponding stress of the cross-section (Ghali et al., 2002). 
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The strain at any fibre, located at a distance ݕ from the reference point ܱ, due to ܰ and ܯ can be 
calculated according to formula (6.1): 

ߝ  = ைߝ  +  ߰ ∙  (6.1) ݕ

The vertical coordinate of the neutral axis can be calculated as: 

௡ݕ  =  ை/߰ (6.32)ߝ − 

Keeping in mind that the cracked concrete is no longer able to transfer tensile forces, the stress in 
the concrete becomes: 

 
௖ߪ =  ቐ

௖ܧ ∙ ൬1 −
ݕ
௡ݕ

൰ ∙ ݕ ݎ݋݂          ைߝ < ௡ݕ

ݕ ݎ݋݂                                        0 ≥  ௡ݕ
 (6.33) 

The stress of a reinforcement layer at a vertical distance ݕ௡௦ away from the reference point ܱ can 
be determined by: 

௦ߪ  = ௦ܧ  ∙ ൬1 −
௡௦ݕ

௡ݕ
൰ ∙ ைߝ  (6.34) 

The integration of the concrete stresses and the summation of the steel stresses needs to result in 
the axial force ܰ. Taking the moment of these stresses around an axis through the reference point 
ܱ needs to result in the moment ܯ: 

 
ܰ = ைߝ  ∙ ቊܧ௖ ∙ න ൬1 −

ݕ
௡ݕ

൰
௬೙

௬೟

∙ ܣ݀ ௡௦ܧ + ∙ ෍ ௡௦ܣ ∙ ൬1 −
௡௦ݕ

௡ݕ
൰ቋ (6.35) 

 
ܯ = ைߝ  ∙ ቊܧ௖ ∙ න ݕ ∙ ൬1 −

ݕ
௡ݕ

൰
௬೙

௬೟

∙ ܣ݀ + ௡௦ܧ  ∙ ෍ ௡௦ܣ ∙ ௡௦ݕ ∙ ൬1 −
௡௦ݕ

௡ݕ
൰ቋ (6.36) 

with ݕ௧ the vertical coordinate of the top fibre, ݀ܣ an elemental area of concrete in compression, 
 ௡௦ the modulus ofܧ ௖ the modulus of concrete, andܧ ,௡௦ the steel area of a reinforcement layerܣ
the reinforcement steel. The summations need to happen over all the reinforcement layers. 

Solving (6.35) and (6.36) as a set of equations results in the vertical coordinate of the neutral axis 
 :௡௦. Divide for example equation (6.36) by equation (6.35)ݕ

 ∫ ݕ ∙ ௡ݕ) − ௬೙(ݕ
௬೟

∙ ܣ݀ + ߙ  ∙ ∑ ௡௦ܣ ∙ ௡௦ݕ ∙ ௡ݕ) − (௡௦ݕ

∫ ௡ݕ) − ௬೙(ݕ
௬೟

∙ ܣ݀ + ߙ  ∙ ∑ ௡௦ܣ ∙ ௡ݕ) − (௡௦ݕ
− ݁ = 0 (6.37) 

where equivalence coefficient ߙ is equal to ா೙ೞ
ா೎

 and eccentricity ݁ is the ratio of the moment over 

the axial force ெ
ே

. Note that it is not the individual value of ܰ and ܯ that decides the location of the 

neutral axis but their ratio. 

In the case there is no axial force ܰ, like e.g. a simply supported non-prestressed beam only 
subjected to bending, ݕ௡௦ can be calculated simpler by substituting ܰ by zero in equation (6.35): 
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 න ൬1 −
ݕ
௡ݕ

൰
௬೙

௬೟

∙ ܣ݀ + ߙ  ∙ ෍ ௡௦ܣ ∙ ൬1 −
௡௦ݕ

௡ݕ
൰ = 0 (6.38) 

The meaning of this equation is that the static moment of the transformed fully cracked section 
around the neutral axis is zero. In other words the neutral axis is the centre of the transformed fully 
cracked section. Remember that for a fully cracked section only the reinforcement steel and the 
concrete in compression are taken into account. 

In case of a rectangular cross-section formula (6.38) can be simplified. Define for example a 
temporary axis system with the origin at the top and the y-axis positive downwards. Assume that ݔ௘ 
is the distance from the top fibre to the neutral axis or in other words assume that ݔ௘ is the depth 
of the compression zone. Formula (6.38) then becomes (Taerwe, 2013): 

 1
2

∙ ܾ ∙ ௘ݔ
ଶ + ߙ) − 1) ∙ ௦ଶܣ ∙ ൫ݕ௡ − ௡௦,ଶ൯ݕ = ߙ ∙ ௦ଵܣ ∙ ௡௦,ଵݕ) −  ௡) (6.39)ݕ

where ܾ is the width of the cross-section, ܣ௦ଶ is the area of the compression reinforcement, ݕ௡௦,ଶ is 
the distance from the top fibre to the centre of the compression reinforcement, ܣ௦ଵ is the area of 
the tensile reinforcement, and ݕ௡௦,ଵ is the distance from the top fibre to the centre of the tensile 
reinforcement. ݕ௡ can then be calculated out of ݔ௘ by transforming ݔ௘ to the original axis system. 

Section 6.1 and section 6.2 explained the calculation method for uncracked sections (state 1). If the 
neutral axis is determined, as explained in this section, the cross-sectional properties (A, S, and I) 
can be updated. The method of section 6.1 and section 6.2 can then be repeated for the calculation 
of the cracked section (state 2). 

6.5.2. Tension stiffening 

A concrete cross-section subjected to bending will crack at the moment the stress in the outermost 
tensile fibre becomes equal to the mean tensile strength of the concrete ௖݂௧௠ (Taerwe, 2013). The 
bending moment just before cracking is equal to: 

 
௥ܯ =  ௖݂௧௠ ∙ ܫ ̅

௡௧ݕ
 (6.40) 

in which ܫ  ̅ is the time-dependent transformed section of state 1 and ݕ௡௧ is de vertical distance 
between the neutral axis and the outermost tension fibre. 

In a cracked section the steel stress will be maximum at the location of a crack and will be minimum 
in between cracks, since the concrete still contributes to the stiffness in the cracked sections. The 
mean strain in the tensile reinforcement ߝ௦௠   is thus related to the degree at which cracking 
occurred. Therefore it can be interpolated out of the reinforcement strain of state 1 ߝ௦ଵ (uncracked) 
and the reinforcement strain of state 2 ߝ௦ଶ (totally cracked): 

௦௠ߝ  =  (1 − (ߞ ∙ ௦ଵߝ + ߞ  ∙  ௦ଶ (6.41)ߝ

 
 



64 
 

in which: 

 
ߞ = 1 − ଵߚ ∙ ଶߚ ∙ ൬

௥ܯ

ܯ
൰

ଶ

 (6.42) 

in which ܯ is the moment at the critical section, ߚଵ is a constant which is equal to 1 for high bond 
bars, which is the case for the studied beams, and ߚଶ is a constant which is equal to 0.5 for 
sustained loading. 

If a similar effect is assumed on the mean curvature ߰௠  it can also be interpolated out of the 
curvatures of state 1 and 2 (߰ଵ, respectively ߰ଶ): 

 ߰௠ = (1 − (ߞ ∙ ߰ଵ + ߞ ∙ ߰ଶ  (6.43) 

where ߰ଵis the curvature out of the cross-sectional parameters of an uncracked section (state 1) 
and ߰ଶ is the curvature out of the cross-sectional parameters of a cracked section (state 2). 

Figure 6.7 gives a visual representation of equation (6.43). Once the moment surpasses the cracking 
moment the curvature is interpolated out of two straight lines which represent the uncracked 
section and the cracked section. The horizontal plateau BC is related to the formulation of the 
tension stiffening factor ߞ. 

 

 
Figure 6.7. Visual representation of equation (6.43) (adapted from Ghali et al., 2002). 
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7. Modelling of the time-dependent performance of 
tested reinforced beams; results and discussion 

Using the methods discussed in chapter 6 in combination with the material models discussed in 
chapter 4, the time-dependent behaviour of the reinforced beams of the available dataset (section 
5.2) is studied. Six models have been used: GL 2000, MC9099, MC2010, ACI, EC2, and B3. First, the 
shrinkage model was studied on itself. Similarly, also the creep model was studied on itself. Next, 
the predictions of the time-dependent behaviour according to these six models versus the actual 
measured values of the dataset were reviewed. The difference between the use of a simplified 
aging coefficient and a calculated aging coefficient was examined. Finally, also the influence of the 
use of a nonlinear creep calculation was investigated. 

7.1. Comparison of shrinkage predictions 
In Figure 7.1 the shrinkage strain of the six models is plotted up to 1638 days, which is the last day 
until which static long-term test were executed. Note that the shrinkage strain is negative, in 
agreement with the sign convention explained in section 6.1. The material parameters necessary for 
the models can be derived from the information given in section 5.2. The mean of the four types of 
beams was chosen for: the mean concrete strength ௖݂௠ଶ଼, the modulus of elasticity of concrete 
 ௖௠ଶ଼, and the nominal size ℎ. As an overview Table 7.1 gives four important parameters which areܧ
used in all material shrinkage models (except for ௖݂௠ଶ଼ which is not used by ACI). The ACI model 
requires, among other parameters, the air content and the slump factor. These two parameters 
have not been determined. For the air content a value of 2% was assumed and this value has been 
used for all the following calculations. For the slump factor a value of 300 mm was assumed and this 
value has also been used for all the following calculations. 

Table 7.1. Overview of important input parameters for the material shrinkage models. 

Mean concrete strength at 28 days ௖݂௠ଶ଼ 31.6 MPa 

Nominal size ℎ 95.3 mm 

Relative humidity ܴ60 ܪ% 

End of curing ݐ௖  1 day 
 

All models except for model B3 have a very similar prediction for the shrinkage at 1638 days. Note 
that the shrinkage models for MC2010 and MC90-99 are completely identical; therefore, the curve 
for MC90-99 is not visible in Figure 7.1. EC2 follows a somewhat similar approach as MC2010 and 
MC90-99, and some of the formulas are approximately similar. Yet, EC2 has a much more 
pronounced S-shape. The GL 2000 model is the easiest model to calculate shrinkage. Despite this, it 
predicts the shrinkage strain quite similar to MC2010 and MC90-99, which are more difficult to 
calculate. Model B3 is the only model that uses the modulus of elasticity at 28 days for the 
calculation of the shrinkage strain. The prediction of the shrinkage strain for model B3 is 
significantly lower than for the other models. The reason for this is unclear. The difference between 
the GL 2000 model, which is the highest predicting model, and the B3 model is more than 50%. 
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The shrinkage test executed on concrete prisms (150x150x600 mm) for 1600 days resulted in a 
shrinkage strain of approximately 0.0004 (FKFO no. 547). All the models overestimated this 
shrinkage. It can be concluded that model B3, which gave the lowest prediction, is the most apt to 
describe the shrinkage of the concrete used for the reinforced beams. 

 

 
Figure 7.1. Semi-logarithmic plot of the shrinkage strains versus time up until 1638 days. 

7.2. Comparison of creep predictions 
Figure 7.2 shows the creep coefficient, according to the six models, up to 1638 days. The first part 
of the curves is equal to zero. The load is applied at 28 days and thus there is no loading before 28 
days and hence, also no creep. The same input as in section 7.2 was used for the calculations. 

The MC90-99 curve is almost indistinguishable from to the EC2 curve. This is not surprising; after all 
their mathematical formulations are almost identical. One of the small differences is the correction 
which is applied to two factors (߮ோு  and ߚு).; both of them being factors dependent on the 
notional size and the relative humidity. MC90-99 applies the correction for all strength classes of 
concrete, while EC2 applies the corrections only if the mean concrete strength is larger than 
35 MPa. Another small difference is the use of an adjusted time of loading ݐ଴,௔ௗ௝.. EC2 clearly 
subscribes for which formulas this adjusted time of loading should be applied and for which 
formulas it should not be applied. MC90-99 does not have such a clear division. For the values of 
the creep coefficient according to MC90-99 in Figure 7.2 the adjusted time of loading ݐ଴,௔ௗ௝. was 
applied at every instance the time of loading ݐ଴ was required.  

For the type of concrete which was used and for the time period which is represented in Figure 7.2 
the highest creep coefficient is obtained by model B3 and the lowest creep coefficient is obtained 
by the ACI model. 
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Figure 7.2. Semi-logarithmic plot of the creep coefficients versus time up until 1638 days. 

The creep deformation on unreinforced prisms (150x150x600 mm) was measured under a loading 
of 50% and 70% of the prism compression strength. This loading was applied from 28 days up until 
550 days. The reported mean creep coefficient was 2.20. Figure 7.3 shows the creep predictions up 
until 550 days. Table 7.2 shows the calculated creep coefficient for the different models, as well as 
the relative difference ∆ which is defined as: 

 ∆ =  
߮௖௔௟௖. − ߮௠௘௔௦.

߮௠௘௔௦.
 (7.1) 

 
Table 7.2. Calculated creep coefficients at 550 days and relative difference. 

 ߮௖௔௟௖. ∆ 
GL 2000 1.979 -0.101 
MC90-99 2.269 0.031 
MC2010 2.108 -0.042 
ACI 2.027 -0.078 
EC2 2.248 0.022 
B3 2.394 0.088 

 

GL2000, MC2010, and ACI underestimate the creep coefficient at 550 days. MC90-99, EC2, and B3 
overestimate the creep coefficient. What is somewhat surprising is that the worst prediction is 
made by the GL2000 model. This is in contrast with the generally good predictions of the model 
reported in literature (see section 4.7.2). Model B3 overestimates the measured value most 
severely. This is as is expected from literature (see again section 4.7.2). The best prediction is done 
by EC2 which gives only a relative difference of 0.02. 

The curve of the creep coefficient calculated according to MC90-99 has a somewhat peculiar 
behaviour just after loading, where it temporarily remains zero. This is related to the assumption 
with regard to the use of the adjusted time of loading ݐ଴,௔ௗ௝.. In the other creep models the creep 
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coefficient is set to zero if the time is smaller or equal to the time of loading ݐ଴. With the 
assumption about the adjusted time of loading ݐ଴,௔ௗ௝. being used for all the formulas which require 
 ଴,௔ௗ௝.. If this wouldݐ ଴, the creep coefficient for MC90-99 is set to zero if the time is smaller thanݐ
not be done, calculating the creep coefficient for times between ݐ଴ and ݐ଴,௔ௗ௝. would result in 
complex values. To mitigate this deviating behaviour for MC90-99 ݐ଴,௔ௗ௝. is henceforth only used in 
the formula which is stated by EC2. If a new plot would be made, the MC90-99 curve would lie even 
closer to the EC2 curve than it does now. Therefore MC90-99 will often not be plotted in the figures 
which can be found later in this chapter. 

 
Figure 7.3. Semi-logarithmic plot of the creep coefficients versus time up until 550 days. 

As extra information Figure 7.4 shows the creep coefficient curves up to 274 years. The curves for 
MC90-99, EC2, and ACI flatten out. This is in contrast to the curves according to B3, GL2000, and 
MC2010. These last three exhibit a linear behaviour after about 2000 days. 

 
Figure 7.4. Semi-logarithmic plot of the creep coefficients versus time up until 274 years. 
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7.3. Predictions of calculation models versus available 
measurements 

7.3.1.Assumptions 

The deflections and the strains of the different types of reinforced beams were predicted and 
compared against the measurements of the long-term tests. In order to do this a cross-sectional 
method which uses the age-adjusted effective modulus was used (see chapter 6). This method 
assumes a linear relation between stress and strain. For the calculation of the deflection according 
to the method of the elastic weights the beams were split up in sections. The number of sections 
was determined by two opposing constraints: being accurate and keeping the calculation time 
reasonable. It was determined that 30 sections (section length of less than 10 cm) was a good 
compromise; for a further gain in accuracy the number of sections would have needed to be 
increased drastically. 

The method of chapter 6 requires: the shrinkage strain, the modulus of elasticity, and the creep 
coefficient; all at different moments in time. These three were calculated according to the different 
material models. For the calculation of the modulus of elasticity at different times EC2, MC2010, B3, 
and MC90-99 prescribe formulas consisting out of a time function multiplied with the modulus of 
elasticity at 28 days. This modulus of elasticity at 28 days can be estimated using formulas, but in 
order to obtain a higher accuracy it was chosen to take the measured modulus of elasticity 
depending on the beam type. If for example a beam of type I was calculated, the modulus of 
elasticity of beam type I was chosen (instead of the mean modulus of elasticity of all the beam 
types). Note that the ACI model and the GL 2000 model do not require the modulus of elasticity at 
28 days. Instead of a time function multiplied with the modulus of elasticity at 28 days, their 
formulas contain the time-dependent mean compressive strength of the concrete, which is 
calculated out of the mean compressive strength at 28 days. For this compressive strength at 28 
days the measured values depending on the beam type were used, similar as for the modulus of 
elasticity at 28 days. This method was also used at any other moment the compressive strength was 
required. 

In all the calculations the tangent modulus of elasticity was used as prescribed by EN 1992-1-1 
(2004, section 3.1.4) (except for the calculation of the shrinkage strain and the creep compliance 
according to the B3 model). The time-dependent influence of the modulus of elasticity is thus 
assumed to be encompassed by the creep – and aging coefficients.  

The determination of the aging coefficient ߯(ݐ,  ଴) for the age-adjusted effective modulus requiresݐ
extensive calculations. For a first analysis it was assumed that the aging coefficient was constant 
and equal to 0.8. This simplification reduced the calculation time by about a factor five.  

When the depth of the cracked zone is determined in hand calculations (e.g. Taerwe, 2013) this is 
done using the long-term equivalence coefficient ߙ with a value between 15 and 21. In order to be 
more accurate here, the depth of the cracked zone was determined using the age-adjusted effective 
modulus with a creep coefficient determined for the end of loading of the studied beam. 

The long-term tests on reinforced beams were executed on pairs of beams, see Figure 5.4. The 
results of the tests were always presented as the mean of the results of the pair. By opting for this 
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approach the influence of the self-weight was cancelled out of the measurements. Since the 
calculated predictions were compared against these measured mean values, the self-weight did not 
needed to be taken into account in the calculations. 

Finally, the test setup of the long-term tests, see Figure 5.4, was somewhat simplified in order to 
facilitate the calculations. The parts of the beams extending beyond the supports were neglected, 
see Figure 7.5. The error resulting out of this simplification was not studied specifically, but based 
on common engineering practice it is assumed to be small. 

 
Figure 7.5. Assumed setup of reinforced beams (measurements in mm). 

7.3.2. Results out of a linear creep calculation with simplified ࢚)࣑,  (૙࢚

7.3.2.1. Deflection 

The predictions for the deflection at midspan of the beams of type II (Figure 5.2, p. 37) calculated 
with a constant aging coefficient ߯(ݐ,  .଴) equal to 0.8 can be seen in Figure 7.6 as continuous linesݐ
For reasons of clarity it was chosen to show only four predictions: EC2, MC2010, B3, and GL 2000. 
Note that a downward deflection in all the graphs will have a positive sign. The measurements are 
shown in this graph as dots. In all the graphs comparing measurements against predictions, all the 
measurements and predictions corresponding to a certain beam have the same colour. The name in 
the uppermost legend indicates the beam. The number after the B indicates the beam type and the 
number behind the L indicates at which percentage of the failure load the beam was loaded 
throughout the testing period. Take for example beam B2_L52. This is a beam of beam type II and it 
was loaded at 52% of the failure load of the beams of type II. 

From Figure 7.6 it is clear that the models have a very similar prediction for the deflection. For the 
lowest load level the predictions are, for the largest part, quite accurate; however, closer to the end 
of the testing period the predictions underestimate the measured deflections. For the higher load 
levels the predictions are inaccurate. The models predict the rate of creep badly, resulting in an 
underestimation of the deflection which becomes more pronounced as the time increases. A 
possible explanation for these underestimations can be the fact that the linear calculation approach 
which was used is no longer valid under these higher load levels. The load level is also above the 
service range and thus outside of the validity range of the models, which could also explain the 
underestimation of the rate of creep. 

The trend in the predictions of the deflections of beam types I and III is very similar to the trend of 
beam type II. Their graphs can be found in Appendix E. For the highest load level of beam type III it 
is not only the deflection over time which is underestimated, also the instantaneous deflection at 
28 days is predicted too low. This could also be an indication of the fact that the linear approach is 
no longer valid. Figure 7.7 shows the predictions according to EC2, MC2010, B3, and MC90-99 for 
the reinforced beams of type IV. For the higher load levels the same trend of underestimation, seen 
for the beams of type II, is evident. For the lower load levels there is an overestimation of the creep 
at earlier ages. Near the end of the testing period the predicted values and the measured values are 
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almost identical. The explanation of this phenomenon is an overestimation of the instantaneous 
deflection, resulting in an overestimation of the models at early age, followed by an 
underestimation of the rate of creep , resulting in better predictions over time. If the tests would 
have continued over a longer time, the models would most likely have underestimated the creep at 
a later age, based on the rates of creep near the end of the measuring period. 

 
Figure 7.6. Predictions and measurements of the deflection at midspan of the reinforced beams of  

type II (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

 
Figure 7.7. Predictions and measurements of the deflection at midspan of the reinforced beams of  

type IV (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 
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Before the time of loading, which is 28 days for the reinforced beams, there is no creep 
deformation. The deflection graphs; however, show a small deflection before 28 days. This 
deflection is caused by shrinkage. In unreinforced beams the shrinkage can happen freely and there 
will be no curvature due to shrinkage, only axial strains. In the case of reinforced beams, the 
reinforcement steel hinders the shrinkage deformation. For the beams of type I, II, and III the most 
important fraction of steel is located in the bottom part of the beam. This steel will impede the free 
shrinkage deformation near the bottom. Near the top the shrinkage deformation will be hindered 
less. This difference in strain between the bottom and the top presents itself as a curvature which 
results in a downward deflection. Note that the deflection due to shrinkage of the beams of type IV 
(Figure 7.7) is much smaller than the deflection of the beams of type II (Figure 7.6) and type I and III 
(Appendix E). The beams of type IV have the same tensile reinforcement as the beams of type II, but 
they also have compressive reinforcement. This compressive reinforcement will hinder the 
shrinkage deformation at the top, resulting in a smaller curvature. 

7.3.2.2. Stress 

Not taking into account the beam of type IV loaded at 70%, the measured deflections of the beams 
of type IV (Figure 7.7) have levelled more out than the measured deflections of the beams of type II 
(Figure 7.6). Figure 7.8 and Figure 7.9 show the predictions of the stress at the top fibre in the 
midspan of the beams of type II, respectively type IV. According to the sign convention of chapter 6, 
tensile stresses are positive; therefore, the compressive stress in the concrete is negative. 
Comparing the two graphs, it can be seen that the stress just after loading is similar for the two 
beam types. Over time the compressive stresses decrease due to relaxation but this decrease is 
more pronounced for the beams of type IV. This explains why the deflections of the beams of type 
IV level out quicker. The absolute level of loading between the two beam types is similar (and is 
even slightly higher for beam type IV), see Table 5.3. This similar loading explains why the stresses 
just after loading are comparable. The reason why the compressive stresses over time are lower in 
the beams of type IV thus needs to be related to the compression reinforcement which is present in 
the beams of type IV. This compression reinforcement causes a stress redistribution. The concrete 
in compression wants to creep and is resisted by the compression reinforcement. As this goes on, 
compression stress which is in the concrete is transferred to the reinforcement, thus resulting in 
lower compression stresses in the concrete over time. This phenomenon thereby attributes to the 
relaxation of concrete stress caused by creep. Since this is a long-term phenomenon, the stresses 
just after loading are similar for the two beam types. Criel et al. (2015) came to a similar conclusion. 
They tested axially loaded prisms with different reinforcement ratios and concluded that 
compression reinforcement causes a significant redistribution of the stresses. 

In Figure 7.8 and Figure 7.9 it can also be seen that the stress is positive in the time period just 
before loading. This is caused by the restrained shrinkage, as explained previously. The restrained 
shrinkage will result in a tensile stress at the top fibre of about 1.5 MPa just before loading in the 
beams of type IV. The tensile stress in the beams of type I, II, and III is negligible because there is no 
structural tensile reinforcement hindering the shrinkage. 
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Figure 7.8. Prediction of the stress at the top fibre at midspan of the reinforced beams of type II 

(constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

 
Figure 7.9. Prediction of the stress at the top fibre at midspan of the reinforced beams of type IV  

(constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

NBN EN 1992-1-1 (2005) advises to keep the concrete compressive stress below 0.45 times the 
characteristic compressive strength of the concrete at loading ௖݂௞(ݐ଴) in the serviceability limit state 
under the quasi-permanent load combination. If this condition is fulfilled, the creep can be assumed 
linear. The stress graphs have a grey line which indicates the value of 0.45 ௖݂௞(ݐ଴). When comparing 
the different beam types, the location of this line varies slightly. This is due to the fact that ௖݂௞(ݐ଴) 
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varies somewhat for each beam type. All the beams, except for the beams of type I, have 
compressive stresses above the value of 0.45 ௖݂௞(ݐ଴). Most of them even stay above this value even 
though the compressive stresses decrease significantly over time due to relaxation. For the beams 
of type I (Figure E.3) only the highest loaded beam has a compressive stress which surpasses the 
boundary value for a short period of time. Due to a low tensile reinforcement ratio, the beams of 
type I have a low failure moment in comparison to the other beams. The moments which are 
imposed for the long-term loading are thus also relatively low, which results in relatively low 
compressive stresses compared to the other beam types. 

7.3.2.3. Strain 

Figure 7.10 shows the strains at midspan in the measuring point closest to the top fibre (Appendix 
B) for the beams of type II. Similar as for the stress, a compressive strain is negative. The strains are 
predicted with the same trend as the deflections (Figure 7.6). The prediction for the beams loaded 
at a lower level is reasonably good, although the difference between the measured and calculated 
values increases over time. For the higher loaded beams the strains are severely underestimated. 
Due to the linear elastic relationship which was assumed between the stress and the strain in the 
calculations, the predicted values increase with a constant step for increases in the load level of the 
same magnitude. The difference between the predictions of for example the beams loaded at 70% 
and 80% is the same as the difference between beams loaded at 80% and 90%. Figure 7.10 shows 
that this behaviour was clearly not present in the measured beams. The assumption of a linear 
elastic relationship between stress and strain is only valid for lower stress- and strain levels, 
explaining why the higher loaded beams are so severely underestimated. 

 
Figure 7.10. Predictions and measurements of the strain near the top fibre at midspan of the reinforced 
beams of type II (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 
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Figure 7.11 shows the measured and calculated strains near the top fibre at midspan for two beams 
of type IV. The calculated values overestimate the strain. It should be noted that the graph gives a 
somewhat distorted image due to the scale. The difference between the measured and calculated 
values of the strain of beam type IV is of the same magnitude as the difference between the 
measured and calculated values of the beam loaded at 70% of type II. The calculated values have a 
reasonably good prediction of the rate but overestimate the instantaneous strain at loading. 
Previously, it was also found for these beams that they overestimate the deflection. It is important 
to note that the compression steel, which is present in the beams of type IV, significantly reduces 
the strains, as can be seen by comparing the results of beam type II and beam type IV. 

 
Figure 7.11. Predictions and measurements of the strain near the top fibre at midspan of the reinforced 
beams of type IV (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

7.3.2.4. Deformation 

The mean deformation at the midspan of the beam of type II, which is loaded at 52% of its failure 
load, is shown in Figure 7.12. The predicted values according to MC2010 are represented by a solid 
line. The measured values are represented by a pair of dots: a dot near the top fibre and a dot near 
the bottom fibre. The dashed line is merely a visual aid that connects the pair of dots. The actual 
deformation was not linear and showed a kink. The lines do not start at a height of 0 m (they start a 
few millimetres higher) and they also do not end at 0.280 m (they stop a few millimetres lower). 
This is because the measuring points of the strains were not at the top- and bottom fibre but 
slightly below the top fibre, respectively slightly above the bottom fibre, see Appendix B. The 
compressive strains are underestimated, except for the compressive strain just after loading (28 
days) which is slightly overestimated. It can be seen that the degree of underestimation increases 
over time, as could also be seen in Figure 7.10. This is due to an underestimation of the creep rate. 
Also the tensile strains, which are positive, are underestimated, though their underestimation is 
slightly more pronounced. The underestimation of both the compressive strain near the top fibre 
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and the tensile strain near the bottom fibre results in an underestimation of the curvature. Since 
the deflections are calculated from the curvatures (see section 6.4), this could also have been 
concluded looking at the deflection graph (Figure 7.6). 

 
Figure 7.12. Predictions (MC2010) and measurements of the deformation at midspan of the reinforced 
beam B2_L52 (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

Figure 7.13 shows the mean deformations of the same beam loaded at 80% of its failure load 
instead of 52%. The deflection graph (Figure 7.6) showed that the models severely underestimate 
the deflection of this beam loaded at this level. This can also be deduced from this graph, seeing 
that it shows a severe underestimation of the curvature. 

 
Figure 7.13. Predictions (MC2010) and measurements of the deformation at midspan of the reinforced 
beam B2_L80 (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 



77 
 

The mean deformations of the beam of type IV loaded at 52% are shown in Figure 7.14. In contrast 
to the two beams of type II which were just discussed, this graph shows an overestimation of the 
curvature of the beam. All the strains are overestimated, except for the tensile strain near the 
bottom at 788 days which is slightly underestimated. The information presented in this graph is in 
agreement with the deflection graph (Figure 7.7) and the strain graph (Figure 7.11). The curvature 
of the measurements can be seen to increase more over time than the curvature according to 
MC2010. This supports the observation that at an early age the deflection is overestimated and that 
as the time increases this overestimation diminishes. 

 
Figure 7.14. Predictions (MC2010) and measurements of the deformation at midspan of the reinforced 
beam B4_L52 (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

All the three deformation graphs, which are presented here, clearly demonstrate the phenomenon 
of the relaxation of concrete compressive stress. As the time increases, the concrete compressive 
stress decreases, see Figure 7.8 and Figure 7.9. In order to sustain the internal force equilibrium, the 
depth of the compression zone increases, which can be clearly seen from the presented 
deformation graphs. 

7.3.2.5. Quantification 

The graphs give a good indication  of the quality of the predictions of the time-dependent 
deformations. It is; however, not possible to show all the models in the graphs, for reasons of 
clarity. The graphs also have different scales in order to present the information in the most clear 
way possible. This, together with the large quantity of information, makes it challenging to make 
accurate comparisons.  Therefore it has been chosen to present the most important data of the 
deflection graphs in a table. Moreover, the use of a table allows to make a quick and accurate 
assessment of optimisation methods, see the next sections. 

As an example, Table 7.3 gives the comparison of the predictions of EC2, MC2010, B3, ACI, 
MC90-99, and GL 2000 against the measurements for the beam of type III loaded at 67%, see Figure 
7.15. The symbols in the table are defined as: 
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 ∆௜=  
௜݌ −  ݉௜

݉௜
 (7.2) 

 
௜ି௝ߦ =  

൫݌௝ ௜൯݌ − − ൫ ௝݉ − ݉௜൯
൫ ௝݉ − ݉௜൯

 (7.3) 

where ݌௜ is the calculated deflection at time ݅ and ݉௜ is the measured deflection at time ݅. In Table 
 .௘ is the end of loadingݐ 7.3

Following out of the definitions; an underestimation will be negative and an overestimation will be 
positive. The most accurate predictions are the ones with a relative difference ∆ and a relative rate 
of creep ߦ which are as close to zero as possible. In the table the most accurate predictions are 
underlined. If the measurement at one of the times was not known, it was calculated using linear 
interpolation. This was not necessary for the predictions because their value was calculated at the 
exact time of interest. 

Table 7.3. Comparison of predictions against measurements of the deflection at midspan of the beam 
B3_L67 (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

 
EC2 MC2010 B3 ACI MC90-99 GL 2000 

∆૛ૡ 0.04 -0.01 0.06 -0.03 0.01 -0.02 

 ૛ૡି૞૟ -0.28 -0.34 -0.59 -0.28 -0.32 -0.35ࣈ

∆૞૟ -0.06 -0.11 -0.14 -0.11 -0.09 -0.12 

 ૞૟ି૚૝ૠ -0.29 -0.29 -0.4 -0.24 -0.28 -0.32ࣈ

∆૚૝ૠ -0.09 -0.14 -0.18 -0.13 -0.12 -0.15 

ࢋ࢚૚૝ૠିࣈ  -0.66 -0.53 -0.5 -0.67 -0.56 -0.51 

ࢋ࢚∆  -0.23 -0.23 -0.26 -0.26 -0.23 -0.24 

 

 
Figure 7.15. Measurements and six predictions of the deflection at midspan of the beam B3_L67  

(constant aging coefficient equal to 0.8 and no correction for nonlinear creep) 
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From Table 7.3 it can be concluded that all the models give a good prediction of the instantaneous 
deformation at 28 days for beam B3_L67. This is an indication that the reported values of e.g. the 
modulus of elasticity and the concrete strength determined on small specimens is representative 
for the concrete of the beam. Further it can concluded that EC2 lies the closest to the 
measurements and predicts together with ACI the rate of creep the best at an early age. At a 
medium age the rate of creep is best predicted by ACI, but at a later age B3, followed by GL 2000, 
predict the rate the best. 

Table 7.4 gives an overview of the accuracy of the models for the entire testing base. At an early 
age the difference between the predictions and the models is relatively small. Over time the 
difference increases due to a consistent underestimation of the rate of creep, resulting in a 
significant increase of the relative difference ∆ over time. At an early age the ACI model describes 
the behaviour of the reinforced beams the best. The model gives the smallest difference between 
measured and predicted values, as well as the best prediction of the rate of creep. At the end of 
loading the predictions of the GL 2000 model lie the closest to the measured values. The B3 model 
stands aside from the other models; its predictions become better over time. Especially the 
prediction of the rate of creep, which the B3 model underestimates the most severe at an early age, 
improves drastically over time. Even so much so that the B3 model gives the most accurate 
prediction of the rate of creep at an older age of the concrete. 

Table 7.4. Mean comparison of predictions against measurements of the deflection at midspan of all  
the reinforced beams (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

 
EC2 MC2010 B3 ACI MC90-99 GL 2000 

∆૛ૡ -0.03 -0.01 0.07 0.01 0.01 0.03 

 ૛ૡି૞૟ -0.10 -0.15 -0.45 -0.07 -0.14 -0.16ࣈ

∆૞૟ -0.06 -0.05 -0.06 -0.02 -0.04 -0.03 

 ૞૟ି૚૝ૠ -0.14 -0.12 -0.23 -0.05 -0.11 -0.13ࣈ

∆૚૝ૠ -0.08 -0.07 -0.09 -0.03 -0.05 -0.05 

ࢋ࢚૚૝ૠିࣈ  -0.47 -0.23 -0.17 -0.47 -0.27 -0.19 

ࢋ࢚∆  -0.15 -0.11 -0.12 -0.12 -0.10 -0.09 

 

It should be noted that the B3 model prescribes a term to take into account the instantaneous 
strain in the compliance function which deviates from the general convention (see Bažant & 
Baweja, 2000). This different method for the calculation of the instantaneous strain was not used. 
The instantaneous strains of all the models were calculated using the tangent modulus of elasticity 
with an assumption of a linear relationship between stress and strain. The reason that the B3 
predictions deviate at an early age from the other models and the measurements could by related 
to the shrinkage function, which gives significantly lower values over time than the shrinkage 
functions of the other models, see section 7.1. 

7.3.2.6. Summary 

In this section, the results of a cross-sectional linear calculation, using the age-adjusted effective 
modulus with a constant aging coefficient equal to 0.8, were compared against measurements on 
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reinforced beams. The predictions for the lower loaded beams are reasonably good although the 
calculations slightly underestimate the measurements and thus predict values on the unsafe side. 
For the higher loaded beams, the predictions severely underestimate the time-dependent 
behaviour, resulting in an increased difference of the predicted values and the measured values 
over time. 

A possible explanation for these underestimations is the fact that the linear relationship which was 
assumed between the stress and the strain is not valid at higher load levels. The material models 
are also calibrated on data in the service stress range. It has been shown that many of the beams in 
this dataset are outside of this service stress range. Therefore, using the material models under 
these circumstances induces a certain degree of inaccuracy in the calculations. 

Of all the six model which were studied (EC2, MC2010, B3, ACI, MC90-99, and GL 2000) the ACI 
model gives the best predictions at early and medium age. At a later age the predicted values 
according to the GL 2000 model lie the closest to the measured values. The rate of creep at this 
later age is best described by the B3 model, followed by the GL 2000 model. This last observation is 
in agreement by what was found by Gardner (2004), Fanourakis (2011), Goel et al. (2007), and 
Bažant and Li (2008b). 

7.3.3. Influence of the use of a calculated aging coefficient 

Up until now the aging coefficient was assumed constant and equal to 0.8. This is a simplification; 
the aging coefficient is depended on the relaxation function of concrete, the modulus of elasticity 
and the creep coefficient. Both the modulus of elasticity and the creep coefficient are described by 
the different material models. Therefore, each material model will have different values of the 
aging coefficient. 

In order to calculate the aging coefficient a module, as proposed by Ghali et al. (2002), was 
implemented in the calculation software. This module uses a step-by-step method to determine the 
relaxation function, which is then used to calculate the aging coefficient. The step-by-step method 
requires a lot of calculations and thus increases the entire calculation time of the time-dependent 
analysis considerably. In an effort to limit the increase of the calculation time, calculated aging 
coefficients were stored in a library. Allowing to get the value out of the library, if the input 
parameters were identical, instead of doing the laborious calculations. Even with this optimisation 
an analysis with a calculated aging coefficient took at least five times longer than an analysis with a 
constant aging coefficient. 

Figure 7.16 shows both the predictions determined with a calculated aging coefficient and with a 
constant aging coefficient (equal to 0.8) for the beams of type IV. The predictions have been done 
according to the B3 model and the ACI model. In Appendix E the comparison between the two 
calculation methods can be found for the other models. The figures show that the difference 
between the two calculation models is negligible. 

Table 7.5 presents the same information as Table 7.4 but now for the predictions determined by the 
use of a calculated aging coefficient. About half of the values in Table 7.5 are identical to the values 
in Table 7.4. The values which are underlined are the values which differ. Except for the relative 
difference at loading ∆ଶ଼, the predictions determined by the use of a calculated aging coefficient 
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are slightly worse than the predictions determined by the use of a constant aging coefficient (equal 
to 0.8). However, it should be noted that the differences are of an order of magnitude which is 
negligible. 

It can be concluded that the assumption of a constant aging coefficient did not induce errors of any 
significance. Furthermore, a constant value of 0.8 for the aging coefficient predicts the 
time-dependent behaviour of the studied beams reasonably well. 

Table 7.5. Mean comparison of predictions against measurements of the deflection at midspan of all  
the reinforced beams (calculated aging coefficient and no correction for nonlinear creep). 

 
EC2 MC2010 B3 ACI MC90-99 GL 2000 

∆૛ૡ -0.03 -0.01 0.06 0.01 0.01 0.02 

 ૛ૡି૞૟ -0.12 -0.16 -0.47 -0.08 -0.16 -0.18ࣈ

∆૞૟ -0.07 -0.06 -0.07 -0.02 -0.04 -0.03 

 ૞૟ି૚૝ૠ -0.17 -0.13 -0.23 -0.09 -0.14 -0.15ࣈ

∆૚૝ૠ -0.09 -0.07 -0.09 -0.04 -0.06 -0.05 

ࢋ࢚૚૝ૠିࣈ  -0.49 -0.23 -0.17 -0.49 -0.29 -0.19 

ࢋ࢚∆  -0.16 -0.11 -0.12 -0.12 -0.11 -0.09 

 

 
Figure 7.16. Comparison of predicted values with a calculated aging coefficient  
against predicted values with a constant aging coefficient for beams of type IV. 
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7.3.4. Influence of a nonlinear creep calculation 

All of the material models which are studied here can in their basic form only be used to predict 
linear creep. It is thus required that the stresses stay in the service range. In case the stresses 
surpass the service range the creep becomes nonlinear. EC2 and MC2010 are the only two models, 
of the six which were studied, that provide a practical, ready-to-use formula to correct the creep 
coefficient for the effects of nonlinear creep. 

The Eurocode is the design code for Europe. Therefore, it was chosen to focus the research on the 
nonlinear creep function described by EC2. This model assumes the creep to be linear up to 
0.45 ௖݂௞(ݐ଴), in which ௖݂௞(ݐ଴) is the characteristic concrete compressive strength on standard 
cylinders at the age of loading ݐ଴. The graphs in section 7.3.2.2 showed that most of the beams 
clearly surpass this limit. In order to take the nonlinearity into account EC2 (NBN EN 1992-1-1, 2005) 
prescribes a nonlinear, fictive creep coefficient which can be calculated out of the linear creep 
coefficient: 

 ߮௞(∞, (଴ݐ =  ߮(∞, (଴ݐ ∙ exp (1.5 ∙ (݇ఙ − 0.45)) (7.4) 

in which ߮(∞, ଴) is the linear creep coefficient which was used up until now and ݇ఙݐ  is the 
stress-strength ratio ߪ௖ ௖݂௞(ݐ଴)⁄ , where ߪ௖ is the compressive stress. 

NBN EN 1992-1-1 (2005) does not describe specifically how to deal with cross-sections in which part 
of the stress surpasses 0.45 ௖݂௞(ݐ଴) and part of the stress stays below 0.45 ௖݂௞(ݐ଴). It was chosen to 
apply the correction only for the part of the cross-section which surpasses the limit value of 
0.45 ௖݂௞(ݐ଴). If a parabola-rectangle diagram is assumed to describe the relation between concrete 
stress and strain (NBN EN 1992-1-1, 2005), the following set of equations can be solved to find the 
strain which corresponds with a stress of 0.45 ௖݂௞(ݐ଴) : 

 
ቐߪ௖ =  ௖݂௞ ∙ ቈ1 − ൬1 −

௖ߝ

2‰
൰

ଶ
቉

௖ߪ = 0.45 ∙ ௖݂௞(ݐ଴)
 (7.5) 

Note that the first equation of the set is only valid if the instantaneous concrete strain stays below 
2‰ at the age of loading. This was the case for all the models in all the calculations, see also section 
7.3.2.3.  

The solution of the set (7.5) is given the name ߝ௖ ଴.ସହ. Assume now again a linear elastic relationship 
between the stress and the strain (as was also done for everything up until this section). Then, the 
height of the zone where the creep will be nonlinear can be calculated as: 

 
.௡௢௡௟௜௡ݕ =  

หߝ௖,௧௢௣ห − |0.45 ܿߝ| 
 ߰  (7.6) 

with ߝ௖,௧௢௣ the strain at the top fibre and ߰ the curvature. The percentage of the concrete in 
compression which undergoes linear creep will be: 

 
߱ = 1 − 

.௡௢௡௟௜௡ݕ

௘ݔ
= 1 −  

ห݌݋ݐ,ܿߝห |௖ ଴.ସହߝ| −
߰ ∙ ௘ݔ

 (7.7) 
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where ݔ௘ is the height of the compression zone. Finally, using this percentage, the creep coefficient 
was adapted in the following manner: 

 ߮௡௘௪(∞, (଴ݐ =  ߱ ∙ ߮(∞, (଴ݐ + (1 − ߱) ∙ ߮௞(∞,  (଴ݐ

  = ߮(∞, (଴ݐ ∙ [߱ +  (1 − ߱) ∙ exp (1.5 ∙ (݇ఙ − 0.45))] 
(7.8) 

For the calculation of the stress-strength ratio ݇ఙ  the stress at the top compression fibre was used. 
The application of formula (7.8) results in an averaged creep coefficient which needs to be used for 
the entire cross-section. A more accurate approach would be to split up the cross-section in a large 
number of strips with a differentially small thickness and determine a new creep coefficient for 
each of the strips. 

Despite the somewhat crude approach, the adaption of the creep coefficients, according to the 
prescribed method, resulted in a significant improvement of the predictions. As an example, Figure 
7.17 shows the prediction of MC2010 and B3, with and without the correction for nonlinear creep, 
for three of the beams of beam type II, including both the highest and lowest loaded beam. For this 
lowest loaded beam the correction for nonlinear creep has a very limited influence. This is logical 
since the stress in this beam did not exceed the value of 0.45 ௖݂௞(ݐ଴) by much, see Figure 7.8. For 
the medium loaded beam the influence of the correction is already a bit more pronounced. For the 
highest loaded beam, the influence of the correction is unambiguous. The models still 
underestimate the absolute value of creep but the underestimation is now much smaller. In 
addition, the rate of the time-dependent behaviour is much better prescribed; the deflection curve 
of MC2010 is for the later time period nearly parallel with the measurements. 

 
Figure 7.17. Comparison of predicted values with and without a correction for nonlinear  

creep for three beams of type II (constant aging coefficient equal to 0.8). 
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It is stressed that the correction for nonlinear creep only influences the time-dependent behaviour 
and does not influence the instantaneous deformations, as can be seen in Figure 7.18. The 
correction for nonlinear creep notably increases predictions of the two higher loaded beams of type 
IV. The correction has no influence on the lower loaded beam, since its compression stress was 
barely above the boundary level. The absolute value of the deflection is still predicted badly for the 
beam loaded at 70%; however, the correction did increase the accuracy of the prediction of the rate 
of creep. 

 
Figure 7.18. Comparison of predicted values with and without a correction for nonlinear  

creep for the beams of type IV (constant aging coefficient equal to 0.8). 

Table 7.6 presents the comparison table of all the models for the predictions using a nonlinear 
creep correction. From the comparison of this table and Table 7.4, it is clear that correcting the 
creep coefficient, for nonlinear creep due to stresses outside of the service range, substantially 
increases the accuracy of the predictions. Note that on average the models now overestimate the 
deflections and their rates, which is opposite to the underestimations done in the case of no 
correction for nonlinear creep. The underlined values in Table 7.6 are the most accurate 
predictions. On average, MC2010 predicts the absolute values of the deflection the best (except for 
the absolute value at the end of loading). The rate of the time-dependent behaviour is on average 
the best predicted by the GL 2000 model, which also predicts the absolute deflection at the end of 
loading the best. The B3 model gives the second best predictions of the rate of creep at a later age. 
The worst predictions are done by the ACI model. This model gave the best predictions at an early 
age in case of no correction. For this model correcting for the nonlinear creep results in more 
inaccurate predictions, except for the rate of creep at later ages, which is predicted better.  
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Table 7.6. Mean comparison of predictions against measurements of the deflection at midspan of all the 
reinforced beams (correction for nonlinear creep and constant aging coefficient equal to 0.8). 

 
EC2 MC2010 B3 ACI MC90-99 GL 2000 

∆૛ૡ -0.02 -0.01 0.10 0.01 0.02 0.03 

 ૛ૡି૞૟ 0.16 0.08 -0.34 0.18 0.09 0.07ࣈ

∆૞૟ 0.01 0.00 -0.01 0.04 0.03 0.03 

 ૞૟ି૚૝ૠ 0.06 0.06 -0.11 0.14 0.06 0.04ࣈ

∆૚૝ૠ 0.01 0.00 -0.03 0.04 0.02 0.02 

ࢋ࢚૚૝ૠିࣈ  -0.32 -0.07 -0.02 -0.34 -0.13 -0.02 

ࢋ࢚∆  -0.06 -0.03 -0.05 -0.04 -0.02 0.00 
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8. Modelling of the time-dependent performance of 
tested prestressed beams; results and discussion 

Using the same methods as described in the previous chapter the available dataset on prestressed 
beams (section 5.3) was studied. The shrinkage predictions were again studied with a special focus 
on the influence of the notional size ℎ଴. The behaviour of the modulus of elasticity at an early age 
was also analysed, because the beams were loaded before 28 days. Then, the creep coefficients of 
the different models were studied with the influence of the notional size and the influence of the 
age at loading as focal points. With the knowledge of these three parts as a basis, the 
time-dependent behaviour, as predicted by the different models, was compared against the 
measured behaviour. This was done using a constant aging coefficient, similar as in the previous 
chapter. Afterwards the impact of the relaxation of the prestressing steel was considered. In the 
end, the influence of calculating with an estimated practical eccentricity of the post-tensioning steel 
instead of a theoretical eccentricity was also studied. 

8.1. Comparison of shrinkage predictions 
Most of the long-term tests on prestressed beams lasted between 847 and 1644 days. Due to the 
variation in shape, there is a significant variation in the notional size ℎ଴. The largest difference can 
be found between the rectangular cross-section and the I-shaped cross-section, see Table 8.1. Note 
that the notional size of the post-tensioned, I-shaped cross-section is slightly lower than the one of 
the pre-tensioned cross-section due to the presence of the duct. To study the influence of the 
notional size on the shrinkage predictions two cases are studied, see Table 8.2. The first case has as 
an input the notional size of the rectangular cross-section. The second case represents the mean of 
the T-shaped and the two I-shaped cross-sections. 

In both cases the mean of the four types of beams was chosen for the mean concrete strength 

௖݂௠ଶ଼ and the modulus of elasticity of concrete ܧ௖௠ଶ଼. The composition of the concrete was 
different from the composition of the concrete of the reinforced beams. This was taken into 
account in the calculations. For the value of the air content and the slump factor the same values as 
in the previous chapter were assumed, 2% and 300 mm respectively. 

 
Table 8.1. Overview of the notional size for the four different cross-sections of prestressed beams. 

Shape ࢎ૙ [mm] 

Rectangular 178.3 

T-shaped 99.2 

I-shaped (post-tens.) 88.8 

I-shaped (pre-tens.) 90.4 
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Table 8.2. Overview of important input parameters for the material shrinkage models for  

the two studied cases of concrete used for the casting of prestressed beams. 

 Case 1 Case 2 

Mean concrete strength at 28 days ௖݂௠ଶ଼ 38.5 MPa 38.5 MPa 

Nominal size ℎ଴ 178.3 mm 92.8 mm 

Relative humidity ܴ60 %60 ܪ% 

End of curing ݐ௖  1 day 1 day 

 

Figure 8.1 and Figure 8.2 show the shrinkage strain predictions up to 1644 days for case 1, 
respectively case 2. Comparing the two graphs it can be seen that a higher notional size causes the 
shrinkage strain to build up slower, resulting in lower shrinkage values at 1644 days. The final 
shrinkage strain does not change for most models as can be seen from comparing Figure 8.3 a) and 
b). The exception to this rule are EC2 and ACI. Their final shrinkage strain decreases for a higher 
notional size. For the studied nominal size of 178.3 mm they also become almost identical after 800 
days. If the nominal size would increase they would start to differ again: the final shrinkage value of 
ACI would decrease more than the final shrinkage value of EC2. The reason why the ultimate 
shrinkage strain of the other models is independent of the notional size is because, for those 
models, the notional size is only used in time functions. Changes in the notional size thus influence 
the development rate of the shrinkage but do not change the final strain. In the ACI model and the 
EC2 model the notional size is not only used in a time function but also in a size term, and a change 
in the magnitude of the notional size results thus in a change of the ultimate strain. 

 

 
Figure 8.1. Semi-logarithmic plot of the shrinkage strains versus time up until  

   1644 days for the prestressed concrete case 1 (ࢎ૙ = 178.3 mm). 
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Figure 8.2. Semi-logarithmic plot of the shrinkage strains versus time up until  

1644 days for the prestressed concrete case 2 (ࢎ૙ = 92.8 mm). 

  
a) Case 1 (ࢎ૙ = 178.3 mm) b) Case 2 (ࢎ૙ = 92.8 mm) 

Figure 8.3. Semi-logarithmic plots of the shrinkage strains versus time up until 274 years. 

Note that the notional size of case 2 is almost identical to the notional size used in section 7.1 for 
the investigation of the shrinkage behaviour of the concrete used for the reinforced beams. The 
comparison of Figure 7.1 and Figure 8.2 shows that the shrinkage predictions for the concrete used 
in the prestressed beams lie closer to one another than the predictions for the concrete used in the 
reinforced beams. For case 2 the most extreme predictions are the one from ACI and the one from 
B3; the ACI prediction is 15% higher than the B3 prediction. This is relatively small compared to the 
50% difference obtained between the GL 2000 model and the B3 model for the concrete used for 
the reinforced beams, see section 7.1. Note that for case 1 the most different predictions are the 
ones by MC2010 (similar prediction by MC90-99) and B3. Their difference is 14%. One of the main 
reasons that the difference between the models is smaller for the concrete of the prestressed 
beams than for the concrete of the reinforced beams is the difference in concrete strength, which is 
required for all models except ACI. The other main reason is a different water content which 
influences the B3 predictions. The higher water content of the concrete used in the prestressed 
beams increases the shrinkage predictions of the B3 model compared to the concrete used in the 
reinforced beams. 
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8.2. Comparison of creep predictions 
Figure 8.4, respectively Figure 8.5, show the creep coefficient up until 1644 days for the concrete 
loaded at 28 days for case 1, respectively case 2. The creep coefficient of MC90-99 was corrected 
for ݐ଴,௔ௗ௝. in the way that EC2 prescribes it, as was suggested in section 7.2. This can also be 
deduced from the graphs, since MC90-99 has its instantaneous step at the same moment as the 
other models. The higher notional size for case 1 results in a decrease of the value of the creep 
coefficient at 1644 days relative to case 2. For case 2 the values of the creep coefficient according to 
all models, except B3, are somewhat grouped together at 1644 days. For case 1, GL 2000 has 
detached itself from the group and has shifted towards the B3 model. This is because the influence 
of the notional size on the creep coefficient of GL 2000 is, compared to the creep coefficients of the 
other models, limited. This results in a higher position of the creep coefficient of the GL 2000 model 
relative to the other models. Note that even though there is an influence of the instantaneous value 
of the creep coefficient at 28 days, this influence is limited. 

Out of the comparison between Figure 8.5 and Figure 7.2 (reinforced beams) it can be seen that for 
the concrete composition used for the prestressed beams the predictions of EC2 and MC90-99 are a 
bit more divergent than for the concrete of the reinforced beams. It can also be noticed that the 
predictions of the ACI model and the GL 2000 model have shifted upwards relative to the 
predictions by EC2, MC2010, and MC90-99. Similar to what was already explained in section 8.1, the 
difference between the creep coefficients is caused by the different concrete strength and concrete 
composition.  

 

 
Figure 8.4. Semi-logarithmic plot of the creep coefficients versus time up until 1644  

days for the prestressed concrete case 1 (࢚૙ = 28 days, ࢎ૙ = 178.3 mm). 
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Figure 8.5. Semi-logarithmic plot of the creep coefficients versus time up until 1644  

days for the prestressed concrete case 2 (࢚૙ = 28 days, ࢎ૙ = 92.8 mm). 

Figure 8.6 shows the creep coefficient for the two cases up until 274 years. The creep coefficients of 
ACI, EC2, and MC90-99 have an asymptotic behaviour. The increase of the notional size for case 1 
results in a slight decrease of the asymptotic value of these three models. The creep coefficients of 
MC2010, B3, and GL 2000 don’t have an asymptotic behaviour; they have a linear long-term 
behaviour for logarithmic time scales. An increase of the notional size results in a slight decrease of 
the rate in which their creep coefficients develop. The creep curve of the B3 model has a kink at 
later ages. The higher notional size causes this kink to shift from approximately 2500 days to 
approximately 6000 days. Note however that the influence of the notional size on the creep 
coefficient at 274 years is almost negligible for the creep coefficient of the B3 model. 

  
a) Case 1 (ࢎ૙ = 178.3 mm) b) Case 2 (ࢎ૙ = 92.8 mm) 

Figure 8.6. Semi-logarithmic plots of the creep coefficients versus time up until 274 years (࢚૙ = 28 days). 
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The prestressed beams which were loaded underwent two loading steps: prestressing at 7 or 14 
days and loading due to the four point bending test at 28 or 56 days. Throughout this entire thesis, 
the creep coefficient was defined relative to the definition of the compliance function according to 
formula (2.4). ACI and B3 follow this same definition. EC2, MC90-99, MC2010, and GL 2000 follow 
another definition; they define their creep coefficients relative to the definition of the compliance 
function given by equation (4.1). If the loading is applied at 28 days, there is no difference between 
the two formulations. For loading at a different time the creep coefficients of EC2, MC90-99, 
MC2010, and GL 2000 need to be adapted. They were multiplied by the ratio of the modulus of 
elasticity at time of loading over the modulus of elasticity at the age of 28 days ܧ௖(ݐ଴) ⁄௖(28)ܧ , 
making their definition compatible with the definition used in this thesis.  

Figure 8.7 shows the creep coefficients at different times of loading calculated according to EC2 for 
the notional size of case 2. It can be observed that loading at a later age reduces the creep 
coefficient. This is because, at a later age the degree of hydration is in a further advanced stage, 
causing the concrete to be stronger and to creep less, as was also discussed in section 2.3.2.3. 

 
Figure 8.7. Semi-logarithmic plot of the EC2 creep coefficient up until  

1644 days for different times of loading (ࢎ૙ = 92.8 mm). 

The creep coefficients for case 2 in the event of early age loading at 7 days are shown in Figure 8.8. 
Examining both Figure 8.8 (loading at 7 days) and Figure 8.5 (loading at 28 days), allows to study the 
influence of the loading age on all the models more closely. Loading at an earlier age causes the 
predictions of MC90-99, MC2010, ACI, and EC2 to lie closer together. From Figure 8.5 it is clear that 
the creep coefficient of the B3 model lies somewhat separated from the rest of the models for 
loading at 28 days. Looking at Figure 8.8 loading at an earlier age results in the B3 model completely 
dissociating itself from the other models. The GL 2000 model, which has similar values as EC2 and 
ACI for loading at 28 days, gives values between B3 and the rest of the models for loading at 7 days.  
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Figure 8.8. Semi-logarithmic plot of the creep coefficients versus time up until 1644  

 days for the prestressed concrete case 2 (࢚૙ = 7 days, ࢎ૙ = 92.8 mm). 

Figure 8.9 gives a better illustration of the creep at early ages in the case of loading at 7 days, 
respectively 28 days. Similar to what was explained before, this figure also clearly illustrates that 
the B3 model dissociates itself in the case of earlier loading. Note also that the value of the 
instantaneous creep coefficient of the B3 model is much higher than that of the other models. The 
value also increases for earlier loading ages, while the value of the instantaneous creep coefficient 
of EC2, MC90-99, and GL 2000 stays approximately the same. The value of the instantaneous creep 
coefficient of ACI undergoes a decrease for earlier loading ages. Contrarily the one of MC2010 
undergoes a slight increase. 

  
a) ࢚૙ = 7 days b) ࢚૙ = 28 days 

Figure 8.9. Semi-logarithmic plot of the creep coefficients versus time up until 28 days  
after loading for the prestressed concrete case 2 (ࢎ૙ = 92.8 mm). 
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8.3. Comparison of the predictions of the modulus of elasticity 
The modulus of elasticity is dependent on the level of hydration of the concrete and is thus 
dependent on time. All models, except for ACI and GL 2000, prescribe a formula to calculate the 
time-dependent modulus of elasticity out of the product of a time function and the modulus of 
elasticity at 28 days. This time function is based on the time function used to calculate the 
time-dependent compressive strength of each model. ACI and GL 2000 calculate the 
time-dependent modulus of elasticity out of the time-dependent concrete strength. So instead of 
the modulus of elasticity at 28 days, they use the concrete strength at 28 days. 

The time-dependent moduli of elasticity calculated according to the different models are shown in 
Figure 8.10. MC90-99 and MC2010 are indistinguishable from one another since they use the same 
formula. The formula prescribed by EC2 is almost identical to the formula of MC90-99; the only 
difference is a different value of the power in the time function. This causes EC2 to give lower 
values at later ages. The B3 model uses a totally different formula from EC2, MC90-99, and MC2010, 
yet it gives almost identical values as these three at later ages. Note that at 28 days the time 
function of EC2, MC90-99, MC2010, and B3 becomes 1, causing the modulus of elasticity to become 
equal to modulus of elasticity at 28 days ܧ௖௠ଶ଼. 

The modulus of ACI and GL 2000 does not become equal to ܧ௖௠ଶ଼ at 28 days. This is due to their 
concrete strength based formulation. Note that at later ages their value is also clearly different from 
the other models. 

From the graph it can be seen that at an early age there is some variation between the different 
models. The moduli also have a substantial rate at early ages. Since the prestressing happened at an 
early age, it can be that the instantaneous and time-dependent deformations just after prestressing 
are predicted poorly. 

 
Figure 8.10. Semi-logarithmic plot of the secant moduli of elasticity versus time. 
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8.4. Predictions of calculation models versus available 
measurements 

8.4.1. Assumptions  

For the prediction of the time-dependent behaviour of the prestressed beams many of the 
assumptions which were stated for the reinforced beams (section 7.3.1) are reused. The same 
calculation method was used (a cross-sectional linear approach using the age-adjusted effective 
modulus). In order to take the prestress into account the prestressing force was transformed in an 
equivalent normal force and moment, as described in section 6.3.1. The same number of sections 
was used as for the reinforced beams. This made the section length longer than in the case of the 
reinforced beams (due to the longer span of the prestressed beams). It was tested if the use of 
more sections changed the accuracy, but it was concluded that this was not the case. 

In section 7.3.3 it was shown that the use of a calculated aging coefficient did not improve the 
accuracy of the predictions compared to a constant aging coefficient equal to 0.8. Therefore, the 
analysis of the prestressed beams was performed with a constant aging coefficient equal to 0.8, 
similar as for the reinforced beams. The method which was proposed in section 7.3.4, to correct the 
creep coefficient for the effects of nonlinear creep, was not used for the analysis of the prestressed 
beams. More information with regards to this subject can be found in section 8.4.2.2. 

The prestressing force of prestressed beams is generally balanced together with the cross-section in 
such a manner that cracking will not occur under the service load. For the analysis of the 
prestressed beams it was assumed that the beams remained uncracked throughout the entire 
testing period. Section 8.4.2.2 will endorse that this assumption was well-founded. 

Contrary to the reinforced beams, the self-weight of the prestressed beams needed to be taken into 
account. In the calculations this self-weight was placed on the beams at the moment of 
prestressing. 

Similar as for the reinforced beams the parts of the beam extending beyond the supports are not 
taken into account. Figure 8.11 shows the assumed test setup of the reinforced beams. In the case 
of the post-tensioned beams there is a variable tendon profile. The eccentricity at the end, which is 
under the assumptions above the supports, was taken equal to the eccentricity above the supports 
in the original tendon profile. In a first approach it was also assumed that the post-tensioning steel 
is located centrally in the duct. The influence of placing the steel non-centrically is studied in section 
8.4.3.  

 
Figure 8.11. Assumed test setup for the prestressed beams (measurements in mm). 

In Figure 5.9 it can be seen that the cross-section of the T-shaped and I-shaped beams changes near 
the supports. Due to the lack of exact measurements and the fact that the change happened 
outside of the zone with maximum moment, this change in cross-section was not taken into 
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account. The T-shaped and I-shaped cross-section, as can be seen in Figure 5.8, was thus assumed 
unchanging over the entire span. 

The loss of prestress, in the case of post-tensioning, due to friction in the cable duct and due to 
friction at the deflection points was neglected. This loss will have been limited due to verification 
and extra tensioning which was performed at the non-prestressing side. The loss due to slip of the 
prestressing steel at the anchorages and the deformation of the anchorages at the moment of force 
transfer was also not taken into account. In the case of post-tensioning this loss will have been 
small due to the use of the B.B.R.V. system as mentioned in section 5.3.2. In the case of pre-
tensioning the influence of slip and the build-up of prestress is assumed to stay limited to the 
section of the beam close to the supports, where the moments are small. In contrast to the 
previous two losses, the loss due to the elastic deformation of the concrete in the case of 
pre-tensioning was taken into account. This loss is intrinsically imbedded in the calculation method. 
Finally, the influence of the loss of prestress due to relaxation will be discussed in section 8.4.4.  

8.4.2. Results out of a linear creep calculation with simplified ࢚)࣑,  (૙࢚

Before the results are discussed, a small nuance in the terminology of this section is provided. The 
prestressed beams undergo two types of loading: prestressing and loading due to the four point 
bending. The loading due to four point bending will be referred to as “loading”. Prestressing is also 
an act of loading, but it will be termed “prestressing”. If an unloaded beam is mentioned, this thus 
means a beam which is prestressed but which is not subjected to four point bending loading. 
Prestressing results in a negative, upward deflection and loading results in a positive, downward 
deflection. In case a prediction overestimates (underestimates) the measurements for a beam 
which is prestressed but not yet loaded, this means that the models predict a higher (lower) upward 
deflection. In case a prediction overestimates (underestimates) a deflection after loading, this 
means that the prediction lies under (above) the measurements on the deflection graph, regardless 
of the sign of the deflection. 

8.4.2.1. Deflection 

The overview of the testing programme of the prestressed beam was given in Table 5.6. For each 
combination of prestressing- and loading age one beam was loaded at the full service load and 
another was loaded at half of the service load. In the deflection graphs which are presented in this 
section both beams will be plotted on the same graph. In each of the graphs the beam, which is 
prestressed at the same age but which remains unloaded throughout the entire testing period, is 
added as a reference. 

Figure 8.15 shows the deflection predictions of the I-shaped beams which are pre-tensioned at 7 
days and loaded at 28 days. EC2 and MC2010 predict the instantaneous upward deflection at the 
time of prestressing well. The prediction by GL 2000 is slightly off, and the B3 model totally 
overestimates the instantaneous upward deflection. Looking mainly at the unloaded beams (and at 
the early age behaviour of the loaded beams), there is a lot of variation between the predictions. 
The variation is caused by divergent predictions at an early age. The reason for these divergent 
predictions is related to both the modulus of elasticity and the creep coefficient. There is a lot of 
variation between the moduli of elasticity of the models at early age, see section 8.3. This mainly 
explains the difference between GL 2000 and EC2 (and MC2010). The B3 model also has a lower 
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modulus of elasticity than EC2 and MC2010. However, more importantly is that for early age 
loading the creep coefficient of the B3 model is much higher than the creep coefficient from the 
other models, see Figure 8.9 a). This causes the creep at early ages to be much higher than the 
creep deformations predicted by the other models. This explains why the deflections predicted by 
the B3 model for the unloaded beam are so high. 

The deflections of EC2 and MC2010 lie close together for the unloaded beam. Figure 8.9 a) and 
Figure 8.7 indicate that this is the result of their similar creep coefficient for loading at 7 days. 

Despite its severely overestimated deflection after prestressing, the B3 model describes the 
time-dependent behaviour of the unloaded beam and the beam loaded at 50% remarkably well. 
The time-dependent behaviour of the beam loaded at a 100% is almost perfectly described by the 
GL 2000 model. Remark that the different predictions are far less divergent for the loaded beams 
than for the unloaded beam. The highest loaded beam even has the least difference between the 
predictions at the end of loading. This can be attributed to two reasons. The first being the 
overestimation of the instantaneous deformation by the B3 model and the GL 2000 model, bringing 
them closer to the other models. The second reason being related to the rate of creep. After 
loading the beam creeps downwards. The creep coefficient of the B3 models is significantly higher 
than the creep coefficient of other models. The difference between the B3 model and the other 
models thus decreases over time because the B3 model, which after loading has the smallest 
deflection, has the highest rate of creep at later age, resulting in a larger increase of deflection over 
time. 

 
Figure 8.12. Predictions and measurements of the deflection at midspan of the pre-tensioned I-shaped 
beams prestressed at 7 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 
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Figure 8.13 shows the deflections of the I-shaped beams which are pre-tensioned at 14 days and 
loaded at 28 days. The measured deflections of these beams is very comparable with the ones from 
Figure 8.12. Note that the variation between the models is slightly smaller than for the beams 
prestressed at 7 days. This is due to a smaller variation in the creep coefficients and the moduli of 
elasticity. For these beams the unloaded beam and the beam loaded at 50% are best predicted by 
the B3 model. The instantaneous deflection prediction after prestressing is again overestimated by 
the B3 model. The rate of creep of the measurements of the unloaded beam up until an 
intermediate age (± 300 days) is higher than what is predicted by any of the models. The measured 
deflections bridge in that time period the difference with the predictions of the B3 model. At a later 
age the measured rate is approximately the same as the predicted rate by the B3 model, which is 
why the B3 model prescribes this beam the best. 

The predictions of MC2010 represent the time-dependent behaviour of the beam loaded at full 
service load nearly perfectly. This is due to a good prediction of the instantaneous upward 
deflection, followed by a very reasonable prediction of the early age creep, proceeded by a good 
prediction of the instantaneous deflection at loading and finally also a good description of the creep 
at a medium and later age. 

 
Figure 8.13. Predictions and measurements of the deflection at midspan of the pre-tensioned I-shaped 
beams prestressed at 14 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 

Figure 8.14 shows the deflections of the I-shaped beams which are post-tensioned at 14 days and 
loaded at 56 days. Note that the predictions of the models for each of these beams lie close 
together. This is due to their comparable value of the modulus of elasticity and the creep 
coefficient. All models overestimate the creep of the unloaded beam. They all predict the 
instantaneous deflection quite accurate, but they overestimate the early rate of creep. Also at later 
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ages the rate of creep is higher according to the models than the measurements for the unloaded 
beam. Studying the measurements of the unloaded beam more closely, it appears that the creep 
has levelled out at approximately 800 days. The exact reason explaining the difference between 
measurements and the predictions is unclear. It is possible that the applied initial prestress deviated 
in a small amount from the reported value or that the difference is caused by a loss of prestress due 
to friction and/or relaxation. This will be closer studied in section 8.4.4. 

The loaded beams in Figure 8.14 are quite well predicted. The deflection at 56 days is 
underestimated. This is not because the value of the instantaneous deflection step is predicted 
badly. This is because the deflection before the loading was overestimated, as was explained in the 
previous paragraph. The early rate of creep immediately after loading is predicted higher than the 
measured values, thereby compensating for the difference in deflection at 56 days. 

 
Figure 8.14. Predictions and measurements of the deflection at midspan of the post-tensioned I-shaped 
beams loaded at 56 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 

The deflections of the T-shaped beams which are loaded at 56 days are shown in Figure 8.15. 
Compared to the three previous figures, the predictions of the deflections are remarkably 
inaccurate. First of all, the instantaneous deflection due to prestressing is underestimated. 
Secondly, the models underestimate the time-dependent deformation at early ages. Also the 
instantaneous deflection due to loading is underestimated. The rate of creep of the beam loaded at 
50% is also underestimated. 

A possible explanation for these unreliable predictions can be found in     Table 5.7. The concrete 
strength of the T-shaped beams which was reported is exceptionally high compared to the concrete 
strength of the other beam types. Also the modulus of elasticity is higher than the moduli of the 
other beam types, although in a less distinct way than the concrete strength. The difference 
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between the concrete strength of the T-shaped beam and the post-tensioned I-shaped beam is 
42%. For the modulus of elasticity this difference is 24%. Taking this into account, it is possible that 
the concrete which was used to test the strength and the elasticity was not representative for the 
concrete which was used for the casting of the beams. This hypothesis is also supported by the 
reported cracking moments in Table 5.8. The T-shaped beams were the only beams that had a 
measured cracking moment below their service moment. 

The calculations of the prestressed beams were done using only uncracked cross-sections, see also 
section 8.4.1. The T-shaped beams which were loaded at 100% of the service moment were cracked 
because the cracking moment was below the service moment. The fact that these beams were 
cracked can also be deduced form Figure 8.15. In all the previous figures, the value of the measured 
instantaneous deflection at 100% loading was equal to the double of the measured instantaneous 
loading at 50%. Here, the instantaneous deflection at 100% is more than double the instantaneous 
deflection at 50%. The fact that the T-shaped beams loaded at 100% cracked, can also influence the 
accuracy of the predictions of these beams. 

 
Figure 8.15. Predictions and measurements of the deflection at midspan of the post-tensioned T-shaped 
beams loaded at 56 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 

Figure 8.16 shows the rectangular beams which are only prestressed and are not loaded. The 
measurements of these beams show an illogical trend; at 150 days the deflection of the beams 
prestressed at 45 days becomes larger than the deflection of the beam prestressed at 14 days. The 
creep coefficient of the beam prestressed at 45 days can theoretically never become larger than the 
creep coefficient of the beam prestressed at 14 days, see Figure 8.7. Thus, the time-dependent 
deflection of the beam prestressed at 45 days could theoretically never become larger than the 
time-dependent deflection of the beam prestressed at 14 days. From Figure 8.16 it is clear that the 
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instantaneous deflection of the later loaded beam is the highest. This could indicate that the 
concrete of the beam which is prestressed at 45 days is from a different quality than the beam 
which is prestressed at 14 days. This difference in quality could explain the illogical trend of the 
time-dependent deformations. 

The predictions in Figure 8.16 show a logical trend; the time-dependent deflection of the later 
prestressed beam stays below the time-dependent deflection of the earlier prestressed beam. The 
models underestimate the instantaneous deflection which can be an indication of the fact that the 
reported parameters of the rectangular beams are not representative for the concrete used in the 
beams. Note that the variation between the models is smaller for the later prestressed beams. This 
is because the variation between the creep coefficients decrease for a later time of loading, as was 
already explained. 

 
Figure 8.16. Predictions and measurements of the deflection at midspan of the post-tensioned 
rectangular beams which are not loaded (constant aging coefficient equal to 0.8 and no correction for 
relaxation of prestress). 

8.4.2.2. Stress 

Similar as for the reinforced beams, the stresses were calculated. Due to the prestress, both the top 
and the bottom fibre are in compression. Both of them are displayed in the graphs. The predictions 
of the top fibre are marked with an “x”. The predictions of the bottom fibre are unmarked. Each 
graph has a grey continuous line indicating the value of 0.45 ௖݂௞(ݐ଴), which was determined at the 
earliest time of prestressing of the beams represented in the graph. For example, in Figure 8.17 

௖݂௞(ݐ଴) was determined for ݐ଴ equal to 14 days. All graphs also have a grey dashed line indicating 
the mean concrete tensile stress at 28 days ௖݂௧௠. 

In Figure 8.17 the stresses of the unloaded rectangular beams are represented. Up until the 
moment of prestressing, the stresses in the beams are negligible. The prestress is applied in the 



102 
 

bottom of the beams, and the bottom fibres are thus placed in compression. At the moment of 
prestressing, the stress in the bottom fibre surpasses the value of 0.45 ௖݂௞(ݐ଴). Strictly speaking, the 
boundary which is applicable for the beam loaded at 45 days should lie higher. For this beam the 
boundary should be determined using the concrete strength at 45 days, instead of the concrete 
strength at 14 days (as was used in the graph). Comparing the two beams in the figure, it can be 
remarked that they have a nearly identical behaviour. This is to be expected since the applied 
prestressing force is equal. 

Figure 8.17 indicates that the top fibre is also in compression. The influence of the prestress is 
limited in this fibre, yet at the moment of prestressing also the self-weight is applied to the beam. 
Hence the stress in the beams is a combination of the prestress and the self-weight. 

Over time, the compressive stress in the bottom fibre decreases. One reason for this is the 
time-dependent prestress losses, which can amount up to 15% to 20% of the initial prestress 
(Taerwe, 2015). These losses are caused by the creep and shrinkage deformation. The relaxation of 
the prestress will also have an influence on the time-dependent losses. In the present calculations 
this relaxation was neglected; its influence will be studied in section 8.4.4. Note that the stress 
increases over time in the bottom fibre is almost indistinguishable. This is explained by the limited 
influence of the prestress on the stress at the top fibre. Another reason for the decrease of the 
compressive stress in the bottom fibre is the stress redistribution. As the concrete creeps and 
shrinks, compressive stress is transferred to the passive reinforcement, as was already explained in 
the previous chapter. 

 
Figure 8.17. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of 
the post-tensioned unloaded rectangular beams (constant aging coefficient equal to 0.8 and no correction 
for relaxation of prestress). 

The stress predictions of the I-shaped beams pre-tensioned at 7 days are presented in Figure 8.18. 
The stresses of the unloaded beam serve as a reference. The behaviour of the unloaded beam is 
similar to that of the previously discussed beams. The other two beams presented in the figure are 
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loaded at 28 days. Due to the loading, compressive stress is induced in the top fibre and tensile 
stress is induced in the bottom fibre. Note that all beams obtain the desired stress distribution 
(Figure 5.10) reasonably well. The approximate uniform stress distribution of the beam loaded at 
50% explains why the deflection of these beams stays roughly constant over time (Figure 8.12). 
Note that there is a little bit more variation between the stress predictions of the models than for 
the beams represented in Figure 8.17. This is due to a larger variation of the moduli of elasticity 
between the models caused by the earlier age of prestressing. 

Comparing the stress in the bottom fibre of the three beams, it can be observed that the stress 
decrease is lower for the loaded beams. The compressive stresses are lower in them, resulting in 
smaller time-dependent losses. 

For the unloaded beam it can be remarked that the compressive stress in the top fibre stays 
constant. For the beam loaded at a 100 % the compressive stress decreases slightly due to 
relaxation of the concrete stress and/or stress redistribution to the passive reinforcement. For the 
beam loaded at 50% the compressive stress is quite low; therefore, the effects of creep are limited. 
As a result the concrete compressive stress stays approximately constant.  

 
Figure 8.18. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of 
the pre-tensioned I-shaped beams which are prestressed at 7 days (constant aging coefficient equal to 0.8 
and no correction for relaxation of prestress). 

Table 8.3 shows the calculated elastic stresses as they were reported in the FKFO report. The first 
three rows are representative for the time just after loading. In the last three rows the factor 0.8 
takes into account the time-dependent prestress losses. The last three rows thus represent the 
stresses a long time after loading. There is a good agreement between the trend reported in the 
table and the trend visualised in Figure 8.18; however, the table gives higher values for the stress at 
the bottom fibre. Immediately after prestressing this difference can be explained by the age of the 
concrete, which was most likely not taken into account for the calculations leading to the reported 
values in the table. Due to its young age the modulus of elasticity is not yet completely developed, 
resulting in smaller stresses. The differences between the values just after loading is considered to 
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be related to the time-dependent prestress losses between the moment of prestressing and the 
moment of loading. These were taken into account in the graph but were not taken into account for 
the values in the table. There is also a difference in the reported compressive stresses in the bottom 
fibre at later ages. The exact explanation for this difference is not entirely clear. Most likely it will be 
related to neglecting the stress redistribution to the passive reinforcement and neglecting of the 
time-dependency of the moduli of elasticity for the values in the table. 

Table 8.3. Reported calculated elastic stress state for the  
pre-tensioned I-shaped beams at midspan (FKFO no. 547). 

  Top fibre Bottom fibre 

௜ܲ + ݃ [MPa] -0.71 -14.31 

௜ܲ + ݃ + ܳ௦௘௥ 2⁄  [MPa] -6.53 -8.71 

௜ܲ + ݃ + ܳ௦௘௥  [MPa] -12.36 -3.12 

0.8 ∙ ௜ܲ + ݃ [MPa] -0.96 -11.07 
0.8 ∙ ௜ܲ + ݃ + ܳ௦௘௥ 2⁄  [MPa] -6.78 -5.47 

0.8 ∙ ௜ܲ + ݃ + ܳ௦௘௥  [MPa] -12.61 +0.12 
 

The stresses of the T-shaped beams loaded at 56 days are represented in Figure 8.19. The models 
predict the deflection of these beams very inaccurate, as was shown in the previous section. The 
absolute stress level in these T-shaped beams is very comparable to that of the pre-tensioned 
I-shaped beams which were just discussed. The only difference is that the stress due to prestressing 
is slightly higher in the T-shaped beams. Comparing the stresses of the I-shaped beams and the 
T-shaped beams with the stresses of the other beams given in Appendix G, it can be seen that the 
stresses in the pre-tensioned I-shaped beams are slightly lower than the stresses of the other 
beams. However, it can be concluded that the absolute stress level for all the beams is comparable. 
Looking at the stress level relative to the 0.45 ௖݂௞(ݐ଴) boundary, it can be concluded that the relative 
stress of the T-shaped beams is lower than that of the other beams. This can be attributed to the 
high value of the concrete strength of the T-shaped beams in comparison to the other beams. 

Table 8.4 show the calculated elastic stresses as reported in the FKFO report for the T-shaped 
beams. The same remarks as for the I-shaped beams are valid here. 

Table 8.4. Reported calculated elastic stress state for the T-shaped beams at midspan (FKFO no. 547). 

  Top fibre Bottom fibre 

௜ܲ + ݃ [MPa] -0.68 -16.45 

௜ܲ + ݃ + ܳ௦௘௥ 2⁄  [MPa] -6.25 -9.53 

௜ܲ + ݃ + ܳ௦௘௥  [MPa] -11.81 -2.61 
0.8 ∙ ௜ܲ + ݃ [MPa] -0.94 -12.66 

0.8 ∙ ௜ܲ + ݃ + ܳ௦௘௥ 2⁄  [MPa] -6.51 -5.74 

0.8 ∙ ௜ܲ + ݃ + ܳ௦௘௥  [MPa] -12.07 +1.18 
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Figure 8.19. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of 
the post-tensioned T-shaped beams which are loaded at 28, respectively 34 days (constant aging 
coefficient equal to 0.8 and no correction for relaxation of prestress). 

The stresses of all the other beams can be found in Appendix G. Their behaviour can be explained 
similarly to the pre-tensioned I-beams. Note that the stress in all beams surpasses the boundary 
value of 0.45 ௖݂௞(ݐ଴). However, the stress in the prestressed beams exceeds this boundary in a much 
less pronounced way than the stress in the reinforced beams. The overstepping of the boundary is 
most distinct for the post-tensioned I-shaped beams. The stress in their bottom fibres exceeds the 
boundary by approximately 6 MPa. This is a similar value as obtained for the reinforced beams of 
type II loaded at 52%. The influence of a nonlinear creep calculation for the reinforced beams was 
studied in section 7.3.4. Figure 7.17 showed that the influence on the deflection of a nonlinear 
creep calculation was limited. Moreover, the method which was developed in section 7.3.4 
assumed that a tensile zone was present in the cross-section. This is not the case for the 
prestressed beams immediately after loading. Considering that a new method would have to be 
developed, and considering that the influence of this method on the results would be limited, it was 
decided to not study the nonlinear effects of creep for the prestressed beams. 

Studying all the stress graphs, it can be concluded that in none of the beams the stress goes below 
the mean concrete tensile stress at 28 days ௖݂௧௠. NBN EN 1992-1-1 (2005) prescribes this value as 
the boundary for cracking; as long as the tensile stress in a concrete member stays below ௖݂௧௠ the 
member can be considered uncracked. It is thus concluded that the assumption of uncracked 
calculations, which was made in section 8.4.1, is valid. 

8.4.2.3. Strain 

The predicted strains near the top fibre of the unloaded rectangular beams are shown in Figure 
8.20. The location of the measuring point for the strains was 10 mm below the top fibre, see 
Appendix C. Before the time of prestressing the beam exhibits a small amount of compressive strain 
due to shrinkage. At the moment of prestressing there is an instantaneous compressive strain 
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increase. Note that this increase is small. The transfer of prestress has not much influence near the 
top fibre, as was already reasoned in the previous section. For the other beam shapes the influence 
of prestressing is even more limited (near the top fibre), see Appendix H. For the post-tensioned 
I-shaped beams the influence is even hardly noticeable. After prestressing, the concrete strain 
increases under creep and shrinkage. Note that there is not a lot of difference between the 
prestressing at 14 days and the prestressing at 45 days. 

The lowest prediction of the strains are done by the B3 model. Since the creep deformation is small, 
the time-dependent deformation is dominated by the shrinkage deformation. This shrinkage 
deformation is small for the B3 model compared to the other models, see section 8.1. The strain 
predicted by MC90-99 is almost indistinguishable from the strain predicted by MC2010. Since their 
shrinkage models are identical, this indicates that there is a small amount of creep deformation. 
The shape of the strain predicted by EC2 is different from the shape of the other models. It is very 
similar to the pure shrinkage strain predicted by EC2, see Figure 8.1. 

 
Figure 8.20. Predictions of the strain near the top fibre at midspan of the post-tensioned unloaded 
rectangular beams (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 

The predictions of the strains near the top fibre of the I-shaped beams prestressed at 7 days are 
compared against measurements in Figure 8.21. Similar as for the previous two beams there is 
some shrinkage strain before prestressing. At prestressing there is a slight increase in the strain and 
there is a more pronounced increase in the strain when the loading is applied. Note that the rate in 
which the strain increases after loading is proportional to the loading level. This is explained by the 
fact that creep deformations are higher for higher loaded beams. 

The influence of the creep can also be deduced from the strain predictions of the B3 model. For the 
unloaded beam the strains predicted according to B3 are the lowest. From the comparison in Figure 
8.8 it was concluded that the creep coefficient for B3 is much higher than the creep coefficient of 
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MC2010. Since for the loaded beams both the absolute value of the strain, as well as the rate of the 
strain, are higher for the B3 model than for MC2010, this thus proves that the concrete creeps. 

There is even a third observation proving the fact that the loaded beams creep. For the unloaded 
beam the strain predictions according to the different models are very similar. As the load 
increases, the difference between the predictions of the models increases. Since the shrinkage 
predictions for all the models are very similar, this needs to be caused by the diverging creep 
predictions. 

Observe that the highest strain predictions are the ones from GL 2000. This is the result of a 
mediocre shrinkage predictions, as well as a mediocre creep coefficient for loading at 28 days and a 
low modulus of elasticity throughout the entire time domain. The strain predictions of MC2010 are 
the lowest. This is caused by its mediocre shrinkage predictions, in combination with a low creep 
coefficient and a high modulus of elasticity (compared to GL 2000). 

The measurements of the beams, which are shown in Figure 8.21, are smaller than the predictions. 
This is related to the behaviour of the deflections, which were also slightly overestimated by the 
predictions. Since the deflections are calculated out of the deformations, also the strain in the 
bottom fibre is required to make a more complete link between the deflections and the strains. 

Unlike for the reinforced beams, it can be deduced from the provided measurements, that the 
assumption of a linear relationship between stress and strain is valid for the prestressed beams. 
This is explained by the lower levels of loading which are applied on the prestressed beams. 

 
Figure 8.21. Predictions and measurements of the strain near the top fibre at midspan of the pre-
tensioned I-shaped beams prestressed at 7 days (constant aging coefficient equal to 0.8 and no correction 
for relaxation of prestress). 

In Figure 8.22 the predictions of the strains near the top fibre of the T-shaped beams loaded  at 56 
days are compared against measurements. The strain predictions according to the ACI model have a 
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similar trend as the strain predictions of EC2. This is logical since both their creep coefficients and 
their shrinkage predictions are similar for the studied beams. At a medium age the strain 
predictions of the ACI model are larger than the predictions by GL 2000. This is considered to be 
because the ACI model has a larger shrinkage prediction as well as a larger creep coefficient 
compared to the GL 2000 model at medium age. At later age, both the shrinkage prediction and the 
creep coefficient according to the ACI model come close to their asymptotic value. This causes the 
rate of the strain development to decrease significantly. The creep coefficient of the GL 2000 model 
has no asymptotic value, explaining why its rate of strain development decreases only slightly over 
time. 

The models severely underestimate the measurements of the unloaded beam in Figure 8.22. The 
measurements even show that there is a tensile strain in the concrete near the top fibre which is 
induced by the prestress. Due to shrinkage (and creep) this tensile strain decreases and becomes a 
compressive strain. Note that the models do not predict a tensile strain. The reason that a tensile 
strain is measured but is not predicted can be related to the modulus of elasticity. When analysing 
the deflections, it was already noted that the reported modulus of elasticity was probably too high 
and not representative for the beams. With a lower modulus of elasticity the beams would behave 
less stiff and would deform easier. Allowing for example for tensile strains to be induced due to the 
application of prestress. Despite the overestimation of the models, the rate of strain development 
of the unloaded beam is decently predicted by MC2010, B3, and GL 2000. 

Due to the bad prediction of the unloaded beam, the instantaneous strains due to loading are also 
badly predicted. Because of the creep underestimation just after loading, the strain predictions of 
the loaded beams do not differ that much from the measurements at later age. Note that at a later 
age the rate of strain development is predicted quite good by MC2010, B3, and GL 2000. 

 
Figure 8.22. Predictions and measurements of the strain near the top fibre at midspan of the post-
tensioned T-shaped beams loaded at 56 days (constant aging coefficient equal to 0.8 and no correction for 
relaxation of prestress). 
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8.4.2.4. Axial shortening 

The strains at mid height of the beams (200 mm from the bottom fibre) were integrated over the 
length of the beams, using formula (6.27), to calculate the axial shortening. Figure 8.23 shows the 
axial shortening for the unloaded rectangular beams. Up until the moment of prestressing the axial 
shortening in the beams builds up due to shrinkage. At the moment of prestressing the beams 
undergo an elastic shortening because the cross-section is placed in compression. Afterwards, the 
shortening increases due to shrinkage and creep (note that the predictions by MC90-99 and 
MC2010 are not identical). The differences between the models for the elastic shortening step are 
the result of the deviations of their moduli of elasticity. All the remarks made about the models in 
the previous section are also valid here. 

 
Figure 8.23. Axial shortening at mid height of the unloaded post-tensioned rectangular beams  

(constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 

The axial shortening of the I-shaped beams pre-tensioned at 7 days is illustrated in Figure 8.24. Up 
until the moment of loading the predictions of the shortening are identical for the three beams. The 
behaviour up until that moment is comparable to the behaviour of the unloaded rectangular 
beams. At the moment of loading the predictions of the three beams start to deviate slightly from 
each other. The difference is however minuscule. The bending moment which is applied causes the 
top fibre to gain compressive stress and the bottom fibre to loose compressive stress. Near the 
middle fibre the influence of the bending moment is limited, explaining why the difference between 
the shortening predictions of the beams is so minuscule after loading.  

For the post-tensioned T-shaped beams loaded at 56 days in Figure 8.25 the behaviour is 
completely analogue. The beams slightly extend at the moment of loading, but this extension is 
small and is almost immediately superseded by the time-dependent shortening due to shrinkage 
and creep. The shape of the predictions done by the ACI model deviate from the other predictions. 
This is related to the creep coefficient and shrinkage prediction of ACI, as was already previously 
explained. 
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Figure 8.24. Axial shortening at mid height of the I-shaped beams pre-tensioned at 7 days (constant 

   aging coefficient equal to 0.8 and no correction for relaxation of prestress). 

 
Figure 8.25. Axial shortening at mid height of the post-tensioned T-shaped beams loaded at 56 days  

(constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 
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8.4.2.5. Deformation 

In this section some deformation graphs will be discussed. Similar as for the reinforced beams, the 
predicted values according to one of the models are represented by a solid line. The measured 
values are represented by a pair of dots: a dot near the top fibre and a dot near the bottom fibre. 
The dashed line is merely a visual aid that connects the pair of dots. The actual deformation was 
only approximately linear. It showed (one or more) kinks. The lines do not start at a height of 0 m 
(they start 10 mm higher) and they also do not end at 0.400 m (they stop a 10 mm lower). Similar as 
for the reinforced beams, this is related to the location of the measuring point, see Appendix C. 

The predictions according to MC2010 for the unloaded I-shaped beam pre-tensioned at 7 days are 
compared against the measurements in Figure 8.26. The predictions underestimate the curvature 
throughout the entire testing period. This is due to an overestimation of the strains near the top 
fibre and an underestimation of the strains near the bottom fibre. This underestimation of the 
curvature  relates to the deflections. The rate of deflection increase was underestimated by 
MC2010 throughout the entire testing period for this beam. 

From the figure it can be seen that the main deformation is located near the bottom fibre. The 
deformation near the top fibre is caused mainly by shrinkage and in a small degree by creep, as was 
explained in section 8.4.2.3. The bottom of the beam is subjected to higher stresses than the top. 
This causes the creep component to be more important, resulting in higher deformations. The creep 
and shrinkage deformation causes time-dependent prestress losses. This results in a quicker 
decrease of the time-dependent deformations than in an ideal case of constant prestress. 

 
Figure 8.26. Predictions (MC2010) and measurements of the deformation at midspan of the unloaded 
I-shaped beam pre-tensioned at 7 days (constant aging coefficient equal to 0.8 and no correction for 
nonlinear creep). 

The same beam is also shown in Figure 8.27, only now the beam is loaded at 28 days at 100% of the 
service load. MC2010 predicts the deformations reasonably well, and the predictions of the 
curvature become better over time. Similarly, in Figure 8.12, the predictions of MC2010 lie very 
close to the measurements. 
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Up until loading, the beam deforms identical as in Figure 8.26. When the loading is applied, the 
strain in the beam becomes approximately equal over the entire height of the beam. From Figure 
8.18 it is know that the top of the beam is in compression, while the bottom of the beam is nearly 
stress free. The top of the beam will thus start to deform more than the bottom of the beam, 
resulting in a sign switch of the curvature. Note that there is still some deformation at the bottom 
of the beam, even though the stresses are small and the creep deformations are thus negligible. 
This is caused by shrinkage. The free shrinkage deformation between 28 days and 1642 days would 
approximately be 550 μm. The strain in the bottom fibre is lower due to the presence of passive 
reinforcement and the time-dependent loss of prestress. This time-dependent loss of prestress 
causes the induced compressive stress to decrease over time, resulting in a small extension. This 
also explains why the (compression) strain near the bottom fibre is lower at 90 days than at 29 
days. 

 
Figure 8.27. Predictions (MC2010) and measurements of the deformation at midspan of the I-shaped 
beam pre-tensioned at 7 days and loaded at 100% at 28 days (constant aging coefficient equal to 0.8 and 
no correction for nonlinear creep). 

Figure 8.28 shows the same beam. The predictions of the deformation in this figure are however 
done according to the B3 model. It is clear that the B3 model’s predictions are more inaccurate than 
the ones from MC2010. At prestressing and just after prestressing the predictions of the strain in 
top fibre are similar to those of MC2010; however, the predictions of the strain in the bottom fibre 
are significantly higher than the predictions by MC2010 and the measurements. This is related to a 
relatively low modulus of elasticity of the B3 model at early ages, in combination with a high creep 
coefficient. This causes the deflections at prestressing and just after prestressing to be significantly 
higher than the measurements, see Figure 8.12. At loading and just after loading the predictions of 
top fibre are severely overestimated, due to the high creep coefficient of the B3 model. This results 
in a higher deflection increase than the measurements, see Figure 8.12. 



113 
 

 
Figure 8.28. Predictions (B3) and measurements of the deformation at midspan of the I-shaped beam 
pre-tensioned at 7 days and loaded at 100% at 28 days (constant aging coefficient equal to 0.8 and no 
correction for nonlinear creep). 

The predictions according to MC2010 for the unloaded T-shaped beam post-tensioned at 14 days 
and loaded at 50% of the service load at 28 days are compared against the measurements in Figure 
8.29. The strains near the top fibre are all overestimated, except for the strain at the end of loading. 
Contrarily, all the strains near the bottom fibre are underestimated. This results in an 
underestimation of the curvature throughout the entire testing period. Looking at Figure 8.15, it is 
clear that also the deflection of this beam was underestimated throughout the entire testing 
period. The small curvature of the predictions explains why the deflection of this beam is almost 
constant after loading.  

 
Figure 8.29. Predictions (MC2010) and measurements of the deformation at midspan of the T-shaped 
beam pre-tensioned at 14 days and loaded at 50% at 56 days (constant aging coefficient equal to 0.8 and 
no correction for nonlinear creep). 
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As already explained before, the bad predictions of this beam can be related to a too high reported 
modulus of elasticity. If the modulus would be smaller, the strains in the bottom fibre would be 
higher and the strains in the top fibre would be lower. 

8.4.2.6. Summary 

In this section, the results of a cross-sectional linear calculation, using the age-adjusted effective 
modulus with a constant aging coefficient equal to 0.8, were compared against measurements on 
prestressed beams. In the analysis, it was assumed that these beams remained uncracked 
throughout the entire testing period. Based on the predictions of the stresses, it was concluded that 
this assumption is indeed valid. From these stress predictions and based upon the results of the 
previous chapter, it was also concluded that a correction for nonlinear creep would not improve the 
results significantly. Therefore, a nonlinear creep prediction has not been performed for these 
prestressed beams. 

Out of the evaluation of some of the unloaded beams it was noticed that there is quite some 
variation between the predictions of the different models. The B3 model and the GL 2000 model 
predict the deformations more severely than the other models, which have relatively comparable 
predictions. These more extreme deformation predictions are attributed to large variations in the 
moduli of elasticity and creep coefficients of the different models at early age. This also explains 
why the predictions of later prestressed beams are more similar to one another.  

For the loaded beams it was noticed that the variation between the predictions according to the 
different models is smaller than in the case of the unloaded beams. This observation is explained by 
the superposition of opposing deformations. Take for example the B3 model, this model usually 
overestimated the deflections in the unloaded stage due to its low modulus of elasticity at an early 
age and its high creep coefficient. When loading was applied, deformations happened in the 
opposite direction. Despite the later age, the creep deformations of the B3 model are still 
significantly higher than the creep deformations of other models like MC2010. Due to superposition 
the high downward creep and the high upward creep balance each other out, resulting in 
predictions after loading which are more comparable to the other models. 

From a visual investigation it can be concluded that at a later age the deformations and their rate 
are best described by either GL 2000, B3 or MC2010. None of the models prescribes all beams 
accurately. 

8.4.3. Influence of non-centric placement of prestressing wires in duct 

In all the previous calculations it was assumed that the post-tensioning wires were located in the 
centre of the duct. In reality, the wires will be positioned in the top of the duct as a result of the 
prestressing force. A formula to calculate the loss of eccentricity of the prestress due to the 
non-centric placement of the prestressing wires ∆݁ is given hereunder (Taerwe, 1999): 

 ∆݁ =  
3
7

∙ ߶௜ ∙ ൬1 − 1.25 ∙ ݊ ∙
߶௡௢௠,௪௜௥௘

߶௜
൰ (8.1) 

in which ߶௜  is the internal cable duct diameter, ݊ is the number of prestressing wires, and 
߶௡௢௠,௪௜௥௘  is the nominal wire diameter. An overview of the calculations of the beams which were 
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post-tensioned is shown in Table 8.5. Note that the prestressed beams do not have a cable duct and 
this phenomena is thus not applicable for them. 

Table 8.5. Overview of the calculation of the loss of eccentricity ∆ࢋ. 

Shape ݊  
[-] 

߶௜  
[mm] 

߶௡௢௠,௪௜௥௘  
[mm] 

∆݁  
[mm] 

Rectangular 24 60 7 15.2 

T-shaped 14 50 7 14.0 

I-shaped (post-tens.) 16 50 7 13.0 

I-shaped (pre-tens.) N/A N/A N/A N/A 

 

It was assumed that the eccentricity did not change near the ends of the beams due to restraining 
of the anchorage blocks. Note that the upward shift of the wires results in a decrease of the 
moment applied by the prestressing force; the positive effect of prestressing is thus somewhat 
reduced. 

A comparison of the deflection predictions calculated by taking into account the non-centric placed 
wires with respect to centric placed wires is given in both Figure 8.30, Figure 8.31, Figure 8.32. For 
the displayed rectangular beams in Figure 8.30 the upward deflections due to prestress were 
already underestimated. The correction for non-centric placed wires increases this underestimation 
drastically due to a loss of the upward bending moment. 

 
Figure 8.30. Comparison between the deflection predictions with centric placed wires, respectively with 
non-centric placed wires for the post-tensioned rectangular beams which are not loaded (constant aging 
coefficient equal to 0.8 and no correction for relaxation of prestress). 
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The deflection of the unloaded I-shaped beam in Figure 8.31 was overestimated for centric placed 
wires. The correction for non-centric placed wires ameliorates the predictions. The predictions of 
the loaded I-beams were underestimated. Due to the correction, the instantaneous deflection at 
time of loading is overestimated. This in combination with a more pronounced downward 
deflection rate results in better predictions. 

 
Figure 8.31. Comparison between the deflection predictions with centric placed wires, respectively with 
non-centric placed wires for the post-tensioned I-shaped beams which are loaded at 28 days (constant 
aging coefficient equal to 0.8 and no correction for relaxation). 

The T-shaped beams were in the previous sections inaccurately predicted. The correction worsens 
the prediction of the time-dependent behaviour of the unloaded T-shaped beam in Figure 8.32. Yet, 
the time-dependent rate of the beam loaded at 50% is better predicted, even though the absolute 
difference between the measurements and predictions has increased. Using the correction, 
MC2010 predicts the end deflection of the beam loaded at 100% perfectly. The rate of the B3 
prediction is also improved compared to the case without the correction. 

From the above, it is clear that no general conclusion, with regards to the effectiveness of this 
method, can be drawn. The effectiveness needs to be checked for each beam separately. A general 
guideline is that if the deflections of the unloaded beams are overestimated and/or if the 
deflections of the loaded beams are underestimated, the correction ameliorates the predictions. In 
the other case, the accuracy of the predictions worsen. 
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Figure 8.32. Comparison between the deflection predictions with centric placed wires, respectively with 
non-centric placed wires for the post-tensioned T-shaped beams which are loaded at 28 days (constant 
aging coefficient equal to 0.8 and no correction for relaxation). 

8.4.4. Influence of relaxation of prestressing steel 

Up until now, the loss of prestress due to relaxation has been neglected. Relaxation tests were 
performed on both the post-tensioning wires and the pre-tensioning strands. The results can be 
seen in Table 8.6. The table gives the percentage, relative to the ultimate load, at which the steel 
was tested. Table 8.7 shows an overview of the calculation which was performed to calculate the 
percentage at which the beams were loaded in the long-term tests. In Table 8.7 ܲ is the total 
prestress, ܣ is the area of one wire or one strand, ݊ is the number of wires or strands, ߪ is the stress 
in one wire or one strand, ௣݂௧௞ is the ultimate load of a wire or a strand, and ߣ is the ratio of the 
stress over the ultimate load. Comparing the ratio calculated in Table 8.7 with the test values in 
Table 8.6, it can be seen that the maximum theoretical relaxation will be no higher than 2%. Due to 
creep and shrinkage deformation the relaxation will be smaller, as was already explained in section 
2.4.3. 

The influence of the relaxation was, in a simplified way, studied by lowering the initial prestress 
force by 2%. The result of this calculation is compared against the original predictions in Figure 8.33. 
It can be seen that the influence of lowering the initial prestress force by 2% is limited. The 
deflections which are given for the relaxation in the figure are an extreme case; in reality the 
relaxation will be lower due to creep and shrinkage and will be induced over time, resulting in a 
smaller influence on the deflections. Based on this observation it can be concluded that the 
influence of a detailed relaxation calculation will have a minimal influence on the results. 
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Table 8.6. Results on relaxation tests performed on the prestressing steel, the values are given in percent. 

 24 h 120 h 300 h 1000 h 3000 h 5000 h 7000 h 10000 h 

post-tensioning 
wire at 60% 0.55 0.86 1.06 1.32 - - - - 

post-tensioning 
wire at 70% 0.89 1.21 1.43 1.84 - - - - 

post-tensioning 
wire at 80% 2.73 3.64 4.15 5.05 - - - - 

pre-tensioning 
strand at 60% 0.89 1.19 1.34 1.60 1.88 2.00 2.03 2.05 

pre-tensioning 
strand at 70% 0.97 1.31 1.50 1.85 2.16 2.28 2.30 2.30 

pre-tensioning 
strand at 80% 1.60 1.92 2.11 2.46 2.85 3.02 3.05 3.08 

 
Table 8.7. Calculation of the prestressing percentage. 

Shape ܲ [kN] ܣ [mm²] ݊ [-] ߪ [MPa] ௣݂௧௞ [MPa] ߣ [-] 

Rectangular 1120 38.48 24 1212.6 1753 0.69 

T-shaped 684 38.48 14 1269.5 1753 0.72 

I-shaped (post-tens.) 750 38.48 16 1218.0 1753 0.69 

I-shaped (pre-tens.) 757 126.68 6 996.0 1916 0.52 

 

 
Figure 8.33. Comparison between the deflection predictions with and without a constant relaxation loss  

of 2% for the I-shaped beams prestressed at 7 days (constant aging coefficient equal to 0.8). 
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9. Conclusions 

In this master dissertation, the time-dependent behaviour according to six different material 
models was analysed. This was done by comparing their predictions for reinforced and prestressed 
beams against measurements. The following material models were studied : CEB-FIP Model 
Code 1990-1999 (MC90-99), FIP Model Code 2010 (MC2010), Eurocode 2 (EC2), Bažant’s and 
Baweja’s model B3 (B3), Gardner Lockmann 2000 (GL 2000), and ACI 209 (ACI). Their predictions 
were calculated using a cross-sectional calculation method which implemented the ag-adjusted 
effective modulus. This age-adjusted effective modulus is, among others, dependent on an aging 
coefficient. The calculation time of this aging coefficient is computationally intensive. Therefore, in 
a first analysis, the aging coefficient is assumed to be constant and equal to 0.8. 

The measurements which were used are part of an extensive research programme. The goal of this 
programme was to study the influence of the duration of different levels of permanent loading on 
the behaviour of concrete elements, reinforced concrete elements and prestressed concrete 
elements. The programme focused on the testing of beams with practical dimensions subjected to 
sustained loading up to four and a half years, making the results quite invaluable and unique. 

The lower loaded reinforced beams were reasonably well predicted by the different material 
models; the measurements were only slightly underestimated. For the higher loaded beams, the 
predictions severely underestimated the time-dependent behaviour. In the calculations, a linear 
relationship was assumed between stresses and strains. From the measurements it was clear that 
this assumption was only valid for lower loaded beams. For higher loaded beams the relationship 
became nonlinear, explaining the underestimations made by the material models. Another source 
of error was the fact that the material models are only valid in the service stress range. From an 
analysis of the stress in the top fibre, it could be concluded that most of the beams were outside of 
this service range. 

From all the studied models, the ACI model gave the best predictions at early and medium age. At a 
later age the predicted values according to the GL 2000 model fell closest to the measured values. 
The rate of creep at this later age was best described by the B3 model, followed by the GL 2000 
model. 

The deflections of the reinforced beams were also computed using a calculated aging coefficient. It 
was concluded that the deflections which were calculated using a constant aging coefficient equal 
to 0.8 hardly differed from the deflections computed using a calculated aging coefficient. 

Since the stresses in the reinforced beams were outside of the service range, the creep could no 
longer be assumed linear. A method, taking the nonlinearity of the creep into account, was 
proposed. It was concluded that this method greatly improved the accuracy of the predictions. The 
use of this method resulted in a slight overestimation of the measurements. This is more desirable 
than an underestimation since it provides safer and more conservative values.  

Using this nonlinear creep method, MC2010 predicted, on average, the absolute values of the 
deflection the most accurate (except for the absolute value at the end of loading). The rate of the 
time-dependent behaviour is on average best predicted by the GL 2000 model, followed by the B3 
model at later ages. GL 2000 gave on average the best prediction for the absolute deflection at the 
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end of loading. The most inaccurate predictions were provided by the ACI model. For this model 
correcting for nonlinear creep resulted in more inaccurate predictions, except for the rate of creep 
at later ages, which is predicted better. These results were found to be comparable to what is 
reported in literature. 

In the analysis of the prestressed beams it was noted that there was quite some variation between 
the predictions of the different models. The B3 model and the GL 2000 model gave higher 
predictions of the deflection than the other models. This was attributed to large variations in the 
moduli of elasticity and creep coefficients of the different models at early age.  

By comparing the loaded and unloaded prestressed beams, it was observed that the predictions are 
less divergent for the loaded beams. This observation was explained by the superposition of 
opposing deformations. Due to superposition, a diverging downward deflection and a diverging 
upward deflection balance each other out, resulting in a total deformation which is comparable to 
other models. 

It was concluded that none of the material models predicted all beams accurately. However, in 
general, the deformations and their rates at later ages are best predicted by GL 2000, B3, and 
MC2010. 

For the post-tensioned beams, the influence of a non-centric placement of the prestressing wires in 
the cable duct was studied. It was concluded that if the deflections of the unloaded beams are 
overestimated and/or if the deflections of the loaded beams are underestimated, the correction for 
a non-centric placement of the prestressing wires ameliorates the predictions. In the other case, the 
accuracy of the predictions worsen. 

In all the calculations of the prestressed beams, the relaxation of the prestress was neglected. Using 
a simplified but conservative method it was concluded that the influence of relaxation on the 
deformations is limited. 

Further research 
The data contained in the followed research programme is not yet exhausted. The programme also 
contains measurements on partially prestressed beams. Similar as for what was done here, the 
deformation of these beams can also be analysed. This analysis can extend the comparison which 
was done here, resulting in a complete comparison for all types of concrete. 

The calculation tool which was used should be extended with a module to take the nonlinear 
relation between stress and strain, under higher stress levels, into account. This will provide more 
accurate predictions for the higher loaded beams. The tool could also be expanded to deal with the 
geometry of the end blocks of the prestressed beams and the fact that the reinforced and 
prestressed beams extend beyond their supports. These changes will make the calculation more 
computationally intensive. Therefore, it should be reasoned if an analysis in a finite element 
software package could be more desirable, since it will take secondary effects into account. 

Concrete technology has advanced greatly over the years, resulting in new types of concrete, e.g. 
self-healing concrete. The time-dependent behaviour of self-healing concrete is still largely 
uncharted terrain. The chemical (and biological) admixtures which are added to the concrete can 
influence its time-dependent behaviour. In order for self-healing concrete to gain credibility, a 
detailed time-dependent analysis is required. 
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Appendix A. Detailed reinforcement scheme of 
reinforced beams 

 
Figure A.1. Detailed reinforcement scheme of reinforced beam type I. The drawing in the top shows a side 
view of the beam. The bottom drawing shows the cross-section of the beam. For your information: 
“beugels” is the Dutch word for stirrups (FKFO no. 547). 

 
Figure A.2. Detailed reinforcement scheme of reinforced beam type II. The drawing in the top shows a side 
view of the beam. The bottom drawing shows the cross-section of the beam. For your information: 
“beugels” is the Dutch word for stirrups (FKFO no. 547). 
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Figure A.3. Detailed reinforcement scheme of reinforced beam type III. The drawing in the top shows a side 
view of the beam. The bottom drawing shows the cross-section of the beam. For your information: 
“beugels” is the Dutch word for stirrups (FKFO no. 547). 

 

 

 
Figure A.4. Detailed reinforcement scheme of reinforced beam type IV. The drawing in the top shows a side 
view of the beam. The bottom drawing shows the cross-section of the beam. For your information: 
“beugels” is the Dutch word for stirrups (FKFO no. 547). 
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Appendix B. Location of the measuring points of the 
strains of the reinforced beams 

 
Figure B.1. Locations of the measuring points of reinforced beam type I (FKFO no. 547). 

 

 

 
Figure B.2. Locations of the measuring points of reinforced beam type II (FKFO no. 547). 
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Figure B.3. Locations of the measuring points of reinforced beam type III (FKFO no. 547). 

 

 
Figure B.4. Locations of the measuring points of reinforced beam type IV. The tope side view is the  

            back of the beam, and the other side view is the front of the beam (FKFO no. 547). 
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Appendix C. Location of the measuring points of the 
strains and deflections of the prestressed 
beams 

 

Figure C.1. Location of the dial gauges for the static tests on prestressed beams (FKFO no. 547). 

 

 

 

Figure C.2. Location of the deformation measurements in section II, IV, and VI (see Figure C.1). From left to 
right: rectangular beam type, T-shaped beam type, I-shaped beam type with post-tensioning, and I-shaped 
beam type with pre-tensioning. 
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Appendix D. Results of the long-term tests on 
prestressed beams 

Table D.1. Results of the static tests after long-term loading of the beams with a rectangular cross-section. 

 
 .࢒ࢇࢉ,.࢘ࢋ࢙ࡹ

[kNm] 
 ࢘ࡹ

[kNm] 
 ࢚,࢛ࡹ

[kNm] 
࢚,࢛ࡹ ⁄.࢒ࢇࢉ,.࢘ࢋ࢙ࡹ   

[-] 
࢚,࢛ࡹ ⁄࢓,࢕,࢛ࡹ   

[-] 

R-LD-C-P14-Q31-100% 127.5 130 350 2.75 0.99 

R-LD-C-P14-Q31- 50% 127.5 160 330 2.59 0.93 

R-LD-C-P14- 0% 127.5 163 350 2.75 0.99 
R-LD-C-P14-Q56-100% 127.5 130 370 2.90 1.05 

R-LD-C-P14-Q56- 50% 127.5 - 360 2.82 1.02 
R-LD-C-P45- 0% 127.5 163 360 2.82 1.02 

Mean 127.5 149 353 2.77 1.00 
 

Table D.2. .   Results of the static tests after long-term loading of the beams  
with an I-shaped cross-section which are post-tensioned. 

 
 .࢒ࢇࢉ,.࢘ࢋ࢙ࡹ

[kNm] 
 ࢘ࡹ

[kNm] 
 ࢚,࢛ࡹ

[kNm] 
࢚,࢛ࡹ ⁄.࢒ࢇࢉ,.࢘ࢋ࢙ࡹ   

[-] 
࢚,࢛ࡹ ⁄࢓,࢕,࢛ࡹ   

[-] 

I-LD-C-P15-Q28-100% 125.6 165 292 2.32 0.90 
I-LD-C-P15-Q28- 50% 125.6 145 324 2.58 1.00 

I-LD-C-P14- 0% 125.6 165 324 2.66 1.03 

I-LD-C-P14-Q56-100% 125.6 160 324 2.58 1.00 
I-LD-C-P14-Q56- 50% 125.6 145 304 2.42 0.94 

I-LD-C-P56- 0% 125.6 145 347 2.76 1.07 

Mean 125.6 154 321 2.56 0.99 
 

Table D.3. Results of the static tests after long-term loading of the beams  
with an I-shaped cross-section which are pre-tensioned. 

 
 .࢒ࢇࢉ,.࢘ࢋ࢙ࡹ

[kNm] 
 ࢘ࡹ

[kNm] 
 ࢚,࢛ࡹ

[kNm] 
࢚,࢛ࡹ ⁄.࢒ࢇࢉ,.࢘ࢋ࢙ࡹ   

[-] 
࢚,࢛ࡹ ⁄࢓,࢕,࢛ࡹ   

[-] 

I-LD-BS-P7-Q28-100% 109.8 - 324 2.95 0.96 

I-LD-BS-P7-Q28- 50% 109.8 145 320 2.91 0.95 
I-LD-BS-P7- 0% 109.8 130 316 2.88 0.94 

I-LD-BS-P14-Q28-100% 109.8 - 320 2.91 0.95 
I-LD-BS-P14-Q28- 50% 109.8 140 326 2.97 0.97 

I-LD-BS-P14- 0% 109.8 140 317 2.89 0.94 

Mean 109.8 136 321 2.92 0.95 
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Appendix E. Prediction of time-dependent behaviour of 
reinforced beams versus measurements 

 
Figure E.1. Predictions and measurements of the deflection at midspan of the reinforced beams of type I 

(constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

 

Figure E.2. Predictions and measurements of the deflection at midspan of the reinforced beams of type III 
(constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 
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Figure E.3. Prediction of the stress at the top fibre at midspan of the reinforced beams of type I  

(constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

 
Figure E.4. Prediction of the stress at the top fibre at midspan of the reinforced beams of type III  

(constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 
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Figure E.5. Predictions and measurements of the strain near the top fibre at midspan of the reinforced 

beams of type I (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 

 
Figure E.6. Predictions and measurements of the strain near the top fibre at midspan of the reinforced 

beams of type III (constant aging coefficient equal to 0.8 and no correction for nonlinear creep). 
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Figure E.7. Comparison of predicted values with a calculated aging coefficient  
against predicted values with a constant aging coefficient for beams of type II. 

 
Figure E.8. Comparison of predicted values with a calculated aging coefficient  

against predicted values with a constant aging coefficient for beams of type III.
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Appendix F. Prediction of time-dependent deflections of 
prestressed beams versus measurements 

 
Figure F.1. Predictions and measurements of the deflection at midspan of the pre-tensioned I-shaped  
beams which are not loaded (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 

 

 
Figure F.2. Predictions and measurements of the deflection at midspan of the post-tensioned I-shaped  
beams which are not loaded (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 
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Figure F.3. Predictions and measurements of the deflection at midspan of the post-tensioned I--shaped 
beams loaded at 28 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 

 
Figure F.4. Predictions and measurements of the deflection at midspan of the post-tensioned T-shaped  
beams loaded at 28/34 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 
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Figure F.5. Predictions and measurements of the deflection at midspan of the post-tensioned T-shaped  
beams which are not loaded (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 

 
Figure F.6. Predictions and measurements of the deflection at midspan of the post-tensioned R-shaped  
beams loaded at 31 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 
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Figure F.7. Predictions and measurements of the deflection at midspan of the post-tensioned R-shaped  
beams loaded at 56 days (constant aging coefficient equal to 0.8 and no correction for relaxation of 
prestress). 
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Appendix G. Prediction of time-dependent stresses of 
the prestressed beams 

 
Figure G.1. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of the 
post-tensioned rectangular beams loaded at 31 days (constant aging coefficient equal to 0.8 and no 
correction for relaxation of prestress). 

 

 
Figure G.2. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of the 
post-tensioned rectangular beams loaded at 56 days (constant aging coefficient equal to 0.8 and no 
correction for relaxation of prestress). 
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Figure G.3. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of the 
pre-tensioned I-shaped beams prestressed at 14 days (constant aging coefficient equal to 0.8 and no 
correction for relaxation of prestress). 

 

 

 

Figure G.4. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of the 
post-tensioned T-shaped beams loaded at 28/34 days (constant aging coefficient equal to 0.8 and no 
correction for relaxation of prestress). 
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Figure G.5. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of the 
post-tensioned I-shaped beams loaded at 28 days (constant aging coefficient equal to 0.8 and no correction 
for relaxation of prestress). 

 

 

 
Figure G.6. Prediction of the stress at the bottom fibre and the top fibre (marked by an x) at midspan of the 
post-tensioned I-shaped beams loaded at 56 days (constant aging coefficient equal to 0.8 and no correction 
for relaxation of prestress). 
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Appendix H. Prediction of time-dependent strains near 
the top fibre of the prestressed beams 

 
Figure H.1. Predictions of the strain near the top fibre at midspan of the post-tensioned rectangular beams 
loaded at 31 days (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 

 

 
Figure H.2. Predictions of the strain near the top fibre at midspan of the post-tensioned rectangular beams 
loaded at 56 days (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 
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Figure H.3. Predictions of the strain near the top fibre at midspan of the post-tensioned T-shaped beams 
loaded at 28/34 days (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 

 
Figure H.4. Predictions of the strain near the top fibre at midspan of the unloaded post-tensioned T-shaped 

beams (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 
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Figure H.5. Predictions of the strain near the top fibre at midspan of the I-shaped beams pre-tensioned at 

14 days (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 

 
Figure H.6. Predictions of the strain near the top fibre at midspan of the unloaded pre-tensioned I shaped 

beams (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 
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Figure H.7. Predictions of the strain near the top fibre at midspan of the post-tensioned I-shaped beams 
loaded at 28 days (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 

 

Figure H.8. Predictions of the strain near the top fibre at midspan of the post-tensioned I-shaped beams 
loaded at 56 days (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 
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Figure H.9.  Predictions of the strain near the top fibre at midspan of the unloaded post-tensioned I-shaped 

beams (constant aging coefficient equal to 0.8 and no correction for relaxation of prestress). 
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Appendix I. Prediction of time-dependent deformations 
of prestressed beams vs measurements 

 
Figure I.1. Predictions (MC2010) and measurements of the deformation at midspan of the I-shaped beam 
pre-tensioned at 7 days and loaded at 50% at 28 days (constant aging coefficient equal to 0.8 and no 
correction for nonlinear creep). 

 
Figure I.2. Predictions (MC2010) and measurements of the deformation at midspan of the unloaded 
T-shaped beam pre-tensioned at 14 days (constant aging coefficient equal to 0.8 and no correction for 
nonlinear creep). 
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Figure I.3. Predictions (B3) and measurements of the deformation at midspan of the T-shaped beam 
pre-tensioned at 14 days and loaded at 50% at 56 days (constant aging coefficient equal to 0.8 and no 
correction for nonlinear creep). 

 
Figure I.4. Predictions (MC2010) and measurements of the deformation at midspan of the T-shaped beam 
pre-tensioned at 14 days and loaded at 100% at 56 days (constant aging coefficient equal to 0.8 and no 
correction for nonlinear creep). 
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