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Abstract

Energy leakage is nowadays becoming a fundamental problem in the chip’s energy
household. Energy leakage is especially a problem in chips targeted for devices with
a long standby time, such as future Internet of Things (IoT) devices. Future IoT
devices point to ’always on, always connected’-devices which will consume a lot of
leakage energy. Energy leakage in chips is detrimental for the IoT technology because
of three reasons. First, energy leakage drains the limited energy supply of the IoT
chips, probably in the form of a battery or with energy harvesting. Second, energy
leakage results in unwanted heat dissipation, which can be a potential problem in IoT
chips worn close to the human skin or incorporated in food packages. Third, energy
leakage in mass produced IoT chips is likely to result in a global waste of energy.
Furthermore, to counteract the issue with privacy and security associated with IoT,
a recent trend is under research to compute more of the raw data locally in the chip,
instead of sending the data directly to the cloud for computation. As a consequence,
the performance of the IoT chip in executing computational tasks needs to meet a
certain minimum performance without deteriorating the power consumption. Steep
slope transistors in IoT chips allow to lower the power consumption while keeping
the required performance.

In this thesis we investigate the nanowire transistor with a geometric superlat-
tice as a viable steep slope transistor concept. A geometric superlattice is any
kind of periodic feature along the transport direction of the nanowire. A geomet-
ric superlattice in the nanowire transistor has the potential to reduce the energy
leakage by filtering out the high energy electrons causing the leakage current in
the chip. We model a nanowire transistor with a geometric superlattice using a
continuous quantum approach in three dimensions by extending the quantum trans-
mitting boundary method to a general three-dimensional device geometry. We proof
the existence of minibands and minibandgaps in the transmission spectrum of the
nanowire with a geometric superlattice. By changing the periodic features of the
geometric superlattice in the simulations, we show the possibility of engineering
the minibands and minibandgaps in the transmission spectrum such as to filter
out the high energy electrons and to lower the leakage current. We propose the Si
nanostrip geometric superlatticeFET as a steep slope transistor concept with close
to ideal energy filtering characteristics and a switching slope of sub-60 mV per decade.

Keywords - Steep slope transistors, geometric superlattice, nanowires, passive
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Chapter 1

Introduction

1.1 Problem statement

1.1.1 Electronic society

The use of electronic devices has become mainstream in today’s society. Electronic
devices largely determine the way we work, communicate and obtain information.
Over a few decades, electronic devices have been gaining steadily in functionality
and portability. This increased functionality and portability is clearly visible with
the laptops, smartphones and tablets which most of us use on a daily basis. However,
these examples only include the consumer electronics. A larger part of the electronics
is hidden away in objects like cars, traffic lights, medical appliances or industrial
sensors. The hidden electronics enable a variety of applications to run smoothly
and efficiently. An even wider variety of applications, closer to people’s every day
lives, can be envisioned when more every day objects become equipped with hidden
electronics and connected to the Internet. This will enable a new generation in
information and communication technology: the Internet of Things.

1.1.2 Internet of Things

In a society with Internet of Things (IoT), the hidden electronics will become
even more ubiquitous than today. The hidden electronics will come in clothing,
buildings, autonomous cars, food packages etc. The hidden electronics will sense the
surroundings and extract raw data from it. The raw data can then be communicated
over the Internet to other hidden electronics, to consumer electronics or to the cloud,
depending on the application. By doing computations on the raw data, the raw data
is then transformed into valid pieces of information useful for monitoring health[23]
improving energy efficiency in buildings[24], monitoring traffic[49] or reducing waste
in the food supply chain[44]. The leading vendor of embedded electronics ARM
expects 30 billion of connected IoT devices by 2020[2]. An abundance in connected
devices is a vital asset for the IoT technology, as a lot of raw data from different
places is needed to reconstruct valid pieces of information. In a society with IoT,
the more hidden electronics, the merrier.
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Figure 1.1: Left: Chip sales in billion US dollars from 1988 until 2015[42]. Top right:
Processing of chips in a cleanroom on a chain of expensive tools c©imec. Bottom
right: A pile of produced chips c©imec.

1.1.3 Mass production of chips

At the heart of all the hidden electronics and consumer electronics are the chips.
Chips sales have risen to a 300 billion dollar market in 2015, as shown in figure
1.1. However, to connect clothes, cars, buildings etc. in a society with IoT, the
production and sales of chips should keep increasing in the coming years. To enable
a society with IoT, chips should become a real commodity, even more than today.
However, chips are produced in cleanrooms with highly automated processes on a
chain of very expensive tools. To produce a given amount of chips on a wafer, it takes
around three to four months for the wafer to run through all the process steps. The
throughput of chips at a given cost and time is limited by the number of chips which
fit on the wafer. To increase chip throughput at a fixed wafer size, a solution is to
make the chips on the wafer smaller. To retain the same functionality with smaller
chips, the features on the chip have to become smaller. As a result, the transistors on
the chip have scaled to 14 nanometer in 2015[3], enabling a higher transistor density
on smaller chips. Today, researchers already explore the 10 nanometer node (and
beyond) to take the mass production of chips to the next level and make an IoT
technology possible.

1.1.4 Energy crisis

Current chips consume too much energy. Chips consume their available energy
in two ways: actively, due to the execution of computational tasks, and passively,
due to energy leakage. First, energy is consumed actively because the execution of
computational tasks involves switching of the transistors on the chip. This switching
of transistors is an irreversible process. Every time one of the billion transistors
on the chip switches, a small amount of energy is dissipated to the surroundings.
Until recently, the active energy consumption was the dominant factor in the energy

2



1.2. Proposed solution

consumption of the chip. However, energy is also consumed passively from the
moment the chip is switched on. During standby time, when the chip is waiting for
the next computational task, this energy consumption is referred to as an energy
leakage, because the chip is wasting energy while not fulfilling any computational
tasks. The energy leakage originates from small currents flowing through the transis-
tors in the off-state. Today’s transistors are non-ideal switches and therefore do not
fully block the current in the off-state, allowing small leakage currents to flow. By
scaling the transistors down to nanometer lengths, it becomes increasingly difficult
to block the leakage current and the energy leakage increases. As a consequence, the
energy leakage is nowadays becoming a fundamental problem in the chip’s energy
consumption. Energy leakage is especially a problem in chips targeted for devices
with a long standby time, such as IoT devices. IoT devices are targeted to be ’always
on, always connected’-devices and will consume a lot of leakage energy.

Energy leakage in the chips is detrimental for the IoT technology because of three
reasons: first, energy leakage drains the limited energy supply of the IoT chip, second,
energy leakage results in unwanted heat dissipation, and third, energy leakage in
masses of IoT chips is likely to result in a global waste of energy. First, an IoT chip
will be fueled by a limited energy supply, probably in the form of a battery. To
attain good operation in a general IoT application, the batteries in the connected
IoT devices have to last very long. However, energy leakage will unnecessarily drain
the batteries of the IoT devices in standby mode and decrease the lifetime of the
IoT application. In the near future, the IoT devices may also be fueled by energy
harvested from the surroundings (e.g. sunlight, vibrations)[29] instead of relying on
a battery for their energy supply. In this case, reducing the energy leakage is even
more crucial because the energy supply may be smaller and less reliable. Second,
energy leakage dissipates heat to the surroundings of the IoT chip. This dissipated
heat can pose problems in IoT applications where, for instance, the IoT chip is
worn in clothes, close to the human skin or incorporated in food packages. In these
example applications excessive heat is a problem and cooling the IoT chip is not a
directly available option. Third, using masses of IoT chips in the world in standby
mode will consume a lot of leakage energy and is likely to result in a global energy
waste problem. In an IoT society this excessive energy consumption may represent a
major global challenge. If researchers want to roll out an IoT technology in the near
future with chips based on transistors scaled into the nanometer regime, the energy
leakage has to be reduced.

1.2 Proposed solution

Chips are optimized for different metrics. The most important metrics are energy
consumption, performance and cost. In designing a chip, all three metrics need
to be taken into account. Depending on the application, one metric is given more
weight than the other, but they all need to be considered. For instance, making the
transistors for chips in a older (and longer) transistor technology will reduce the
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leakage energy and the cost, but will at the same time deteriorate the performance
of the chip. This is also the case with an IoT chip. To counteract the issue with
privacy and security associated with IoT, there is a recent trend under research[20] to
compute more of the raw data locally in the chip, instead of sending the data directly
to the cloud for computation. As a consequence, the performance of the IoT chip in
executing computational tasks needs to meet a certain minimum performance. In
addition, the optimization to the different metrics (energy consumption, performance
and cost) is done on different levels of abstraction. The main levels of abstraction
are system level, circuit level and transistor level.

In this thesis we propose a solution for the energy leakage on transistor level and
the primary metric we consider is energy consumption. Performance and cost are
considered secondary metrics which are optimized when the energy consumption
target is met. The proposed solution includes using nanowire transistors with a
geometric superlattice for energy filtering. In the next sections the solution itself
and the choice for this solution are explained in more detail. Nanowire transistors,
energy leakage, energy filtering and superlattices are explained consecutively.

1.2.1 Nanowire transistors

Nanowire transistors are a promising candidate for transistors in future chips.
Nanowires are typically made of Si or III-V materials in a horizontal or verti-
cal configuration. The horizontal configuration is typically made using a top-down
etching technique, while the vertical configuration is typically made with a bottom-up
assembly technique[43]. Horizontal nanowire transistors are targeted in the roadmap
for introduction in 2018 and vertical nanowire transistors for 2020[21]. Nanowire
transistors can enable a higher transistor density on the chip, especially in the vertical
configuration. However, vertical nanowire transistors will need a paradigm shift in
the process flow, because today’s process flow is established for chips with planar
transistor architectures.

Nanowire transistors have several advantages over today’s 14 nanometer planar
transistors. First, nanowires have purely one-dimensional transport properties be-
cause of the motion quantization in the transverse direction. The electrons in the
nanowire channel form a 1D-electron gas with a lot of available states along the
nanowire and only a few on the transverse direction. Second, a better electrostatic
gate control over the channel can be achieved because the gate can be placed all-
around the nanowire. Third, because the nanowire’s cross-sectional dimension is
typically below 10 nanometer, the nanowires are small enough to become fully de-
pleted by a gate bias. Hence, the junctionless transistor concept becomes possible[34].
The junctionless transistor concept removes the necessity to make very abrupt junc-
tions in the source and the drain, simplifying the fabrication process and lowering the
thermal budget. Additionally, in contrast with an inversion layer transistor concept,
electron transport happens in the bulk of the device instead of at the interface. This
allows a lower surface scattering and less degradation of mobility when the gate
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Figure 1.2: Junctionless nanowire transistor in horizontal configuration and with
square cross-section. The cross-sectional dimensions of the nanowire are 5 nm by
5nm and the channel length is 40 nm. The z-coordinate axis is placed along the
nanowire channel.

voltage is increased. The main disadvantages of the junctionless transistor concept
are the variability in doping and the contact resistances at the source and drain. The
doping concentration in nanowires can be upper limited1 depending on the diameter
to achieve a positive threshold voltage[13].

1.2.2 Energy leakage in nanowire transistors

Figure 1.2 shows a junctionless nanowire transistor in horizontal configuration. The
nanowire channel measures 5 nm by 5 nm by 40 nm and the source, the drain and
the gate are denoted with S, D and G respectively. The power consumption of the
nanowire transistor can be estimated using the global power equation:

P = αCV 2
ddf︸ ︷︷ ︸

Pactive

+ IleakVdd︸ ︷︷ ︸
Ppassive

(1.1)

The power consumption in the nanowire transistor consists of the active power
consumption Pactive and the passive power consumption Ppassive. The active power
consumption is proportional to the activity level α, the capacitance C, the supply
voltage Vdd and the operational frequency f . The passive power consumption is

1For a threshold voltage of Vth = 0.3 V and a diameter of 10 nm the doping concentration
cannot exceed 1019 cm−3[13].
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proportional to the leakage current Ileak through the nanowire transistor in the
off-state and the supply voltage Vdd. For IoT chips, the passive power consumption
dominates because the IoT chips are in standby most of the time and the activity
level α is low. Therefore, the optimization is done for low passive power consumption.
To lower passive power consumption on transistor level, we can either lower the
supply voltage Vdd or lower the leakage current Ileak.

Lowering the supply voltage Vdd is the first option to reduce passive power consump-
tion on transistor level. A lower supply voltage is beneficial for reducing active as
well as passive power consumption. The supply voltage in today’s 14 nm planar
transistor chips is 0.7 V. For nanowire transistors, the roadmap predicts a scaling
of the supply voltage below 0.5 V[21]. However, lowering the supply voltage can
decrease performance. A certain overdrive Vdd − Vth with the threshold voltage Vth
is necessary to sustain performance[26].

Lowering the leakage current Ileak is the second option to reduce passive power
consumption on transistor level. Lowering the leakage current is more difficult than
lowering the supply voltage, because the leakage current is inherently linked with
the carrier injection mechanism of the transistor in the off-state. In this thesis we
only consider n-type junctionless nanowire transistors and therefore the carriers are
electrons. The electron injection mechanism in the nanowire transistor in the off-state
is the thermal injection mechanism. The energies of the electrons in the source are
statistically distributed according to Fermi-Dirac statistics. At room temperature,
some of the electrons have sufficient energy to overcome the potential energy barrier
and are injected into the channel. This is referred to as thermal injection and is
qualitatively represented in figure 1.3. The high energy electrons in the source are
responsible for the leakage current and thus the passive power consumption in the
nanowire transistor.

Figure 1.3 shows the junctionless nanowire transistor with a qualitative energy
band diagram for the first subband of the conduction band. The Fermi-Dirac distri-
bution is also shown and gives the equilibrium distribution of the electron energies in
the source at room temperature. The part of the exponential tail of the Fermi-Dirac
distribution above the potential energy barrier corresponds to the hot electron density,
as shown in red. The hot electrons have enough energy to surpass the potential
energy barrier and can contribute to the leakage current, increasing passive power
consumption.

Most of the IoT chips will be operated at room temperature. At room temper-
ature, the Fermi-Dirac distribution is as shown in figure 1.3. However, the IoT
chip can heat up due to active power consumption when executing computational
tasks. At higher temperature, the distribution of electrons in the source changes to
a distribution with more electrons occupying sufficiently high energies to surpass the
potential energy barrier. As a result, the leakage current and the passive power con-
sumption increase with higher temperature. IoT chips operated in high-temperature
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Figure 1.3: Junctionless nanowire transistor in the off-state with a qualitative energy
band diagram of the first subband of the conduction band. The figure describes
thermal injection of electrons in the source into the channel. Electrons with energy
higher than the gate potential energy barrier can surpass the barrier and contribute
to the leakage current.

environments, such as IoT sensors in industrial buildings, will have the same issue
of increased passive power consumption. Energy filtering, discussed next, allows
to filter out the high energy electrons in the source of the nanowire transistor to
decrease the leakage current and the passive power consumption.

1.2.3 Energy filtering

Energy filtering is the concept of blocking the high energy electrons injected into
the channel to attain a lower leakage current. Energy filtering can be achieved
in three currently known ways: confinement, band-to-band tunneling or resonant
tunneling. The two main energy filtering devices under research at the time of
writing are tunnel field-effect transistors (tunnelFETs) and superlattice field effect
transistors (superlatticeFETs). TunnelFETs use band-to-band tunneling to achieve
energy filtering, while superlatticeFETs use resonant tunneling. In this thesis we
focus on superlatticeFETs using nanowires. The nanowire superlatticeFET is shown
in horizontal configuration and with material superlattice in figure 1.4.
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Figure 1.4: The nanowire superlatticeFET with a material superlattice in a horizontal
configuration. The superlattice is made with a sequence of two alternating materials,
shown in blue and brown colors. The superlattice allows to filter out the high energy
electrons in the source.

Superlattice

The superlattice is the sequence of two alternating materials at the source2. The
purpose of the superlattice is to provide an extra periodic potential profile along the
nanowire, on top of the periodic lattice potential, hence the name ’super’-’lattice’.
In a semiconductor material the periodicity of the crystal atoms is responsible for
the formation of bandgaps. By applying an extra periodic potential profile along
the transport direction of the nanowire with a spacing much bigger than the lattice
constant, minibandgaps can be formed in the energy spectrum of the nanowire. The
minibandgaps can be placed at energies corresponding to the energies of the hot
electrons in the source. The minibandgaps will then block the hot electrons and
avoid their contribution to the leakage current, as shown in figure 1.5. Therefore,
the superlattice allows to act as an energy filter to filter out the hot electrons in the
source.

Superlattice with ideal energy filtering capacity

The placement and width of the minibands and miniband gaps can be varied
by engineering the superlattice structure, for instance by changing the material
composition of the superlattice, the width of the periods etc. This allows to search

2A sequence of two alternating materials is one of the ways of making a superlattice, as patented
by M. Björk et al[9] and researched by E. Gnani et al[12, 17, 14, 15].
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Figure 1.5: Nanowire superlatticeFET with material superlattice and a qualitative
energy band diagram of the first subband of the conduction band. The figure shows
the first two minibands and the first minibandgap in the energy spectrum of the
superlattice. The minibandgaps allow to block (part of) the high energy electrons in
the source. Ideally, the first minibandgap extends to higher energies to block the full
exponential tail of the Fermi-Dirac distribution.

for the superlattice with ideal energy filtering capacity. The ideal energy filter has
the following characteristics in its miniband structure. First, the miniband structure
has a decent first miniband with a width around 0.1-0.3 eV to achieve a sufficient
on-state current and sufficient performance. The width of 0.1-0.3 eV of the first
miniband follows from the energy range which can be blocked by the gate potential
energy barrier and corresponds to the necessary supply voltage Vdd (around 0.1-0.3
eV for nanowire transistors[21]). Second, the first minibandgap needs to be as big as
the extension of the tail of the Fermi-Dirac distribution for blocking preferably all
the high energy electrons. This allows a low leakage current and low passive power
consumption. Third, a steep turn-on of the transistor is necessary, which translates
in a steep transition between the first miniband and the first minibandgap. Ideally,
the band edge between the first miniband and first miniband gap is infinitely sharp
to go from zero to many electrons injected into the channel by lowering the potential
energy barrier only over a small energy range[50]. This will allow for a steep rise in
current for a small change in gate voltage. In the next paragraph we discuss another
kind of superlattice which will allow for more variety in the superlattice to search for
the superlattice with ideal energy filtering capacity.
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Figure 1.6: Example geometric superlattices including, from left to right: a periodicity
of triangular bumps, indents, fins, spirals in the nanowire. The orange regions denote
the superlattice. The blue and green regions denote the source and drain side of the
nanowire superlatticeFET.

Geometric superlattice

Instead of making the superlattice with a sequence of two alternating materials as
claimed by Björk et al[9] and further investigated by Gnani et al[12, 17, 14, 15],
another possibility is to apply periodic features in the geometry of the nanowire.
We refer to this kind of superlattice as a geometric superlattice. In this thesis we
consider nanowire superlatticeFETs with a geometric superlattice. To the best of
the author’s knowledge, the nanowire superlatticeFET with geometric superlattice
has not previously been discussed in literature.

The geometric superlattice has the following advantages over the superlattice with a
sequence of two alternating materials. First, a geometric superlattice allows for a
wider variety of possible superlattices than are possible with a material sequence. One
can think of various geometric superlattices, such as constrictions in the nanowire,
indentations, a sequence of fins, triangles etc. Some example geometric superlattices
are shown in figure 1.6. A wide variety of possible superlattices is advantageous
in the search for the superlattice with ideal energy filtering capacity. Second, in
contrast with the material superlattice, a geometric superlattice can be made out
of only one material, preferably Si. Using Si for the superlattice can result in lower
defects and less chance the energy filtering capacity of the superlattice is obstructed
by introducing states in the minibandgaps[50]. If the gate would be placed on top of
the superlattice, silicon’s native oxide SiO2 should result in less interface traps and
allow to keep a sharp band edge for steep turn-on. To boost the on-state current
of the tunnelFET a transition was made from Si to III-V materials. However, for
superlatticeFET there is no direct need to transition to III-V materials because
the on-state current is expected to be higher due to resonant tunneling instead of
band-to-band tunneling. Third, doping small structures is a fundamental problem
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Figure 1.7: Qualitative figure of the nanowire superlatticeFET with a geometric
superlattice made with periodic top indentations at the source. A qualitative energy
band diagram of the first subband of the conduction band is shown in the transport
direction of the nanowire. A transmission spectrum with a possible miniband
structure for the geometric superlattice is shown on top of the energy band diagram
at the superlattice. The minibandgaps allow to block (part of) the high energy
electrons in the source. Ideally, the first minibandgap extends to higher energies to
block the full exponential tail of the Fermi-Dirac distribution.

because of the variability of the dopants. To dope the separate materials in a material
superlattice, a very high thermal budget is needed to keep the boundaries of the
doped regions very sharp. The geometric superlattice does not have an alternating
material sequence which makes doping less an issue, although the variability issue of
the dopants in the nanowire remains.

The main disadvantage of a geometric superlattice is its fabrication. At the time of
writing a geometric superlattice with periodic features with lateral dimensions of a
few nanometers is either difficult, impossible or very expensive to make depending
on the periodic features. Electron beam lithography should allow for a 2 to 3 nm
precision in the lateral dimension[31]. However, making a full periodic superlattice
can represent a major challenge in terms of fabrication and reliability at the time of
writing.
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1.3 Research objectives and methodology
In this section the research objectives are stated and the methodology to attain these
research objectives is explained. The research objectives are translated into research
questions to be answered in the different phases of the thesis work. The methodology
is explained based on a flow chart covering the whole thesis work.

1.3.1 Research objectives

The first research objective is to gain insight in the various low power transistor
concepts currently under research. We investigate the place of the nanowire su-
perlatticeFET with a geometric superlattice among the other low power transistor
concepts. We explore the available methods to model the nanowire superlatticeFET
with a geometric superlattice and choose a suitable method.

The second research objective is to find and set up a suitable theoretical model for
the energy filtering in the nanowire superlatticeFET with a geometric superlattice.
The purpose of the model is to show the existence of energy filtering in 3D geometric
superlattices. The model should allow for quick simulation of nanowire superlat-
ticeFETs with various geometric superlattices and show their energy filtering capacity.

The third research objective is to first show the existence of energy filtering in
3D geometric superlattices and then, if possible, show the tunability of the en-
ergy filtering by varying the geometric superlattice. We explain the influence of
the different periodic parameters of the geometric superlattice on the energy filter-
ing. We try to find a geometric superlattice with ideal energy filtering capacity by
simulating various kinds of geometric superlattices with different periodic parameters.

The fourth research objective is to decrease the relative importance of the geo-
metric superlatticeFET’s main disadvantage: its fabricational difficulty and cost of
fabrication. For one specific geometric superlattice, we try to lower the fabricational
difficulty and cost by lowering the number of periods in the geometric superlattice.
We check the impact of a lower number of periods on the energy filtering capacity of
the geometric superlattice. We calculate the turn-on characteristics of a nanowire
superlatticeFET with a geometric superlattice. From the turn-on characteristics, we
deduct the leakage current, the passive power consumption, the switching slope and
the on-state current.

The research objectives can be translated to the following research questions:

• Why the superlatticeFET as low power transistor concept?

• How to model and simulate the superlatticeFET? Which method to use?

• How to model energy filtering in 3D?

• Is energy filtering possible with a geometric superlattice?
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• How to vary the geometric superlattice to tune energy filtering?

• Is there a geometric superlattice with ideal energy filtering capacity?

• Can we lower the cost and fabricational difficulty of the geometric superlattice?
Does it impact the energy filtering capacity?

• How is the geometric superlatticeFET characterized in terms of leakage current,
switching slope and on-state current?

Thesis statement

Show energy filtering in 3D and for a periodicity in the geometry, instead of a
sequence of two alternating materials:

• Find and set up a suitable theoretical model for energy filtering in 3D, which
allows to simulate the transmission spectra of different geometric superlattices
to place minibands and minibandgaps at relevant energies for supply voltages
around 0.1 eV to 0.3 eV.

• Optimize for a specific geometric superlattice with ideal energy filtering capacity
and check if this geometric superlattice can be simplified to decrease the
fabricational difficulty of the superlattice.

• Characterize the nanowire superlatticeFET with a chosen geometric superlattice
in terms of leakage current, passive power consumption, switching slope and
on-state current.

1.3.2 Methodology

The methodology used to find answers to the posed research questions is explained
in this section. The methodology is summarized in the flow chart in figure 1.8. The
flow chart gives an overview of the sequence of phases in this thesis work. The
thesis work is divided in a literature study and three phases of research: modelling
energy filtering with a geometric superlattice (phase I), simulating energy filtering
with a geometric superlattice (phase II) and investigating a Si nanostrip geometric
superlatticeFET (phase III).

Literature study

The first two research questions are answered by doing a literature study. The result
from the literature study is the insight in the place of the nanowire superlatticeFET
with a geometric superlattice among the other low power transistor concepts currently
under research. We validate a continuous quantum approach in 3D, which we will
use in phase I for modelling the energy filtering in a 3D geometric superlattice.
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Phase I: Modelling energy filtering with a geometric superlattice

In phase I of the research we answer the research question how we should model
energy filtering in 3D by setting up a model using a continuous quantum approach in
3D. This approach was chosen based on the literature study. The continuous quantum
approach in 3D involves solving a 3D Schrödinger boundary value problem with open
boundaries. The open boundaries are necessary to model the current flow through
the nanowire. The quantum transmitting boundary method (QTB method) is a
suitable method to take the open boundaries into account in a continuum approach.
The QTB method is derived in literature in 2D[27], but not in 3D. Therefore, we
first derive the QTB method in 3D and to make the method generally applicable, we
do the derivation for a general 3D device geometry and for isotropic effective mass
as well as anisotropic effective mass. We rewrite the 3D Schrödinger equation in
a form suitable for numerical solution with the finite element method. We derive
expressions for the transmission coefficients to plot transmission spectra in phase II
and state expressions for the electron charge density and current using a ballistic
approach.

Phase II: Simulating energy filtering with a geometric superlattice

In phase II of the research we start with simulating straight nanowires without a
geometric superlattice as a check for the model we set up in phase I. A straight
nanowire without a geometric superlattice should result in a transmission spectrum
with full transmission at all available energies starting from the injected subband
energy. Thereafter, we look for the existence of energy filtering with a 3D geometric
superlattice by plotting the transmission spectrum for a geometric superlattice with
indentations. In this case, the transmission spectrum should have clear drops in
transmission over a range of energies, corresponding to minibandgaps. If there’s
energy filtering, we vary the periodic parameters of the geometric superlattice to
understand their influence on the energy filtering and find an ideal energy filter.

Phase III: Investigating the Si nanostrip geometric superlatticeFET

In phase III we choose one geometric superlattice with the best obtained energy
filtering capacity in phase II. For this geometric superlattice, we lower the number
of periods and check if the energy filtering capacity decreases. A lower number
of periods in the geometric superlattice puts less pressure on the fabrication and
variability of the periodic nanometer sized features in the geometric superlattice.
We plot the turn-on characteristics of a Si nanostrip geometric superlatticeFET.
From the turn-on characteristics we derive the leakage current, the passive power
consumption, the on-state current and the switching slope.
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Figure 1.8: Schematic structure of the research
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Chapter 2

Literature study

“Why the superlatticeFET as low power transistor?”
“How to model and simulate the superlatticeFET?”
The goal of the literature study is to develop an overview of the possible low
power transistor concepts currently under research and gain insight in the place of
the nanowire superlatticeFET among other steep slope transistor concepts described
in literature. We also investigate the methods used to model and simulate low
power transistor concepts. The result of the literature study is a validation of the
superlatticeFET as a viable steep slope transistor concept and a chosen method
which will be used in the rest of the thesis work to model and simulate nanowire
superlatticeFETs with a geometric superlattice.

2.1 Low power transistor concepts

For a low-power transistor, we are especially interested in the turn-on character-
istic. From the turn-on characteristic we can derive valuable metrics such as the
leakage current, the passive power consumption, the inverse subthreshold slope and
the on-state current. The turn-on characteristic of a transistor is the curve of the
drain-source current in function of the gate voltage plotted on a logarithmic scale, i.e.
log IDS vs. VGS . The figure of merit for a low power or steep slope transistor is the
inverse subthreshold slope SS which can be derived from the turn-on characteristic.
The inverse subthreshold slope SS is the inverse slope of the logIDS VGS curve
in the subthreshold regime. In literature, it is common to work with the inverse
subthreshold slope, i.e. ∂VGS

∂log(IDS) in units of mV per decade current. A steep slope
of the turn-on characteristic then corresponds to a low value in mV per decade
of current. The turn-on characteristics of a conventional planar MOSFET transis-
tor, an ideal transistor and a low power transistor alternative are plotted in figure 2.1.

The inverse subthreshold slope SS = ∂VGS
∂log(IDS) gives the change in gate voltage

needed to realise one decade change in current through the transistor. The ideal
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Figure 2.1: Turn-on characteristics of an ideal transistor (green), the planar MOSFET
transistor (red) and a low power transistor alternative (blue). The planar MOSFET
transistor has a fixed inverse subthreshold slope of 60 mV/dec while the ideal
transistor has a turn-on characteristic which rises infinitely fast with gate voltage.

turn-on characteristic is infinitely steep resulting in an abrupt change between the
on- and the off-state of the transistor. In figure 2.1 the green line shows the ideal SS.
Other important metrics of an ideal steep slope transistor are a high on-state current
for good performance and a low leakage current for decreasing the passive power con-
sumption. A steep slope is advantageous because it allows to lower the supply voltage
Vdd below 0.5 V and thus decreasing the active power consumption as well as the
passive power consumption. With a lower limited 60 mV per decade slope for planar
MOSFET transistors lowering the Vdd below 0.5 V is not possible because the current
cannot rise enough order of magnitudes before reaching 0.5 V due to the smaller
slope, resulting in a too small difference between on-state current and leakage current.

Today’s planar MOSFET transistors usually have a subthreshold slope of around
70 to 120 mV per decade. The ideal 60 mV per decade subthreshold slope arises
from thermodynamic considerations of the carrier injection mechanism. The carrier
injection mechanism in planar MOSFETs is thermal injection of electrons from the
source into the channel. The electron energy distribution of the electrons in the
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source in equilibrium is described by Fermi-Dirac statistics in function of temperature.
In the thermal injection mechanism, the electrons with the highest thermal energy
in the source are injected into the channel. How fast the current can rise in the
MOSFET transistor is thus fundamentally limited by the thermally injected electrons
surpassing a modulated gate potential energy barrier. This limits the achievable
inverse subthreshold slope SS. To obtain a steeper slope transistor, it is necessary
to change the carrier injection mechanism. Another carrier injection mechanism
is quantum mechanical tunneling. In quantum mechanical tunneling not only the
electrons with highest thermal energy are injected into the channel, but also lower
energetic electrons can contribute to the current. Low power transistor concepts
which change the carrier injection mechanism to obtain a steep slope fall in the
category of the energy filtering devices. The two main examples of energy filtering
devices are the tunnelFETs (TFETs) and the superlatticeFETs. The tunnelFET
changes the carrier injection mechanism to band-to-band-tunneling (BTBT), while
the superlatticeFET changes the carrier injection mechanism to resonant tunneling.
Considering the formula for the subthreshold slope SS, we note that changing the
carrier injection mechanism is not the only way to influence the subthreshold slope.

SS = ∂VGS
∂log (IDS) = ∂VGS

∂φS︸ ︷︷ ︸
a

∂φS
∂log (IDS)︸ ︷︷ ︸

b

(2.1)

where φS is the surface potential in the channel. Changing the carrier injection mech-
anism corresponds to changing the factor b in equation 2.1. The other possibility to
change the inverse subthreshold slope SS is to vary factor a which corresponds to am-
plifying the non-linearity in the transistor using a positive feedback mechanism[18, 22].

The steep slope transistors currently under research can be divided into two categories:
the transistors which use a change in carrier injection mechanism to achieve a steep
slope and those which use an amplification mechanism inside the transistor to achieve
a steep slope. The former category includes tunnelFETs and superlatticeFETs, while
the latter category includes the iMOSFET (impact ionization MOSFET), the FeFET
(Ferroelectric FET) and the SG-MOSFET (suspended gate MOSFET).

2.1.1 Energy filtering based steep slope transistors

Energy filtering is the concept of filtering out the high energy electrons injected into
the channel. The electrons can be filtered out by changing the DOS at the source by
means of a superlattice (the concept applied in superlatticeFETs) or by changing
the band-to-band-tunneling probability (the concept applied in TunnelFETs). The
TunnelFETs and superlatticeFETs are discussed next.

TunnelFET

The tunnelFET was first proposed by Quinn et al in 1978[36, 22]. TunnelFETs use
the band-to-band tunneling mechanism to obtain energy filtering and achieve a steep

19



2. Literature study

slope. The band-to-band tunneling mechanism (BTBT) governs electrons tunneling
between energy bands in a highly doped p-n-junction[22]. The placement of the
energy bands can be changed abruptly with the gate potential which allows for a
steep slope. The main drawback of TunnelFETs is the low on-state current due to
band-to-band tunneling. The lower on-state current results in a performance issue
for TunnelFETs. Many performance boosters have been investigated for tunnelFETs
to attain a better on-state current, without compromising on the leakage current and
the subthreshold slope. The performance boosters include i.a. high-k gate dielectrics,
higher source doping, a double gate or the transition from Si to III-V materials[22, 45].
III-V materials can increase performance because of their low effective mass and
allow for a wide variety in band engineering possibilities to increase BTBT[46]. A
disadvantage of the III-V materials is the increased chance for defects compared to
Si, which can lead to trap-assisted tunneling (TAT) which degrades the operation of
the tunnelFET[47].

SuperlatticeFET

The research done on superlatticeFETS is far behind the research done on Tun-
nelFETS so far. The nanowire superlatticeFET was first proposed in 2008 by M.
Björk et al. in an IBM-patent[9]. From 2010 onward extensive research has been done
on the nanowire superlatticeFET by the group of E. Gnani in Bologna[12, 17, 14, 15].
Gnani et al. achieved a theoretical inverse subthreshold slope of 13 mV/dec for
a cylindrical nanowire with InGaAs-InAlAs material superlattice and an on-state
current of 4.5 mA/µm at a supply voltage of 0.4 V[15]. The superlatticeFET changes
the carrier injection mechanism to resonant tunneling. Electrons tunnel resonantly
through a superlattice placed at the source extension. At some energies, corre-
sponding to minibands, electrons can tunnel from the source to the entrance of the
channel (called the virtual source by Gnani). At other energies, corresponding to
minibandgaps, the electrons are blocked from tunneling to the entrance of the channel.
By carefully designing the miniband structure of the superlattice, the superlattice
can block the high energy electrons in the source and act as an energy-filter to
achieve a low leakage current. At the virtual source, the dominant carrier injection
mechanism in the off-state is source-to-drain tunneling, allowing for a lower leakage
current than the thermal injection mechanism. In the next paragraph the formation
of minibandgaps in the energy spectrum is examined more closely.

Formation of minibandgaps

The formation of minibandgaps in the transmission spectrum of the nanowire can
be understood from the wave nature of the electrons travelling through the super-
lattice. Using the wave nature of the electrons, two arguments can be developed to
understand the formation of minibandgaps. The first argument is an argument from
a wave interference perspective, the second argument is an argument from a tight
binding perspective.
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The first argument explains the formation of minibandgaps by the interference
of electron waves. The electron waves undergo Bragg reflection due to the periodic
superlattice potential. An incoming electron wave can be reflected by one of the
periods of the superlattice and interfere constructively or destructively. Depending
on the energy of the electron, the wavelength of the electron varies, which influences
the tendency for constructive or destructive interference. Depending on where the
constructive and destructive interferences happen in the nanowire superlattice and
on which energies, the interferences can result in minibands or minibandgaps in the
transmission spectrum of the superlattice nanowire.

The second argument explains the formation of minibandgaps by starting from
a tight binding perspective. In a tight binding perspective, the periods of the su-
perlattice are spaced infinitely far apart and the electrons are tightly bound to the
separate potential wells. With an infinite spacing between the potential wells, the
wavefunctions from the separate wells do not overlap. When we bring the periods of
the superlattice closer to eachother, the wavefunctions in the separate wells start to
overlap. The linear combinations of overlapping wavefunctions are also solutions of
the Schrödinger equation, but yield different energy levels. The energy levels thus
start to broaden and form minibands. The energy spacing between the minibands
where no available energy levels are present form the minibandgaps.

2.1.2 Amplification based steep slope transistors

Amplification based steep slope transistors use positive feedback in the turn-on mech-
anism to achieve a steep slope. The steep slope transistors which use this mechanism
to achieve a steep slope include the iMOSFET (impact ionization MOSFET), the
FeFET (ferroelectric FET) and the SG-MOSFET (suspended gate MOSFET).

2.1.3 iMOSFET

The iMOSFET or impact ionization MOSFET was developed by the group of
J.Plummer at Stanford in 2002[18]. Impact ionization of electrons is a mechanism
that changes abruptly with the energy of the electrons, which is used in the iMOSFET
to achieve a steep slope. Impact ionization starts only at a high breakdown voltage
VBD. The iMOSFET thus requires a drain voltage which is higher than VBD. The
breakdown voltage VBD is at least 1.5Ege with Eg the bandgap of the semiconductor
material and e the fundamental electron charge[12]. This limits the scope of the
iMOSFET for use in circuits, as the stacking of iMOSFET will result in a very
high supply voltage needed to keep every iMOSFET in the stack at the breakdown
voltage.

2.1.4 SG-MOSFET

The suspended gate MOSFET (SG-MOSFET), also called the nano-electromechanical
FET (NEMFET) by Kam et al[25], combines MEMS (Micro-Electromechanical
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Systems) functionality with transistor functionality to achieve a steep slope. In the
off-state of the transistor a nanometer-sized cantilever makes contact with the gate
dielectric on top of the channel. When the cantilever makes contact with the gate
dielectric, the channel is fully depleted and no current flows. When the voltage is
increased on the cantilever, the depletion width decreases and a current starts to
flow. At a certain voltage the electrostatic force on the cantilever will equal the
spring force and the cantilever will snap back from the gate dielectric. This abrupt
snapping back of the cantilever is responsible for the steep slope of the SG-MOSFET.
In addition, a complete elimination of the gate leakage current is possible when the
transistor is surrounded by a vaccuum and hence, the gap between cantilever and
gate dielectric in the on-state is filled with vacuum. However, with the introduction
of high-k gate dielectrics, the leakage current problem has shifted away from gate
leakage toward drain-source leakage as the major problem. Subthreshold slopes of
< 2mV per decade were achieved experimentally with the SG-MOSFET by Ionescu
et al[4] in Lausanne. However, the SG-MOSFET is not free of issues either. Scaling
of the cantilever to nanometer dimensions can be an issue, as well as stiction of the
cantilever to the gate dielectric and fatigue of the mechanical cantilever.

2.1.5 FeFET

The FeFET or ferroelectric FET was proposed by S. Datta at Purdue university as
steep slope transistor concept[39]. The FeFET uses a positive feedback mechanism
in the gate voltage attributed to the negative capacitance of the gate ferroelectric
to achieve a steep slope. The main disadvantage of the ferroelectric FET is the
replacement of the gate oxide with a ferroelectric capacitor. Ferroelectrics have just
like the SG-MOSFETS issues with scalability and fatigue.

2.1.6 Conclusion

In conclusion, we state that the available low power transistor concepts with steep
turn-on characteristic are limited and each have their own major disadvantage.
Especially the amplification based steep slope transistors have serious drawbacks
which inhibit further investigation and implementation of these steep slope transistor
concepts for now. As regards the energy filtering devices, extensive research has
already been done on tunnelFETs, while the research attention for superlatticeFETs
is very low in comparison with tunnelFETs. Hence, superlatticeFETs represent an
opportunity for further research. In addition, the research done on superlatticeFETs
is mainly limited to nanowires with a material superlattice[12, 17, 14, 15]. To
the best of the author’s knowledge, no research has already been published on
superlatticeFETs with a geometric superlattice.

2.2 Choice of the modelling and simulation method
In this section we validate the need for modelling and simulations of superlatticeFETs
and choose one particular method which will be used to model and simulate nanowire
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superlatticeFETs with a geometric superlattice.

2.2.1 Modelling and simulation

Running simulations before actual production of a test chip has become indispensable
nowadays in semiconductor industry. It takes around two to three months to run
a wafer through all the necessary process steps. Simulating new implementations
on the chip beforehand has therefore several advantages: first, it allows to decrease
the number of actual experiments needed in the lab, second, it can give insight in
phenomena which cannot be measured experimentally, and third, it allows to test the
viability of hypothetical devices which cannot be made yet or at high cost. Nanowire
superlatticeFETs belong to the latter case. Superlattices with periodic features
with lateral dimensions of a few nanometers are either difficult, impossible or very
expensive to make depending on the periodic features. Electron beam lithography
should allow for a 2 to 3 nm precision in the lateral dimension[31]. However, making
a full periodic superlattice can represent a major challenge in terms of fabrication and
reliability at the time of writing. Hence, probing the energy filtering experimentally
on a fabricated transistor is not possible yet, validating the need for a proper model
and simulation method for superlatticeFETs and superlatticeFETs with geometric
superlattice in particular.

In the following paragraphs we explain the different needs which a proper model
and simulation method for superlatticeFETs with geometric superlattice should ful-
fill. We validate the choice for a three-dimensional (3D) continuous quantum
approach and clarify the exact methods used in this approach.

2.2.2 Dimensionality of the method

Gnani et al model the nanowire superlatticeFET with material superlattice in two
dimensions by taking advantage of the rotational invariance[15]. However, in a
geometric superlattice the periodic features in the geometric superlattice are very
important for the energy filtering of the superlattice and are ideally modelled in 3D.
A 3D model for the geometric superlattice also allows for more freedom in shaping
its periodic parameters. The effects of various 3D periodic features can then be
examined. However, using a 3D model may complicate the mathematical derivation
of the theoretical model and increase computational time during simulation compared
to lower dimensional models.

2.2.3 Semiclassical vs. quantum approach

Most commercial software packages use the semiclassical approach. An example
of a semiclassical software package is Sentaurus Device (S-Device) from Synopsys.
S-Device can model 3D devices but does not yet support the simulation of resonant
tunneling devices. Using a fully semiclassical approach for the modelling of the
nanowire superlatticeFET with geometric superlattice is not desirable. Resonant
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tunneling, the operation principle of the nanowire superlatticeFET, is a quantum-
mechanical phenomenon which would be neglected in a fully semiclassical approach.
However, using a semiclassical approach with quantum corrections can be a possibility.

Semiclassical methods with quantum corrections

The semiclassical approach with quantum corrections could somehow account for the
resonant tunneling by implementing it as an extension of the semiclassical approach.
However, the semiclassical approach derives the charge densities and the currents
from the drift-diffusion equations. Drift-diffusion is not the transport mechanism
governing transport in the superlattice and it is questionable if one can fill this error
by including some quantum correction. Therefore, we choose to set up the model
starting from a fully quantum approach.

Fully quantum methods

A quantum method involves solving the Schrödinger equation and in our case, the
3D Schrödinger equation, because we chose to model the nanowire superlatticeFET
in 3D in 2.2.2. In the category of the quantum methods we further distinguish the
continuous quantum methods and the atomistic quantum methods.

2.2.4 Continuous vs. atomistic quantum methods

A continuous quantum method models the superlatticeFET from a top-down perspec-
tive, while an atomistic quantum method models the nanowire superlatticeFET from
a bottom-up perspective. Which method to use depends on the size of the modelled
device concept. For the nanowire superlatticeFET, this is a delicate question because
the size of the nanowire (several tens of nanometers) is quite small to be modelled
by a continuous method and quite big to be modelled by an atomistic method. An
atomistic method for the nanowire superlatticeFET can become computationally
very expensive, while a continuous method can become inaccurate. The choice for a
continuous or atomistic approach is not ready-made. Therefore, we consider both
the continuous quantum methods as the atomistic quantum methods as possible
candidates for modelling and simulation of the nanowire superlatticeFET.

Atomistic quantum methods

An atomistic approach is in general more computationally expensive than a continu-
ous approach. The computational efficiency will be low for larger structures such
as nanowires with still hundreds of atoms. Potential atomistic quantum methods
are solving the Schrödinger equation in a tight binding approximation or using
the density functional theory (DFT) to obtain the electronic structure. For the
transport calculations, possible approaches are assuming ballistic transport or using
the non-equilibrium Green’s function formalism (NEGF).

Solving the Schrödinger equation in a tight binding approach involves making
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linear combinations of the single atom wavefunctions of the atoms in the system.
In this method the computational load rapidly increases for many atoms. Usually
a nearest-neighbour assumption is made to lower the computational load. In the
nearest-neighbour assumption only linear combinations are made of the wavefunctions
of neighbouring atoms.

The density functional theory (DFT) is widely used to describe the electronic
structure of atoms, molecules or even superconductors[40, 6]. A possible commercial
software package which includes DFT is Atomistix Toolkit of Quantumwise. Den-
sity functional theory was first proposed in 1964 by P. Hohenberg and W. Kohn
as a method to solve the Schrödinger equation for an interacting electron gas[19].
The ground state of the interacting electron gas is written as a functional of the
charge density, which is then minimized in terms of energy to obtain the correct
ground state energy. DFT is not used often for semiconductor materials, because
DFT does not allow for an accurate description of the band gap in semiconductors[48].

The non-equilibrium Green’s function (NEGF) formalism uses a Green’s func-
tion at a point in the nanowire to calculate charge densities and currents in the whole
nanowire. Possible commercial software packages which use NEGF are Atomistix
Toolkit of Quantumwise and NEMO or OMEN of Purdue University. NEMO-3D
models the electronic structure of structures of tens of nanometers long with tight
binding and uses NEGF for the transport calculations[38]. However, the NEGF
formalism is computationally very expensive, especially for 3D structures[33]. A more
practical approach to calculating the charges and currents is to assume ballistic
transport, which assumes the distribution of the electrons in the channel to keep
the same equilibium distribution as in the source because no scattering is assumed
in the channel.

The above atomistic quantum methods are computationally heavy. In our case,
we do not require the most complex method from the start. Rather, in a first approx-
imation, a simpler method may suffice to prove energy filtering in superlatticeFETs
with geometric superlattice. Additionally, a simpler method will allow a higher turn-
over rate of simulation results. A high turn-over rate of simulation results is desirable
to test the energy filtering capacity of many geometric superlattices at reasonable
computational time. The continuous quantum methods are computationally less
demanding, but they should remain accurate.

Continuous quantum methods

A continuous method can become inaccurate for smaller structures. A continuous
quantum method usually starts with the effective mass theorem to simplify the
direct solution of the Schrödinger equation. The effective mass theorem converts
the Schrödinger equation into an effective mass Schrödinger equation by leaving
out the crystal potential contribution in the Schrödinger equation and changing the
fundamental electron mass of the electron to an effective mass m∗. The effective
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mass is derived from the bulk band structure of the semiconductor material, which
becomes more and more questionable for structures away from the bulk configuration.
The effective mass Schrödinger equation is stated in equation 2.2.

− }2

2m∗∇
2ψ + V ψ = Eψ (2.2)

The effective mass theorem is advantageous because the crystal potential changes on
the order of the lattice constant, which would require a mesh point at each lattice
site for accurate computation of the wavefunction. The obtained solutions from the
effective mass Schrödinger equation will be smooth envelope functions of the rapidly
oscillating solutions of the Schrödinger equation and require less mesh points for
accurate computation.

The bulk band structure used to derive the effective mass m∗ in equation 2.2
is obtained from either the bulk conduction band or the bulk valence band. In this
thesis we consider n-type junctionless nanowire transistors and hence, we use the
bulk conduction band. The bulk conduction band is further approximated as a
parabolic band by the effective mass approximation (EMA). A single band EMA is
possible for superlatticeFETs in a first approximation because superlatticeFETs do
not have interband transition as a working principle in contrast with tunnelFETs[11].
However, in the case of p-type superlatticeFETs, a multiband model should be used
for the valence band, such as the k·p model. Under confinement the light hole, the
heavy hole and the split off band of the valence band mix to form new subbands[32].
Therefore, it is expected that the hole states are very sensitive to variations in the
orientation and cross-sectional structure of the nanowires[32]. Varying the cross-
sectional structure is exactly the purpose of the geometric superlattice.

In general, the effective mass is an anisotropic property of the material and needs to
be modelled by an effective mass tensor M∗ instead of a scalar m∗. The Schrödinger
equation in equation 2.2 then changes1 to:

− }2

2 ∇ ·
( 1
M∗
∇
)
ψ + V ψ = Eψ (2.3)

or written into components:

− }2

2
∂

∂xi

1
m∗i,j

∂

∂xj
ψ + V ψ = Eψ (2.4)

The effective mass tensor takes into account the different effective masses depending
on the orientation of the crystal relative to the nanowire orientation. This is especially
important for Si nanowires, because Si has multiple valleys and anisotropy of the
effective mass in a valley. In the next two paragraphs we explain further the EMA
and the effective mass tensor M∗ in function of the crystal orientation.

1The full explanation of the form of the anisotropic effective mass Schrödinger equation is given
in appendix A.2.
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2.2.5 Effective mass approximation

Given a band structure or dispersion relation E(k) from literature, the m∗ in the
effective mass Schrödinger equation can be computed as follows:

m∗ij = }2
(

∂2E

∂ki∂kj

)−1

(2.5)

with i, j = x, y, z denote the kx, ky or kz unit vectors in the band structure. The
effective mass m∗ij is inversely proportional to the curvature of the bands. For the
three kx, ky and kz directions there are in general 6 different m∗ij (symmetric tensor)
and the effective mass is in fact a 3× 3 tensor M∗.

M∗ =

m∗xx m∗xy m∗xz
m∗yx m∗yy m∗yz
m∗zx m∗zy m∗zz

 (2.6)

If we approximate the bands at a certain (kx, ky, kz)-point with spherical bands, the
curvature of the bands is in every direction the same or isotropic. This approximation
is called the effective mass approximation and it simplifies the effective mass tensor
M∗ to a scalar effective mass m∗:

M∗ =

m∗ 0 0
0 m∗ 0
0 0 m∗

⇒M∗ = m∗

1 0 0
0 1 0
0 0 1

 = m∗I = m∗ (2.7)

2.2.6 Effective mass tensor M∗ in function of the crystal
orientation

The 3× 3 anisotropic effective mass tensor M∗ can be written in a simple form by
using a coordinate system defined locally in the the band structure. However, we
need an M∗ which is defined in the device coordinate system (DCS). Suitable trans-
formation matrices are needed to transform the effective mass tensor M∗ expressed
locally in the band structure to the DCS.

First we express M∗ in a local coordinate system in the band structure. For bulk
Si for instance, the constant energy surfaces are ellipsoids around the 6 conduction
band minima at the ∆-points:

E(k) = }2k2
L

2m∗L
+

}2
(
k2
T1 + k2

T2

)
2m∗T

(2.8)

The longitudinal kL vector and the two transverse kT1 and kT2 vectors are the unit
vectors of the local ellipsoidal coordinate system (ECS) unique to each of the 6
ellipsoids. Equation 2.8 can be written in matrix notation:

E(k) = }2

2
[
kL kT1 kT2

] 
1
m∗L

0 0
0 1

m∗T1
0

0 0 1
m∗T2


 kLkT1
kT2

 (2.9)
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where the longitudinal effective mass m∗L is 0.91 and the transverse effective mass
m∗T 0.19 for Si. Equation 2.9 can be written in a more compact form:

E(k) = }2

2 kTE(M∗E)−1kE (2.10)

where M∗E is the effective mass tensor expressed in the ellipsoidal coordinate system
(ECS) of which the tensor components are known. In general, the ellipsoidal coordi-
nate system (ECS), the crystal coordinate system (CCS) and the device coordinate
system (DCS) do not coincide. A vector expressed in the ECS can be transformed
to the DCS by using two transformation matrices TE←C and TC←D:

kE = TE←CTC←DkD (2.11)

Inserting equation 2.11 into equation 2.10, results in:

E(k) = }2

2 kTD (TE←CTC←D)T (M∗E)−1TE←CTC←DkD (2.12)

By comparing equation 2.12 with equation 2.10, we find the inverse effective mass
tensor (M∗)−1 expressed in the DCS:

(M∗D)−1 = (TE←CTC←D)T (M∗E)−1TE←CTC←D (2.13)

By using suitable transformation matrices for TC←D and TE←C , we can evaluate
the effective mass tensor M∗ in the DCS for the 6 different valleys in Si and the
commonly used wafer orientations (100), (110) and (111).

2.2.7 Continuous quantum approach in 3D

In summary, we choose to do a continuous quantum approach in 3D. To obtain the
electronic structure, we solve the Schrödinger equation in the effective mass approach
for isotropic effective mass as well as anisotropic effective mass using the quantum
transmitting boundary method (QTB method) for the open boundaries. The QTB
method was proposed for two dimensions by C.S. Lent and D.J. Kirkner[27]. To use
the QTB method in 3D, we will first derive the QTB method in 3D and for isotropic
as well as anisotropic effective mass. To calculate charges and currents in the device,
we assume ballistic transport. For the direct solution of the Schrödinger equation
Gnani[15] uses the subband decomposition method as proposed by E. Polizzi[35]. The
subband decomposition method is an approximation made to increase the numerical
efficiency of the QTB method. In the subband decomposition method the solutions
of the wavefunctions are decomposed using eigenfunctions on different cross-sections
along the nanowire. The eigenfunctions on the cross-sections form a basis-set from
which the wavefunctions in the system can be computed, as described in equation
2.14:

ψ(x, y, z) =
N∑
i

ai(z)χi(x, y, z′) (2.14)
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with N the number of z-positions where the cross-sectional wavefunctions χ are com-
puted. The coefficients ai(z) account for the z-directionality of the solution. However,
the general QTB method suits our case best, because the subband decomposition
simplification does not handle abrupt variations on the cross-section inbetween two
different cross-sections very well. Abrupt variations on the cross-section are very
important in the potential energy filtering behaviour of the geometric superlattice.
The QTB method is explained in full in the next chapter when we set up the model
for the nanowire superlatticeFET with a geometric superlattice by extending the
QTB method to 3D and (an)isotropic effective masses.

2.3 Conclusion
The first research objective was to gain insight in the various low power transistor
concepts currently under research. We found that the available steep slope transistor
concepts are limited and each have their own major disadvantage. Especially the
amplification based steep slope transistors have serious drawbacks which inhibit
further investigation and implementation of these steep slope transistor concepts for
now. As regards the energy filtering devices, extensive research has already been
done on tunnelFETs, while the research attention for superlatticeFETs is very low
in comparison with tunnelFETs. Hence, superlatticeFETs represent an opportunity
for further research. In addition, the research done on superlatticeFETs is mainly
limited to nanowires with a material superlattice. Therefore, in this thesis we simulate
nanowire superlatticeFETs with a different superlattice, the geometric superlattice.
We have chosen for a 3D continuous quantum approach to simulate the nanowire
superlatticeFETs with a geometric superlattice. The chosen 3D continuous quantum
approach involves the direct solution of the 3D effective mass Schrödinger equation
using the QTB method for the open boundaries and assuming ballistic transport.
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Chapter 3

Phase I: Modelling energy
filtering with a geometric
superlattice

“How to model energy filtering in 3D?”
The goal of this chapter is to set up a model for energy filtering in three-dimensional
(3D) geometric superlattices. In the previous chapter we motivated the choice for
a continuous quantum approach in 3D. To model energy filtering, we want to find
transmission spectra for a geometric superlattice. The transmission spectra give
the transmission for a range of energies and hence, allow to visualize the minibands
and minibandgaps. The transmission spectra are expected to vary for different 3D
geometric superlattices, which would allow to tune the energy filtering properties.
Therefore, it is important to set up the theoretical model for a device geometry as
general as possible.

3.1 Continuous quantum approach in 3D

In this section we find the electronic structure using a continuous quantum approach
in 3D. Finding the electronic structure will allow us to visualize probabilities for the
electrons in the device and calculate transmission coefficients for the transmission
spectra. To find the electronic structure we solve the 3D open boundary Schrödinger
equation in the effective mass approximation for the conduction band using Cartesian
coordinates. We extend the quantum transmitting boundary method (QTBM) as
proposed by C.S. Lent and D.J. Kirkner [27] to 3D problems with anisotropic effective
mass. For the calculation of charges and currents in the device, we assume ballistic
transport and derive expressions for the charges and currents.
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3.1.1 General strategy

The model should be valid for any kind of geometry to allow for the modelling of
a wide range of geometric superlattices. The system shown in figure 3.1 consists
of a generally shaped 3D domain called Ω0 with infinite leads Ωl with l the lead
index. The boundaries of the Ω domains are denoted by ∂Ω. The system has a
general number of open boundaries Dl where electrons can flow in and out. The rest
of the system boundary ∂Ω−

∑
Dl is a closed boundary. Equation 3.1 states the

3D Schrödinger equation1 in the effective mass approximation for electrons in the
conduction band:

− }2

2 ∇ ·
( 1
M∗
∇
)

Ψ(r) + V (r)Ψ(r) = EΨ(r) (3.1)

Solving the partial differential equation2 (PDE) in 3.1 is non-trivial. Two problems
arise when trying to find the states Ψ(r) for 3.1. The first problem is a prob-
lem with calculating the potential V (r). The second problem is a problem with
defining the boundary conditions for the PDE. These two problems are discussed next.

The potential V (r) in the Schrödinger equation can be obtained from the Pois-
son equation. The Poisson equation is another PDE entering the problem. Equation
3.2 gives the Poisson equation.

−∇ · (ε∇)V (r) = ρ (3.2)

In the Poisson equation ε is the permittivity of the material and ρ the electron charge
density. The charge density ρ is given by ρ = e(n + N+

D ) with e the fundamental
electron charge, n the electron concentration and N+

D the ionized donor doping
concentration. We assume the dopants to be fully ionized, i.e. ND = N+

D . The
ionized donor doping concentration N+

D is given in the problem statement. The
electron charge density n depends on the solutions Ψ(r) of the Schrödinger equation.
The Schrödinger equation and the Poisson equation are thus mutually dependent and
cannot be solved separately. To solve the Schrödinger equation, we need the potential
V (r) from the Poisson equation, but to solve the Poisson equation we need the Ψ(r)
from the Schrödinger equation. To find self-consistent solutions for the potential
and the charge, the usual approach is to set up a self-consistent Schrödinger-Poisson
loop. In chapters 4 and 5, the simulations are run non-self-consistently in a first
approximation.

3.1.2 Boundary conditions for the Schrödinger equation: QTB
method

A PDE only has uniquely defined solutions if stated as a full boundary value prob-
lem with boundary conditions[51]. For the problem geometry boundary conditions

1The exact order of the operators in the kinetic energy term follows from the hermiticity of the
Hamiltonian (see appendix)

2The exact order of the operators in the kinetic energy term − }2

2 ∇ ·
(

1
M∗∇

)
follows from the

fact that the Hamiltonian needs to be Hermitian. The full explanation is given in A.2.
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3.1. Continuous quantum approach in 3D

Figure 3.1: General 3D problem geometry with leads extruding from the open
boundaries Dl of the device region Ω0. The global xyz-coordinate system is shown
as well as one of the ξlηlζl lead coordinate systems. For simplicity only three leads
are shown, although the derivation is valid for any number of leads.

need to be defined on the boundary ∂Ω. The boundary ∂Ω consists of the open
boundaries D and the closed boundary ∂Ω −

∑
D. On the closed boundary the

wavefunction is assumed to take a constant value. This is a Dirichlet boundary
condition Ψ|∂Ω−

∑
D = c with c a constant. Stating the boundary conditions on

the open boundaries D is more difficult. The wavefunction is not constant on the
open boundaries, because we have current carrying states (travelling waves) passing
through these boundaries. We need to find an expression for the wavefunction Ψ
on the open boundaries. A possible approach is to extend the problem geometry at
the open boundaries. In the extensions we then solve the corresponding Schrödinger
equations for the wavefunctions and assume continuity with the wavefunctions in
the original domain. However, this does not solve the problem. We cannot solve the
Schrödinger equations in the extensions because then again we need to define an
open boundary condition on the far end of the extension.

A possible method which allows to find suitable boundary conditions for the open
boundaries is the quantum transmitting boundary method (QTB method). The QTB
method starts with extending the problem geometry at the open boundaries with
leads. The leads are extrusions of the open boundaries with infinite length. The
infinite length removes the necessity to define open boundary conditions on the far
end of the extension. The problem geometry with leads is shown in figure 3.1. The
state Ψ now runs over the whole system, i.e. the original domain plus the leads. In
figure 3.1 the original domain is denoted by Ω0 and called the device region. A global
coordinate system (x, y, z) is defined for the device region. The leads are denoted by
Ωl with l the lead index. A local coordinate system (ξ, η, ζ) is defined in each lead
with the ζ-axis along the lead and the origin of the axis system on Dl.
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3. Phase I: Modelling energy filtering with a geometric superlattice

Additionally, for infinite leads, the potential change of Vl(ξ, η, ζ) in the direction
along the lead can be spread over an infinite amount of distance and hence there
is no potential change in the ζ-direction; Vl(ξ, η, ζ) can be assumed independent of
ζ, i.e. Vl(ξ, η). This is crucial for the QTB method, because it allows an analytical
solution of the Schrödinger equations in the leads. The analytical solutions for the
wavefunctions in the leads can then be used to state boundary conditions on the
open boundaries D using the continuity conditions. To apply the QTB method to
the problem at hand, we first have to extend this method to three dimensions.

The quantum transmitting boundary method (QTB method) was first suggested
in 1990 by C.S. Lent and D.J. Kirkner for two-dimensional problems[27]. In the
next two sections we extend the QTB method to three dimensions (3D), first for
an isotropic effective mass (section 3.2) and then for an anisotropic effective mass
(section 3.3). The QTB method includes the following two steps:

1. Solve analytically the Schrödinger equations for the wavefunctions in the leads

2. Use the analytical solutions for ψl(ξ, η, ζ) to obtain the quantum transmitting
boundary conditions (QTBCs) for the open boundaries of the device region

Applying the QTBCs to the device region Ω0 results in a fully defined problem for
ψ0 in the device region. After we found the solutions for ψ0 in Ω0, we can combine
them with the solutions for ψl in

∑
l Ωl and obtain the state Ψ in the whole system

Ω = Ω0 +
∑
l Ωl.

3.2 Quantum transmitting boundary conditions in 3D
with isotropic effective mass

In this section we derive the QTB method for a Schrödinger equation with a scalar
effective mass m∗. Because the effective mass is modelled with a scalar value, the
effective mass is in this model an isotropic property of the material. Example
materials with isotropic effective masses include most of the III-V materials, such as
GaAs.

3.2.1 Step 1: Find analytical solutions of Schrödinger equations in
the leads

The first step in the QTB method is to solve analytically the Schrödinger equations
for the wavefunctions ψl(ξ, η, ζ) in the leads:(

− }2

2m∗l
∇2 + Vl(ξ, η, ζ)

)
ψl(ξ, η, ζ) = Eψl(ξ, η, ζ) (3.3)

Equation 3.3 denotes a set of L partial differential equations in ψl(ξ, η, ζ) where L is
the total number of leads and l the lead index. E is the total amount of energy in
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3.2. Quantum transmitting boundary conditions in 3D with isotropic effective mass

the system. Vl(ξ, η, ζ) is the externally applied potential on the lead. In the QTB
method, Vl(ξ, η, ζ) is assumed to be independent of ζ, i.e. Vl(ξ, η). The potential
does not vary along the lead, only on the cross-section. This assumption is a crucial
part of the QTB method, because it allows separation of variables of the partial
differential equation such as to obtain an analytical solution for the partial differential
equation. Writing the Laplacian operator ∇2 in its full Cartesian form in the lead
coordinate system (ξ, η, ζ), yields:(

− }2

2m∗l

(
∂2

∂ξ2 + ∂2

∂η2 + ∂2

∂ζ2

)
+ Vl(ξ, η)

)
ψl(ξ, η, ζ) = Eψl(ξ, η, ζ) (3.4)

In the separation of variables technique ψl(ξ, η, ζ) is separated into a cross-sectional
contribution χl(ξ, η) and a longitudinal contribution ζl(ζ), i.e. ψl(ξ, η, ζ) = χl(ξ, η)ζl(ζ).
Inserting this in equation 3.4 and working out, we obtain:

− }2

2m∗l
1

χl(ξ, η)

(
∂2

∂ξ2 + ∂2

∂η2

)
χl(ξ, η) + Vl(ξ, η)− E = }2

2m∗l
1

ζl(ζ)
∂2ζl(ζ)
∂ζ2 (3.5)

The left side of equation 3.5 is only dependent on ξ and η, while the right side is
only dependent on ζ. As a consequence, both sides of the equation are equal to a
constant. This constant is given an arbitrary value of −}2k2

l
2m∗

l
for later ease. Equation

3.5 then separates into two problems, the longitudinal problem and the transverse
problem:

}2

2m∗
l

1
ζl(ζ)

∂2ζl(ζ)
∂ζ2 = −}2k2

l
2m∗

l
(Longitudinal problem)

− }2

2m∗
l

1
χl(ξ,η)

(
∂2

∂ξ2 + ∂2

∂η2

)
χl(ξ, η) + Vl(ξ, η)− E = −}2k2

l
2m∗

l
(Transverse problem)

The longitudinal and the transverse problem are now solved separately to find
solutions for ζl(ζ) and χl(ξ, η) respectively. The obtained solutions for ζl(ζ) and
χl(ξ, η) are then used to reconstruct the solution for ψl(ξ, η, ζ).

Longitudinal problem

The longitudinal problem can be written as an ordinary differential equation in ζl(ζ):

∂2ζl(ζ)
∂ζ2 + (kl)2ζl(ζ) = 0 (3.6)

This differential equation has the solutions ζl(ζ) = cle
±iklζζ where cl is a constant.

The solutions are plane waves travelling in lead l along the ζ-axis. Because the
ζ-axis was chosen in the direction outward from the device region, the solutions
ζl(ζ) = e−ik

l
ζζ are incoming plane waves and the solutions ζl(ζ) = eik

l
ζζ are outgoing

plane waves. The constant kl acquires the physical meaning of a wavevector of a
plane wave along ζ. An index ζ was added to kl to denote the ζ-direction of the
wavevector.
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3. Phase I: Modelling energy filtering with a geometric superlattice

Figure 3.2: Dispersion relation showing subbands for the isotropic case.

Transverse problem

The transverse problem can be written as a Hamiltonian eigenvalue problem in
χl(ξ, η): (

− }2

2m∗l

(
∂2

∂ξ2 + ∂2

∂η2

)
+ Vl(ξ, η)

)
χl(ξ, η) = Elχl(ξ, η) (3.7)

with El =
(
E − }2(klζ)2

2m∗
l

)
.

The solutions of this eigenvalue problem are the eigenenergies E lm and corresponding
eigenfunctions χlm(ξ, η). The quantum number m numbers the eigenenergies from
zero to infinity. In practice, the eigenvalue problem is solved numerically for a
predefined set of eigenenergies and corresponding eigenfunctions.

The dispersion relation E = E lm + }2(kl,m
ζ

)
2

2m∗
l

is plotted in figure 3.2. Due to the
quadratic dependence of E on kl,mζ and the discreteness of E lm, the plot shows a set
of nested parabolas. Each parabola represents a subband of the conduction band
and has a minimum value at E lm. Extracting the wavevector kl,mζ from the dispersion
relation, gives:

kl,mζ = ±

√
2m∗l (E − E lm)

}
(3.8)
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3.2. Quantum transmitting boundary conditions in 3D with isotropic effective mass

The wavevector is in general a complex value, because the total amount of energy E
in the system can be lower than a subband energy E lm.

Reconstructing the solutions in the leads

The solutions ψl(ξ, η, ζ) in the leads are now reconstructed using the previous
substitution ψl(ξ, η, ζ) = χlm(ξ, η)ζl(ζ). All solutions are taken into account by
summing over all subbands for both the incoming as the outgoing plane waves.

ψl(ξ, η, ζ) =
∞∑
m=0

(
alme

−ikl,m
ζ

ζ + blme
ikl,m
ζ

ζ
)
χlm(ξ, η) (3.9)

With equation 3.9 we have found the analytical solution for the wavefunctions in
the leads. Each alm coefficient denotes the complex amplitude of the incoming plane
wave in lead l and subband m. Each blm coefficient denotes the complex amplitude
of the outgoing plane wave in lead l and subband m. The alm-coefficients can be
found by normalizing the solutions, while the blm-coefficients are unknowns which
are part of the final solution of the QTB-method. In the next steps, the solutions in
the leads are first normalized and then used to derive the boundary conditions on
the open boundaries of the device region.

3.2.2 Step 2: Obtain quantum transmitting boundary conditions

In the last step of the QTB method we derive the quantum transmitting boundary
conditions (QTBCs). The QTBCs are suitable boundary conditions on the open
boundaries of the device region. If the QTBcs are defined, then all the boundary
conditions will be defined on the device region. Considering that the final state is a
continuous wave which extends over the device region as well as the leads, one has
to guarantee that the wave makes continuous transitions over the open boundaries
Dl. In mathematical terms this translates into the continuity conditions for the
wavefunctions on both sides of the boundary ψ0 and ψl:{

ψ0|Dl = ψl|Dl
∇ψ0 · n̂Dl |Dl = ∇ψl · n̂Dl |Dl

The second continuity condition can be rewritten as:

∇ψ0 · n̂Dl |Dl =
(
∂ψl
∂ξ

,
∂ψl
∂η

,
∂ψl
∂ζ

)
· (0, 0, 1)

∣∣∣∣
Dl

(3.10a)

= ∂ψl
∂ζ

∣∣∣∣
Dl

(3.10b)

In equation 3.10b we can use the analytical solution for ψl(ξ, η, ζ) found in equation
3.9. By taking into account the orthonormality of the eigenfunctions χlm(ξ, η), we
can find3 an expression for the blm coefficients in terms of the known alm coefficients

3The derivation of the expression for blm is given in appendix A.1.
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3. Phase I: Modelling energy filtering with a geometric superlattice

and the wavefunctions in the leads:

blm =
∫
Dl

χlm(ξ, η)ψl(ξ, η, ζ = 0)dS − alm (3.11)

Substituting 3.11 and applying the first continuity condition, results in:

∇ψ0 · n̂Dl |Dl =
∞∑
m=0

ikl,mζ χlm(ξ, η)
(
−2alm +

∫∫
Dl

χlm(ξ, η)ψ0(ξ, η, ζ = 0)dS
)
(3.12)

With equation 3.12 we have obtained the QTBCs for the open boundaries Dl of
the device region in the isotropic case of the effective mass. The QTBCs are Robin
boundary conditions which relate the normal derivative of the wavefunction ψ0(x, y, z)
to the values of the wavefunction ψ0(x, y, z) along the boundary.

3.3 Quantum transmitting boundary conditions in 3D
with anisotropic effective mass

In this section the effective mass is not considered anymore as an isotropic property
of the material. We will derive the QTB method for a Schrödinger equation with
an effective mass tensor M∗. The scalar value m∗ is replaced with a rank 2, 3× 3
tensor M∗, which takes into account the different effective masses in three directions.
Example materials with anisotropic effective mass include some of the well-established
semiconductor group IV-materials, such as Si and Ge.

problem we which to solve is the 3D Schrödinger equation obtain solutions for
the three-dimensional wavefunction ψ(x, y, z) in the device region Ω. As in the
isotropic case, the QTB method includes the following two steps:

1. Solve analytically the Schrödinger equations for the wavefunctions in the leads

2. Use the analytical solutions for ψl(ξ, η, ζ) to obtain the quantum transmitting
boundary conditions (QTBCs) for the open boundaries of the device region

Applying the QTBCs to the device region Ω0 results in a fully defined problem for
ψ0 in the device region. The final state Ψ in the whole system is a continuous wave
which extends over the whole region Ω (device region as well as the leads).

3.3.1 Step 1: Find analytical solutions of Schrödinger equations in
the leads

The first step in the QTB method is to solve analytically the Schrödinger equations
for the wavefunctions ψl(ξ, η, ζ) in the leads:

− }2

2 ∇ ·
(

1
M∗l
∇
)
ψl(ξ, η, ζ) + Vl(ξ, η, ζ)ψl(ξ, η, ζ) = Eψl(ξ, η, ζ) (3.13)
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3.3. Quantum transmitting boundary conditions in 3D with anisotropic effective
mass

Equation 3.3 denotes a set of L partial differential equations in ψl(ξ, η, ζ) where L is
the total number of leads and l the lead index. E is the total amount of energy in the
lead. V l

ext(ξ, η, ζ) is the externally applied potential on the lead. In the QTB method,
Vl(ξ, η, ζ) is assumed to be independent of ζ, i.e. Vl(ξ, η). The potential does not
vary along the lead, only on the cross-section. This assumption is a crucial part of
the QTB method, because it allows to separate the partial differential equation into
variables and to obtain an analytical solution for the partial differential equation.
Writing ∇ ·

(
1
M∗
l
∇
)
in its full Cartesian form in the lead coordinate system (ξ, η, ζ),

yields:

−}2

2


∂
∂ξ
∂
∂η
∂
∂ζ

·



1
m∗
l,ξξ

1
m∗
l,ξη

1
m∗
l,ξζ

1
m∗
l,ηξ

1
m∗
l,ηη

1
m∗
l,ηζ

1
m∗
l,ζξ

1
m∗
l,ζη

1
m∗
l,ζζ



∂
∂ξ
∂
∂η
∂
∂ζ


ψl(ξ, η, ζ)+Vl(ξ, η)ψl(ξ, η, ζ) = Eψl(ξ, η, ζ)

(3.14)
In the separation of variables technique ψl(ξ, η, ζ) is separated into a cross-sectional
contribution χl(ξ, η) and a longitudinal contribution ζl(ζ), i.e. ψl(ξ, η, ζ) = χl(ξ, ζ)ζl(ζ).
However, if we do this separation into the variables (ξ, η) and ζ, the tensor terms
ξη, ηζ, ζξ and ζη cause trouble, because they are not separable4. This issue can be
circumvented by assuming the tensor takes a separable form:

1
M∗l

=


1

m∗
l,ξξ

1
m∗
l,ξη

0
1

m∗
l,ηξ

1
m∗
l,ηη

0
0 0 1

m∗
l,ζζ

 (3.15)

In 3.15 we imposed a restriction on which form the effective mass tensor in the lead
coordinate system can take. In the model, this has an influence on the orientation of
the leads with respect to crystal coordinate system. We can only model systems with
leads which have a ζ-axis lying along one of the axes of the crystal coordinate system.
The leads can be turned around their ζ-axis. With this separable form, equation 3.5
separates into two problems, the longitudinal problem and the transverse problem:

}2

2
1

ζl(ζ)
∂
∂ζ

(
1

m∗
l,ζζ

∂
∂ζ

)
ζl(ζ) = − }2k2

l
2m∗

l,ζζ
(Longitudinal problem)

−}2

2
1

χl(ξ,η)

[
∂
∂ξ
∂
∂η

]
·

 1
m∗
l,ξξ

1
m∗
l,ξη

1
m∗
l,ηξ

1
m∗
l,ηη

[ ∂
∂ξ
∂
∂η

]χl(ξ, η) + Vl(ξ, η)− E = − }2k2
l

2m∗
l,ζζ

(Transverse problem)

Longitudinal problem

The longitudinal problem can be written as an ordinary differential equation in ζl(ζ):

∂2ζl(ζ)
∂ζ2 + (kl)2ζl(ζ) = 0 (3.16)

4The derivation is given in appendix A.
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3. Phase I: Modelling energy filtering with a geometric superlattice

This differential equation has the solutions ζl(ζ) = cle
±iklζζ where cl is a constant.

The solutions are plane waves travelling in lead l along the ζ-axis. Because the
ζ-axis was chosen in the direction outward from the device region, the solutions
ζl(ζ) = e−ik

l
ζζ are incoming plane waves and the solutions ζl(ζ) = eik

l
ζζ are outgoing

plane waves. The constant kl acquires the physical meaning of a wavevector of a
plane wave along ζ. An index ζ was added to kl to denote the ζ-direction of the
wavevector.

Transverse problem

The transverse problem can be written as a Hamiltonian eigenvalue problem in
χl(ξ, η):

− }2

2

[
∂
∂ξ
∂
∂η

]
·

 1
m∗
l,ξξ

1
m∗
l,ξη

1
m∗
l,ηξ

1
m∗
l,ηη

[ ∂
∂ξ
∂
∂η

]χl(ξ, η) + Vl(ξ, η)χl(ξ, η) = Elχl(ξ, η) (3.17)

with El =
(
E − }2(klζ)2

2m∗
l,ζζ

)
.

The solutions of this eigenvalue problem are the eigenenergies E lm and corresponding
eigenfunctions χlm(ξ, η). The quantum number m numbers the eigenenergies from
zero to infinity. In practice, the eigenvalue problem is solved numerically for a
predefined set of eigenenergies and corresponding eigenfunctions.

The dispersion relation E = E lm + }2(kl,m
ζ

)
2

2m∗
l,ζζ

is plotted in figure 3.3. Due to the

quadratic dependence of E on kl,mζ and the discreteness of E lm, the plot shows a set
of nested parabolas. Each parabola represents a subband of the conduction band
and has a minimum value at E lm. Extracting the wavevector kl,mζ from the dispersion
relation, gives:

kl,mζ = ±

√
2m∗l,ζζ(E − E lm)

}
(3.18)

The wavevector is in general a complex value, because the total amount of energy E
in the system can be lower than a subband energy E lm.

Reconstructing the solutions in the leads

The solutions ψl(ξ, η, ζ) in the leads are now reconstructed using the previous
substitution ψl(ξ, η, ζ) = χlm(ξ, η)ζl(ζ). All solutions are taken into account by
summing over all subbands for both the incoming as the outgoing plane waves.

ψl(ξ, η, ζ) =
∞∑
m=0

(
alme

−ikl,m
ζ

ζ + blme
ikl,m
ζ

ζ
)
χlm(ξ, η) (3.19)

Each alm coefficient denotes the complex amplitude of the incoming plane wave in
lead l and subband m. Each blm coefficient denotes the complex amplitude of the
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3.3. Quantum transmitting boundary conditions in 3D with anisotropic effective
mass

Figure 3.3: Subbands in the anisotropic case for a 5 nm by 5 nm nanowire. Green:
100-valley, red: 010-valley, blue: 001-valley. The green subbands of the 100-valley are
not clearly visible because they are degenerate with the 010-valley. The 001-valley
subbands are less steep because the 001-valley has a high effective mass in the
ζ-direction. The 001-valley subbands lie also higher because the effective mass in
the ξ- and η-direction is small for the 001-valley.

outgoing plane wave in lead l and subband m. With equation 3.19 we have found
the analytical solution for the wavefunctions in the leads. The analytical solutions in
the leads look the same as for the isotropic case, however the numerical solutions of
the eigenfunctions χlm(ξ, η) can take a different form because the eigenvalue problem
changed compared to the isotropic case.

3.3.2 Step 2: Obtain quantum transmitting boundary conditions

In this step we derive suitable boundary conditions on the open boundaries of the
device region. Then all the boundary conditions will be defined for the device region
and the problem in the device region can be solved. In the QTBM paper of C.S. Lent
and D.J. Kirkner [27] the sought boundary conditions on the open boundaries are
called quantum transmitting boundary conditions. Considering that the final state is
a continuous wave which extends over the device region as well as the leads, one has
to guarantee that the wave makes continuous transitions over the open boundaries
Dl. In mathematical terms this translates into the continuity conditions for the
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3. Phase I: Modelling energy filtering with a geometric superlattice

wavefunctions on both sides of the boundary ψ0 and ψl:
ψ0
∣∣∣
Dl

= ψl
∣∣∣
Dl(

1
M∗0
∇ψ0

)
· n̂Dl

∣∣∣∣
Dl

=
(

1
M∗
l
∇ψl

)
· n̂Dl

∣∣∣∣
Dl

The continuity conditions in the anisotropic case are different from the continuity
conditions in the isotropic case (equation 3.10b), because we started from a different
Schrödinger equation with the effective mass tensor inside of the divergence. In
general, the effective mass tensor M∗l in the leads is different from the effective mass
tensor in the device region M∗0 . The second continuity condition can be rewritten as:

( 1
M∗0
∇ψ0

)
· n̂Dl

∣∣∣∣
Dl

=




1
m∗
l,ξξ

1
m∗
l,ξη

0
1

m∗
l,ηξ

1
m∗
l,ηη

0
0 0 1

m∗
l,ζζ



∂ψl
∂ξ
∂ψl
∂η
∂ψl
∂ζ


 ·

0
0
1

 ∣∣∣∣∣
Dl

(3.20a)

= 1
m∗l,ζζ

∂ψl
∂ζ

∣∣∣∣∣
Dl

(3.20b)

In equation 3.20a the tensor in the lead coordinate system satisfies the assumption
made in 3.15. In equation 3.20b we can substitute the analytical solution for ψl(ξ, η, ζ)
found in equation 3.9. By taking into account the orthonormality of the eigenfunctions
χlm(ξ, η), we can find5 an expression for the blm coefficients:

blm =
∫
Dl

χlm(ξ, η)ψl(ξ, η, ζ = 0)dS − alm (3.21)

Applying the first continuity condition in the integrand of equation 3.21, results in
an expression for blm only in ψ0:

blm =
∫
Dl

χlm(ξ, η)ψ0(ξ, η, ζ = 0)dS − alm (3.22)

Taking expression 3.22 into account, results in:

( 1
M∗0
∇ψ0

)
·n̂Dl

∣∣∣∣
Dl

= 1
m∗l,ζζ

∞∑
m=0

ikl,mζ

(
−2alm +

∫
Dl

χlm(ξ, η)ψ0(ξ, η, ζ = 0)dS
)
χlm(ξ, η)

(3.23)
In the next section we reformulate the problem such that the problem in the device
region can be solved numerically for ψ0 which will, together with the solutions ψl
in the leads result in a solution of the total state Ψ over the system domain Ω. A
numerical solution is necessary because the Schrödinger equation in the device region
is in general not analytically solvable. The potential on the device region does not
have an analytical form.

5The derivation of the expression for blm is given in appendix A.1
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3.4. Finite element method

3.4 Finite element method
The finite element method is a method to solve boundary value problems numerically.
The boundary value problem is a stationary partial differential equation (PDE) with
specified boundary conditions on a given geometry. We rely on a numerical method
because the boundary value problem cannot be solved analytically to find the exact
solution. The finite element method allows to find an approximate solution of the
boundary value problem by dividing the system geometry in a finite set of elements.
The problem is thus divided into smaller, easier to solve problems. These smaller
problems are then solved together in a consistent way to find the the approximate
solution on the whole system. The finite element method is suitable in this case
because the method allows to handle complex geometries (by splitting the geometry
in smaller parts) and can capture different properties in different domains of the
system.

3.4.1 Variational boundary value problem

The finite element method is a special case of the Galerkin method from variational
calculus. The first step in the finite element method is thus to transform the partial
differential equation into a variational problem. Variational problems are defined
in terms of trial and test functions. The variational formulation is obtained by first
multiplying the residual of the PDE with a test function which satisfies the Dirichlet
boundary conditions of the boundary value problem, and then integrating over the
system domain[30]. Equation 3.24 restates the Schrödinger equation for ψ0 in the
device region:

− }2

2 ∇ ·
( 1
M∗0
∇
)
ψ0 + V0ψ0 = Eψ0 (3.24)

The residual R of this Schrödinger equation is given by:

R(ψ0) =
(
−}2

2 ∇ ·
( 1
M∗0
∇
)

+ V0 − E
)
ψ0 = 0 (3.25)

Multiplying the residual R(ψ0) with a test function ψ and then integrating over the
system domain Ω0 results in:∫

Ω0
ψ

(
−}2

2 ∇ ·
( 1
M∗0
∇
)

+ V0 − E
)
ψ0dΩ = 0 (3.26)

In equation 3.26 we have rewritten the Schrödinger equation in the device region in
variational formulation. The variational formulation states that the residual R(ψ0)
should be orthogonal to the test function ψ. The trial functions ψ0 are defined by
the following function space V , referred to as the trial space:

V =

ψ0 ∈ F (Ω0) : ψ0 = c

∣∣∣∣
∂Ω0−

∑
l
Dl

 (3.27)
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3. Phase I: Modelling energy filtering with a geometric superlattice

with c a constant value defined on the Dirichlet boundary ∂Ω0 −
∑
lDl and F (Ω)

a function space defined on Ω0. The test functions ψ are defined by the following
function space V̂ , referred to as the test space:

V̂ =

ψ ∈ F (Ω0) : ψ = 0
∣∣∣∣
∂Ω0−

∑
l
Dl

 (3.28)

The hat on V̂ denotes that the test space is built from the same basis functions as
the trial space, except the values on the (Dirichlet) boundaries may be different. The
variational boundary value problem can now be stated as follows:

Find ψ0 ∈ V , such that:∫
Ω0
ψ

(
−}2

2 ∇ ·
( 1
M∗0
∇
)

+ V0 − E
)
ψ0dΩ = 0 (3.29)

∀ ψ ∈ V̂ .

However, this variational boundary value problem is incomplete. The problem
only incorporates the Dirichlet boundary conditions and not the Robin boundary
conditions. The Dirichlet boundary conditions appear in 3.27 as part of the def-
inition of the trial space V and are therefore essential boundary conditions. To
incorporate the Robin boundary conditions in the variational problem statement, we
bring equation 3.29 in weak formulation.

Weak formulation

The variational formulation and the underlying PDE require solutions with continuous
derivatives. By rewriting the variatonal problem as a weak variational problem, the
problem statement will also allow solutions with discontinuous derivatives[28]. This
is important because the piecewise solution over the elements will in general not
have a continuous derivative. The name weak formulation originates from the weaker
continuity requirement for the solutions of the variational problem. We can transform
the obtained variational formulation of the Schrödinger equation 3.26 in a weak
variational formulation by using integration by parts on the first integral. In three
dimensions integration by parts is equivalent to using Green’s first identity.
}2

2

∫
Ω0
∇ψ ·

( 1
M∗0
∇ψ0

)
dΩ +

∫
Ω0
ψ(V0 − E)ψ0dΩ = }2

2

∮
∂Ω0

ψ

( 1
M∗0
∇ψ0

)
· n̂∂ΩdS

(3.30)
In equation 3.30 we have obtained the weak form of the Schrödinger equation in the
device region. The test function ψ is assumed to be zero on the Dirichlet boundary
(∂Ω0 −

∑
lDl). As a consequence, the integral on the right hand side of equation

3.30 is only nonzero on the Robin boundaries
∑
Dl
:

}2

2

∫
Ω0
∇ψ ·

( 1
M∗0
∇ψ0

)
dΩ +

∫
Ω0
ψ(V0 −E)ψ0dΩ = }2

2
∑
l

∮
Dl

ψ

( 1
M∗0
∇ψ0

)
· n̂DldS

(3.31)
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3.4. Finite element method

In equation 3.31 we find the Robin boundary conditions on the right hand side of
the equations. The term in the integrand can be replaced with the QTBCs found in
equation to find a fully defined problem for ψ0. The Robin boundary condition are, in
contrast with the Dirichlet boundary conditions, natural boundary conditions because
they enter in the variational problem statement itself, instead of the definition of the
trial space. As a consequence, solving the PDE will always result in a solution where
the Dirichlet boundary condition is satisfied, but the solution of the BVP will only
try to fulfill the Robin boundary conditions as good as possible. The variational
boundary value problem can now be stated as follows:

Find ψ0 ∈ V , such that:

}2

2

∫
Ω0
∇ψ ·

( 1
M∗0
∇ψ0

)
dΩ +

∫
Ω0
ψ(V0 −E)ψ0dΩ = }2

2
∑
l

∮
Dl

ψ

( 1
M∗0
∇ψ0

)
· n̂DldS

(3.32)
∀ ψ ∈ V̂ and with the Robin or quantum transmitting boundary conditions given

by 3.23.

We have applied three steps to make the PDE finite element method-ready: first, we
multiplied the PDE with a test function, second, we integrated the resulting PDE
over the system Ω and third, we performed an integration by parts (using Green’s
first identity). This whole transformation from PDE to weak formulation is done
manually on paper.

3.4.2 Discretization

The continuous variational problem in equation 3.34 needs to be discretized to solve
the problem with a computer. If ψ0 is the exact solution of the PDE, equation 3.34
will be zero for every test function ψ. If ψ0 is an approximate (numerical) solution
of the PDE, equation 3.26 is not zero anymore for every test function ψ. We require
that the residual should be orthogonal to the test functions in a test space V̂h. The
test space Vh is a function space of basis functions φ defined on elements of the
domain Ω. The index h refers to the element size of one element. The set of basis
functions {φi} for Vh is defined as:

φi(rj) =
{

1, if i = j,
0, if i 6= j

The trial functions are part of the function space Vh with the same basis functions.
We can thus write the possible solution as a linear combination of the basis functions
φi:

ψ0h(r) = γ1φ1(r) + γ2φ2(r) + ...+ γNφ3(r) (3.33)

The constants γi, i = 1, 2, ..., N are unknowns to be determined. We can substitute
the expression 3.33 for ψ0 in the weak formulation found in 3.34. We do this for
N different choices of test functions. The resulting equations are linear because
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3. Phase I: Modelling energy filtering with a geometric superlattice

the Schrödinger equation is linear. By choosing the N different choices of test
functions to be the N basis functions used in 3.33, we obtain a system of N alge-
braic equations Aγ = b which can be solved for the unknown constants γi. With
the constants γi known, we can then evaluate the approximate solution ψ0h using 3.33.

The discrete variational boundary value problem can now be stated as follows:

Find ψ0h ∈ Vh ⊂ V , such that:

}2

2

∫
Ω0
∇ψ·

( 1
M∗0
∇ψ0h

)
dΩ+

∫
Ω0
ψ(V0−E)ψ0hdΩ = }2

2
∑
l

∮
Dl

ψ

( 1
M∗0
∇ψ0h

)
·n̂DldS

(3.34)
∀ ψ ∈ V̂h ⊂ V̂ and with the Robin or quantum transmitting boundary conditions

given by 3.23.

Dividing the system in a finite set of elements is referred to as meshing the do-
main. The elements of the mesh are connected to eachother with nodes. There are
various types of elements and function spaces available in finite element libraries.
The shape functions used previously are the piecewise linear hat functions φi. Other
piecewise polynomial functions are also possible. The shape functions are defined on
reference elements and mapped to the elements of the mesh. On the boundary ∂Ω0
the elements are normally triangular in shape (2D) and in the volume Ω0 tetrahedral
in shape (3D). A correct choice of the size of the elements is important. Decreasing

Figure 3.4: Example meshes

the size of the elements of the mesh will narrow the gap between the numerical
solution and the exact solution, but will also increase computational time. The size
of the elements is thus chosen just small enough to obtain an acceptable result for ψ0
at reasonable computational time. By virtue of the effective mass theorem we used
for the Schrödinger equation, the solution for ψ0 does not change on the order of the
lattice constant. As a result, a rougher mesh can be used to find a solution close to
the exact solution. This is the practical advantage of the effective mass theorem.
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3.5. Reformulated problem

Figure 3.5: Figure showing the difference in obtained solution for a finer mesh and
rougher mesh.

3.4.3 Solving the system of equations

As a rule of thumb, the system of equation Aγ = b will be well-conditioned if the
elements have the same size everywhere on the mesh. If the system of equations is
ill-conditioned, a small variation in the inputs (A or b) will result in a big variation
in the solution for γ and thus for ψ0. The linear system Aγ = b can be solved using
either a direct approach (e.g. LU solver) or an iterative approach (e.g. Krylov solver).
It is important that the solver can handle sparsity of the linear system for efficient
computation.

3.5 Reformulated problem
In this section we reformulate the problem as it is used to find the state Ψ in Ω. The
state Ψ is spread over the leads as well as the device region. Using the QTB-method
we solve for the wavefunctions ψl in the leads analytically and find QTBCs on the
open boundaries of the device region. An expression for the wavevector klζ and 2D
eigenvalue problems (EVP) for the wavefunctions χlm(ξ, η) on the cross-section of the
leads were also found from the analytical solution in the leads. Inserting the QTBCs
in the weak formulation found in 3.34, we find the following discrete variational
problem in the device region, to be solved with the finite element method.
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Find ψ0h ∈ Vh ⊂ V , such that:
}2

2

∫
Ω0
∇ψ ·

( 1
M∗0
∇ψ0h

)
dΩ +

∫
Ω0
ψ(V0 − E)ψ0hdΩ

= }2

2
∑
l

∮
Dl

ψ
1

m∗l,ζζ

∞∑
m=0

ikl,mζ

(
−2alm +

∫
Dl

χlm(ξ, η)ψ0h(ξ, η, ζ = 0)dS
)
χlm(ξ, η)dS

∀ ψ ∈ V̂h ⊂ V̂ .

The problem statement in 3.36 is a boundary value problem because the boundary
conditions are part of the problem statement. The Dirichlet boundary conditions
on the closed boundary is incorporated in the definition of the function spaces Vh
and V̂h (and are therefore essential boundary conditions), while the QTBCs on the
open boudaries are incorporated on the right hand side of the variational problem
statement (and are therefore natural boundary conditions).

In the discrete variational problem, the potential V0 follows from the self-consistent
solution of the Poisson equation. The incoming amplitudes alm follow from the
normalization of the total states Ψ, which will be done in section . The effective
mass tensor M∗0 and the effective masses m∗l,ζζ are known from the effective masses of
the material in the device and the leads respectively. In practice, the eigenfunctions
χlm(ξ, η) are found numerically by solving the 2D eigenvalue problem in the leads,
although analytical solutions for χlm(ξ, η) exist.

The reformulated problem states that we need to inject a superposition of all the
subbands. In practice, we consider only electron waves injected through one lead
l_inj and one subband m_inj at a time. The injection through one lead is validated
by the device operation of the nanowire transistor where in normal device operation
only electrons flow in from the source. The injection of only one subband at a time is
merely done for practical purposes. Applying a superposition of incoming subbands
will also result in a valid solution, but this solution will be a superposition of the
solutions which would be obtained when applying the subbands separately. The
incoming amplitudes alm are therefore all zero, except from one linj and one minj at
a time. This simplifies the reformulated problem to the following problem statement:

Find ψ0h ∈ Vh ⊂ V , such that:∫
Ω0
∇ψ ·

( 1
M∗0
∇ψ0h

)
dΩ + 2

}2

∫
Ω0
ψ(V0 − E)ψ0hdΩ

= −2al_injm_inj
1

m∗l_inj,ζζ
ikl_inj,m_inj
ζ

∮
Dl_inj

ψχl_injm_inj(ξ, η)dS

+
∑
l

∮
Dl

ψ
1

m∗l,ζζ

∞∑
m=0

ikl,mζ

(∫
Dl

χlm(ξ, η)ψ0h(ξ, η, ζ = 0)dS
)
χlm(ξ, η)dS

∀ ψ ∈ V̂h ⊂ V̂ .
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The sum over the subbands indicates that we need to take into account all subbands
from zero to infinity. In practice, we truncate the sum over the subbands to a
specific amount of subbands. The more subbands we take into account, the better
the solution but the longer the computational time.

3.6 Numerical solution with Python and FEniCS
To solve the discrete variational problem and find numerical solutions for ψ0, we
extend the quantum simulator IMQUS written by my supervisor Maarten Thewissen
to include anisotropic effective masses for three-dimensional structures. The quantum
simulator uses the following open-source software: Gmsh[10] to define the geometry
and make the mesh, the finite element library FEniCS[7, 28] to solve all PDEs, the
Python language (version 2.7)[37] for handling all input parameters and all calcula-
tions not related to finite elements, PyTables[8] for efficient storage of the calculated
states in HDF5-format[41] and Paraview[5] for visualization and postprocessing of
the data.

3.6.1 Reformulated problem for FEniCS

To solve the partial differential equations with the finite element method, the quantum
simulator uses the finite element library FEniCS. However, at the time of writing
FEniCS does not support complex numbers. We can work around this issue by
rewriting the problem as two separate problems for the real and the complex part.
We insert ψ0 = ur + iui, kl,mζ = kl,mζ,r + ikl,mζ,i and ψ = v in the previously obtained
weak formulation and separate the resulting equation in a real and complex part6.
We have brought the solution directly in linear and bilinear forms as suitable for
FEniCS:

aR(u, v)− LR(v) + i (aC(u, v)− LC(v)) = 0{
aR(u, v1)− LR(v1) = 0
aC(u, v2)− LC(v2) = 0

with:
aR(u, v) =

∫
Ω0
∇v ·

( 1
M∗0
∇ur

)
dΩ + 2

}2

∫
Ω0
v (V0 − E)urdΩ

+
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,r

(∫
Dl

χlm(ξ, η)uidS
)(∮

Dl

vχlm(ξ, η)dS
)

+
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,i

(∫
Dl

χlm(ξ, η)urdS
)(∮

Dl

vχlm(ξ, η)dS
)

LR(v) = 2al_injm_inj
1

m∗l_inj,ζζ
kl_inj,m_inj
ζ,i

(∮
Dl_inj

vχl_injm_inj(ξ, η)dS
)

6The proof we do not need to split the test function ψ in a real and complex part as ψ = vr + ivi
is given in appendix A.4.
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aC(u, v) =
∫

Ω0
∇v ·

( 1
M∗0
∇ui

)
dΩ + 2

}2

∫
Ω0
v (V0 − E)uidΩ

−
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,r

(∫
Dl

χlm(ξ, η)urdS
)(∮

Dl

vχlm(ξ, η)dS
)

+
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,i

(∫
Dl

χlm(ξ, η)uidS
)(∮

Dl

vχlm(ξ, η)dS
)

LC(v) = −2al_injm_inj
1

m∗l_inj,ζζ
kl_inj,m_inj
ζ,r

(∮
Dl_inj

vχl_injm_inj(ξ, η)dS
)

We only inject travelling waves. Therefore, the wavevector kl_inj,m_inj
ζ is purely real.

As a consequence, LR(v) is zero and the problem can be simplified to:

aR(u, v) + i (aC(u, v)− LC(v)) = 0

{
aR(u, v1) = 0
aC(u, v2)− LC(v2) = 0

with:

aR(u, v) =
∫

Ω0
∇v ·

( 1
M∗0
∇ur

)
dΩ + 2

}2

∫
Ω0
v (V0 − E)urdΩ

+
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,r

(∫
Dl

χlm(ξ, η)uidS
)(∮

Dl

vχlm(ξ, η)dS
)

+
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,i

(∫
Dl

χlm(ξ, η)urdS
)(∮

Dl

vχlm(ξ, η)dS
)

aC(u, v) =
∫

Ω0
∇v ·

( 1
M∗0
∇ui

)
dΩ + 2

}2

∫
Ω0
v (V0 − E)uidΩ

−
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,r

(∫
Dl

χlm(ξ, η)urdS
)(∮

Dl

vχlm(ξ, η)dS
)

+
∑
l

1
m∗l,ζζ

∞∑
m=0

kl,mζ,i

(∫
Dl

χlm(ξ, η)uidS
)(∮

Dl

vχlm(ξ, η)dS
)

LC(v) = −2al_injm_inj
1

m∗l_inj,ζζ
kl_inj,m_inj
ζ,r

(∮
Dl_inj

vχl_injm_inj(ξ, η)dS
)
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3.6. Numerical solution with Python and FEniCS

3.6.2 Python code

The following code snippet contains the main loop to calculate the states in the
simulations. The rest of the relevant Python code to which I made extensions is
given in appendix B.

1 f o r e in i n i t i a l _ e n e r g i e s :
2 s e l f . s ch roed inge r . update_parameters ( energy=e )
3 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
4 max_sb_enrgy = max_enrgy
5 f o r v in s e l f . s ch roed inge r . v a l l e y s :
6 s e l f . s ch roed inge r . rede f ine_ef fect ive_mass_tensor_terms (v )
7 f o r sb in range ( s e l f . subbands [ l ] [ v ] [ ’ number o f ’ ] ) :
8 s e l f . s ch roed inge r . update_parameters ( in j_lead=l ,

rel_subband=sb )
9 i f s e l f . subbands [ l ] [ v ] [ ’ e n e r g i e s ’ ] [ sb ] < e <

max_sb_enrgy :
10 s e l f . s ch roed inge r . r ede f ine_rhs (v )
11 p s i = s e l f . s ch roed inge r . s o l v e ( v )
12 ps i_rea l , psi_imag = ps i . s p l i t ( deepcopy=True )
13 transm = s e l f . s ch roed inge r . f i nd_transmi s s i ons ( ps i ,

l , sb , v )
14 pr in t " State nr . : " , nr , " Lead : " , l , " Subband :

" , sb , " Subband energy : " , s e l f . subbands [ l ] [ v ] [ ’ e n e r g i e s ’ ] [ sb ] , "
Energy : " , e , " Val l ey : " , v

15 pr in t " Transmiss ion o f t h i s s t a t e i s : " + s t r (
transm )

16 s t a t e [ ’ number ’ ] = nr
17 s t a t e [ ’ c o e f f s_ r e a l ’ ] = ps i_rea l . vec to r ( ) . array ( )
18 s t a t e [ ’ coef f s_imag ’ ] = psi_imag . vec to r ( ) . array ( )
19 s t a t e [ ’ in j_ lead ’ ] = l
20 s t a t e [ ’ rel_subband ’ ] = sb
21 s t a t e [ ’ inj_subband_energy ’ ] = s e l f . subbands [ l ] [ v ] [ ’

e n e r g i e s ’ ] [ sb ]
22 s t a t e [ ’ inj_subband ’ ] = s e l f . subbands [ l ] [ v ] [ ’ i n d i c e s

’ ] [ sb ]
23 s t a t e [ ’ in j_lead_ef fect ive_mass_along_transport ’ ] =

s e l f . s ch roed inge r . l ead_ef fect ive_masses_along_transport [ l ] [ v ]
24 s t a t e [ ’ energy ’ ] = e
25 s t a t e [ ’ t r ansmi s s i on ’ ] = transm
26 s t a t e [ ’ degeneracy ’ ] = 2
27 s t a t e [ ’ r e f i n e_ i t e r ’ ] = 0
28 s t a t e [ ’ v a l l e y ’ ] = v
29 s t a t e . append ( )
30 nr += 1

In the main loop we run over all the energies, over all the leads, over all the valleys
and over all the calculated subbands for each valley. One calculated state then
corresponds to one injected subband of a particular valley in one of the leads for
a certain energy in the total system. Each time the energy changes we update
the Schrödinger equation and if the valley changes, we update the effective mass
tensors. On line 11 we solve the Schrödinger equation for a combination of one total
energy, one injection lead, one valley and one subband. On line 13 we calculate the
transmission coefficients with the calculated states on line 11. Lines 16 to 30 store
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3. Phase I: Modelling energy filtering with a geometric superlattice

the characteristics of the calculated state in memory and goes on to the next state.

3.7 Normalization
In this section the states Ψ are normalized, because proper wavefunctions are
normalized. Because the leads are infinite, the device region can be ignored in the
normalization process. Normalizing the longitudinal solutions in the leads allows to
find the incoming amplitudes Alm. Normalizing the transverse solutions is necessary
to find consistent solutions in the numerical solution of the variational problem for
ψ0h.

Delta-normalization of the final states Ψ

The incoming amplitudes Alm of the final states are expressed as:

|A| =
√

m∗l,ζζ
2π}2klm

=
√

1
L

√
DOS(E)

2 ∝
√

1√
E

(3.37)

where we have used the 1D-DOS of the incoming states in terms of the wavevector
klm: DOS(E) = Lm∗l,ζζ

π}2klm
. The same result can be obtained with a normalization to a

delta function. The density of states (DOS) is incorporated in the wavefunctions
normalized to a delta function and will not have to be taken into account separately
in the calculations of charge density and current.

Normalization of the transverse solutions χlm(ξ, η)

The transverse solutions χlm(ξ, η) can be normalized with an ordinary normalization:∮
Dl

C lmχ
l
m(ξ, η)(C lm)∗

[
χlm(ξ, η)

]∗
dS = 1 (3.38)

Equation 3.38 results in the normalization constant C lm = 1√
‖χlm(ξ,η)‖

with ‖χlm(ξ, η)‖

the norm of the eigenfunction which equals
∮
Dl
χlm(ξ, η)

[
χlm(ξ, η)

]∗
dS.

In the previous section we found solutions for the wavefunctions in the leads and
derived the QTBCs on the open boundaries of the device region. The problem is
now fully defined to solve for the wavefunction Ψ in the whole system Ω. In the
following sections we find expressions for the transmission coefficient, the electron
charge density and the current in the general device geometry. These derivations are
done directly for anisotropic effective mass. Similar derivations for isotropic effective
mass can be found in appendix A.3.

3.8 Transmission spectrum
The transmission spectrum gives the transmission through the device region of
one injected subband over a range of energies. The transmission spectrum can be
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3.8. Transmission spectrum

obtained by plotting the transmission coefficients T (E) over a range of energies.
The transmission coefficient T (E) gives the transmission probability of the injected
subband at this energy to any of the other leads. Vice versa, it is the probabibility of
the injected subband not being reflected back into the injection lead. The geometry
of the device region changes the transmission probability. In this section we derive
an expression for the transmission coefficient T (E).

The transmission coefficient T (E) is given by the outgoing current in all the leads
over the incoming current in the incoming lead:

T (E) = Iout
Iin

(3.39)

The current comes in through the injection lead l′ and goes out through any of the
other leads. The incoming current Iin and the outgoing current Iout can be written
in terms of the incoming and outgoing probability currents jin and jout in the leads:

T (E) =
∑
l

∮
Dl
jlout,ζdS∮

Dl′
jl
′
in,ζdS

(3.40)

where jlout,ζ is the ζ-component of the outgoing probability current perpendicular
to Dl in lead l and jl

′
in,ζ is the ζ-component of the incoming probability current

perpendicular to Dl′ in the injection lead l′. The probability current j in the leads
for anisotropic effective mass is defined as:

jl = }
2M∗l i

(ψ∗l∇ψl − ψl∇ψ∗l ) (3.41)

We only need the ζ-component of the probability current vector jl. Writing out the
tensor and vector terms:

jl = }
2i


1

m∗
l,ξξ

1
m∗
l,ξη

0
1

m∗
l,ηξ

1
m∗
l,ηη

0
0 0 1

m∗
l,ζζ


ψ∗l


∂ψl
∂ξ
∂ψl
∂η
∂ψl
∂ζ

− ψl

∂ψ∗l
∂ξ
∂ψ∗l
∂η
∂ψ∗l
∂ζ


 (3.42)

where we have assumed the separable form of the effective mass tensor in the leads.
The ζ-component of the probability current is then given by jlζ = }
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)
.

The solutions for the wavefunction ψl in the leads found in equation 3.19 give the
incoming and outgoing wavefunctions: ψl

′
in(ξ, η, ζ) = al
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−ikl
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where we have assumed an injection only through one lead l′ and one subband m′.
Using these wavefunctions in the expression for the probability current we find:
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The incoming probability current is negative because the ζ-axis is defined outward
of the device region. The eigenfunctions on the boundary χlm(ξ, η) are assumed real,
because the phase factor can be incorporated in the complex amplitude alm. We can
then calculate the transmission coefficient T (E) given in equation 3.40. Using the
orthonormality of the subbands

∮
Dl
χlm(ξ, η)χln(ξ, η)dS = δmn:

T (E) =

∑
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1
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l′,m′
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(3.45)

Together with the expression for the blm coefficients derived in A.1, we have found an
expression to calculate the transmission coefficient T (E). The transmission coefficient
T (E) can be calculated after the solutions for the wavefunctions ψ0h have been found
by solving the discrete variational problem for ψ0h with the finite element method,
as explained in section 3.4. The transmission coefficient Tl′→l(E) from the injection
lead l′ to a specific lead l, can be found by:

Tl′→l(E) =
1

m∗
l,ζζ

∑∞
m=0 |blm|2k

l,m
ζ

1
m∗
l′,ζζ
|al′m′ |2k

l′,m′

ζ

(3.46)

3.9 Electron charge density and current
We assume ballistic transport which allows the Fermi-Dirac distribution of the
injection lead f l′FD(E) to be used for the calculation of charges and currents in the
device. We sum over all injected subbands for all valleys and injection leads to
calculate the charge and current. The electron charge density in the device can be
calculated from the obtained wavefunctions ψl,vm with the following formula:

ne = 2e
∑
l

∑
v

∑
m

∫ ∞
El,vm

∣∣∣ψl,vm (E)
∣∣∣2 f lFD(E)dE (3.47)

where the factor 2 accounts for the spin degeneracy. The current in lead l′ in the
ballistic case can be calculated using the obtained transmission coefficients in the
previous section:

Il′ = 2
∑
l

∑
v

∑
m

∫ ∞
El,vm

−evl,vm (E)T l′→lm,v (E)f lFD(E)dE (3.48)

where the 2 accounts for spin degeneracy. Ballistic transport neglects the possible
scattering in the device and will therefore represent the best case scenario for the
calculated on-state current.
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3.10 Conclusion
In this chapter we fulfilled the second research objective. We found and set up a
suitable theoretical model for the energy filtering in the nanowire superlatticeFET
with a geometric superlattice, by extending the QTB method to 3D and (an)isotropic
effective mass for a general device geometry. In the derivation of the QTB-method
for anisotropic effective mass, we had to make an assumption limiting the form which
the effective mass tensor in the leads can take. We explained the finite element
method which will be used in the next chapter to obtain numerical solutions for the
wavefunctions using Python[37] and FEniCS[7, 28]. We derived expressions for the
transmission coefficient, the electron charge density and the current in the ballistic
case. In the next chapter we use the model to show the existence of energy filtering in
3D geometric superlattices. The model allows to simulate nanowire superlatticeFETs
with various geometric superlattices and to check their energy filtering capacity by
plotting the transmission spectra.
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Chapter 4

Phase II: Simulating energy
filtering with a geometric
superlattice

“Is energy filtering possible with a 3D geometric super-
lattice?”
“How to vary the geometric superlattice to tune energy
filtering? Is there an ideal energy filter?”
The goal of this chapter is to show that it is possible to obtain energy filtering
with a 3D geometric superlattice. In addition, by simulating nanowires with various
geometric superlattices, we show that it is possible to vary the energy filtering by
changing the periodic parameters of the geometric superlattice. By varying the
periodicity of the geometric superlattice, we will search for a transmission spectrum
with ideal energy filtering capacity.

4.1 Simulation model

In figure 4.1 we convert the general model derived in chapter 3 into a model we will
use for the simulation of nanowires with a geometric superlattice. For the simulations,
the leads are assumed to lie along the [001]-crystal coordinate axis, such that the
effective mass tensors in the leads M∗l expressed in the lead coordinate system are
separable, as was required in the derivation of the QTB method in chapter 3.

We start with simulating Si nanowires without a geometric superlattice as a check for
the model we set up in the previous chapter. A straight nanowire without a geometric
superlattice should result in a transmission spectrum with full transmission at all
energies starting from the injected subband energy. The simulation for a straight Si
nanowire is done in section 4.2. In section 4.3 we simulate Si nanowires with various
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Figure 4.1: Conversion from the general model derived in chapter 3 (top) to a model
for a Si nanowire with a geometric superlattice as used for the simulations (middle).
As a consequence of the derivation of the 3D QTB method in chapter 2, the ζ1 and ζ2
axes along the leads can only lie along one of the crystal coordinate axes [100], [010]
or [001]. In the simulations the leads lie along the [001]-direction. The derived 3D
QTB method sets no limitation on the orientation of the device region Ω0. The three
equivalent valleys of Si in the crystal coordinate system are shown on the bottom
right of the figure. DCS: device coordinate system, LCS: lead coordinate system,
CCS: crystal coordinate system, ECS: ellipsoidal or valley coordinate system.
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geometric superlattices to understand the influence of the periodic parameters and
search for an ideal energy filtering superlattice.

4.2 Si nanowires without a geometric superlattice

4.2.1 Straight Si nanowire with square cross-section

In this section we simulate a straight Si nanowire with square cross-section. To plot
the injected subbands in the Si nanowire, we solve the eigenvalue problem (EVP)
on the lead boundaries of the device region given by equation 3.3.1. For Si, the
EVP is different depending on the valley, because the effective mass tensor M∗l
changes. The solutions for the wavefunctions χlm(ξ, η) on the boundary will therefore
be different depending on the valley. In figure 4.2, 4.3 and 4.4 the solutions for
χlm(ξ, η) are plotted for the 100-valley, 010-valley and 001-valley respectively. For the
100-valley the wavefunctions with nodes in the [100]-direction (x-direction in figure
4.1 and horizontal in figure 4.2) are preferred at lower energy. For the 010-valley
the wavefunctions with nodes in the [010]-direction (y-direction in figure 4.1 and
vertical in figure 4.3) are preferred at lower energy. This can be understood from the
analytical solution for the subband energy E lm:

E lm = n2
x}2π2

2m∗xl2x
+
n2
y}2π2

2m∗yl2y
(4.1)

The subband energy E lm is proportional to n2
x

m∗x
and n2

y

m∗y
. The 100-valley, for instance,

has a high effective mass (0.98me) along the x-direction and a low effective mass
(0.19me) along the y-direction, as shown in figure 4.5. The solutions with a higher
number of nodes in the x-direction (high nx) can thus shift to lower E lm energies.
The subbands are the same for the different valleys only the ordering is different.
For the 001-valley, superpositions of the eigenfunctions come out, which are also
valid solutions of the linear Schrödinger equation. The characteristics of the three
equivalent valleys in Si are illustrated in figure 4.5 for subband m = 1.
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100-valley subbands

0. 1.

2. 3.

4. 5.

6. 7.

Figure 4.2: First 8 100-valley subbands χlm(ξ, η) with m from 0 to 7 for a Si nanowire.
The finite element mesh used to obtain the solution is also plotted.
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010-valley subbands

0. 1.

2. 3.

4. 5.

6. 7.

Figure 4.3: First 8 010-valley subbands χlm(ξ, η) with m from 0 to 7 for a Si nanowire.
The finite element mesh used to obtain the solution is also plotted.
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001-valley subbands

0. 1.

2. 3.

4. 5.

6. 7.

Figure 4.4: First 8 001-valley subbands χlm(ξ, η) with m from 0 to 7 for a Si nanowire.
The finite element mesh used to obtain the solution is also plotted.
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4.2. Si nanowires without a geometric superlattice

Figure 4.5: Characteristics of the three equivalent valleys in Si, illustrated with
subband m = 1.

For a straight Si nanowire without a geometric superlattice as shown in figure
4.6 we expect transmission spectra which are 1 for each injected subband starting
from the respective subband energy. Figure 4.7 shows the transmission spectra for
the injected subbands of the three equivalent valleys of Si. The injected subbands
are ordered from low to high subband energy, which mixes the subbands of the three
valleys. The solid blue line in each transmission spectrum shows the subband energy.
Because we simulated a nanowire with square cross-section, the resulting subband
energies for the 100-valley and 010-valley are pairwise degenerate, as can be inferred
from the subband energy equation in 4.1 with lx = ly. We note that only the first
subband of the 001-valley is present, which can be explained by the confinement of
the nanowire to 5 nm by 5 nm and the low effective mass of the 001-valley in both
directions on the cross-section. The green area shows the 1D-DOS ∝ 1√

E
and the red

area shows the Fermi-Dirac distribution. The dotted blue line is the Fermi-level in the
source which is set to 0 eV . Only the injected subbands with an overlap between the
transmission spectrum, the 1D-DOS and the Fermi-Dirac distribution can contribute
to the current1. In figure 4.7 only the first 5 subbands contribute significantly to the
current. The transmission spectra indeed show a transmission of 1 for each injected
subband energy, which validates the solver to be used for the simulation of geometric
superlattices. Only for higher injected subbands the transmission starts slightly above
the subband energy before rising to 1, probably due to the use of a not sufficiently fine
mesh on the cross-section because the error is most noticeable for eigenfunctions with
many oscillations on one of the cross-sectional directions, i.e. injected subband 9 or 10.

Figures 4.8 to 4.11 show slices of the transmission through the straight Si nanowire
for the injected subbands 0, 2, 10 and 11. The numbering of the injected subbands

1This follows from the derived formula of the ballistic current in section 3.9.
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Figure 4.6: Si nanowire with a width of w = 5 nm and a height of h = 5 nm without
a geometric superlattice.

Figure 4.7: Transmission spectra for each injected subband in a 5 nm by 5 nm Si
nanowire without a geometric superlattice as shown in 4.6. The injected subbands
are ordered from low to high subband energy, which mixes the subbands of the
three valleys. The solid blue line in each transmission spectrum shows the subband
energy. The green area shows the 1D-DOS and the red area shows the Fermi-Dirac
distribution. The dotted blue line is the Fermi-level in the source which is set to 0
eV. The donor doping concentration is ND = 1019 cm−3.

is given underneath the transmission spectra in figure 4.7. In each of the four figures
the left side shows the real part of the wavefunction plotted on the solid nanowire
and the right side shows a slice through the nanowire to visualize the transmission
of the wavefunction inside the nanowire. The slices were obtained using a filter from
the data visualization package Paraview[5].

4.2.2 Straight Si nanowire with strong confinement in the height

Figure 4.12 shows a straight Si nanowire with strong confinement in the height down
to 2 nm thickness. The width remains the same compared to the straight Si nanowire

64



4.2. Si nanowires without a geometric superlattice

Figure 4.8: Left: real part of the wavefunction for injected subband 0, corresponding
to the 100-valley. Right: vertical slice through the nanowire showing the transmission
of the wavefunction through the nanowire.

Figure 4.9: Left: real part of the wavefunction for injected subband 2, correspond-
ing to the 100-valley. Right: horizontal slice through the nanowire showing the
transmission of the wavefunction through the nanowire.

Figure 4.10: Left: real part of the wavefunction for injected subband 10, corresponding
to the 010-valley. Right: vertical slice through the nanowire showing the transmission
of the wavefunction through the nanowire.
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4. Phase II: Simulating energy filtering with a geometric superlattice

Figure 4.11: Left: real part of the wavefunction for injected subband 11, corresponding
to the 100-valley. Right: two horizontal slices through the nanowire showing the
transmission of the wavefunction through the nanowire.

in figure 4.6. We choose to confine in the height, because nanometer thick layers can
be grown in the vertical dimension using molecular beam epitaxy. Figure 4.13 shows
the transmission spectra for the injected subbands of the three equivalent valleys
of Si in a nanostrip with height 2 nm and width 5 nm. The subband energies can
be extracted from this simulation, although the simulation was run with a rougher
finite element mesh, resulting in non-expected values for the transmission coefficient
at higher energies. A rougher finite element mesh cannot handle fast oscillations of
the wavefunctions very well at higher energies. The main conlusion of figure 4.13 is
the isolation of the 010-valley at low energies due to the strong confinement in the
height. The 100-valley and 001-valley have a low effective mass along the confinement
direction (see figure 4.5) which shifts the 100-valley and 001-valley subband energies
up and isolates the 010-valley subbands at lower energies. Confining to 2 nm in the
lateral dimension would shift the 010-valley and 001-valley subbands upward and
isolate the 100-valley. The isolation of one of the valleys of Si will prove useful in the
search for the geometric superlattice with ideal energy filtering characteristics in the
next section.

4.3 Si nanowires with a geometric superlattice

To obtain energy filtering we equip the straight Si nanowires with a geometric
superlattice. The geometric superlattice can consist of any kind of periodic feature.
In contrast with the transmission spectra of straight Si nanowires, we now expect dips
to appear in the transmission spectra corresponding to minibandgaps. We start from
a superlattice with 10 periods, which should result in minibands and minibandgaps
if energy filtering is possible with a 3D geometric superlattice. Gnani et al. used
a sequence of 10 barriers and wells in the material superlattice to achieve energy
filtering[16].
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Figure 4.12: Si nanowire with a width of w = 5 nm and a strongly confined height
of h = 2 nm without a geometric superlattice.

Figure 4.13: Transmission spectra for the injected subbands of each valley in a
nanostrip with height 2 nm and width 5 nm. The solid blue line in each transmission
spectrum shows the subband energy. The green area shows the 1D-DOS and the red
area shows the Fermi-Dirac distribution. The dotted blue line is the Fermi-level in
the source which is set to 0 eV. The donor doping concentration is ND = 1019 cm−3.
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Figure 4.14: Si nanowire of width w = 5 nm, height h = 5 nm and 10 periodic
indents of depth i = 1 nm. The length of one indent is il = 2 nm and the unindented
length is ul = 2 nm.

Figure 4.15: Transmission spectra for each injected subband in a Si nanowire with
periodic indents of 1 nm shown in figure 4.14. Only the subbands which can contribute
considerably to the current are numbered. The green area shows the 1D-DOS and
the red area shows the Fermi-Dirac distribution. The dotted line is the Fermi-level in
the source which is set to 0 eV. The donor doping concentration is ND = 1019 cm−3.

4.3.1 Si nanowire with 1 nm periodic indents

Figure 4.14 shows a Si nanowire with 10 periodic indents of 1 nm depth. The
nanowire cross-sectional dimensions are 5 nm by 5 nm. The length of one indent is 2
nm and the unindented length is 2 nm. Figure 4.15 shows the transmission spectra
for each injected subband from low to high subband energy. The first 5 subbands
which can contribute considerably to the current are numbered from 0 to 4. The
transmission spectra in figure 4.15 show clear dips in the transmission over ranges of
energy, which is a sign for the onset of minibandgaps. However a full minibandgap
should have zero transmission over a range of energies. In the next paragraph we
deepen the indents to 2 nm to enhance the periodicity and possibly the formation of
the miniband structure.
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Figure 4.16: Si nanowire of width w = 5 nm, height h = 2 nm and indents of depth
i = 2 nm. The length of one indent is il = 2 nm and the unindented length is
ul = 2 nm.

4.3.2 Si nanowire with 2 nm periodic indents

Figure 4.16 shows a Si nanowire with 10 periodic indents of 2 nm depth. Only the
indents have increased in depth compared to 4.3.1. All the other periodic parameters
have remained the same. Figure 4.17 shows the transmission spectrum for each
injected subband in the Si nanowire with periodic indents of 2 nm. From figure 4.17
we note that deeper indents of 2 nm enhance the minibandgaps to zero transmission
compared to 4.3.1. At an energy in the the minibandgap of the injected subband 0
(red line with red dot in figure 4.17) there is no transmission of the wavefunction
through the nanowire as shown by figure 4.18. Figures 4.17 and 4.18 proof that it is
indeed possible to obtain a miniband structure and as a consequence, energy filtering
with a 3D geometric superlattice.

Influence of the anisotropy of the effective mass

In figure 4.17 the first 5 subbands which can contribute considerably to the current
are numbered from 0 to 4. For these first 5 subbands, we note that minibands
and minibandgaps appear for the 100-valley subband (subband 0 and 3) and the
001-valley subband (subband 4). However, no minibandgaps appear for the 010-valley
(subbands 1 and 2). The miniband structure (at energies lower than 0.4 eV is thus
obtained for the valleys with a low effective mass along the indentation direction.
We state that a low effective mass in the direction of the indent is beneficial for
the formation of a miniband structure at low energies. This statement is qualita-
tively explained in figure 4.19 and supported with simulations in figures 4.20 and 4.21.

Figure 4.19 explains why minibands appear for injected subband 3 of the 100-
valley and not for injected subband 2 of the 010-valley in figure 4.17. Figure 4.19
shows the injection of these two subbands in the Si nanowire with top indentations.
Qualitatively we can understand that the indentations will have more influence on
the 100-valley injected subband than on the 010-valley injected subband, because
the indentations lie perpendicular to the wavefunction blobs for the 100-valley, while
they lie in the direction of the wavefunction blobs for the 010-valley. This results in
a miniband structure for the 100-valley and no miniband structure for the 010-valley
in figure 4.17. Hence, the superlattice with indentations on top is a better energy
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Figure 4.17: Transmission spectra for each injected subband in a Si nanowire with
periodic indents of 2 nm shown in figure 4.16. Only the subbands which can contribute
considerably to the current are numbered. The green area shows the 1D-DOS and
the red area shows the Fermi-Dirac distribution. The dotted line is the Fermi-level in
the source which is set to 0 eV. The donor doping concentration is ND = 1019 cm−3

Figure 4.18: Wavefunction inside the Si nanowire with indents of 2 nm depth for
injected subband 0 from figure 4.17. The energy corresponds to an energy in the
minibandgap, as shown by the red line in figure 4.17. At this energy there is no
transmission toward the end.
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Figure 4.19: For this geometry, the periodic feature is placed along the direction
with low effective mass for the 100-valley and along the high effective mass for the
010-valley. A top indentation is a better energy filtering feature for electrons in the
100-valley than for electrons in the 010-valley.

Figure 4.20: Probability density of injected subband 3 in figure 4.17. Injected subband
3 is a subband from the 100-valley with low effective mass along the indent direction.
The probability density in the non-indented parts is non-zero. Qualitatively, the
probability density blobs try to get into the non-indented parts of the geometric
superlattice. As a consequence, the geometric superlattice has an influence over the
probability density, which leads to the formation of a miniband structure for the
100-valley.

filter for the electrons in the 100-valley than for the electrons in the 010-valley. The
energy filter can be tuned to obtain energy filtering for the 010-valley by making
indentations in the direction where the 010-valley has a low effective mass, i.e. use a
lateral indentation. Figures 4.20 and 4.21 show the probability density for injected
subband 3 and 2 in figure 4.17 respectively.

We have shown the possibility of energy filtering in a 3D geometric superlat-
tice. In the next sections we vary the periodic parameters further to understand how
the minibands and minibandgaps are influenced by changing the periodicity of the
superlattice. In the transmission spectra 4.17 for 2 nm indentations we note that the
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Figure 4.21: Probability density of injected subband 2 in figure 4.17. Injected
subband 2 is a subband from the 010-valley with high effective mass along the indent
direction. The probability density in the non-indented parts is zero, in contrast with
the probability density of the 100-valley in figure 4.20. The probability density blobs
are not influenced by the geometric superlattice, which results in the absence of a
miniband structure for the 010-valley.

transmission probability for the subbands contributing to the current is lowered by a
qualitative factor of 1

2 compared to 1 nm indentations in 4.3.1. With 2 nm indenta-
tions, the indentations take away almost half the 5 nm nanowire height. Therefore,
making fins instead of indents should result in more transmission probability and is
considered in the next section.

4.3.3 Si nanowire with 2 nm periodic fins

Figure 4.22 shows a Si nanowire with 10 periodic fins of 2 nm height. All the other
periodic parameters have remained the same. Figure 4.23 shows the transmission
spectra for each injected subband in the case of 2 nm fins. We note that again the
minibandgaps appear more clearly for the injected subbands of the 100-valley and
less for the injected subbands of the 010-valley. A low effective mass in the direction
of the periodic feature (in this case a fin) enhances the formation of a miniband
structure at low energies. Figure 4.24 shows the transmission of the wavefunction
inside the Si nanowire with fins for injected subband 0 at a miniband energy.

By comparing the transmission spectra for 2 nm fins in 4.23 with the transmis-
sion spectra for 2 nm indents in 4.17, the transmission probability in the first
miniband is bigger for a fin periodic structure. A higher transmission probability in
the first miniband will increase the on-state current and boost performance. However,
fins of 2 nm have a degraded miniband structure compared to 2 nm indents which
results in worse energy filtering capacity with a fin periodic structure. In the next
paragraph we consider an additional fin on the right side of the nanowire which
should result in minibandgaps for the 010-valley as well as for the 100-valley. We
also increase the fin height in an attempt to enhance the periodic feature and deepen
the miniband gaps. This is considered in the next paragraph.
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Figure 4.22: Si nanowire of 5 nm by 5 nm with fins of 2 nm height. The length of
one fin is 2 nm and the spacing between the fins is 2 nm.

Figure 4.23: Transmission spectra for each injected subband in a Si nanowire with
periodic fins of height 2 nm shown in figure 4.22. Only the subbands which can
contribute considerably to the current are numbered. The green area shows the
1D-DOS and the red area shows the Fermi-Dirac distribution. The dotted line is the
Fermi-level in the source which is set to 0 eV. The donor doping concentration is
ND = 1019 cm−3.

4.3.4 Si nanowire with fins on top and side

Figure 4.25 shows a Si nanowire with 10 periodic fins on top and side of the nanowire.
Figure 4.26 shows the transmission spectra for fins with height of 2 nm. By comparing
figure 4.26 with the transmission spectra for 2 nm fins only on top in 4.23, we note
that the onsets of minibandgaps now also appear for the first subband of the 010-
valley, although the onsets of the minibandgaps are not very big for the 100-valley
and 010-valley. For the 001-valley (injected subband 4) however, with low effective
mass on both cross-sectional directions, a pronounced minibandgap is obtained with
fins on top and side in figure 4.26 and not with fins only on top in figure 4.23. Figure
4.27 shows that the minibandgaps cannot be enhanced by increasing the height of
the fins to 4 nm and that the pronounced minibandgap for injected subband 4 is
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Figure 4.24: Wavefunction inside the Si nanowire with fins of 2 nm height for injected
subband 0 from figure 4.23. The energy corresponds to an energy in a miniband, as
shown by the red line in figure 4.23. At this energy there is transmission toward the
end.

Figure 4.25: Si nanowire with fins of length fl = 2 nm on top and side.

gone.

Influence of varying the spacing between the periods

Until now, the indents and fins had a fixed spacing between the periodic feature
and a given length of the periodic feature, i.e. 2 nm for both. Figures 4.28 and 4.29
show that the required spacing between the features depends on the wavelength of
the wavefunctions in the geometric superlattice. At low energy in figure 4.28, the
wavevector in the transport direction is small (see equation 3.18) and the oscillations
in the probability density are too long to be influenced by the narrowly spaced
fins. At high energy in 4.29, the wavevector in the transport direction is big and
the oscillations in the probability density are short enough to be influenced by the
fins. Ideally, in figure 4.28 the fins are longer such that also at low energies the
fins influence the probability density and a miniband structure can be obtained at
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Figure 4.26: Transmission spectra for the injected subbands in a Si nanowire with fins
on top and side of 2 nm height. The donor doping concentration is ND = 1019 cm−3.

Figure 4.27: Transmission spectra for the injected subbands in a Si nanowire with fins
on top and side of 4 nm height. The donor doping concentration is ND = 1019 cm−3.
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Figure 4.28: Slice of the probability density for injected subband 0 at lower energy.

Figure 4.29: Slice of the probability density for injected subband 0 at higher energy.

low energy. In addition, from equation 3.18 it follows that a low effective mass in
the transport direction results in a smaller wavevector and bigger oscillations of the
probability density. A smaller effective mass in the transport direction results in
the possibility to obtain interference with longer periodic features. Longer periodic
features are advantageous from a fabrication point of view. To achieve an ideal
transmission spectrum starting from 4.26, there are two problems to face. First,
injected subband 0 and 1 in figure 4.26 do not fully reach zero transmission and do
not extend over a big energy range. Second, subbands 2, 3 and 4 also contribute to
the current and have transmission at the energies where injected subbands 0 and
1 have a minibandgap. Injected subbands 2, 3 and 4 thus deteriorate the energy
filtering of subband 0 and 1. In the next section we propose a geometric superlattice
with a close to ideal energy filtering transmission spectrum.

4.4 Ideal energy filter

We characterized the transmission spectrum for an ideal energy filter with three
necessary characteristics. First, the ideal transmission spectrum has a decent first
miniband to achieve a sufficient on-state current for minimum performance. The
width of the first miniband is the energy range which can be blocked by the gate
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potential energy barrier and corresponds to the supply voltage (around 0.1 V-0.4
V for nanowire transistors[21]). Second, the ideal transmission spectrum has a first
minibandgap which is as big as possible to block the high energy electrons and
achieve low passive power consumption. Third, the ideal transmission spectrum has
a sharp band edge from first minibandgap to first miniband to achieve a steep SS.

4.4.1 Si nanostrip with side indentations

In figure 4.31 we show a transmission spectrum for the first injected subband which
comes very close to the ideal transmission spectrum and is not deteriorated by the
transmission spectra of higher subbands. The transmission spectra in figure 4.31
belong to a Si nanostrip with side indentations as shown in figure 4.30. In the next
paragraph we explain why the Si nanostrip with side indentations comes close to an
ideal energy filter.

The first important characteristic of the Si nanostrip with side indentations is
the strong confinement in the height down to 2 nm. As explained and simulated
in 4.13, a strong confinement along the height allows to isolate the 010-valley. In
figure 4.31 we therefore only plotted the 010-valley. The 100-valley and 001-valley
will lie at sufficiently high energies due to their low effective mass in the height
direction. The potential transmission in the 100-valley and 001-valley can therefore
not deteriorate the miniband structure of injected subband 0 of the 010-valley. The
second important characteristic of the Si nanostrip is its side indentations along
the direction where the effective mass of the electrons in the 010 valley is low. As
explained and simulated in 4.19, a low effective mass along the direction of the indent
enhances the formation of minibands and minibandgaps at low energies. A third
important characteristic is the low effective mass in the transport direction due to
the isolated 010-valley. A smaller effective mass in the transport direction results in
the possibility to obtain interference with longer periodic features. Longer periodic
features are advantageous from a fabrication point of view. The configuration of
the Si nanostrip for which we achieved the close to ideal transmission spectrum in
figure 4.31 has an indent length of 5 nm and an unindented length of 3 nm. Also
note in figure 4.31 that we increased the doping concentration from ND = 1019 cm−3

to ND = 1020 cm−3 compared to the previous cases to place the Fermi-level inside
the first miniband of the first injected subband of the 010-valley.

4.5 Conclusion
In this chapter we fulfilled the third research objective. We proved the existence
of energy filtering in 3D geometric superlattices by simulating nanowires with 10
periodic indentations and showing the minibands and minibandgaps in the trans-
mission spectra of the injected subbands. We showed the tunability of the energy
filtering by deepening the indentations and varying the geometric superlattice to
fins. Indentations allowed to obtain more pronounced minibandgaps for the lowest
injected subbands, while fins only showed decent minibandgaps for the 001-valley.
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Figure 4.30: Si nanostrip with side indentations. The measurements of the periodic
parameters corresponding to the transmission spectra in figure 4.31 are 10 periods,
width w = 5 nm, height h = 2 nm, indent depth i = 2 nm, indent length il = 3 nm
and unindented length ul = 5 nm.

We found that the anisotropy of the effective mass in Si plays an important role in
relation with the periodic features of the geometric superlattice and the presence of
minibands and minibandgaps at low energies. We explained why the Si nanostrip
with side indentations is a close to ideal energy filter. In the next section we propose
the Si nanostrip geometric superlatticeFET and relax the fabrication of its geometric
superlattice by lowering the number of periods to 5 without decreasing the energy
filtering capacity.
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Figure 4.31: Transmission spectra for the injected subbands of the isolated 010-valley
in a Si nanostrip with side indentations and parameters as shown in figure 4.30.
Only the first injected subband of the 010-valley contributes significantly to the
current. The green area shows the 1D-DOS and the red area shows the Fermi-Dirac
distribution. The dotted line is the Fermi-level in the source which is set to 0 eV.
The doping concentration in the Si nanostrip is ND = 1020 cm−3.
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Figure 4.32: Probability density through the Si nanostrip with side indentations for
the first injected subband of the 010-valley at an energy in the first miniband. In
the miniband, a high probability density is present under the geometric superlattice

Figure 4.33: Probability density through the Si nanostrip with side indentations for
the first injected subband of the 010-valley at an energy in the first minibandgap. In
the minibandgap a high probability density is blocked by the geometric superlattice
due to constructive interference at the source side.
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Figure 4.34: Probability density through the Si nanostrip with side indentations for
the second injected subband of the 010-valley at an energy in a minibandgap.
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Chapter 5

Phase III: Investigating the Si
nanostrip geometric
superlatticeFET

“Can we lower the fabricational difficulty of the Si nanos-
trip geometric superlatticeFET? Does it impact the en-
ergy filtering?”
“How is the geometric superlatticeFET characterized in
terms of leakage current, switching slope and on-state
current?”
In this chapter we investigate the characteristics of the Si nanostrip with side
indentations as a superlatticeFET. The Si nanostrip with side indentations came
out as the geometric superlattice with an energy filtering capacity closest to ideal
of the simulated structures in chapter 4. In section 5.1 we lower the number of
periods in the geometric superlattice of the nanostrip and find out if the energy
filtering capacity becomes deteriorated by the decreased number of periods. A lower
amount of periods in the geometric superlattice simplifies potential fabrication of
the Si nanostrip geometric superlatticeFET and can lower the cost of fabrication. A
lower number of periods is also beneficial in terms of the variability of the periodic
nanometer sized features in the geometric superlattice. A mismatch in the geometry
of one periodic feature may possibly result in a deteriorated miniband structure and
shift the energy filtering capacity away from close to ideal. In section 5.2 we simulate
the turn-on characteristics of the Si nanostrip geometric superlatticeFET. From the
turn-on characteristics we derive the leakage current, the passive power consumption,
the switching slope and the on-state current.
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superlatticeFET

Figure 5.1: Si nanostrip with 5 side indentations. The measurements of the periodic
parameters are width w = 5 nm, height h = 2 nm, indent depth i = 2 nm, indent
length il = 3 nm and unindented length ul = 5 nm.

5.1 Lowering the number of periods in the geometric
superlattice

In figure 5.1 we lowered the number of periods of the Si nanostrip with side inden-
tations to 5. The transmission spectrum remains close to ideal because, first, the
decent first miniband is still present for the lowest injected subband, guaranteeing a
minimum on-state current and performance, second, the first minibandgap extends
far enough to block the exponential Fermi-Dirac tail, resulting in a low leakage
current, and third, the band edge between the first miniband and first minibandgap
is still sharp. Figures 5.3 and 5.4 show the probability densities in the Si nanostrip
for the first injected subband of the 010-valley at an energy in the first miniband and
minibandgap respectively. Figure 5.5 shows the probability density in the Si nanostrip
for the second injected subband of the 010-valley at an energy in a minibandgap.

5.2 Turn-on characteristics

In this section we simulate the turn-on characteristics of the Si nanostrip geometric
superlatticeFET with 5 side indentations. Based on the turn-on characteristics it is
possible to derive magnitudes for the inverse subthreshold slope, the leakage current,
the passive power consumption and the on-state current. For a new transistor
concept, circuit designers are interested in these metrics to predict the performance
and power consumption of their circuits.

Figure 5.6 shows the Si nanostrip geometric superlatticeFET with 5 side inden-
tations. The geometric superlattice is placed between the source and the gate. A
drain-source potential VDS of 0.1 V is applied at the drain. The gate potential is
applied fully around the gate and is ramped from 0.0 V in the normally-on state
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5.2. Turn-on characteristics

Figure 5.2: Transmission spectra for the injected subbands of the isolated 010-valley
in the Si nanostrip with 5 side indentations shown in figure 5.1. The green area shows
the 1D-DOS and the red area shows the Fermi-Dirac distribution. The dotted line is
the Fermi-level in the source which is set to 0 eV. The donor doping concentration is
ND = 1020 cm−3.

Figure 5.3: Probability density through the Si nanostrip with side indentations for
the first injected subband of the 010-valley at an energy in the first miniband. In
the miniband, a high probability density is present under the geometric superlattice.
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superlatticeFET

Figure 5.4: Probability density through the Si nanostrip with side indentations for
the first injected subband of the 010-valley at an energy in the first minibandgap. In
the minibandgap a high probability density is blocked by the geometric superlattice
due to constructive interference at the source side.

Figure 5.5: Probability density through the Si nanostrip with side indentations for
the second injected subband of the 010-valley at an energy in a minibandgap.
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5.2. Turn-on characteristics

Figure 5.6: Si nanostrip geometric superlatticeFET with 5 side indentations. The
blue region corresponds to the source, the orange region to the gate and the green
region to the drain. The geometric superlattice consists of 5 side indentations and is
placed between the source and the gate. The gate potential is applied fully around
the gate.

to −0.5 V in the off-state. Figure 5.7 shows the obtained turn-on characteristics
which plots the drain-source current logIDS in function of the applied gate-source
potential VGS . The turn-on curve has a sub-60 mV/dec inverse subthreshold slope,
which validates the Si nanostrip geometric superlatticeFET as a steep slope transistor
concept. A steeper slope than the fixed ideal 60 mV/dec slope of planar MOSFETs
allows to lower the power consumption while keeping the required performance. In
the on-state (at 0.0 V in figure 5.7), we obtain an on-state current in the order of
10−5 A. In the off-state (at −0.5 V in figure 5.7), we achieve a leakage current in
the pA-regime. A leakage current in the order of 10−12 A at a drain-source voltage
of 0.1 V allows for a passive power consumption of 10−13 W in the Si nanostrip
geometric superlatticeFET. Figures 5.8 and 5.9 show the transmission spectra of the
first injected subbands of the 010-valley in the on-state and the off-state respectively.
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superlatticeFET

Figure 5.7: Turn-on characteristics logIDS in function of VGS . The turn-on character-
istics shows a sub-60 mV/dec inverse subthreshold slope, validating the Si nanostrip
geometric superlatticeFET as a steep slope transistor concept. The yellow slope
denotes 60 mV/dec. The on-state current is in the order of 10−5 A and the leakage
current is in the pA-regime.

5.3 Conclusion
In this chapter we proposed the Si nanostrip geometric superlatticeFET with 5
periods and showed that the energy filtering capacity of the Si nanostrip geometric
superlatticeFET is kept with a periodicity of 5 periods. A lower number of periods
simplifies the potential fabrication of the Si nanostrip and can lower the fabricational
cost. In addition, a lower number of periods is beneficial in terms of the variability of
the periodic nanometer sized features in the geometric superlattice. We simulated the
turn-on characteristics of the Si nanostrip geometric superlatticeFET. We achieved
an inverse subthreshold slope of sub-60 mV/dec, which is below the fixed ideal slope
of planar MOSFETs. The sub-60 behaviour validates the Si nanostrip geometric
superlatticeFET as a steep slope transistor concept. The on-state current is in the
order of 10−5 A and the leakage current in the pA-regime.
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Figure 5.8: Transmission spectra of the first injected subbands of the 010-valley in
the on-state. The gate potential barrier is flat at 0.0 V. A drain-source voltage VDS
is applied of 0.1 V.

Figure 5.9: Transmission spectra of the first injected subbands of the 010-valley in
the off-state. The gate potential barrier is raised by applying a potential of −0.5 V.
A drain-source voltage VDS is applied of 0.1 V.
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Chapter 6

General conclusion and
directions for future research

In the last chapter we present the main findings of the thesis research and propose
directions for future research.

6.1 General conclusion

In this thesis we proposed a solution on transistor level for the energy leakage in
chips. Reducing the energy leakage is especially important for chips targeted for low
power applications such as future IoT devices. Steep slope transistors can reduce the
power consumption of the chip, while keeping the necessary performance. From the
literature study we found that the available steep slope transistor concepts are limited
and each have their own major disadvantage. The research done on superlatticeFETs
is mainly limited to nanowires with a material pair-superlattice. In this thesis we
investigated Si nanowire superlatticeFETs with a geometric superlattice. We derived
the QTB method in 3D, first with isotropic and then with anisotropic effective mass.
The model with anisotropic effective mass can take into account the different valleys
in the conduction band of Si. We proved the possibility of energy filtering in 3D
geometric superlattices by simulating Si nanowires with 10 periodic indentations
and showing the minibands and minibandgaps in the transmission spectra of the
injected subbands. We showed the tunability of the energy filtering by deepening the
indentations and varying the geometric superlattice to fins. Indentations allowed to
obtain more pronounced minibandgaps for the lowest injected subbands, while fins
only showed decent minibandgaps for the 001-valley. We found that the anisotropy of
the effective mass in Si plays an important role in relation with the periodic features
of the geometric superlattice and the presence of minibands and minibandgaps
at low energies. We suggested the Si nanostrip with side indentations as a steep
slope transistor concept with close to ideal energy filtering characteristics to reduce
the energy leakage. The Si nanostrip geometric superlatticeFET achieves energy
filtering with a 5 period-geometric superlattice and is made completely from Si.
The current semiconductor industry is established for Si and Si should allow for
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less defects in the fabrication of the geometric superlattice, which could possibly
obstruct the energy filtering capacity of the geometric superlattice. We simulated the
turn-on characteristics of the Si nanostrip geometric superlatticeFET. We achieved
an inverse subthreshold slope of sub-60 mV/dec, which is below the fixed slope
of planar MOSFETs. The sub-60 behaviour validates the Si nanostrip geometric
superlatticeFET as a steep slope transistor concept. We achieved an on-state current
in the order of 10−5 A and a leakage current in the pA-regime. The Si nanostrip
geometric superlatticeFET has a smallest lateral feature of 3 nm. Electron beam
lithography has the potential, although challenging, of fabricating structures with a
resolution down to 2.2 nm[31], which opens up the possibility for a first experimental
analysis of the Si nanostrip geometric superlatticeFET to verify the simulation results
presented in this thesis.

6.2 Directions for future research

As a guidance for future research, we present the challenges and opportunities which
lie ahead for the further investigation of nanowire superlatticeFETs with a geometric
superlattice, both theoretically as well as experimentally. To fully understand the
device behaviour of nanowire superlatticeFETs with a geometric superlattice, further
theoretical research and modelling is necessary, while the experimental investigation
of nanowire superlatticeFETs with a geometric superlattice has yet to be started.

6.2.1 Theoretical

In this thesis we modelled the nanowire superlatticeFET with a geometric superlattice
using a single band effective mass approximation for electrons in the conduction
band and for ballistic transport. The next step is to further investigate the turn-on
characteristics with sub-60 mV/dec inverse subthreshold slope, in correspondence
with the geometric superlattice of 5 side indentations. The continuous approach is a
good starter approach to gain understanding in a first approximation, although in this
approach many things are swept under the carpet from the start. Future theoretical
investigations of the nanowire superlatticeFET with a geometric superlattice should
incorporate the following things into the simulation model:

• A more realistic conduction band structure than the one obtained with the
single band effective mass approximation. Non-parabolic band bending can be
taken into account with the k · p method.

• A more realistic non-equilibrium distribution than the ballistic case which takes
into account the carrier scattering.

• Atomistic tight binding simulations as a verification of the electronic structure
obtained with the continuous QTB method, especially for the more confined
structures simulated in chapter 4 and the Si nanostrip in chapter 5. Although
the effective mass theory may describe the electronic states in straight Si
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nanowires well down to 1 nm[1], this is not necessarily guaranteed for a
geometric superlattice.

• The valence band structure, which was fully neglected because we only consid-
ered n-type superlatticeFETs. For p-type superlatticeFETs the valence band
structure should be included.

6.2.2 Experimental

When the theoretical device behaviour of the nanowire superlatticeFET with a
geometric superlattice is understood, experiments can be initiated to check and
calibrate the obtained models and simulations with reality. The Si nanostrip geometric
superlatticeFET proposed in chapter 5 has a smallest lateral periodic feature of 3 nm
which can potentially be made with electron beam lithography in a test structure
for a first experimental analysis. In a next stage, geometric superlattices may be
incorporated in vertical nanowire transistors, following the semiconductor roadmap
toward vertical architectures.
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Appendix A

Appendix: Mathematical
derivations

A.1 Expression for the blm coefficients

Due to the orthonormality of the eigenfunctions i.e.
∮
Dl
χln(ξ, η)

[
χlm6=n(ξ, η)

]∗
dS =

δmn the following statement is valid:

∮
Dl

χlm(ξ, η)ψl(ξ, η, ζ = 0)dS (A.1a)

=
∮
Dl

χlm(ξ, η)
∞∑
m=0

(
alm + blm

)
χlm(ξ, η)dS (A.1b)

= alm + blm (A.1c)

This results in the following expression for the blm coefficients:

blm =
∮
Dl

χlm(ξ, η)ψ0(ξ, η, ζ = 0)dS − alm (A.2)

where we have used the Dirichlet boundary condition.

A.2 Proof of the hermiticity of the Hamiltonian in the
3D anisotropic effective mass Schrödinger
equation

An operator is Hermitian if the following condition is fulfilled:

< Âψ|ψ >=
∫

Ω

(
Âψ
)∗
ψdV =

∫
Ω
ψ∗ÂψdV =< ψ|Âψ > (A.3)
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Inserting the expression for the operator Â in the left hand side of equation A.3:

< Âψ|ψ > =
∫

Ω

(
−}2

2 ∇ ·
1
M∗
∇ψ

)∗
ψdV (A.4a)

= −}2

2

∫
Ω
ψ∇ · 1

M∗
∇ψ∗dV (A.4b)

= −}2

2

∫
Ω
ψ∗∇ · 1

M∗
∇ψdV (A.4c)

=
∫

Ω
ψ∗
(
−}2

2 ∇ ·
1
M∗
∇
)
ψdV (A.4d)

=
∫

Ω
ψ∗ÂψdV (A.4e)

=< ψ|Âψ > (A.4f)

where we have used Green’s second identity given by equation A.8 and the fact that
the wavefunctions are zero on the Dirichlet boundary and that the following is valid
on the Robin boundaries:

∂ρ

∂t
+∇ · j = 0 (A.5a)

⇔ ∂

∂t

∫
V
ψ(r, t)∗ψ(r, t)dV +

∫
V
∇ · jdV = 0 (A.5b)

⇔
∮
S
j · n∂V dS = 0 (A.5c)

⇔
∮
S

(ψ∗∇ψ · n∂V − ψ∇ψ∗ · n∂V ) dS = 0 (A.5d)

⇔
∮
S

(ψ∇ψ∗ · n∂V − ψ∗∇ψ · n∂V ) dS = 0 (A.5e)

where we started with the continuity equation, considering that for the time indepen-
dent Schrödinger equation the wavefunctions are not dependent on t. Then we used
the divergence theorem and the definition of the probability current. Hence, the
conservation of probability current follows from the the hermiticity of the Hamiltonian.

The hermiticity cannot be obtained for the operator Â = − }2

2M∗∇ · ∇ where the
effective mass tensor is brought in front of the divergence:

< Âψ|ψ >=
∫

Ω

(
− }2

2M∗∇ · ∇ψ
)∗

ψdV = −}2

2

∫
Ω
ψ

1
M∗
∇ · ∇ψ∗dV (A.6)

where neither Green’s second identity nor Green’s first identity can be used to prove
the hermiticity of the operator Â = − }2

2M∗∇ · ∇.

Green’s first identity:∫
V
f∇2gdV = −

∫
V
∇f · ∇gdV +

∮
∂V
f (∇g · n∂V ) dS (A.7)
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Green’s second identity:∫
V
f∇ · (ε∇g)dV =

∫
V
g∇ · (ε∇f)dV +

∮
∂V
ε
(
f∇g · n∂V − g∇f · n∂V

)
dS (A.8)

A.3 Derivation for 3D and isotropic effective mass

A.3.1 Variational boundary value problem in the device region

In the last step of the derivation of QTBM in the isotropic case, we set up a fully
defined and solvable problem for ψ0(x, y, z) by rewriting the Schrödinger equation in
the device region as a variational boundary value problem. This variational boundary
value problem can then be solved numerically for ψ0(x, y, z) using the finite element
method. (

− }2

2m∗0
∇2 + V0(x, y, z)

)
ψ0(x, y, z) = Eψ0(x, y, z) (A.9)

Equation A.9 gives the Schrödinger equation for ψ0(x, y, z) in the device region. To
rewrite the partial differential equation as a variational boundary value problem,
we seek the weak form of A.9. To obtain the weak form of A.9, first, multiply the
equation with a test function ψ, second, integrate the resulting equation over the
device region Ω0 and third, apply Green’s first identity given by A.7. These three
steps modify equation A.9 to:

}2

2m∗0

∫
Ω0
∇ψ ·∇ψ0dV +

∫
Ω0
ψ (V0 − E)ψ0dV = }2

2m∗0

∮
∂Ω0

ψ (∇ψ0 · n∂Ω0) dS (A.10)

The test function ψ is zero on the Dirichlet boundary (∂Ω0 −
∑
lDl). As a conse-

quence, the integral on the right hand side of equation A.10 is only non-zero on the
Robin boundaries

∑
Dl
:

}2

2m∗0

∫
Ω0
∇ψ·∇ψ0dV +

∫
Ω0
ψ (V0 − E)ψ0dV = }2

2m∗0

∑
l

∮
Dl

ψ (∇ψ0 · nDl) dS (A.11)

In equation A.11 we have obtained the weak form of the Schrödinger equation in
the device region. In the weak form, the QTBCs on the Robin boundaries appear
as natural boundary conditions. Together with the essential boundary condition on
the Dirichlet boundary, we have a fully defined and solvable variational boundary
value problem for ψ0(x, y, z). The resulting variational boundary value problem in
ψ0(x, y, z) is stated as follows:

Solve the weak form:
}2

2m∗0

∫
Ω0
∇ψ·∇ψ0dV +

∫
Ω0
ψ (V0 − E)ψ0dV = }2

2m∗0

∑
l

∮
Dl

ψ (∇ψ0 · nDl) dS (A.12)

by applying the natural boundary conditions on
∑
lDl:

∇ψ0 · nDl |Dl =
∞∑
m=0

ikl,mζ χlm(ξ, η)
(
−2alm +

∫∫
Dl

χlm(ξ, η)ψ0(ξ, η, ζ = 0)dS
)
(A.13)
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and the essential boundary condition on (∂Ω0 −
∑
lDl):

ψ0|(∂Ω0−
∑

l
Dl) = 0 (A.14)

A.3.2 Transmission coefficient T (E)
The transmission coefficient over the device region from one lead to the other leads
is given by the outgoing current over the incoming current in the respective leads:

T (E) = Iout
Iin

(A.15)

The current comes in through one lead and goes out through all the other leads. We
can write the currents Iin and Iout in terms of probability currents jin and jout in
the leads:

T (E) =
∑
l

∮
Dl
jlout,ζdS∮

Dl′
jl
′
in,ζdS

(A.16)

where jout,ζ is the component of the outgoing probability current perpendicular to Dl

in lead l and jl′in,ζ is the component of the incoming probability current perpendicular
to Dl′ with l′ the injection lead. The probability current j in the leads for isotropic
effective mass is defined as:

j = }
2m∗i (ψ∗l∇ψl − ψl∇ψ∗l ) (A.17)

The solutions for the wavefunction ψl in the leads found in equation 3.19 give the
incoming and outgoing wavefunctions: ψl

′
in(ξ, η, ζ) =

∑∞
m=0 a

l′
m′e
−ikl

′,m′
ζ

ζχlm(ξ, η)
ψlout(ξ, η, ζ) =

∑∞
m=0 b

l
me

ikl,m
ζ

ζχlm(ξ, η)

Using these wavefunctions in the expression for the probability current A.17, we find:

jin,ζ = }
2m∗1

 M1∑
m=0

(a1
m)∗(χ1

m(ξ, η))∗e−ik
1
ζζ

M1∑
m=0

a1
mχ

1
m(ξ, η)k1

ζe
ik1
ζζ (A.18a)

+
M1∑
m=0

a1
mχ

1
m(ξ, η)eik

1
ζζ

M1∑
m=0

(a1
m)∗(χ1

m(ξ, η))∗k1
ζe
−ik1

ζζ

 (A.18b)

jout,ζ = }
2m∗2

 M2∑
m=0

(b2m)∗(χ2
m(ξ, η))∗e−ik

2
ζζ

M2∑
m=0

b2mχ
2
m(ξ, η)k2

ζe
ik2
ζζ (A.19a)

+
M2∑
m=0

b2mχ
2
m(ξ, η)eik

2
ζζ

M2∑
m=0

(b2m)∗(χ2
m(ξ, η))∗k2

ζe
−ik2

ζζ

 (A.19b)
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A.4. Proof: no need to split v = vreal + ivimag

where we have considered one incoming and one outgoing lead. We can then calculate
the transmission coefficient T (E) given in equation A.15. Using the orthonormality
of the subbands

∮
Dl
χlm(ξ, η)

[
χln(ξ, η)

]∗
dS = δmn:

T (E) = m∗1
m∗2

∑M2
m=0 |b2m|2k2

ζ∑M1
m=0 |a1

m|2k1
ζ

(A.20)

Together with equation A.2 for the blm-coefficients, we obtained a formula from
which we can calculate the transmission coefficient T (E) in the nanowire and plot
transmission spectra in the case of isotropic effective mass.

A.4 Proof: no need to split v = vreal + ivimag

We start from a general weak formulation in x:

∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx

where v(x) is a general test function from the test space V and f(x) is a complex
function f1(x) + if2(x). Inserting f(x) and u(x) = ureal + iuimag gives:

∫ 1

0
(u′real(x) + iu′imag(x))v′(x)dx =

∫ 1

0
(f1(x) + if2(x))v(x)dx

This equation can be split in a real and complex part:

∫ 1

0
u′real(x)v′1(x)dx =

∫ 1

0
f1(x)v1(x)dx (A.21a)∫ 1

0
u′imag(x)v′2(x)dx =

∫ 1

0
f2(x)v2(x)dx (A.21b)

Equation A.21 denotes two weak formulations with both an unknown function ureal(x)
or uimag(x). In finite element modelling, the unknown functions are assumed to be
built of basis functions φn(x) from a certain subset of the test space V:

ureal(x) = ξ1φ1(x) + ...+ ξNφN (x) (A.22a)
uimag(x) = ξN+1φN+1(x) + ...+ ξ2Nφ2N (x) (A.22b)

Inserting ureal(x) and uimag(x) into equation A.21, results in:

{ ∫ 1
0 (ξ1φ

′
1(x) + ...+ ξNφ

′
N (x))v′1(x)dx =

∫ 1
0 f1(x)v1(x)dx∫ 1

0 (ξN+1φ
′
N+1(x) + ...+ ξ2Nφ

′
2N (x))(x)v′2(x)dx =

∫ 1
0 f2(x)v2(x)dx
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By evaluating the previous two expressions for every basis function φ, a full system
of equations can be obtained from which the coëfficiënts ξn can be computed:

∫ 1
0 (ξ1φ

′
1(x) + ...+ ξNφ

′
N (x))φ′1(x)dx =

∫ 1
0 f1(x)φ1(x)dx

...∫ 1
0 (ξ1φ

′
1(x) + ...+ ξNφ

′
N (x))φ′N (x)dx =

∫ 1
0 f1(x)φN (x)dx

∫ 1
0 (ξN+1φ

′
N+1(x) + ...+ ξ2Nφ

′
2N (x))(x)φ′N+1(x)dx =

∫ 1
0 f2(x)φN+1(x)dx

...∫ 1
0 (ξN+1φ

′
N+1(x) + ...+ ξ2Nφ

′
2N (x))(x)φ′2N (x)dx =

∫ 1
0 f2(x)φ2N (x)dx

Inserting the found coëfficiënts ξn in equation A.22 results in the functions ureal(x)
and uimag(x).

Suppose we would have used a complex test function v(x) = vreal(x) + ivimag(x) in
equation A.21. Then we would have for the real part (equation A.21a):∫ 1

0
u′real(x)(v′real(x) + iv′imag(x))dx =

∫ 1

0
f1(x)(vreal(x) + ivimag(x))dx (A.23a)

which would again result in a real and a complex part:∫ 1

0
u′real(x)v′real(x)dx =

∫ 1

0
f1(x)vreal(x)dx (A.24a)∫ 1

0
u′real(x)v′imag(x)dx =

∫ 1

0
f1(x)vimag(x)dx (A.24b)

However, equation A.24 denotes two weak formulations for the same unknown
function ureal(x), only solved with a different subset of testfunctions than the v1
from before. This will result in linearly dependent rows in the system of equations.
Thus no new information can be obtained by taking the test function as a complex
function.
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Appendix B

Appendix B: Python code

B.1 Calculation of the states in 3D and with effective
mass tensor

1 import d o l f i n as df
2 import l ogg ing
3 import numpy as np
4 import t ab l e s as tb
5 from aux i l i a r y . mat e r i a l s import Oxide
6 from aux i l i a r y . s e t t i n g s import units im
7 from do l f i n import dx , inner , nabla_grad
8 mat = lambda m: df . as_backend_type (m) .mat ( )
9 import matp lo t l i b . pyplot as p l t

10 import s c ipy
11
12 prms = units im . parameters
13 l o gg e r = logg ing . getLogger ( ’ un i t_s imulat ion_logger ’ )
14 df . parameters [ ’ a l l ow_ext rapo la t i on ’ ] = True
15 df . parameters [ ’ form_compiler ’ ] [ ’ opt imize ’ ] = True
16 df . parameters [ ’ form_compiler ’ ] [ ’ cpp_optimize ’ ] = True
17
18
19 c l a s s S ta t e s ( ob j e c t ) :
20 de f __init__( s e l f , dev i c e ) :
21 s e l f . dev i c e = dev i ce
22 s e l f . s ch roed inge r = SchroedingerPDE ( s e l f . dev i c e )
23 s e l f . i t e r a t i on_nr = 0
24
25 # de f i n e the s t r u c tu r e o f the h5− f i l e where these s t a t e s w i l l

be saved
26 s o l u t i on_s i z e = s e l f . s ch roed inge r .V. dim ( )
27 so lut ion_type = df . Function ( s e l f . s ch roed inge r .V) . vec to r ( ) . array

( ) . dtype . name
28 nr_of_contacts = len ( s e l f . dev i ce . de sc r . lead_boundrs )
29
30 c l a s s State ( tb . I sDe s c r i p t i on ) :
31 number = tb . UInt16Col ( )
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32 c o e f f s_ r e a l = tb . Col . from_sctype ( so lut ion_type ,
s o l u t i on_s i z e )

33 coef f s_imag = tb . Col . from_sctype ( so lut ion_type ,
s o l u t i on_s i z e )

34 t r ansmi s s i on = tb . Float64Col ( ( nr_of_contacts , 2) )
35 degeneracy = tb . UInt8Col ( )
36 i n j_ lead = tb . UInt8Col ( )
37 inj_subband = tb . UInt8Col ( )
38 inj_subband_energy = tb . Float64Col ( )
39 rel_subband = tb . UInt8Col ( )
40 rel_subband_energy = tb . Float64Col ( )
41 energy = tb . Float64Col ( )
42 energy_ubnd = tb . Float64Col ( )
43 energy_lbnd = tb . Float64Col ( )
44 next_state = tb . UInt16Col ( )
45 prev_state = tb . UInt16Col ( )
46 r e f i n e_ i t e r = tb . UInt8Col ( )
47 in j_lead_ef fect ive_mass_along_transport = tb . Float16Col ( )
48 va l l e y = tb . Str ingCol (16)
49 s e l f . s t a t e_c l a s s = State
50
51 de f update_states ( s e l f , p o t e n t i a l ) :
52 " " " Find an i n i t i a l amount o f s t a t e s .
53
54 Since nothing can be known about the resonance en e r g i e s here ,

and a l l s t a t e s con t r i bu t e evenly to the current ,
55 a uniform energy g r id i s de f i ned f o r which s t a t e s are found .
56
57 " " "
58
59 s e l f . i t e r a t i on_nr += 1
60 s e l f . s ch roed inge r . update_subbands_and_pot_energy ( p o t e n t i a l )
61 s e l f . subbands = s e l f . s ch roed inge r . l e ad s . subbands
62 h 5 f i l e l o c = " r e s u l t s / qtbm_states_iter " + s t r ( s e l f . i t e r a t i on_nr )

+ " . h5 "
63 h 5 f i l e = tb . open_f i l e ( h 5 f i l e l o c , mode=’w ’ , t i t l e=" In format ion

o f s t a t e s . " )
64 t ab l e = h 5 f i l e . c r ea te_tab l e ( ’ / ’ , ’ s t a t e s ’ , s e l f . s t a t e_c la s s , "

Table conta in ing a s t a t e with a l l a t t r i b u t e s . " )
65
66 # de f i n e a range o f e n e r g i e s f o r which s t a t e s w i l l be sought
67 l e a dp o t e n t i a l s = s e l f . dev i c e . environment . p o t e n t i a l s
68 al l_sb_enrgs = np . array ( [ enrgy f o r l in s e l f . subbands . keys ( )

f o r v in s e l f . subbands [ l ] . keys ( ) i f v != ’number o f ’ f o r enrgy in
s e l f . subbands [ l ] [ v ] [ ’ e n e r g i e s ’ ] ] )

69 min_enrgy = np . min ( al l_sb_enrgs )
70 e l s t r u c t_ s e t t i n g s = prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ]
71 cuto f f_energy = e l s t r u c t_ s e t t i n g s [ ’ c u t o f f energy ’ ] i f ’ c u t o f f

energy ’ in e l s t r u c t_ s e t t i n g s e l s e 0 .01102494 # 0 .3 eV
72 max_enrgy = −np . min ( [ l e a dp o t e n t i a l s . va lue s ( ) ] ) + cuto f f_energy
73 e d i f f = e l s t r u c t_ s e t t i n g s [ ’ e d i f f ’ ] i f ’ e d i f f ’ in

e l s t r u c t_ s e t t i n g s e l s e 0 .000367498 # 0.01 eV
74 esmal l = 8 .0 e−5 # to avoid d i v i s i o n by zero l a t e r
75 eg r i d = np . l i n s p a c e (min_enrgy + esmal l , max_enrgy , (max_enrgy−

min_enrgy ) // e d i f f )
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76 i n i t i a l _ e n e r g i e s = np . unique (np . concatenate ( ( egr id ,
a l l_sb_enrgs + esmal l ) , ax i s=0) )

77 s e l f . s ch roed inge r .
rede f ine_lead_ef f ect ive_masses_along_transport ( )

78
79 s t a t e = tab l e . row
80 nr = 0
81 f o r e in i n i t i a l _ e n e r g i e s :
82 s e l f . s ch roed inge r . update_parameters ( energy=e )
83 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
84 max_sb_enrgy = max_enrgy
85 f o r v in s e l f . s ch roed inge r . v a l l e y s :
86 s e l f . s ch roed inge r .

rede f ine_ef fect ive_mass_tensor_terms (v )
87 f o r sb in range ( s e l f . subbands [ l ] [ v ] [ ’ number o f ’ ] ) :
88 s e l f . s ch roed inge r . update_parameters ( in j_lead=l ,

rel_subband=sb )
89 i f s e l f . subbands [ l ] [ v ] [ ’ e n e r g i e s ’ ] [ sb ] < e <

max_sb_enrgy :
90 s e l f . s ch roed inge r . r ede f ine_rhs (v )
91 p s i = s e l f . s ch roed inge r . s o l v e ( v )
92 ps i_rea l , psi_imag = ps i . s p l i t ( deepcopy=

True )
93 transm = s e l f . s ch roed inge r .

f i nd_transmi s s i ons ( ps i , l , sb , v )
94 i f nr % 100 == 0 : # or v == "001 _val ley " or

sb == 2 :
95 pr in t " State nr . : " , nr , " Lead : " , l , "

Subband : " , sb , " Subband energy : " , s e l f . subbands [ l ] [ v ] [ ’
e n e r g i e s ’ ] [ sb ] , " Energy : " , e , " Val l ey : " , v

96 pr in t " Transmiss ion o f t h i s s t a t e i s : "
+ s t r ( transm )

97 s t a t e [ ’ number ’ ] = nr
98 s t a t e [ ’ c o e f f s_ r e a l ’ ] = ps i_rea l . vec to r ( ) .

array ( )
99 s t a t e [ ’ coef f s_imag ’ ] = psi_imag . vec to r ( ) .

array ( )
100 s t a t e [ ’ in j_ lead ’ ] = l
101 s t a t e [ ’ rel_subband ’ ] = sb
102 s t a t e [ ’ inj_subband_energy ’ ] = s e l f . subbands

[ l ] [ v ] [ ’ e n e r g i e s ’ ] [ sb ]
103 s t a t e [ ’ inj_subband ’ ] = s e l f . subbands [ l ] [ v ] [

’ i n d i c e s ’ ] [ sb ] # i nd i c e s are the numbers o f the so r t ed en e r g i e s in
the l ead

104 s t a t e [ ’
in j_lead_ef fect ive_mass_along_transport ’ ] = s e l f . s ch roed inge r .
l ead_ef fect ive_masses_along_transport [ l ] [ v ]

105 s t a t e [ ’ energy ’ ] = e
106 s t a t e [ ’ t r ansmi s s i on ’ ] = transm
107 s t a t e [ ’ degeneracy ’ ] = 2
108 s t a t e [ ’ r e f i n e_ i t e r ’ ] = 0
109 s t a t e [ ’ v a l l e y ’ ] = v
110 s t a t e . append ( )
111 nr += 1
112 t ab l e . f l u s h ( )
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113 l o gg e r . i n f o ( " Ca lcu lated an i n i t i a l amount o f %i s t a t e s . " , nr )
114 p l t . t i t l e ( " Subbands " )
115 p l t . x l ab e l ( "Wavevector $k_z$ [ $nm^{−1}$ ] " , f o n t s i z e =14)
116 p l t . y l ab e l ( " Energy [ eV ] " , f o n t s i z e =14)
117 p l t . yl im (−0.1 , prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ c u t o f f energy ’

]∗27 . 2 1 1 )
118 p l t . g r i d ( )
119 p l t . s a v e f i g ( " subbands . png " , dpi=72)
120 l o gg e r . i n f o ( " Saved a subbands f i g u r e f o r the f i r s t l ead . " )
121
122 h 5 f i l e . c l o s e ( )
123 i t e r n r = 0
124 maxiter = prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’max re f inement s ’ ]
125 whi le i t e r n r < maxiter :
126 i t e r n r += 1
127 s e l f . r e f i n e_ s t a t e s ( h 5 f i l e l o c , i t e r n r , l e a dp o t e n t i a l s )
128 s e l f . s e t_state_energy_inte rva l s ( h 5 f i l e l o c )
129
130 de f r e f i n e_ s t a t e s ( s e l f , h 5 f i l e l o c , i t e r n r , l e a dp o t e n t i a l s ) :
131 " " "Add more s t a t e s to the . h5 f i l e , p a r t i c u l a r l y those near

t ransmi s s i on peaks . " " "
132 h 5 f i l e = tb . open_f i l e ( h 5 f i l e l o c , mode=’ r+’ )
133 t ab l e = h 5 f i l e . root . s t a t e s
134 s t a t e = tab l e . row
135 new_state_nr = tab l e . nrows
136 be f o r e = tab l e . nrows
137 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
138 f o r sb in range ( s e l f . subbands [ l ] [ ’ number o f ’ ] ) :
139 f o r l_out in s e l f . dev i c e . de sc r . lead_boundrs :
140 i f l_out != l :
141 sb_state_nrs = np . array ( [ s [ ’ number ’ ] f o r s in

t ab l e . i t e r r ows ( ) i f s [ ’ in j_ lead ’ ] == l and s [ ’ inj_subband ’ ] == sb ] )
142 i f sb_state_nrs . s i z e > 2 :
143 va l l e y = tab l e . c o l s . v a l l e y [ sb_state_nrs [ 0 ] ]
144 sb_enrgy = tab l e . c o l s . inj_subband_energy [

sb_state_nrs [ 0 ] ]
145 re l_sb = tab l e . c o l s . rel_subband [

sb_state_nrs [ 0 ] ]
146 s e l f . s ch roed inge r .

rede f ine_ef fect ive_mass_tensor_terms ( v a l l e y )
147 s e l f . s ch roed inge r . update_parameters (

in j_ lead=l , inj_subband=sb , rel_subband=rel_sb )
148 sb_degeneracy = tab l e . c o l s . degeneracy [

sb_state_nrs [ 0 ] ]
149 dummy_transm = tab l e . c o l s . t r an smi s s i on [

sb_state_nrs [ 0 ] ]
150 entry = np . argwhere (dummy_transm [ : , 0 ] ==

l_out ) [ 0 ] [ 0 ]
151 t r an sm i s s i o n c f s = tab l e . c o l s . t r ansmi s s i on

[ : ] [ sb_state_nrs , entry , 1 ]
152 en e r g i e s = tab l e . c o l s . energy [ : ] [

sb_state_nrs ]
153 s = np . a r g s o r t ( e n e r g i e s )
154 sb_state_nrs = sb_state_nrs [ s ]
155 t r an sm i s s i o n c f s = t r an sm i s s i o n c f s [ s ]
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156 en e r g i e s = en e r g i e s [ s ]
157 h1 = np . d i f f ( e n e r g i e s ) [ : − 1 ] . astype (np .

f l o a t 1 28 )
158 h2 = np . d i f f ( e n e r g i e s ) [ 1 : ] . astype (np .

f l o a t 1 28 )
159 t i = t r an sm i s s i o n c f s [ 1 : −1 ] . astype (np .

f l o a t 1 28 )
160 tim1 = t r an sm i s s i o n c f s [ : − 2 ] . astype (np .

f l o a t 1 28 )
161 t i p1 = t r an sm i s s i o n c f s [ 2 : ] . astype (np .

f l o a t 1 28 )
162 ddt = ( ( h1 ∗ t i p1 + h2 ∗ tim1 ) / ( h1 ∗ h2 ) )

∗ ( 2 . 0 / ( h1 + h2 ) ) − (2 ∗ t i ) / ( h1 ∗ h2 )
163 r e f s t a t e s = prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’

r e f inement s t a t e s ’ ]
164 s = np . a r g s o r t (np . abs ( ddt ) ) [− r e f s t a t e s : ] +

1
165 new_energies = [ ]
166 f o r i in s :
167 e = en e r g i e s [ i ]
168 em1 = ene r g i e s [ i − 1 ]
169 ep1 = en e r g i e s [ i + 1 ]
170 new1 = 2 .0 / 3 .0 ∗ e + 1 .0 / 3 .0 ∗ ep1
171 new2 = 1 .0 / 3 .0 ∗ em1 + 2 .0 / 3 .0 ∗ e
172 new_energies . extend ( [ new1 , new2 ] )
173 f o r e in new_energies :
174 s e l f . s ch roed inge r . update_parameters (

energy=e )
175 s e l f . s ch roed inge r . r ede f ine_rhs ( v a l l e y )
176 p s i = s e l f . s ch roed inge r . s o l v e ( v a l l e y )
177 ps i_rea l , psi_imag = ps i . s p l i t ( deepcopy

=True )
178 transm = s e l f . s ch roed inge r .

f i nd_transmi s s i ons ( ps i , l , rel_sb , v a l l e y )
179 s t a t e [ ’ number ’ ] = new_state_nr
180 s t a t e [ ’ c o e f f s_ r e a l ’ ] = ps i_rea l . vec to r

( ) . array ( )
181 s t a t e [ ’ coef f s_imag ’ ] = psi_imag . vec to r

( ) . array ( )
182 s t a t e [ ’ in j_ lead ’ ] = l
183 s t a t e [ ’ inj_subband ’ ] = sb
184 s t a t e [ ’ energy ’ ] = e
185 s t a t e [ ’ inj_subband_energy ’ ] = sb_enrgy
186 s t a t e [ ’ t r ansmi s s i on ’ ] = transm
187 s t a t e [ ’ degeneracy ’ ] = sb_degeneracy
188 s t a t e [ ’ r e f i n e_ i t e r ’ ] = i t e r n r
189 s t a t e [ ’ v a l l e y ’ ] = va l l e y
190 s t a t e [ ’ rel_subband ’ ] = re l_sb
191 s t a t e . append ( )
192 new_state_nr += 1
193 t ab l e . f l u s h ( )
194 l o gg e r . i n f o ( " Ref ined with %i s t a t e s . " , new_state_nr − be f o r e )
195 h 5 f i l e . c l o s e ( )
196
197 de f se t_state_energy_interva l s ( s e l f , h 5 f i l e l o c ) :
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198 " " " Set prev ious /next s t a t e with in the same subband and energy
range f o r a l l s t a t e s . " " "

199 h 5 f i l e = tb . open_f i l e ( h 5 f i l e l o c , mode=’ r+’ )
200 t ab l e = h 5 f i l e . root . s t a t e s
201 emax = tab l e . c o l s . energy [ : ] . max( ) + 0 .1
202 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
203 f o r sb in range ( s e l f . subbands [ l ] [ ’ number o f ’ ] ) :
204 sb_data = [ [ s t a t e [ ’ number ’ ] , s t a t e [ ’ energy ’ ] ] f o r s t a t e

in tab l e . i t e r r ows ( ) i f s t a t e [ ’ in j_ lead ’ ] == l and s t a t e [ ’
inj_subband ’ ] == sb ]

205 i f l en ( sb_data ) == 1 :
206 state_nr = sb_data [ 0 ] [ 0 ]
207 t ab l e . c o l s . prev_state [ state_nr ] = state_nr
208 t ab l e . c o l s . next_state [ state_nr ] = state_nr
209 t ab l e . c o l s . energy_lbnd [ state_nr ] = s e l f .

s ch roed inge r . l e ad s . sorted_sb_enrgs [ l ] [ sb ]
210 t ab l e . c o l s . energy_ubnd [ state_nr ] = emax
211 e l i f l en ( sb_data ) > 1 :
212 sb_state_nrs = np . array ( sb_data , dtype=in t ) [ : , 0 ]
213 sb_state_enrgs = np . array ( sb_data ) [ : , 1 ]
214 s = np . a r g s o r t ( sb_state_enrgs )
215 sb_state_nrs = sb_state_nrs [ s ]
216 sb_state_enrgs = sb_state_enrgs [ s ]
217 f o r i , state_nr in enumerate ( sb_state_nrs ) :
218 i f i == 0 :
219 t ab l e . c o l s . prev_state [ state_nr ] = state_nr
220 t ab l e . c o l s . next_state [ state_nr ] =

sb_state_nrs [ i + 1 ]
221 t ab l e . c o l s . energy_lbnd [ state_nr ] = s e l f .

s ch roed inge r . l e ad s . sorted_sb_enrgs [ l ] [ sb ]
222 prev_ubnd = ( sb_state_enrgs [ i ] +

sb_state_enrgs [ i + 1 ] ) /2 .0
223 t ab l e . c o l s . energy_ubnd [ state_nr ] =

prev_ubnd
224 e l i f i == s . s i z e − 1 :
225 t ab l e . c o l s . prev_state [ state_nr ] =

sb_state_nrs [ i − 1 ]
226 t ab l e . c o l s . next_state [ state_nr ] = state_nr
227 t ab l e . c o l s . energy_lbnd [ state_nr ] =

prev_ubnd
228 t ab l e . c o l s . energy_ubnd [ state_nr ] = emax
229 e l s e :
230 t ab l e . c o l s . prev_state [ state_nr ] =

sb_state_nrs [ i − 1 ]
231 t ab l e . c o l s . next_state [ state_nr ] =

sb_state_nrs [ i + 1 ]
232 t ab l e . c o l s . energy_lbnd [ state_nr ] =

prev_ubnd
233 prev_ubnd = ( sb_state_enrgs [ i ] +

sb_state_enrgs [ i + 1 ] ) /2 .0
234 t ab l e . c o l s . energy_ubnd [ state_nr ] =

prev_ubnd
235 t ab l e . f l u s h ( )
236 h 5 f i l e . c l o s e ( )
237

108



B.1. Calculation of the states in 3D and with effective mass tensor

238
239 c l a s s SchroedingerPDE ( ob j e c t ) :
240 de f __init__( s e l f , dev i c e ) :
241 s e l f . dev i c e = dev i ce
242 s e l f . l e ad s = Leads ( s e l f . dev i c e )
243 s e l f . mesh = dev i ce . f e . mesh
244 degree = prms [ ’ s t r u c tu r e ’ ] [ ’ s ch roed inge r ’ ] [ ’ shape func t i ons

degree ’ ]
245 s e l f .V = df . FunctionSpace ( dev i c e . f e . mesh , ’CG’ , degree )
246 s e l f . Vcomplex = s e l f .V ∗ s e l f .V
247 s e l f . p s i = df . Function ( s e l f . Vcomplex )
248 s e l f . lead_boundrs = dev i ce . de sc r . lead_boundrs
249
250 s e l f . v a l l e y s = s e l f . l e ad s . v a l l e y s
251
252 de f check_if_lead ( r e g i on r ) :
253 f o r l in dev i c e . l e ad s :
254 i f r e g i on r == dev i ce . l e ad s [ l ] . r e g i on r :
255 re turn True
256 re turn Fal se
257
258 de f f ind_dev ice_reg ionr ( ) :
259 f o r regnr in dev i c e . de sc r . r e g i on s :
260 i f not check_if_lead ( regnr ) :
261 re turn regnr
262 l o gg e r . i n f o ( " Something went wrong with f i nd i n g the dev i ce

r eg i on number " )
263
264 s e l f . dev i ce_reg ionr = f ind_dev ice_reg ionr ( )
265 s e l f . mate r i a l = dev i ce . de sc r . r e g i on s [ s e l f . dev i ce_reg ionr ] [ "

mate r i a l " ]
266
267 s e l f . bcs = [ ]
268 f o r bnd in dev i c e . de sc r . gate_boundrs + dev i ce . de sc r . air_boundrs

:
269 dir_bc_real = df . Dir ich letBC ( s e l f . Vcomplex . sub (0 ) , df .

Constant ( 0 . 0 ) , dev i c e . f e . boundaries , bnd )
270 dir_bc_imag = df . Dir ichletBC ( s e l f . Vcomplex . sub (1 ) , df .

Constant ( 0 . 0 ) , dev i c e . f e . boundaries , bnd )
271 s e l f . bcs . append ( dir_bc_real )
272 s e l f . bcs . append ( dir_bc_imag )
273 i f not prms [ ’ s t r u c tu r e ’ ] [ ’ s ch roed inge r ’ ] [ ’ wavefunct ion in oxide

’ ] :
274 f o r regnr , reg in dev i c e . de sc r . r e g i on s . i tems ( ) :
275 i f i s i n s t a n c e ( reg [ ’ mate r i a l ’ ] , Oxide ) :
276 bcr = s e l f . dev i c e . f e . g e t_d i r i ch l e tbc_fo r_reg ion (

s e l f . Vcomplex . sub (0 ) , regnr , 0 . 0 )
277 bc i = s e l f . dev i c e . f e . g e t_d i r i ch l e tbc_fo r_reg ion (

s e l f . Vcomplex . sub (1 ) , regnr , 0 . 0 )
278 s e l f . bcs . append ( bcr )
279 s e l f . bcs . append ( bc i )
280
281 # weak forms that stay the same r e g a r d l e s s
282 s e l f . dx = s e l f . dev i c e . f e . dx
283 s e l f . u_real , s e l f . u_imag = df . Tr ia lFunct ions ( s e l f . Vcomplex )
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284 s e l f . v_real , s e l f . v_imag = df . TestFunct ions ( s e l f . Vcomplex )
285
286 ae = df . Constant (−2.0) ∗ ( s e l f . u_real ∗ s e l f . v_real + s e l f .

u_imag ∗ s e l f . v_imag) ∗ dx # mult ip ly with e
287 s e l f . Ae = mat( df . assemble ( ae ) )
288
289 de f update_subbands_and_pot_energy ( s e l f , p o t e n t i a l ) :
290 " " " Update whenever the p o t e n t i a l ( i . e . a l s o the po t e n t i a l

energy ) or the va l l e y changes ; t h i s a l s o a f f e c t s the subbands . " " "
291 s e l f . l e ad s . update_subbands ( p o t e n t i a l )
292 dx = s e l f . dev i ce . f e . dx
293 ds = s e l f . dev i c e . f e . ds
294 u_real , u_imag = df . Tr ia lFunct ions ( s e l f . Vcomplex )
295 v_real , v_imag = df . TestFunct ions ( s e l f . Vcomplex )
296 mat = lambda m: df . as_backend_type (m) .mat ( )
297 vec = lambda v : df . as_backend_type (v ) . vec ( )
298
299 # update subband terms
300 s e l f . subbands = s e l f . l e ad s . subbands
301 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ s o l v e r ’ ] != " Krylov " :
302 s e l f . s o l v e r = df . LUSolver ( )
303 R = df . FunctionSpace ( s e l f . dev i c e . f e . mesh , ’R ’ , 0)
304 r = df . Tr ia lFunct ion (R)
305 s = df . TestFunction (R)
306 s e l f . qtbc_terms = {}
307 s e l f . r i gh thands ide s = {}
308 f o r l in s e l f . lead_boundrs :
309 s e l f . qtbc_terms [ l ] = {}
310 s e l f . r i gh thands ide s [ l ] = {}
311 f o r v in s e l f . v a l l e y s :
312 i f v != ’number o f ’ :
313 in te rp l t_sb_arrays = s e l f . subbands [ l ] [ v ] [ ’

i n t e r po l a t e d ar rays ’ ]
314 sb = df . Function ( s e l f .V)
315 subbandterms = [ ]
316 rhsterms = [ ]
317 f o r interp l t_sb_array in inte rp l t_sb_arrays :
318 sb . vec to r ( ) [ : ] = interp l t_sb_array
319 ur = df . assemble ( s ∗ sb ∗ u_real ∗ ds ( l ) )
320 ui = df . assemble ( s ∗ sb ∗ u_imag ∗ ds ( l ) )
321 vr = df . assemble ( r ∗ sb ∗ v_real ∗ ds ( l ) )
322 v i = df . assemble ( r ∗ sb ∗ v_imag ∗ ds ( l ) )
323 kr = mat( vr ) . matMult (mat( u i ) ) − mat( v i ) .

matMult (mat( ur ) )
324 k i = mat( vr ) . matMult (mat( ur ) ) + mat( v i ) .

matMult (mat( u i ) )
325 subbandterms . append ( ( kr , k i ) )
326 rhs = df . assemble ( sb ∗ v_imag ∗ ds ( l ) )
327 rhsterms . append ( vec ( rhs ) )
328 s e l f . qtbc_terms [ l ] [ v ] = subbandterms
329 s e l f . r i gh thands ide s [ l ] [ v ] = rhsterms
330
331 # i n i t i a l i s e a template f o r A ( the LHS) and i t s s p a r s i t y

pattern
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332 nonzero_pattern = 0 # ‘0 ‘ stands f o r ‘
DIFFERENT_NONZERO_PATTERN‘

333 # s e l f .A = df . PETScMatrix ( ) . mat ( )
334 s e l f .A = s e l f . Ae . copy ( )
335 # s e l f .A. axpy ( 1 . 0 , s e l f . Ae , nonzero_pattern )
336 f o r l in s e l f . lead_boundrs :
337 f o r v in s e l f . v a l l e y s :
338 s e l f .A. axpy ( 1 . 0 , s e l f . qtbc_terms [ l ] [ v ] [ 0 ] [ 0 ] ,

nonzero_pattern )
339 s e l f .A. axpy ( 1 . 0 , s e l f . qtbc_terms [ l ] [ v ] [ 0 ] [ 1 ] ,

nonzero_pattern )
340
341 # update po t e n t i a l energy term
342 U = s e l f . dev i ce . get_property ( ’ conduction_band ’ ) − po t en t i a l
343 au = df . Constant ( 2 . 0 ) ∗ U ∗ ( u_real ∗ v_real + u_imag ∗ v_imag)

∗ dx
344 s e l f .Au = mat( df . assemble ( au ) )
345
346 de f update_parameters ( s e l f , ∗∗kwargs ) :
347 energy_updated = rel_subband_updated = inj_lead_updated = False
348 f o r key , va lue in kwargs . i tems ( ) :
349 s e t a t t r ( s e l f , key , va lue )
350 i f key == ’ energy ’ :
351 energy_updated = True
352 i f key == ’ in j_lead ’ :
353 inj_lead_updated = True
354 i f key == ’ inj_subband ’ :
355 inj_subband_updated = True
356 i f key == ’ rel_subband ’ :
357 rel_subband_updated = True
358 i f key == ’ va l l e y ’ :
359 val ley_updated = True
360 i f rel_subband_updated or inj_lead_updated :
361 pass
362 i f energy_updated :
363 s e l f . ks = {}
364 f o r i , l in s e l f . dev i c e . l e ad s . i t e r i t em s ( ) :
365 s e l f . ks [ i ] = {}
366 f o r v in s e l f . v a l l e y s :
367 e i g v a l s = s e l f . subbands [ i ] [ v ] [ ’ e n e r g i e s ’ ]
368 ks = [ complex ( ( 2 . 0 ∗ s e l f .

l ead_ef fect ive_masses_along_transport [ i ] [ v ] ∗ ( s e l f . energy − e i g v a l )
) , 0) ∗∗0 .5 f o r e i g v a l in e i g v a l s ]

369 s e l f . ks [ i ] [ v ] = np . array ( [ ( k . r ea l , k . imag ) f o r k in
ks ] )

370
371 de f r ede f ine_rhs ( s e l f , v a l l e y ) :
372 kr , k i = s e l f . ks [ s e l f . in j_ lead ] [ v a l l e y ] [ s e l f . rel_subband ]
373 i f k i == 0 . 0 :
374 rhs_vec = s e l f . r i gh thands id e s [ s e l f . in j_ lead ] [ v a l l e y ] [ s e l f .

rel_subband ] . copy ( )
375 rhs_vec . s c a l e ( 2 . 0 ∗ kr ∗ ( 1 . 0 / s e l f .

l ead_ef fect ive_masses_along_transport [ s e l f . in j_ lead ] [ v a l l e y ] ) )
376 s e l f . rhs = rhs_vec
377 e l s e :
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378 r a i s e NameError ( " Something i s wrong here . " )
379
380 de f rede f ine_ef fect ive_mass_tensor_terms ( s e l f , v a l l e y ) :
381 s e l f . v a l l e y = s e l f . mate r i a l . v a l l e y s [ v a l l e y ]
382 s e l f . inver se_e f f ec t ive_mass_tensor = s e l f . v a l l e y .

get_inverse_ef fect ive_mass_tensor_in_global_coordinate_system (
383 s e l f . dev ice_reg ionr , s e l f . mesh , s e l f . dev i c e )
384
385 ac = inner ( s e l f . inver se_e f f ec t ive_mass_tensor ∗nabla_grad ( s e l f .

u_real ) , nabla_grad ( s e l f . v_real ) ) ∗ dx \
386 + inner ( s e l f . inver se_e f f ec t ive_mass_tensor ∗nabla_grad ( s e l f

. u_imag) , nabla_grad ( s e l f . v_imag) ) ∗ s e l f . dx
387 s e l f . Ac = mat( df . assemble ( ac ) )
388
389 de f rede f ine_lead_ef f ect ive_masses_along_transport ( s e l f ) :
390 s e l f . l ead_ef fect ive_masses_along_transport = {}
391 f o r l in s e l f . dev i c e . l e ad s . i t e r v a l u e s ( ) :
392 s e l f . l ead_ef fect ive_masses_along_transport [ l . l eadnr ] = {v :

l . mate r i a l . v a l l e y s [ v ] .
get_lead_effect ive_mass_along_transport_in_global_coordinate_system (
l . mesh ) f o r v in s e l f . v a l l e y s }

393
394 de f s o l v e ( s e l f , v a l l e y ) :
395 A = s e l f .A. copy ( )
396 A. z e r oEnt r i e s ( )
397 nonzero_pattern = 1 # ‘1 ‘ stands f o r ‘SUBSET_NONZERO_PATTERN‘
398 A. axpy ( 1 . 0 , s e l f . Ac , nonzero_pattern )
399 A. axpy ( s e l f . energy , s e l f . Ae , nonzero_pattern )
400 A. axpy ( 1 . 0 , s e l f .Au, nonzero_pattern )
401
402 f o r l , terms in s e l f . qtbc_terms . i t e r i t em s ( ) :
403 f o r sbnr , term in enumerate ( terms [ v a l l e y ] ) :
404 kr = (1 . 0 / s e l f . l ead_ef fect ive_masses_along_transport [

l ] [ v a l l e y ] ) ∗ s e l f . ks [ l ] [ v a l l e y ] [ sbnr ] [ 0 ]
405 k i = (1 . 0 / s e l f . l ead_ef fect ive_masses_along_transport [

l ] [ v a l l e y ] ) ∗ s e l f . ks [ l ] [ v a l l e y ] [ sbnr ] [ 1 ]
406 kr_mat = term [ 0 ]
407 ki_mat = term [ 1 ]
408 A. axpy(−kr , kr_mat , nonzero_pattern )
409 A. axpy(−ki , ki_mat , nonzero_pattern )
410
411 i f l == 1 and not s e l f . ks [ l ] [ v a l l e y ] [ sbnr ] [ 0 ] < 0 . 0 0 1 :
412 i f v a l l e y == ’ 100_val ley ’ :
413 p l t . p l o t ( s e l f . ks [ l ] [ v a l l e y ] [ sbnr

] [ 0 ] ∗ ( 1 / 1 8 . 8 9 7 1 6 ) , s e l f . energy ∗27 .211 , ’ go− ’ )
414 p l t . p l o t (− s e l f . ks [ l ] [ v a l l e y ] [ sbnr

] [ 0 ] ∗ ( 1 / 1 8 . 8 9 7 1 6 ) , s e l f . energy ∗27 .211 , ’ go− ’ )
415 e l i f v a l l e y == ’ 010_val ley ’ :
416 p l t . p l o t ( s e l f . ks [ l ] [ v a l l e y ] [ sbnr

] [ 0 ] ∗ ( 1 / 1 8 . 8 9 7 1 6 ) , s e l f . energy ∗27 .211 , ’ ro− ’ )
417 p l t . p l o t (− s e l f . ks [ l ] [ v a l l e y ] [ sbnr

] [ 0 ] ∗ ( 1 / 1 8 . 8 9 7 1 6 ) , s e l f . energy ∗27 .211 , ’ ro− ’ )
418 e l i f v a l l e y == ’ 001_val ley ’ :
419 p l t . p l o t ( s e l f . ks [ l ] [ v a l l e y ] [ sbnr

] [ 0 ] ∗ ( 1 / 1 8 . 8 9 7 1 6 ) , s e l f . energy ∗27 .211 , ’ bo− ’ )
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420 p l t . p l o t (− s e l f . ks [ l ] [ v a l l e y ] [ sbnr
] [ 0 ] ∗ ( 1 / 1 8 . 8 9 7 1 6 ) , s e l f . energy ∗27 .211 , ’ bo− ’ )

421 p l t . hold (True )
422
423 i f l == 1 :
424 i f v a l l e y == ’ 100_val ley ’ :
425 p l t . p l o t (0 , s e l f . subbands [ l ] [ " 100 _val ley " ] [

’ e n e r g i e s ’ ] [ sbnr ]∗27 . 2 11 , ’ go− ’ )
426 e l i f v a l l e y == ’ 010_val ley ’ :
427 p l t . p l o t (0 , s e l f . subbands [ l ] [ " 010 _val ley " ] [

’ e n e r g i e s ’ ] [ sbnr ]∗27 . 2 11 , ’ ro− ’ )
428 e l i f v a l l e y == ’ 001_val ley ’ :
429 p l t . p l o t (0 , s e l f . subbands [ l ] [ " 001 _val ley " ] [

’ e n e r g i e s ’ ] [ sbnr ]∗27 . 2 11 , ’ bo− ’ )
430 p l t . hold (True )
431
432 A = df . PETScMatrix (A)
433 B = df . PETScVector ( s e l f . rhs )
434 f o r bc in s e l f . bcs :
435 bc . apply (A, B)
436 s e l f . s o l v e r . set_operator (A)
437 s e l f . s o l v e r . s o l v e ( s e l f . p s i . vec to r ( ) , B)
438 re turn s e l f . p s i
439
440 de f f i nd_transmi s s i ons ( s e l f , ps i , in j_lead , rel_subband , v ) :
441 " " " Given a funct ion , re turn the t ransmi s s i on out o f each

contact . " " "
442 ds = s e l f . dev i c e . f e . ds
443 subband = df . Function ( s e l f .V)
444 ps i_rea l , psi_imag = ps i . s p l i t ( )
445 t r an sm i s s i on s = {}
446 f o r i , l in enumerate ( s e l f . lead_boundrs ) :
447 i f l != in j_lead :
448 p r e f a c t o r = s e l f . l ead_ef fect ive_masses_along_transport [

in j_ lead ] [ v ] \
449 / ( s e l f . ks [ in j_lead ] [ v ] [ rel_subband ] [ 0 ] ∗ s e l f .

l ead_ef fect ive_masses_along_transport [ l ] [ v ] )
450 to t = 0 .0
451 f o r j , sb in enumerate ( s e l f . subbands [ l ] [ v ] [ ’

i n t e r po l a t e d ar rays ’ ] ) :
452 subband . vec to r ( ) [ : ] = sb
453 t r = df . assemble ( subband ∗ ps i_rea l ∗ ds ( l ) )
454 t i = df . assemble ( subband ∗ psi_imag ∗ ds ( l ) )
455 t = complex ( tr , t i )
456 kr , k i = s e l f . ks [ l ] [ v ] [ j ]
457 i f k i == 0 . 0 :
458 to t += kr ∗ abs ( t ) ∗∗2
459 t r an sm i s s i on s [ l ] = p r e f a c t o r ∗ to t # TODO make sure

t h i s i s r e a l
460 t r an sm i s s i on s [ in j_ lead ] = 1 − np . sum( t r an sm i s s i on s . va lue s ( ) ) #

r e f l e c t i o n
461 t ransmis s ions_array = [ ]
462 f o r l , transm in t r an sm i s s i on s . i t e r i t em s ( ) :
463 t ransmis s ions_array . append ( [ l , transm ] )
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464 re turn np . array ( transmiss ions_array , dtype=f l o a t ) # TODO
de f i n e dtype to get ( int , f l o a t ) i n s t ead

465
466 c l a s s Leads ( ob j e c t ) :
467 " " " E igen func t i ons o f a l l the l e ad s ( i . e . boundar ies l ab e l ed as ‘

contact ‘ ) , used in the QTB Method . " " "
468 de f __init__( s e l f , dev i c e ) :
469 s e l f . dev i c e = dev i ce
470 s e l f . v a l l e y s = prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ v a l l e y s ’ ]
471
472 de f sort_and_number_subband_energies ( s e l f ) :
473 s e l f . sorted_sb_enrgs = {}
474 s e l f . s o r t ed_sb_e ig f c t s = {}
475 s e l f . index_array = {}
476 s e l f . index_argsorted = {}
477 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
478 sb_enrgs_in_lead = np . array ( [ enrgy f o r v in s e l f . v a l l e y s

f o r enrgy in s e l f . subbands [ l ] [ v ] [ ’ e n e r g i e s ’ ] ] )
479 sb_eigfct_in_lead = np . array ( [ e f f o r v in s e l f . v a l l e y s f o r

e f in s e l f . subbands [ l ] [ v ] [ ’ a r rays ’ ] ] )
480 s e l f . index_argsorted [ l ] = np . a r g s o r t ( sb_enrgs_in_lead )
481 s e l f . index_array [ l ] = np . array ( [ s o r t ed ( enumerate ( s e l f .

index_argsorted [ l ] ) , key=lambda x : x [ 1 ] ) . pop ( i ) [ 0 ] f o r i in range (
l en ( sb_enrgs_in_lead ) ) ] )

482 f o r i , v a l l e y in enumerate ( s e l f . v a l l e y s ) :
483 s e l f . subbands [ l ] [ v a l l e y ] [ ’ i n d i c e s ’ ] = np . s p l i t ( s e l f

. index_array [ l ] , l en ( s e l f . v a l l e y s ) ) [ i ]
484 s e l f . sorted_sb_enrgs [ l ] = sb_enrgs_in_lead [ s e l f .

index_argsorted [ l ] ]
485 s e l f . s o r t ed_sb_e ig f c t s [ l ] = sb_eigfct_in_lead [ s e l f .

index_argsorted [ l ] ]
486
487 de f update_subbands ( s e l f , p o t e n t i a l ) :
488 s e l f . p o t e n t i a l = po t en t i a l
489 s e l f . subbands = {}
490 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
491 s e l f . subbands [ l ] = {}
492 f o r v in s e l f . v a l l e y s :
493 s e l f . subbands [ l ] [ v ] = {}
494 schrodingerEVP = SchrodingerEVP ( s e l f . device , s e l f .

po t en t i a l , l , v )
495 s o l u t i o n s = schrodingerEVP . s o l v e ( )
496 s e l f . subbands [ l ] [ v ] [ ’ e n e r g i e s ’ ] = s o l u t i o n s [ 0 ]
497 s e l f . subbands [ l ] [ v ] [ ’ a r rays ’ ] = s o l u t i o n s [ 1 ]
498 s e l f . subbands [ l ] [ v ] [ ’ i n t e r p o l a t ed ar rays ’ ] = s o l u t i o n s

[ 2 ]
499 s e l f . subbands [ l ] [ v ] [ ’ number o f ’ ] = s o l u t i o n s [ 3 ]
500 s e l f . subbands [ l ] [ ’ number o f ’ ] = sum ( [ s e l f . subbands [ l ] [ i ] [ ’

number o f ’ ] f o r i in s e l f . v a l l e y s ] )
501 s e l f . sort_and_number_subband_energies ( )
502
503 c l a s s SchrodingerEVP ( ob j e c t ) :
504 de f __init__( s e l f , device , po t en t i a l , leadnr , v a l l e y ) :
505 s e l f . dev i c e = dev i ce
506 s e l f . l eadnr = leadnr
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507 s e l f . mesh = dev i ce . f e . l e ad s [ s e l f . l eadnr ] [ ’mesh ’ ]
508 s e l f . meshtot = dev i ce . f e . mesh
509 s e l f . v a l l e y = dev i ce . l e ad s [ l eadnr ] . mate r i a l . v a l l e y s [ v a l l e y ]
510 s e l f . r e g i on r = dev i ce . l e ad s [ l eadnr ] . r e g i on r
511 degree = prms [ ’ s t r u c tu r e ’ ] [ ’ s ch roed inge r ’ ] [ ’ shape func t i ons

degree ’ ]
512 s e l f .V = df . FunctionSpace ( s e l f . mesh , ’CG’ , degree )
513 s e l f . Vtot = df . FunctionSpace ( dev i c e . f e . mesh , ’CG’ , degree )
514 s e l f . pot_enrgy = −df . i n t e r p o l a t e ( po t en t i a l , s e l f .V)
515 cb_o f f s e t = df . i n t e r p o l a t e ( dev i ce . get_property ( ’ conduction_band

’ ) , s e l f .V)
516 s e l f .U = cb_of f s e t + s e l f . pot_enrgy
517 s e l f . u = df . Tr ia lFunct ion ( s e l f .V)
518 s e l f . v = df . TestFunction ( s e l f .V)
519
520 s e l f . bcs = [ df . Dir ich letBC ( s e l f .V, df . Constant ( 0 . 0 ) , df .

DomainBoundary ( ) ) ]
521 oxide_bcs = [ ]
522 i f not prms [ ’ s t r u c tu r e ’ ] [ ’ s ch roed inge r ’ ] [ ’ wavefunct ion in oxide

’ ] :
523 f o r regnr , reg in dev i c e . de sc r . r e g i on s . i tems ( ) :
524 i f i s i n s t a n c e ( reg [ ’ mate r i a l ’ ] , Oxide ) :
525 bc = s e l f . dev i ce . f e .

get_dir i ch le tbc_for_reg ion_in_lead ( s e l f .V, leadnr , regnr , 0 . 0 )
526 i f bc i s not None : oxide_bcs . append ( bc )
527 s e l f . bcs += oxide_bcs
528
529 s e l f .A = df . PETScMatrix ( )
530 s e l f .B = df . PETScMatrix ( )
531 s e l f . e i g e n s o l v e r = df . SLEPcEigenSolver ( s e l f .A, s e l f .B)
532 s e l f . e i g e n s o l v e r . parameters [ ’ spectrum ’ ] = ’ sma l l e s t magnitude ’
533 # s e l f . e i g e n s o l v e r . parameters [ ’ s o l v e r ’ ] = ’ krylov−schur ’
534 # s e l f . e i g e n s o l v e r . parameters [ ’ s o l v e r ’ ] = ’ a rno l d i ’
535
536 s e l f . inver se_e f f ec t ive_mass_tensor = s e l f . v a l l e y .

get_inverse_ef fect ive_mass_tensor_in_global_coordinate_system (
537 s e l f . r eg ionr , s e l f . mesh , dev i c e ) # Make the e f f e c t i v e

mass t enso r f i r s t on the t o t a l mesh
538
539 s e l f . dx = dev i ce . f e . l e ad s [ l eadnr ] [ ’ dx ’ ]
540
541 de f so lve_e igenequat ion ( s e l f , nr_of_e igen funct ions ) :
542
543 a = df . Constant ( 1 . 0 / 2 . 0 ) ∗ i nne r ( s e l f .

inver se_e f f ec t ive_mass_tensor ∗nabla_grad ( s e l f . u ) , nabla_grad ( s e l f . v )
) \

544 ∗ s e l f . dx + s e l f .U ∗ s e l f . u ∗ s e l f . v ∗ s e l f . dx
545 b = s e l f . u ∗ s e l f . v ∗ s e l f . dx
546 bcs = s e l f . bcs
547 df . assemble ( a , t en so r=s e l f .A)
548 df . assemble (b , t enso r=s e l f .B)
549 f o r bc in bcs :
550 bc . apply ( s e l f .A) # bc . apply (B) i s impl i ed
551 s e l f . e i g e n s o l v e r . s o l v e ( nr_of_e igen funct ions )
552
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553 de f s o l v e ( s e l f ) :
554 nr_of_e igenfunct ions = prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ subbands ’ ]
555 e i g enva l s = [ ]
556 e i g enve c t s = [ ]
557 minimum_eigenvalue = df . p r o j e c t ( s e l f . pot_enrgy , s e l f .V) . vec to r

( ) . array ( ) . min ( )
558 s e l f . so lve_e igenequat ion ( nr_of_e igen funct ions )
559 f o r i in range ( nr_of_e igenfunct ions ) :
560 val , i va l , vect , i v e c t = s e l f . e i g e n s o l v e r . ge t_e igenpa i r ( i )
561 i f i v a l != 0 . 0 :
562 r a i s e NameError ( " Imaginary e i g enva lu e s detec ted . Abort .

" )
563 i f va l < minimum_eigenvalue : # to get r i d o f unphys i ca l

s o l u t i o n s
564 cont inue
565 e i g enva l s . append ( va l )
566 e i g enve c t s . append ( vect . array ( ) )
567 e i g enva l s = np . array ( e i g enva l s )
568 e i g enve c t s = np . array ( e i g enve c t s )
569
570 # normal ize the e i g en f un c t i on s and i n t e r p o l a t e
571 p s i = df . Function ( s e l f .V)
572 i n t e rpo l a t ed_e i g enve c t s = np . empty ( nr_of_eigenfunct ions , dtype=

np . ndarray )
573 f o r i , vect in enumerate ( e i g enve c t s ) :
574 p s i . vec to r ( ) [ : ] = vect
575 s c a l e f a c t o r = df . assemble ( p s i ∗∗2 ∗ s e l f . dx )
576 normalized_vect = vect / s c a l e f a c t o r ∗∗0 .5
577 e i g enve c t s [ i ] = normalized_vect
578 p s i . vec to r ( ) [ : ] = normalized_vect
579 i n t e rpo l a t ed_e i g enve c t s [ i ] = s e l f . dev i c e . f e .

map_function_on_boundary_to_function_on_entire_device ( p s i ) . vec to r ( ) .
array ( )

580 f = df . F i l e ( " e i g en func t i on " + s t r ( i ) + "_" + s t r ( s e l f .
v a l l e y . type ) + " . pvd " )

581 f << ps i
582 re turn e i g enva l s , e i g envec t s , i n t e rpo l a t ed_e igenvec t s ,

nr_of_e igenfunct ions

B.2 Device description and finite elements

1 import d o l f i n as df
2 import a u x i l i a r y . mat e r i a l s as mat
3 import geopar se r
4 import l ogg ing
5 import numpy as np
6 import os
7 import yaml
8 from aux i l i a r y . s e t t i n g s import units im
9 from fd i n t import fdk

10 from sc ipy . opt imize import brentq
11 from sh import gmsh , python , which
12 from s t ru c tu r e . g en e r i c import E l e c t r on i cS t ru c tu r e
13 from s t ru c tu r e . po i s son import PoissonPDE
14
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15 prms = units im . parameters
16 df . parameters [ ’ a l l ow_ext rapo la t i on ’ ] = True
17 df . s e t_ log_leve l ( df . INFO)
18 l o gg e r = logg ing . getLogger ( ’ un i t_s imulat ion_logger ’ )
19
20
21 c l a s s Device ( ob j e c t ) :
22 de f __new__( c l s , ∗ args , ∗∗kwargs ) :
23 i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ a x i a l symmetric ’ :
24 re turn ob j e c t .__new__( AxialSymmetricDevice , ∗ args , ∗∗kwargs

)
25 i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ r e a l i s t i c ’ :
26 re turn ob j e c t .__new__( Rea l i s t i cDev i c e , ∗ args , ∗∗kwargs )
27 i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ l i n e a r ’ :
28 re turn ob j e c t .__new__( LinearDevice , ∗ args , ∗∗kwargs )
29
30 de f __init__( s e l f , g e o f i l e , d e s c r i p t i o n f i l e ) :
31 i f not os . path . i s f i l e ( "mesh . xml " ) :
32 parsed_geometry = geopar se r . p roce s s ( g e o f i l e )
33 with open ( g e o f i l e , ’w ’ ) as f :
34 f . wr i t e ( parsed_geometry )
35 i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] in [ ’ a x i a l symmetric ’ ] :
36 gmsh( ’−2 ’ , g e o f i l e )
37 e l i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] in [ ’ r e a l i s t i c ’ ] :
38 gmsh( ’−3 ’ , g e o f i l e )
39 e l i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] in [ ’ l i n e a r ’ ] :
40 gmsh( ’−1 ’ , g e o f i l e )
41 do l f in_conver t = which ( " do l f i n−convert " )
42 python ( do l f in_convert , "mesh .msh" , "mesh . xml " )
43 os . rename ( " mesh_facet_region . xml " , " mesh_boundaries . xml " )
44 os . rename ( " mesh_physical_region . xml " , " mesh_regions . xml " )
45 s e l f . type = prms [ ’ dev i c e ’ ] [ ’ type ’ ]
46 s e l f . de sc r = Dev i ceDesc r ip t i on ( d e s c r i p t i o n f i l e )
47 s e l f . f e = Fin i teElements ( "mesh . xml " , " mesh_regions . xml " , "

mesh_boundaries . xml " , s e l f )
48 s e l f . l e ad s = {}
49 f o r l in s e l f . de sc r . lead_boundrs :
50 s e l f . l e ad s [ l ] = Lead ( l , s e l f )
51 s e l f . de sc r . de f ine_gates ( s e l f )
52 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] :
53 s e l f . t en so r_f l ag = True
54 e l s e :
55 s e l f . t en so r_f l ag = False
56
57 de f set_environment ( s e l f , env i r onment f i l e ) :
58 s e l f . environment = DeviceEnvironment ( env i r onment f i l e )
59 f o r l in s e l f . l e ad s . i t e r v a l u e s ( ) :
60 l . set_environment ( s e l f . environment )
61
62 de f update_environment ( s e l f , env , include_quantum=True ) :
63 s e l f . environment . update ( env . __dict__)
64 f o r l in s e l f . l e ad s . i t e r v a l u e s ( ) :
65 l . set_environment ( s e l f . environment , include_quantum )
66
67 de f f i nd_e l e c t r on i c_s t ru c tu r e ( s e l f ) :
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68 s e l f . e l s t r u c t = E l e c t r on i cS t ru c tu r e ( s e l f , s e l f . environment )
69
70 de f get_property ( s e l f , prop , domain=’ normal ’ ) :
71 " " " Return the reques ted property as a func t i on .
72
73 For band−r e l a t e d p rope r t i e s , the conduct ion band ( at a g iven

po int ) in the r e f e r e n c e contact i s de f ined to be
74 zero . O f f s e t s are e i t h e r de f ined from l i t e r a t u r e or us ing a

d i f f e r e n c e in e l e c t r on a f f i n i t y .
75
76 " " "
77
78 devprops = { ’ doping ’ : ’ doping ’ }
79 matprops = { ’ e f f e c t ive_mass ’ : ’me_eff_gamma ’ , ’ p e rm i t t i v i t y ’ : ’

p e rm i t t i v i t y ’ ,
80 ’ e l e c t ron_mob i l i ty ’ : ’ e l e c_mobi l i ty ’ , ’

e l e c t r o n_d i f f u s i o n ’ : ’ e l e c_d i f f u s i o n ’ ,
81 ’ e f f e c t i v e_e l e c t r on_den s i t y ’ : ’Nc ’ , ’ bandgap ’ : ’

bandgap ’ ,
82 ’ ho le_mobi l i ty ’ : ’ ho le_mobi l i ty ’ , ’ h o l e_d i f f u s i on ’ :

’ h o l e_d i f f u s i on ’ ,
83 ’ e f f e c t i v e_ho l e_den s i t y ’ : ’Nv ’ }
84 bandprops = [ ’ conduction_band ’ , ’ valence_band ’ ]
85 i f domain == ’ normal ’ :
86 mesh = s e l f . f e . mesh
87 reg ions_meshfct = s e l f . f e . r e g i on s
88 propatt r = prop
89 e l i f domain == ’ o x i d e l e s s ’ :
90 mesh = s e l f . f e . oxideless_mesh
91 reg ions_meshfct = s e l f . f e . ox ide less_mesh_regions
92 propatt r = ’ ox ide l e s s_ ’ + prop
93 i f not ha sa t t r ( s e l f , p ropat t r ) :
94 prop f c t = df . Function ( df . FunctionSpace (mesh , ’DG’ , 0) )
95 temp = np . array ( reg ions_meshfct . array ( ) , dtype=in t )
96 r e g i on s = s e l f . de sc r . r e g i on s
97 i f prop in matprops . keys ( ) :
98 va l s = [ g e t a t t r ( r e g i on s [ i ] [ ’ mate r i a l ’ ] , matprops [ prop ] )

f o r i in range ( l en ( r e g i on s ) ) ]
99 e l i f prop in devprops . keys ( ) :

100 va l s = [ r e g i on s [ i ] [ devprops [ prop ] ] f o r i in range ( l en (
r e g i on s ) ) ]

101 e l i f prop in bandprops :
102 r e f_mate r i a l = s e l f . l e ad s [ s e l f . de sc r . r e f e r ence_contac t

] . mate r i a l
103 va l s = [ r e f_mate r i a l . f ind_of f s e t_with ( r e g i on s [ i ] [ ’

mate r i a l ’ ] ) f o r i in range ( l en ( r e g i on s ) ) ]
104 i f prop == ’ valence_band ’ :
105 bgva l s = [ g e t a t t r ( r e g i on s [ i ] [ ’ mate r i a l ’ ] , ’ bandgap ’

) f o r i in range ( l en ( r e g i on s ) ) ]
106 va l s = [ i − j f o r i , j in z ip ( va l s , bgva l s ) ]
107 prop f c t . vec to r ( ) [ : ] = np . choose ( temp , va l s )
108 s e t a t t r ( s e l f , propattr , p rop f c t )
109 re turn g e t a t t r ( s e l f , p ropat t r )
110
111 de f get_ef fect ive_mass_values ( s e l f , prop ) :
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112 " " " Return the e f f e c t i v e mass va lue me_long or me_trans f o r a
r eg i on to make the e f f e c t i v e mass t enso r

113 f o r that r eg i on " " "
114 e f f e c t i v e_mas s e s = { ’me_long ’ : ’me_long ’ , ’me_trans ’ : ’me_trans

’ }
115
116 i f not ha sa t t r ( s e l f , prop ) :
117 r e g i on s = s e l f . de sc r . r e g i on s
118 i f prop in e f f e c t i v e_mas s e s . keys ( ) :
119 va l s = [ g e t a t t r ( r e g i on s [ i ] [ ’ mate r i a l ’ ] ,

e f f e c t i v e_mas s e s [ prop ] ) f o r i in range ( l en ( r e g i on s ) ) ]
120 s e t a t t r ( s e l f , prop , va l s )
121 re turn g e t a t t r ( s e l f , prop )
122
123 de f plot_mesh ( s e l f ) :
124 df . p l o t ( s e l f . f e . mesh , i n t e r a c t i v e=True )
125
126 de f p lo t_reg ions ( s e l f ) :
127 df . p l o t ( s e l f . f e . r eg ions , i n t e r a c t i v e=True )
128
129 de f plot_boundar ies ( s e l f ) :
130 df . p l o t ( s e l f . f e . boundaries , i n t e r a c t i v e=True )
131
132
133 c l a s s Dev i ceDesc r ip t i on ( ob j e c t ) :
134 " " " Al l in fo rmat ion to de s c r i b e the r e g i on s and boundar ies as

de f ined in the ‘ FiniteElements ‘ c l a s s . " " "
135 de f __init__( s e l f , d e s c r i p t i o n f i l e ) :
136 with open ( d e s c r i p t i o n f i l e , ’ r ’ ) as f :
137 d e s c r i p t i o n = yaml . load ( f )
138 s e l f . r e g i on s = de s c r i p t i o n [ " r e g i on s " ]
139 f o r r in s e l f . r e g i on s . i t e r v a l u e s ( ) :
140 r [ ’ mate r i a l ’ ] = eva l ( ’mat . ’ + r [ ’ mate r i a l ’ ] )
141 s e l f . boundar ies = de s c r i p t i o n [ " boundar ies " ]
142 i f " work funct ions " in d e s c r i p t i o n . keys ( ) :
143 s e l f . work funct ions = de s c r i p t i o n [ " work funct ions " ]
144 s e l f . lead_boundrs = [ i f o r i , kind in s e l f . boundar ies . i t e r i t em s

( ) i f kind == " lead " ]
145 s e l f . gate_boundrs = [ i f o r i , kind in s e l f . boundar ies . i t e r i t em s

( ) i f kind == " gate " ]
146 s e l f . contact_boundrs = s e l f . lead_boundrs + s e l f . gate_boundrs
147 s e l f . air_boundrs = [ i f o r i , kind in s e l f . boundar ies . i t e r i t em s

( ) i f kind == "vacuum" ]
148 s e l f . r e f e r ence_contac t = min ( s e l f . lead_boundrs )
149 i f " region_groups " in d e s c r i p t i o n . keys ( ) :
150 s e l f . region_groups = de s c r i p t i o n [ " region_groups " ]
151
152 de f de f ine_gates ( s e l f , dev i c e ) :
153 s e l f . ga te s = {}
154 de f f ind_reg ionr ( ) :
155 " " " This method assumes that a gate i s connected to one

r eg i on only ( e . g . an oxide r eg i on ) . " " "
156 f o r f in df . f a c e t s ( dev i c e . f e . mesh ) :
157 i f dev i c e . f e . boundar ies [ f . index ( ) ] == g :
158 f o r c e l l in df . c e l l s ( f ) :
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159 r eg i onnr = dev i ce . f e . r e g i on s [ c e l l . index ( ) ]
160 mate r i a l = dev i ce . de sc r . r e g i on s [ r eg i onnr ] [ ’

mate r i a l ’ ]
161 re turn reg i onnr
162 f o r g in s e l f . gate_boundrs :
163 gate = {}
164 r e g i on r = f ind_reg ionr ( )
165 gate [ ’ r e g i on r ’ ] = r eg i on r
166 gate [ ’ mate r i a l ’ ] = s e l f . r e g i on s [ r e g i on r ] [ ’ mate r i a l ’ ]
167 t ry :
168 gate [ ’ workfunct ion ’ ] = s e l f . work funct ions [ g ]
169 except :
170 gate [ ’ workfunct ion ’ ] = None
171 s e l f . ga te s [ g ] = gate
172
173
174 c l a s s Fin i teElements ( ob j e c t ) :
175 " " "A c l a s s that conta in s the ba s i s data used in the f i n i t e element

method . " " "
176 de f __init__( s e l f , mesh f i l e , me sh r eg i on f i l e , meshboundaryf i le ,

dev i c e ) :
177 s e l f . mesh = df .Mesh( mesh f i l e )
178 s e l f . r e g i on s = df . MeshFunction ( ’ s i z e_t ’ , s e l f . mesh ,

me sh r e g i on f i l e )
179 s e l f . boundar ies = df . MeshFunction ( ’ s i z e_t ’ , s e l f . mesh ,

meshboundaryf i l e )
180 s e l f . dx = df . Measure ( ’ dx ’ ) [ s e l f . r e g i on s ]
181 s e l f . ds = df . Measure ( ’ ds ’ ) [ s e l f . boundar ies ]
182 s e l f . boundarymesh = df . BoundaryMesh ( s e l f . mesh , ’ e x t e r i o r ’ )
183 s e l f . dev i c e = dev i ce
184 bdim = s e l f . boundarymesh . topo logy ( ) . dim ( )
185 boundary_boundaries = df . MeshFunction ( ’ s i z e_t ’ , s e l f .

boundarymesh , bdim)
186 boundary_boundaries . s e t_a l l ( 0 )
187 f o r i , f a c e t in enumerate ( df . e n t i t i e s ( s e l f . boundarymesh , bdim) )

:
188 parent_meshentity = s e l f . boundarymesh . entity_map (bdim) [ i ]
189 parent_boundarynumber = s e l f . boundar ies . array ( ) [

parent_meshentity ]
190 boundary_boundaries . array ( ) [ i ] = parent_boundarynumber
191 s e l f . l e ad s = {}
192 f o r l in dev i c e . de sc r . lead_boundrs :
193 s e l f . l e ad s [ l ] = {}
194 subm = df . SubMesh( s e l f . boundarymesh , boundary_boundaries , l

)
195 s e l f . l e ad s [ l ] [ ’mesh ’ ] = subm
196 c f = df . Ce l lFunct ion ( ’ s i z e_t ’ , subm)
197 c f . s e t_a l l ( 0 )
198 s e l f . l e ad s [ l ] [ ’ dx ’ ] = df . Measure ( ’ dx ’ ) [ c f ]
199
200 de f create_oxideless_mesh ( s e l f ) :
201 l o gg e r . i n f o ( " Creat ing a mesh f o r the semiconductor r e g i on s ( no

oxide ) . " )
202 ox id e l e s s_r eg i on = df . Ce l lFunct ion ( ’ s i z e_t ’ , s e l f . mesh )
203 ox id e l e s s_r eg i on . s e t_a l l ( 0 )
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204 f o r i , r in s e l f . dev i ce . de sc r . r e g i on s . i tems ( ) :
205 i f not i s i n s t a n c e ( r [ ’ mate r i a l ’ ] , mat . Oxide ) :
206 ox id e l e s s_r eg i on . array ( ) [ s e l f . r e g i on s . array ( ) == i ] = 1
207 s e l f . oxideless_mesh = df . SubMesh( s e l f . mesh , ox ide l e s s_reg ion ,

1)
208 s e l f . ox ide less_mesh_regions = df . Ce l lFunct ion ( ’ s i z e_t ’ , s e l f .

oxideless_mesh )
209 s e l f . ox ide less_mesh_regions . s e t_a l l ( 0 )
210 s e l f . oxideless_mesh_boundaries = df . FacetFunction ( ’ s i z e_t ’ ,

s e l f . oxideless_mesh )
211 s e l f . oxideless_mesh_boundaries . s e t_a l l ( 0 )
212 dim = s e l f . mesh . topology ( ) . dim ( )
213 vmap = s e l f . oxideless_mesh . data ( ) . array ( ’ parent_vertex_indices ’

, 0)
214 cmap = s e l f . oxideless_mesh . data ( ) . array ( ’ pa r en t_ce l l_ ind i c e s ’ ,

dim)
215 s e l f . oxideless_mesh . i n i t (dim − 1 , dim)
216 f o r submesh_cell in df . c e l l s ( s e l f . oxideless_mesh ) :
217 parent_ce l l = cmap [ submesh_cell . index ( ) ]
218 s e l f . ox ide less_mesh_regions . array ( ) [ submesh_cell . index ( ) ] =

s e l f . r e g i on s . array ( ) [ pa rent_ce l l ]
219 s e l f . inter face_bnd = max( s e l f . dev i c e . de sc r . boundar ies . keys ( ) ) +

1
220 f o r submesh_facet in df . f a c e t s ( s e l f . oxideless_mesh ) :
221 i f submesh_facet . e n t i t i e s (dim) . s i z e == dim − 1 : # we are

dea l i ng with a boundary f a c e t
222 submesh_facet_vert ices = vmap [ submesh_facet . e n t i t i e s (0 )

]
223 f o r f a c e t in df . f a c e t s ( s e l f . mesh ) :
224 i f s e l f . boundar ies . array ( ) [ f a c e t . index ( ) ] == 0 :
225 i f f a c e t . e n t i t i e s (dim) . s i z e != dim − 1 : # we

are dea l i ng with a new boundary
226 s e l f . oxideless_mesh_boundaries . array ( ) [

submesh_facet . index ( ) ] = s e l f . inter face_bnd
227 cont inue
228 e l i f s e t ( f a c e t . e n t i t i e s (0 ) ) == se t (

submesh_facet_vert ices ) :
229 s e l f . oxideless_mesh_boundaries . array ( ) [

submesh_facet . index ( ) ] = s e l f . boundar ies . array ( ) [ f a c e t . index ( ) ]
230 break
231 s e l f . o x i d e l e s s_ f a c e t f un c t i o n = df . FacetFunction ( ’ s i z e_t ’ , s e l f .

mesh )
232 s e l f . o x i d e l e s s_ f a c e t f un c t i o n . s e t_a l l ( 0 )
233 s e l f . mesh . i n i t (1 , 2)
234 f o r f a c e t in df . f a c e t s ( s e l f . mesh ) :
235 i f 1 in ox id e l e s s_r eg i on . array ( ) [ f a c e t . e n t i t i e s (2 ) ] :
236 s e l f . o x i d e l e s s_ f a c e t f un c t i o n [ f a c e t . index ( ) ] = 1
237 s e l f . ox ide les s_mesh_exis t s = True
238
239 de f map_function_on_boundary_to_function_on_entire_device ( s e l f ,

boundary_function ) :
240 " " " Used when su r f a c e i n t e g r a l s are ca l cu l a t ed , but a func t i on

on V i s needed . " " "
241 f ami ly = boundary_function . element ( ) . f ami ly ( )
242 degree = boundary_function . element ( ) . degree ( )
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243 V = df . FunctionSpace ( s e l f . mesh , fami ly , degree )
244 Vbnd = boundary_function . funct ion_space ( )
245 bnd_mesh = boundary_function . funct ion_space ( ) . mesh ( )
246 gdim = s e l f . mesh . geometry ( ) . dim ( )
247 Vbnd_dofcoords = Vbnd . dofmap ( ) . t abu la t e_a l l_coord ina te s (

bnd_mesh) . reshape (−1 , gdim )
248 V_dofcoords = V. dofmap ( ) . t abu la t e_a l l_coord ina te s ( s e l f . mesh ) .

reshape (−1 , gdim )
249 Vbnd_to_V_map = {}
250 i f s e l f . dev i c e . type == ’ r e a l i s t i c ’ :
251 V_dofcoords_order = np . l e x s o r t (np . f l i p l r ( V_dofcoords ) .T)
252 sorted_V_dofcoords = V_dofcoords [ V_dofcoords_order ]
253 f o r Vbnd_dof_nr , Vbnd_dof_coord in enumerate ( Vbnd_dofcoords

) :
254 found = False
255 to_search_through = sorted_V_dofcoords . copy ( )
256 idx = 0
257 dim = 3 i f s e l f . dev i c e . type == ’ r e a l i s t i c ’ e l s e 1
258 f o r x i in range (3 ) :
259 l i d x = np . s ea r ch so r t ed ( to_search_through [ : , x i ] ,

Vbnd_dof_coord [ x i ] , s i d e=’ l e f t ’ )
260 uidx = np . s ea r ch so r t ed ( to_search_through [ : , x i ] ,

Vbnd_dof_coord [ x i ] , s i d e=’ r i g h t ’ )
261 to_search_through = to_search_through [ l i d x : uidx , : ]
262 idx += l i d x
263 i f np . array_equal ( V_dofcoords [ V_dofcoords_order [ idx ] ] ,

Vbnd_dof_coord ) :
264 Vbnd_to_V_map [ Vbnd_dof_nr ] = V_dofcoords_order [ idx ]
265 found = True
266 i f not found :
267 l o gg e r . e r r o r ( " Degrees o f freedom don ’ t correspond . "

)
268 e l i f s e l f . dev i c e . type == ’ ax i a l symmetric ’ :
269 f o r Vbnd_dof_nr , Vbnd_dof_coord in enumerate ( Vbnd_dofcoords

) :
270 corresponding_dofs = [ i f o r i , coords in enumerate (

V_dofcoords ) i f np . array_equal ( coords , Vbnd_dof_coord ) ]
271 i f l en ( corresponding_dofs ) == 1 :
272 Vbnd_to_V_map [ Vbnd_dof_nr ] = corresponding_dofs [ 0 ]
273 e l s e :
274 l o gg e r . e r r o r ( " Degrees o f freedom don ’ t correspond . "

)
275 f c t = df . Function (V)
276 f o r Vbnd_dof , V_dof in Vbnd_to_V_map . i t e r i t em s ( ) :
277 f c t . vec to r ( ) [ V_dof ] = boundary_function . vec to r ( ) . array ( ) [

Vbnd_dof ]
278 re turn f c t
279
280 de f ge t_d i r i ch l e tbc_fo r_reg ion ( s e l f , funct ionspace , reg ion , va lue ) :
281 " " " E f f e c t i v e l y d e f i n e s a D i r i c h l e t boundary cond i t i on on a

reg i on in s t ead o f on a boundary . " " "
282 dim = s e l f . mesh . topology ( ) . dim ( )
283 b = df . MeshFunction ( ’ s i z e_t ’ , s e l f . mesh , dim − 1)
284 b . s e t_a l l ( 0 )
285 s e l f . mesh . i n i t (dim − 1 , dim)
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286 f o r f in df . f a c e t s ( s e l f . mesh ) :
287 i f r eg i on in s e l f . r e g i on s . array ( ) [ f . e n t i t i e s (dim) ] :
288 b [ f . index ( ) ] = 1
289 i f i s i n s t a n c e ( value , df . Function ) or i s i n s t a n c e ( value , df .

Express ion ) :
290 re turn df . Dir ichletBC ( funct ionspace , value , b , 1)
291 e l s e :
292 re turn df . Dir ichletBC ( funct ionspace , df . Constant ( va lue ) , b ,

1)
293
294 de f get_dir i ch le tbc_for_reg ion_in_lead ( s e l f , funct ionspace , leadnr ,

reg ion , va lue ) :
295 " " " I f ‘ reg ion ‘ i s part o f the leadboundary o f l ead ‘ leadnr ‘ ,

r e turn a BC on t h i s r eg i on . " " "
296 lead_mesh = s e l f . l e ad s [ l eadnr ] [ ’mesh ’ ]
297 dim = lead_mesh . topology ( ) . dim ( )
298 s e l f . mesh . i n i t (dim , dim + 1)
299
300 # crea t e a Cel lFunct ion that i s 1 i f the boundary c e l l

cor responds to the reques ted reg i on
301 c f c t = df . MeshFunction ( ’ s i z e_t ’ , lead_mesh , dim)
302 c f c t . s e t_a l l ( 0 )
303 f o r c in df . c e l l s ( lead_mesh ) :
304 lead_mesh_idx = c . index ( )
305 bnd_mesh_idx = lead_mesh . data ( ) . array ( ’ pa r en t_ce l l_ ind i c e s ’

, dim) [ lead_mesh_idx ]
306 mesh_idx = s e l f . boundarymesh . entity_map (dim) . array ( ) [

bnd_mesh_idx ]
307 mesh_cell = df . Facet ( s e l f . mesh , mesh_idx ) . e n t i t i e s (dim + 1)

[ 0 ]
308 bnd_region = s e l f . r e g i on s . array ( ) [ mesh_cell ]
309 i f r eg i on == bnd_region :
310 c f c t [ lead_mesh_idx ] = 1
311
312 # rewr i t e t h i s Ce l lFunct ion to a FacetFunction and use i t to

d e f i n e the boundary cond i t i on
313 b f c t = df . MeshFunction ( ’ s i z e_t ’ , lead_mesh , dim − 1)
314 b f c t . s e t_a l l ( 0 )
315 lead_mesh . i n i t (dim − 1 , dim)
316 f o r f in df . f a c e t s ( lead_mesh ) :
317 i f 1 in c f c t . array ( ) [ f . e n t i t i e s (dim) ] :
318 b f c t [ f . index ( ) ] = 1
319 i f b f c t . array ( ) . nonzero ( ) [ 0 ] . s i z e > 0 :
320 re turn df . Dir ichletBC ( funct ionspace , df . Constant ( va lue ) ,

b fct , 1)
321 e l s e :
322 re turn None
323
324
325 c l a s s Lead ( ob j e c t ) :
326 " " "A c l a s s conta in ing data o f the leads , p a r t i c u l a r l y u s e f u l to

f i nd boundary cond i t i on s f o r Poisson . " " "
327 de f __init__( s e l f , leadnr , dev i c e ) :
328 s e l f . l eadnr = leadnr
329 s e l f . dev i c e = dev i ce
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330 s e l f . mesh = dev i ce . f e . l e ad s [ l eadnr ] [ ’mesh ’ ]
331
332 de f f ind_reg ionr ( ) :
333 " " " This method f o r the moment assumes that a l ead c o n s i s t s

o f exac t l y 1 semiconductor
334 with 1 l e v e l op doping . " " "
335 f o r f in df . f a c e t s ( dev i c e . f e . mesh ) :
336 i f dev i c e . f e . boundar ies [ f . index ( ) ] == leadnr :
337 f o r c e l l in df . c e l l s ( f ) :
338 r e g i on r = dev i ce . f e . r e g i on s [ c e l l . index ( ) ]
339 mate r i a l = dev i ce . de sc r . r e g i on s [ r e g i on r ] [ ’

mate r i a l ’ ]
340 i f i s i n s t a n c e ( mater ia l , mat . Semiconductor ) and

not i s i n s t a n c e ( mater ia l , mat . Oxide ) :
341 re turn r e g i on r
342 s e l f . r e g i on r = f ind_reg ionr ( )
343 s e l f . mate r i a l = dev i ce . de sc r . r e g i on s [ s e l f . r e g i on r ] [ ’ mate r i a l ’ ]
344 s e l f . doping = dev i ce . de sc r . r e g i on s [ s e l f . r e g i on r ] [ ’ doping ’ ]
345 s e l f . ef f_mass = s e l f . mate r i a l . me_eff_gamma
346 s e l f . s c_ f e rm i l e v e l_o f f s e t = None
347 s e l f . qm_fermi l eve l_of f se t = None
348 s e l f . qm_fermi l eve l_o f f s e t s = None
349
350 de f set_environment ( s e l f , environment , include_quantum=True ) :
351 s e l f . temperature = environment . temperature
352 s e l f . p o t e n t i a l = environment . p o t e n t i a l s [ s e l f . l eadnr ]
353 s e l f . f i n d_s em i c l a s s i c a l_ f e rm i l e v e l_o f f s e t ( )
354 i f include_quantum :
355 s e l f . f ind_quantummechanica l_fermi leve l_of f set ( )
356 e l s e :
357 s e l f . qm_fermi l eve l_of f se t = None
358
359 de f f i n d_ s em i c l a s s i c a l_ f e rm i l e v e l_o f f s e t ( s e l f ) :
360 " " " This method re tu rn s the s em i c l a s s i c a l d i f f e r e n c e between

conductionband and Fermi l eve l .
361
362 E. g . the returned value i s p o s i t i v e i f the Fermi l eve l l i e s

with in the bandgap .
363
364 " " "
365
366 i f s e l f . s c_ f e rm i l e v e l_o f f s e t i s None :
367 dopingtype = prms [ ’ dev i c e ’ ] [ ’ doping ’ ]
368 s e l f . s c_ f e rm i l e v e l_o f f s e t = s e l f . mate r i a l . f i nd_fe rmi_leve l (

s e l f . doping , s e l f . temperature , dopingtype=dopingtype )
369 re turn s e l f . s c_ f e rm i l e v e l_o f f s e t
370
371 de f f ind_quantummechanica l_fermi leve l_of f set ( s e l f ) :
372 " " " This method re tu rn s the quantummechanical d i f f e r e n c e between

conductionband and Fermi l eve l .
373
374 Just l i k e in the s em i c l a s s i c a l case , the returned value i s

p o s i t i v e i f the Fermi l eve l l i e s with in the bandgap .
375
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376 I f the dev i c e i s a r e a l i s t i c dev i c e and tenso r == True , re turn
a l i s t with o f f s e t s

377 ( f o r each va l l e y in the l ead there i s a d i f f e r e n t o f f s e t )
378
379 " " "
380
381 l o gg e r . i n f o ( " Ca l cu l a t ing quantummechanical o f f s e t f o r l ead " +

s t r ( s e l f . l eadnr ) )
382 i f s e l f . qm_fermi l eve l_of f se t i s None :
383 ze ro_potent i a l = df . Function ( df . FunctionSpace ( s e l f . dev i c e .

f e . mesh , ’CG’ , 1) )
384 dummy_one = df . Function ( df . FunctionSpace ( s e l f . dev i c e . f e .

mesh , ’DG’ , 0) )
385 dummy_one . vec to r ( ) [ : ] = 1 .0
386 ds = s e l f . dev i c e . f e . ds
387 i f i s i n s t a n c e ( s e l f . device , Rea l i s t i cDev i c e ) :
388 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] :
389 from s t ru c tu r e . qtbmimpl . r ea l i s t i c_1band_tensor

import SchrodingerEVP
390 schrodingerEVP = SchrodingerEVP ( s e l f . device ,

ze ro_potent ia l , s e l f . leadnr , ’ 100 _val ley ’ )
391 s e l f . e f f e c t i e v ema s s a = 0.19
392 e l i f not prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] :
393 from s t ru c tu r e . qtbmimpl . r ea l i s t i c_1band import

SchrodingerEVP
394 schrodingerEVP = SchrodingerEVP ( s e l f . device ,

ze ro_potent ia l , s e l f . l eadnr )
395 s e l f . e f f e c t i e v ema s s a = 0.063
396 s o l u t i o n s = schrodingerEVP . s o l v e ( )
397 subband_enrgs = s o l u t i o n s [ 0 ]
398 s e l f . c r o s s_sur f a c e = df . assemble (dummy_one ∗ ds ( s e l f .

l eadnr ) )
399 de f neg_Q(mu) :
400 f a c t = np . sq r t ( 2 . 0 ∗ s e l f . e f f e c t i e v ema s s a ∗ s e l f .

temperature / np . p i )
401 neg_charge = 0 .0
402 f o r enrgy in subband_enrgs :
403 deg = 1
404 gammafactor = deg / np . p i ∗∗0 .5
405 f d i t g = fdk (−0.5 , ( (mu − enrgy ) / s e l f .

temperature ) )
406 neg_charge += gammafactor ∗ f d i t g
407 re turn f a c t ∗ neg_charge
408 i f prms [ ’ dev i c e ’ ] [ ’ doping ’ ] == ’ r e a l ’ :
409 pos_Q = lambda mu: s e l f . c r o s s_sur f a c e ∗ s e l f . doping

∗ (1 / (1 + 2 .0 ∗ np . exp (mu/ s e l f . temperature ) ) )
410 e l i f prms [ ’ dev i c e ’ ] [ ’ doping ’ ] == ’ i on i z ed ’ :
411 pos_Q = lambda mu: s e l f . c r o s s_sur f a c e ∗ s e l f . doping
412 s e l f . qm_fermi l eve l_of f se t = −brentq ( lambda mu: −neg_Q(

mu) + pos_Q(mu) , −0.1 , 0 . 1 )
413 from aux i l i a r y . atomicun i t s import eV
414 pr in t " Quantummechanical o f f s e t i s %f eV . " % f l o a t ( s e l f

. qm_fermi l eve l_of f se t / eV) + " f o r l ead " + s t r ( s e l f . l eadnr )
415 i f i s i n s t a n c e ( s e l f . device , AxialSymmetricDevice ) :
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416 from s t ru c tu r e . qtbmimpl . ax ia l symmetr ic_unipo lar import
SchrodingerEVP

417 schrodingerEVP = SchrodingerEVP ( s e l f . device ,
ze ro_potent ia l , s e l f . l eadnr )

418 s o l u t i o n s = schrodingerEVP . s o l v e ( )
419 subband_ns = s o l u t i o n s [ 0 ]
420 subband_enrgs = s o l u t i o n s [ 1 ]
421 s e l f . c r o s s_sur f a c e = df . assemble (dummy_one ∗ ds ( s e l f .

l eadnr ) ) ∗∗2 ∗ np . p i
422 de f neg_Q(mu) :
423 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] == True :
424 f a c t = np . sq r t ( 2 . 0 ∗ s e l f .

l ead_ef fect ive_mass_along_transport ∗ s e l f . temperature / np . p i )
425 e l s e :
426 f a c t = np . sq r t ( 2 . 0 ∗ s e l f . ef f_mass ∗ s e l f .

temperature / np . p i )
427 neg_charge = 0 .0
428 f o r m, enrgy in z ip ( subband_ns , subband_enrgs ) :
429 deg = 1 i f m == 0 e l s e 2
430 gammafactor = deg / np . p i ∗∗0 .5
431 f d i t g = fdk (−0.5 , ( (mu − enrgy ) / s e l f .

temperature ) )
432 neg_charge += gammafactor ∗ f d i t g
433 re turn f a c t ∗ neg_charge
434 pos_Q = lambda mu: s e l f . c r o s s_sur f a c e ∗ s e l f . doping ∗

(1 / (1 + 2 .0 ∗ np . exp (mu/ s e l f . temperature ) ) )
435 s e l f . qm_fermi l eve l_of f se t = −brentq ( lambda mu: −neg_Q(

mu) + pos_Q(mu) , −0.1 , 0 . 1 )
436 from aux i l i a r y . atomicun i t s import eV
437 pr in t " Quantummechanical o f f s e t i s %f eV . " % f l o a t ( s e l f

. qm_fermi l eve l_of f se t / eV)
438 i f i s i n s t a n c e ( s e l f . device , LinearDevice ) :
439 s e l f . qm_fermi l eve l_of f se t = s e l f . s c_ f e rm i l e v e l_o f f s e t
440 re turn s e l f . qm_fermi l eve l_of f se t
441
442
443 c l a s s DeviceEnvironment ( ob j e c t ) :
444 " " " This c l a s s d e s c r i b e s the temperature , app l i ed po t en t i a l s , e t c .

" " "
445 de f __init__( s e l f , env i r onment f i l e ) :
446 with open ( env i ronment f i l e , ’ r ’ ) as f :
447 env = yaml . load ( f )
448 s e l f . temperature = env [ ’ temperature ’ ]
449 s e l f . p o t e n t i a l s = env [ ’ p o t e n t i a l s ’ ]
450
451 de f update ( s e l f , env ) :
452 s e l f . temperature = env [ ’ temperature ’ ]
453 s e l f . p o t e n t i a l s = env [ ’ p o t e n t i a l s ’ ]
454
455
456 c l a s s Rea l i s t i cDev i c e ( Device ) :
457 " " " This c l a s s d e s c r i b e s a l l d ev i c e s that are 3 d imens iona l and thus

g ive r i s e to r e a l i s t i c d ev i c e s . " " "
458 de f __init__( s e l f , ∗ args , ∗∗kwargs ) :
459 Device . __init__( s e l f , ∗ args , ∗∗kwargs )
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B.3 Poisson equation

1 import d o l f i n as df
2 import l ogg ing
3 import numpy as np
4 from aux i l i a r y . atomicun i t s import eV
5 from aux i l i a r y . phys i c s import fd
6 from fd i n t import fdk , i f d1h
7 from aux i l i a r y . s e t t i n g s import units im
8 from do l f i n import div , inner , grad , nabla_grad , exp , l og
9

10 prms = units im . parameters
11 df . parameters [ ’ a l l ow_ext rapo la t i on ’ ] = True
12 l o gg e r = logg ing . getLogger ( ’ un i t_s imulat ion_logger ’ )
13
14
15 c l a s s PoissonPDE( ob j e c t ) :
16 de f __new__( c l s , ∗ args , ∗∗kwargs ) :
17 " " " Depending on the method de f ined in the s e t t i n g s f i l e , r e turn

the c o r r e c t c l a s s . " " "
18 i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ a x i a l symmetric ’ :
19 re turn ob j e c t .__new__( AxialSymmetricPoisson , ∗ args , ∗∗

kwargs )
20 e l i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ r e a l i s t i c ’ :
21 re turn ob j e c t .__new__( Rea l i s t i cPo i s s on , ∗ args , ∗∗kwargs )
22 e l i f prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ l i n e a r ’ :
23 re turn ob j e c t .__new__( LinearPoisson , ∗ args , ∗∗kwargs )
24
25 de f __init__( s e l f , device , shapefct_degree=None ) :
26 s e l f . dev i c e = dev i ce
27 s e l f . mesh = dev i ce . f e . mesh
28 degree = shapefct_degree or prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son ’ ] [ ’

shape func t i ons degree ’ ]
29 s e l f .V = df . FunctionSpace ( s e l f . mesh , ’CG’ , degree )
30
31 de f update_boundary_conditions ( s e l f , type , equ i l i b r i um=False ,

lead_bc_type=’Neumann ’ ) :
32 l o gg e r . i n f o ( " De f in ing boundary cond i t i on s f o r Poisson . " )
33 r e f e r ence_ l ead = s e l f . dev i ce . l e ad s [ s e l f . dev i c e . de sc r .

r e f e r ence_contac t ]
34 r e f e r ence_mate r i a l = re f e r ence_ l ead . mate r i a l
35 r e f e r e n c e_a f f i n i t y = re f e r ence_ l ead . mate r i a l . a f f i n i t y
36 s e l f . lead_bcs = [ ]
37 s e l f . gate_bcs = [ ]
38 bc_vals = {}
39 i f type == ’ s em i c l a s s i c a l ’ :
40 o f f s e t = ’ s c_ f e rm i l e v e l_o f f s e t ’
41 e l i f type == ’quantum ’ :
42 o f f s e t = ’ qm_fermi l eve l_of f se t ’
43 f o r i , l ead in s e l f . dev i c e . l e ad s . i t e r i t em s ( ) :
44 conduct ion_band_dif ference = re f e r ence_mate r i a l .

f ind_of f s e t_with ( l ead . mate r i a l )
45 f e rm i l e v e l_ o f f s e t = g e t a t t r ( lead , o f f s e t )
46 i f not equ i l i b r i um :
47 po t en t i a l = lead . p o t e n t i a l
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48 e l s e :
49 po t en t i a l = s e l f . dev i c e . l e ad s [ s e l f . dev i c e . de sc r .

r e f e r ence_contac t ] . p o t e n t i a l
50 dir_value = po t e n t i a l + conduct ion_band_dif ference −

f e rm i l e v e l_ o f f s e t
51 dir_bc = df . Dir ichletBC ( s e l f .V, df . Constant ( dir_value ) ,

s e l f . dev i c e . f e . boundaries , i )
52 bc_vals [ i ] = dir_value
53 s e l f . lead_bcs . append ( dir_bc )
54 f o r g in s e l f . dev i c e . de sc r . gate_boundrs :
55 # i f no workfunt ion i s provided , i t i s chosen such that vgs

=0 corresponds to f l a tband
56 gate = s e l f . dev i c e . de sc r . ga te s [ g ]
57 i f prms [ ’ s t r u c tu r e ’ ] [ ’ formal ism ’ ] == ’qtbm ’ :
58 workfunct ion = gate [ ’ workfunct ion ’ ] or g e t a t t r (

re f e rence_lead , ’ qm_fermi l eve l_of f se t ’ ) + r e f e r e n c e_a f f i n i t y
59 e l s e :
60 workfunct ion = gate [ ’ workfunct ion ’ ] or g e t a t t r (

re f e rence_lead , ’ s c_ f e rm i l e v e l_o f f s e t ’ ) + r e f e r e n c e_a f f i n i t y
61 # the workfunct ion in the s em i c l a s s i c a l case i s ad justed

such that , going from
62 # a s em i c l a s s i c a l p o t e n t i a l to that f o r the quantum case ,

the p o t e n t i a l can j u s t be
63 # sh i f t e d with a given value
64 i f type == ’ s em i c l a s s i c a l ’ and prms [ ’ s t r u c tu r e ’ ] [ ’ formal ism

’ ] == ’qtbm ’ :
65 s h i f t = re f e r ence_ l ead . s c_ f e rm i l e v e l_o f f s e t −

r e f e r ence_ l ead . qm_fermi l eve l_of f se t
66 workfunct ion += s h i f t
67 dir_value = re f e r ence_ l ead . p o t e n t i a l + s e l f . dev i c e .

environment . p o t e n t i a l s [ g ] − \
68 ( workfunct ion − gate [ ’ mate r i a l ’ ] . a f f i n i t y ) +

re f e r ence_mate r i a l . f ind_of f s e t_with ( gate [ ’ mate r i a l ’ ] )
69 dir_bc = df . Dir ichletBC ( s e l f .V, df . Constant ( dir_value ) ,

s e l f . dev i c e . f e . boundaries , g )
70 bc_vals [ g ] = dir_value
71 s e l f . gate_bcs . append ( dir_bc )
72 i f type == ’ s em i c l a s s i c a l ’ :
73 s e l f . bcs = s e l f . gate_bcs
74 e l i f type == ’quantum ’ and lead_bc_type == ’Neumann ’ :
75 s e l f . bcs = s e l f . gate_bcs
76 e l i f type == ’quantum ’ and lead_bc_type == ’ D i r i c h l e t ’ :
77 pass
78 e l s e :
79 l o gg e r . e r r o r ( "No proper boundary type f o r the l e ad s de f ined

. " )
80 re turn bc_vals
81
82 de f return_dummy_piecewise_constant_potential ( s e l f , method=’

s em i c l a s s i c a l ’ ) :
83 " " " Return a s imple p i e c ew i s e contant p o t e n t i a l .
84
85 Regions determines whether a domain takes the source / gate / dra in

po t en t i a l , eg .
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86 ‘ region_groups ‘ = {2 : [ 1 , 2 ] , 4 : [ 3 ] , 3 : [ 4 ] } where keys r e f e r
to boundaries , and va lue s to l i s t s o f r e g i on s .

87 I f not a l l r e g i on s belong to a contact , those that do are s e t
to the cor re spond ing value , and the o the r s are

88 i n t e r po l a t e d by s o l v i n g Poisson .
89
90 " " "
91 f i x ed_reg i on s = s e t ( [ r f o r r eg s in [ r e g_ l i s t f o r r e g_ l i s t in

s e l f . dev i c e . de sc r . region_groups . va lue s ( ) ] f o r r in r eg s ] )
92 i f f i x ed_reg i on s == se t ( s e l f . dev i ce . de sc r . r e g i on s . keys ( ) ) :
93 bc_vals = s e l f . update_boundary_conditions (method )
94 temp = np . array ( s e l f . dev i c e . f e . r e g i on s . array ( ) , dtype=in t )
95 va l s = [ ]
96 f o r r in range ( l en ( s e l f . dev i c e . de sc r . r e g i on s ) ) :
97 f o r c , r eg s in s e l f . dev i c e . de sc r . region_groups .

i t e r i t em s ( ) :
98 i f r in r eg s :
99 corresponding_contact = c

100 va l = bc_vals [ c ]
101 break
102 va l s . append ( va l )
103 V = df . FunctionSpace ( s e l f . dev i c e . f e . mesh , ’DG’ , 0)
104 p i ecew i s e_cte_potent i a l = df . Function (V)
105 p i ecew i s e_cte_potent i a l . vec to r ( ) [ : ] = np . choose ( temp , va l s )
106 p i ecew i s e_cte_potent i a l = df . p r o j e c t (

p i ecewi se_cte_potent ia l , s e l f .V, so lver_type=’ lu ’ )
107 e l s e :
108 bc_vals = s e l f . update_boundary_conditions (method )
109 bcs = [ ]
110 f o r f r in f i x ed_reg i ons :
111 f o r c , r eg s in s e l f . dev i c e . de sc r . region_groups .

i t e r i t em s ( ) :
112 i f f r in r eg s :
113 corresponding_contact = c
114 va l = bc_vals [ c ]
115 break
116 bc = s e l f . dev i ce . f e . g e t_d i r i ch l e tbc_fo r_reg ion ( s e l f .V,

f r , va l )
117 bcs . append ( bc )
118 z e r o f c t = df . Function ( s e l f .V)
119 z e r o f c t . vec to r ( ) [ : ] = 0 .0
120 p i ecew i s e_cte_potent i a l = s e l f . s o l v e ( z e r o f c t , bcs=bcs )
121 re turn p i e cew i s e_cte_potent i a l
122
123
124 c l a s s Rea l i s t i cPo i s s on (PoissonPDE) :
125 de f __init__( s e l f , ∗ args , ∗∗kwargs ) :
126 PoissonPDE . __init__( s e l f , ∗ args , ∗∗kwargs )
127
128 de f s o l v e ( s e l f , charge , bcs=None ) :
129 u = df . Tr ia lFunct ion ( s e l f .V)
130 v = df . TestFunction ( s e l f .V)
131 phi = df . Function ( s e l f .V)
132 dx = s e l f . dev i ce . f e . dx
133 eps = s e l f . dev i c e . get_property ( ’ p e rm i t t i v i t y ’ )
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134 bcs = bcs or s e l f . bcs
135 a = inner ( grad (u) , grad (v ) ) ∗ dx
136 L = charge ∗ v / eps ∗ dx
137 df . s o l v e ( a == L , phi , bcs )
138 re turn phi
139 pass

B.4 Schrödinger-Poisson

1 import d o l f i n as df
2 import l ogg ing
3 import numpy as np
4 import os
5 import t ab l e s as tb
6 import yaml
7 from aux i l i a r y . atomicun i t s import eV
8 from aux i l i a r y . s e t t i n g s import units im
9 from do l f i n import exp

10 from sc ipy . opt imize import anderson
11 from s t ru c tu r e . po i s son import PoissonPDE
12 from s t ru c tu r e . s em i c l a s s i c a l import S em i c l a s s i c a l S t r u c t u r e
13
14 prms = units im . parameters
15 l o gg e r = logg ing . getLogger ( ’ un i t_s imulat ion_logger ’ )
16
17
18 c l a s s QtbmStructure ( ob j e c t ) :
19 " " " Contains the mic roscop i c s t r u c tu r e o f the device , f o l l ow i ng the

Quantum Transmitt ing Boundary Method .
20
21 The method above i s used to f i nd a l l energy e i g e n s t a t e s ; the se need

be found s e l f c o n s i s t e n t l y with the po t e n t i a l .
22 Some t ranspor t formal ism i s to be used to determine the occupat ion

o f the se s t a t e s . . . which through feedback
23 again changes the po t en t i a l , and hence the s t a t e s themse lves .
24
25 " " "
26
27 de f __init__( s e l f , device , environment ) :
28 s e l f . dev i c e = dev i ce
29 s e l f . environment = environment
30 s e l f . s t a t e s = QtbmStates ( s e l f . dev i c e )
31 s e l f . po i s son = PoissonPDE( s e l f . dev i c e )
32 s e l f . dens i ty_operator = DensityOperator ( s e l f . device , s e l f .

s t a t e s , s e l f . environment )
33 s e l f . p o t e n t i a l = df . Function ( s e l f . po i s son .V)
34
35 # de f i n e the s t r u c tu r e o f the h5− f i l e where i t e r a t i v e ( and

f i n a l ) r e s u l t s w i l l be saved
36 s o l u t i on_s i z e = s e l f . po i s son .V. dim ( )
37 s o l u t i on_s i z e_e l = s e l f . s t a t e s . s ch roed inge r .V. dim ( )
38 so lut ion_type = df . Function ( s e l f . po i s son .V) . vec to r ( ) . array ( ) .

dtype . name
39 nr_of_leads = len ( s e l f . dev i c e . de sc r . lead_boundrs )
40
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41 c l a s s St ruc ture ( tb . I sDe s c r i p t i on ) :
42 i t e r_nr = tb . UInt8Col ( )
43 ph i_coe f f s = tb . Col . from_sctype ( so lut ion_type ,

s o l u t i on_s i z e )
44 e l_dens_coe f f s = tb . Col . from_sctype ( so lut ion_type ,

s o l u t i on_s i z e )
45 dop_dens_coeffs = tb . Col . from_sctype ( so lut ion_type ,

s o l u t i on_s i z e )
46 charge_coe f f s = tb . Col . from_sctype ( so lut ion_type ,

s o l u t i on_s i z e )
47 e f n_coe f f s = tb . Col . from_sctype ( so lut ion_type ,

s o l u t i on_s i z e )
48 cur rent = tb . Float64Col ( ( nr_of_leads , 2) )
49
50 s e l f . h 5 f i l e = tb . open_f i l e ( " r e s u l t s /qtbm_structure . h5 " , mode=’w

’ , t i t l e=" Pot en t i a l and s t a t e s . " )
51 s e l f . h 5 f i l e . c r ea te_tab l e ( ’ / ’ , ’ s t r u c tu r e ’ , Structure , " Table

conta in ing a s t a t e with a l l a t t r i b u t e s . " )
52 s e l f . i t e r a t i on_nr = 1
53 s e l f . s o l v e_po i s s on_sch roed inge r_ i t e ra t i v e l y ( )
54
55 de f s o l v e_po i s s on_sch roed inge r_ i t e ra t i v e l y ( s e l f ) :
56 # f ind the i n i t i a l guess p o t e n t i a l
57 l o gg e r . i n f o ( " De f in ing the i n i t i a l guess p o t e n t i a l . " )
58 i f prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son s ch roed inge r ’ ] [ ’ i n i t i a l guess ’ ]

== ’ s em i c l a s s i c a l ’ :
59 s e l f . dev i c e . s emic l_s t ruc t = Sem i c l a s s i c a l S t r u c t u r e ( s e l f .

device , s e l f . dev i c e . environment )
60 i n i t i a l_po t en t i a l_gu e s s = df . p r o j e c t ( s e l f . dev i c e .

s emic l_s t ruc t .V, s e l f . po i s son .V, so lver_type=’ lu ’ )
61 # co r r e c t the s em i c l a s s i c a l p o t e n t i a l to account f o r the

change in lead−Fermi l eve l s
62 bcs = [ ]
63 f o r i , l in s e l f . dev i c e . l e ad s . i t e r i t em s ( ) :
64 cor re spond ing_reg ions = s e l f . dev i c e . de sc r . region_groups

[ i ]
65 qm_correction = l . s c_ f e rm i l e v e l_o f f s e t − l .

qm_fermi l eve l_of f se t
66 f o r r in cor re spond ing_reg ions :
67 bc = s e l f . dev i ce . f e . g e t_d i r i ch l e tbc_fo r_reg ion ( s e l f

. po i s son .V, r , qm_correction )
68 bcs . append ( bc )
69 z e r o f c t = df . Function ( s e l f . po i s son .V)
70 z e r o f c t . vec to r ( ) [ : ] = 0 .0
71 t o_sh i f t = s e l f . po i s son . s o l v e ( z e r o f c t , bcs=bcs )
72 i n i t i a l_po t en t i a l_gu e s s = df . p r o j e c t (

i n i t i a l_po t en t i a l_gu e s s + to_sh i f t , s e l f . po i s son .V, so lver_type=’ lu ’
)

73 Efn = df . p r o j e c t ( s e l f . dev i c e . s emic l_st ruc t . Efn , s e l f .
po i s son .V, so lver_type=’ lu ’ )

74 e l i f prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son s ch roed inge r ’ ] [ ’ i n i t i a l guess ’ ]
== ’ p i e c ew i s e constant ’ :

75 i n i t i a l_po t en t i a l_gu e s s = s e l f . po i s son .
return_dummy_piecewise_constant_potential (method=’quantum ’ )

76 bcs = [ ]
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77 f o r i , l in s e l f . dev i c e . l e ad s . i t e r i t em s ( ) :
78 cor re spond ing_reg ions = s e l f . dev i c e . de sc r . region_groups [ i ]
79 f o r r in cor re spond ing_reg ions :
80 bc = s e l f . dev i ce . f e . g e t_d i r i ch l e tbc_fo r_reg ion ( s e l f .

po i s son .V, r , − l . p o t e n t i a l )
81 bcs . append ( bc )
82 z e r o f c t = df . Function ( s e l f . po i s son .V)
83 z e r o f c t . vec to r ( ) [ : ] = 0 .0
84 Efn = s e l f . po i s son . s o l v e ( z e r o f c t , bcs=bcs )
85
86 # der i v e the i on i z ed dopants
87 doping = s e l f . dev i c e . get_property ( ’ doping ’ )
88 T = df . Constant ( s e l f . dev i ce . environment . temperature )
89 i f prms [ ’ dev i ce ’ ] [ ’ doping ’ ] == ’ r e a l ’ :
90 Nd = doping ∗ ( 1 . 0 − 1 .0 / (1 + 2 .0 ∗ exp((−

i n i t i a l_po t en t i a l_gu e s s − Efn ) / T) ) )
91 e l s e :
92 Nd = doping
93 dopants = df . p r o j e c t (Nd, s e l f . po i s son .V, so lver_type=’ lu ’ )
94
95 s e l f . po i s son . update_boundary_conditions ( ’ quantum ’ , lead_bc_type

=’Neumann ’ )
96 t ab l e = s e l f . h 5 f i l e . root . s t r u c tu r e
97 e l e c_s t ruc t = tab l e . row
98
99 # run an i n i t i a l i t e r a t i o n and save

100 l o gg e r . i n f o ( " Finding s t a t e s f o r the f i r s t time and c a l c u l a t i n g
i n i t i a l e l e c t r on dens i ty . " )

101 s e l f . p o t e n t i a l . vec to r ( ) [ : ] = i n i t i a l_po t en t i a l_gu e s s . vec to r ( ) .
array ( )

102 s e l f . s t a t e s . update_states ( s e l f . p o t e n t i a l )
103 l o gg e r . i n f o ( " Finding e l e c t r on dens i ty . " )
104 s e l f . e l e c t ron_dens i ty = s e l f . dens i ty_operator .

c a l cu l a t e_e l e c t r on_dens i t y ( s e l f . i t e r a t i on_nr )
105 e l e c_s t ruc t [ ’ i t e r_nr ’ ] = s e l f . i t e r a t i on_nr ; e l e c_s t ru c t [ ’

ph i_coe f f s ’ ] = s e l f . p o t e n t i a l . vec to r ( ) . array ( )
106 e l e c_s t ruc t [ ’ e l_dens_coe f f s ’ ] = s e l f . e l e c t ron_dens i ty . vec to r ( ) .

array ( )
107 charge = dopants − s e l f . e l e c t ron_dens i ty
108 e l e c_s t ruc t [ ’ charge_coe f f s ’ ] = df . p r o j e c t ( charge , s e l f . po i s son .

V, so lver_type=’ lu ’ ) . vec to r ( ) . array ( )
109 l o gg e r . i n f o ( " Finding cur rent . " )
110 cur rent = s e l f . dens i ty_operator . f ind_current ( s e l f . i t e r a t i on_nr )
111 e l e c_s t ruc t [ ’ cu r r ent ’ ] = cur rent
112 e l e c_s t ruc t . append ( )
113 t ab l e . f l u s h ( )
114 s e l f . i t e r a t i on_nr += 1
115
116 de f F( ne_in_cfs ) :
117 # run another i t e r a t i o n
118 l o gg e r . i n f o ( " Finding updated po t e n t i a l . " )
119 s e l f . e l e c t ron_dens i ty . vec to r ( ) [ : ] = ne_in_cfs
120 s e l f . p o t e n t i a l = s e l f . po i s son . solve_quantum_nonlinear ( s e l f .

e l e c t ron_dens i ty , s e l f . p o t e n t i a l )
121 l o gg e r . i n f o ( " Finding corre spond ing new s t a t e s . " )
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122 s e l f . s t a t e s . update_states ( s e l f . p o t e n t i a l )
123 l o gg e r . i n f o ( " Ca l cu l a t ing new e l e c t r on dens i ty . " )
124 e l e c t ron_dens i ty = s e l f . dens i ty_operator .

c a l cu l a t e_e l e c t r on_dens i t y ( s e l f . i t e r a t i on_nr )
125 ne_out_cfs = e l e c t ron_dens i ty . vec to r ( ) . array ( )
126
127 # save t h i s i t e r a t i o n step
128 e l e c_s t ruc t [ ’ i t e r_nr ’ ] = s e l f . i t e r a t i on_nr ; e l e c_s t ru c t [ ’

ph i_coe f f s ’ ] = s e l f . p o t e n t i a l . vec to r ( ) . array ( )
129 e l e c_s t ruc t [ ’ e l_dens_coe f f s ’ ] = s e l f . e l e c t ron_dens i ty .

vec to r ( ) . array ( )
130 charge = dopants − s e l f . e l e c t ron_dens i ty
131 e l e c_s t ruc t [ ’ charge_coe f f s ’ ] = df . p r o j e c t ( charge , s e l f .

po i s son .V, so lver_type=’ lu ’ ) . vec to r ( ) . array ( )
132 cur rent = s e l f . dens i ty_operator . f ind_current ( s e l f .

i t e r a t i on_nr )
133 e l e c_s t ruc t [ ’ cu r r ent ’ ] = cur rent
134 e l e c_s t ruc t . append ( )
135 t ab l e . f l u s h ( )
136 s e l f . i t e r a t i on_nr += 1
137
138 re turn ne_out_cfs
139
140 i f prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son s ch roed inge r ’ ] [ ’method ’ ] == ’

unde r r e l axa t i on ’ :
141 ne_cfs = s e l f . e l e c t ron_dens i ty . vec to r ( ) . array ( )
142 eps = 1 .0
143 i t e r = 1
144 t o l = prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son s ch roed inge r ’ ] [ ’

convergence th r e sho ld ’ ]
145 maxiter = prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son s ch roed inge r ’ ] [ ’max

i t e r a t i o n s ’ ]
146 maxdi f f = prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son s ch roed inge r ’ ] [ ’max

d i f f e r e n c e ’ ]
147 whi le eps > t o l and i t e r < maxiter :
148 i t e r += 1
149 l o gg e r . i n f o ( " S ta r t i ng i t e r a t i o n %i (max . i t e r a t i o n s = %

i ) , eps = %f ( th r e sho ld = %f ) " , i t e r , maxiter , eps , t o l )
150 old_pot_cfs = s e l f . p o t e n t i a l . vec to r ( ) . array ( )
151 ne_out_cfs = F( ne_cfs )
152 new_pot_cfs = s e l f . p o t e n t i a l . vec to r ( ) . array ( )
153
154 d = np . l i n a l g . norm( new_pot_cfs − old_pot_cfs , ord=np .

I n f )
155 alpha = min ( 1 . 0 , maxdi f f / d)
156 l o gg e r . i n f o ( " Using unde r r e l axa t i on where alpha = %f " ,

alpha )
157 ne_next_cfs = alpha ∗ ne_out_cfs + (1 . 0 − alpha ) ∗

ne_cfs
158 d i f f = new_pot_cfs − old_pot_cfs
159 eps = np . l i n a l g . norm( d i f f , ord=np . I n f )
160 ne_cfs = ne_next_cfs
161 i f eps < t o l :
162 l o gg e r . i n f o ( " Convergence ! ( eps = " + s t r ( eps ) + " ) " )
163 e l s e :
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164 l o gg e r . e r r o r ( "No convergence reached in the Poisson−
Schroed inger loop . " )

165 s e l f . h 5 f i l e . c l o s e ( )
166
167
168 c l a s s QtbmStates ( ob j e c t ) :
169 " " "A c l a s s to f i nd and conta in a l l s t a t e s f o r a g iven

d ev i c e c on f i g u r a t i o n . " " "
170 de f __new__( c l s , ∗ args , ∗∗kwargs ) :
171 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ bands ’ ] == ’ conductionband only

’ and \
172 prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ a x i a l symmetric ’ :
173 from s t ru c tu r e . qtbmimpl . ax ia l symmetr ic_unipo lar import

S ta t e s
174 re turn Sta t e s (∗ args , ∗∗kwargs )
175 e l i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ bands ’ ] == ’ conductionband

only ’ and \
176 prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ r e a l i s t i c ’ :
177 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] :
178 from s t ru c tu r e . qtbmimpl . r ea l i s t i c_1band_tensor import

S ta t e s
179 e l i f not prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] :
180 from s t ru c tu r e . qtbmimpl . r ea l i s t i c_1band import S ta t e s
181 re turn Sta t e s (∗ args , ∗∗kwargs )
182 e l i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ bands ’ ] == ’ conductionband

only ’ and \
183 prms [ ’ dev i c e ’ ] [ ’ type ’ ] == ’ l i n e a r ’ :
184 from s t ru c tu r e . qtbmimpl . l inear_1band import S ta t e s
185 re turn Sta t e s (∗ args , ∗∗kwargs )
186
187
188 c l a s s DensityOperator ( ob j e c t ) :
189 de f __new__( c l s , ∗ args , ∗∗kwargs ) :
190 i f prms [ ’ t r anspo r t ’ ] [ ’ formal ism ’ ] == ’ b a l l i s t i c ’ :
191 i f prms [ ’ dev i ce ’ ] [ ’ type ’ ] == ’ a x i a l symmetric ’ :
192 from s t ru c tu r e . qtbmimpl . b a l l i s t i c_do import

Ax ia lSymmetr i cBa l l i s t i cDens i tyOperator
193 re turn ob j e c t .__new__(

Axia lSymmetr i cBa l l i s t i cDens i tyOperator , ∗ args , ∗∗kwargs )
194 e l i f prms [ ’ dev i ce ’ ] [ ’ type ’ ] == ’ l i n e a r ’ :
195 from s t ru c tu r e . qtbmimpl . b a l l i s t i c_do import

L in ea rBa l l i s t i cDen s i t yOpe ra t o r
196 re turn ob j e c t .__new__( L inea rBa l l i s t i cDens i tyOpe ra to r , ∗

args , ∗∗kwargs )
197 e l i f prms [ ’ dev i ce ’ ] [ ’ type ’ ] == ’ r e a l i s t i c ’ :
198 from s t ru c tu r e . qtbmimpl . b a l l i s t i c_do import

Re a l i s t i cBa l l i s t i cDen s i t yOpe r a t o r
199 re turn ob j e c t .__new__( Rea l i s t i cBa l l i s t i cDen s i t yOpe r a t o r

, ∗ args , ∗∗kwargs )
200
201 de f __init__( s e l f , device , s t a t e s , environment ) :
202 s e l f . dev i c e = dev i ce
203 s e l f . s t a t e s = s t a t e s
204 s e l f . environment = environment
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B.5 Calculation of the charges and currents

1 import d o l f i n as df
2 import numpy as np
3 import t ab l e s as tb
4 from aux i l i a r y . phys i c s import fd
5 from aux i l i a r y . s e t t i n g s import units im
6 from s t ru c tu r e . qtbm import DensityOperator
7 from sc ipy . i n t e g r a t e import quad
8
9 prms = units im . parameters

10
11 c l a s s R e a l i s t i cBa l l i s t i cDen s i t yOpe r a t o r ( DensityOperator ) :
12 de f __init__( s e l f , device , s t a t e s , environment ) :
13 DensityOperator . __init__( s e l f , device , s t a t e s , environment )
14 s e l f . s t a t e s = s t a t e s
15
16 de f ca l cu l a t e_e l e c t r on_dens i t y ( s e l f , i t e r_nr ) :
17 temperature = s e l f . environment . temperature
18 degree = prms [ ’ s t r u c tu r e ’ ] [ ’ s ch roed inge r ’ ] [ ’ shape func t i ons

degree ’ ]
19 V = df . FunctionSpace ( s e l f . dev i c e . f e . mesh , ’CG’ , degree )
20 e l e c t ron_dens i ty = df . Function (V)
21 e l e c t ron_dens i ty . vec to r ( ) [ : ] = 0 .0
22 with tb . open_f i l e ( " r e s u l t s / qtbm_states_iter " + s t r ( i t e r_nr ) + "

. h5 " , mode=’ r ’ ) as h 5 f i l e :
23 ps i_rea l = df . Function (V)
24 psi_imag = df . Function (V)
25 probab i l i t y_dens i ty = df . Function (V)
26 f o r s t a t e in h 5 f i l e . root . s t a t e s . i t e r r ows ( ) :
27 ps i_rea l . vec to r ( ) [ : ] = s t a t e [ ’ c o e f f s_ r e a l ’ ]
28 psi_imag . vec to r ( ) [ : ] = s t a t e [ ’ coef f s_imag ’ ]
29 dens i ty_c f s = ps i_rea l . vec to r ( ) . array ( ) ∗∗2 + psi_imag .

vec to r ( ) . array ( ) ∗∗2
30 probab i l i t y_dens i ty . vec to r ( ) [ : ] = dens i ty_c f s
31 degeneracy = s t a t e [ ’ degeneracy ’ ]
32 m_eff = s e l f . dev i c e . l e ad s [ s t a t e [ ’ in j_ lead ’ ] ] . mate r i a l .

me_long
33 sb_enrgy = s t a t e [ ’ inj_subband_energy ’ ]
34 mu = − s e l f . environment . p o t e n t i a l s [ s t a t e [ ’ in j_ lead ’ ] ]
35 f = lambda e : fd ( e , mu, temperature )
36 f a c t = (m_eff / 2 . 0 ) ∗∗0 .5 / ( 2 . 0 ∗ np . p i )
37 fk = lambda k : fd ( sb_enrgy + k∗∗2 , mu, temperature )
38 i f s t a t e [ ’ energy_lbnd ’ ] − sb_enrgy < 0 :
39 pass
40 occupat ion = f a c t ∗ 2 .0 ∗ quad ( fk , ( s t a t e [ ’ energy_lbnd ’

] − sb_enrgy ) ∗∗0 .5 , ( s t a t e [ ’ energy_ubnd ’ ] − sb_enrgy ) ∗∗0 .5 ) [ 0 ]
41 s ta te_dens i ty = probab i l i t y_dens i ty . vec to r ( ) . array ( ) ∗

occupat ion ∗ degeneracy
42 e l e c t ron_dens i ty . vec to r ( ) [ : ] = e l e c t ron_dens i ty . vec to r

( ) . array ( ) + state_dens i ty
43 degree = prms [ ’ s t r u c tu r e ’ ] [ ’ po i s son ’ ] [ ’ shape func t i ons degree ’ ]
44 e l e c t ron_dens i ty = df . p r o j e c t ( e l ec t ron_dens i ty , df .

FunctionSpace ( s e l f . dev i c e . f e . mesh , ’CG’ , degree ) , so lver_type=’ lu ’ )
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45 e l e c t ron_dens i ty . vec to r ( ) [ : ] = e l e c t ron_dens i ty . vec to r ( ) . array
( ) . c l i p (min=0.0)

46 re turn e l e c t ron_dens i ty
47
48 de f f ind_current_dens i ty ( s e l f ) :
49 " " " Ca l cu la te the cur rent dens i ty as a v e c t o r f un c t i on s from a l l

the s t a t e s . " " "
50 pass
51
52 de f f ind_current ( s e l f , i t e r_nr ) :
53 " " " Based on the t ransmi s s i on c o e f f i c i e n t s , c a l c u l a t e the

cur rent .
54
55 By convention , we de f i n e here cur rent out o f the dev i c e and

hence in to the l e ad s as p o s i t i v e .
56
57 " " "
58
59 temperature = s e l f . environment . temperature
60 cu r r en t s = {}
61 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
62 cu r r en t s [ l ] = 0 .0
63 with tb . open_f i l e ( " r e s u l t s / qtbm_states_iter " + s t r ( i t e r_nr ) + "

. h5 " , mode=’ r ’ ) as h 5 f i l e :
64 t ab l e = h 5 f i l e . root . s t a t e s
65 f o r l in s e l f . dev i c e . de sc r . lead_boundrs :
66 mu = s e l f . environment . p o t e n t i a l s [ l ]
67 f o r sb in range ( s e l f . s t a t e s . subbands [ l ] [ ’ number o f ’ ] ) :
68 sb_state_nrs = np . array ( [ s t a t e [ ’ number ’ ] f o r s t a t e

in tab l e . i t e r r ows ( ) i f s t a t e [ ’ in j_ lead ’ ] == l and s t a t e [ ’ inj_subband
’ ] == sb ] )

69 i f l en ( sb_state_nrs ) > 0 :
70 sb_degeneracy = tab l e . c o l s . degeneracy [

sb_state_nrs [ 0 ] ]
71 sb_state_enrgs = tab l e . c o l s . energy [ : ] [

sb_state_nrs ]
72 s = np . a r g s o r t ( sb_state_enrgs )
73 sb_state_nrs = sb_state_nrs [ s ]
74 sb_state_enrgs = sb_state_enrgs [ s ]
75 sb_enrgy_lbnd = tab l e . c o l s . energy_lbnd [

sb_state_nrs [ 0 ] ]
76 sb_enrgy_ubnd = tab l e . c o l s . energy_ubnd [

sb_state_nrs [ −1 ] ]
77 f o r l_out in s e l f . dev i c e . de sc r . lead_boundrs :
78 dummy_transm = tab l e . c o l s . t r an smi s s i on [

sb_state_nrs [ 0 ] ]
79 entry = np . argwhere (dummy_transm [ : , 0 ] ==

l_out ) [ 0 ] [ 0 ]
80 i f l_out != l :
81 t r an sm i s s i o n c f s = tab l e . c o l s .

t r ansmi s s i on [ : ] [ sb_state_nrs , entry , 1 ]
82 occ = lambda x : np . i n t e rp (x ,

sb_state_enrgs , t r a n sm i s s i o n c f s ) ∗ fd (x , mu, temperature )
83 cu r r en t s [ l_out ] −= sb_degeneracy ∗ quad

( occ , sb_enrgy_lbnd , sb_enrgy_ubnd ) [ 0 ]
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84 e l s e :
85 t r an sm i s s i o n c f s = 1 − t ab l e . c o l s .

t r ansmi s s i on [ : ] [ sb_state_nrs , entry , 1 ]
86 occ = lambda x : np . i n t e rp (x ,

sb_state_enrgs , t r an sm i s s i o n c f s ) ∗ fd (x , mu, temperature )
87 cu r r en t s [ l ] += sb_degeneracy ∗ quad ( occ

, sb_enrgy_lbnd , sb_enrgy_ubnd ) [ 0 ]
88 f o r l in cu r r en t s . i t e r k e y s ( ) :
89 cu r r en t s [ l ] /= 2 .0 ∗ np . p i
90 currents_array = [ ]
91 f o r l , cur r in cu r r en t s . i t e r i t em s ( ) :
92 currents_array . append ( [ l , cur r ] )
93 re turn np . array ( currents_array , dtype=f l o a t )

B.6 Properties of Si material

1 from aux i l i a r y . atomicun i t s import ∗
2 from fd i n t import fdk
3 from numpy import exp , p i
4 from aux i l i a r y . s e t t i n g s import units im
5 from sc ipy . opt imize import brentq
6 from va l l e y import Val ley
7 import numpy as np
8
9 prms = units im . parameters

10
11 c l a s s Mater ia l ( ob j e c t ) :
12 de f __init__( s e l f , ∗∗kwargs ) :
13 f o r key in kwargs :
14 s e t a t t r ( s e l f , key , kwargs [ key ] )
15
16
17 c l a s s Semiconductor ( Mater ia l ) :
18 de f f ind_fe rmi_leve l ( s e l f , doping , temperature=None , dopingtype=’

i on i z ed ’ ) :
19 " " " Find the conduct ion band minimum r e l a t i v e to the Fermi l e v e l

.
20
21 Atomic un i t s are assumed . Not a l l dopant atoms are n e c e s s a r i l y

a c t i v e / charged . This model makes use o f
22 e f f e c t i v e dens i ty o f s t a t e s f o r e l e c t r o n s and ho l e s and hence

i s very s imple .
23
24 " " "
25 degenerate = True
26 temp = temperature i f temperature i s not None e l s e

0.00095004462 # 300 K
27 eg = s e l f . bandgap
28 Nc , Nv, = s e l f . Nc , s e l f .Nv
29 i f not degenerate :
30 n = lambda Ef : Nc ∗ exp ( Ef / temp)
31 p = lambda Ef : Nv ∗ exp(−( eg + Ef ) / temp)
32 e l s e :
33 n = lambda Ef : Nc ∗ 2 .0 / p i ∗∗0 .5 ∗ fdk ( 0 . 5 , Ef / temp)
34 p = lambda Ef : Nv ∗ fdk (k=0.5 , phi=−(eg + Ef ) / temp)
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35 i f dopingtype == ’ r e a l ’ :
36 d = lambda Ef : doping ∗ (1 − 1 / (1 + 2 .0 ∗ exp(−Ef/temp) ) )
37 e l i f dopingtype == ’ i on i z ed ’ :
38 d = lambda Ef : doping
39 qnet = lambda Ef : d( Ef ) − n( Ef ) #+ p(Ef )
40 f e rm i l e v e l = brentq ( qnet , −eg − 0 . 1 , 0 . 1 , x t o l=1e−14) # 0 .1

Ha = 2.72 eV
41 re turn − f e rm i l e v e l
42
43 de f f i nd_e f f e c t i v e_ca r r i e r_den s i t y ( s e l f , temperature=None ) :
44 temp = temperature i f temperature i s not None e l s e

0.00095004462 # 300 K
45 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] == True :
46 s e l f . Nc = (2 . 0 ∗ s e l f . me_long ∗ temp / pi ) ∗∗1 .5 / 4 .0
47 s e l f .Nv = (2 ∗ s e l f .mhh ∗ temp / pi ) ∗∗1 .5 / 4 .0 + (2 ∗ s e l f

. mlh ∗ temp / pi ) ∗∗1 .5 / 4 .0
48 e l s e :
49 s e l f . Nc = (2 . 0 ∗ s e l f . me_eff_gamma ∗ temp / pi ) ∗∗1 .5 / 4 .0
50 s e l f .Nv = (2 ∗ s e l f .mhh ∗ temp / pi ) ∗∗1 .5 / 4 .0 + (2 ∗ s e l f

. mlh ∗ temp / pi ) ∗∗1 .5 / 4 .0
51
52 de f f ind_of f s e t_with ( s e l f , mate r i a l ) :
53 i f s e l f . band_of f sets . has_key ( mate r i a l . name) :
54 re turn s e l f . band_of f set s [ mate r i a l . name ]
55 e l s e :
56 re turn s e l f . a f f i n i t y − mate r i a l . a f f i n i t y
57
58
59 c l a s s Dopant ( Mater ia l ) :
60 pass
61
62
63 c l a s s Oxide ( Semiconductor ) :
64 pass
65
66 Si = Semiconductor ( )
67 Si . name = ’ S i ’
68 Si . p e rm i t t i v i t y = 11.68 ∗ eps_0
69 Si . bandgap = 1.11 ∗ eV
70 i f prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ t en so r ’ ] == True :
71 Si . me_trans = 0.19
72 Si . me_long = 0.98
73 Si . v a l l e y s = {}
74 i f l en ( prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ v a l l e y s ’ ] ) == 3 :
75 f o r v , v a l l e y in enumerate ( prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ v a l l e y s

’ ] ) :
76 Si . v a l l e y s [ prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ v a l l e y s ’ ] [ v ] ] =

Val ley ( prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ v a l l e y s ’ ] [ v ] )
77 e l i f l en ( prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ v a l l e y s ’ ] ) == 1 :
78 f o r v in prms [ ’ s t r u c tu r e ’ ] [ ’ s t a t e s ’ ] [ ’ v a l l e y s ’ ] :
79 Si . v a l l e y s [ v ] = Val ley (v )
80
81 Si .mhh = 0.49
82 Si . mlh = 0.16
83 Si . a f f i n i t y = 4.05 ∗ eV
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84 Si .me_eff_gamma = 0.19
85 Si . f i nd_e f f e c t i v e_ca r r i e r_den s i t y ( )

B.7 Creation of the effective mass tensors

1 import d o l f i n as df
2 import l ogg ing
3 import numpy as np
4 l o gg e r = logg ing . getLogger ( ’ un i t_s imulat ion_logger ’ )
5 import os . path
6
7
8
9 c l a s s Val ley ( ob j e c t ) :

10 " " "A c l a s s that corresponds to a p a r t i c u l a r v a l l e y with a l l the
c h a r a c t e r i s t i c s de f i ned f o r that v a l l e y .

11
12 The va l l e y i s a conduct ion band va l l e y o f a s p e c i f i c semiconductor

mate r i a l .
13
14 Each va l l e y ob j e c t ho lds i t s ( i n v e r s e ) e f f e c t i v e mass t enso r

expres sed in the v a l l e y coord ina te system and the
15 nece s sa ry r o t a t i on matr i ce s to r o t a t e the i nv e r s e e f f e c t i v e mass

t enso r from the va l l e y coord ina te system to the
16 g l oba l coo rd ina te system .
17
18 M∗( gcs )^−1 = [ R( vcs <−− gcs ) ]^T ∗ M∗( vcs )^−1 ∗ [ R( vcs

<−− gcs ) ]
19
20 with [ R( vcs <−− gcs ) ] = [ R( vcs <−− cc s ) ] ∗ [ R( cc s <−−

l c s ) ] ∗ [ R( l c s <−− gcs ) ]
21
22 where vcs : " v a l l e y coord ina te system " , c c s : " c r y s t a l

coo rd ina te system " , l c s : " l ead coord ina te system " ,
23 gcs : " g l oba l coo rd ina te system "
24 " " "
25
26 de f __init__( s e l f , va l ley_type ) :
27 s e l f . type = val ley_type
28 s e l f . inverse_ef fect ive_mass_tensors_in_global_coordinate_system

= {}
29
30 de f make_rotation_matrix_from_global_to_valley ( s e l f , va l ley_type ) :
31 i f va l ley_type == " 100_val ley " :
32 s e l f . rotat ion_matr ix_from_crystal_to_val ley = df . as_matrix

( [ [ 0 . 0 , 0 . 0 , −1.0 ] , [ 0 . 0 , 1 . 0 , 0 . 0 ] , [ 1 . 0 , 0 . 0 , 0 . 0 ] ] ) # R(Y, 90)
33
34 e l i f va l ley_type == " 010_val ley " :
35 s e l f . rotat ion_matr ix_from_crystal_to_val ley = df . as_matrix

( [ [ 1 . 0 , 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 , −1.0 ] , [ 0 . 0 , 1 . 0 , 0 . 0 ] ] ) # R(X, 90)
36
37 e l i f va l ley_type == " 001_val ley " :
38 s e l f . rotat ion_matr ix_from_crystal_to_val ley = df . as_matrix

( [ [ 1 . 0 , 0 . 0 , 0 . 0 ] , [ 0 . 0 , 1 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 , 1 . 0 ] ] ) # I
39
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40 e l s e :
41 l o gg e r . e r r o r ( " Something went wrong with the r o t a t i on

matr i ce s or the d e f i n i t i o n o f the v a l l e y s " )
42
43
44 s e l f . rotation_matrix_from_lead_to_crystal = df . as_matrix ( [ [ 1 . 0 ,

0 . 0 , 0 . 0 ] , [ 0 . 0 , 1 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 , 1 . 0 ] ] ) # I
45 s e l f . rotation_matrix_from_global_to_lead = df . as_matrix ( [ [ 1 . 0 ,

0 . 0 , 0 . 0 ] , [ 0 . 0 , 1 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 , 1 . 0 ] ] ) # I
46
47 s e l f . rotation_matrix_from_global_to_val ley = s e l f .

rotat ion_matrix_from_crystal_to_val ley ∗ \
48 s e l f .

rotation_matrix_from_lead_to_crystal ∗ \
49 s e l f .

rotation_matrix_from_global_to_lead
50
51 de f make_effective_mass_tensor_in_valley_coordinate_system ( s e l f ,

r eg ionr , mesh , dev i ce ) :
52 " " " Return the e f f e c t i v e mass t enso r in the v a l l e y coord ina te

system .
53
54 The reg i on s p e c i f i e s automat i ca l l y the mate r i a l and the chosen

va l l e y f o r t h i s r eg i on .
55
56 Return a 3D tenso r in ( k_transverse1 , k_transverse2 ,

k_long i tud ina l ) . This t enso r i s always d iagona l .
57
58 Use me_long and me_trans from the mate r i a l to make the

e f f e c t i v e mass t enso r .
59 " " "
60
61 topo log i ca l_dimens ion = mesh . u f l _ c e l l ( ) . topo log i ca l_dimens ion ( )
62
63 # Def ine MeshFunctions over each c e l l o f the mesh
64 mxx = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
65 mxy = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
66 mxz = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
67
68 myx = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
69 myy = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
70 myz = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
71
72 mzx = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
73 mzy = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
74 mzz = df . MeshFunction ( " double " , mesh , topo log i ca l_dimens ion )
75
76 # This i s the v a l l e y in the t ranspor t d i r e c t i o n . Assumption :

t ran spor t i s in the z−d i r e c t i o n .
77
78 # For each c e l l s t o r e the value o f the component o f the t enso r
79 f o r c e l l in df . c e l l s (mesh ) :
80 mxx [ c e l l ] = dev i ce . get_ef fect ive_mass_values ( ’me_trans ’ ) [

r e g i on r ]
81 mxy [ c e l l ] = 0 .0
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82 mxz [ c e l l ] = 0 .0
83
84 myx [ c e l l ] = 0 .0
85 myy [ c e l l ] = dev i ce . get_ef fect ive_mass_values ( ’me_trans ’ ) [

r e g i on r ]
86 myz [ c e l l ] = 0 .0
87
88 mzx [ c e l l ] = 0 .0
89 mzy [ c e l l ] = 0 .0
90 mzz [ c e l l ] = dev i ce . get_ef fect ive_mass_values ( ’me_long ’ ) [

r e g i on r ]
91
92 # Store the meshfunct ions ( components o f the t enso r ) i n to a

f i l e
93 mesh_fi le = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type + " /mesh . xml " )
94
95 mxx_file = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
96 " /mxx . xml " )
97 mxy_file = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
98 " /mxy . xml " )
99 mxz_fi le = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
100 " /mxz . xml " )
101
102 myx_file = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
103 " /myx . xml " )
104 myy_file = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
105 " /myy . xml " )
106 myz_fi le = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
107 " /myz . xml " )
108
109 mzx_fi le = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
110 " /mzx . xml " )
111 mzy_fi le = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
112 " /mzy . xml " )
113 mzz_f i le = df . F i l e ( " . /3 Dtensors /Region " + s t r ( r e g i on r ) + " / " +

s e l f . type +
114 " /mzz . xml " )
115 mesh_fi le << mesh
116 mxx_file << mxx
117 mxy_file << mxy
118 mxz_fi le << mxz
119
120 myx_file << myx
121 myy_file << myy
122 myz_fi le << myz
123
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124 mzx_fi le << mzx
125 mzy_fi le << mzy
126 mzz_f i le << mzz
127
128 # Code f o r C++ eva lua t i on o f the t enso r
129 s e l f . t ensorcode = " " "
130
131 c l a s s Tensor : pub l i c Express ion
132 {
133 pub l i c :
134 // Create exp r e s s i on with 9 components
135 Tensor ( ) : Express ion (9 ) {}
136
137 // Function f o r eva lua t ing exp r e s s i on on each c e l l
138 void eva l (Array<double>& values , const Array<double>& x ,

const u fc : : c e l l& c e l l ) const
139 {
140 const u int D = c e l l . topo log i ca l_dimens ion ;
141 const u int ce l l_ index = c e l l . index ;
142 va lue s [ 0 ] = (∗mxx) [ c e l l_ index ] ;
143 va lue s [ 1 ] = (∗mxy) [ c e l l_ index ] ;
144 va lue s [ 2 ] = (∗mxz) [ c e l l_ index ] ;
145
146 va lue s [ 3 ] = (∗myx) [ c e l l_ index ] ;
147 va lue s [ 4 ] = (∗myy) [ c e l l_ index ] ;
148 va lue s [ 5 ] = (∗myz) [ c e l l_ index ] ;
149
150 va lue s [ 6 ] = (∗mzx) [ c e l l_ index ] ;
151 va lue s [ 7 ] = (∗mzy) [ c e l l_ index ] ;
152 va lue s [ 8 ] = (∗mzz) [ c e l l_ index ] ;
153
154 }
155
156 // The data s to r ed in mesh func t i on s
157 std : : shared_ptr<MeshFunction<double> > mxx ;
158 std : : shared_ptr<MeshFunction<double> > mxy ;
159 std : : shared_ptr<MeshFunction<double> > mxz ;
160
161 std : : shared_ptr<MeshFunction<double> > myx ;
162 std : : shared_ptr<MeshFunction<double> > myy ;
163 std : : shared_ptr<MeshFunction<double> > myz ;
164
165 std : : shared_ptr<MeshFunction<double> > mzx ;
166 std : : shared_ptr<MeshFunction<double> > mzy ;
167 std : : shared_ptr<MeshFunction<double> > mzz ;
168
169 } ;
170
171 " " "
172
173 # Def ine t enso r exp r e s s i on and matrix
174 mxx = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
175 " / " + s e l f . type + " /mxx . xml " )
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176 mxy = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +
s t r ( r e g i on r ) +

177 " / " + s e l f . type + " /mxy . xml " )
178 mxz = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
179 " / " + s e l f . type + " /mxz . xml " )
180
181 myx = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
182 " / " + s e l f . type + " /myx . xml " )
183 myy = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
184 " / " + s e l f . type + " /myy . xml " )
185 myz = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
186 " / " + s e l f . type + " /myz . xml " )
187
188 mzx = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
189 " / " + s e l f . type + " /mzx . xml " )
190 mzy = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
191 " / " + s e l f . type + " /mzy . xml " )
192 mzz = df . MeshFunction ( " double " , mesh , " . /3 Dtensors /Region " +

s t r ( r e g i on r ) +
193 " / " + s e l f . type + " /mzz . xml " )
194
195 t = df . Express ion ( cppcode=s e l f . t ensorcode ) # t stands f o r the

t enso r exp r e s s i on
196 t .mxx = mxx
197 t .mxy = mxy
198 t .mxz = mxz
199
200 t .myx = myx
201 t .myy = myy
202 t .myz = myz
203
204 t .mzx = mzx
205 t .mzy = mzy
206 t . mzz = mzz
207
208 s e l f . e f fect ive_mass_tensor_in_val ley_coordinate_system = df .

as_tensor ( ( ( t [ 0 ] , t [ 1 ] , t [ 2 ] ) , ( t [ 3 ] , t [ 4 ] , t [ 5 ] ) ,
209

( t [ 6 ] , t [ 7 ] , t [ 8 ] ) ) )
210
211 de f rotate_from_valley_to_global_coordinate_system ( s e l f ) :
212 s e l f . inverse_ef fect ive_mass_tensor_in_global_coordinate_system

= df . t ranspose (
213 s e l f . rotation_matrix_from_global_to_val ley ) ∗ s e l f .

inverse_ef fect ive_mass_tensor_in_val ley_coordinate_system\
214 ∗ s e l f . rotation_matrix_from_global_to_val ley
215
216 de f get_inverse_ef fect ive_mass_tensor_in_global_coordinate_system (

s e l f , r eg ionr , mesh , dev i c e ) :
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217 i f not s t r ( r e g i on r ) in s e l f .
inverse_ef fect ive_mass_tensors_in_global_coordinate_system . keys ( ) :

218
219 l o gg e r . i n f o ( " Creat ing a new e f f e c t i v e mass t enso r f o r

r eg i on " + s t r ( r e g i on r ) + " and va l l e y type " + s e l f . type )
220 s e l f . make_rotation_matrix_from_global_to_valley ( s e l f . type )
221 s e l f . make_effective_mass_tensor_in_valley_coordinate_system

( reg ionr , mesh , dev i c e )
222 s e l f .

inverse_ef fect ive_mass_tensor_in_val ley_coordinate_system = df . inv (
s e l f . e f fect ive_mass_tensor_in_val ley_coordinate_system )

223 s e l f . rotate_from_valley_to_global_coordinate_system ( )
224
225 # add the assembled e f f e c t i v e mass t enso r to a d i c t i ona ry

f o r l a t e r use
226
227 s e l f .

inverse_ef fect ive_mass_tensors_in_global_coordinate_system [ s t r (
r e g i on r ) ] = s e l f .
inverse_ef fect ive_mass_tensor_in_global_coordinate_system

228
229 re turn s e l f .

inverse_ef fect ive_mass_tensor_in_global_coordinate_system
230
231 e l s e :
232 l o gg e r . i n f o ( " Looking up an e x i s t i n g e f f e c t i v e mass t enso r

f o r r eg i on " + s t r ( r e g i on r ) + " and va l l e y type " + s e l f . type )
233
234 re turn s e l f .

inverse_ef fect ive_mass_tensors_in_global_coordinate_system [ s t r (
r e g i on r ) ]

235
236 de f

get_lead_effect ive_mass_along_transport_in_global_coordinate_system (
s e l f , mesh ) :

237 " " " Return the e f f e c t i v e mass in the l ead along the t ranspor t
d i r e c t i o n .

238
239 For now i t i s assumed that t h i s i s the zz−component o f the

t enso r expres sed in the g l oba l ax i s system .
240
241 " " "
242 s e l f . e f fect ive_mass_tensor_in_global_coordinate_system = df . inv

(
243 s e l f .

inverse_ef fect ive_mass_tensor_in_global_coordinate_system )
244
245 T = df . TensorFunctionSpace (mesh , ’CG’ , 1)
246 s e l f . e f fect ive_mass_tensor_in_global_coordinate_system = df .

p r o j e c t ( s e l f . e f fect ive_mass_tensor_in_global_coordinate_system , T)
247
248 f 2 = df . Function ( df . FunctionSpace (mesh , ’CG’ , 1) )
249
250 df . a s s i gn ( f2 , s e l f .

e f fect ive_mass_tensor_in_global_coordinate_system . sub (8 ) )
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251 f 2 = f2 . vec to r ( ) . array ( ) [ 0 ]
252 re turn f2

B.8 Definition of the input parameters

1 from aux i l i a r y . atomicun i t s import ∗
2
3 defau l t_units imulat ion_parameters = {
4 ’ d ev i c e ’ : {
5 ’ type ’ : ’ a x i a l symmetric ’ ,
6 ’ doping ’ : ’ i o n i z ed ’
7 } ,
8 ’ s t r u c tu r e ’ : {
9 ’ formal ism ’ : ’qtbm ’ ,

10 ’ s em i c l a s s i c a l ’ : {
11 ’ shape func t i ons degree ’ : 2
12 } ,
13 ’ po i s son s ch roed inge r ’ : {
14 ’ i n i t i a l guess ’ : ’ s em i c l a s s i c a l ’ ,
15 ’method ’ : ’ unde r r e l axa t i on ’ ,
16 ’ non l i n ea r po i s son ’ : True ,
17 ’max i t e r a t i o n s ’ : 5 ,
18 ’ convergence th r e sho ld ’ : 1e−4,
19 ’max d i f f e r e n c e ’ : 0 .025 ∗ eV
20 } ,
21 ’ s t a t e s ’ : {
22 ’ bands ’ : ’ conductionband only ’ ,
23 ’ subbands ’ : 1 ,
24 ’ t en so r ’ : True ,
25 ’ v a l l e y s ’ : [ " 100 _val ley " , " 010 _val ley " , " 001 _val ley " ] ,
26 ’ e d i f f ’ : 0 .01 ∗ eV ,
27 ’ c u t o f f energy ’ : 0 .25 ∗ eV ,
28 ’ r e f inement s t a t e s ’ : 20 ,
29 ’max re f inement s ’ : 2 ,
30 ’ s o l v e r ’ : ’ d i r e c t ’
31 } ,
32 ’ s ch roed inge r ’ : {
33 ’ shape func t i ons degree ’ : 2 ,
34 ’ wavefunct ion in oxide ’ : Fa l se
35 } ,
36 ’ po i s son ’ : {
37 ’ shape func t i ons degree ’ : 2 ,
38 ’ a ccurate shape func t i ons degree ’ : 4
39 }
40 } ,
41 ’ t r an spo r t ’ : {
42 ’ formal ism ’ : ’ b a l l i s t i c ’
43 }
44 }
45
46 de f dict_merge ( dct , merge_dct ) :
47 " " " Recurs ive d i c t merge . I n sp i r ed by : meth : ‘ ‘ d i c t . update ( ) ‘ ‘ ,

i n s t ead o f
48 updating only top−l e v e l keys , dict_merge r e cu r s e s down in to d i c t s

nested
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49 to an a rb i t r a r y depth , updating keys . The ‘ ‘ merge_dct ‘ ‘ i s merged
in to

50 ‘ ‘ dct ‘ ‘ .
51 : param dct : d i c t onto which the merge i s executed
52 : param merge_dct : dct merged in to dct
53 : r e turn : None
54 " " "
55 f o r k , v in merge_dct . i t e r i t em s ( ) :
56 i f ( k in dct and i s i n s t a n c e ( dct [ k ] , d i c t )
57 and i s i n s t a n c e (merge_dct [ k ] , d i c t ) ) :
58 dict_merge ( dct [ k ] , merge_dct [ k ] )
59 e l s e :
60 dct [ k ] = merge_dct [ k ]
61
62
63 c l a s s Un i t s imu la t i onSe t t i ng s ( ob j e c t ) :
64
65 de f __init__( s e l f ) :
66 s e l f . de fault_parameters = defau l t_units imulat ion_parameters
67
68 de f set_parameters ( s e l f , d ) :
69 s e l f . parameters = s e l f . de fault_parameters . copy ( )
70 dict_merge ( s e l f . parameters , d )
71
72 units im = Un i t s imu la t i onSe t t i ng s ( )
73
74 " " "
75 dev i ce :
76 type : a x i a l symmetric | r e a l i s t i c | l i n e a r
77 doping : r e a l | i on i z ed
78 s t r u c tu r e :
79 formal ism : qtbm | s em i c l a s s i c a l
80 s em i c l a s s i c a l :
81 shape func t i ons degree : 4
82 po i s son s ch roed inge r :
83 i n i t i a l guess : s em i c l a s s i c a l | p i e c ew i s e constant
84 method : unde r r e l axa t i on | anderson
85 non l inea r po i s son : True
86 max i t e r a t i o n s : 10
87 convergence th r e sho ld : 0 .00000001
88 under r e l axa t i on parameter : 0 . 5
89 s t a t e s :
90 bands : conductionband only
91 subbands : 10
92 t enso r : Fa l se
93 v a l l e y s : [ " 1 00 _val ley " , "010 _val ley " , "001 _val ley " ]
94 e d i f f : 0 .002 # eV
95 c u t o f f energy : 0 .25 # eV
96 re f inement s t a t e s : 20
97 max re f inements : 2
98 s o l v e r : d i r e c t
99 s ch roed inge r :

100 shape func t i ons degree : 2
101 wavefunct ion in oxide : True
102 po i s son :
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103 shape func t i ons degree : 1
104 accurate shape func t i ons degree : 2
105 t ranspor t :
106 formal ism : b a l l i s t i c
107 " " "
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